WO2010116432A1 - Image processing apparatus, display apparatus, image processing method, program, and recording medium - Google Patents

Image processing apparatus, display apparatus, image processing method, program, and recording medium Download PDF

Info

Publication number
WO2010116432A1
WO2010116432A1 PCT/JP2009/006859 JP2009006859W WO2010116432A1 WO 2010116432 A1 WO2010116432 A1 WO 2010116432A1 JP 2009006859 W JP2009006859 W JP 2009006859W WO 2010116432 A1 WO2010116432 A1 WO 2010116432A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
redistribution
pixels
divided
Prior art date
Application number
PCT/JP2009/006859
Other languages
French (fr)
Japanese (ja)
Inventor
宮田英利
山根康邦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010116432A1 publication Critical patent/WO2010116432A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes

Definitions

  • the present invention relates to an image processing apparatus and an image processing method for upscaling the resolution of input image data to a high resolution.
  • a pixel division method described in Patent Document 1 is generally known as a method for solving such problems related to viewing angle characteristics.
  • the pixel dividing method is a technique in which one pixel is divided into a plurality of regions, and different voltages are applied to the divided regions (divided pixels). According to this method, the brightness floating can be suppressed and the viewing angle characteristics can be improved.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 4-102830 (published on April 3, 1992)”
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a high-resolution image processing apparatus that converts the resolution of input image data to a high resolution without complicating drive processing.
  • An object of the present invention is to provide an image processing apparatus capable of generating an image and improving the viewing angle.
  • the image processing apparatus of the present invention includes an upscaling processing unit for upscaling the resolution of RGB input image data to a high resolution that is n times higher.
  • An image processing apparatus to be displayed on a display unit wherein one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB. Then, with respect to the input image data corresponding to one pixel, the gradation value that has been upscaled by the upscaling processing unit and assigned to the plurality of subpixels corresponding to the pixel is redistributed among the subpixels.
  • a redistribution processing unit wherein the redistribution processing unit regards each of the sub-images in each divided pixel when the n divided pixels after the upscaling are regarded as one pixel.
  • the gradation value assigned to each pixel is redistributed among the sub-pixels in the divided pixel, and the gradation value assigned to each sub-pixel is changed between the sub-pixels in the pixel for each RGB. It is characterized by redistributing with.
  • the gradation values assigned to the sub-pixels corresponding to RGB that have been upscaled are redistributed among the sub-pixels in the divided pixels, and re-distributed between the sub-pixels in the pixel for each RGB.
  • Distribute. Therefore, for example, before and after the redistribution, the subpixels of each of the RGB of one whole pixel (in one pixel) without changing the luminance of one whole divided pixel and the chromaticity of one whole pixel.
  • the luminance difference can be increased between sub-pixels of the same color. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process.
  • the viewing angle can be improved by distributing the gradation value among the sub-pixels, there is no need to newly divide the pixel to improve the viewing angle, and the panel transmittance is reduced and writing to the pixel is performed. There is no shortage of time.
  • a display device includes the image processing device and a display unit that displays image data upscaled by the image processing device.
  • the image processing method of the present invention includes an upscaling process step for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data.
  • one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB.
  • Redistribution processing for redistributing gradation values assigned to a plurality of sub-pixels corresponding to the pixel after the up-scale processing step is performed on the input image data corresponding to one pixel.
  • a display step of displaying image data on the display unit based on the gradation values redistributed by the redistribution processing step In the redistribution processing step, when the n divided pixels after the upscaling are regarded as one pixel, the gradation value assigned to each sub pixel in each divided pixel is changed to the sub-pixel in the divided pixel. In addition to redistribution among the pixels, the gradation value assigned to each subpixel in each pixel is redistributed among the subpixels in the pixel for each RGB.
  • the image processing method it is possible to obtain the effect produced by the image processing apparatus. That is, a high-definition image can be generated and the viewing angle can be improved without complicating the driving process.
  • the image processing apparatus may be realized by a computer.
  • Possible recording media are also included in the scope of the present invention.
  • the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel, and each pixel In FIG. 5, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB.
  • the image processing apparatus and the image processing method of the present invention it is possible to generate a high-definition image and improve the viewing angle without complicating the driving process.
  • FIG. 1 It is a block diagram which shows schematic structure of the display apparatus provided with the image processing apparatus which concerns on this invention. It is a schematic diagram for demonstrating the processing content of the image processing apparatus of FIG. It is a schematic diagram which shows the specific example of the processing content of the image processing apparatus of FIG. It is a schematic diagram which shows the specific example of the processing content of the image processing apparatus of FIG. It is a graph which shows the relationship between the gradation value of input image data, and a brightness
  • 3 is a graph showing luminance characteristics when displayed by image data after redistribution obtained by the image processing apparatus of FIG. 1.
  • 3 is a graph showing luminance characteristics when displayed by image data after redistribution obtained by the image processing apparatus of FIG. 1.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device 1 according to the present embodiment.
  • the display device 1 includes an image processing device 10 and a liquid crystal display panel (display unit) 2.
  • the image processing apparatus 10 includes an upscale circuit (upscale processing unit) 11, a redistribution circuit (redistribution processing unit) 12, and a liquid crystal drive circuit 13.
  • the upscaling circuit 11 performs upscaling processing on the video signal X (image data) input to the image processing apparatus 10 and outputs upscaled image data (upscaled image data) to the redistribution circuit 12. .
  • the upscale circuit 11 includes a division processing unit (not shown) that divides input image data into a plurality of divided image data. In the present embodiment, as an example, it is assumed that 2K1K class high-definition data is input to the upscale circuit 11. Details of the upscaling process will be described later.
  • the redistribution circuit 12 performs redistribution processing for redistributing the gradation values of the upscaled image data input from the upscale circuit 11, and drives the redistributed image data (image data after redistribution) by liquid crystal Output to the circuit 13. Details of the redistribution processing will be described later.
  • the liquid crystal drive circuit 13 controls the liquid crystal display panel 2 on the basis of the redistributed image data (tone value) input from the redistribution circuit 12 and causes the liquid crystal display panel 2 to display the redistributed image.
  • the liquid crystal display panel 2 is controlled by the liquid crystal drive circuit 13 and displays an image corresponding to the image data that has been upscaled and redistributed by the image processing apparatus 10.
  • a liquid crystal display panel having 4096 pixels in the horizontal direction and 2160 pixels in the vertical direction (4K2K class) is used.
  • the input image data for the image processing apparatus 10 is 1920 ⁇ 1080 and the display size of the liquid crystal display panel 2 is 4096 ⁇ 2160
  • the input image data is upscaled (expanded) twice to 3840 ⁇ . 2160.
  • the size in the horizontal direction (3840 dots) is smaller than the display size (4096 dots)
  • it is necessary to display the image of the left half divided area by shifting to the right by 2048-1920 128 dots.
  • the correction process for shifting the left half image to the right may be performed in any part in the image processing apparatus 10.
  • the display capacity of the liquid crystal display panel is not limited to this.
  • a liquid crystal display panel is used as the display unit.
  • the present invention is not limited to this.
  • a display unit including a plasma display, an organic EL display, or a CRT may be used.
  • a display control unit corresponding to the display unit may be provided.
  • the image processing apparatus 10 performs the upscaling process on the input image data, and the 4K2K video signal X is input.
  • Image data after upscaling is generated, and the redistribution circuit 12 performs a process of redistributing gradation values on the image data after upscaling to generate image data after redistribution.
  • the liquid crystal driving circuit 13 generates a video signal corresponding to the redistributed image data (gradation value) in which the gradation value is redistributed (converted) by the redistribution circuit 12, and an image corresponding to the video signal is generated. Is displayed on the liquid crystal display panel 2.
  • FIG. 2 is a schematic diagram for explaining the processing contents of the image processing apparatus 10.
  • Reference numeral 21 in this figure indicates image data corresponding to one pixel of 2K1K input image (original image) data
  • reference numeral 22 indicates 4K2K post-upscale image data that has been upscaled by the upscale circuit 11. Is shown.
  • reference numeral 21 denotes a pixel before upscaling
  • reference numeral 22 also denotes a pixel after upscaling.
  • description will be given focusing on one pixel among a plurality of pixels constituting the input image data.
  • RGB original image data (input data) 21 corresponding to one pixel is input to the upscale circuit 11 (see FIG. 1) and upscaled four times (upscale processing step).
  • the input data PR is upscaled to R subpixel data R1, R subpixel data R2, R subpixel data R3, R subpixel data R4, and the input data PG is G subpixel data G1.
  • G subpixel data G2, G subpixel data G3, G subpixel data G4, and the input data PB is B subpixel data B1, B subpixel data B2, B subpixel data B3, B subpixel data. Upscaled to B4.
  • one upscaled pixel corresponding to the input data 21 is composed of four divided pixels P1, P2, P3, and P4.
  • the divided pixel P1 is composed of sub-pixels R1, G1, and B1
  • the divided pixel P2 is composed of sub-pixels R2, G2, and B2
  • the divided pixel P3 is sub-pixel R3.
  • the divided pixel P4 includes sub-pixels R4, G4, and B4.
  • the luminance values Y1 to Y4 of the divided pixels P1 to P4 after upscaling are expressed by the following equations.
  • LR (x), LG (x), and LB (x) are functions that convert the gradation value x into a luminance value (cd / m 2 ).
  • the gradation value x of the sub-pixel R1 is defined as R1
  • the gradation value x of the sub-pixel G1 is defined as G1.
  • Y1 LR (R1) + LG (G1) + LB (B1) (1)
  • Y2 LR (R2) + LG (G2) + LB (B2) (2)
  • Y3 LR (R3) + LG (G3) + LB (B3) (3)
  • Y4 LR (R4) + LG (G4) + LB (B4) (4)
  • the redistribution circuit 12 has the luminance represented by the image data of the upscaled divided pixels P1 to P4 (divided pixels P1 to P4 before redistribution) and the image of the divided pixels P1 to P4 after redistribution.
  • the luminance values are redistributed between RGB so that the luminance represented by the data is equal to each other (does not change).
  • the luminance represented by the image data R1, G1, B1 before redistribution and the luminance represented by the image data R1 ′, G1 ′, B1 ′ after redistribution are mutually
  • the luminance values of the image data R1, G1, and B1 are distributed (increased or decreased) to each other so as to be equal.
  • the luminance represented by the image data R2, G2, B2 before redistribution and the luminance represented by the image data R2 ′, G2 ′, B2 ′ after redistribution are equal to each other.
  • the luminance values of the image data R2, G2, and B2 are distributed (increased or decreased) to each other.
  • the luminance represented by the image data R3, G3, and B3 before redistribution and the luminance represented by the image data R3 ′, G3 ′, and B3 ′ after redistribution are equal to each other.
  • the luminance values of the image data R3, G3, and B3 are distributed (increased or decreased) to each other.
  • the luminance represented by the image data R4, G4, and B4 before redistribution and the luminance represented by the image data R4 ′, G4 ′, and B4 ′ after redistribution are equal to each other.
  • the luminance values of the image data R4, G4, and B4 are distributed (increased or decreased) to each other.
  • the redistribution processing (redistribution processing step) of the luminance value among the sub-pixels RGB is performed in each divided pixel so as to satisfy the following expressions with respect to the above expressions (1) to (8).
  • Y1 Y1 ′ (9)
  • Y2 Y2 ′ (10)
  • Y3 Y3 ′ (11)
  • Y4 Y4 ′ (12)
  • the redistribution circuit 12 is a color represented by image data (image data after upscaling: R1 to R4, G1 to G4, B1 to B4) of each subpixel after upscaling (subpixel before redistribution).
  • the chromaticity represented by the image data of each subpixel after redistribution (image data after redistribution: R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′) for each RGB pixel
  • the luminance values are redistributed among the sub-pixels of each color so as to be equal to each other.
  • the luminance is represented by the sum of luminance represented by the image data R1, R2, R3, and R4 before redistribution, and the image data R1 ′, R2 ′, R3 ′, and R4 ′ after redistribution.
  • the luminance values of the image data R1, R2, R3, and R4 are redistributed with each other so that the total sum of the luminances is equal to each other.
  • the sum of the brightness represented by the image data G1, G2, G3, and G4 before redistribution and the sum of the brightness represented by the image data G1 ′, G2 ′, G3 ′, and G4 ′ after redistribution Are redistributed to each other so that the brightness values of the image data G1, G2, G3, and G4 are equal to each other.
  • the sum of the brightness represented by the image data B1, B2, B3, B4 before redistribution and the sum of the brightness represented by the image data B1 ', B2', B3 ', B4' after redistribution Are redistributed to each other so that the brightness values of the image data B1, B2, B3, and B4 are equal to each other.
  • the chromaticity can be redistributed equally.
  • CR ′ LR (R1 ′) + LR (R2 ′) + LR (R3 ′) + LR (R4 ′) (16)
  • CG ′ LG (G1 ′) + LG (G2 ′) + LG (G3 ′) + LG (G4 ′) (17)
  • CB ′ LB (B1 ′) + LB (B2 ′) + LB (B3 ′) + LB (B4 ′) (18) Then, within one pixel, luminance value redistribution processing is performed among a plurality of R sub-pixels, and luminance value redistribution processing is performed among a plurality of G sub-pixels so that the following equation is satisfied.
  • a luminance value redistribution process (redistribution process step) is performed between the B sub-pixels.
  • CR CR ′ (19)
  • CG CG '(20)
  • CB CB '(21)
  • LR (x), LG (x), and LB (x) are defined as values corresponding to output luminances for the R, G, and B gradation values x, respectively.
  • LR (x) corresponds to the output luminance when a data signal (gradation value x) is input to the R pixel of the liquid crystal display panel and a 0 data signal is input to the G pixel and the B pixel.
  • L R, LR (x) L R ⁇ L 0 Is defined as follows.
  • L 0 corresponds to output luminance when a data signal of 0 is input to all of the R pixel, G pixel, and B pixel (note that the liquid crystal panel has a slight luminance output even when the input signal is 0).
  • LG (x) and LB (x) are the same, and are functions for obtaining a luminance equivalent value.
  • the characteristics of this function vary depending on the specifications of the liquid crystal display panel, it is necessary to match each characteristic.
  • the liquid crystal display panel 2 Image data is displayed (display step).
  • the gradation value assigned to the subpixels corresponding to RGB by the upscaling processing unit can be redistributed among the subpixels in the divided pixels. Further, the gradation value assigned to the sub-pixel can be redistributed among the sub-pixels in the pixel for each RGB. Therefore, for example, before and after the redistribution, the subpixels of the respective RGB (the same color) of each of the entire divided pixels are not changed without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel. The luminance difference between the sub-pixels) can be increased. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process. In addition, since RGB chromaticity can be adjusted, display quality is not deteriorated. Note that the gradation value redistributed in the redistribution processing unit is determined according to the luminance and the pixel size.
  • the redistribution circuit 12 increases the scale difference between the subpixels of the luminance represented by each subpixel after the redistribution by the redistribution circuit 12 in each pixel. It is preferable to redistribute the gradation values of the sub-pixels so that the difference between the sub-pixels in luminance represented by each sub-pixel after the upscaling by the circuit 11 is greater.
  • the difference between the luminance value (LR (R3 ′)) and the luminance value (LR (R4 ′)) of the sub-pixel R4 ′ is the difference between the luminance value (LR (R1)) of the sub-pixel R1 after the upscaling and the sub-pixel R2.
  • the luminance between the sub-pixels is larger than the difference between the luminance value (LR (R2)), the luminance value of the sub-pixel R3 (LR (R3)) and the luminance value of the sub-pixel R4 (LR (R4)). Redistribute values.
  • the luminance value (LR (R1 ')) of the sub-pixel R1', the luminance value (LR (R2 ')) of the sub-pixel R2', and the luminance of the sub-pixel R3 ' Out of the value (LR (R3 ′)) and the luminance value (LR (R4 ′)) of the sub-pixel R4 ′, the luminance value of the sub-pixel having the maximum luminance value and the luminance value of the sub-pixel having the minimum luminance value Are the luminance value of the sub-pixel R1 (LR (R1)), the luminance value of the sub-pixel R2 (LR (R2)), the luminance value of the sub-pixel R3 (LR (R3)), and Of the luminance values (LR (R4)) of the sub-pixel R4, the sub-pixel is set to be larger than the difference between the luminance value of the sub-pixel having the maximum luminance value and the luminance value of the sub-pixel having the minimum luminance value.
  • one divided pixel is composed of RGB sub-pixels
  • a distribution ratio may be set for each sub-pixel and redistribution processing may be performed individually. Since the contribution to luminance differs for each sub-pixel, even if the luminance difference between sub-pixels is a high luminance difference of 100 cd / m 2 or more, for example, the luminance change before and after redistribution per divided pixel is Can be suppressed. Therefore, redistribution processing is possible even for such a high luminance difference.
  • the redistribution processing can be performed for each sub-pixel, the redistribution processing function can be turned on / off for each sub-pixel.
  • the redistribution circuit 12 matches the center position of the luminance in the divided pixel after the redistribution with the center position of the divided pixel, and the chromaticity central position in the pixel after the redistribution.
  • the sense of resolution when viewed by humans is not impaired, and a change in chromaticity is not recognized.
  • chromaticity is also redistributed to humans. It looks the same before and after.
  • the center of luminance is not at the center of the divided pixel, the center of luminance is often the center of the divided pixel by centering on the G pixel having high luminance. I have to.
  • data signals R1, G1, and B1 are input to the divided pixel P1
  • data signals R2, G2, and B2 are input to the divided pixel P2
  • a data signal R3 is input to the divided pixel P3.
  • G3 and B3 are input
  • data signals R4, G4, and B4 are input to the divided pixel P4.
  • the redistribution processing is executed, and the divided pixel P1 becomes the data signal R1 ′ / G1 ′ / B1 ′, the divided pixel P2 becomes the data signal R2 ′ / G2 ′ / B2 ′, and the divided pixel P3 receives the data signal.
  • R3 ′, G3 ′, B3 ′, and the divided pixel P4 becomes the data signal R4 ′, G4 ′, B4 ′.
  • the luminance in each divided pixel is concentrated on the G sub-pixel located at the center of RGB for each divided pixel or on the R sub-pixel and the B sub-pixel.
  • the luminance in the divided pixel P1 is concentrated on the G sub pixel
  • the luminance is concentrated on the R sub pixel and the B sub pixel
  • the luminance is set on the R sub pixel.
  • the luminance is concentrated on the G sub-pixel.
  • the gradation data value input to the sub-pixel and the luminance equivalent value have the relationship shown in FIG.
  • the input gradation data is 8 bits, and the input signal has 0 to 255 gradations.
  • the gradation data values (R, G, B) input to the R, G, B sub-pixels in the four divided pixels are (180, 150, 80), the sub-pixels from the graph of FIG.
  • the luminance equivalent value of the pixel is the following value.
  • the respective luminance values in the respective divided pixels do not change before and after the redistribution processing (the above formulas (9) to (12)), and the chromaticity for each RGB in one pixel.
  • the redistribution circuit 12 is configured such that the luminance represented by one divided pixel after upscaling and the luminance represented by the divided pixels after redistribution become equal to each other, and 1 after the upscaling.
  • To B4) are redistributed to the gradation values (R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′).
  • FIG. 6 shows the luminance characteristics obtained by the above processing.
  • a graph indicated by a broken line indicates a luminance characteristic when the redistribution processing is not performed after upscaling
  • a graph indicated by a solid line is the case when the redistribution processing is performed after upscaling.
  • the luminance characteristic is shown.
  • the configuration in which the redistribution processing is performed is closer to the luminance characteristic (graph indicated by the dotted line) when the liquid crystal display panel is viewed from the front direction than the configuration in which the redistribution processing is not performed. It is shown that the characteristics are improved.
  • FIG. 7 is a graph comparing the luminance characteristics (graphs indicated by dotted lines) in the conventional configuration shown in FIG. 9 with the luminance characteristics (graphs indicated by broken lines) in the configuration of the present invention.
  • whitening can be suppressed and the viewing angle characteristics can be improved as compared with the conventional configuration.
  • a redistribution process for improving the viewing angle is performed on the upscaled video signal, thereby obtaining a high-definition image and improving the viewing angle. can do.
  • RGB sub-picture elements
  • the RGB input data values are redistributed so that the viewing angle characteristics are improved.
  • the viewing angle characteristics can be improved without impairing the resolution improvement effect. Can do.
  • the resolution is upscaled in the luminance component, and the color component is not upscaled.
  • the spatial resolution characteristic is different from the luminance characteristic and the color characteristic as shown in FIG. 8, and the color contrast frequency characteristic occurs at a lower spatial frequency than the luminance characteristic (Visual Information Processing Handbook).
  • the luminance characteristic Visual Information Processing Handbook
  • the current digital TV broadcast signal has less than half the color information with respect to the luminance information.
  • R, G, and B output the same luminance in adjacent pixels.
  • R, G, and B do not necessarily have to be the same, and accurate chromaticity may be output as a whole. Even when adjacent pixels have different luminance, the conditions are the same as long as the chromaticity is appropriate at a level that can be visually recognized as chromaticity.
  • the luminance is redistributed in each of the RGB sub-pixels. Further, in the case of display with upscaling four times, the luminance information is quadrupled by the upscaling, but there is no problem visually even if the color information displays one color with four divided pixels. In many cases, it is possible to readjust the luminance of the RGB sub-pixels in the four-divided pixels and redistribute them so that the luminance difference between the divided pixels becomes large.
  • a redistribution process can be performed individually by setting a distribution ratio for each sub-pixel. Since the contribution to luminance differs for each sub-pixel, even if the luminance difference between the divided pixels is a high luminance difference of, for example, 100 cd / m 2 or more, the luminance change before and after redistribution per pixel is suppressed. be able to. Therefore, redistribution processing is possible even for such a high luminance difference.
  • redistribution processing can be performed for each sub-pixel, a configuration in which the redistribution processing function is turned ON / OFF for each sub-pixel can be employed.
  • the liquid crystal drive circuit 13 is shown as one block.
  • the present invention is not limited to this, and the liquid crystal drive circuit 13 may be composed of a plurality of blocks.
  • a plurality of upscale circuits 11 are provided, and a plurality of redistribution circuits 12 and liquid crystal drive circuits 13 are provided corresponding to the plurality of upscale circuits 11, and the divided regions in the liquid crystal display panel 2 are formed by these liquid crystal drive circuits.
  • the entire liquid crystal display panel 2 is driven by a single liquid crystal drive circuit 13 the drive timing of each region can be easily matched, so that there is an advantage of good controllability, while the number of input / output pins increases.
  • the circuit size (IC size) becomes large.
  • each divided area is a 2K1K class, so that the conventional 2K1K class display device is provided. It is economical because the 2K control chip used can be used.) On the other hand, it is necessary to provide an arbitration circuit for maintaining the synchronization of the liquid crystal drive circuits 13.
  • each circuit (each block) constituting the image processing apparatus 10 may be realized by software using a processor such as a CPU. That is, the image processing apparatus 10 includes a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and a RAM (random access memory) that expands the program.
  • a configuration may be adopted in which a storage device (recording medium) such as a memory for storing the program and various data is provided.
  • an object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the image processing apparatus 10 which is software for realizing the functions described above is recorded so as to be readable by a computer. Is supplied to the image processing apparatus 10, and the computer (or CPU or MPU) reads and executes the program code recorded on the recording medium.
  • a program code execution format program, intermediate code program, source program
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • the image processing apparatus 10 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited.
  • wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc.
  • infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • each circuit (each block) of the image processing apparatus 10 may be realized using software, may be configured by hardware logic, and is a hardware that performs a part of the processing. Hardware and arithmetic means for executing software for performing control of the hardware and remaining processing may be combined.
  • the image processing apparatus of the present invention includes an upscaling processing unit for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data on the display unit.
  • an upscaling processing unit for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data on the display unit.
  • one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB.
  • a redistribution processing unit for redistributing gradation values assigned to a plurality of sub-pixels corresponding to the pixels, which are upscaled by the upscaling processing unit, with respect to the input image data corresponding to the pixels; And the redistribution processing unit assigns each sub-pixel to each sub-pixel when the n sub-pixels after the upscaling are regarded as one pixel.
  • the gradation value is redistributed among the sub-pixels in the divided pixel, and the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB. It is characterized by doing.
  • the gradation values assigned to the sub-pixels corresponding to RGB that have been upscaled are redistributed among the sub-pixels in the divided pixels, and re-distributed between the sub-pixels in the pixel for each RGB.
  • Distribute. Therefore, for example, before and after redistribution, the luminance of one divided pixel and the chromaticity of one entire pixel do not change, and each subpixel of each RGB of one whole pixel (in one pixel)
  • the luminance difference can be increased between sub-pixels of the same color. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process.
  • the viewing angle can be improved by distributing the gradation value among the sub-pixels, there is no need to newly divide the pixel to improve the viewing angle, and the panel transmittance is reduced and writing to the pixel is performed. There is no shortage of time.
  • the redistribution processing unit is configured such that, in each pixel, a luminance difference between subpixels of the same color after redistribution by the redistribution processing unit is the same color after upscaling by the upscaling processing unit.
  • the redistribution may be performed so as to be larger than the luminance difference between the sub-pixels.
  • the number of pixels (sub-pixels) increases due to upscaling, and the luminance difference between the sub-pixels increases, so that the viewing angle can be improved.
  • the redistribution processing unit has the same luminance in one divided pixel after the upscaling by the upscaling processing unit and the luminance in the divided pixel after the redistribution by the redistribution processing unit.
  • the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel, and the color in one pixel after the up-scale by the up-scale processing unit
  • the gradation value assigned to each sub-pixel is determined for each RGB so that the degree and the chromaticity in the pixel after redistribution by the redistribution processing unit are equal to each other.
  • a configuration in which redistribution is performed between sub-pixels may be employed.
  • the luminance difference between the sub-pixels in the divided pixel can be increased without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel before and after redistribution. it can. Therefore, the viewing angle can be improved without causing deterioration in display quality.
  • the redistribution processing unit is configured so that each of the divided pixels has a center of luminance at one divided pixel after redistribution by the redistribution processing unit.
  • the gradation value assigned to the sub-pixel is redistributed among the sub-pixels in the divided pixel, and the center of chromaticity in one pixel after redistribution by the redistribution processing unit is set to the center of the pixel.
  • the gradation value assigned to each sub-pixel may be redistributed among the sub-pixels in the pixel for each RGB.
  • the display device of the present invention includes the image processing device and a display unit that displays image data upscaled by the image processing device.
  • the image processing method of the present invention includes an upscaling step for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data on the display unit.
  • one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB, and one pixel Re-distribution processing step of re-distributing the gradation values assigned to a plurality of sub-pixels corresponding to the pixel by up-scaling the input image data corresponding to the pixel,
  • the distribution processing step when the n divided pixels after the upscaling are regarded as one pixel, the gradation value assigned to each sub pixel is redistributed among the sub pixels in the divided pixel in each divided pixel.
  • the gradation value assigned to each sub pixel is redistributed
  • the image processing method it is possible to obtain the effect produced by the image processing apparatus. That is, a high-definition image can be generated and the viewing angle can be improved without complicating the driving process.
  • the redistribution processing step is represented by the luminance represented by one divided pixel after upscaling by the upscaling processing step and the divided pixel after redistribution by the redistribution processing step.
  • the gradation value assigned to each sub-pixel is redistributed among the sub-pixels so that the luminance is equal to each other, and one after the up-scaling in the up-scaling processing step is performed.
  • the gradation value assigned to each sub-pixel in the pixel so that the chromaticity represented by the pixel and the chromaticity represented by the pixel after redistribution in the redistribution processing step are equal to each other Can be redistributed among the sub-pixels for each RGB.
  • the luminance difference between the RGB sub-pixels of the entire pixel without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel before and after redistribution. Can be increased. Therefore, the viewing angle can be improved without causing deterioration in display quality.
  • the image processing apparatus may be realized by a computer.
  • Possible recording media are also included in the scope of the present invention.
  • the present invention can be applied to an image processing apparatus and an image processing method that upscale the resolution of input image data to a high resolution.
  • Display device 2 Liquid crystal display panel (display unit) 10 Image Processing Device 11 Upscale Circuit (Upscale Processing Unit) 12 Redistribution circuit (Redistribution processing unit) 13 Liquid crystal drive circuit 21 Pixel 22 (before up-scaling) Pixel P1, P2, P3, P4 (after up-scaling) Divided pixels R1, R2, R3, R4 Sub-pixel (R-sub-pixel) G1, G2, RG, G4 Subpixel (G subpixel) B1, B2, B3, B4 Subpixel (B subpixel)

Abstract

An image processing apparatus wherein the resolution of R, G and B input image data is upscaled to a four-fold high resolution for display on a liquid crystal display panel (2). A pixel (21) before upscaling corresponds to four divided pixels (P1-P4) after upscaling, and each of the divided pixels (P1-P4) consists of a plurality of subpixels (R1, G1, B1; R2, G2, B2; R3, G3, B3; R4, G4, B4) corresponding to R, G and B. In a divided pixel (P1), the gray-scale values of the subpixels (R1, G1, B1) are redistributed among the subpixels (R1, G1, B1) in the divided pixel (P1), while in the pixel (22), for each of R, G and B, the gray-scale values are redistributed among the subpixels (R1-R4, G1-G4, B1-B4) in the pixel (22). In this way, in the image processing apparatus for converting the resolution of input image data to a high resolution, high definition images can be generated without complicating the drive process, while the view angle can be improved.

Description

画像処理装置、表示装置、画像処理方法、プログラム、及び、記録媒体Image processing apparatus, display apparatus, image processing method, program, and recording medium
 本発明は、入力される画像データの解像度を高解像度にアップスケールする画像処理装置および画像処理方法に関するものである。 The present invention relates to an image processing apparatus and an image processing method for upscaling the resolution of input image data to a high resolution.
 従来から、液晶表示パネルにおける視野角特性の問題が取り上げられている。具体的には、液晶表示パネルを斜め方向から見た場合と正面方向から見た場合とでは、輝度および色度が互いに異なるというものである。特にVAモードの液晶表示パネルでは、図9に示すように、斜め方向から見た場合の、入力信号輝度に対する出力信号輝度が、正面方向から見た場合の、入力信号輝度に対する出力信号輝度よりも高くなり、いわゆる輝度浮きするという問題がある。 Conventionally, problems of viewing angle characteristics in liquid crystal display panels have been taken up. Specifically, the luminance and chromaticity are different between when the liquid crystal display panel is viewed from an oblique direction and when viewed from the front direction. In particular, in the VA mode liquid crystal display panel, as shown in FIG. 9, the output signal luminance relative to the input signal luminance when viewed from an oblique direction is higher than the output signal luminance relative to the input signal luminance when viewed from the front direction. There is a problem that the brightness increases and so-called brightness rises.
 このような視野角特性に関する問題を解決する方法として、例えば特許文献1に記載の画素分割方法が一般に知られている。画素分割方法は、1画素を複数の領域に分割し、分割したそれぞれの領域(分割画素)に異なる電圧を印加する技術である。この方法によれば、輝度浮きを抑えることができ、視野角特性を向上させることができる。 For example, a pixel division method described in Patent Document 1 is generally known as a method for solving such problems related to viewing angle characteristics. The pixel dividing method is a technique in which one pixel is divided into a plurality of regions, and different voltages are applied to the divided regions (divided pixels). According to this method, the brightness floating can be suppressed and the viewing angle characteristics can be improved.
日本国公開特許公報「特開平4-102830号(1992年4月3日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 4-102830 (published on April 3, 1992)”
 また、液晶表示パネルは、従来から、入力された画像データの解像度を高解像度に変換して高画質化を図るアップスケール技術に関する研究が多くなされている。 In addition, for liquid crystal display panels, conventionally, much research has been conducted on upscaling technology for converting the resolution of input image data to a high resolution to improve the image quality.
 近年では、液晶表示パネルの解像度は大幅に増加し、4096(水平)×2160(垂直)の解像度を有する、いわゆる4K2Kパネルが開発されており、このような液晶表示パネルに対して、入力画像データとして、例えば、ハイビジョンの1920×1080の映像信号(画像データ)が入力される場合、アップスケール処理を施すことにより、入力画像データの4倍(縦横2倍)の解像度(3840×2160)の表示を得ることが可能となる。 In recent years, the resolution of a liquid crystal display panel has been greatly increased, and a so-called 4K2K panel having a resolution of 4096 (horizontal) × 2160 (vertical) has been developed. For example, when a high-definition 1920 × 1080 video signal (image data) is input, an upscaling process is performed to display a resolution (3840 × 2160) that is four times the input image data (twice vertically and horizontally). Can be obtained.
 このようなアップスケール技術を適用した高解像度液晶表示パネルに、視野角改善を図るために上記画素分割方法を適用すると、駆動処理が複雑化するため画素への書き込み時間が短くなり、画素への充電不足が起こる。これは、パネルの解像度が高くなったことにより、その数が増大した分割画素ごとに異なる電圧を印加しなければならないためである。 When the above pixel division method is applied to a high-resolution liquid crystal display panel to which such an upscaling technology is applied in order to improve the viewing angle, the driving process becomes complicated, so the writing time to the pixel is shortened, Insufficient charging occurs. This is because a different voltage must be applied to each of the divided pixels whose number has increased due to an increase in the resolution of the panel.
 このように、従来の液晶表示パネルでは、駆動処理の複雑化を招くことなく、高精細な画像を生成するとともに視野角改善を図ることは困難であった。 As described above, in the conventional liquid crystal display panel, it has been difficult to generate a high-definition image and improve the viewing angle without complicating the driving process.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、入力画像データの解像度を高解像度に変換する画像処理装置において、駆動処理の複雑化を招くことなく、高精細な画像を生成するとともに視野角改善を図ることができる画像処理装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a high-resolution image processing apparatus that converts the resolution of input image data to a high resolution without complicating drive processing. An object of the present invention is to provide an image processing apparatus capable of generating an image and improving the viewing angle.
 本発明の画像処理装置は、上記の課題を解決するために、RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理部を備え、アップスケールされた画像データを表示部に表示させる画像処理装置であって、アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、1つの画素に対応する入力画像データについて、上記アップスケール処理部によりアップスケールされて該画素に対応する複数のサブ画素に割り当てられた階調値を、該サブ画素間で再分配する再分配処理部を備え、上記再分配処理部は、アップスケール後のn個の分割画素を1つの画素とみなした場合、各分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、各画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする。 In order to solve the above-described problem, the image processing apparatus of the present invention includes an upscaling processing unit for upscaling the resolution of RGB input image data to a high resolution that is n times higher. An image processing apparatus to be displayed on a display unit, wherein one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB. Then, with respect to the input image data corresponding to one pixel, the gradation value that has been upscaled by the upscaling processing unit and assigned to the plurality of subpixels corresponding to the pixel is redistributed among the subpixels. A redistribution processing unit, wherein the redistribution processing unit regards each of the sub-images in each divided pixel when the n divided pixels after the upscaling are regarded as one pixel. The gradation value assigned to each pixel is redistributed among the sub-pixels in the divided pixel, and the gradation value assigned to each sub-pixel is changed between the sub-pixels in the pixel for each RGB. It is characterized by redistributing with.
 上記の構成では、アップスケールされた、RGBに対応するサブ画素に割り当てられた階調値を、分割画素内のサブ画素間で再分配するととともに、RGBごとに、画素内のサブ画素間で再分配する。そのため、例えば、再分配の前後で、1つの分割画素全体の輝度、および、1つの画素全体の色度を変化させることなく、1つの画素全体の各RGBそれぞれのサブ画素同士(1つの画素における同一色のサブ画素同士)で輝度差を大きくすることができる。これにより、アップスケール処理による高精細な画像を得つつ、視野角を向上させることができる。また、上記構成では、階調値をサブ画素間で分配することにより視野角を向上できるため、視野角向上のために新たに画素分割する必要がなく、パネル透過率の低下や画素への書き込み時間の不足を招くこともない。 In the above configuration, the gradation values assigned to the sub-pixels corresponding to RGB that have been upscaled are redistributed among the sub-pixels in the divided pixels, and re-distributed between the sub-pixels in the pixel for each RGB. Distribute. Therefore, for example, before and after the redistribution, the subpixels of each of the RGB of one whole pixel (in one pixel) without changing the luminance of one whole divided pixel and the chromaticity of one whole pixel. The luminance difference can be increased between sub-pixels of the same color. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process. In the above configuration, since the viewing angle can be improved by distributing the gradation value among the sub-pixels, there is no need to newly divide the pixel to improve the viewing angle, and the panel transmittance is reduced and writing to the pixel is performed. There is no shortage of time.
 本発明の表示装置は、上記の課題を解決するために、上記画像処理装置と、上記画像処理装置によってアップスケールされた画像データを表示する表示部とを備えていることを特徴とする。 In order to solve the above-described problems, a display device according to the present invention includes the image processing device and a display unit that displays image data upscaled by the image processing device.
 これにより、高精細で視野角の向上した表示品位の高い画像を表示させることができる。 This makes it possible to display high-definition and high-quality images with improved viewing angles.
 本発明の画像処理方法は、上記の課題を解決するために、RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理ステップを含み、アップスケールした画像データを表示部に表示させる画像処理方法であって、アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、1つの画素に対応する入力画像データについて、上記アップスケール処理ステップによりアップスケールして該画素に対応する複数のサブ画素に割り当てた階調値を、該サブ画素間で再分配する再分配処理ステップと、上記再分配処理ステップにより再配分された階調値に基づき、上記表示部に画像データを表示させる表示ステップとを含み、上記再分配処理ステップでは、アップスケール後のn個の分割画素を1つの画素とみなした場合、各分割画素において、各サブ画素に割り当てた上記階調値を、分割画素内のサブ画素間で再分配するとともに、各画素において、各サブ画素に割り当てた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする。 In order to solve the above problems, the image processing method of the present invention includes an upscaling process step for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data. In this image processing method, one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB. Redistribution processing for redistributing gradation values assigned to a plurality of sub-pixels corresponding to the pixel after the up-scale processing step is performed on the input image data corresponding to one pixel. And a display step of displaying image data on the display unit based on the gradation values redistributed by the redistribution processing step In the redistribution processing step, when the n divided pixels after the upscaling are regarded as one pixel, the gradation value assigned to each sub pixel in each divided pixel is changed to the sub-pixel in the divided pixel. In addition to redistribution among the pixels, the gradation value assigned to each subpixel in each pixel is redistributed among the subpixels in the pixel for each RGB.
 上記画像処理方法によれば、上記画像処理装置により奏する効果を得ることができる。すなわち、駆動処理を複雑化することなく、高精細な画像を生成するとともに視野角改善を図ることができる。 According to the image processing method, it is possible to obtain the effect produced by the image processing apparatus. That is, a high-definition image can be generated and the viewing angle can be improved without complicating the driving process.
 なお、上記画像処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各部として動作させることにより、上記画像処理装置をコンピュータにて実現させるプログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に含まれる。 The image processing apparatus may be realized by a computer. In this case, a program that causes the image processing apparatus to be realized by the computer by causing the computer to operate as each unit, and a computer reading that records the program. Possible recording media are also included in the scope of the present invention.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 以上のように、本発明の画像処理装置および画像処理方法は、各分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、各画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配するものである。 As described above, in the image processing apparatus and the image processing method of the present invention, in each divided pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel, and each pixel In FIG. 5, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB.
 よって、本発明の画像処理装置および画像処理方法によれば、駆動処理を複雑化することなく、高精細な画像を生成するとともに視野角改善を図ることができる。 Therefore, according to the image processing apparatus and the image processing method of the present invention, it is possible to generate a high-definition image and improve the viewing angle without complicating the driving process.
本発明に係る画像処理装置を備えた表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the display apparatus provided with the image processing apparatus which concerns on this invention. 図1の画像処理装置の処理内容を説明するための模式図である。It is a schematic diagram for demonstrating the processing content of the image processing apparatus of FIG. 図1の画像処理装置の処理内容の具体例を示す模式図である。It is a schematic diagram which shows the specific example of the processing content of the image processing apparatus of FIG. 図1の画像処理装置の処理内容の具体例を示す模式図である。It is a schematic diagram which shows the specific example of the processing content of the image processing apparatus of FIG. 入力画像データの階調値と輝度相当値との関係を示すグラフである。It is a graph which shows the relationship between the gradation value of input image data, and a brightness | luminance equivalent value. 図1の画像処理装置により得られた再分配後画像データにより表示した場合の輝度特性を示すグラフである。3 is a graph showing luminance characteristics when displayed by image data after redistribution obtained by the image processing apparatus of FIG. 1. 図1の画像処理装置により得られた再分配後画像データにより表示した場合の輝度特性を示すグラフである。3 is a graph showing luminance characteristics when displayed by image data after redistribution obtained by the image processing apparatus of FIG. 1. 空間周波数とコントラスト感度との関係を示すグラフである。It is a graph which shows the relationship between a spatial frequency and contrast sensitivity. 従来の画像処理装置により得られた再分配後画像データにより表示した場合の輝度特性を示すグラフである。It is a graph which shows the luminance characteristic at the time of displaying with the image data after redistribution obtained by the conventional image processing apparatus.
 本発明の一実施形態について、図面を用いて以下に説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 図1は、本実施形態にかかる表示装置1の概略構成を示すブロック図である。この図に示すように、表示装置1は、画像処理装置10と液晶表示パネル(表示部)2とを備えている。 FIG. 1 is a block diagram showing a schematic configuration of a display device 1 according to the present embodiment. As shown in this figure, the display device 1 includes an image processing device 10 and a liquid crystal display panel (display unit) 2.
 画像処理装置10は、アップスケール回路(アップスケール処理部)11、再分配回路(再分配処理部)12および液晶駆動回路13を備えている。 The image processing apparatus 10 includes an upscale circuit (upscale processing unit) 11, a redistribution circuit (redistribution processing unit) 12, and a liquid crystal drive circuit 13.
 アップスケール回路11は、画像処理装置10に入力される映像信号X(画像データ)にアップスケール処理を施して、アップスケール後の画像データ(アップスケール後画像データ)を再分配回路12に出力する。なお、アップスケール回路11は、内部に、入力画像データを複数の分割画像データに分割する分割処理部(図示せず)を含んでいる。本実施形態では、一例として、2K1Kクラスのハイビジョンデータがアップスケール回路11に入力されるものとする。アップスケール処理の詳細については後述する。 The upscaling circuit 11 performs upscaling processing on the video signal X (image data) input to the image processing apparatus 10 and outputs upscaled image data (upscaled image data) to the redistribution circuit 12. . The upscale circuit 11 includes a division processing unit (not shown) that divides input image data into a plurality of divided image data. In the present embodiment, as an example, it is assumed that 2K1K class high-definition data is input to the upscale circuit 11. Details of the upscaling process will be described later.
 再分配回路12は、アップスケール回路11から入力されるアップスケール後画像データの階調値を再分配する再分配処理を施して、再分配後の画像データ(再分配後画像データ)を液晶駆動回路13に出力する。再分配処理の詳細については後述する。 The redistribution circuit 12 performs redistribution processing for redistributing the gradation values of the upscaled image data input from the upscale circuit 11, and drives the redistributed image data (image data after redistribution) by liquid crystal Output to the circuit 13. Details of the redistribution processing will be described later.
 液晶駆動回路13は、再分配回路12から入力される再分配後画像データ(階調値)に基づいて液晶表示パネル2を制御し、再分配された画像を液晶表示パネル2に表示させる。 The liquid crystal drive circuit 13 controls the liquid crystal display panel 2 on the basis of the redistributed image data (tone value) input from the redistribution circuit 12 and causes the liquid crystal display panel 2 to display the redistributed image.
 液晶表示パネル2は、液晶駆動回路13によって制御され、画像処理装置10においてアップスケール処理および再分配処理された画像データに応じた画像を表示する。なお、本実施形態では、水平方向4096画素×垂直方向2160画素(4K2Kクラス)の液晶表示パネルを用いている。 The liquid crystal display panel 2 is controlled by the liquid crystal drive circuit 13 and displays an image corresponding to the image data that has been upscaled and redistributed by the image processing apparatus 10. In this embodiment, a liquid crystal display panel having 4096 pixels in the horizontal direction and 2160 pixels in the vertical direction (4K2K class) is used.
 なお、画像処理装置10に対する入力画像データのサイズが1920×1080であり、液晶表示パネル2の表示サイズが4096×2160の場合、入力画像データを縦横2倍にアップスケール(拡大)して3840×2160になる。この場合、横方向のサイズ(3840ドット)が表示サイズ(4096ドット)よりも小さいので、左半分の分割領域の画像については、2048-1920=128ドット分だけ右側にずらして表示する必要がある。この左半分の画像を右側にずらす補正処理については画像処理装置10内のどの部分で行ってもよい。ただし、液晶表示パネルの表示容量はこれに限るものではない。 When the size of the input image data for the image processing apparatus 10 is 1920 × 1080 and the display size of the liquid crystal display panel 2 is 4096 × 2160, the input image data is upscaled (expanded) twice to 3840 ×. 2160. In this case, since the size in the horizontal direction (3840 dots) is smaller than the display size (4096 dots), it is necessary to display the image of the left half divided area by shifting to the right by 2048-1920 = 128 dots. . The correction process for shifting the left half image to the right may be performed in any part in the image processing apparatus 10. However, the display capacity of the liquid crystal display panel is not limited to this.
 また、本実施形態では表示部として液晶表示パネルを用いているがこれに限るものではなく、例えばプラズマディスプレイ、有機ELディスプレイ、CRTなどからなる表示部を用いてもよく、その場合には液晶駆動回路13に代えて表示部に応じた表示制御部を備えればよい。 In this embodiment, a liquid crystal display panel is used as the display unit. However, the present invention is not limited to this. For example, a display unit including a plasma display, an organic EL display, or a CRT may be used. Instead of the circuit 13, a display control unit corresponding to the display unit may be provided.
 次に、本実施形態に係る画像処理装置10の具体的な処理内容について、アップスケール処理および再分配処理の詳細とともに説明する。 Next, specific processing contents of the image processing apparatus 10 according to the present embodiment will be described together with details of the upscaling process and the redistribution process.
 上記のように、画像処理装置10は、入力画像(原画像)データとして2K1Kの映像信号Xが入力されると、アップスケール回路11がこの入力画像データに対してアップスケール処理を施し、4K2Kのアップスケール後画像データを生成し、再分配回路12がこのアップスケール後画像データに対して階調値を再分配する処理を施し、再分配後画像データを生成する。その後、液晶駆動回路13が、再分配回路12によって階調値が再分配(変換)された再分配後画像データ(階調値)に応じた映像信号を生成し、この映像信号に応じた画像を液晶表示パネル2に表示させる。 As described above, when the 2K1K video signal X is input as the input image (original image) data, the image processing apparatus 10 performs the upscaling process on the input image data, and the 4K2K video signal X is input. Image data after upscaling is generated, and the redistribution circuit 12 performs a process of redistributing gradation values on the image data after upscaling to generate image data after redistribution. Thereafter, the liquid crystal driving circuit 13 generates a video signal corresponding to the redistributed image data (gradation value) in which the gradation value is redistributed (converted) by the redistribution circuit 12, and an image corresponding to the video signal is generated. Is displayed on the liquid crystal display panel 2.
 図2は、画像処理装置10の処理内容を説明するための模式図である。この図の符号21は、2K1Kの入力画像(原画像)データの1画素に対応する画像データを示し、符号22は、アップスケール回路11によりアップスケール処理が施された4K2Kのアップスケール後画像データを示している。なお、便宜上、符号21は、アップスケール前の画素を示し、符号22は、アップスケール後の画素をも示すものとする。また、ここでは一例として、図2に示すように、入力画像データを構成する複数の画素のうち1画素に着目して説明する。 FIG. 2 is a schematic diagram for explaining the processing contents of the image processing apparatus 10. Reference numeral 21 in this figure indicates image data corresponding to one pixel of 2K1K input image (original image) data, and reference numeral 22 indicates 4K2K post-upscale image data that has been upscaled by the upscale circuit 11. Is shown. For convenience, reference numeral 21 denotes a pixel before upscaling, and reference numeral 22 also denotes a pixel after upscaling. In addition, here, as an example, as illustrated in FIG. 2, description will be given focusing on one pixel among a plurality of pixels constituting the input image data.
 まず、1画素に相当するRGBの原画像データ(入力データ)21が、アップスケール回路11(図1参照)に入力され、4倍にアップスケールされる(アップスケール処理ステップ)。図2に示すように、入力データPRは、Rサブ画素データR1,Rサブ画素データR2,Rサブ画素データR3,Rサブ画素データR4にアップスケールされ、入力データPGは、Gサブ画素データG1,Gサブ画素データG2,Gサブ画素データG3,Gサブ画素データG4にアップスケールされ、入力データPBは、Bサブ画素データB1,Bサブ画素データB2,Bサブ画素データB3,Bサブ画素データB4にアップスケールされる。 First, RGB original image data (input data) 21 corresponding to one pixel is input to the upscale circuit 11 (see FIG. 1) and upscaled four times (upscale processing step). As shown in FIG. 2, the input data PR is upscaled to R subpixel data R1, R subpixel data R2, R subpixel data R3, R subpixel data R4, and the input data PG is G subpixel data G1. , G subpixel data G2, G subpixel data G3, G subpixel data G4, and the input data PB is B subpixel data B1, B subpixel data B2, B subpixel data B3, B subpixel data. Upscaled to B4.
 ここで、3つのサブ画素(R・G・B)を1グループと捉えると、入力データ21に対応するアップスケール後の1画素は、4つの分割画素P1、P2,P3,P4で構成されていることになる。すなわち、図2の符号22に示すように、分割画素P1はサブ画素R1・G1・B1で構成され、分割画素P2はサブ画素R2・G2・B2で構成され、分割画素P3はサブ画素R3・G3・B3で構成され、分割画素P4はサブ画素R4・G4・B4で構成される。 Here, if the three sub-pixels (R, G, and B) are regarded as one group, one upscaled pixel corresponding to the input data 21 is composed of four divided pixels P1, P2, P3, and P4. Will be. That is, as indicated by reference numeral 22 in FIG. 2, the divided pixel P1 is composed of sub-pixels R1, G1, and B1, the divided pixel P2 is composed of sub-pixels R2, G2, and B2, and the divided pixel P3 is sub-pixel R3. The divided pixel P4 includes sub-pixels R4, G4, and B4.
 アップスケール後の分割画素P1~P4それぞれの輝度値Y1~Y4は、次式で表される。なお、LR(x)、LG(x)、LB(x)は、階調値xを輝度値(cd/m)へ変換する関数である。以下では、便宜上、サブ画素R1の階調値xをR1、サブ画素G1の階調値xをG1のように定義する。
Y1=LR(R1)+LG(G1)+LB(B1)・・・(1)
Y2=LR(R2)+LG(G2)+LB(B2)・・・(2)
Y3=LR(R3)+LG(G3)+LB(B3)・・・(3)
Y4=LR(R4)+LG(G4)+LB(B4)・・・(4)
 次に、アップスケール後画像データが再分配回路12(図1参照)に入力されると、再分配回路12において、図2に示すように、RGB画素ごとに、変換処理が実行され、次のように階調値が再分配される。
R1→R1′,R2→R2′,R3→R3′,R4→R4′
G1→G1′,G2→G2′,G3→G3′,G4→G4′
B1→B1′,B2→B2′,B3→B3′,B4→B4′
 よって、再分配後の分割画素P1~P4それぞれの輝度値Y1′~Y4′は、次式で表される。
Y1′=LR(R1′)+LG(G1′)+LB(B1′)・・・(5)
Y2′=LR(R2′)+LG(G2′)+LB(B2′)・・・(6)
Y3′=LR(R3′)+LG(G3′)+LB(B3′)・・・(7)
Y4′=LR(R4′)+LG(G4′)+LB(B4′)・・・(8)
 ここで、再分配回路12は、アップスケール後の分割画素P1~P4(再分配前の分割画素P1~P4)の画像データで表される輝度と、再分配後の分割画素P1~P4の画像データで表される輝度とが、互いに等しくなる(変化しない)ように、各分割画素において、RGB間で輝度値を再分配する。具体的には、分割画素P1について、再分配前の画像データR1・G1・B1で表される輝度と、再分配後の画像データR1′・G1′・B1′で表される輝度とが互いに等しくなるように、画像データR1・G1・B1のそれぞれの輝度値を互いに分配(増減)する。分割画素P2について、再分配前の画像データR2・G2・B2で表される輝度と、再分配後の画像データR2′・G2′・B2′で表される輝度とが互いに等しくなるように、画像データR2・G2・B2のそれぞれの輝度値を互いに分配(増減)する。分割画素P3について、再分配前の画像データR3・G3・B3で表される輝度と、再分配後の画像データR3′・G3′・B3′で表される輝度とが互いに等しくなるように、画像データR3・G3・B3のそれぞれの輝度値を互いに分配(増減)する。分割画素P4について、再分配前の画像データR4・G4・B4で表される輝度と、再分配後の画像データR4′・G4′・B4′で表される輝度とが互いに等しくなるように、画像データR4・G4・B4のそれぞれの輝度値を互いに分配(増減)する。
The luminance values Y1 to Y4 of the divided pixels P1 to P4 after upscaling are expressed by the following equations. Note that LR (x), LG (x), and LB (x) are functions that convert the gradation value x into a luminance value (cd / m 2 ). Hereinafter, for convenience, the gradation value x of the sub-pixel R1 is defined as R1, and the gradation value x of the sub-pixel G1 is defined as G1.
Y1 = LR (R1) + LG (G1) + LB (B1) (1)
Y2 = LR (R2) + LG (G2) + LB (B2) (2)
Y3 = LR (R3) + LG (G3) + LB (B3) (3)
Y4 = LR (R4) + LG (G4) + LB (B4) (4)
Next, when the upscaled image data is input to the redistribution circuit 12 (see FIG. 1), the redistribution circuit 12 performs a conversion process for each RGB pixel as shown in FIG. Thus, the gradation values are redistributed.
R1 → R1 ′, R2 → R2 ′, R3 → R3 ′, R4 → R4 ′
G1 → G1 ′, G2 → G2 ′, G3 → G3 ′, G4 → G4 ′
B1 → B1 ′, B2 → B2 ′, B3 → B3 ′, B4 → B4 ′
Therefore, the luminance values Y1 ′ to Y4 ′ of the divided pixels P1 to P4 after redistribution are expressed by the following equations.
Y1 '= LR (R1') + LG (G1 ') + LB (B1') (5)
Y2 '= LR (R2') + LG (G2 ') + LB (B2') (6)
Y3 '= LR (R3') + LG (G3 ') + LB (B3') (7)
Y4 '= LR (R4') + LG (G4 ') + LB (B4') (8)
Here, the redistribution circuit 12 has the luminance represented by the image data of the upscaled divided pixels P1 to P4 (divided pixels P1 to P4 before redistribution) and the image of the divided pixels P1 to P4 after redistribution. In each divided pixel, the luminance values are redistributed between RGB so that the luminance represented by the data is equal to each other (does not change). Specifically, for the divided pixel P1, the luminance represented by the image data R1, G1, B1 before redistribution and the luminance represented by the image data R1 ′, G1 ′, B1 ′ after redistribution are mutually The luminance values of the image data R1, G1, and B1 are distributed (increased or decreased) to each other so as to be equal. For the divided pixel P2, the luminance represented by the image data R2, G2, B2 before redistribution and the luminance represented by the image data R2 ′, G2 ′, B2 ′ after redistribution are equal to each other. The luminance values of the image data R2, G2, and B2 are distributed (increased or decreased) to each other. For the divided pixel P3, the luminance represented by the image data R3, G3, and B3 before redistribution and the luminance represented by the image data R3 ′, G3 ′, and B3 ′ after redistribution are equal to each other. The luminance values of the image data R3, G3, and B3 are distributed (increased or decreased) to each other. For the divided pixel P4, the luminance represented by the image data R4, G4, and B4 before redistribution and the luminance represented by the image data R4 ′, G4 ′, and B4 ′ after redistribution are equal to each other. The luminance values of the image data R4, G4, and B4 are distributed (increased or decreased) to each other.
 すなわち、上述の式(1)~(8)について、次式を満たすように、各分割画素内において、サブ画素RGB間で輝度値の再分配処理(再分配処理ステップ)が実行される。
Y1=Y1′・・・(9)
Y2=Y2′・・・(10)
Y3=Y3′・・・(11)
Y4=Y4′・・・(12)
 また、再分配回路12は、アップスケール後のサブ画素(再分配前のサブ画素)それぞれの画像データ(アップスケール後画像データ:R1~R4,G1~G4,B1~B4)で表される色度と、再分配後のサブ画素それぞれの画像データ(再分配後画像データ:R1′~R4′,G1′~G4′,B1′~B4′)で表される色度とが、RGB画素ごとに互いに等しくなるように、各色のサブ画素間で輝度値を再分配する。具体的には、R画素について、再分配前の画像データR1・R2・R3・R4で表される輝度の総和と、再分配後の画像データR1′・R2′・R3′・R4′で表される輝度の総和とが互いに等しくなるように、画像データR1・R2・R3・R4それぞれの輝度値を互いに再分配する。G画素について、再分配前の画像データG1・G2・G3・G4で表される輝度の総和と、再分配後の画像データG1′・G2′・G3′・G4′で表される輝度の総和とが互いに等しくなるように、画像データG1・G2・G3・G4それぞれの輝度値を互いに再分配する。B画素について、再分配前の画像データB1・B2・B3・B4で表される輝度の総和と、再分配後の画像データB1′・B2′・B3′・B4′で表される輝度の総和とが互いに等しくなるように、画像データB1・B2・B3・B4それぞれの輝度値を互いに再分配する。R,G,Bの各輝度の総和を再分配前後で同じにすることで、その色度を等しく再分配できる。
That is, the redistribution processing (redistribution processing step) of the luminance value among the sub-pixels RGB is performed in each divided pixel so as to satisfy the following expressions with respect to the above expressions (1) to (8).
Y1 = Y1 ′ (9)
Y2 = Y2 ′ (10)
Y3 = Y3 ′ (11)
Y4 = Y4 ′ (12)
Also, the redistribution circuit 12 is a color represented by image data (image data after upscaling: R1 to R4, G1 to G4, B1 to B4) of each subpixel after upscaling (subpixel before redistribution). And the chromaticity represented by the image data of each subpixel after redistribution (image data after redistribution: R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′) for each RGB pixel The luminance values are redistributed among the sub-pixels of each color so as to be equal to each other. Specifically, for the R pixel, the luminance is represented by the sum of luminance represented by the image data R1, R2, R3, and R4 before redistribution, and the image data R1 ′, R2 ′, R3 ′, and R4 ′ after redistribution. The luminance values of the image data R1, R2, R3, and R4 are redistributed with each other so that the total sum of the luminances is equal to each other. For G pixels, the sum of the brightness represented by the image data G1, G2, G3, and G4 before redistribution and the sum of the brightness represented by the image data G1 ′, G2 ′, G3 ′, and G4 ′ after redistribution Are redistributed to each other so that the brightness values of the image data G1, G2, G3, and G4 are equal to each other. For the B pixel, the sum of the brightness represented by the image data B1, B2, B3, B4 before redistribution and the sum of the brightness represented by the image data B1 ', B2', B3 ', B4' after redistribution Are redistributed to each other so that the brightness values of the image data B1, B2, B3, and B4 are equal to each other. By making the sum of the luminances of R, G, and B the same before and after redistribution, the chromaticity can be redistributed equally.
 アップスケール後のサブ画素それぞれの画像データ(アップスケール後画像データ:R1~R4,G1~G4,B1~B4)で表される各色の輝度に相当する値CR,CG,CBは、次式で表される。
CR=LR(R1)+LR(R2)+LR(R3)+LR(R4)・・・(13)
CG=LG(G1)+LG(G2)+LG(G3)+LG(G4)・・・(14)
CB=LB(B1)+LB(B2)+LB(B3)+LB(B4)・・・(15)
 再分配後のサブ画素それぞれの画像データ(再分配後画像データ:R1′~R4′,G1′~G4′,B1′~B4′)で表される各色の輝度に相当する値CR′,CG′,CB′は、次式で表される。
CR′=LR(R1′)+LR(R2′)+LR(R3′)+LR(R4′)・・・(16)
CG′=LG(G1′)+LG(G2′)+LG(G3′)+LG(G4′)・・・(17)
CB′=LB(B1′)+LB(B2′)+LB(B3′)+LB(B4′)・・・(18)
 そして、次式を満たすように、1画素内において、複数のRサブ画素間で輝度値の再分配処理が実行され、複数のGサブ画素間で輝度値の再分配処理が実行され、複数のBサブ画素間で輝度値の再分配処理(再分配処理ステップ)が実行される。
CR=CR′・・・(19)
CG=CG′・・・(20)
CB=CB′・・・(21)
 ここで、LR(x)、LG(x)、LB(x)はそれぞれ、R,G,Bの階調値xに対する出力輝度に相当する値として定義される。例えば、LR(x)は、液晶表示パネルのR画素にデータ信号(階調値x)を入力し、G画素およびB画素に0のデータ信号を入力した場合の出力輝度に相当する。よって、この場合の輝度値をLとすると、
LR(x)=L-L
のように定義される。ここで、Lは、R画素、G画素、B画素ともに0のデータ信号を入力した場合の出力輝度に相当する(なお、液晶パネルは入力信号0でも若干の輝度出力がある)。LG(x),LB(x)も同様であり、輝度相当値を得るための関数である。また、この関数の特性は液晶表示パネルの仕様によって変動するため、個々の特性に合わせる必要がある。
The values CR, CG, and CB corresponding to the luminance of each color represented by the image data of each sub-pixel after upscaling (upscaled image data: R1 to R4, G1 to G4, and B1 to B4) are given by expressed.
CR = LR (R1) + LR (R2) + LR (R3) + LR (R4) (13)
CG = LG (G1) + LG (G2) + LG (G3) + LG (G4) (14)
CB = LB (B1) + LB (B2) + LB (B3) + LB (B4) (15)
Values CR ′ and CG corresponding to the luminance of each color represented by the image data of each subpixel after redistribution (image data after redistribution: R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′) ', CB' is expressed by the following equation.
CR ′ = LR (R1 ′) + LR (R2 ′) + LR (R3 ′) + LR (R4 ′) (16)
CG ′ = LG (G1 ′) + LG (G2 ′) + LG (G3 ′) + LG (G4 ′) (17)
CB ′ = LB (B1 ′) + LB (B2 ′) + LB (B3 ′) + LB (B4 ′) (18)
Then, within one pixel, luminance value redistribution processing is performed among a plurality of R sub-pixels, and luminance value redistribution processing is performed among a plurality of G sub-pixels so that the following equation is satisfied. A luminance value redistribution process (redistribution process step) is performed between the B sub-pixels.
CR = CR ′ (19)
CG = CG '(20)
CB = CB '(21)
Here, LR (x), LG (x), and LB (x) are defined as values corresponding to output luminances for the R, G, and B gradation values x, respectively. For example, LR (x) corresponds to the output luminance when a data signal (gradation value x) is input to the R pixel of the liquid crystal display panel and a 0 data signal is input to the G pixel and the B pixel. Therefore, when the luminance value in this case the L R,
LR (x) = L R −L 0
Is defined as follows. Here, L 0 corresponds to output luminance when a data signal of 0 is input to all of the R pixel, G pixel, and B pixel (note that the liquid crystal panel has a slight luminance output even when the input signal is 0). LG (x) and LB (x) are the same, and are functions for obtaining a luminance equivalent value. In addition, since the characteristics of this function vary depending on the specifications of the liquid crystal display panel, it is necessary to match each characteristic.
 再分配処理により再分配された輝度から逆変換して得られた階調値(図2のR1′~R4′,G1′~G4′,B1′~B4′)に基づき、液晶表示パネル2に画像データが表示される(表示ステップ)。 Based on the gradation values (R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′ in FIG. 2) obtained by inverse conversion from the luminance redistributed by the redistribution processing, the liquid crystal display panel 2 Image data is displayed (display step).
 上記の構成によれば、アップスケール処理部によりRGBに対応するサブ画素に割り当てられた階調値を、分割画素内のサブ画素間で再分配することができる。また、上記サブ画素に割り当てられた階調値を、RGBごとに画素内のサブ画素間で再分配することができる。そのため、例えば、再分配の前後で、1つの分割画素全体の輝度、および、1つの画素全体の色度を変化させることなく、1つの分割画素全体の各RGBそれぞれのサブ画素同士(同一色のサブ画素同士)の輝度差を大きくすることができる。これにより、アップスケール処理による高精細な画像を得つつ、視野角を向上させることができる。また、RGBの色度を調整できるため、表示品位の低下を招くこともない。なお、再分配処理部において再分配される階調値は、輝度と画素サイズに応じて決定される。 According to the above configuration, the gradation value assigned to the subpixels corresponding to RGB by the upscaling processing unit can be redistributed among the subpixels in the divided pixels. Further, the gradation value assigned to the sub-pixel can be redistributed among the sub-pixels in the pixel for each RGB. Therefore, for example, before and after the redistribution, the subpixels of the respective RGB (the same color) of each of the entire divided pixels are not changed without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel. The luminance difference between the sub-pixels) can be increased. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process. In addition, since RGB chromaticity can be adjusted, display quality is not deteriorated. Note that the gradation value redistributed in the redistribution processing unit is determined according to the luminance and the pixel size.
 また、上記の構成によれば、従来の画素分割方法のようにサブ画素毎に新たなサブ画素を付加する必要がないため、液晶表示パネルの駆動が複雑化することもなく、また、画素の開口率(透過率)が低下することもない。 Further, according to the above configuration, it is not necessary to add a new subpixel for each subpixel as in the conventional pixel dividing method, so that the driving of the liquid crystal display panel is not complicated, and the pixel The aperture ratio (transmittance) does not decrease.
 ここで、視野角改善効果を高めるために、再分配回路12は、各画素において、再分配回路12による再分配後の、各サブ画素で表される輝度のサブ画素間の差が、アップスケール回路11によるアップスケール後の、各サブ画素で表される輝度のサブ画素間の差よりも大きくなるように、サブ画素の階調値を再分配することが好ましい。具体的には、例えば、画素22において、再分配後のサブ画素R1′の輝度値(LR(R1′))とサブ画素R2′の輝度値(LR(R2′))とサブ画素R3′の輝度値(LR(R3′))とサブ画素R4′の輝度値(LR(R4′))との差が、アップスケール後のサブ画素R1の輝度値(LR(R1))とサブ画素R2の輝度値(LR(R2))とサブ画素R3の輝度値(LR(R3))とサブ画素R4の輝度値(LR(R4))との差よりも大きくなるように、サブ画素間での輝度値を再分配する。より詳細には、画素22において、再分配後における、サブ画素R1′の輝度値(LR(R1′))、サブ画素R2′の輝度値(LR(R2′))、サブ画素R3′の輝度値(LR(R3′))、およびサブ画素R4′の輝度値(LR(R4′))のうち、輝度値が最大となるサブ画素の輝度値と輝度値が最小となるサブ画素の輝度値との差が、アップスケール後における、サブ画素R1の輝度値(LR(R1))、サブ画素R2の輝度値(LR(R2))、サブ画素R3の輝度値(LR(R3))、およびサブ画素R4の輝度値(LR(R4))のうち、輝度値が最大となるサブ画素の輝度値と輝度値が最小となるサブ画素の輝度値との差よりも大きくなるように、サブ画素間での輝度値を再分配する。これにより、視野角改善効果を高めることができる。 Here, in order to increase the viewing angle improvement effect, the redistribution circuit 12 increases the scale difference between the subpixels of the luminance represented by each subpixel after the redistribution by the redistribution circuit 12 in each pixel. It is preferable to redistribute the gradation values of the sub-pixels so that the difference between the sub-pixels in luminance represented by each sub-pixel after the upscaling by the circuit 11 is greater. Specifically, for example, in the pixel 22, the luminance value (LR (R1 ')) of the sub-pixel R1' after redistribution, the luminance value (LR (R2 ')) of the sub-pixel R2', and the sub-pixel R3 ' The difference between the luminance value (LR (R3 ′)) and the luminance value (LR (R4 ′)) of the sub-pixel R4 ′ is the difference between the luminance value (LR (R1)) of the sub-pixel R1 after the upscaling and the sub-pixel R2. The luminance between the sub-pixels is larger than the difference between the luminance value (LR (R2)), the luminance value of the sub-pixel R3 (LR (R3)) and the luminance value of the sub-pixel R4 (LR (R4)). Redistribute values. More specifically, in the pixel 22, after redistribution, the luminance value (LR (R1 ')) of the sub-pixel R1', the luminance value (LR (R2 ')) of the sub-pixel R2', and the luminance of the sub-pixel R3 ' Out of the value (LR (R3 ′)) and the luminance value (LR (R4 ′)) of the sub-pixel R4 ′, the luminance value of the sub-pixel having the maximum luminance value and the luminance value of the sub-pixel having the minimum luminance value Are the luminance value of the sub-pixel R1 (LR (R1)), the luminance value of the sub-pixel R2 (LR (R2)), the luminance value of the sub-pixel R3 (LR (R3)), and Of the luminance values (LR (R4)) of the sub-pixel R4, the sub-pixel is set to be larger than the difference between the luminance value of the sub-pixel having the maximum luminance value and the luminance value of the sub-pixel having the minimum luminance value. Redistribute luminance values between them. Thereby, the viewing angle improvement effect can be enhanced.
 また、1分割画素がRGBのサブ画素で構成されているため、サブ画素ごとに分配比率を設定して個別に再分配処理する構成としても良い。そして、サブ画素ごとに輝度への寄与度が異なるため、サブ画素間の輝度差が、例えば100cd/m以上の高い輝度差であっても、1分割画素あたりの再分配前後の輝度変化を抑えることができる。そのため、このような高輝度差に対しても再分配処理が可能となる。 Further, since one divided pixel is composed of RGB sub-pixels, a distribution ratio may be set for each sub-pixel and redistribution processing may be performed individually. Since the contribution to luminance differs for each sub-pixel, even if the luminance difference between sub-pixels is a high luminance difference of 100 cd / m 2 or more, for example, the luminance change before and after redistribution per divided pixel is Can be suppressed. Therefore, redistribution processing is possible even for such a high luminance difference.
 また、サブ画素ごとに再分配処理を行えるため、サブ画素ごとに再分配処理機能をON/OFFする構成とすることもできる。 In addition, since the redistribution processing can be performed for each sub-pixel, the redistribution processing function can be turned on / off for each sub-pixel.
 具体例を挙げると、例えば、RGBの輝度比は、CIE表色系によると、
LR(R画素):LR(G画素):LR(B画素)=1:4.5907:0.0601
であるため、輝度への寄与度が少ないB画素では、より大きな階調差をつけて再分配することができる。これにより、アップスケールした画像データの再分配前後の輝度を変えることなく、表示画像の高精細化および視野角改善の効果をより向上させることができる。
For example, according to the CIE color system, the luminance ratio of RGB is
LR (R pixel): LR (G pixel): LR (B pixel) = 1: 4.5907: 0.0601
Therefore, in the B pixel having a small contribution to luminance, it can be redistributed with a larger gradation difference. As a result, it is possible to further improve the effect of increasing the definition of the display image and improving the viewing angle without changing the luminance before and after redistribution of the upscaled image data.
 ここで、再分配回路12は、図3に示すように、再分配後の分割画素における輝度の中心位置が、該分割画素の中心位置と一致し、再分配後の画素における色度の中心位置が、画素の中心位置と一致するように、上記再分配処理を行うことが好ましい。これにより、人間が見たときの解像度感を損なわず、さらに色度の変化も認識されることがない。つまり、輝度解像度の中心が各分割画素の中心にあるため、解像度感に変化はなく、また、色度の中心が画素(4分割画素)の中心にあるため、人間には色度も再配分前と後では同じに見えるようになる。 Here, as shown in FIG. 3, the redistribution circuit 12 matches the center position of the luminance in the divided pixel after the redistribution with the center position of the divided pixel, and the chromaticity central position in the pixel after the redistribution. However, it is preferable to perform the redistribution process so as to coincide with the center position of the pixel. As a result, the sense of resolution when viewed by humans is not impaired, and a change in chromaticity is not recognized. In other words, since the center of luminance resolution is at the center of each divided pixel, there is no change in the sense of resolution, and since the center of chromaticity is at the center of the pixel (four-divided pixel), chromaticity is also redistributed to humans. It looks the same before and after.
 なお、従来のRGBによる液晶表示パネルでは、輝度の中心は分割画素の中心にはないが、輝度が高いG画素を中心にすることで、輝度中心が分割画素の中心になる場合が多くなるようにしている。 In the conventional RGB liquid crystal display panel, although the center of luminance is not at the center of the divided pixel, the center of luminance is often the center of the divided pixel by centering on the G pixel having high luminance. I have to.
 上記の再分配処理の具体例を以下に説明する。 A specific example of the above redistribution processing will be described below.
 図4に示すように、分割画素P1には、データ信号R1・G1・B1が入力され、分割画素P2には、データ信号R2・G2・B2が入力され、分割画素P3には、データ信号R3・G3・B3が入力され、分割画素P4には、データ信号R4・G4・B4が入力される。再分配処理が実行され、分割画素P1では、データ信号R1′・G1′・B1′になり、分割画素P2では、データ信号R2′・G2′・B2′になり、分割画素P3では、データ信号R3′・G3′・B3′になり、分割画素P4では、データ信号R4′・G4′・B4′になる。 As shown in FIG. 4, data signals R1, G1, and B1 are input to the divided pixel P1, data signals R2, G2, and B2 are input to the divided pixel P2, and a data signal R3 is input to the divided pixel P3. G3 and B3 are input, and data signals R4, G4, and B4 are input to the divided pixel P4. The redistribution processing is executed, and the divided pixel P1 becomes the data signal R1 ′ / G1 ′ / B1 ′, the divided pixel P2 becomes the data signal R2 ′ / G2 ′ / B2 ′, and the divided pixel P3 receives the data signal. R3 ′, G3 ′, B3 ′, and the divided pixel P4 becomes the data signal R4 ′, G4 ′, B4 ′.
 このとき、各分割画素における輝度を、分割画素ごとに、RGBの中心に位置するGサブ画素に集中させるか、Rサブ画素およびBサブ画素に集中させる。例えば、図4に示すように、分割画素P1では、輝度をGサブ画素に集中させ、分割画素P2では、輝度をRサブ画素およびBサブ画素に集中させ、分割画素P3では、輝度をRサブ画素およびBサブ画素に集中させ、分割画素P4では、輝度をGサブ画素に集中させる。このように輝度を分配することにより、輝度の中心が各分割画素の中心となり、色度の中心が4つの分割画素P1~P4の中心となる(図3参照)。なお、R画素およびB画素は、G画素に比べて輝度が低いため、集中させるに至らない場合もある。 At this time, the luminance in each divided pixel is concentrated on the G sub-pixel located at the center of RGB for each divided pixel or on the R sub-pixel and the B sub-pixel. For example, as shown in FIG. 4, in the divided pixel P1, the luminance is concentrated on the G sub pixel, in the divided pixel P2, the luminance is concentrated on the R sub pixel and the B sub pixel, and in the divided pixel P3, the luminance is set on the R sub pixel. In the divided pixel P4, the luminance is concentrated on the G sub-pixel. By distributing the luminance in this way, the center of luminance becomes the center of each divided pixel, and the center of chromaticity becomes the center of the four divided pixels P1 to P4 (see FIG. 3). Note that the R pixel and the B pixel may not be concentrated because the luminance is lower than that of the G pixel.
 ここで、サブ画素へ入力される階調データ値と、輝度相当値とが、図5に示す関係である場合について、具体例を挙げる。ここでは、入力階調データを8ビットと仮定し、0から255階調の入力信号とする。4つの分割画素における各R,G,Bのサブ画素へ入力される階調データ値(R,G,B)が、(180,150,80)であった場合、図5のグラフから各サブ画素の輝度相当値は、以下の値になる。
Rサブ画素:LR(180)=29.6
Gサブ画素:LG(150)=66.8
Bサブ画素:LB(80)=1.7
 また、分割画素P1,P2,P3,P4の輝度相当値Y1,Y2,Y3,Y4は、上記式(1)~(4)より、以下の値になる。
Y1=LR(R1)+LG(G1)+LB(B1)
  =29.6+66.8+1.7
  =98.1
ここでは、Y1=Y2=Y3=Y4のため、
Y1=Y2=Y3=Y4=98.1
となる。
Here, a specific example will be given in the case where the gradation data value input to the sub-pixel and the luminance equivalent value have the relationship shown in FIG. Here, it is assumed that the input gradation data is 8 bits, and the input signal has 0 to 255 gradations. When the gradation data values (R, G, B) input to the R, G, B sub-pixels in the four divided pixels are (180, 150, 80), the sub-pixels from the graph of FIG. The luminance equivalent value of the pixel is the following value.
R subpixel: LR (180) = 29.6
G subpixel: LG (150) = 66.8
B subpixel: LB (80) = 1.7
Further, the luminance equivalent values Y1, Y2, Y3, and Y4 of the divided pixels P1, P2, P3, and P4 are the following values from the above equations (1) to (4).
Y1 = LR (R1) + LG (G1) + LB (B1)
= 29.6 + 66.8 + 1.7
= 98.1
Here, because Y1 = Y2 = Y3 = Y4,
Y1 = Y2 = Y3 = Y4 = 98.1
It becomes.
 また、アップスケール後のサブ画素RGBそれぞれの階調データ値で表される色度CR,CG,CBは、上記式(13)~(15)より、以下の値になる。
CR=LR(R1)+LR(R2)+LR(R3)+LR(R4)
  =29.6+29.6+29.6+29.6
  =118.4
CG=LG(G1)+LG(G2)+LG(G3)+LG(G4)
  =66.8+66.8+66.8+66.8
  =267.2
CB=LB(B1)+LB(B2)+LB(B3)+LB(B4)
  =1.7+1.7+1.7+1.7
  =6.8
 再分配処理では、上述したように、各分割画素におけるそれぞれの輝度値が再分配処理の前後で変化せず(上記式(9)~(12))、かつ、1画素におけるRGBごとの色度が再分配処理の前後で変化しない(上記式(19)~(21))ように、輝度値の再分配が実行される。ここでは、各サブ画素の輝度値を以下のように再分配する。
LR(R1′)=29.6-29.6=0
LG(G1′)=66.8+29.6+1.7=98.1
LB(B1′)=1.7-1.7=0
LR(R2′)=29.6+29.6=59.2
LG(G2′)=66.8-29.6-1.7=35.5
LB(B2′)=1.7+1.7=3.4
LR(R3′)=29.6+29.6=59.2
LG(G3′)=66.8-29.6-1.7=35.5
LB(B3′)=1.7+1.7=3.4
LR(R4′)=29.6-29.6=0
LG(G4′)=66.8+29.6+1.7=98.1
LB(B4′)=1.7-1.7=0
 これにより、再分配後の分割画素P1~P4それぞれの輝度値Y1′~Y4′は、上記式(5)~(8)より、以下の値になる。
Y1′=LR(R1′)+LG(G1′)+LB(B1′)
   =0+98.1+0
   =98.1
Y2′=LR(R2′)+LG(G2′)+LB(B2′)
   =59.2+35.5+3.4
   =98.1
Y3′=LR(R3′)+LG(G3′)+LB(B3′)
   =59.2+35.5+3.4
   =98.1
Y4′=LR(R4′)+LG(G4′)+LB(B4′)
   =0+98.1+0
   =98.1
 よって、上記式(9)~(12)を満たす。また、再分配後のサブ画素RGBそれぞれの階調データ値で表される色度CR′,CG′,CB′は、上記式(16)~(18)より、以下の値になる。
CR′=LR(R1′)+LR(R2′)+LR(R3′)+LR(R4′)
   =0+59.2+59.2+0
   =118.4
CG′=LG(G1′)+LG(G2′)+LG(G3′)+LG(G4′)
   =98.1+35.5+35.5+98.1
   =267.2
CB′=LB(B1′)+LB(B2′)+LB(B3′)+LB(B4′)
   =0+3.4+3.4+0
   =6.8
 よって、上記式(19)~(21)を満たす。上記再分配後の輝度値Y1′~Y4′を、図5のグラフから階調データ値(R′,G′,B′)に変換すると、以下の値が得られる。そして、得られた上記階調データ値に基づき、液晶表示パネル2に画像データが表示される。
分割画素P1:(R1′,G1′,B1′)=(0,178,0)
分割画素P2:(R2′,G2′,B2′)=(246,112,109)
分割画素P3:(R3′,G3′,B3′)=(246,112,109)
分割画素P4:(R4′,G4′,B4′)=(0,178,0)
 以上のように、再分配回路12は、アップスケール後の1つの分割画素で表される輝度と、再分配後の該分割画素で表される輝度とが互いに等しくなるとともに、アップスケール後の1つの画素で表される色度と、再分配後の該画素で表される色度とが互いに等しくなるように、各サブ画素に割り当てられた階調値(R1~R4,G1~G4,B1~B4)を、上記階調値(R1′~R4′,G1′~G4′,B1′~B4′)に再分配する。
Further, the chromaticities CR, CG, and CB represented by the gradation data values of the sub-pixels RGB after the upscaling have the following values from the above equations (13) to (15).
CR = LR (R1) + LR (R2) + LR (R3) + LR (R4)
= 29.6 + 29.6 + 29.6 + 29.6
= 118.4
CG = LG (G1) + LG (G2) + LG (G3) + LG (G4)
= 66.8 + 66.8 + 66.8 + 66.8
= 267.2
CB = LB (B1) + LB (B2) + LB (B3) + LB (B4)
= 1.7 + 1.7 + 1.7 + 1.7
= 6.8
In the redistribution processing, as described above, the respective luminance values in the respective divided pixels do not change before and after the redistribution processing (the above formulas (9) to (12)), and the chromaticity for each RGB in one pixel. Is redistributed so that the value does not change before and after the redistribution process (the above formulas (19) to (21)). Here, the luminance value of each sub-pixel is redistributed as follows.
LR (R1 ′) = 29.6−29.6 = 0
LG (G1 ′) = 66.8 + 29.6 + 1.7 = 98.1
LB (B1 ') = 1.7-1.7 = 0
LR (R2 ') = 29.6 + 29.6 = 59.2
LG (G2 ') = 66.8-29.6-1.7 = 35.5
LB (B2 ′) = 1.7 + 1.7 = 3.4
LR (R3 ') = 29.6 + 29.6 = 59.2
LG (G3 ') = 66.8-29.6-1.7 = 35.5
LB (B3 ′) = 1.7 + 1.7 = 3.4
LR (R4 ') = 29.6-29.6 = 0
LG (G4 ′) = 66.8 + 29.6 + 1.7 = 98.1
LB (B4 ') = 1.7-1.7 = 0
Thereby, the luminance values Y1 ′ to Y4 ′ of the divided pixels P1 to P4 after the redistribution become the following values from the above equations (5) to (8).
Y1 '= LR (R1') + LG (G1 ') + LB (B1')
= 0 + 98.1 + 0
= 98.1
Y2 '= LR (R2') + LG (G2 ') + LB (B2')
= 59.2 + 35.5 + 3.4
= 98.1
Y3 '= LR (R3') + LG (G3 ') + LB (B3')
= 59.2 + 35.5 + 3.4
= 98.1
Y4 '= LR (R4') + LG (G4 ') + LB (B4')
= 0 + 98.1 + 0
= 98.1
Therefore, the above formulas (9) to (12) are satisfied. Further, the chromaticities CR ′, CG ′, CB ′ represented by the gradation data values of the sub-pixels RGB after redistribution have the following values from the above equations (16) to (18).
CR ′ = LR (R1 ′) + LR (R2 ′) + LR (R3 ′) + LR (R4 ′)
= 0 + 59.2 + 59.2 + 0
= 118.4
CG ′ = LG (G1 ′) + LG (G2 ′) + LG (G3 ′) + LG (G4 ′)
= 98.1 + 35.5 + 35.5 + 98.1
= 267.2
CB '= LB (B1') + LB (B2 ') + LB (B3') + LB (B4 ')
= 0 + 3.4 + 3.4 + 0
= 6.8
Therefore, the above expressions (19) to (21) are satisfied. When the luminance values Y1 'to Y4' after the redistribution are converted into gradation data values (R ', G', B ') from the graph of FIG. 5, the following values are obtained. Then, based on the obtained gradation data value, image data is displayed on the liquid crystal display panel 2.
Divided pixel P1: (R1 ′, G1 ′, B1 ′) = (0, 178, 0)
Divided pixel P2: (R2 ′, G2 ′, B2 ′) = (246, 112, 109)
Divided pixel P3: (R3 ′, G3 ′, B3 ′) = (246, 112, 109)
Divided pixel P4: (R4 ′, G4 ′, B4 ′) = (0, 178, 0)
As described above, the redistribution circuit 12 is configured such that the luminance represented by one divided pixel after upscaling and the luminance represented by the divided pixels after redistribution become equal to each other, and 1 after the upscaling. The gradation values (R1 to R4, G1 to G4, B1) assigned to the sub-pixels so that the chromaticity represented by one pixel and the chromaticity represented by the pixel after redistribution are equal to each other. To B4) are redistributed to the gradation values (R1 ′ to R4 ′, G1 ′ to G4 ′, B1 ′ to B4 ′).
 図6は、上記処理により得られた輝度特性を示している。この図において、破線(60°)で示すグラフは、アップスケール後に上記再分配処理を行っていない場合の輝度特性を示し、実線で示すグラフは、アップスケール後に上記再分配処理を行った場合の輝度特性を示している。上記再分配処理を行っていない構成よりも、上記再分配処理を行った構成の方が、液晶表示パネルを正面方向から見た場合の輝度特性(点線で示すグラフ)に近づいており、視野角特性が向上していることが示されている。 FIG. 6 shows the luminance characteristics obtained by the above processing. In this figure, a graph indicated by a broken line (60 °) indicates a luminance characteristic when the redistribution processing is not performed after upscaling, and a graph indicated by a solid line is the case when the redistribution processing is performed after upscaling. The luminance characteristic is shown. The configuration in which the redistribution processing is performed is closer to the luminance characteristic (graph indicated by the dotted line) when the liquid crystal display panel is viewed from the front direction than the configuration in which the redistribution processing is not performed. It is shown that the characteristics are improved.
 図7は、図9に示した従来の構成における輝度特性(点線で示すグラフ)と、本発明の構成における輝度特性(破線で示すグラフ)とを比較したグラフである。この図から明らかなように、本発明の構成によれば、従来の構成と比較して、白浮きを抑えることができるとともに、視野角特性を向上させることができる。 FIG. 7 is a graph comparing the luminance characteristics (graphs indicated by dotted lines) in the conventional configuration shown in FIG. 9 with the luminance characteristics (graphs indicated by broken lines) in the configuration of the present invention. As is clear from this figure, according to the configuration of the present invention, whitening can be suppressed and the viewing angle characteristics can be improved as compared with the conventional configuration.
 このように、本実施形態に係る画像処理装置10では、アップスケールを行った映像信号に、視野角を改善するための再分配処理を施すことにより、高精細な画像を得るとともに視野角を改善することができる。 As described above, in the image processing apparatus 10 according to the present embodiment, a redistribution process for improving the viewing angle is performed on the upscaled video signal, thereby obtaining a high-definition image and improving the viewing angle. can do.
 本発明では、人間の色度に関する視覚特性を考慮し、複数の絵素(4絵素)のサブ絵素(RGB)を有効に活用することにより、画素領域を分割すること無く、異なる電圧印加する領域となるように、RGBそれぞれの入力データ値を再分配し、視野角特性を改善している。特にFHDから4倍のQFHD解像度へのアップスケールを行った画像信号に、本発明の視野角改善の再分配処理を行うことにより、解像度の向上効果を損なうことなく、視野角特性を改善することができる。 In the present invention, in consideration of visual characteristics related to human chromaticity, different voltage applications can be applied without dividing a pixel region by effectively using sub-picture elements (RGB) of a plurality of picture elements (four picture elements). The RGB input data values are redistributed so that the viewing angle characteristics are improved. In particular, by performing the redistribution processing of the viewing angle improvement of the present invention on an image signal that has been upscaled from FHD to 4 times QFHD resolution, the viewing angle characteristics can be improved without impairing the resolution improvement effect. Can do.
 一般的に、アップスケールを行う場合は、その輝度成分において解像度のアップスケールをし、色成分のアップスケールは行わない。これは、人間の視覚特性において、その空間解像度特性が、図8のように輝度特性と色特性とは異なり、輝度特性に比べ、色のコントラスト周波数特性が低空間周波数で起こる(視覚情報処理ハンドブック 日本視覚学会編p.232参照)ためであると考えられる。つまり、通常、TVなどのディスプレイの画素スケールでは、人間の視覚特性は、輝度に比べ色度の解像特性は劣っている。実際に、現在のデジタルTV放送信号は、輝度情報に対して色の情報は半分以下である。また、現在のディスプレイの表示において、隣り合う画素では、例えば同じ輝度・色度の場合、R,G,Bそれぞれが同一の輝度を出力している。しかしながら、上記の視覚特性を考慮すれば、必ずしもR,G,Bがそれぞれ同一である必要はなく、全体として、正確な色度が出力されればよい。また、隣り合う画素が異なる輝度の場合でも、視覚的に色度として認識できるレベルで色度が適切であれば問題なく、条件は同じである。 Generally, when upscaling is performed, the resolution is upscaled in the luminance component, and the color component is not upscaled. This is because, in human visual characteristics, the spatial resolution characteristic is different from the luminance characteristic and the color characteristic as shown in FIG. 8, and the color contrast frequency characteristic occurs at a lower spatial frequency than the luminance characteristic (Visual Information Processing Handbook). This is considered to be because of the Japanese visual society edition p.232). That is, in general, on the pixel scale of a display such as a TV, human visual characteristics are inferior in chromaticity resolution characteristics compared to luminance. Actually, the current digital TV broadcast signal has less than half the color information with respect to the luminance information. In the display on the current display, for example, in the case of the same luminance and chromaticity, R, G, and B output the same luminance in adjacent pixels. However, in consideration of the above visual characteristics, R, G, and B do not necessarily have to be the same, and accurate chromaticity may be output as a whole. Even when adjacent pixels have different luminance, the conditions are the same as long as the chromaticity is appropriate at a level that can be visually recognized as chromaticity.
 本発明では、これらの特性を利用して、RGBのサブ画素それぞれで輝度の再分配を行う。また、4倍となるアップスケールを行った表示の場合、アップスケールにより輝度情報は4倍となるが、その色情報は4分割画素で1つの色を表示しても視覚的になんら問題はない場合が多く、4分割画素においてRGBそれぞれのサブ画素の輝度を再調整し、分割画素間でその輝度差が大きくなるように再分配することが可能となる。 In the present invention, using these characteristics, the luminance is redistributed in each of the RGB sub-pixels. Further, in the case of display with upscaling four times, the luminance information is quadrupled by the upscaling, but there is no problem visually even if the color information displays one color with four divided pixels. In many cases, it is possible to readjust the luminance of the RGB sub-pixels in the four-divided pixels and redistribute them so that the luminance difference between the divided pixels becomes large.
 ここで、上記説明では、アップスケールのサイズが4倍(縦横2倍)の構成について説明したが、これに限定されるものではなく、整数倍(n倍)であれば、上記と同様な効果が得られる。 Here, in the above description, the configuration in which the size of the upscale is four times (twice in the vertical and horizontal directions) is described, but the present invention is not limited to this. Is obtained.
 1画素がRGBのサブ画素で構成されている場合には、サブ画素ごとに分配比率を設定して個別に再分配処理を行うことができる。そして、サブ画素ごとに輝度への寄与度が異なるため、分割画素間の輝度差が、例えば100cd/m以上の高い輝度差であっても、1画素あたりの再分配前後の輝度変化を抑えることができる。そのため、このような高輝度差に対しても再分配処理が可能となる。 When one pixel is composed of RGB sub-pixels, a redistribution process can be performed individually by setting a distribution ratio for each sub-pixel. Since the contribution to luminance differs for each sub-pixel, even if the luminance difference between the divided pixels is a high luminance difference of, for example, 100 cd / m 2 or more, the luminance change before and after redistribution per pixel is suppressed. be able to. Therefore, redistribution processing is possible even for such a high luminance difference.
 また、サブ画素ごとに再分配処理ができるため、サブ画素ごとに再分配処理機能をON/OFFする構成とすることも可能である。具体例を挙げると、例えば、RGBの輝度比は、CIE表色系によると、
L(R画素):L(G画素):L(B画素)=1:4.5907:0.0601
であるため、輝度への寄与度が少ないB画素では、より大きな輝度差をつけて再分配することができる。これにより、アップスケールした画像データの再分配前後の輝度を変えることなく、表示画像の高精細化および視野角改善の効果をより向上させることができる。
In addition, since redistribution processing can be performed for each sub-pixel, a configuration in which the redistribution processing function is turned ON / OFF for each sub-pixel can be employed. For example, according to the CIE color system, the luminance ratio of RGB is
L (R pixel): L (G pixel): L (B pixel) = 1: 4.5907: 0.0601
Therefore, B pixels that have a small contribution to luminance can be redistributed with a larger luminance difference. As a result, it is possible to further improve the effect of increasing the definition of the display image and improving the viewing angle without changing the luminance before and after redistribution of the upscaled image data.
 ところで、図1では液晶駆動回路13を1つのブロックとして表記しているが、これに限らず、複数のブロックによって構成されていてもよい。例えば、アップスケール回路11を複数備えるとともに、複数のアップスケール回路11に対応して、再分配回路12および液晶駆動回路13を複数設け、これら各液晶駆動回路によって、液晶表示パネル2における分割領域を駆動するようにしてもよい。1つの液晶駆動回路13で液晶表示パネル2の全体を駆動する場合、各領域の駆動タイミングを容易に一致させることができるので制御性がよいという利点がある一方、入出力ピン数が多くなるので回路サイズ(ICサイズ)が大きくなってしまう。また、液晶駆動回路13を分割領域に応じて複数設ける場合、チップサイズを小さくできるという利点がある(特に本実施形態の場合、各分割領域が2K1Kクラスであるので従来の2K1Kクラスの表示装置に用いられている2Kコントロールチップを使用できるので経済的である)一方、各液晶駆動回路13の同期を保つための調停回路を設ける必要がある。 Incidentally, in FIG. 1, the liquid crystal drive circuit 13 is shown as one block. However, the present invention is not limited to this, and the liquid crystal drive circuit 13 may be composed of a plurality of blocks. For example, a plurality of upscale circuits 11 are provided, and a plurality of redistribution circuits 12 and liquid crystal drive circuits 13 are provided corresponding to the plurality of upscale circuits 11, and the divided regions in the liquid crystal display panel 2 are formed by these liquid crystal drive circuits. You may make it drive. When the entire liquid crystal display panel 2 is driven by a single liquid crystal drive circuit 13, the drive timing of each region can be easily matched, so that there is an advantage of good controllability, while the number of input / output pins increases. The circuit size (IC size) becomes large. Further, when a plurality of liquid crystal driving circuits 13 are provided according to the divided areas, there is an advantage that the chip size can be reduced (in particular, in the case of the present embodiment, each divided area is a 2K1K class, so that the conventional 2K1K class display device is provided. It is economical because the 2K control chip used can be used.) On the other hand, it is necessary to provide an arbitration circuit for maintaining the synchronization of the liquid crystal drive circuits 13.
 また、画像処理装置10を構成する各回路(各ブロック)は、CPU等のプロセッサを用いてソフトウェアによって実現されてもよい。すなわち、画像処理装置10は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている構成としてもよい。この場合、本発明の目的は、上述した機能を実現するソフトウェアである画像処理装置10の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、画像処理装置10に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによって達成される。 Further, each circuit (each block) constituting the image processing apparatus 10 may be realized by software using a processor such as a CPU. That is, the image processing apparatus 10 includes a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and a RAM (random access memory) that expands the program. A configuration may be adopted in which a storage device (recording medium) such as a memory for storing the program and various data is provided. In this case, an object of the present invention is a recording medium in which a program code (execution format program, intermediate code program, source program) of a control program of the image processing apparatus 10 which is software for realizing the functions described above is recorded so as to be readable by a computer. Is supplied to the image processing apparatus 10, and the computer (or CPU or MPU) reads and executes the program code recorded on the recording medium.
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。 Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R. Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
 また、画像処理装置10を通信ネットワークと接続可能に構成し、通信ネットワークを介して上記プログラムコードを供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Alternatively, the image processing apparatus 10 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available. Also, the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 また、画像処理装置10の各回路(各ブロック)は、ソフトウェアを用いて実現されるものであってもよく、ハードウェアロジックによって構成されるものであってもよく、処理の一部を行うハードウェアと当該ハードウェアの制御や残余の処理を行うソフトウェアを実行する演算手段とを組み合わせたものであってもよい。 In addition, each circuit (each block) of the image processing apparatus 10 may be realized using software, may be configured by hardware logic, and is a hardware that performs a part of the processing. Hardware and arithmetic means for executing software for performing control of the hardware and remaining processing may be combined.
 本発明の画像処理装置は、以上のように、RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理部を備え、アップスケールされた画像データを表示部に表示させる画像処理装置であって、アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、1つの画素に対応する入力画像データについて、上記アップスケール処理部によりアップスケールされて該画素に対応する複数のサブ画素に割り当てられた階調値を、該サブ画素間で再分配する再分配処理部を備え、上記再分配処理部は、アップスケール後のn個の分割画素を1つの画素とみなした場合、各分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、各画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする。 As described above, the image processing apparatus of the present invention includes an upscaling processing unit for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data on the display unit. In this image processing apparatus, one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB. A redistribution processing unit for redistributing gradation values assigned to a plurality of sub-pixels corresponding to the pixels, which are upscaled by the upscaling processing unit, with respect to the input image data corresponding to the pixels; And the redistribution processing unit assigns each sub-pixel to each sub-pixel when the n sub-pixels after the upscaling are regarded as one pixel. The gradation value is redistributed among the sub-pixels in the divided pixel, and the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB. It is characterized by doing.
 上記の構成では、アップスケールされた、RGBに対応するサブ画素に割り当てられた階調値を、分割画素内のサブ画素間で再分配するととともに、RGBごとに、画素内のサブ画素間で再分配する。そのため、例えば、再分配の前後で、1つの分割画素全体の輝度、および、1つの画素全体の色度を変化させることなく、1つの画素全体の各RGBそれぞれのサブ画素同士(1つの画素における同一色のサブ画素同士)で輝度差を大きくすることができる。これにより、アップスケール処理による高精細な画像を得つつ、視野角を向上させることができる。また、上記構成では、階調値をサブ画素間で分配することにより視野角を向上できるため、視野角向上のために新たに画素分割する必要がなく、パネル透過率の低下や画素への書き込み時間の不足を招くこともない。 In the above configuration, the gradation values assigned to the sub-pixels corresponding to RGB that have been upscaled are redistributed among the sub-pixels in the divided pixels, and re-distributed between the sub-pixels in the pixel for each RGB. Distribute. Therefore, for example, before and after redistribution, the luminance of one divided pixel and the chromaticity of one entire pixel do not change, and each subpixel of each RGB of one whole pixel (in one pixel) The luminance difference can be increased between sub-pixels of the same color. Thereby, the viewing angle can be improved while obtaining a high-definition image by the upscaling process. In the above configuration, since the viewing angle can be improved by distributing the gradation value among the sub-pixels, there is no need to newly divide the pixel to improve the viewing angle, and the panel transmittance is reduced and writing to the pixel is performed. There is no shortage of time.
 本画像処理装置では、上記再分配処理部は、各画素において、当該再分配処理部による再分配後の同一色のサブ画素同士の輝度差が、上記アップスケール処理部によるアップスケール後の同一色のサブ画素同士の輝度差よりも大きくなるように、上記再分配を行う構成とすることもできる。 In this image processing apparatus, the redistribution processing unit is configured such that, in each pixel, a luminance difference between subpixels of the same color after redistribution by the redistribution processing unit is the same color after upscaling by the upscaling processing unit. The redistribution may be performed so as to be larger than the luminance difference between the sub-pixels.
 上記の構成によれば、アップスケールにより画素(サブ画素)数が増大し、サブ画素間の輝度差が大きくなるため、視野角を向上させることができる。 According to the above configuration, the number of pixels (sub-pixels) increases due to upscaling, and the luminance difference between the sub-pixels increases, so that the viewing angle can be improved.
 本画像処理装置では、上記再分配処理部は、上記アップスケール処理部によるアップスケール後の1つの分割画素における輝度と、当該再分配処理部による再分配後の該分割画素における輝度とが互いに等しくなるように、該分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、上記アップスケール処理部によるアップスケール後の1つの画素における色度と、当該再分配処理部による再分配後の該画素における色度とが互いに等しくなるように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配する構成とすることもできる。 In the image processing apparatus, the redistribution processing unit has the same luminance in one divided pixel after the upscaling by the upscaling processing unit and the luminance in the divided pixel after the redistribution by the redistribution processing unit. In the divided pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel, and the color in one pixel after the up-scale by the up-scale processing unit In the pixel, the gradation value assigned to each sub-pixel is determined for each RGB so that the degree and the chromaticity in the pixel after redistribution by the redistribution processing unit are equal to each other. A configuration in which redistribution is performed between sub-pixels may be employed.
 上記の構成によれば、再分配前後の、1つの分割画素全体の輝度、および、1つの画素全体の色度を変化させることなく、分割画素内でサブ画素同士の輝度差を大きくすることができる。よって、表示品位の低下を招くことなく視野角を向上させることができる。 According to the above configuration, the luminance difference between the sub-pixels in the divided pixel can be increased without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel before and after redistribution. it can. Therefore, the viewing angle can be improved without causing deterioration in display quality.
 本画像処理装置では、上記再分配処理部は、当該再分配処理部による再分配後の1つの分割画素における輝度の中心が、該分割画素の中心に位置するように、該分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、当該再分配処理部による再分配後の1つの画素における色度の中心が、該画素の中心に位置するように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配する構成とすることもできる。 In the present image processing device, the redistribution processing unit is configured so that each of the divided pixels has a center of luminance at one divided pixel after redistribution by the redistribution processing unit. The gradation value assigned to the sub-pixel is redistributed among the sub-pixels in the divided pixel, and the center of chromaticity in one pixel after redistribution by the redistribution processing unit is set to the center of the pixel. In the pixel, the gradation value assigned to each sub-pixel may be redistributed among the sub-pixels in the pixel for each RGB.
 これにより、見た目の解像度および色度が変化し難くなるため、表示品位の低下を招くことがなく信頼性を向上させることができる。 This makes it difficult for the resolution and chromaticity of the appearance to change, so that the reliability can be improved without degrading the display quality.
 本発明の表示装置は、以上のように、上記画像処理装置と、上記画像処理装置によってアップスケールされた画像データを表示する表示部とを備えていることを特徴とする。 As described above, the display device of the present invention includes the image processing device and a display unit that displays image data upscaled by the image processing device.
 これにより、高精細で視野角の向上した表示品位の高い画像を表示させることができる。 This makes it possible to display high-definition and high-quality images with improved viewing angles.
 本発明の画像処理方法は、以上のように、RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理ステップを含み、アップスケールした画像データを表示部に表示させる画像処理方法であって、アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、1つの画素に対応する入力画像データについて、上記アップスケール処理ステップによりアップスケールして該画素に対応する複数のサブ画素に割り当てた階調値を、該サブ画素間で再分配する再分配処理ステップと、上記再分配処理ステップにより再配分された階調値に基づき、上記表示部に画像データを表示させる表示ステップとを含み、上記再分配処理ステップでは、アップスケール後のn個の分割画素を1つの画素とみなした場合、各分割画素において、各サブ画素に割り当てた上記階調値を、分割画素内のサブ画素間で再分配するとともに、各画素において、各サブ画素に割り当てた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする。 As described above, the image processing method of the present invention includes an upscaling step for upscaling the resolution of RGB input image data to n times higher resolution, and displays the upscaled image data on the display unit. In the image processing method, one pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel includes a plurality of subpixels corresponding to RGB, and one pixel Re-distribution processing step of re-distributing the gradation values assigned to a plurality of sub-pixels corresponding to the pixel by up-scaling the input image data corresponding to the pixel, A display step of displaying image data on the display unit based on the gradation values redistributed by the redistribution processing step, In the distribution processing step, when the n divided pixels after the upscaling are regarded as one pixel, the gradation value assigned to each sub pixel is redistributed among the sub pixels in the divided pixel in each divided pixel. In addition, in each pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB.
 上記画像処理方法によれば、上記画像処理装置により奏する効果を得ることができる。すなわち、駆動処理を複雑化することなく、高精細な画像を生成するとともに視野角改善を図ることができる。 According to the image processing method, it is possible to obtain the effect produced by the image processing apparatus. That is, a high-definition image can be generated and the viewing angle can be improved without complicating the driving process.
 本画像処理方法では、上記再分配処理ステップでは、上記アップスケール処理ステップによるアップスケール後の1つの分割画素で表される輝度と、当該再分配処理ステップによる再分配後の該分割画素で表される輝度とが互いに等しくなるように、該分割画素において、各サブ画素に割り当てられた上記階調値を、該サブ画素間で再分配するとともに、上記アップスケール処理ステップによるアップスケール後の1つの画素で表される色度と、当該再分配処理ステップによる再分配後の該画素で表される色度とが互いに等しくなるように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに該サブ画素間で再分配する方法とすることもできる。 In this image processing method, the redistribution processing step is represented by the luminance represented by one divided pixel after upscaling by the upscaling processing step and the divided pixel after redistribution by the redistribution processing step. In the divided pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels so that the luminance is equal to each other, and one after the up-scaling in the up-scaling processing step is performed. The gradation value assigned to each sub-pixel in the pixel so that the chromaticity represented by the pixel and the chromaticity represented by the pixel after redistribution in the redistribution processing step are equal to each other Can be redistributed among the sub-pixels for each RGB.
 上記の方法によれば、再分配前後の、1つの分割画素全体の輝度、および、1つの画素全体の色度を変化させることなく、1つの画素全体の各RGBそれぞれのサブ画素同士で輝度差を大きくすることができる。よって、表示品位の低下を招くことなく視野角を向上させることができる。 According to the above method, the luminance difference between the RGB sub-pixels of the entire pixel without changing the luminance of the entire divided pixel and the chromaticity of the entire pixel before and after redistribution. Can be increased. Therefore, the viewing angle can be improved without causing deterioration in display quality.
 なお、上記画像処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各部として動作させることにより、上記画像処理装置をコンピュータにて実現させるプログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に含まれる。 The image processing apparatus may be realized by a computer. In this case, a program that causes the image processing apparatus to be realized by the computer by causing the computer to operate as each unit, and a computer reading that records the program. Possible recording media are also included in the scope of the present invention.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
 本発明は、入力される画像データの解像度を高解像度にアップスケールする画像処理装置および画像処理方法に適用できる。 The present invention can be applied to an image processing apparatus and an image processing method that upscale the resolution of input image data to a high resolution.
1  表示装置
2  液晶表示パネル(表示部)
10 画像処理装置
11 アップスケール回路(アップスケール処理部)
12 再分配回路(再分配処理部)
13 液晶駆動回路
21 (アップスケール前の)画素
22 (アップスケール後の)画素
P1,P2,P3,P4 分割画素
R1,R2,R3,R4 サブ画素(Rサブ画素)
G1,G2,RG,G4 サブ画素(Gサブ画素)
B1,B2,B3,B4 サブ画素(Bサブ画素)
1 Display device 2 Liquid crystal display panel (display unit)
10 Image Processing Device 11 Upscale Circuit (Upscale Processing Unit)
12 Redistribution circuit (Redistribution processing unit)
13 Liquid crystal drive circuit 21 Pixel 22 (before up-scaling) Pixel P1, P2, P3, P4 (after up-scaling) Divided pixels R1, R2, R3, R4 Sub-pixel (R-sub-pixel)
G1, G2, RG, G4 Subpixel (G subpixel)
B1, B2, B3, B4 Subpixel (B subpixel)

Claims (9)

  1.  RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理部を備え、アップスケールされた画像データを表示部に表示させる画像処理装置であって、
     アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、
     1つの画素に対応する入力画像データについて、上記アップスケール処理部によりアップスケールされて該画素に対応する複数のサブ画素に割り当てられた階調値を、該サブ画素間で再分配する再分配処理部を備え、
     上記再分配処理部は、アップスケール後のn個の分割画素を1つの画素とみなした場合、
     各分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、
     各画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする画像処理装置。
    An image processing apparatus comprising an upscaling processing unit for upscaling the resolution of RGB input image data to n times higher resolution, and displaying the upscaled image data on a display unit,
    One pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel is composed of a plurality of subpixels corresponding to RGB,
    Redistribution processing for redistributing gradation values assigned to a plurality of sub-pixels corresponding to a plurality of sub-pixels upscaled by the upscaling processing unit for input image data corresponding to one pixel. Part
    When the redistribution processing unit regards the n divided pixels after the upscaling as one pixel,
    In each divided pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel, and
    An image processing apparatus characterized in that, in each pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the pixel for each RGB.
  2.  上記再分配処理部は、
     各画素において、当該再分配処理部による再分配後の同一色のサブ画素同士の輝度差が、上記アップスケール処理部によるアップスケール後の同一色のサブ画素同士の輝度差よりも大きくなるように、上記再分配を行うことを特徴とする請求項1に記載の画像処理装置。
    The redistribution processing unit
    In each pixel, the luminance difference between subpixels of the same color after redistribution by the redistribution processing unit is larger than the luminance difference between subpixels of the same color after upscaling by the upscale processing unit. The image processing apparatus according to claim 1, wherein the redistribution is performed.
  3.  上記再分配処理部は、
     上記アップスケール処理部によるアップスケール後の1つの分割画素における輝度と、当該再分配処理部による再分配後の該分割画素における輝度とが互いに等しくなるように、該分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、
     上記アップスケール処理部によるアップスケール後の1つの画素における色度と、当該再分配処理部による再分配後の該画素における色度とが互いに等しくなるように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする請求項1または2に記載の画像処理装置。
    The redistribution processing unit
    In the divided pixel, each sub-pixel is assigned to each sub-pixel so that the luminance in one divided pixel after upscaling by the upscale processing unit and the luminance in the divided pixel after redistribution by the redistribution processing unit are equal to each other. Redistributing the assigned tone values among the sub-pixels in the divided pixels;
    In the pixel, the chromaticity in one pixel after upscaling by the upscaling processing unit and the chromaticity in the pixel after redistribution by the redistribution processing unit are allocated to each sub-pixel in the pixel. The image processing apparatus according to claim 1, wherein the gradation value is redistributed among sub-pixels in a pixel for each RGB.
  4.  上記再分配処理部は、
     当該再分配処理部による再分配後の1つの分割画素における輝度の中心が、該分割画素の中心に位置するように、該分割画素において、各サブ画素に割り当てられた上記階調値を、分割画素内のサブ画素間で再分配するとともに、
     当該再分配処理部による再分配後の1つの画素における色度の中心が、該画素の中心に位置するように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする請求項1~3の何れか1項に記載の画像処理装置。
    The redistribution processing unit
    In the divided pixel, the gradation value assigned to each sub-pixel is divided so that the luminance center in one divided pixel after redistribution by the redistribution processing unit is located at the center of the divided pixel. Redistribute between the sub-pixels in the pixel,
    In the pixel, the gradation value assigned to each sub-pixel is determined for each RGB so that the center of chromaticity in one pixel after redistribution by the redistribution processing unit is located at the center of the pixel. The image processing apparatus according to any one of claims 1 to 3, wherein redistribution is performed among sub-pixels in a pixel.
  5.  請求項1~4の何れか1項に記載の画像処理装置と、
     上記画像処理装置によってアップスケールされた画像データを表示する表示部とを備えていることを特徴とする表示装置。
    The image processing apparatus according to any one of claims 1 to 4,
    And a display unit for displaying the image data upscaled by the image processing apparatus.
  6.  RGBの入力画像データの解像度をn倍の高解像度にアップスケールするためのアップスケール処理ステップを含み、アップスケールした画像データを表示部に表示させる画像処理方法であって、
     アップスケール前の1つの画素は、アップスケール後のn個の分割画素に対応し、各分割画素は、RGBそれぞれに対応する複数のサブ画素で構成され、
     1つの画素に対応する入力画像データについて、上記アップスケール処理ステップによりアップスケールして該画素に対応する複数のサブ画素に割り当てた階調値を、該サブ画素間で再分配する再分配処理ステップと、
     上記再分配処理ステップにより再配分された階調値に基づき、上記表示部に画像データを表示させる表示ステップとを含み、
     上記再分配処理ステップでは、アップスケール後のn個の分割画素を1つの画素とみなした場合、
     各分割画素において、各サブ画素に割り当てた上記階調値を、分割画素内のサブ画素間で再分配するとともに、
     各画素において、各サブ画素に割り当てた上記階調値を、RGBごとに、画素内のサブ画素間で再分配することを特徴とする画像処理方法。
    An image processing method including an upscaling step for upscaling the resolution of RGB input image data to n times higher resolution, and displaying the upscaled image data on a display unit,
    One pixel before upscaling corresponds to n divided pixels after upscaling, and each divided pixel is composed of a plurality of subpixels corresponding to RGB,
    Redistribution processing step of re-distributing gradation values assigned to a plurality of sub-pixels corresponding to the pixel after re-scaling the input image data corresponding to one pixel by the up-scaling processing step. When,
    A display step of displaying image data on the display unit based on the gradation values redistributed by the redistribution processing step,
    In the redistribution processing step, when n divided pixels after upscaling are regarded as one pixel,
    In each divided pixel, the gradation value assigned to each sub-pixel is redistributed among the sub-pixels in the divided pixel,
    An image processing method characterized in that, in each pixel, the gradation value assigned to each sub-pixel is redistributed among sub-pixels in the pixel for each RGB.
  7.  上記再分配処理ステップでは、
     上記アップスケール処理ステップによるアップスケール後の1つの分割画素で表される輝度と、当該再分配処理ステップによる再分配後の該分割画素で表される輝度とが互いに等しくなるように、該分割画素において、各サブ画素に割り当てられた上記階調値を、該サブ画素間で再分配するとともに、
     上記アップスケール処理ステップによるアップスケール後の1つの画素で表される色度と、当該再分配処理ステップによる再分配後の該画素で表される色度とが互いに等しくなるように、該画素において、各サブ画素に割り当てられた上記階調値を、RGBごとに該サブ画素間で再分配することを特徴とする請求項6に記載の画像処理方法。
    In the redistribution processing step,
    The divided pixels so that the luminance represented by one divided pixel after upscaling by the upscaling processing step and the luminance represented by the divided pixels after redistribution by the redistribution processing step are equal to each other. And redistributing the gradation value assigned to each sub-pixel among the sub-pixels,
    In the pixel, the chromaticity represented by one pixel after upscaling by the upscaling processing step and the chromaticity represented by the pixel after redistribution by the redistribution processing step are equal to each other. The image processing method according to claim 6, wherein the gradation value assigned to each sub-pixel is redistributed among the sub-pixels for each RGB.
  8.  コンピュータを請求項1~4の何れか1項に記載の画像処理装置として動作させるためのプログラムであって、上記コンピュータを上記画像処理装置の上記各部として機能させるプログラム。 A program for operating a computer as the image processing apparatus according to any one of claims 1 to 4, wherein the computer functions as each unit of the image processing apparatus.
  9.  請求項8に記載のプログラムが記録されたコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 8 is recorded.
PCT/JP2009/006859 2009-04-10 2009-12-14 Image processing apparatus, display apparatus, image processing method, program, and recording medium WO2010116432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-096151 2009-04-10
JP2009096151 2009-04-10

Publications (1)

Publication Number Publication Date
WO2010116432A1 true WO2010116432A1 (en) 2010-10-14

Family

ID=42935744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006859 WO2010116432A1 (en) 2009-04-10 2009-12-14 Image processing apparatus, display apparatus, image processing method, program, and recording medium

Country Status (1)

Country Link
WO (1) WO2010116432A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121144A (en) * 1993-10-20 1995-05-12 Nec Corp Liquid crystal display device
JP2004085608A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Image display device, image display method, and image display program
JP2004302270A (en) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp Picture processing method and liquid crystal display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121144A (en) * 1993-10-20 1995-05-12 Nec Corp Liquid crystal display device
JP2004085608A (en) * 2002-08-22 2004-03-18 Seiko Epson Corp Image display device, image display method, and image display program
JP2004302270A (en) * 2003-03-31 2004-10-28 Fujitsu Display Technologies Corp Picture processing method and liquid crystal display device using the same

Similar Documents

Publication Publication Date Title
KR102023184B1 (en) Display device, data processing apparatus and method thereof
US9412316B2 (en) Method, device and system of displaying a more-than-three primary color image
US9928786B2 (en) Display device and signal converting device
EP2539881B1 (en) Shared voltage divider generating reference voltages for the gamma and common electrode voltages
US6911784B2 (en) Display apparatus
WO2010016319A1 (en) Image processing device, display device, image processing method, program, and recording medium
JPWO2011102343A1 (en) Display device
US20180151106A1 (en) Distributive-driving of display panel
JP2007041595A (en) Video signal processor, liquid crystal display device equipped with the same, and driving method therefor
JP2009192887A (en) Display device
JP4536440B2 (en) Liquid crystal display device and driving method thereof
JP2008197228A (en) Display device
WO2011102321A1 (en) Liquid crystal display device, display method, program, and recording medium
WO2011125899A1 (en) Liquid crystal display, display method, program, and recording medium
EP3012830B1 (en) Image up-scale unit and method
WO2012067038A1 (en) Multi-primary color display device
JP2002287687A (en) Display method
JP2009186800A (en) Display method and flicker determination method of display device
US7184608B2 (en) Apparatus and method for edge enhancement of digital image data and digital display device including edge enhancer
TW202201381A (en) Apparatus for performing brightness enhancement in display module
US20150062190A1 (en) Lcd device and method for image dithering compensation
US20090135310A1 (en) Display apparatus and control method thereof
CN116631350A (en) Display color shift optimization method, display driving method and display
JP2004117752A (en) Display device
WO2010116432A1 (en) Image processing apparatus, display apparatus, image processing method, program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP