WO2010114415A1 - Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления - Google Patents

Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления Download PDF

Info

Publication number
WO2010114415A1
WO2010114415A1 PCT/RU2009/000451 RU2009000451W WO2010114415A1 WO 2010114415 A1 WO2010114415 A1 WO 2010114415A1 RU 2009000451 W RU2009000451 W RU 2009000451W WO 2010114415 A1 WO2010114415 A1 WO 2010114415A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage capacitors
unit
block
voltage
charging
Prior art date
Application number
PCT/RU2009/000451
Other languages
English (en)
French (fr)
Inventor
Анна Владимировна АБРАМОВА
Вадим Муратович БАЯЗИТОВ
Андрей Андреевич ПЕЧКОВ
Original Assignee
Общество С Ограниченной Ответственностью "Соновита"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Соновита" filed Critical Общество С Ограниченной Ответственностью "Соновита"
Publication of WO2010114415A1 publication Critical patent/WO2010114415A1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production

Definitions

  • the invention relates to the field of oil production and can be used when performing work at depths exceeding 2000 meters.
  • a device for influencing an oil reservoir is known, the principle of operation of which is based on the “electrohydraulic effect", which allows to increase the productivity of the treated formation.
  • the borehole device including a ground-based power supply equipped with a control panel
  • the borehole device is made in the form of a hollow cylindrical body and contains a charger, a storage capacitor unit (transformer rectifier unit with high-voltage pulse capacitors connected in parallel), and a discharge unit equipped with two electrodes controlled by a spark gap and an ignition unit.
  • the input of electric energy into the borehole apparatus is carried out by means of the power cable through the cable lug, which is an intermediate (supporting) link when placing the borehole apparatus in the borehole [1].
  • the electrodes of the discharge block are located directly in the processed medium, which in the well, in the bottomhole zone and in the oil reservoir can be industrial water with a degree of mineralization of up to 1, 24, clay solutions and oils with various degrees of gas contamination, as well as their suspension .
  • Such a processed medium is characterized either by increased electrical conductivity (reducing the breakdown voltage of the discharge gap), or, conversely, by complicated conditions for creation of breakdown due to its electrical insulating properties, as well as due to increased ambient pressures reaching tens of atmospheres (“Tillage”).
  • the device With a high conductivity of the medium in the well (brine), the device enters the short circuit mode or “leakage” of the discharge energy and, accordingly, becomes inefficient by reducing the amount of energy actually used to create a pressure pulse. Moreover, while in the nominal discharge mode of the accumulated energy, the duration of the leading edge of the current pulse is explosive with a duration of 1550 ⁇ s, then in the “leakage” mode, the duration of the leading edge of the current increases to 500 -500 ⁇ s or more. In this case, the creation of an explosive pulsed regime of the release of electrical energy and pressure pulse is impossible.
  • the pre-breakdown energy losses in the leakage mode reach 13%, and their compensation leads to an increase in the mass-dimensional parameters of the downhole apparatus.
  • the growth of these indicators is due to an increase in the dimensions and mass of the block of storage capacitors, which is a consequence of the increase in the number of storage capacitors in it, which allows one to reduce (eliminate) pre-breakdown losses.
  • the downhole tool had a diameter of 250 mm and a length of 3500 mm, while the energy of the discharge pulse did not exceed 18 J.
  • the size of the discharge gap has to be reduced in the borehole apparatus. This should provide a guaranteed breakdown, but in fact reduces the energy released between the electrodes, as a result of which, with a directly proportional dependence, the efficiency of the formation treatment is reduced.
  • the second and most important drawback of this device is that, due to the design features of its block of storage capacitors, it is mainly intended for processing (cleaning) the bottom-hole zone at a depth of not more than 1500 meters, since it develops power discharge pulse in the range of only YuO - 300 J.
  • Such a discharge pulse power does not allow for areal impact on the formation and does not allow it to work at depths of more than 1,500 ⁇ 2,000 meters, while the vast majority of wells, for example in western Siberia of the Russian Federation and in Canada, have oil-bearing formations at depths of 2500 ⁇ 2700 and more than meters.
  • the negative design features of the storage capacitor unit of the known devices are that its storage capacitors, both when charging and when discharging, have a parallel connection between themselves, and this does not allow to provide breakdown voltage in the discharge block above 20 kW (operability of the power supply cable, safety requirements) and does not allow to obtain the discharge pulse power of more than 1 kJ, necessary (“Peshena” / presented in prototype /) for efficient operation at great depths.
  • the task to which the invention is directed is the development of such a device and such a method for its use that with the smallest possible dimensions of the downhole apparatus will allow oil production at depths of more than 2000 meters and effectively perform areal impact on the treated formation.
  • the problem in the method of electro-hydraulic impact on the oil reservoir including placement in the well in the zone of impact on the reservoir of the downhole apparatus, which is connected to a ground-based power source and contains, electrically interconnected, a charger, a storage capacitor unit, and a discharge unit equipped with electrodes, and the subsequent supply of constant voltage from a ground-based power source to the charger, charging the storage capacitor unit when they are arallelnom compound to the desired value of the voltage and the storage capacitor discharge unit, which provides delivery of its output voltage to the electrodes of the discharge unit is achieved due to the fact that storage capacitors, after charging their unit, switch to series connection, and then discharge the block of storage capacitors, providing an increase in its output voltage in proportion to the number of capacitors, while the constant voltage supplied to the charger is set within 300 ⁇ 150 volts, the maximum value of the required voltage for charging the block of storage capacitors is assumed to be 20 ⁇ 27 kilovolts, and charging storage capacitors to the required voltage value is carried out mainly within 20 seconds.
  • - the magnitude of the voltage is changed, mainly, in the direction of increasing its value; - the voltage value is changed at least once.
  • the compartment in which the storage capacitor unit and the switching means are located is filled, mainly, with a liquid electrically insulating medium
  • the insulating medium is made on the basis of, mainly, heat-resistant organosilicon liquid
  • the compartment with an electrically insulating medium is filled in such a way that, subject to the vertical location of the borehole apparatus, all components located in the compartment are completely immersed in an electrically insulating medium and there is some air cushion in it; the volume of the air cushion is at least 15% of the volume of the insulating medium.
  • FIG. 1 vertical section of the treated well
  • FIG. 2 is a longitudinal section of a downhole tool at the stage of charging a block of storage capacitors
  • FIG. 3 is a longitudinal section of a downhole tool at the stage of discharging a block of storage capacitors.
  • the device for electro-hydraulic impact on the oil reservoir includes (see Fig. 1-3), equipped with a control panel 1, a ground-based power supply 2 and a downhole tool 3, which is connected via an electric, for example, wireline 4 cable to a power supply 2, in the form of a hollow cylindrical body, an electrically insulating partition 5 divided into sealed compartments 6, 7 and contains electrically interconnected and sequentially located charger 8, block 9 of storage capacitors 10 and a discharge block equipped with electrodes 11, 12 and a trigger device 13, which can be performed in the form of, for example, a gas-filled spark gap.
  • the downhole tool 3 is equipped with a switching means 14 installed in its cavity, which is connected to the control panel 1 and interconnected with the power supply 2, operates in automatic mode and, at the appropriate stages of the operation of the downhole device 3, provides in the block 9 of storage capacitors 10 the switching of storage capacitors 10 from their parallel connection (FIG. 2) - to the serial connection (FIG.
  • the Switching means 14 is made, mainly Of course, on the basis of gas high-speed arresters 15 and installed in the same compartment 6 with the storage capacitor unit 9, compartment 6, in which the storage capacitor unit 9 and the switching means 14 are located, is filled with an electrically insulating medium (not shown in the drawings), which is liquid organosilicon liquid, for example, Penta-TPMC-110 liquid.
  • This compartment is filled with an electrically insulating fluid in such a way that, provided that the borehole apparatus 3 is vertically located, all components located in this compartment are completely immersed in the electrically insulating fluid and there is some air cushion in the compartment; the volume of which is at least 15% of the volume of the electrically insulating liquid.
  • Compartment 7 in which are the electrodes 11 and 12, interconnected, respectively, with the output of the block 9 of the storage capacitors 10 and with the body of the downhole tool 3, is made with through windows 16 that provide access to its cavity of the processed medium 19, which is filled with the well 17.
  • the well 3 through the electric cable 4 is lowered into the well 17, filled, for example, with fluid (if necessary, the working fluid is poured into the well) and placed in the zone of the intended impact on the oil bearing formation 18, which requires appropriate processing.
  • the compartment 7 of the downhole apparatus 3 is filled with fluid through the windows 16 and the electrodes 11 and 12 are completely immersed in it.
  • the ground power supply 2 is connected to an industrial electric network (voltage 220 volts, frequency 50 hertz) and using the control panel 1 turn it on.
  • the power supply unit 2 converts the voltage of 220 volts into a constant regulated voltage (range 300-I50 volts) and transfers it via an electric cable 4 (for example, 200 volts and not variable in value) to the charger 3, which charges the block 9 of storage capacitors 10 (three capacitors, capacitors are connected in parallel, the capacitance of each capacitor is 3 microfarads / maybe 25 or more /) to a value of 20 kilovolts. Charging the block of storage capacitors is carried out within 20 seconds (charging time can be significantly increased, and the maximum value of the charging block of storage capacitors can be 25 ⁇ 27 and a few more kilovolts).
  • the storage capacitors using the switching device 14 After charging of the block 9 of the storage capacitors 10, the storage capacitors using the switching device 14 by the appropriate command from the control panel 1 in automatic mode from a parallel connection (Fig. 2) switch to serial connection (Fig. 3). Then, from the control panel 1 to the trigger device 13 issue a command for the electrical connection of the block of storage capacitors with the discharge block.
  • the block of storage capacitors is discharged, ensuring the supply of its output voltage (breakdown voltage) to the electrodes 11 and 12 of the discharge block.
  • the value of this breakdown voltage is proportional to the number of storage capacitors, represents the sum of the voltages accumulated by each of them, and with the above parameters is 40 ⁇ 42 kV, which allows to obtain a discharge energy in the range of 1, 6 ⁇ 1, 8 kJ.
  • the breakdown voltage can be increased to 75 ⁇ 81 kV, and the energy of the discharge pulse can be brought up to 3 kJ.
  • a feature of the proposed technical solution is the formation of shock pressures inside the volume of any liquid that occurs when an electric pulse discharge flows in it.
  • the action of arising discharges inside the fluid volume creates significant displacements of the latter, leading to the formation of a cavitation cavity with its subsequent closure.
  • the result of a single electric discharge is a hydraulic shock, which is a combination of two hydraulic shocks: the main shock, which occurs when the fluid moves apart, and cavitation, which occurs when the cavity closes.
  • the pressure arising from electro-hydraulic shock the higher, the denser the fluid used, the more powerful the pulse and the steeper its front.
  • a cycle consisting of these two beats can be repeated at the required frequency in accordance with the discharge repetition rate.
  • the frequency of the discharge in the proposed technical solution is 0.2 ⁇ 0.01 hertz.
  • another downhole apparatus can be used: its external diameter is 102 mm and its length does not exceed 1.5 meters. Moreover, the sufficiently small overall dimensions of these borehole devices allow them to be operated in well conditions with any configuration of slopes along the section of the formation and with any operational displacements from well to well.
  • a comparative analysis of the known and proposed technical solutions shows significant advantages of the latter. Firstly, it is the possibility of formation impact on the oil-bearing formation. Secondly, it provides the possibility of work at depths of more than 3,000 meters. Thirdly, these are the minimum sizes (in comparison with the analogue: diameter - 2.5 times less, length - 1, 04 or 2.3 times shorter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

Изобретение относится к области нефтедобычи и может быть использовано при выполнении работ на глубинах превышающих 2000 метров. Способ электрогидравлического воздействия на нефтяной пласт включает размещение в скважине (17) в зоне воздействия на пласт (18) скважинного аппарата, который соединен с наземным источником электропитания (2). Скважинный аппарат (3) выполнен в виде полого цилиндрообразного корпуса, разделенного перегородками на герметичные отсеки. Аппарат (3) содержит электрически взаимосвязанные между собой зарядное устройство (8), блок (9) накопительных конденсаторов (10) и разрядный блок, оснащенный электродами (11) и (12). Аппарат (3) дополнительно снабжен установленным в его полости коммутирующим средством (14), которое соединено с пультом управления (1) и взаимосвязано с источником электропитания (3) и в установленным одном отсеке с блоком накопительных конденсаторов. Подают постоянное напряжение от наземного источника электропитания (2) на зарядное устройство (8). Заряжают блок (9) накопительных конденсаторов (10) при их параллельном соединении до необходимой величины напряжения и разряжают блок (9) накопительных конденсаторов (10). Величину постоянного напряжения, подаваемого на зарядное устройство, устанавливают в пределах 300-150 вольт. Максимальное значение необходимой величины напряжения для зарядки блока накопительных конденсаторов (10) принимают равным 20-27 киловольтам. Изобретение позволяет при минимальных габаритах осуществлять добычу нефти на глубинах более 2000 метров и эффективно выполнять площадное воздействие на обрабатываемый пласт.

Description

СПОСОБ ЭЛЕКТРОГИДРАВЛИЧЕСКОГО ВОЗДЕЙСТВИЯ НА НЕФТЯНОЙ ПЛАСТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Изобретение относится к области нефтедобычи и может быть использовано при выполнении работ на глубинах превышающих 2000 метров.
Известно устройство для воздействия на нефтяной пласт, принцип работы которого базируется на «элeктpoгидpaвличecкoм эффeктe», позволяющим повысить продуктивность обрабатываемого пласта.
В этом устройстве, включающем, оснащенный пультом управления, наземный источник электропитания, скважинный аппарат выполнен в виде полого цилиндрообразного корпуса и содержит в себе зарядное устройство, блок накопительных конденсаторов (трансформаторно-выпрямительный блок с импульсными высоковольтными конденсаторами, соединенными параллельно) и разрядный блок, оснащенный двумя электродами, управляемым разрядником и блоком поджига. Ввод электрической энергии в скважинный аппарат осуществляется посредством электропитающего кабеля через кабельный наконечник, который является промежуточным (поддерживающим) звеном при размещении скважинного аппарата в скважине [1].
Недостатки это устройства заключаются в следующем. В процессе его работы электроды разрядного блока находятся непосредственно в обрабатываемой среде, которой в скважине, в призабойной зоне и в нефтяном пласте могут быть техническая вода со степенью минерализации до 1 ,24, глинистые растворы и нефти с различной степенью загазованности, а также и их суспензии.
Такая обрабатываемая среда характеризуется или повышенной электрической проводимостью (снижающей пробивное напряжение разрядного промежутка), или, наоборот, усложненными условиями для создания пробоя за счет её электроизолирующих свойств, а также и за счет повышенных окружающих давлений, достигающих величин десятков атмосфер («кpивaя Пaшeнa»).
Вследствие вышеуказанного рабочего расположения электродов и свойств обрабатываемой среды возникают следующие эксплуатационные сложности.
При высокой проводимости среды в скважине (соляной раствор) устройство входит в режим короткого замыкания или «yтeчки» энергии разряда и соответственно становится неэффективным за счет снижения величины энергии, фактически расходуемой на создание импульса давления. При этом, если в номинальном режиме разряда накопленной энергии длительность переднего фронта импульса тока носит взрывной характер с длительностью 1550 мкс, то в режиме «yтeчки» длительность переднего фронта тока возрастает до 500-И500 мкс и более. В этом случае создание взрывного импульсного режима выделения электрической энергии и импульса давления невозможно.
Предпробивные потери энергии в режиме «yтeчки» достигают 13 %, а их компенсация приводит к росту массо-габаритных показателей скважинного аппарата. Рост этих показателей происходит за счет увеличения габаритов и массы блока накопительных конденсаторов, являющегося следствием увеличения в нём количества накопительных конденсаторов, которое и позволяет снижать (устранять) предпробивные потери.
Так, например, при одной из практических реализаций электрогидравлического воздействия на нефтеносный пласт, скважинный аппарат имел диаметр 250 мм и длину 3500 мм, в то время как энергия разрядного импульса не превышала 18 Дж.
Эксплуатация скважинного аппарата с такой незначительной энергией разрядного импульса энергии, даже на глубинах до 1500 метров, малоэффективна, а его габаритные размеры ограничивают обработку обсадной трубы с пониженными диаметрами, с переменной конфигурацией уклонов по сечению пласта и затрудняют его перемещение от скважины к скважине.
Кроме того, в связи с ростом пробивных напряжений при достижении глубин в скважине до 2000 метров и более и за счет увеличения электропрочности нефтяной среды, в скважинном аппарате приходится уменьшать величину разрядного промежутка. Это должно обеспечивать гарантированный пробой, но фактически уменьшает выделяемую между электродами энергию, в результате чего с прямо пропорциональной зависимостью снижается эффективность обработки пласта.
Вместе с этим, взаимосвязь и взаимовлияние параметров скважинного аппарата и скважины, таких как давление, искровой зазор, проводимость среды, энергопотери, приводят к нестабильности энерговыделения в широком диапазоне запасенных энергий, к необходимости проведения предпускового анализа и подготовки аппарата к каждому использованию с учетом характеристик конкретной скважины. Это существенно усложняет эксплуатацию скважинного аппарата, затрудняет выбор оптимальных параметров обработки, а прогноз эффективности воздействия на пласт делает не всегда достоверным.
Таким образом, использование данного устройства для воздействия на нефтяной пласт на глубинах, например, в 2000 метров представляется весьма проблематичным, в том числе и из-за возможности несрабатывания его разрядного блока.
Кроме того, известно устройство для электрогидравлического воздействия на нефтяной пласт, в котором электроды разрядного блока во время работы скважинного аппарата должны быть изолированы от обрабатываемой среды. Это обеспечивается введением в конструкцию разрядного блока дополнительного корпуса, выполненного в виде полого цилиндра и имеющего достаточно маленький внутренний объём [2].
Однако, данное устройство, а, следовательно, и реализуемый на нём способ электрогидравлического воздействия на нефтяной пласт, которые по своей технической сущности являются наиболее близкими к изобретению и приняты в качестве соответствующего прототипа, имеет ряд существенных недостатков.
Первый из них заключается в том, что использование дополнительного корпуса в виде полого цилиндра не обеспечивает устойчивой изоляции электродов от обрабатываемой среды. Разработчики данного устройства сами указывают на возможность «cлyчaйнoгo попадания окружающей гидросреды под электроды и возникновения её контакта с элeктpoдaми». Следовательно, использование этого устройства на глубинах близких к 2000 метров, точно также как и выше охарактеризованного устройства, представляется весьма проблематичным, поскольку сохраняется некоторая возможность несрабатывания его разрядного блока.
Второй и наиболее важный недостаток этого устройства, равно как и выше охарактеризованного, заключается в том, что оно, в силу конструктивных особенностей своего блока накопительных конденсаторов, предназначено в основном для обработки (очистки) призабойной зоны на глубинах не более 1500 метров, поскольку развивает мощность разрядного импульса в пределах всего лишьЮО - 300 Дж.
Такая мощность разрядного импульса не позволяет осуществить площадное воздействие на пласт и не позволяет работать на глубинах более 1500 ÷ 2000 метров, в то время как подавляющее большинство скважин, например в западной Сибири Российской Федерации и в Канаде, имеют нефтеносные пласты на глубинах в 2500 ÷ 2700 и более метров.
Обычно для увеличения мощности разрядного импульса идут по пути увеличения емкости накопительного кондесатора, т.к. мощность его разрядного импульса равна половине произведения ёмкости конденсатора и квадратичного значения напряжения на него подаваемого. Однако, это, как было указано выше, приводит к резкому увеличению габаритных размеров скважинного аппарата и затрудняет его эксплуатацию.
Негативные конструктивные особенности блока накопительных конденсаторов известных устройств заключаются в том, что его накопительные конденсаторы, как при их зарядке, так и при их разрядке, имеют параллельное соединение между собой, а это не позволяет обеспечить в разрядном блоке пробивное напряжение выше 20 кВт (работоспособность электропитающего кабеля, требования техники безопасности) и не позволяет получить мощность разрядного импульса более 1 кДж, необходимые («кpивaя Пaшeнa» /представлена в протwтипе/) для эффективной работы на больших глубинах.
Прямого указания на такое (параллельное) соединение накопительных конденсаторов в описании изобретения [2] нет, но информация, имеющаяся в книге Л. Я. Попилова ((Электрофизическая и электрохимическая обработка материалов)) (Глава 13, «Элeктpoгидpaвличecкaя обработка)), стр. 265-270, рис. 1 , 2 и 3, Москва, «Maшинocтpoeниe», 1982 г.).
Задачей, на решение которой направлено изобретение, является разработка такого устройства и такого способа его использования, которые при минимально возможных габаритах скважинного аппарата позволят осуществлять добычу нефти на глубинах более 2000 метров и эффективно выполнять площадное воздействие на обрабатываемый пласт.
Решение данной задачи в изобретении достигается техническими результатами, которые в процессе добычи нефти обеспечивают создание в разрядном блоке скважинного аппарата пробивного напряжения выше 20 кВт и получение мощности разрядного импульса в своём значении превышающим 1 кДж.
Поставленная задача в способе электрогидравлического воздействия на нефтяной пласт, включающем размещение в скважине в зоне воздействия на пласт скважинного аппарата, который соединен с наземным источником электропитания и содержит, электрически взаимосвязанные между собой, зарядное устройство, блок накопительных конденсаторов, и разрядный блок, оснащенный электродами, и последующие за этим подачу постоянного напряжения от наземного источника электропитания на зарядное устройство, зарядку блока накопительных конденсаторов при их параллельном соединении до необходимой величины напряжения и разрядку блока накопительных конденсаторов, обеспечивающую поступление его выходного напряжения на электроды разрядного блока, достигается за счёт того, что накопительные конденсаторы, после окончания зарядки их блока, переключают в последовательное соединение, а затем производят разрядку блока накопительных конденсаторов, обеспечивая увеличение его выходного напряжения пропорционально-ступенчато количеству конденсаторов, при этом величину постоянного напряжения, подаваемого на зарядное устройство, устанавливают в пределах 300 ÷ 150 вольт, максимальное значение необходимой величины напряжения для зарядки блока накопительных конденсаторов принимают равным 20 ÷ 27 киловольтам, а зарядку блока накопительных конденсаторов до необходимой величины напряжения осуществляют, преимущественно, в течение 20 секунд.
Этому же способствует также и то, что:
- переключение накопительных конденсаторов с одного вида их соединения на другой, производят в автоматическом режиме;
- величину напряжения, подаваемого на зарядное устройство, в процессе зарядки блока накопительных конденсаторов, устанавливают постоянной и/или изменяют её значение;
- величину напряжения изменяют плавно и/или скачкообразно;
- величину напряжения изменяют, преимущественно, в сторону увеличения её значения; - величину напряжения изменяют, по меньшей мере, один раз.
Поставленная задача в устройстве для осуществления способа по п.7, включающем, оснащенный пультом управления, наземный источник электропитания и скважинный аппарат, который посредством электрического кабеля соединен с источником электропитания, выполнен в виде полого цилиндрообразного корпуса, перегородками разделенного на герметичные отсеки, и содержит в себе, электрически взаимосвязанные между собой и последовательно расположенные зарядное устройство, блок накопительных конденсаторов и разрядный блок, оснащенный электродами, достигается за счёт того, что скважинный аппарат дополнительно снабжен, установленным в его полости, коммутирующим средством, которое соединено с пультом управления и взаимосвязано с источником электропитания, работает в автоматическом режиме и на соответствующих этапах работы скважинного аппарата обеспечивает в блоке накопительных конденсаторов переключение накопительных конденсаторов с их параллельного соединения - на последовательное соединение и, наоборот, с последовательного соединения - на параллельное, при этом коммутирующее средство выполнено, преимущественно, на базе газовых быстродействующих разрядников, установлено в одном отсеке с блоком накопительных конденсаторов, а отсек, в котором расположены блок накопительных конденсаторов и коммутирующее средство, заполнен электроизолирующей средой. Этому же способствует также и то, что:
- отсек, в котором расположены блок накопительных конденсаторов и коммутирующее средство, заполнен, преимущественно, жидкой электроизолирующей средой;
- электроизолирующая среда выполнена на базе, преимущественно, термостойкой кремнийорганической жидкости;
- отсек электроизолирующей средой заполнен таким образом, что, при условии вертикального расположения скважинного аппарата, все комплектующие изделия, находящиеся в указанном отсеке, полностью погружены в электроизолирующую среду и при этом в нём имеется некоторая воздушная подушка; объём воздушной подушки составляет не менее 15 % от объёма электроизолирующей среды.
Предлагаемое изобретение поясняется чертежами, на которых схематично представлены: На фиг. 1 - вертикальный разрез обрабатываемой скважины;
На фиг. 2 - продольный разрез скважинного аппарата на стадии зарядки блока накопительных конденсаторов;
На фиг. 3 - продольный разрез скважинного аппарата на стадии разрядки блока накопительных конденсаторов. Устройство для электрогидравлического воздействия на нефтяной пласт, включает в себя (см. фиг. 1-3), оснащенный пультом управления 1 , наземный источник электропитания 2 и скважинный аппарат 3, который посредством электрического, например, каротажного кабеля 4 соединен с источником электропитания 2, выполнен в виде полого цилиндрообразного корпуса, электроизолирующей перегородкой 5 разделенного на герметичные отсеки 6, 7 и содержит в себе, электрически взаимосвязанные между собой и последовательно расположенные зарядное устройство 8, блок 9 накопительных конденсаторов 10 и разрядный блок, оснащенный электродами 11 , 12 и спусковым устройством 13, которое может быть выполнено в виде, например, газонаполненного разрядника. Скважинный аппарат 3 снабжен, установленным в его полости, коммутирующим средством 14, которое соединено с пультом управления 1 и взаимосвязано с источником электропитания 2, работает в автоматическом режиме и на соответствующих этапах работы скважинного аппарата 3 обеспечивает в блоке 9 накопительных конденсаторов 10 переключение накопительных конденсаторов 10 с их параллельного соединения (фиг.2) - на последовательное соединение (фиг.З) и, наоборот, с последовательного соединения - на параллельное, Коммутирующее средство 14 выполнено, преимущественно, на базе газовых быстродействующих разрядников 15 и установлено в одном отсеке 6 с блоком 9 накопительных конденсаторов 10, Отсек 6, в котором расположены блок 9 накопительных конденсаторов 10 и коммутирующее средство 14, заполнен электроизолирующей средой (на чертежах не показана), которая представляет собой жидкую кремнийорганическую жидкость, например, жидкостью «Пeнтa - TPMC - 110». Этот отсек электроизолирующей жидкостью заполнен таким образом, что, при условии вертикального расположения скважинного аппарата 3, все комплектующие изделия, находящиеся в данном отсеке, полностью погружены в электроизолирующую жидкость и при этом в отсеке имеется некоторая воздушная подушка; объём которой составляет не менее 15 % от объёма электроизолирующей жидкости. Такие электроизолирующая среда и вариант заполнения полости отсека обеспечивают наиболее благоприятные условия для работы выше указанных комплектующих изделий. Отсек 7, в котором расположены электроды 11 и 12, взаимосвязанные, соответственно, с выходом блока 9 накопительных конденсаторов 10 и с корпусом скважинного прибора 3, выполнен со сквозными окнами 16, обеспечивающими доступ в его полость обрабатываемой среды 19, которой заполнена скважина 17.
Ниже приводится пример конкретной реализации предлагаемого способа, не исключающий других вариантов его осуществления в объёме формулы изобретения.
Предварительно (см. фиг. 1) скважинный снаряд 3 посредством электрического кабеля 4 опускают в скважину 17, заполненную, например, флюидом (при необходимости в скважину заливают рабочую жидкость) и располагают его в зоне предполагаемого воздействия на нефтенесущий пласт 18, требующий соответствующей обработки. Вследствие этого отсек 7 скважинного аппарата 3 через окна 16 заполняется флюидом и электроды 11 и 12 оказываются полностью в него погруженными. Затем наземный блок питания 2 соединяют с промышленной электрической сетью (напряжение 220 вольт, частота 50 герц) и с помощью пульта управления 1 включают его. Блок питания 2 преобразует напряжение 220 вольт в постоянное регулируемое напряжение (диапазон 300-И50 вольт) и по электрическому кабелю 4 передает его (например, 200 вольт и не изменяемое по величине) в зарядное устройство 3, обеспечивающее зарядку блока 9 накопительных конденсаторов 10 (три конденсатора, конденсаторы соединены параллельно, емкость каждого конденсатора 3 микрофарады /возможно 25 и более/) до величины в 20 киловольт. Зарядку блока накопительных конденсаторов осуществляют в течение 20 секунд (время зарядки может быть значительно увеличено, а максимальное значение величины зарядки блока накопительных конденсаторов может составлять 25 ÷ 27 и несколько более киловольт). После окончания зарядки блока 9 накопительных конденсаторов 10, накопительные конденсаторы с помощью коммутирующего устройства 14 по соответствующей команде с пульта управления 1 в автоматическом режиме из параллельного соединения (фиг. 2) переключают на последовательное соединение (фиг. 3). Затем с пульта управления 1 на спусковое устройство 13 выдают команду на электрическое соединение блока накопительных конденсаторов с разрядным блоком.
В результате этого соединения происходит разрядка блока накопительных конденсаторов, обеспечивающая поступление его выходного напряжения (пробивное напряжение) на электроды 11 и 12 разрядного блока. Величина этого пробивного напряжения пропорциональна количеству накопительных конденсаторов, представляет собой сумму напряжений, накопленных каждым из них, и при указанных выше параметрах составляет 40 ÷ 42 кВ, что позволяет получить энергию разряда в пределах 1 ,6 ÷ 1 ,8 кДж. При несколько иных параметрах пробивное напряжение может быть увеличено до 75 ÷ 81 кВ, а энергия разрядного импульса может быть доведена до 3 кДж.
Особенностью предлагаемого технического решения является образование ударных давлений внутри объёма любой жидкости, возникающих при протекании в ней электрического импульсного разряда. Действием возникающих разрядов внутри объёма жидкости создаются значительные перемещения последней, приводящие к образованию кавитационной полости с последующим её смыканием. Результатом единичного электрического разряда является гидравлический удар, представляющий совокупность двух гидравлических ударов: основного, возникающего, когда жидкость раздвигается, и кавитационного, возникающего при смыкании полости. Давления, возникающие при электрогидравлическом ударе, тем выше, чем более плотна используемая жидкость, чем мощнее импульс и чем круче его фронт.
Цикл, состоящий из этих двух ударов, может повторяться с необходимой частотой в соответствии с частотой следования разрядов. Частота следования разрядов в предлагаемом техническом решении составляет 0,2 ÷ 0,01 герца. Целенаправленное использование гидравлических ударов, создаваемых предлагаемым устройством в зоне предполагаемого воздействия на нефтенесущий пласт, позволяет осуществлять пластовое воздействие с целью повышения дебита скважин нефтегазовых месторождений (радиус такого воздействия - 1500 метров, глубина - любая, скважинный аппарат для такого воздействия имеет внешний диаметр 102 мм и длину 2,5 метра). Для увеличения проницаемости прискважинной зоны пласта, для очистки перфорационных отверстий и пор коллекторов от механических примесей и других загрязнений, для развития систем трещин в пласте может быть использован другой скважинный аппарат: его внешний диаметр равен 102 мм, а длина не превышает 1 ,5 метра. Причем достаточно маленькие габаритные размеры этих скважинных аппаратов позволяют эксплуатировать их в условиях скважин с любой конфигурацией уклонов по сечению пласта и с любыми оперативными перемещениями от скважины к скважине.
Однако, прежде чем подробно рассматривать достоинства предлагаемого устройства, необходимо завершить технологический цикл работы его скважинного аппарата, прерванный на этапе получения первого разряда.
После завершения разрядки блока 9 накопительных конденсаторов они с помощью коммутирующего устройства 14 в автоматическом режиме из последовательного соединения (фиг. 3) переключаются на параллельное соединение (фиг. 2). После этого первый технологический цикл работы скважинного аппарата 3 окончен и устройство вновь готового к продолжению работы, которая при соответствующих командах с пульта управления 1 может вестись уже с другими технологическими параметрами. Следует отметить, что наиболее эффективные работа предлагаемого устройства и реализация предлагаемого способа достигаются в том случае, когда из обрабатываемой зоны скважины откачивают скважинную жидкость.
Сопоставительный анализ известного и предлагаемого технических решений показывает значительные преимущества последнего из них. Bo- первых, это обеспечение возможности пластового воздействия на нефтенесущий пласт. Во-вторых, это обеспечение возможности проведения работ на глубинах более 3000 метров. В-третьих, это минимальные размеры (в сравнении с аналогом: диаметр - в 2,5 раза меньше, длина - в 1 ,04 или в 2,3 раза короче.
Источники информации, принятые во внимание при составлении описания и формулы изобретения:
1. Л.Ф. Петряшин, Г.Н. Лысяной, В. В. Желтоухов. «06 исследованиях эффективности использования электроимпульсов для интенсификации добычи нeфти», Труды института ИФИНГ, вып.13, 1976, с. 92-93.
2. Патент РФ Ns 2 283 951 , «Элeктpoгидpaвличecкoe импульсное устройство)), 2006 г.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ электрогидравлического воздействия на нефтяной пласт, включающий размещение в скважине в зоне воздействия на пласт скважинного аппарата 3, который соединен с наземным источником электропитания 2 и содержит, электрически взаимосвязанные между собой, зарядное устройство 8, блок накопительных конденсаторов 9, и разрядный блок, оснащенный электродами 11 , 12, и последующие за этим подачу постоянного напряжения от наземного источника электропитания 2 на зарядное устройство, зарядку блока накопительных конденсаторов 9 при их параллельном соединении до необходимой величины напряжения и разрядку блока накопительных конденсаторов 9, обеспечивающую поступление его выходного напряжения на электроды 11 , 12 разрядного блока, отличающийся тем, что накопительные конденсаторы 9, после окончания зарядки их блока, переключают в последовательное соединение, а затем производят разрядку блока накопительных конденсаторов 9, обеспечивая увеличение его выходного напряжения пропорционально-ступенчато количеству конденсаторов, при этом величину постоянного напряжения, подаваемого на зарядное устройство 8, устанавливают в пределах 300 ÷ 150 вольт, максимальное значение необходимой величины напряжения для зарядки блока накопительных конденсаторов принимают равным 20 ÷ 27 киловольтам, а зарядку блока накопительных конденсаторов 9 до необходимой величины напряжения осуществляют, преимущественно, в течение 20 секунд.
2. Способ по п. 1 , отличающийся тем, что переключение накопительных конденсаторов 9 с одного вида их соединения на другой, производят в автоматическом режиме.
3. Способ по п. 1 , отличающийся тем, что величину напряжения, подаваемого на зарядное устройство 8, в процессе зарядки блока накопительных конденсаторов 9, устанавливают постоянной и/или изменяют её значение.
4. Способ по п. 3, отличающийся тем, что величину напряжения изменяют плавно и/или скачкообразно.
5. Способ по п. 3, отличающийся тем, что величину напряжения изменяют, преимущественно, в сторону увеличения её значения.
6. Способ по п. 3, отличающийся тем, что величину напряжения изменяют, по меньшей мере, один раз. 7. Устройство для осуществления способа по п.1 , включающее, оснащенный пультом управления 1 , наземный источник электропитания 2 и скважинный аппарат 3, который посредством электрического кабеля 4 соединен с источником электропитания 2, выполнен в виде полого цилиндрообразного корпуса, перегородками 5 разделенного на герметичные отсеки 6,
7, и содержит в себе, электрически взаимосвязанные между собой и последовательно расположенные зарядное устройство 8, блок накопительных конденсаторов 9 и разрядный блок, оснащенный электродами 11 , 12 и спусковым устройством 13, отличающееся тем, что скважинный аппарат 3 дополнительно снабжен, установленным в его полости, коммутирующим средством 14, которое соединено с пультом управления и взаимосвязано с источником электропитания 2, работает в автоматическом режиме и на соответствующих этапах работы скважинного аппарата 3 обеспечивает в блоке накопительных конденсаторов 9 переключение накопительных конденсаторов с их параллельного соединения - на последовательное соединение и, наоборот, с последовательного соединения - на параллельное, при этом коммутирующее средство 14 выполнено, преимущественно, на базе газовых быстродействующих разрядников, установлено в одном отсеке с блоком накопительных конденсаторов 9, а отсек, в котором расположены блок накопительных конденсаторов 9 и коммутирующее средство 14, заполнен электроизолирующей средой.
8. Устройство по п. 7, отличающееся тем, что отсек, в котором расположены блок накопительных конденсаторов 9 и коммутирующее средство 14, заполнен, преимущественно, жидкой электроизолирующей средой.
9. Устройство по п. 8, отличающееся тем, что электроизолирующая среда выполнена на базе, преимущественно, термостойкой кремнийорганической жидкости.
10. Устройство по п. 7, отличающееся тем, что отсек с электроизолирующей средой заполнен таким образом, что, при условии вертикального расположения скважинного аппарата 3, все комплектующие изделия, находящиеся в указанном отсеке, полностью погружены в электроизолирующую среду и при этом в нём имеется некоторая воздушная подушка.
11. Устройство по п. 10, отличающееся тем, что объём воздушной подушки составляет не менее 15 % от объёма электроизолирующей среды.
PCT/RU2009/000451 2009-04-03 2009-09-03 Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления WO2010114415A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2009112296/03A RU2388908C1 (ru) 2009-04-03 2009-04-03 Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления
RU2009112296 2009-04-03

Publications (1)

Publication Number Publication Date
WO2010114415A1 true WO2010114415A1 (ru) 2010-10-07

Family

ID=42673970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2009/000451 WO2010114415A1 (ru) 2009-04-03 2009-09-03 Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления

Country Status (2)

Country Link
RU (1) RU2388908C1 (ru)
WO (1) WO2010114415A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2511588C2 (ru) * 2012-04-02 2014-04-10 Павел Алексеевич Кучер Способ избирательного массового поражения живых целей
CN103967465A (zh) * 2014-04-24 2014-08-06 中海阳能源集团股份有限公司 地下矿物油类太阳能声波反射层加热装置及其加热方法
CN104453827A (zh) * 2014-11-06 2015-03-25 中国矿业大学 一种高能电爆震提高煤层透气性的方法
CN105298462A (zh) * 2015-11-06 2016-02-03 中国矿业大学 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
CN106523023A (zh) * 2016-12-28 2017-03-22 中国矿业大学 连续旋转阀脉动水力压裂装置及方法
US10370903B2 (en) 2016-01-20 2019-08-06 Baker Hughes, A Ge Company, Llc Electrical pulse drill bit having spiral electrodes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613312B2 (en) 2009-12-11 2013-12-24 Technological Research Ltd Method and apparatus for stimulating wells
CN102094604B (zh) * 2010-11-19 2013-08-07 中国工程物理研究院流体物理研究所 一种油气井下液电压裂复合射孔装置及射孔方法
RU2475627C1 (ru) * 2011-11-17 2013-02-20 Вадим Викторович Лыков Способ ликвидации и предотвращения образования асфальтено-смоло-парафиновых отложений в нефтяных скважинах и нефтепроводах и установка для его осуществления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345650A (en) * 1980-04-11 1982-08-24 Wesley Richard H Process and apparatus for electrohydraulic recovery of crude oil
RU2199659C1 (ru) * 2001-10-01 2003-02-27 Ойл Технолоджи (Оверсиз) Продакшн Лтд. Способ интенсификации добычи нефти
RU2283951C1 (ru) * 2005-02-10 2006-09-20 Николай Иванович Никуличев Электрогидравлическое импульсное устройство эгиу (варианты)
RU2295031C2 (ru) * 2005-02-10 2007-03-10 Алемасов Вячеслав Евгеньевич Способ электрогидроимпульсного воздействия в нефтегазовых скважинах и устройство для его осуществления

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345650A (en) * 1980-04-11 1982-08-24 Wesley Richard H Process and apparatus for electrohydraulic recovery of crude oil
RU2199659C1 (ru) * 2001-10-01 2003-02-27 Ойл Технолоджи (Оверсиз) Продакшн Лтд. Способ интенсификации добычи нефти
RU2283951C1 (ru) * 2005-02-10 2006-09-20 Николай Иванович Никуличев Электрогидравлическое импульсное устройство эгиу (варианты)
RU2295031C2 (ru) * 2005-02-10 2007-03-10 Алемасов Вячеслав Евгеньевич Способ электрогидроимпульсного воздействия в нефтегазовых скважинах и устройство для его осуществления

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2511588C2 (ru) * 2012-04-02 2014-04-10 Павел Алексеевич Кучер Способ избирательного массового поражения живых целей
CN103967465A (zh) * 2014-04-24 2014-08-06 中海阳能源集团股份有限公司 地下矿物油类太阳能声波反射层加热装置及其加热方法
CN104453827A (zh) * 2014-11-06 2015-03-25 中国矿业大学 一种高能电爆震提高煤层透气性的方法
CN105298462A (zh) * 2015-11-06 2016-02-03 中国矿业大学 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
US10370903B2 (en) 2016-01-20 2019-08-06 Baker Hughes, A Ge Company, Llc Electrical pulse drill bit having spiral electrodes
CN106523023A (zh) * 2016-12-28 2017-03-22 中国矿业大学 连续旋转阀脉动水力压裂装置及方法

Also Published As

Publication number Publication date
RU2388908C1 (ru) 2010-05-10

Similar Documents

Publication Publication Date Title
RU2392422C1 (ru) Способ добычи нефти с использованием энергии упругих колебаний и установка для его осуществления
RU2388908C1 (ru) Способ электрогидравлического воздействия на нефтяной пласт и устройство для его осуществления
US5004050A (en) Method for well stimulation in the process of oil production and device for carrying same into effect
US10280723B2 (en) Plasma source for generating nonlinear, wide-band, periodic, directed, elastic oscillations and a system and method for stimulating wells, deposits and boreholes using the plasma source
RU2592313C2 (ru) Электрический разрыв пласта
US9567839B2 (en) Electrical and static fracturing of a reservoir
US10077644B2 (en) Method and apparatus for generating high-pressure pulses in a subterranean dielectric medium
EP3500724B1 (en) Acoustic stimulation
RU2630000C2 (ru) Усовершенствованный электрический гидроразрыв пласта
RU2283951C1 (ru) Электрогидравлическое импульсное устройство эгиу (варианты)
RU2248591C2 (ru) Скважинный источник упругих колебаний
RU131503U1 (ru) Устройство для генерирования упругих импульсов в гидросфере горизонтальной скважины
RU2666830C1 (ru) Способ интенсификации добычи нефти, ликвидации и предотвращения отложений в нефтегазодобывающих и нагнетательных скважинах и устройство для его реализации
RU2663770C1 (ru) Способ ударного воздействия на призабойную зону
Sun et al. Experimental study on rock fracturing by using pulsed power technology
RU116569U1 (ru) Устройство для генерирования упругих импульсов в гидросфере скважины
RU2588086C2 (ru) Электрический и статический разрыв пласта
RU174106U1 (ru) Устройство для генерирования упругих и электромагнитных импульсов в гидросфере скважины
SU954562A1 (ru) Устройство дл очистки призабойной зоны скважины
RU2475627C1 (ru) Способ ликвидации и предотвращения образования асфальтено-смоло-парафиновых отложений в нефтяных скважинах и нефтепроводах и установка для его осуществления
UA129400U (uk) Спосіб експлуатації свердловин
SU1475235A1 (ru) Способ электрогидравлического воздействи на горный массив
EA011048B1 (ru) Устройство для электрогидравлической обработки пласта
UA26213U (en) Electro-hydraulic well unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 09842765

Country of ref document: EP

Kind code of ref document: A1