WO2010113771A1 - Light reflector, lighting device, and lighting device for cultivating plant - Google Patents

Light reflector, lighting device, and lighting device for cultivating plant Download PDF

Info

Publication number
WO2010113771A1
WO2010113771A1 PCT/JP2010/055274 JP2010055274W WO2010113771A1 WO 2010113771 A1 WO2010113771 A1 WO 2010113771A1 JP 2010055274 W JP2010055274 W JP 2010055274W WO 2010113771 A1 WO2010113771 A1 WO 2010113771A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
reflector
wavelength region
light reflector
Prior art date
Application number
PCT/JP2010/055274
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 水野
一迅 人見
賢一 吉田
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009083586A external-priority patent/JP2010234583A/en
Priority claimed from JP2009171459A external-priority patent/JP2011028914A/en
Priority claimed from JP2009229037A external-priority patent/JP2011075944A/en
Priority claimed from JP2010036586A external-priority patent/JP5379042B2/en
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN201080014218.2A priority Critical patent/CN102365564B/en
Publication of WO2010113771A1 publication Critical patent/WO2010113771A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a light reflector that can emit, as reflected light, light having a wavelength distribution different from the wavelength distribution of light emitted from a light source, and an illumination device and plant cultivation illumination using the light reflector Relates to the device.
  • a highly reflective light reflector is used behind the light source. This reflector is silver or white and reflects in the visible light region without changing the spectrum of light emitted from the light source.
  • Patent Literature 1 proposes an outdoor lighting device that includes a plurality of white LEDs (light emitting diodes) that light white light and a plurality of blue LEDs that light blue light. Yes.
  • This outdoor luminaire is intended to improve the crime prevention effect by utilizing the sedative effect that the blue light radiated from the blue LED acts on the human parasympathetic nerve to calm emotions. Need to be used in a large amount, and there is a problem of high cost.
  • Patent Document 2 proposes a color correction illumination device that includes a fluorescent lamp as a white light source and a red light emitting diode as a red light source, and is illuminated with mixed light of the fluorescent lamp and the red light emitting diode. Has been.
  • the color correction illumination device performs color correction using a red light emitting diode with a small amount of light with respect to a fluorescent lamp, the color change of light emitted from the illumination device is slight and red.
  • the visual effects of lighting are not as good as expected, coupled with the low human visibility.
  • Patent Document 3 proposes a plant cultivation apparatus using a fluorescent lamp. Since the growth of plants greatly depends on the wavelength of light irradiated on the plants, in the case of fluorescent light that does not contain so much light in the wavelength range that the plant absorbs, the intensity of the fluorescent light is increased. There is a problem that power consumption is increased, and there is a problem that it becomes difficult to control the cultivation atmosphere temperature of the plant due to the heat generated by the fluorescent lamp.
  • Patent Documents 4 and 5 propose a plant growing apparatus using red LEDs and blue LEDs.
  • LEDs are inferior in light diffusibility, it is difficult to uniformly irradiate the plants with light.
  • the use of LEDs also has the problem of high costs.
  • the present invention relates to a light reflector capable of reflecting light from a light source such as a fluorescent lamp and irradiating light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source, and the light reflector.
  • the illumination device used and the plant cultivation illumination device are provided.
  • the light reflector of the present invention is characterized in that light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source is emitted as reflected light.
  • the light reflector A is not particularly limited as long as light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source is emitted as reflected light.
  • the light reflector A includes a light emitter, a light reflector, and the like.
  • a light reflector in which a light emitter layer 2 containing a light emitter emitting light in the visible light region is laminated and integrated on one surface of the light reflective layer 1 as shown in FIG.
  • a light reflector comprising a light emitter layer containing either one or both of light emitters having an emission spectrum peak is more preferable.
  • a plate-like light reflector is shown as an example.
  • the light reflecting layer 1 and a light emitter that is laminated and integrated on one surface (first surface) of the light reflecting layer 1 and has an emission spectrum peak in a wavelength region of 400 to 470 nm, or a wavelength of 570 to 700 nm
  • the light reflector provided with the light emitter layer 2 containing either or both of the light emitters having the emission spectrum peak in the wavelength region will be described in detail.
  • the light reflecting layer 1 is not limited as long as it can reflect light in a wavelength region emitted by the light emitter contained in the light emitter layer 2 described later, and is preferably contained in the light emitter layer 2. It is sufficient that the light in the wavelength region absorbed by the light emitter can be further reflected.
  • the light reflecting layer 1 reflects the light in the wavelength region emitted by the light emitter toward the light emitter layer 2, thereby increasing the amount of light having a specific wavelength emitted from the light reflector.
  • the light reflectivity can be improved and the effect of changing the hue of the reflected light can be improved.
  • the light reflection layer 1 can further reflect light in the wavelength region absorbed by the light emitter contained in the light emitter layer 2, the light reflector 2 transmits through the light emitter layer 2 and is absorbed by the light emitter.
  • the light that has not been reflected can be reflected in the direction of the illuminant layer 2 by the light reflecting layer 1 and incident again on the illuminant layer 2 to be absorbed by the illuminant.
  • the effect of changing the light reflectivity of the body and the hue of the reflected light can be further improved.
  • the total light reflectance of the light reflection layer 1 is preferably 80% or more, and more preferably 85% or more.
  • the total light reflectance of the light reflecting layer 1 refers to a value measured according to JIS Z8722.
  • the average light transmittance in the wavelength region of 360 to 740 nm in the light reflecting layer 1 is high, the light emitted from the light emitting layer is transmitted through the light reflecting layer, and the light reflectivity of the light reflecting member is reduced. It is preferably 10% or less, more preferably 1% or less, and particularly preferably 0%.
  • the average light transmittance in the wavelength region of 360 to 740 nm in the light reflecting layer is a value measured according to JIS Z8722.
  • Such a light reflecting layer 1 is preferably a synthetic resin sheet, and more preferably a thermoplastic resin sheet.
  • a light reflecting non-foamed sheet or foamed sheet containing particles such as titanium oxide or silica, or a sheet made of a mixed resin obtained by mixing mutually incompatible synthetic resins is stretched.
  • the light reflection layer 1 may be a layer obtained by appropriately selecting the above non-foamed sheet or foamed sheet and stacking and integrating them.
  • the light reflecting layer 1 is configured such that the non-foamed sheet 1a and the foamed sheet 1b are laminated and integrated, and the non-foamed sheet 1a is on the light emitter layer 2 side.
  • the strength, self-shaping property or moldability can be imparted to the light reflecting layer.
  • the foamed sheet 1b preferably contains titanium oxide.
  • the amount is preferably 5 to 50 parts by weight, more preferably 10 to 40 parts by weight based on 100 parts by weight of the synthetic resin.
  • the synthetic resin constituting the light reflecting layer 1 is not particularly limited, and examples thereof include polyolefin resins such as low density polyethylene, high density polyethylene, ethylene- ⁇ -olefin copolymer, polypropylene, and cyclic polyolefin, polyethylene terephthalate.
  • Polyester resins such as polyethylene naphthalate, polybutylene terephthalate and polylactic acid, polyamide resins such as nylon-6 and nylon-6,6, polystyrene resins such as polystyrene, ABS resin and AS resin, polycarbonate, polyester carbonate, etc.
  • thermoplastic resins such as chlorinated resins such as polycarbonate resins, polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate.
  • a synthetic resin may be used independently or 2 or more types may be used together.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene.
  • Examples of the particles contained in the light-reflective non-foamed sheet or foamed sheet include zinc oxide, zinc white, talc, calcium carbonate, titanium oxide, silica, and the like, and the difference in refractive index from the synthetic resin is large. Titanium oxide having high reflectivity is preferable.
  • Titanium oxide includes rutile type, anatase type, and brucite type, but rutile type titanium oxide is preferable. Since titanium oxide usually degrades the resin by its photocatalytic action, it is preferable to subject the titanium oxide to a surface treatment.
  • the content of titanium oxide in the synthetic resin sheet is small, the light reflection performance of the light reflector is lowered. On the other hand, when the content is large, the lightness of the light reflector is also lowered. Therefore, 30 to 200 g / m 2 is preferable. 40 to 150 g / m 2 is more preferable.
  • the content of titanium oxide in the synthetic resin sheet is included in the plurality of synthetic resin sheets. The total content of titanium oxide.
  • a foam layer may be laminated and integrated on the other surface (second surface) of the light reflecting layer of the light reflector in order to give the light reflector strength, self-shape retention or moldability. . Since the synthetic resin constituting the foam layer is the same as the synthetic resin constituting the light reflecting layer, description thereof is omitted.
  • the phosphor layer 2 contains a phosphor that emits light in the visible light region (360 to 740 nm wavelength region) in a synthetic resin.
  • the luminous body layer 2 is either one or both of a luminous body having an emission spectrum peak in the wavelength region of 400 to 470 nm and a luminous body having an emission spectrum peak in the wavelength region of 570 to 700 nm in the synthetic resin. It is preferable to contain.
  • the light emitter layer 2 contains either or both of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. The case will be described in detail.
  • the light emitter absorbs a part of the incident light incident on the light emitter layer 2, and each light emitter has a light emission region, that is, a wavelength region of 400 to 470 nm or a wavelength region of 570 to 700 nm. Emits light in the wavelength region.
  • the light emitter included in the light emitter layer 2 emits light in the wavelength region of 400 to 470 nm (blue light) or light in the wavelength region of 570 to 700 nm (red light).
  • blue light blue light
  • red light red light
  • the reflected light reflected by the reflector either one or both of blue light and red light is emphasized as compared with incident light.
  • the light emitter layer 2 contains only one of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. However, it may contain both a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. Whether the luminescent material having the emission spectrum peak in the wavelength region of 470 nm, the luminescent material having the emission spectrum peak in the wavelength region of 570 to 700 nm, or both of them is incident on the luminescent material layer 2 What is necessary is just to adjust suitably according to the spectrum of the incident light to perform.
  • the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, in the reflection spectrum of the body, the maximum light reflectance in the wavelength region of 400 ⁇ 470 nm, the difference between the minimum light reflectance in the wavelength region of 470 ⁇ 570 nm and delta 1, and the maximum light reflectance in the wavelength region of 570 ⁇ 700 nm it is preferable when the difference between the minimum light reflectance in the wavelength region of 470 ⁇ 570 nm and delta 2, delta 1 or delta 2 is not less than 1%.
  • ⁇ 1 or ⁇ 2 in the reflected light of the light reflector, blue light or red light having inferior visibility compared to green light can be obtained. It becomes easier for human eyes to recognize.
  • the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm
  • the maximum light reflectance in the wavelength region of 400 to 470 nm or the maximum light reflectance in the wavelength region of 570 to 700 nm exceeds 100%.
  • the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, in the reflection spectrum of the body, the maximum light reflectance in the wavelength region of 400 ⁇ 470 nm, the difference between the minimum light reflectance in the wavelength region of 470 ⁇ 570 nm and delta 1, and the maximum light reflectance in the wavelength region of 570 ⁇ 700 nm
  • ⁇ 1 and ⁇ 2 are preferably 1% or more.
  • the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm
  • the maximum light reflectance in the wavelength region of 400 to 470 nm and the maximum light reflectance in the wavelength region of 570 to 700 nm exceed 100%.
  • the maximum light reflectance in the wavelength region of 360 to 740 nm is preferably 100% or more.
  • the synthetic resin constituting the light emitter layer 2 is the same as the synthetic resin constituting the light reflecting layer 1, and therefore the description thereof is omitted.
  • the synthetic resin constituting the light emitter layer 2 and the synthetic resin constituting the light reflecting layer 1 may be different.
  • a pigment or a dye that generates fluorescence or phosphorescence is used as the illuminant contained in the illuminant layer 2.
  • Fluorescence refers to light that is emitted when transitioning from an excited singlet state to a ground state.
  • phosphors using this phenomenon are widely used as fluorescent pigments and fluorescent dyes.
  • Phosphorescence refers to light emitted when transitioning from the excited triplet state to the ground state. Industrially, phosphors utilizing this phenomenon are widely used as phosphorescent pigments and phosphorescent dyes. Yes.
  • An illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, or an illuminant having an emission spectrum peak in the wavelength region of 570 to 700 nm includes an organic illuminant having an organic dye structure, an inorganic type There are inorganic light emitters having the following dye structure.
  • organic phosphors examples include xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole, pyrazoline, anthraquinone, and methine.
  • phosphors having an organic dye structure such as benzopyran, thioindigo, azo, or phthalocyanine.
  • the organic light emitters may be used alone or in combination of two or more.
  • the inorganic phosphor examples include inorganic pigment structures such as sulfides such as ZnS and (ZnCd) S, and oxides such as Zn 2 SiO 4 , Cd 2 B 2 O 5 , YVO 3 and CaWO 4.
  • inorganic pigment structures such as sulfides such as ZnS and (ZnCd) S, and oxides such as Zn 2 SiO 4 , Cd 2 B 2 O 5 , YVO 3 and CaWO 4.
  • the light-emitting body which has is mentioned.
  • An inorganic type light-emitting body may be used independently, or 2 or more types may be used together.
  • a luminescent material having an emission spectrum peak in the wavelength region of 400 to 470 nm that is, a pigment or dye that absorbs light in the ultraviolet region and emits fluorescence or phosphorescence in the wavelength region of 400 to 470 nm
  • it is a product from Clariant.
  • a light emitter having an emission spectrum peak in the light wavelength region of 570 to 700 nm that is, a pigment or dye that absorbs light in the ultraviolet region or visible light region and emits fluorescence or phosphorescence in the wavelength region of 570 to 700 nm.
  • the amount is preferably 0.01 parts by weight or more with respect to 100 parts by weight of the synthetic resin. 2 does not change, and the concentration may be quenched depending on the concentration and dispersion of the illuminant. Therefore, it is preferably 65 parts by weight or less, more preferably 30 parts by weight or less, based on 100 parts by weight of the synthetic resin. Part by weight or less is particularly preferred.
  • the light emitter layer 2 may contain a light reflective filler.
  • the light-reflective filler is not limited as long as it can reflect light, but the wavelength region of the reflected light reflected at the interface between the synthetic resin and the light-reflective filler constituting the light emitter layer, and the light emitter It is preferable to select the light reflective filler so that the light absorption wavelength region or the light emission wavelength region in the luminescent material contained in the layer overlaps.
  • the light emitter layer 2 contains the light reflective filler, the light incident on the light emitter layer 2 is converted into the interface between the synthetic resin constituting the light emitter layer 2 and the light reflective filler. , And the light emitter can absorb a larger amount of light and emit light in the visible light region.
  • the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the phosphor layer and the light reflective filler overlaps with the light absorption wavelength region of the phosphor contained in the phosphor layer.
  • the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the light emitter layer and the light reflective filler overlaps with the light emission wavelength region of the light emitter contained in the light emitter layer.
  • Such a light-reflective filler is not particularly limited as long as it has light reflectivity, and examples thereof include synthetic resin particles and pigments having light reflectivity, and pigments are preferable, White pigments are more preferred.
  • the synthetic resin constituting the synthetic resin particles is not particularly limited as long as it is a synthetic resin having a refractive index different from the refractive index of the synthetic resin constituting the luminescent layer 2.
  • low density polyethylene Polyolefin resins such as high-density polyethylene, polypropylene and cyclic polyolefin, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate and polylactic acid, polyamide resins such as nylon-6 and nylon-6,6, polystyrene Polystyrene resins such as ABS resin and AS resin, polycarbonate resins such as polycarbonate and polyester carbonate, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, polymethyl methacrylate, polyethyl methacrylate, etc.
  • Thermoplastic resins such as acrylic resins.
  • a synthetic resin may be used independently or 2 or more types may be used together.
  • the pigment is not particularly limited as long as it has a refractive index different from the refractive index of the synthetic resin constituting the luminescent layer 2, and examples thereof include white pigments such as zinc white, lead white, and titanium oxide.
  • white pigments such as zinc white, lead white, and titanium oxide.
  • Inorganic pigments such as red lead, yellow lead, zinc yellow, ultramarine blue, prussian blue, xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole
  • Organic pigments having a dye structure such as azo-type, pyrazoline-type, anthraquinone-type, methine-type, benzopyran-type, thioindigo-type, azo-type, phthalocyanine-type, etc.
  • White pigments such as zinc white, lead white and titanium oxide having performance are preferable.
  • the white pigment is not particularly limited.
  • Titanium oxide is preferable because it has a high refractive index and a large difference from the refractive index of the synthetic resin constituting the phosphor layer.
  • the synthetic resin constituting the light reflective filler and the light emitter layer are preferably 0.05 or more, more preferably 0.10 or more.
  • the content of the light reflective filler in the light emitter layer 2 is small, the light reflectivity in the light absorption wavelength region or the light emission wavelength region of the light emitter layer is lowered, and the amount of emitted light from the light emitter is reduced.
  • the light reflectivity of the light reflector may decrease, and if it is large, the amount of light incident on the light emitter layer is reduced, or the light emitted from the light emitter is less likely to be emitted outside the light emitter layer. Therefore, 0.05 to 50 parts by weight is preferable, 0.05 to 25 parts by weight is more preferable, and 0.1 to 10 parts by weight with respect to 100 parts by weight of the synthetic resin constituting the light emitting layer. Is particularly preferred.
  • a light reflective surface layer 3 may be laminated and integrated on one surface of the light emitting layer 2.
  • the surface layer 3 contains a synthetic resin and a light reflective filler. Specifically, the light reflective filler is contained in the synthetic resin.
  • the surface layer 3 limits the amount of light incident on the light emitting layer 2 by including a light reflective filler in the synthetic resin. It has been found that the illuminant contained in the illuminant layer 2 is deactivated when the total amount (cumulative amount) of the light absorbed by the illuminant reaches a certain amount and does not perform the light emitting action. by.
  • the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer 3 is high, the amount of light incident on the light emitter layer increases, and the amount of light per unit time absorbed by the light emitter in the light emitter layer is reduced. As a result, the period in which the luminescent material exhibits a light emitting action is shortened, so 70% or less is preferable, 0.05 to 50% is more preferable, and 0.05 to 30% is particularly preferable.
  • the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer 3 is a value measured according to JIS Z8722.
  • the surface layer 3 absorbs light limited by the surface layer 3 as much as possible by the light emitter in the light emitter layer 2 or emits light emitted from the light emitter as much as possible outside the light reflector from the surface layer 3.
  • the synthetic resin constituting the surface layer 3 and the light contained in the surface layer 3 in order to improve the light reflectivity of the light reflector and to improve the change in the hue of reflected light by the light reflector It is preferable that the wavelength region of the reflected light reflected at the interface with the reflective filler overlaps with the light absorption wavelength region or the emission wavelength region in the light emitter contained in the light emitter layer 2.
  • the wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the surface layer 3 and the light-reflective filler overlaps with the light absorption wavelength region in the light emitter contained in the light emitter layer 2.
  • the light emitter in the light emitter layer 2 can absorb light efficiently and emit a large amount of light of a specific wavelength to enhance the light emitting action of the light emitter, thereby improving the light reflectivity and light reflection of the light reflector.
  • the hue of light reflected by the body can be changed more reliably.
  • the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the light emitter layer and the light reflective filler overlaps the light emission wavelength region of the light emitter contained in the light emitter layer.
  • the synthetic resin constituting the surface layer 3 is not particularly limited.
  • polyolefin resins such as low density polyethylene, high density polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, cyclic polyolefin, polyethylene terephthalate, Polyester resins such as polyethylene naphthalate, polybutylene terephthalate, polylactic acid, polyamide resins such as nylon-6, nylon-6,6, polystyrene resins such as polystyrene, ABS resin, AS resin, polycarbonate, polyester carbonate, etc.
  • thermoplastic resins such as polycarbonate resins, chlorinated resins such as polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate.
  • a synthetic resin may be used independently or 2 or more types may be used together.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene.
  • the light reflective filler is not particularly limited as long as it has light reflectivity, and examples thereof include synthetic resin particles and pigments having light reflectivity. Pigments are preferred, white pigments Is more preferable.
  • the synthetic resin constituting the synthetic resin particles is not particularly limited as long as it is a synthetic resin having a refractive index different from the refractive index of the synthetic resin constituting the surface layer 3, for example, low density polyethylene, Polyolefin resins such as high-density polyethylene, polypropylene, and cyclic polyolefin, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polylactic acid, polyamide resins such as nylon-6, nylon-6,6, polystyrene, Examples thereof include thermoplastic resins such as polystyrene resins such as ABS resin and AS resin, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate.
  • a synthetic resin may be used independently or 2 or more types may be used together.
  • the pigment is not particularly limited as long as it has a refractive index different from that of the synthetic resin constituting the surface layer 3, and examples thereof include white pigments such as zinc white, lead white, and titanium oxide, lead Inorganic pigments such as red, yellow lead, zinc yellow, ultramarine blue, prussian blue, xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole Organic pigments having a pyrazoline-based, anthraquinone-based, methine-based, benzopyran-based, thioindigo-based, azo-based, or phthalocyanine-based hue structure, and the like, and white pigments are preferred.
  • white pigments such as zinc white, lead white, and titanium oxide
  • lead Inorganic pigments such as red, yellow lead, zinc yellow, ultramarine blue, prussian blue, xanthene, cou
  • the white pigment is not particularly limited.
  • Titanium oxide is preferable because it has a high refractive index and a large difference from the refractive index of the synthetic resin constituting the surface layer 3.
  • the interface between the light reflective filler and the synthetic resin constituting the surface layer is small. Since the light reflectivity in may be lowered, 0.05 or more is preferable, and 0.10 or more is more preferable.
  • the content of the light-reflective filler in the surface layer is small, the amount of light transmitted through the surface layer increases, and the amount of light absorbed by the light emitter in the light emitter layer increases per unit time.
  • the duration of the effect of changing the hue of the reflected light by the light reflector is shortened and the duration of the effect of changing the hue of the reflected light by the light reflector is shortened. Is less likely to be released out of the light reflector through the surface layer, so 0.05 to 50 parts by weight is preferable with respect to 100 parts by weight of the synthetic resin constituting the surface layer 3, and 0.05 to 25 parts by weight. Part is more preferable, and 0.1 to 20 parts by weight is particularly preferable.
  • the light reflecting layer 1, the light emitting layer 2 and the surface layer 3 are provided with a stabilizer such as a light stabilizer, an ultraviolet absorber, an antioxidant, a metal deactivator, and an antistatic agent within the range not impairing these physical properties.
  • a stabilizer such as a light stabilizer, an ultraviolet absorber, an antioxidant, a metal deactivator, and an antistatic agent within the range not impairing these physical properties.
  • An additive such as a flame retardant may be added.
  • Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidinyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, tetrakis (2, 2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2 , 3,4-Butane-tetracarboxylate, (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate and (2,2,6,6 -Tetramethyl-4 Tridecyl) -1
  • the content of the light stabilizer in the light reflecting layer 1, the light emitter layer 2 or the surface layer 3 is small, the resin deterioration of the light reflector cannot be suppressed.
  • Synthetic resin constituting the light reflecting layer 1, the light emitting layer 2, or the surface layer 3 because there is no change in the suppression effect and adverse effects such as reducing the light reflectivity of the light reflector by coloring the light stabilizer itself. 0.01 to 0.8 part by weight is preferable with respect to 100 parts by weight, and 0.05 to 0.5 part by weight is more preferable.
  • Examples of the ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl].
  • -Benzotriazole 2- (2'-hydroxy-3 ', 5-di-t-butylphenyl) -benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di- t-amyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2,2-methylenebis [4- (1,1,3,3-tetramethylbutane) Til) -6- (2N-benzotriazol
  • the content of the ultraviolet absorber in the light reflecting layer 1, the light emitter layer 2 or the surface layer 3 is small, the light reflecting property of the light reflector cannot be suppressed from being lowered. Since there is no change in the effect of suppressing the decrease in light reflectivity, 0.01 to 0.8 parts by weight with respect to 100 parts by weight of the synthetic resin constituting the light reflection layer 1, the light emitter layer 2 or the surface layer 3 Preferably, 0.05 to 0.5 part by weight is more preferable.
  • the maximum light reflectance in the wavelength region of 360 to 740 nm is preferably 100% or more in the reflection spectrum of the light reflector.
  • the maximum light reflectance in the wavelength region of 360 to 740 nm in the reflection spectrum of the light reflector is set at a set temperature of 50 ° C. and a set relative relative to JIS K7350-4. It is preferably 100% or more after 100 hours of accelerated exposure test conducted under the condition of 20% humidity.
  • the set temperature of 50 ° C. means that the temperature set in the accelerated exposure apparatus used for the accelerated exposure test is 50 ° C. That is, the accelerated exposure apparatus used in the accelerated exposure test stops heating by the heating member when the measured ambient temperature exceeds the set temperature, while heating by the heated member stops when the measured ambient temperature falls below the set temperature. It is configured to start, and the measured ambient temperature in the accelerated exposure apparatus may rise and fall around a set temperature. However, the measurement ambient temperature in the accelerated exposure apparatus must be such that the minimum temperature is 45 ° C. and the maximum temperature is 55 ° C.
  • the set relative humidity of 20% means that the relative humidity set in the accelerated exposure apparatus used for the accelerated exposure test is 20%. That is, the accelerated exposure apparatus used for the accelerated exposure test stops the humidification by the humidifying member when the relative humidity of the measurement atmosphere exceeds the set relative humidity, while the relative humidity of the measurement atmosphere is lower than the set relative humidity. Further, the relative humidity of the measurement atmosphere in the accelerated exposure apparatus may be raised or lowered around the set relative humidity. However, the relative humidity in the measurement atmosphere in the accelerated exposure apparatus must be such that the minimum relative humidity is 10% and the maximum relative humidity is 30%.
  • an accelerated exposure apparatus used for the accelerated exposure test an apparatus commercially available from Suga Test Instruments Co., Ltd. under the trade name “Sunshine Super Long Life Weather Meter WEL-SUN-HC / B type” can be used.
  • the method for producing the light reflector is not particularly limited.
  • a thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor is supplied to the first extruder and melt kneaded.
  • thermoplastic resin composition for a light reflecting layer containing a thermoplastic resin and the above particles is supplied to a second extruder, melt-kneaded, and the same die connecting the first and second extruders
  • the method for producing the light reflector is not particularly limited. For example, (1) a method for producing the light reflecting layer, the light emitting layer and the surface layer by coextrusion, and (2) a light reflecting property constituting the light reflecting layer.
  • a thermoplastic resin film constituting the light emitter layer is laminated and integrated on the light reflector having the same, and a light reflecting material having light reflectivity constituting the surface layer is laminated and integrated on the thermoplastic resin film.
  • a paint containing a light emitter constituting the light emitter layer is applied and dried, and further on the light emitter layer, It can be manufactured by a manufacturing method in which light reflectors having light reflectivity constituting a surface layer are laminated and integrated, and the thickness of each layer can be easily controlled and the productivity is high. It is preferable to manufacture by.
  • a thermoplastic resin composition for a light reflecting layer containing a thermoplastic resin and the above-mentioned particles is supplied to a first extruder and melt-kneaded, and a thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor.
  • thermoplastic resin composition for the surface layer containing the thermoplastic resin and the light-reflective filler is supplied to the third extruder and melt-kneaded.
  • thermoplastic resin composition for the light reflecting layer, the thermoplastic resin composition for the light emitter layer, and the thermoplastic resin composition for the surface layer are supplied to the same die to which the three extruders are connected.
  • a light emitting layer made of a thermoplastic resin composition for a light emitter layer is laminated and integrated on one surface of a light reflecting layer made of a thermoplastic resin composition for a light reflecting layer, and heat for the surface layer is formed on one surface of this light emitter layer.
  • the surface layer made of the plastic resin composition is laminated and integrated. And a method of manufacturing a light reflector and the like.
  • thermoplastic resin composition for a light reflection layer containing a thermoplastic resin and the above particles is supplied to a first extruder and melt-kneaded
  • thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor is supplied to a second extruder and melt-kneaded
  • thermoplastic resin and additives such as rutile type titanium oxide contained as necessary
  • thermoplastic resin composition containing the above is supplied to a third extruder and melt-kneaded, and a foaming agent is injected into the third extruder and melt-kneaded to obtain a foamable thermoplastic resin composition.
  • thermoplastic resin composition for the light emitter layer Extruded into a joining die to form a laminate in which the thermoplastic resin composition for the light emitter layer, the thermoplastic resin composition for the light reflecting layer, and the foamable thermoplastic resin composition are laminated in this order, and this laminate is joined Extrusion from a die attached to the tip of the die
  • a non-foamed sheet made of a thermoplastic resin composition for a light reflecting layer is laminated on one side of a foamed sheet obtained by foaming a foamable thermoplastic resin composition,
  • a light reflector formed by laminating and integrating light emitting layers made of the thermoplastic resin composition for layers can be produced.
  • a foaming agent may be press-fitted into the first extruder to make the thermoplastic resin composition for the light reflecting layer foamable.
  • the third extruder need not be connected to the joining die.
  • a fourth extruder is connected to a converging die, and the fourth extruder includes a thermoplastic resin and a light-reflective filler.
  • the resin composition may be supplied to coextrude the surface layer thermoplastic resin composition, and the surface layer thermoplastic resin composition may be laminated and integrated as a surface layer on the phosphor layer.
  • the die is not particularly limited as long as it is widely used in extrusion foaming, and examples thereof include a T die and an annular die.
  • the light reflector having the above-described configuration can be produced by extrusion foaming into a sheet form from an extruder.
  • a cylindrical body is produced by extrusion foaming from the annular die into a cylindrical shape, and the cylindrical body is gradually expanded in diameter and then supplied to a cooling mandrel for cooling.
  • the light reflector having the above-described configuration can be manufactured by cutting the cylindrical body continuously between the inner and outer peripheral surfaces in the direction of extrusion, and opening and developing the cylindrical body.
  • the blowing agent is not particularly limited, and is an organic gas such as saturated aliphatic hydrocarbons such as propane, butane and pentane, and halogenated hydrocarbons such as tetrafluoroethane, chlorodifluoroethane and difluoroethane; carbon dioxide and nitrogen gas.
  • organic gas such as saturated aliphatic hydrocarbons such as propane, butane and pentane, and halogenated hydrocarbons such as tetrafluoroethane, chlorodifluoroethane and difluoroethane; carbon dioxide and nitrogen gas.
  • Gaseous inorganic compounds such as water; liquid inorganic compounds such as water; mixtures of organic acids or salts thereof with bicarbonate, such as a mixture of sodium bicarbonate and citric acid, dinitrosopentamethylenetetramine, etc.
  • Solid foaming agents and the like are mentioned, and it is preferable to use a mixture of an organic acid or a salt thereof and bicarbonate and an organic gas, and a mixture of sodium bicarbonate and citric acid and an organic gas are used. It is more preferable to use together.
  • the light reflector thus obtained contains a light emitter that emits light in the visible light region in the light emitter layer 2 and emits ultraviolet light or visible light incident on the light emitter layer 2 of the light reflector. Absorbs and emits light having an emission spectrum peak in the visible light region, so the wavelength distribution of the light emitted from the light source is different from the wavelength distribution of the reflected light emitted from the light reflector. It can be suitably used for applications where hue is important, such as lighting.
  • the light reflector is either a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm in the light emitter layer 2 or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm.
  • the light emitters absorb light incident on the light emitter layer 2 of the light reflector, and these light emitters have an emission spectrum peak in the wavelength region of 400 to 470 nm.
  • One or both of light and light having an emission spectrum peak in the wavelength region of 570 to 700 nm are emitted.
  • the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter.
  • Light that has been absorbed and emits light having the above-described emission spectrum is emitted, and among the light emitted by the light emitter, the light emitted to the light reflecting layer 1 side is also reflected by the light reflecting layer 1 to the light emitting layer 2 side. To do. Therefore, the light having the above emission spectrum emitted from the light emitter of the light emitter layer 2 is efficiently emitted from the light emitter layer 2.
  • the light emitted from the light reflector A rather than the light incident on the light reflector A is 400 due to the light emitting action of the light emitter in the light emitter layer 2. Since the amount of light in the wavelength region of ⁇ 470 nm or in the wavelength region of 570 to 700 nm is large, it becomes easier for human eyes to recognize blue or red light, which is inferior in visual sensitivity compared to green light, and a display device It can be suitably used for applications in which hue is important, such as lighting and lighting.
  • the light reflector according to the present invention makes it easier for human eyes to recognize blue or red light, which has inferior visibility compared to green light. However, it can also be used for plant cultivation applications.
  • the light reflector A of the present invention when the light reflector A of the present invention is irradiated with artificial light such as a fluorescent lamp or sunlight, a conventional white or silver light reflector is produced by the action of the light emitter included in the light emitter layer 2.
  • the amount of light reflected by the light reflector A of the present invention is larger than that of the reflected light in one or both of the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm. Yes.
  • the light in the wavelength region of 400 to 470 nm and the light in the wavelength region of 570 to 700 nm are light effective for plant growth. Therefore, according to the light reflector of the present invention, sunlight, CCFL, fluorescence When cultivating plants using artificial light such as lamps, the plant can be irradiated with more light that is effective for the growth of plants, so that the growth of plants can be promoted, and It can be performed indoors as well as outdoors. Furthermore, when artificial light is used, the power consumption of the artificial light source can be reduced.
  • the surface layer 3 when the surface layer 3 is laminated and integrated on one surface of the light emitter layer 2, that is, the light incident surface side of the light reflector, the surface layer 3 contains a light reflective filler, and the light emitter The amount of light incident on the layer 2 is limited. Therefore, the light emitting action of the light emitter included in the light emitter layer 2 can be stably maintained over a long period of time, and the effect of changing the hue of the light reflected by the light reflector can be maintained over a long period of time. Can be sustained.
  • the light that is incident on the light emitter layer but is not absorbed by the light emitter but is reflected by the light reflecting layer and emitted from the light emitter layer is again emitted by the surface layer.
  • the light emitter in which the wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the surface layer and the light reflective filler contained in the surface layer is contained in the light emitter layer.
  • the light emission wavelength region overlaps, light in the wavelength region emitted from the light emitter among the light incident on the light reflector is reflected outside the light reflector by the surface layer and emitted from the light emitter.
  • the reflected light can be uniformly emitted to the outside of the light reflector while being irregularly reflected by the light reflective filler, and the hue of the reflected light from the light reflector can be changed more reliably and uniformly.
  • the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter.
  • the light emitter After being absorbed, the light emitter emits light to the visible light region, and among the light emitted from the light emitter, the light emitted to the light reflection layer 1 side is also reflected by the light reflection layer 1 to the light emitter layer 2 side.
  • the Therefore, the light emitted from the light emitter of the light emitter layer 2 is reflected from the light emitter layer 2 to the surface layer 3 side and is efficiently emitted to the outside through the surface layer 3.
  • the light emitting action of the light emitter in the light emitter layer 2 causes the light reflector A to emit light more than the amount of light incident on the light reflector A in the specific wavelength region in the visible light region. Since the amount of emitted light is larger, it can be suitably used for applications in which hue is important, such as a display device or illumination.
  • the lighting device L includes a light source B and a light reflector A disposed behind the light source B.
  • the light source B is not particularly limited as long as it can emit light in the ultraviolet region and / or the visible light region.
  • a cold cathode tube (CCFL) a fluorescent lamp, a light emitting diode (LED), a mercury lamp, an HID lamp
  • An incandescent bulb may be used, but a fluorescent lamp is preferred because of its excellent light diffusion performance and luminous efficiency and low calorific value.
  • the light source B may be used independently or 2 or more types may be used together.
  • Fluorescent lamps are generally classified into three-wavelength type and high color rendering type according to color rendering, white type, daylight type, day white type according to color, straight tube type, annular type, etc. depending on the shape.
  • any kind of fluorescent lamp can be used.
  • a light reflector A formed or deformed into a convex arc shape is disposed at a predetermined interval from the light source B.
  • the light reflector A absorbs part of the light emitted from the light source B, and emits light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source B as reflected light.
  • the light emitter layer 2 contains either or both of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm.
  • the light emitted from the light source B and incident on the light emitter layer 2 of the light reflector is absorbed by the light emitters, and these light emitters have light having an emission spectrum peak in the wavelength region of 400 to 470 nm or 570.
  • One or both of light having emission spectrum peaks in a wavelength region of ⁇ 700 nm are emitted.
  • the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter.
  • Light that has been absorbed and emits light having the above-described emission spectrum is emitted, and among the light emitted by the light emitter, the light emitted to the light reflecting layer 1 side is also reflected by the light reflecting layer 1 to the light emitting layer 2 side. To do. Therefore, the light having the above emission spectrum emitted from the light emitter of the light emitter layer 2 is efficiently emitted from the light emitter layer 2.
  • the light emitted from the light reflector A is more emitted from the light reflector A than the light emitted from the light source B and incident on the light reflector A. Due to the light-emitting action, the amount of light in the wavelength region of 400 to 470 nm or the wavelength region of 570 to 700 nm is large, so that the human eye recognizes blue or red light that is less visible than green light. It becomes easy and can be suitably used for applications in which hue is important.
  • the above-described illumination device can be used for an illumination application for illuminating an article arranged on a merchandise display shelf arranged in a retail store or the like.
  • articles For example, foodstuffs, clothing, a noble metal product etc. are mentioned.
  • the illuminant included in the illuminant layer 2 is an illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, blue light is emphasized as light emitted from the illumination device. Therefore, the articles placed on the merchandise display shelf can be visually recognized in a state close to a blue hue.
  • the light emitter included in the light emitter layer 2 is a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, red light is emphasized as light emitted from the illumination device. Therefore, the articles placed on the merchandise display shelf can be visually recognized in a state close to a red hue.
  • the merchandise value can be visually recognized in a state close to a blue or red hue, and the merchandise value can be improved.
  • the light emitter layer 2 when a cold beverage is placed on a merchandise display shelf, the light emitter layer 2 contains an illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, whereby the cold beverage is made blue. It can be visually recognized in a state close to the hue of the system, and the drink can be further promoted to promote sales of the drink.
  • the warm beverage is made red by adding a luminous body having an emission spectrum peak in the wavelength region of 570 to 700 nm to the luminous body layer 2. It can be visually recognized in a state close to the hue of the system, and a beverage can be given a warmer impression to promote sales of the beverage.
  • the light reflector A used in the illumination device L of the present invention makes it easier for human eyes to recognize blue or red light, which has poor visibility compared to green light. From this, it has been explained that it can be suitably used for applications in which hue is important, but it can also be suitably used for plant cultivation applications.
  • the light reflector A when the light reflector A is irradiated with light from the light source B of the lighting device L of the present invention, it is reflected by the conventional white or silver light reflector due to the action of the light emitter included in the light emitter layer 2.
  • the amount of light reflected by the light reflector A is greater in one or both of the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm than the reflected light.
  • the light in the wavelength region of 400 to 470 nm and the light in the wavelength region of 570 to 700 nm are light that is effective for the growth of plants. Therefore, according to the lighting device L of the present invention, a cold cathode tube (CCFL)
  • CCFL cold cathode tube
  • the plant can be irradiated with more light that is effective for the growth of the plants, so that the growth of the plants can be promoted. Further, when artificial light, particularly fluorescent lamps are used, the power consumption of the light source can be reduced.
  • the lighting device L of the present invention when used for plant cultivation, for example, as shown in FIG. 6, hydroponics with a predetermined interval in front of the light source B of the lighting device L
  • Plant cultivation shelves C such as shelves and soil cultivation shelves may be arranged so that the reflected light emitted from the light reflector A is irradiated to the plants grown on the plant cultivation shelf C.
  • a fluorescent lamp When a fluorescent lamp is used as the light source of the lighting device L, light is emitted from the fluorescent lamp radially in all directions, and the emitted light is reflected while being diffused by the light reflector A.
  • the light required for the plants grown on the plant cultivation shelf C disposed in front of the light source B is irradiated almost uniformly, and the plants in the plant cultivation shelf C can be stably and reliably grown. .
  • a gap is formed between the light reflector A and the plant cultivation shelf C, and the reflected light reflected by the light reflector A is other than the plant cultivation shelf C. Irradiation of the part may reduce the efficiency of plant cultivation.
  • the light reflector A formed in a convex arc shape in the plant cultivation lighting device L is used as the first light reflector A, and the first light reflector A
  • the second light reflector D is disposed between both ends, that is, the curved ends A1 and A1 of the light reflector A and the plant cultivation shelf C, and the reflected light emitted from the first light reflector A is reflected.
  • the light reflected by the second light reflector D is further diffused by the second light reflector D, the light necessary for the plants grown on the plant cultivation shelf C is more uniformly and reliably obtained. Can be irradiated.
  • the second light reflector D a light reflector having the same configuration as that of the first light reflector A may be used, or a light reflector having a configuration different from that of the first light reflector A may be used.
  • the second light reflector D is configured to emit light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source B as reflected light. Preferably it is.
  • the light reflector of the present invention since the light reflector of the present invention has the above-described configuration, it emphasizes light in a wavelength region different from the light emitted from the light source, and has a hue that cannot be expressed by conventional white and silver reflectors. For example, it can be suitably used in applications in which hue is important, such as illumination of articles placed on merchandise display shelves.
  • the light emitter layer of the light reflector is either a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, or both.
  • the reflected light is emphasized in the wavelength region of 400 to 470 nm (blue system) or in the wavelength region of 570 to 700 nm (red system), and is blue or red that is difficult to be recognized by human eyes Can be easily recognized.
  • the hue of the illumination, the display device, and the object illuminated by them can be changed to a hue that could not be expressed by the conventional white and silver reflectors, and the hue of the display device and the illumination application, etc. It can be suitably used in applications where importance is attached.
  • the light reflector has a reflected light amount that is higher than that of incident light in a wavelength region effective for plant growth, that is, in one or both of a wavelength region of 400 to 470 nm and a wavelength region of 570 to 700 nm. Is increasing. Therefore, according to the said light reflector, growth of a plant can be aimed at using sunlight or artificial light.
  • the illuminating device using the said light reflector does not need to increase the power consumption of a light source, it can aim at energy saving and suppresses the heat dissipated from a light source, and temperature control of the plant cultivation atmosphere Can be easily performed, and plant cultivation can be performed more reliably and efficiently.
  • the amount of light incident on the light emitter layer is limited so that the light emitter in the light emitter layer does not absorb light more than necessary.
  • the light emitting action of the light emitter is sustained over a long period of time so that the effect of changing the hue of the reflected light by the light reflector can be stably maintained over a long period of time.
  • FIG. 10 is a graph showing reflection spectra of light reflectors of Examples 16 to 18 and Comparative Example 3. It is the graph which showed the reflection spectrum of the light reflection board of Examples 21, 33, and 34.
  • FIG. It is the graph which showed the reflection spectrum of the light reflecting plate of Examples 29, 35, and 36.
  • Example 1 A thermoplastic resin composition for a phosphor layer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant Co., Ltd.) as a light emitter.
  • polypropylene trade name “PL500A” manufactured by Sun Allomer Co., Ltd.
  • fluorescent dye trade name “Hostalx KCB” manufactured by Clariant Co., Ltd.
  • thermoplastic resin composition for a light reflection layer containing 100 parts by weight of polypropylene (Sun Aroma) Product name "PL500A") 24 parts by weight, polypropylene (Nippon Polypro) Product name “FB3312”) 76 parts by weight, masterbatch containing rutile titanium oxide in an ethylene-propylene block copolymer (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd., ethylene-propylene block co-weight)
  • a thermoplastic resin composition for a light reflection layer containing 100 parts by weight of polypropylene (Sun Aroma) Product name "PL500A”) 24 parts by weight, polypropylene (Nippon Polypro) Product name “FB3312”) 76 parts by weight, masterbatch containing rutile titanium oxide in an ethylene-propylene block copolymer (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd., ethylene-propylene block co-weight)
  • the light emitting layer thermoplastic resin composition, the light reflecting layer thermoplastic resin composition, and the foam layer thermoplastic resin composition are joined together.
  • a foamed resin layer having an annular cross section made of a thermoplastic resin composition for a foam layer, and laminated on the outer surface of the foamable resin layer and from a thermoplastic resin composition for a light reflecting layer
  • the laminate was supplied to an annular die connected to a merging die and extruded and foamed into a cylindrical shape from the annular die to obtain a cylindrical foam.
  • a plate-like light reflector having an overall density of 0.7 g / cm 3 was obtained by cutting open and expanding.
  • a non-foamed sheet 1a having a thickness of 0.15 mm made of a non-foamable resin layer is laminated and integrated on one surface of a foam sheet 1b having a thickness of 0.5 mm formed by foaming a foamable resin layer.
  • Example 2 A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-301”, manufactured by Sinloihi) was used instead of the fluorescent dye.
  • a fluorescent pigment trade name “FX-301”, manufactured by Sinloihi
  • Example 3 A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-303” manufactured by Sinloihi
  • Example 4 A light reflector was obtained in the same manner as in Example 1 except that 65 parts by weight of a fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-303” manufactured by Sinloihi
  • Example 5 A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-307”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-307”, manufactured by Sinloihi
  • Example 6 A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-327”, manufactured by Sinlohi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-327”, manufactured by Sinlohi
  • Example 7 Instead of using a fluorescent dye alone as a luminescent material, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinloihi) A light reflector was obtained in the same manner as in Example 1 except that was used together.
  • a fluorescent dye trade name “Hostalx KCB” manufactured by Clariant
  • FX-307 manufactured by Sinloihi
  • Example 8 Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-327” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 1 except that was used together.
  • a fluorescent dye trade name “Hostalx KCB” manufactured by Clariant
  • FX-327 manufactured by Sinroich
  • Example 9 A thermoplastic resin composition for a luminous body layer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and 0.1 part by weight of a fluorescent dye (trade name “Hostax KCB” manufactured by Clariant Co., Ltd.) as a light emitter.
  • polypropylene trade name “PL500A” manufactured by Sun Allomer Co., Ltd.
  • fluorescent dye trade name “Hostax KCB” manufactured by Clariant Co., Ltd.
  • the laminated sheet was supplied to a T die connected to a merging die, and a light reflector having an overall density of 1.3 g / cm 3 was coextruded from the T die.
  • the light reflector was taken up so that the thickness was 0.2 mm.
  • the light reflector is formed of a non-foaming resin layer and has a thickness of 0.15 mm.
  • the light reflecting layer 1 is laminated and integrated on the light reflecting layer 1 and is formed of a light emitting resin layer.
  • the phosphor layer 2 having a thickness of 0.05 mm.
  • Example 10 A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-301”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-301”, manufactured by Sinloihi
  • Example 11 A light reflector was obtained in the same manner as in Example 9, except that 1 part by weight of a fluorescent pigment (trade name “FX-303”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-303”, manufactured by Sinloihi
  • Example 12 A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-307” manufactured by Sinloihi
  • Example 13 A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-327”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
  • a fluorescent pigment trade name “FX-327”, manufactured by Sinloihi
  • Example 14 Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 9 except that was used together.
  • a fluorescent dye trade name “Hostalx KCB” manufactured by Clariant
  • FX-307 manufactured by Sinroich
  • Example 15 Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-327” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 9 except that was used together.
  • a fluorescent dye trade name “Hostalx KCB” manufactured by Clariant
  • FX-327 manufactured by Sinroich
  • Example 16 A plate-like light reflector was obtained in the same manner as in Example 1. The obtained plate-shaped light reflector was cut into a planar rectangular shape having a short side of 50 cm and a long side of 120 cm. On the other hand, an iron support member E formed in a convex arc shape over the entire length in the long side direction is prepared, and the light reflector is exposed on the inner surface of the support member E. A convex arc-shaped light reflector A was manufactured by laminating and integrating them while being deformed into a convex arc shape along the support member E (see FIG. 8).
  • the fluorescent lamp B is disposed in front of the light-emitting body layer 2 of the light reflector A, and the fluorescent lamp B is electrically connected to a socket portion (not shown) attached to the support member.
  • L was produced.
  • the hydroponic cultivation shelf was arrange
  • Example 17 An illuminator L was produced in the same manner as in Example 16 except that 1 part by weight of a fluorescent pigment (trade name “FX-307”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material. And the hydroponic cultivation shelf was arrange
  • a fluorescent pigment trade name “FX-307”, manufactured by Sinloihi
  • Example 18 Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinroich) A lighting device L was produced in the same manner as in Example 16 except that the above was used together. And the hydroponic cultivation shelf was arrange
  • a fluorescent dye trade name “Hostalx KCB” manufactured by Clariant
  • FX-307 manufactured by Sinroich
  • Example 3 A lighting device L was produced in the same manner as in Example 16 except that the light emitter was not used.
  • the light reflectance was measured in the following manner, and the results are shown in Table 1 and FIGS.
  • FIG. 9 shows only the results of Examples 1, 5, and 7 and Comparative Example 1.
  • FIG. 10 shows only the results of Examples 16, 17, 18 and Comparative Example 3.
  • the total light reflectance in the light reflection layer of the obtained light reflector and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the following manner, and the results are shown in Table 1.
  • a spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z 8722, the room temperature of the measurement atmosphere is 20 ° C. Under the condition of relative humidity of 60%, the light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm.
  • the maximum light reflectance was determined in the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm, and the minimum light reflectance was determined in the wavelength region of 470 to 570 nm.
  • a difference ⁇ 1 between the maximum light reflectance in the wavelength region of 400 to 470 nm and the minimum light reflectance in the wavelength region of 470 to 570 nm is calculated, and the maximum light reflectance in the wavelength region of 570 to 700 nm is calculated from 470 to 570 nm.
  • the difference ⁇ 2 from the minimum light reflectance in the wavelength region was calculated.
  • Total light reflectance of light reflecting layer and average light transmittance in wavelength region of 360 to 740 nm A test sheet having the same configuration and the same thickness as the light reflecting layer of the light reflector was extruded.
  • a spectroscopic colorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) was used to measure the total light reflectance of the obtained test sheet, and the measurement atmosphere temperature was 20 ° C. and relative humidity was 60 according to JIS Z8722. %,
  • the light reflectance of the test sheet was measured every 10 nm in the wavelength region of 360 to 740 nm. In the obtained light reflectivity, an arithmetic average value of the light reflectivities in the wavelength region of 360 to 740 nm was obtained and used as the total light reflectivity of the light reflection layer.
  • a spectrophotometer (trade name “UV-2450” manufactured by Shimadzu Corporation) was used to measure the light transmittance of the obtained test sheet, and the measurement atmosphere temperature was 20 ° C. and relative humidity was 60 according to JIS Z8722. %, The light transmittance of the test sheet was measured every 1 nm in the wavelength region of 360 to 740 nm. In the obtained light transmittance, the arithmetic average value of the light transmittance in the wavelength region of 360 to 740 nm was obtained and used as the average light transmittance of the light reflecting layer.
  • Examples 19 to 36 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd., refractive index: 1.48), a predetermined amount of fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) shown in Table 2 as a light emitter, or fluorescent pigment (Product name “FX-327” manufactured by Sinloihi) and a thermoplastic resin composition for a phosphor layer containing a predetermined amount of rutile-type titanium oxide (refractive index: 2.71) shown in Table 2
  • a master batch (trade name “PPM 1KB662 manufactured by Toyo Ink Co., Ltd.”) containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and an ethylene-propylene block copolymer containing rutile titanium oxide in an extruder.
  • a thermoplastic resin composition for a foam layer containing 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a foaming agent is supplied to a third extruder and melt-kneaded.
  • thermoplastic resin composition for the light emitter layer From the three extruders, the thermoplastic resin composition for the light emitter layer, the thermoplastic resin composition for the light reflecting layer, and the thermoplastic resin composition for the foam layer are joined together.
  • a foamed resin layer having an annular cross section made of a thermoplastic resin composition for a foam layer, and an annular cross section made of a thermoplastic resin composition for a light reflecting layer laminated on the outer surface of the foamable resin layer.
  • a laminate comprising a non-foamable resin layer and a light-emitting resin layer having an annular cross-section made of a thermoplastic resin composition for a phosphor layer and laminated on the outer surface of the non-foamable resin layer is formed.
  • the product was supplied to an annular die connected to a confluence die and extruded and foamed into a cylindrical shape from the annular die to obtain a cylindrical foam.
  • a light reflector having an overall density of 0.7 g / cm 3 was obtained by cutting open and expanding.
  • a non-foamed sheet 1a having a thickness of 0.15 mm made of a non-foamable resin layer is laminated and integrated on one surface of a foam sheet 1b having a thickness of 0.5 mm formed by foaming a foamable resin layer.
  • Fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) absorbed light in the ultraviolet region and had an emission wavelength region of 400 to 500 nm.
  • the fluorescent pigment (trade name “FX-327” manufactured by Sinloihi) absorbed light in the visible light region and had an emission wavelength region of 570 to 710 nm.
  • the reflection wavelength region of the reflected light reflected at the interface between polypropylene and rutile titanium oxide was 380 to 780 nm.
  • Examples 37 to 54 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd., refractive index: 1.48), a predetermined amount of fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) shown in Table 2 as a light emitter, or fluorescent pigment (Product name “FX-327” manufactured by Sinloihi) and a thermoplastic resin composition for a phosphor layer containing a predetermined amount of rutile-type titanium oxide (refractive index: 2.71) shown in Table 2
  • a master batch (trade name “PPM 1KB662 manufactured by Toyo Ink Co., Ltd.”) containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and an ethylene-propylene block copolymer containing rutile titanium oxide in an extruder.
  • thermoplastic resin composition for the light reflection layer is supplied to the second extruder and melt-kneaded, and the thermoplastic resin composition for the light emitter layer and the thermoplastic resin composition for the light reflection layer are merged from the first and second extruders.
  • the sheet was supplied to a T die connected to a joining die, and a light reflector having an overall density of 1.3 g / cm 3 was coextruded from the T die. The light reflector was taken up so that the thickness was 0.2 mm.
  • the light reflector is formed of a non-foaming resin layer and has a thickness of 0.15 mm.
  • the light reflecting layer 1 is laminated and integrated on the light reflecting layer 1 and is formed of a light emitting resin layer.
  • the phosphor layer 2 having a thickness of 0.05 mm.
  • the light reflectance and the maximum light reflectance were measured in the following manner, and the results are shown in Table 2 and FIGS. Further, the total light reflectance in the light reflecting layer of the obtained light reflector and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the same manner as described above, and the results are shown in Table 2.
  • FIG. 11 shows the reflection spectra of Examples 21, 33, and 34.
  • FIG. 12 shows the reflection spectra of Examples 29, 35, and 36.
  • FIG. 13 shows the results of plotting the maximum light reflectance of Examples 19 to 25, 33 and 34 against the amount of rutile titanium oxide added.
  • FIG. 14 shows the results of plotting the maximum light reflectance of Examples 26 to 32, 35 and 36 against the amount of rutile titanium oxide added.
  • FIG. 15 shows the results of plotting the maximum light reflectance of Examples 37 to 43, 51 and 52 against the amount of added rutile titanium oxide.
  • FIG. 16 shows the results of plotting the maximum light reflectance of Examples 44 to 50, 53 and 54 against the addition amount of rutile-type titanium oxide.
  • a spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z 8722, the room temperature of the measurement atmosphere is 20 ° C. Under the condition of relative humidity of 60%, the light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm.
  • the maximum light reflectance was determined in the wavelength region of 360 to 740 nm.
  • the thermoplastic resin composition for light reflecting layer containing 0.2 parts by weight is supplied to the first extruder and melt-kneaded to obtain polypropylene (trade name “PL500A”, manufactured by Sun Allomer Co., Ltd.).
  • thermoplastic resin composition for a phosphor layer containing 1 part by weight is supplied to a second extruder and melt-kneaded, and 100 parts by weight of polypropylene (trade name “PL500A”, refractive index: 1.48) manufactured by Sun Allomer Co., Ltd.
  • a light-reflective filler 1 part by weight of rutile type titanium oxide (refractive index: 2.71), 0.1 part by weight of an ultraviolet absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) and a light stabilizer (Ciba Specialty Chemicals) Product name “CHIMASSORB 119” manufactured by the company)
  • Thermoplastic resin composition for surface layer containing 0.1 part by weight Is supplied to the third extruder and melt-kneaded, and the thermoplastic resin composition for the light reflecting layer, the thermoplastic resin composition for the light emitting layer, and the surface layer are joined to the confluence die connecting the first to third extruders.
  • thermoplastic resin composition is supplied and coextruded from the T-die connected to the converging die, so that the light reflecting layer 1 made of the thermoplastic resin composition for the light reflecting layer is formed on one surface of the light reflecting layer 1.
  • a light emitting layer 2 which is laminated and integrated and is made of a thermoplastic resin composition for a light emitting layer, and a surface layer 3 which is laminated and integrated on one surface of the light emitting layer 2 and is made of a thermoplastic resin composition for a surface layer.
  • a light reflector was produced.
  • the light reflector has a total thickness of 0.25 mm, a density of 1.3 g / cm 3 , a light reflection layer 1 thickness of 0.15 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface.
  • the thickness of layer 3 was 0.05 mm.
  • Fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) absorbed light in the visible light region and had an emission wavelength region of 570 to 710 nm.
  • the reflection wavelength region of the reflected light reflected at the interface between polypropylene and rutile titanium oxide was 380 to 780 nm.
  • Example 56 A light reflector was produced in the same manner as in Example 55 except that the amount of rutile titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
  • Example 57 A light reflector was produced in the same manner as in Example 55 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
  • Tinuvin 234 0.1 parts by weight, light stabilizer (trade name“ CHIMASORB 119 ”manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight, and 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a blowing agent
  • Expandable thermoplastic resin composition into the first extruder 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 1 part by weight of a phosphor (trade name “FX-303” manufactured by Sinloihi Co., Ltd.), an ultraviolet absorber (Ciba Specialty Chemicals Co., Ltd.)
  • Product name “Tinuvin 234”) 0.1 parts by weight and light stabilizer (product name “CHIMASORB 119”, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight
  • To 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co
  • thermoplastic resin composition for the surface layer containing 0.1 part by weight is supplied to a third extruder, melted and kneaded, and extruded to a converging die connected to the first to third extruders.
  • thermoplastic resin composition for the surface layer, the thermoplastic resin composition for the light emitter layer, and the foamable thermoplastic resin composition are laminated in this order from the outside to the inside, and this cylinder
  • the cylindrical laminate is produced by extrusion foaming from an annular die attached to the tip of the converging die, and the cylindrical body is gradually expanded and then supplied to the cooling mandrel for cooling.
  • the light-reflecting layer 1 made of a foamed sheet obtained by foaming a foamable thermoplastic resin composition by continuously cutting in the extruding direction between the inner and outer peripheral surfaces, and opening and developing the foamed thermoplastic resin composition.
  • a light reflector was manufactured.
  • the light reflector has a total thickness of 0.6 mm, a density of 0.6 g / cm 3 , a light reflection layer 1 thickness of 0.5 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface.
  • the thickness of layer 3 was 0.05 mm.
  • Example 59 A light reflector was produced in the same manner as in Example 58 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
  • Example 60 A light reflector was produced in the same manner as in Example 58 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was changed to 16 parts by weight instead of 1 part by weight.
  • thermoplastic resin composition for the surface layer is supplied to a third extruder, melted and kneaded, and 50 parts by weight of pyrene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 50 parts by weight of polypropylene (trade name “FB3312” manufactured by Nippon Polypro Co., Ltd.), 0.1 weight of ultraviolet absorber (trade name “Tinvin 234” manufactured by Ciba Specialty Chemicals) Part, 0.1 parts by weight of light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) and 1 part by weight of a mixture of sodium bicarbonate and citric acid as a foaming agent Supply to a four extruder, melt
  • the cylindrical body is continuously cut in the extruding direction between the inner and outer peripheral surfaces, cut open, and developed, so that the light reflecting layer 1 made of the thermoplastic resin composition for the light reflecting layer and the light reflecting layer 1
  • a foam layer 4 laminated and integrated on the other surface of the light reflection layer and foamed with a foamable thermoplastic resin composition.
  • the light reflector has an overall thickness of 0.65 mm, a density of 0.7 g / cm 3 , a light reflection layer 1 thickness of 0.15 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface.
  • the thickness of the layer 3 was 0.05 mm, and the thickness of the foam layer was 0.4 mm.
  • Example 62 A light reflector was produced in the same manner as in Example 61 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
  • Example 63 A light reflector was produced in the same manner as in Example 61 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
  • the thermoplastic resin composition for the surface layer is supplied to a third extruder
  • Tinuvin 234 0.1 parts by weight, light stabilizer (trade name“ CHIMASORB 119 ”manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight, and 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a blowing agent Supplying the foamable thermoplastic resin composition to the fourth extruder Melting and kneading and extruding to a converging die connected with first to fourth extruders, surface layer thermoplastic resin composition, phosphor layer thermoplastic resin composition, light reflecting layer thermoplastic resin composition and A cylindrical laminate is formed by laminating a foamable thermoplastic resin composition in this order from the outside to the inside, and the cylindrical laminate is extruded and foamed from an annular die attached to the tip of a converging die.
  • a foam sheet 1b formed by foaming a foamable thermoplastic resin composition, and a non-foamed sheet 1a made of a thermoplastic resin composition for a light reflecting layer laminated and integrated on one surface of the foam sheet 1b.
  • Reflective layer 1 and this light A light-emitting layer 2 made of a thermoplastic resin composition for a light-emitting body layer, which is laminated and integrated on one surface of the layer 1, and a thermoplastic resin composition for a surface layer, laminated and integrated on one surface of the light-emitting body layer 2.
  • a light reflector made of the surface layer 3 was produced.
  • the light reflector has a total thickness of 0.75 mm, a density of 0.7 g / cm 3 , a non-foamed sheet 1a constituting the light reflecting layer 1 has a thickness of 0.15 mm, and a foamed sheet
  • the thickness of 1b was 0.5 mm
  • the thickness of the light emitter layer 2 was 0.05 mm
  • the thickness of the surface layer 3 was 0.05 mm.
  • Example 65 A light reflector was produced in the same manner as in Example 64 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
  • Example 66 A light reflector was produced in the same manner as in Example 64 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
  • Example 67 A light reflector was obtained in the same manner as in Example 55 except that the third extruder was not connected to the joining die and the surface layer was not formed.
  • Example 68 A light reflector was produced in the same manner as in Example 55 except that the thermoplastic resin composition for the surface layer did not contain rutile titanium oxide.
  • Example 69 A light reflector was produced in the same manner as in Example 58 except that the third extruder was not connected to the converging die and the surface layer was not formed.
  • Example 70 A light reflector was produced in the same manner as in Example 58 except that the thermoplastic resin composition for the surface layer did not contain rutile titanium oxide.
  • Example 71 A light reflector was produced in the same manner as in Example 61 except that the third extruder was not connected to the converging die and the surface layer was not formed.
  • Example 72 A light reflector was produced in the same manner as in Example 61 except that the surface layer thermoplastic resin composition did not contain rutile titanium oxide.
  • Example 73 A light reflector was obtained in the same manner as in Example 64 except that the third extruder was not connected to the converging die and the surface layer was not formed.
  • Example 74 A light reflector was produced in the same manner as in Example 64, except that the surface layer thermoplastic resin composition did not contain rutile titanium oxide.
  • the light reflectance, the maximum light reflectance, and the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer were measured in the following manner, and the results are shown in Tables 3, 4 and It is shown in FIGS. Tables 3 and 4 list the total content of titanium oxide contained in the light reflecting layer.
  • the total light reflectance of the light reflecting layer and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the same manner as described above, and the results are shown in Tables 3 and 4.
  • FIG. 17 shows the reflection spectra before and after the accelerated exposure test of Example 55.
  • FIG. 18 shows the reflection spectra before and after the accelerated exposure test of Example 56.
  • FIG. 19 shows the reflection spectra before and after the accelerated exposure test of Example 57.
  • FIG. 20 shows the reflection spectra before and after the accelerated exposure test of Example 67.
  • FIG. 21 shows the reflection spectra before and after the accelerated exposure test of Example 68.
  • a test sheet having the same configuration and the same thickness as the surface layer of the light reflector was extruded.
  • a spectrophotometer (trade name “UV-2450” manufactured by Shimadzu Corporation) was used, and the temperature of the measurement atmosphere was 20 ° C. and the relative humidity was 60% in accordance with JIS Z8722.
  • the light transmittance of the test sheet was measured every 1 nm in the wavelength region of 360 to 740 nm.
  • the arithmetic average value of the light transmittance in the wavelength region of 360 to 740 nm was determined and used as the average light transmittance of the surface layer.
  • a spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z8722, the room temperature of the measurement atmosphere is 20 ° C.
  • the light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm under the condition where the humidity was 60%.
  • the maximum light reflectivity was determined in the wavelength region of 360 to 740 nm, and the results are shown in the columns of “Before accelerated exposure test” in Tables 3 and 4.
  • the test tank has a set temperature of 50 ° C. according to JIS K7350-4.
  • the accelerated exposure test was performed by adjusting the surface relative humidity of 20% and irradiating the surface layer of the light reflector with carbon arc lamp light for 100 hours.
  • the light reflector of Example 67, 69, 71, 73 the light-emitting body layer was irradiated with light.
  • the maximum light reflectance in the wavelength region of 360 to 740 nm was determined in the same manner as described above, and the results were listed in the columns of “After accelerated exposure test” in Tables 3 and 4. .
  • the present invention emphasizes light in a wavelength region different from the light emitted from the light source, and is suitable for applications in which hue is important, for example, illumination use of articles placed on a product display shelf, use of a display device, etc. Can be used.

Abstract

Provided is a light reflector which reflects light from a light source, such as sunlight or artificial light emitted from a fluorescent lamp and which can emit reflected light having a wavelength distribution different from a wavelength distribution of the light emitted from the light source. A light reflector is characterized by the emission of reflected light having a wavelength distribution different from a wavelength distribution of the light emitted from the light source and can provide a hue which was unable to obtain from a conventional white or silver reflection plate by emphasizing the light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source, can fulfill the dramatic impact effect by illumination, and can be advantageously used in applications in which, for example, the hue of the illumination light, etc., used for commodities arranged in a showcase is considered important.

Description

光反射体、照明装置及び植物栽培用照明装置Light reflector, lighting device and lighting device for plant cultivation
 本発明は、光源から放射された光の波長分布とは異なる波長分布を有する光を反射光として放射することができる光反射体、並びに、この光反射体を用いた照明装置及び植物栽培用照明装置に関する。 The present invention relates to a light reflector that can emit, as reflected light, light having a wavelength distribution different from the wavelength distribution of light emitted from a light source, and an illumination device and plant cultivation illumination using the light reflector Relates to the device.
 現在、テレビやモニターなどのディスプレイ分野、シーリングライト、ダウンライト、防犯灯、非常灯、誘虫灯などの照明分野、広告灯などの電飾看板分野などにおいて、蛍光灯や冷陰極管などの光源からの光を有効に利用するために光源の背後に高反射性の光反射体が用いられている。この反射板は銀色又は白色であり、可視光領域において、光源から発せられる光のスペクトルを変化させることなく反射している。 Currently, in the display field such as TV and monitor, in the lighting field such as ceiling light, downlight, security light, emergency light and insect light, in the electric signboard field such as advertising light, etc., from the light source such as fluorescent lamp and cold cathode tube In order to effectively use the light, a highly reflective light reflector is used behind the light source. This reflector is silver or white and reflects in the visible light region without changing the spectrum of light emitted from the light source.
 又、防犯灯、誘虫灯に用いられている人工灯などのように、一部の波長の光を利用した照明などが提案されている。何れの方法も特定波長領域の光を放射するような特殊な光源を使用しているためにコストが高いといった問題点を有している。 In addition, lighting using light of some wavelengths has been proposed, such as artificial lights used for crime prevention lights and insect light. Each method has a problem that the cost is high because a special light source that emits light in a specific wavelength region is used.
 例えば、特許文献1には、白色光の照明光を点灯する複数の白色LED(発光ダイオード)と、青色光の照明光を点灯する複数の青色LEDとを備えた屋外用照明器具が提案されている。この屋外用照明器具は、青色LEDから放射される青色光が人の副交感神経に作用して感情を落ち着かせる鎮静効果を有することを利用して防犯効果の向上を図ったものであるが、LEDを多量に用いる必要があり、コスト高となるという問題点を有している。 For example, Patent Literature 1 proposes an outdoor lighting device that includes a plurality of white LEDs (light emitting diodes) that light white light and a plurality of blue LEDs that light blue light. Yes. This outdoor luminaire is intended to improve the crime prevention effect by utilizing the sedative effect that the blue light radiated from the blue LED acts on the human parasympathetic nerve to calm emotions. Need to be used in a large amount, and there is a problem of high cost.
 又、特許文献2には、白色光源としての蛍光灯と赤色光源としての赤色発光ダイオードとを備え、前記蛍光灯と赤色発光ダイオードの混合光で照明するものとなされている色補正照明装置が提案されている。 Patent Document 2 proposes a color correction illumination device that includes a fluorescent lamp as a white light source and a red light emitting diode as a red light source, and is illuminated with mixed light of the fluorescent lamp and the red light emitting diode. Has been.
 しかしながら、上記色補正照明装置では、蛍光灯に対して少ない光量の赤色発光ダイオードを用いて色補正を行っているので、照明装置から放射される光の色の変化としては僅かであると共に、赤色は人間の視感度が弱いことも相まって、照明による演出効果が期待ほど得られていないのが現状である。 However, since the color correction illumination device performs color correction using a red light emitting diode with a small amount of light with respect to a fluorescent lamp, the color change of light emitted from the illumination device is slight and red. Currently, the visual effects of lighting are not as good as expected, coupled with the low human visibility.
 そこで、赤色発光ダイオードの数を増加させ或いは赤色発光ダイオードの出力を大きくすることによって、照明装置から放射される光の色の変化を大きくすることも考えられるが、電力消費量が増加するといった別の問題を生じる。 Therefore, it is conceivable to increase the color change of the light emitted from the lighting device by increasing the number of red light-emitting diodes or increasing the output of the red light-emitting diodes. Cause problems.
 一方、地球温暖化などの地球環境の変化に伴い干ばつや洪水などの異常気象が頻発し、更に、地球規模での人口増加に対応するべく、太陽光をレンズや光反射体などによって集光させて植物に照射し栽培する技術や、人工光を利用した植物栽培技術の開発が近年、急速に求められている。 On the other hand, abnormal weather such as droughts and floods occurs frequently due to changes in the global environment such as global warming. Furthermore, in order to cope with the increase in population on a global scale, sunlight is collected by lenses and light reflectors. In recent years, the development of technology for irradiating and cultivating plants and plant cultivation technology using artificial light has been rapidly demanded.
 特許文献3には、蛍光灯を用いた植物栽培装置が提案されている。植物の成長は、植物に照射される光の波長に大きく依存しているため、植物が吸収する波長領域の光をそれ程含まない蛍光灯の光の場合、蛍光灯の光の放射強度を強くする必要があり、電力消費量が高くなるという問題点があると共に、蛍光灯の発熱によって植物の栽培雰囲気温度の制御が困難となるといった問題点を有する。 Patent Document 3 proposes a plant cultivation apparatus using a fluorescent lamp. Since the growth of plants greatly depends on the wavelength of light irradiated on the plants, in the case of fluorescent light that does not contain so much light in the wavelength range that the plant absorbs, the intensity of the fluorescent light is increased. There is a problem that power consumption is increased, and there is a problem that it becomes difficult to control the cultivation atmosphere temperature of the plant due to the heat generated by the fluorescent lamp.
 又、特許文献4、5には、赤色LEDと青色LEDとを用いた植物育成装置が提案されているが、LEDは光の拡散性に劣るので、植物に均一に光を照射することが難しいといった問題点を有すると共に、LEDを用いていることからコスト高となるといった問題点も有していた。 Patent Documents 4 and 5 propose a plant growing apparatus using red LEDs and blue LEDs. However, since LEDs are inferior in light diffusibility, it is difficult to uniformly irradiate the plants with light. In addition to the above-described problems, the use of LEDs also has the problem of high costs.
特開2008-305768号公報JP 2008-305768 A 特開2008-210660号公報JP 2008-210660 A 特開2001-352838号公報JP 2001-352838 A 実用新案登録第3105360号公報Utility Model Registration No. 3105360 特開平9-252651号公報Japanese Patent Laid-Open No. 9-252651
 本発明は、蛍光灯などの光源の光を反射して、光源から放射された光の波長分布とは異なる波長分布を有する光を照射することができる光反射体、並びに、この光反射体を用いた照明装置及び植物栽培用照明装置を提供する。 The present invention relates to a light reflector capable of reflecting light from a light source such as a fluorescent lamp and irradiating light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source, and the light reflector. The illumination device used and the plant cultivation illumination device are provided.
 本発明の光反射体は、光源から放射された光の波長分布とは異なる波長分布を有する光を反射光として放射することを特徴とする。 The light reflector of the present invention is characterized in that light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source is emitted as reflected light.
 光反射体Aとしては、光源から放射された光の波長分布とは異なる波長分布を有する光を反射光として放射すれば、特に限定されず、例えば、発光体を含有する光反射体、光反射層と、上記反射層の一面(第一の面)に積層一体化され且つ可視光領域に発光する発光体を含有する発光体層とを備えた光反射体などが挙げられる。 The light reflector A is not particularly limited as long as light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source is emitted as reflected light. For example, the light reflector A includes a light emitter, a light reflector, and the like. And a light reflector including a layer and a light emitter layer including a light emitter that is laminated and integrated on one surface (first surface) of the reflective layer and emits light in the visible light region.
 光反射体としては、図1に示したような、光反射層1の一面に、可視光領域に発光する発光体を含有する発光体層2が積層一体化されてなる光反射体が好ましく、光反射層1と、この光反射層1の一面(第一の面)に積層一体化され且つ400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している発光体層とを備えてなる光反射体がより好ましい。なお、図1では、一例として板状の光反射体を示した。 As the light reflector, a light reflector in which a light emitter layer 2 containing a light emitter emitting light in the visible light region is laminated and integrated on one surface of the light reflective layer 1 as shown in FIG. The light reflecting layer 1 and a light emitter that is laminated and integrated on one surface (first surface) of the light reflecting layer 1 and has an emission spectrum peak in the wavelength region of 400 to 470 nm, or in the wavelength region of 570 to 700 nm. A light reflector comprising a light emitter layer containing either one or both of light emitters having an emission spectrum peak is more preferable. In FIG. 1, a plate-like light reflector is shown as an example.
 次に、光反射層1と、この光反射層1の一面(第一の面)に積層一体化され且つ400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している発光体層2とを備えた光反射体について詳細に説明する。 Next, the light reflecting layer 1 and a light emitter that is laminated and integrated on one surface (first surface) of the light reflecting layer 1 and has an emission spectrum peak in a wavelength region of 400 to 470 nm, or a wavelength of 570 to 700 nm The light reflector provided with the light emitter layer 2 containing either or both of the light emitters having the emission spectrum peak in the wavelength region will be described in detail.
 上記光反射層1としては、後述する発光体層2中に含有させている発光体が発光する波長領域の光を反射させることができればよく、好ましくは、発光体層2中に含有させている発光体が吸収する波長領域の光を更に反射させることができればよい。 The light reflecting layer 1 is not limited as long as it can reflect light in a wavelength region emitted by the light emitter contained in the light emitter layer 2 described later, and is preferably contained in the light emitter layer 2. It is sufficient that the light in the wavelength region absorbed by the light emitter can be further reflected.
 このように、光反射層1が、発光体が発光する波長領域の光を発光体層2方向に向かって反射することによって光反射体から放射される特定波長の光量が増加し、光反射体の光反射性の向上及び反射光の色相を変化させる効果の向上を図ることができる。 As described above, the light reflecting layer 1 reflects the light in the wavelength region emitted by the light emitter toward the light emitter layer 2, thereby increasing the amount of light having a specific wavelength emitted from the light reflector. The light reflectivity can be improved and the effect of changing the hue of the reflected light can be improved.
 更に、光反射層1が、発光体層2中に含有させている発光体が吸収する波長領域の光を更に反射させることができる場合には、発光体層2を透過して発光体に吸収されなかった光を光反射層1によって発光体層2方向に反射させ、発光体層2に再び入射させて発光体に吸収させることができ、発光体から放射される光量を増加させて光反射体の光反射性及び反射光の色相を変化させる効果の向上をより図ることができる。 Furthermore, when the light reflection layer 1 can further reflect light in the wavelength region absorbed by the light emitter contained in the light emitter layer 2, the light reflector 2 transmits through the light emitter layer 2 and is absorbed by the light emitter. The light that has not been reflected can be reflected in the direction of the illuminant layer 2 by the light reflecting layer 1 and incident again on the illuminant layer 2 to be absorbed by the illuminant. The effect of changing the light reflectivity of the body and the hue of the reflected light can be further improved.
 光反射層1の光線全反射率は、80%以上が好ましく、85%以上がより好ましい。なお、光反射層1の光線全反射率は、JIS Z8722に準拠して測定された値をいう。 The total light reflectance of the light reflection layer 1 is preferably 80% or more, and more preferably 85% or more. The total light reflectance of the light reflecting layer 1 refers to a value measured according to JIS Z8722.
 そして、光反射層1における360~740nmの波長領域の平均光線透過率は、高いと、発光体層から発光された光が光反射層を透過し、光反射体の光反射性が低下するので、10%以下が好ましく、1%以下がより好ましく、0%が特に好ましい。なお、光反射層における360~740nmの波長領域の平均光線透過率は、JIS Z8722に準拠して測定された値をいう。 If the average light transmittance in the wavelength region of 360 to 740 nm in the light reflecting layer 1 is high, the light emitted from the light emitting layer is transmitted through the light reflecting layer, and the light reflectivity of the light reflecting member is reduced. It is preferably 10% or less, more preferably 1% or less, and particularly preferably 0%. The average light transmittance in the wavelength region of 360 to 740 nm in the light reflecting layer is a value measured according to JIS Z8722.
 このような光反射層1としては、合成樹脂シートが好ましく、熱可塑性樹脂シートがより好ましい。光反射層1としては、例えば、酸化チタンやシリカなどの粒子を含有させている光反射性非発泡シート又は発泡シート、互いに非相溶の合成樹脂を混合してなる混合樹脂からなるシートを延伸して多数のボイドを形成してなる非発泡シート、フィラーを含有するシートを延伸して多数のボイドを形成してなる非発泡シート、微細な気泡を多量に含んだ光反射性発泡シートなどが挙げられ、熱成形可能であるものが好ましい。なお、光反射層1は、上記非発泡シート又は発泡シートを適宜選択して複数層、積層一体化させたものであってもよい。 Such a light reflecting layer 1 is preferably a synthetic resin sheet, and more preferably a thermoplastic resin sheet. As the light reflecting layer 1, for example, a light reflecting non-foamed sheet or foamed sheet containing particles such as titanium oxide or silica, or a sheet made of a mixed resin obtained by mixing mutually incompatible synthetic resins is stretched. Non-foamed sheet formed with a large number of voids, non-foamed sheet formed by stretching a sheet containing a filler to form a large number of voids, a light-reflective foamed sheet containing a large amount of fine bubbles, etc. And those that can be thermoformed are preferred. In addition, the light reflection layer 1 may be a layer obtained by appropriately selecting the above non-foamed sheet or foamed sheet and stacking and integrating them.
 光反射層1が、図2に示したように、上記非発泡シート1aと上記発泡シート1bとが積層一体化され且つ上記非発泡シート1aが発光体層2側となるように構成されていると、光反射層に強度、自己保形性又は成形性を付与することができ好ましい。 As shown in FIG. 2, the light reflecting layer 1 is configured such that the non-foamed sheet 1a and the foamed sheet 1b are laminated and integrated, and the non-foamed sheet 1a is on the light emitter layer 2 side. The strength, self-shaping property or moldability can be imparted to the light reflecting layer.
 更に、光反射層1が、上記非発泡シート1aと上記発泡シート1bとが積層一体化され且つ上記非発泡シート1aが発光体層側となるように構成されている場合、光反射層1の光線反射率を向上させるために、発泡シート1bには酸化チタンが含有されていることが好ましい。 Further, when the light reflecting layer 1 is configured such that the non-foamed sheet 1a and the foamed sheet 1b are laminated and integrated, and the non-foamed sheet 1a is on the light emitter layer side, In order to improve the light reflectance, the foamed sheet 1b preferably contains titanium oxide.
 発泡シート1bにおける酸化チタンの含有量は、少ないと、光線反射率を向上させる効果が発現しないことがあり、多いと、光反射体の軽量性が低下することがあるので、発泡シート1bを構成している合成樹脂100重量部に対して5~50重量部が好ましく、10~40重量部がより好ましい。 If the content of titanium oxide in the foam sheet 1b is small, the effect of improving the light reflectivity may not be manifested, and if it is large, the lightness of the light reflector may be reduced. The amount is preferably 5 to 50 parts by weight, more preferably 10 to 40 parts by weight based on 100 parts by weight of the synthetic resin.
 光反射層1を構成している合成樹脂としては、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレン、エチレン-α-オレフィン共重合体、ポリプロピレン、環状ポリオレフィンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、ナイロン-6、ナイロン-6,6などのポリアミド系樹脂、ポリスチレン、ABS樹脂、AS樹脂などのポリスチレン系樹脂、ポリカーボネート、ポリエステルカーボネートなどのポリカーボネート系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素系樹脂、ポリメチルメタクリレート、ポリエチルメタクリレートなどのアクリル系樹脂などの熱可塑性樹脂が挙げられる。なお、合成樹脂は単独で用いられても二種以上が併用されてもよい。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセンなどが挙げられる。 The synthetic resin constituting the light reflecting layer 1 is not particularly limited, and examples thereof include polyolefin resins such as low density polyethylene, high density polyethylene, ethylene-α-olefin copolymer, polypropylene, and cyclic polyolefin, polyethylene terephthalate. Polyester resins such as polyethylene naphthalate, polybutylene terephthalate and polylactic acid, polyamide resins such as nylon-6 and nylon-6,6, polystyrene resins such as polystyrene, ABS resin and AS resin, polycarbonate, polyester carbonate, etc. And thermoplastic resins such as chlorinated resins such as polycarbonate resins, polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate. In addition, a synthetic resin may be used independently or 2 or more types may be used together. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene.
 上記光反射性非発泡シート又は発泡シートに含有される粒子としては、例えば、酸化亜鉛、亜鉛華、タルク、炭酸カルシウム、酸化チタン、シリカなどが挙げられ、合成樹脂との屈折率の差が大きく反射性の高い酸化チタンが好ましい。 Examples of the particles contained in the light-reflective non-foamed sheet or foamed sheet include zinc oxide, zinc white, talc, calcium carbonate, titanium oxide, silica, and the like, and the difference in refractive index from the synthetic resin is large. Titanium oxide having high reflectivity is preferable.
 酸化チタンは、ルチル型、アナターゼ型、ブルツカイト型があるが、ルチル型酸化チタンが好ましい。酸化チタンは通常、その光触媒作用により樹脂を劣化させてしまうため、酸化チタンには表面処理をすることが好ましい。 Titanium oxide includes rutile type, anatase type, and brucite type, but rutile type titanium oxide is preferable. Since titanium oxide usually degrades the resin by its photocatalytic action, it is preferable to subject the titanium oxide to a surface treatment.
 合成樹脂シート中における酸化チタンの含有量は、少ないと、光反射体の光反射性能が低下する一方、多いと、光反射体の軽量性も低下するので、30~200g/m2が好ましく、40~150g/m2がより好ましい。なお、光反射層1中に、酸化チタンを含有する合成樹脂シートが複数、存在している場合には、合成樹脂シート中における酸化チタンの含有量とは、複数の合成樹脂シート中に含まれている酸化チタンの総含有量をいう。 When the content of titanium oxide in the synthetic resin sheet is small, the light reflection performance of the light reflector is lowered. On the other hand, when the content is large, the lightness of the light reflector is also lowered. Therefore, 30 to 200 g / m 2 is preferable. 40 to 150 g / m 2 is more preferable. When a plurality of synthetic resin sheets containing titanium oxide are present in the light reflecting layer 1, the content of titanium oxide in the synthetic resin sheet is included in the plurality of synthetic resin sheets. The total content of titanium oxide.
 更に、光反射体に強度、自己保形性又は成形性を付与するために、光反射体の光反射層の他面(第二の面)に発泡体層が積層一体化されていてもよい。この発泡体層を構成している合成樹脂は、光反射層を構成している合成樹脂と同様であるので説明を省略する。 Further, a foam layer may be laminated and integrated on the other surface (second surface) of the light reflecting layer of the light reflector in order to give the light reflector strength, self-shape retention or moldability. . Since the synthetic resin constituting the foam layer is the same as the synthetic resin constituting the light reflecting layer, description thereof is omitted.
 次に、光反射層1上に積層一体化されている発光体層2について説明する。この発光体層2は、合成樹脂中に可視光領域(360~740nmの波長領域)に発光する発光体が含有されている。 Next, the light emitting layer 2 laminated and integrated on the light reflecting layer 1 will be described. The phosphor layer 2 contains a phosphor that emits light in the visible light region (360 to 740 nm wavelength region) in a synthetic resin.
 発光体層2は、合成樹脂中に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有していることが好ましい。 The luminous body layer 2 is either one or both of a luminous body having an emission spectrum peak in the wavelength region of 400 to 470 nm and a luminous body having an emission spectrum peak in the wavelength region of 570 to 700 nm in the synthetic resin. It is preferable to contain.
 発光体層2中に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している場合を詳細に説明する。 The light emitter layer 2 contains either or both of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. The case will be described in detail.
 光反射体Aは、発光体層2に入射した入射光の一部を発光体が吸収し、発光体はそれぞれが有している発光領域、即ち、400~470nmの波長領域又は570~700nmの波長領域に光を発する。 In the light reflector A, the light emitter absorbs a part of the incident light incident on the light emitter layer 2, and each light emitter has a light emission region, that is, a wavelength region of 400 to 470 nm or a wavelength region of 570 to 700 nm. Emits light in the wavelength region.
 即ち、発光体層2に含まれている発光体が400~470nmの波長領域の光(青系の光)又は570~700nmの波長領域の光(赤系の光)を放射することによって、光反射体によって反射される反射光は、入射光に比して、青系又は赤系の光の何れか一方或いは双方が強調されている。 That is, the light emitter included in the light emitter layer 2 emits light in the wavelength region of 400 to 470 nm (blue light) or light in the wavelength region of 570 to 700 nm (red light). As for the reflected light reflected by the reflector, either one or both of blue light and red light is emphasized as compared with incident light.
 従って、青系又は赤系の光の何れか一方或いは双方を強調することによって、青系又は赤系の光を人間の目が認識しやすくなり、表示装置や照明などの色相を重視する用途に好適に用いることができる。 Therefore, by emphasizing one or both of blue or red light, it becomes easier for human eyes to recognize blue or red light, and for applications that emphasize hue such as display devices and lighting. It can be used suitably.
 なお、発光体層2には、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方だけが含有されていても、400~470nmの波長領域に発光スペクトルのピークを有する発光体、及び、570~700nmの波長領域に発光スペクトルのピークを有する発光体の双方が含有されていてもよいが、400~470nmの波長領域に発光スペクトルのピークを有する発光体と、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れを含有させるのか或いは双方を含有させるのかは、発光体層2に入射する入射光のスペクトルに応じて適宜、調整すればよい。 The light emitter layer 2 contains only one of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. However, it may contain both a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. Whether the luminescent material having the emission spectrum peak in the wavelength region of 470 nm, the luminescent material having the emission spectrum peak in the wavelength region of 570 to 700 nm, or both of them is incident on the luminescent material layer 2 What is necessary is just to adjust suitably according to the spectrum of the incident light to perform.
 又、発光体層2に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体が含有されている場合、光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ1とし、570~700nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ2としたとき、Δ1又はΔ2が1%以上であることが好ましい。 Further, when the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, in the reflection spectrum of the body, the maximum light reflectance in the wavelength region of 400 ~ 470 nm, the difference between the minimum light reflectance in the wavelength region of 470 ~ 570 nm and delta 1, and the maximum light reflectance in the wavelength region of 570 ~ 700 nm it is preferable when the difference between the minimum light reflectance in the wavelength region of 470 ~ 570 nm and delta 2, delta 1 or delta 2 is not less than 1%.
 このように、Δ1又はΔ2を1%以上となるように調整することによって、光反射体の反射光において、緑系の光に比して視感度が劣る青系又は赤系の光を人間の目が認識しやすくなる。 In this way, by adjusting Δ 1 or Δ 2 to be 1% or more, in the reflected light of the light reflector, blue light or red light having inferior visibility compared to green light can be obtained. It becomes easier for human eyes to recognize.
 更に、発光体層2に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体が含有されている場合、光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率、又は、570~700nmの波長領域における最大光線反射率が100%を越えていることが好ましい。このように調整することによって、光反射体の反射光において入射光よりも青系の光又は赤系の光の光量を多くして更に確実に強調することができ、緑系の光に比して視感度が劣る青系又は赤系の光を人間の目がより認識しやすくなる。 Further, when the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, In the reflection spectrum of the body, it is preferable that the maximum light reflectance in the wavelength region of 400 to 470 nm or the maximum light reflectance in the wavelength region of 570 to 700 nm exceeds 100%. By adjusting in this way, the reflected light of the light reflector can be emphasized more reliably by increasing the amount of blue light or red light than incident light, compared to green light. This makes it easier for human eyes to recognize blue or red light with poor visibility.
 又、発光体層2に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、及び、570~700nmの波長領域に発光スペクトルのピークを有する発光体が含有されている場合、光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ1とし、570~700nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ2としたとき、Δ1及びΔ2が1%以上であることが好ましい。 Further, when the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, in the reflection spectrum of the body, the maximum light reflectance in the wavelength region of 400 ~ 470 nm, the difference between the minimum light reflectance in the wavelength region of 470 ~ 570 nm and delta 1, and the maximum light reflectance in the wavelength region of 570 ~ 700 nm When the difference from the minimum light reflectance in the wavelength region of 470 to 570 nm is Δ 2 , Δ 1 and Δ 2 are preferably 1% or more.
 このように、Δ1及びΔ2を1%以上となるように調整することによって、光反射体の反射光において、青系の光及び赤系の光をより確実に強調することができ、緑系の光に比して視感度が劣る青系及び赤系の光を人間の目がより認識しやすくなる。 In this way, by adjusting Δ 1 and Δ 2 to be 1% or more, blue light and red light can be more reliably emphasized in the reflected light of the light reflector. This makes it easier for human eyes to recognize blue and red light, which has inferior visual sensitivity compared to the light of the system.
 更に、発光体層2に、400~470nmの波長領域に発光スペクトルのピークを有する発光体、及び、570~700nmの波長領域に発光スペクトルのピークを有する発光体が含有されている場合、光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率、及び、570~700nmの波長領域における最大光線反射率が100%を越えていることが好ましい。このように調整することによって、光反射体の反射光において入射光よりも青系の光及び赤系の光の光量を多くして更に確実に強調することができ、緑系の光に比して視感度が劣る青系及び赤系の光を人間の目がより認識しやすくなる。 Further, when the light emitter layer 2 contains a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, In the reflection spectrum of the body, it is preferable that the maximum light reflectance in the wavelength region of 400 to 470 nm and the maximum light reflectance in the wavelength region of 570 to 700 nm exceed 100%. By adjusting in this way, the reflected light of the light reflector can be more reliably emphasized by increasing the amount of blue light and red light than incident light, compared to green light. This makes it easier for human eyes to recognize blue and red light with poor visibility.
 又、光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が100%以上であることが好ましい。このように調整することによって、光反射体の反射光において更に確実に発光体が放射する特定波長領域の光を入射光よりも強調することができる。 Further, in the reflection spectrum of the light reflector, the maximum light reflectance in the wavelength region of 360 to 740 nm is preferably 100% or more. By adjusting in this way, the light in the specific wavelength range emitted from the light emitter can be more reliably emphasized than the incident light in the reflected light of the light reflector.
 なお、発光体層2を構成している合成樹脂は、光反射層1を構成している合成樹脂と同様であるのでその説明を省略する。発光体層2を構成している合成樹脂と、光反射層1を構成している合成樹脂は相違していてもよい。 Note that the synthetic resin constituting the light emitter layer 2 is the same as the synthetic resin constituting the light reflecting layer 1, and therefore the description thereof is omitted. The synthetic resin constituting the light emitter layer 2 and the synthetic resin constituting the light reflecting layer 1 may be different.
 発光体層2中に含有されている発光体としては、蛍光若しくは燐光を生じる顔料又は染料が用いられる。蛍光とは、励起一重項状態から基底状態へ遷移するときに放出される光のことをいい、工業的には、この現象を利用した発光体が蛍光顔料、蛍光染料として広く利用されている。 As the illuminant contained in the illuminant layer 2, a pigment or a dye that generates fluorescence or phosphorescence is used. Fluorescence refers to light that is emitted when transitioning from an excited singlet state to a ground state. Industrially, phosphors using this phenomenon are widely used as fluorescent pigments and fluorescent dyes.
 又、燐光とは、励起三重項状態から基底状態へ遷移するときに放出される光のことをいい、工業的には、この現象を利用した発光体が蓄光顔料、蓄光染料として広く利用されている。 Phosphorescence refers to light emitted when transitioning from the excited triplet state to the ground state. Industrially, phosphors utilizing this phenomenon are widely used as phosphorescent pigments and phosphorescent dyes. Yes.
 400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体には、有機系の色素構造を有する有機系発光体、無機系の色素構造を有する無機系発光体がある。 An illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, or an illuminant having an emission spectrum peak in the wavelength region of 570 to 700 nm includes an organic illuminant having an organic dye structure, an inorganic type There are inorganic light emitters having the following dye structure.
 有機系発光体としては、例えば、キサンテン系、クマリン系、ペリレン系、ナフタルイミド系、アクリジン系、チオフラビン系、ジアミノスチルベン系、イミダゾール系、チアゾール系、オキサゾール系、ピラゾリン系、アンスラキノン系、メチン系、ベンゾピラン系、チオインジゴ系、アゾ系、フタロシアニン系などの有機系色素構造を有する発光体が挙げられる。有機系発光体は、単独で用いられても二種以上が併用されもよい。 Examples of organic phosphors include xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole, pyrazoline, anthraquinone, and methine. And phosphors having an organic dye structure such as benzopyran, thioindigo, azo, or phthalocyanine. The organic light emitters may be used alone or in combination of two or more.
 又、無機系発光体としては、例えば、ZnS、(ZnCd)Sなどの硫化物、Zn2SiO4、Cd225、YVO3、CaWO4などの酸化物などの無機系色素構造を有する発光体が挙げられる。無機系発光体は、単独で用いられても二種以上が併用されもよい。 Examples of the inorganic phosphor include inorganic pigment structures such as sulfides such as ZnS and (ZnCd) S, and oxides such as Zn 2 SiO 4 , Cd 2 B 2 O 5 , YVO 3 and CaWO 4. The light-emitting body which has is mentioned. An inorganic type light-emitting body may be used independently, or 2 or more types may be used together.
 なお、400~470nmの波長領域に発光スペクトルのピークを有する発光体、即ち、紫外領域の光を吸収して400~470nmの波長領域の蛍光若しくは燐光を発する顔料又は染料としては、クラリアント社から商品名「ホスタルックス KCB」、イーストマン社から商品名「OB-1」、住友精化社から商品名「TBO」、日本層達社から商品名「ケイコール」、日本化薬社から商品名「カヤライト」、BASF社から商品名「Lumogen F Blue 650」及び「Lumogen F Violet 570」、シンロイヒ社から商品名「FZ-2808」、「FZ-SB」及び「FZ-5009」、デイグロ社から商品名「ZQ-19」及び「IPO-19」にて市販されている。 In addition, as a luminescent material having an emission spectrum peak in the wavelength region of 400 to 470 nm, that is, a pigment or dye that absorbs light in the ultraviolet region and emits fluorescence or phosphorescence in the wavelength region of 400 to 470 nm, it is a product from Clariant. The name “Hostalux KCB”, the product name “OB-1” from Eastman Corporation, the product name “TBO” from Sumitomo Seika Co., Ltd., the product name “Kecoal” from Nippon Kayaku, and the product name “Kayalite from Nippon Kayaku Co., Ltd.” ”, Product names“ Lumogen F Blue 650 ”and“ Lumogen F Violet 570 ”from BASF, product names“ FZ-2808 ”,“ FZ-SB ”and“ FZ-5009 ”from Sinloi, and product names from DeGlo It is commercially available under "ZQ-19" and "IPO-19".
 又、570~700nmの光の波長領域に発光スペクトルのピークを有する発光体、即ち、紫外領域又は可視光領域の光を吸収して570~700nmの波長領域の蛍光又は燐光を発する顔料又は染料としては、例えば、日本化薬社から商品名「カヤクリルローダミンFB」、BASF社から商品名「Lumogen F Red 305」、シンロイヒ社から商品名「FZ-2803」、「FZ-2801」、「FZ-2817」、「FX-301」、「FX-303」、「FX-307」及び「FX-327」、デイグロ社から商品名「NX-13」、「GPL-13」、「Z-13」及び「IPO-13」、猪名川顔料社から商品名「ローダミンBレーキ」にて市販されている。 Further, as a light emitter having an emission spectrum peak in the light wavelength region of 570 to 700 nm, that is, a pigment or dye that absorbs light in the ultraviolet region or visible light region and emits fluorescence or phosphorescence in the wavelength region of 570 to 700 nm. Are, for example, trade names “Kayakril Rhodamine FB” from Nippon Kayaku, trade names “Lumogen F Red 305” from BASF, and trade names “FZ-2803”, “FZ-2801”, “FZ- 2817 ”,“ FX-301 ”,“ FX-303 ”,“ FX-307 ”and“ FX-327 ”, trade names“ NX-13 ”,“ GPL-13 ”,“ Z-13 ” “IPO-13” is commercially available from Inagawa River Co., Ltd. under the trade name “Rhodamine B Lake”.
 発光体層2中における発光体の総量は、少ないと、発光体層の発光量が少なくなるので、合成樹脂100重量部に対して0.01重量部以上が好ましく、多くても、発光体層2の発光量に変化はなく、発光体の濃度や分散度によっては濃度消光することがあるので、合成樹脂100重量部に対して65重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下が特に好ましい。 If the total amount of the light emitters in the light emitter layer 2 is small, the amount of light emitted from the light emitter layer is small. Therefore, the amount is preferably 0.01 parts by weight or more with respect to 100 parts by weight of the synthetic resin. 2 does not change, and the concentration may be quenched depending on the concentration and dispersion of the illuminant. Therefore, it is preferably 65 parts by weight or less, more preferably 30 parts by weight or less, based on 100 parts by weight of the synthetic resin. Part by weight or less is particularly preferred.
 発光体層2には光反射性充填材が含有されていてもよい。光反射性充填剤としては、光を反射することができればよいが、発光体層を構成している合成樹脂と光反射性充填剤との界面にて反射する反射光の波長領域と、発光体層に含有されている発光体における光吸収波長領域又は発光波長領域とが重複するように光反射性充填剤を選択することが好ましい。 The light emitter layer 2 may contain a light reflective filler. The light-reflective filler is not limited as long as it can reflect light, but the wavelength region of the reflected light reflected at the interface between the synthetic resin and the light-reflective filler constituting the light emitter layer, and the light emitter It is preferable to select the light reflective filler so that the light absorption wavelength region or the light emission wavelength region in the luminescent material contained in the layer overlaps.
 このように、発光体層2に光反射性充填剤を含有させることによって、発光体層2に入射した光を、発光体層2を構成している合成樹脂と光反射性充填剤との界面にて反射させて、発光体に更に多くの光量の光を吸収させて可視光領域に光を放射させることができる。 Thus, by making the light emitter layer 2 contain the light reflective filler, the light incident on the light emitter layer 2 is converted into the interface between the synthetic resin constituting the light emitter layer 2 and the light reflective filler. , And the light emitter can absorb a larger amount of light and emit light in the visible light region.
 特に、発光体層を構成している合成樹脂と光反射性充填剤との界面にて反射する反射光の波長領域と、発光体層に含有されている発光体における光吸収波長領域とが重複するように光反射性充填剤を選択することによって、発光体層中の発光体に效率良く光を吸収させて特定波長の光を多く放射させて発光体の発光作用を強くすることができ、光反射体による反射光の色相をより確実に変化させることができる。 In particular, the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the phosphor layer and the light reflective filler overlaps with the light absorption wavelength region of the phosphor contained in the phosphor layer. By selecting the light-reflective filler as described above, the light-emitting body in the light-emitting body layer can efficiently absorb light and emit a lot of light of a specific wavelength, thereby enhancing the light-emitting action of the light-emitting body. The hue of the reflected light by the light reflector can be changed more reliably.
 又、発光体層を構成している合成樹脂と光反射性充填剤との界面にて反射する反射光の波長領域と、発光体層に含有されている発光体における発光波長領域とが重複するように光反射性充填剤を選択することによって、発光体から放射された光を光反射性充填剤によって反射させて発光体層外に効率良く放出させることができ、光反射体による反射光の色相をより確実に変化させることができる。 Also, the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the light emitter layer and the light reflective filler overlaps with the light emission wavelength region of the light emitter contained in the light emitter layer. By selecting the light reflective filler as described above, the light emitted from the light emitter can be reflected by the light reflective filler to be efficiently emitted outside the light emitter layer. The hue can be changed more reliably.
 このような光反射性充填剤としては、光反射性を有しておれば、特に限定されず、例えば、光反射性を有している合成樹脂粒子、顔料などが挙げられ、顔料が好ましく、白色顔料がより好ましい。 Such a light-reflective filler is not particularly limited as long as it has light reflectivity, and examples thereof include synthetic resin particles and pigments having light reflectivity, and pigments are preferable, White pigments are more preferred.
 上記合成樹脂粒子を構成している合成樹脂としては、発光体層2を構成している合成樹脂の屈折率と異なる屈折率を有する合成樹脂であれば、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、環状ポリオレフィンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、ナイロン-6、ナイロン-6,6などのポリアミド系樹脂、ポリスチレン、ABS樹脂、AS樹脂などのポリスチレン系樹脂、ポリカーボネート、ポリエステルカーボネートなどのポリカーボネート系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素系樹脂、ポリメチルメタクリレート、ポリエチルメタクリレートなどのアクリル系樹脂などの熱可塑性樹脂が挙げられる。なお、合成樹脂は単独で用いられても二種以上が併用されてもよい。 The synthetic resin constituting the synthetic resin particles is not particularly limited as long as it is a synthetic resin having a refractive index different from the refractive index of the synthetic resin constituting the luminescent layer 2. For example, low density polyethylene Polyolefin resins such as high-density polyethylene, polypropylene and cyclic polyolefin, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate and polylactic acid, polyamide resins such as nylon-6 and nylon-6,6, polystyrene Polystyrene resins such as ABS resin and AS resin, polycarbonate resins such as polycarbonate and polyester carbonate, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, polymethyl methacrylate, polyethyl methacrylate, etc. Thermoplastic resins such as acrylic resins. In addition, a synthetic resin may be used independently or 2 or more types may be used together.
 上記顔料としては、発光体層2を構成している合成樹脂の屈折率と異なる屈折率を有する顔料であれば、特に限定されず、例えば、亜鉛華、鉛白、酸化チタンなどの白色顔料、鉛丹、黄鉛、亜鉛黄、ウルトラマリン青、プロシア青などの無機顔料、キサンテン系、クマリン系、ペリレン系、ナフタルイミド系、アクリジン系、チオフラビン系、ジアミノスチルベン系、イミダゾール系、チアゾール系、オキサゾール系、ピラゾリン系、アンスラキノン系、メチン系、ベンゾピラン系、チオインジゴ系、アゾ系、フタロシアニン系などの色素構造を有する有機顔料などが挙げられ、発光体の吸収波長領域又は発光波長領域において高い光反射性能を有する亜鉛華、鉛白、酸化チタンなどの白色顔料が好ましい。 The pigment is not particularly limited as long as it has a refractive index different from the refractive index of the synthetic resin constituting the luminescent layer 2, and examples thereof include white pigments such as zinc white, lead white, and titanium oxide. Inorganic pigments such as red lead, yellow lead, zinc yellow, ultramarine blue, prussian blue, xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole Organic pigments having a dye structure such as azo-type, pyrazoline-type, anthraquinone-type, methine-type, benzopyran-type, thioindigo-type, azo-type, phthalocyanine-type, etc. White pigments such as zinc white, lead white and titanium oxide having performance are preferable.
 上記白色顔料としては、特に限定されず、例えば、硫酸マグネシウム、炭酸マグネシウム、アルミナ、酸化鉛、炭酸バリウム、硫酸バリウム、チタン酸カリウム、酸化亜鉛、亜鉛華、鉛白、タルク、炭酸カルシウム、酸化チタンなどが挙げられ、屈折率が高く、発光体層を構成している合成樹脂の屈折率との差が大きいことから、酸化チタンが好ましい。 The white pigment is not particularly limited. For example, magnesium sulfate, magnesium carbonate, alumina, lead oxide, barium carbonate, barium sulfate, potassium titanate, zinc oxide, zinc white, lead white, talc, calcium carbonate, titanium oxide. Titanium oxide is preferable because it has a high refractive index and a large difference from the refractive index of the synthetic resin constituting the phosphor layer.
 又、光反射性充填剤の屈折率と、発光体層2を構成している合成樹脂の屈折率との差は、小さいと、光反射性充填剤と発光体層を構成している合成樹脂との界面における光反射性が低下することがあるので、0.05以上が好ましく、0.10以上がより好ましい。 Further, if the difference between the refractive index of the light reflective filler and the refractive index of the synthetic resin constituting the light emitter layer 2 is small, the synthetic resin constituting the light reflective filler and the light emitter layer. Since the light reflectivity at the interface may decrease, it is preferably 0.05 or more, more preferably 0.10 or more.
 発光体層2における光反射性充填剤の含有量は、少ないと、発光体層の光吸収波長領域又は発光波長領域における光反射性が低下して、発光体からの放射光の量が少なくなり、光反射体の光反射性が低下することがあり、多いと、発光体層への光の入射量が少なくなり、或いは、発光体から放射された光が発光体層外に放出されにくくなる虞れがあるので、発光体層を構成している合成樹脂100重量部に対して0.05~50重量部が好ましく、0.05~25重量部がより好ましく、0.1~10重量部が特に好ましい。 If the content of the light reflective filler in the light emitter layer 2 is small, the light reflectivity in the light absorption wavelength region or the light emission wavelength region of the light emitter layer is lowered, and the amount of emitted light from the light emitter is reduced. The light reflectivity of the light reflector may decrease, and if it is large, the amount of light incident on the light emitter layer is reduced, or the light emitted from the light emitter is less likely to be emitted outside the light emitter layer. Therefore, 0.05 to 50 parts by weight is preferable, 0.05 to 25 parts by weight is more preferable, and 0.1 to 10 parts by weight with respect to 100 parts by weight of the synthetic resin constituting the light emitting layer. Is particularly preferred.
 更に、図3及び図4に示したように、発光体層2の一面に光反射性の表面層3が積層一体化されていてもよい。表面層3は、合成樹脂及び光反射性充填材を含有し、具体的には、合成樹脂中に光反射性充填材が含有されてなる。 Further, as shown in FIGS. 3 and 4, a light reflective surface layer 3 may be laminated and integrated on one surface of the light emitting layer 2. The surface layer 3 contains a synthetic resin and a light reflective filler. Specifically, the light reflective filler is contained in the synthetic resin.
 この表面層3は、合成樹脂中に光反射性充填材を含有させることによって、発光体層2に入射する光量を制限している。これは、発光体層2中に含まれている発光体は、この発光体が吸収した光量の合計量(累積量)が一定量に達すると失活し発光作用を奏しなくなることを見出したことによる。 The surface layer 3 limits the amount of light incident on the light emitting layer 2 by including a light reflective filler in the synthetic resin. It has been found that the illuminant contained in the illuminant layer 2 is deactivated when the total amount (cumulative amount) of the light absorbed by the illuminant reaches a certain amount and does not perform the light emitting action. by.
 従って、表面層3における360~740nmの波長領域での平均光線透過率は、高いと、発光体層に入射する光量が多くなって発光体層中の発光体が吸収する単位時間当りの光量が増加し、その結果、発光体が発光作用を奏する期間が短くなるので、70%以下が好ましく、0.05~50%がより好ましく、0.05~30%が特に好ましい。なお、表面層3における360~740nmの波長領域での平均光線透過率は、JIS Z8722に準拠して測定された値をいう。 Therefore, if the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer 3 is high, the amount of light incident on the light emitter layer increases, and the amount of light per unit time absorbed by the light emitter in the light emitter layer is reduced. As a result, the period in which the luminescent material exhibits a light emitting action is shortened, so 70% or less is preferable, 0.05 to 50% is more preferable, and 0.05 to 30% is particularly preferable. The average light transmittance in the wavelength region of 360 to 740 nm in the surface layer 3 is a value measured according to JIS Z8722.
 又、表面層3は、表面層3にて制限された光をできるだけ発光体層2中の発光体に吸収させ或いは発光体から放射された光をできるだけ表面層3から光反射体外に放射させて、光反射体の光反射性の向上及び光反射体による反射光の色相の変化の向上を図るために、表面層3を構成している合成樹脂と、上記表面層3に含有されている光反射性充填材との界面にて反射する反射光の波長領域が、発光体層2に含有されている発光体における光吸収波長領域又は発光波長領域と重複していることが好ましい。 Further, the surface layer 3 absorbs light limited by the surface layer 3 as much as possible by the light emitter in the light emitter layer 2 or emits light emitted from the light emitter as much as possible outside the light reflector from the surface layer 3. The synthetic resin constituting the surface layer 3 and the light contained in the surface layer 3 in order to improve the light reflectivity of the light reflector and to improve the change in the hue of reflected light by the light reflector It is preferable that the wavelength region of the reflected light reflected at the interface with the reflective filler overlaps with the light absorption wavelength region or the emission wavelength region in the light emitter contained in the light emitter layer 2.
 表面層3を構成している合成樹脂と光反射性充填材との界面にて反射する反射光の波長領域と、発光体層2に含有されている発光体における光吸収波長領域とが重複するように光反射性充填材を選択することによって、発光体層2に入射した光が発光体に吸収されずに発光体層2を透過し、光反射層1にて発光体層2側に反射されたものの再度、発光体に吸収されずに発光体層2を透過してしまった光を再び表面層3にて発光体層2に向かって反射させて発光体層2内に入射させることによって、発光体層2中の発光体に效率良く光を吸収させて特定波長の光を多く放射させて発光体の発光作用を強くすることができ、光反射体の光反射性の向上及び光反射体による反射光の色相をより確実に変化させることができる。 The wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the surface layer 3 and the light-reflective filler overlaps with the light absorption wavelength region in the light emitter contained in the light emitter layer 2. By selecting the light reflective filler as described above, the light incident on the light emitter layer 2 is transmitted through the light emitter layer 2 without being absorbed by the light emitter, and reflected by the light reflector layer 1 toward the light emitter layer 2 side. However, the light which has been transmitted but is not absorbed by the light emitter but has passed through the light emitter layer 2 is again reflected by the surface layer 3 toward the light emitter layer 2 and is incident on the light emitter layer 2. The light emitter in the light emitter layer 2 can absorb light efficiently and emit a large amount of light of a specific wavelength to enhance the light emitting action of the light emitter, thereby improving the light reflectivity and light reflection of the light reflector. The hue of light reflected by the body can be changed more reliably.
 又、発光体層を構成している合成樹脂と光反射性充填材との界面にて反射する反射光の波長領域と、発光体層に含有されている発光体における発光波長領域とが重複するように光反射性充填材を選択することによって、光反射体に入射する光のうち、発光体が放射する波長領域の光を表面層によって光反射体外に反射させると共に、発光体から放射された光を光反射性充填材によって乱反射させながら光反射体外に均一に放出させることができ、光反射体の光反射性の向上及び光反射体による反射光の色相をより確実に且つ均一に変化させることができる。 In addition, the wavelength range of the reflected light reflected at the interface between the synthetic resin constituting the light emitter layer and the light reflective filler overlaps the light emission wavelength region of the light emitter contained in the light emitter layer. By selecting the light-reflective filler as described above, the light in the wavelength region emitted from the light emitter among the light incident on the light reflector is reflected outside the light reflector by the surface layer and emitted from the light emitter. Light can be uniformly emitted outside the light reflector while being irregularly reflected by the light-reflective filler, and the light reflectivity of the light reflector is improved and the hue of light reflected by the light reflector is changed more reliably and uniformly. be able to.
 表面層3を構成している合成樹脂としては、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、環状ポリオレフィンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、ナイロン-6、ナイロン-6,6などのポリアミド系樹脂、ポリスチレン、ABS樹脂、AS樹脂などのポリスチレン系樹脂、ポリカーボネート、ポリエステルカーボネートなどのポリカーボネート系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素系樹脂、ポリメチルメタクリレート、ポリエチルメタクリレートなどのアクリル系樹脂などの熱可塑性樹脂が挙げられる。なお、合成樹脂は単独で用いられても二種以上が併用されてもよい。上記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセンなどが挙げられる。 The synthetic resin constituting the surface layer 3 is not particularly limited. For example, polyolefin resins such as low density polyethylene, high density polyethylene, polypropylene, ethylene-α-olefin copolymer, cyclic polyolefin, polyethylene terephthalate, Polyester resins such as polyethylene naphthalate, polybutylene terephthalate, polylactic acid, polyamide resins such as nylon-6, nylon-6,6, polystyrene resins such as polystyrene, ABS resin, AS resin, polycarbonate, polyester carbonate, etc. Examples thereof include thermoplastic resins such as polycarbonate resins, chlorinated resins such as polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate. In addition, a synthetic resin may be used independently or 2 or more types may be used together. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene and 1-decene.
 そして、光反射性充填材は、光反射性を有していれば、特に限定されず、例えば、光反射性を有している合成樹脂粒子、顔料などが挙げられ、顔料が好ましく、白色顔料がより好ましい。 The light reflective filler is not particularly limited as long as it has light reflectivity, and examples thereof include synthetic resin particles and pigments having light reflectivity. Pigments are preferred, white pigments Is more preferable.
 上記合成樹脂粒子を構成している合成樹脂としては、表面層3を構成している合成樹脂の屈折率と異なる屈折率を有する合成樹脂であれば、特に限定されず、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、環状ポリオレフィンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸などのポリエステル系樹脂、ナイロン-6、ナイロン-6,6などのポリアミド系樹脂、ポリスチレン、ABS樹脂、AS樹脂などのポリスチレン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素系樹脂、ポリメチルメタクリレート、ポリエチルメタクリレートなどのアクリル系樹脂などの熱可塑性樹脂が挙げられる。なお、合成樹脂は単独で用いられても二種以上が併用されても良い。 The synthetic resin constituting the synthetic resin particles is not particularly limited as long as it is a synthetic resin having a refractive index different from the refractive index of the synthetic resin constituting the surface layer 3, for example, low density polyethylene, Polyolefin resins such as high-density polyethylene, polypropylene, and cyclic polyolefin, polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polylactic acid, polyamide resins such as nylon-6, nylon-6,6, polystyrene, Examples thereof include thermoplastic resins such as polystyrene resins such as ABS resin and AS resin, chlorine resins such as polyvinyl chloride and polyvinylidene chloride, and acrylic resins such as polymethyl methacrylate and polyethyl methacrylate. In addition, a synthetic resin may be used independently or 2 or more types may be used together.
 上記顔料としては、表面層3を構成している合成樹脂の屈折率と異なる屈折率を有する顔料であれば、特に限定されず、例えば、亜鉛華、鉛白、酸化チタンなどの白色顔料、鉛丹、黄鉛、亜鉛黄、ウルトラマリン青、プロシア青などの無機顔料、キサンテン系、クマリン系、ペリレン系、ナフタルイミド系、アクリジン系、チオフラビン系、ジアミノスチルベン系、イミダゾール系、チアゾール系、オキサゾール系、ピラゾリン系、アンスラキノン系、メチン系、ベンゾピラン系、チオインジゴ系、アゾ系、フタロシアニン系の色相構造を有する有機顔料などが挙げられ、白色顔料が好ましい。 The pigment is not particularly limited as long as it has a refractive index different from that of the synthetic resin constituting the surface layer 3, and examples thereof include white pigments such as zinc white, lead white, and titanium oxide, lead Inorganic pigments such as red, yellow lead, zinc yellow, ultramarine blue, prussian blue, xanthene, coumarin, perylene, naphthalimide, acridine, thioflavine, diaminostilbene, imidazole, thiazole, oxazole Organic pigments having a pyrazoline-based, anthraquinone-based, methine-based, benzopyran-based, thioindigo-based, azo-based, or phthalocyanine-based hue structure, and the like, and white pigments are preferred.
 上記白色顔料としては、特に限定されず、例えば、硫酸マグネシウム、炭酸マグネシウム、アルミナ、酸化鉛、炭酸バリウム、硫酸バリウム、チタン酸カリウム、酸化亜鉛、亜鉛華、鉛白、タルク、炭酸カルシウム、酸化チタンなどが挙げられ、屈折率が高く、表面層3を構成している合成樹脂の屈折率との差が大きいことから、酸化チタンが好ましい。 The white pigment is not particularly limited. For example, magnesium sulfate, magnesium carbonate, alumina, lead oxide, barium carbonate, barium sulfate, potassium titanate, zinc oxide, zinc white, lead white, talc, calcium carbonate, titanium oxide. Titanium oxide is preferable because it has a high refractive index and a large difference from the refractive index of the synthetic resin constituting the surface layer 3.
 又、光反射性充填材の屈折率と、表面層を構成している合成樹脂の屈折率との差は、小さいと、光反射性充填材と表面層を構成している合成樹脂との界面における光反射性が低下することがあるので、0.05以上が好ましく、0.10以上がより好ましい。 If the difference between the refractive index of the light reflective filler and the refractive index of the synthetic resin constituting the surface layer is small, the interface between the light reflective filler and the synthetic resin constituting the surface layer is small. Since the light reflectivity in may be lowered, 0.05 or more is preferable, and 0.10 or more is more preferable.
 表面層における光反射性充填材の含有量は、少ないと、表面層を透過する光量が多くなって発光体層中の発光体が単位時間当りに吸収する光量が多くなり、発光体の発光持続期間が短くなって光反射体によって反射光の色相を変化させる効果の持続期間が短くなり、多いと、発光体層への光の入射量が少なくなり過ぎ、或いは、発光体から放射された光が表面層を通じて光反射体外に放出されにくくなる虞れがあるので、表面層3を構成している合成樹脂100重量部に対して0.05~50重量部が好ましく、0.05~25重量部がより好ましく、0.1~20重量部が特に好ましい。 If the content of the light-reflective filler in the surface layer is small, the amount of light transmitted through the surface layer increases, and the amount of light absorbed by the light emitter in the light emitter layer increases per unit time. The duration of the effect of changing the hue of the reflected light by the light reflector is shortened and the duration of the effect of changing the hue of the reflected light by the light reflector is shortened. Is less likely to be released out of the light reflector through the surface layer, so 0.05 to 50 parts by weight is preferable with respect to 100 parts by weight of the synthetic resin constituting the surface layer 3, and 0.05 to 25 parts by weight. Part is more preferable, and 0.1 to 20 parts by weight is particularly preferable.
 光反射層1、発光体層2及び表面層3には、これらの物性を損なわない範囲内において、光安定剤、紫外線吸収剤、酸化防止剤、金属不活性剤などの安定剤、帯電防止剤、難燃剤などの添加剤が添加されていてもよい。 The light reflecting layer 1, the light emitting layer 2 and the surface layer 3 are provided with a stabilizer such as a light stabilizer, an ultraviolet absorber, an antioxidant, a metal deactivator, and an antistatic agent within the range not impairing these physical properties. An additive such as a flame retardant may be added.
 光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバカート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジニル)セバカート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロナート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレートと(2,2,6,6-テトラメチル-4-トリデシル)-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレートと(1,2,2,6,6-ペンタメチル-4-トリデシル)-1,2,3,4-ブタン-テトラカルボキシレートとの混合物、{2,2,6,6-テトラメチル-4-ピペリジル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}-1,2,3,4-ブタン-テトラカルボキシレートと{2,2,6,6-テトラメチル-β,β,β’,β’-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}-1,2,3,4,-ブタン-テトラカルボキシレートとの混合物、{1,2,2,6,6-ペンタメチル-4-ピペリジル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}1,2,3,4-ブタン-テトラカルボキシレートと{1,2,2,6,6-ペンタメチル-β,β,β’,β’-テトラメチル--3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエチル}1,2,3,4-ブタン-テトラカルボキシレートとの混合物、ポリ[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル]、[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]、4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとジメチルスクシナートポリマーとの混合物、N,N’,N’’,N’’’-テトラキス{4,6-ビス[ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジル-4-イル)アミノ]-トリアジン-2-イル}-4,7-ジアザデカン-1,10-ジアミンなどが挙げられ、単独で用いても二種以上が併用されてもよい。 Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidinyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, tetrakis (2, 2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2 , 3,4-Butane-tetracarboxylate, (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate and (2,2,6,6 -Tetramethyl-4 Tridecyl) -1,2,3,4-butane-tetracarboxylate, (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate And a mixture of (1,2,2,6,6-pentamethyl-4-tridecyl) -1,2,3,4-butane-tetracarboxylate, {2,2,6,6-tetramethyl-4 -Piperidyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethyl} -1,2,3,4-butane-tetracarboxylate and {2,2,6 6-tetramethyl-β, β, β ′, β′-tetramethyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethyl} -1,2,3 A mixture with 4, -butane-tetracarboxylate, {1,2,2,6,6-Pentamethyl-4-piperidyl-3,9- [2,4,8,10-tetraoxaspiro (5,5) undecane] diethyl} 1,2,3,4 Butane-tetracarboxylate and {1,2,2,6,6-pentamethyl-β, β, β ′, β′-tetramethyl-3-3,9- [2,4,8,10-tetraoxaspiro ( 5,5) Undecane] diethyl} 1,2,3,4-butane-tetracarboxylate mixture, poly [6- (1,1,3,3-tetramethylbutyl) imino-1,3,5- Triazine-2,4-diyl], [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino], 4-hydroxy-2,2,6,6-tetramethyl-1-pi Mixture of lysine ethanol and dimethyl succinate polymer, N, N ′, N ″, N ′ ″-tetrakis {4,6-bis [butyl- (N-methyl-2,2,6,6-tetra Methylpiperidyl-4-yl) amino] -triazin-2-yl} -4,7-diazadecane-1,10-diamine, and the like may be used alone or in combination of two or more.
 光反射層1、発光体層2又は表面層3における光安定剤の含有量は、少ないと、光反射体の樹脂劣化を抑制することができず、多くても、光反射体の樹脂劣化の抑制効果に変化はなく、光安定剤自体の着色によって光反射体の光反射性を低下させるなど悪影響を及ぼすため、光反射層1、発光体層2又は表面層3を構成している合成樹脂100重量部に対して0.01~0.8重量部が好ましく、0.05~0.5重量部がより好ましい。 If the content of the light stabilizer in the light reflecting layer 1, the light emitter layer 2 or the surface layer 3 is small, the resin deterioration of the light reflector cannot be suppressed. Synthetic resin constituting the light reflecting layer 1, the light emitting layer 2, or the surface layer 3 because there is no change in the suppression effect and adverse effects such as reducing the light reflectivity of the light reflector by coloring the light stabilizer itself. 0.01 to 0.8 part by weight is preferable with respect to 100 parts by weight, and 0.05 to 0.5 part by weight is more preferable.
 紫外線吸収剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’,5’-ビス(α,α-ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5-ジ-t-ブチルフェニル)-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]などのベンゾトリアゾール系紫外線吸収剤、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクチル-ベンゾフェノン、2-ヒドロキシ-4-n-ドデシロキシ-ベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、サリチル酸フェニル、4-t-ブチルフェニルサリチレートなどのサリシレート系紫外線吸収剤、エチル-2-シアノ-3,3-ジフェニル-アクリレート、2-エチルヘキシル-2-シアノ-3,3’-ジフェニル-アクリレートなどのシアノアクリレート系紫外線吸収剤、2-エトキシ-3-t-ブチル-2’-エチル-シュウ酸ビスアニリド、2-エトキシ-2’-エチル-シュウ酸ビスアニリドなどのオキザイリックアシッドアニリド系紫外線吸収剤、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-ヒドロキシフェノール、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤などが挙げられ、単独で用いても二種以上を併用してもよい。 Examples of the ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- [2′-hydroxy-3 ′, 5′-bis (α, α-dimethylbenzyl) phenyl]. -Benzotriazole, 2- (2'-hydroxy-3 ', 5-di-t-butylphenyl) -benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5′-di- t-amyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2,2-methylenebis [4- (1,1,3,3-tetramethylbutane) Til) -6- (2N-benzotriazol-2-yl) phenol], 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4- Methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n-octyl-benzophenone, 2-hydroxy-4-n-dodecyloxy-benzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2 Benzophenone UV absorbers such as 2,2'-dihydroxy-4-methoxy-benzophenone and 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, salicylates such as phenyl salicylate and 4-t-butylphenyl salicylate UV absorber, ethyl-2- Cyanoacrylate-based UV absorbers such as ano-3,3-diphenyl-acrylate and 2-ethylhexyl-2-cyano-3,3′-diphenyl-acrylate, 2-ethoxy-3-t-butyl-2′-ethyl- Oxanilic acid anilide ultraviolet absorbers such as oxalic acid bisanilide and 2-ethoxy-2′-ethyl-oxalic acid bisanilide, 2,4-di-t-butylphenyl-3,5-di-t-butyl-4 -Benzoate UV absorbers such as hydroxybenzoate, 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5-hydroxyphenol, 2- (2 , 4-Dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydride) Examples include triazine-based UV absorbers such as xyl-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine. May be.
 光反射層1、発光体層2又は表面層3における紫外線吸収剤の含有量は、少ないと、光反射体の光反射性の低下を抑制することができず、多くても、光反射体の光反射性の低下の抑制効果に変化はないので、光反射層1、発光体層2又は表面層3を構成している合成樹脂100重量部に対して0.01~0.8重量部が好ましく、0.05~0.5重量部がより好ましい。 If the content of the ultraviolet absorber in the light reflecting layer 1, the light emitter layer 2 or the surface layer 3 is small, the light reflecting property of the light reflector cannot be suppressed from being lowered. Since there is no change in the effect of suppressing the decrease in light reflectivity, 0.01 to 0.8 parts by weight with respect to 100 parts by weight of the synthetic resin constituting the light reflection layer 1, the light emitter layer 2 or the surface layer 3 Preferably, 0.05 to 0.5 part by weight is more preferable.
 又、表面層3を有する光反射体Aの場合、光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が100%以上であることが好ましい。このように調整することによって、光反射体の反射光において更に確実に発光体が放射する特定波長領域の光を入射光よりも強調することができる。 Further, in the case of the light reflector A having the surface layer 3, the maximum light reflectance in the wavelength region of 360 to 740 nm is preferably 100% or more in the reflection spectrum of the light reflector. By adjusting in this way, the light in the specific wavelength range emitted from the light emitter can be more reliably emphasized than the incident light in the reflected light of the light reflector.
 又、表面層3を有する光反射体Aの場合、光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が、JIS K7350-4に準拠して設定温度50℃及び設定相対湿度20%の条件下にて行われた促進暴露試験100時間後において、100%以上であることが好ましい。このように調整することによって、光反射体の反射光において発光体が放射する特定波長領域の光を長期間に亘って入射光よりも強調することができる。 In the case of the light reflector A having the surface layer 3, the maximum light reflectance in the wavelength region of 360 to 740 nm in the reflection spectrum of the light reflector is set at a set temperature of 50 ° C. and a set relative relative to JIS K7350-4. It is preferably 100% or more after 100 hours of accelerated exposure test conducted under the condition of 20% humidity. By adjusting in this way, the light in the specific wavelength region emitted by the light emitter in the reflected light of the light reflector can be emphasized over the incident light over a long period of time.
 なお、上記設定温度50℃とは、促進暴露試験に用いられる促進暴露装置において設定された温度が50℃という意味である。即ち、促進暴露試験に用いられる促進暴露装置は、測定雰囲気温度が設定された温度を上回ると加熱部材による加熱が停止する一方、測定雰囲気温度が設定された温度よりも下回ると加熱部材による加熱が開始するように構成されており、促進暴露装置内の測定雰囲気温度は、設定された温度を中心として上下してもよい。但し、促進暴露装置内の測定雰囲気温度は、最低温度が45℃、最高温度が55℃となるようにする必要がある。 The set temperature of 50 ° C. means that the temperature set in the accelerated exposure apparatus used for the accelerated exposure test is 50 ° C. That is, the accelerated exposure apparatus used in the accelerated exposure test stops heating by the heating member when the measured ambient temperature exceeds the set temperature, while heating by the heated member stops when the measured ambient temperature falls below the set temperature. It is configured to start, and the measured ambient temperature in the accelerated exposure apparatus may rise and fall around a set temperature. However, the measurement ambient temperature in the accelerated exposure apparatus must be such that the minimum temperature is 45 ° C. and the maximum temperature is 55 ° C.
 又、上記設定相対湿度20%とは、促進暴露試験に用いられる促進暴露装置において設定された相対湿度が20%という意味である。即ち、促進暴露試験に用いられる促進暴露装置は、測定雰囲気の相対湿度が設定された相対湿度を上回ると加湿部材による加湿が停止する一方、測定雰囲気の相対湿度が設定された相対湿度よりも下回ると加湿部材による加湿が開始するように構成されており、促進暴露装置内の測定雰囲気の相対湿度は、設定された相対湿度を中心として上下してもよい。但し、促進暴露装置内の測定雰囲気における相対湿度は、最低相対湿度が10%、最高相対湿度が30%となるようにする必要がある。 The set relative humidity of 20% means that the relative humidity set in the accelerated exposure apparatus used for the accelerated exposure test is 20%. That is, the accelerated exposure apparatus used for the accelerated exposure test stops the humidification by the humidifying member when the relative humidity of the measurement atmosphere exceeds the set relative humidity, while the relative humidity of the measurement atmosphere is lower than the set relative humidity. Further, the relative humidity of the measurement atmosphere in the accelerated exposure apparatus may be raised or lowered around the set relative humidity. However, the relative humidity in the measurement atmosphere in the accelerated exposure apparatus must be such that the minimum relative humidity is 10% and the maximum relative humidity is 30%.
 なお、促進暴露試験に用いられる促進暴露装置としては、スガ試験機社から商品名「サンシャインスーパーロングライフウェザーメーターWEL-SUN-HC・B型」にて市販されている装置を用いることができる。 In addition, as an accelerated exposure apparatus used for the accelerated exposure test, an apparatus commercially available from Suga Test Instruments Co., Ltd. under the trade name “Sunshine Super Long Life Weather Meter WEL-SUN-HC / B type” can be used.
 次に、本発明の光反射体の製造方法について説明する。光反射体の製造方法としては、特に限定されず、例えば、(1)熱可塑性樹脂と、発光体とを含有する発光体層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練する一方、熱可塑性樹脂と上記粒子とを含有する光反射層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、第一、第二押出機を接続させている同一のダイに発光体層用熱可塑性樹脂組成物及び光反射層用熱可塑性樹脂組成物を供給して共押出しすることによって、光反射層用熱可塑性樹脂組成物からなる光反射層の一面に、発光体層用熱可塑性樹脂組成物からなる発光体層を積層一体化してなる光反射体を製造する方法、(2)予め用意した光反射層上に、発光体を含有する塗料を塗布、乾燥させて発光体層を積層一体化して光反射体を製造する方法などが挙げられる。 Next, a method for manufacturing the light reflector of the present invention will be described. The method for producing the light reflector is not particularly limited. For example, (1) a thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor is supplied to the first extruder and melt kneaded. On the other hand, a thermoplastic resin composition for a light reflecting layer containing a thermoplastic resin and the above particles is supplied to a second extruder, melt-kneaded, and the same die connecting the first and second extruders By supplying the thermoplastic resin composition for the light-emitting layer and the thermoplastic resin composition for the light-reflecting layer to the coextrusion, the light-emitting body is formed on one surface of the light-reflecting layer comprising the thermoplastic resin composition for the light-reflecting layer. A method for producing a light reflector obtained by laminating and integrating a light emitter layer composed of a thermoplastic resin composition for a layer; (2) a paint containing a light emitter is applied and dried on a light reflective layer prepared in advance; Examples include a method of manufacturing a light reflector by laminating and integrating light emitter layers. That.
 又、表面層を有する光反射体の製造方法について説明する。光反射体の製造方法としては、特に限定されず、例えば、(1)光反射層、発光体層及び表面層を共押出して製造する製造方法、(2)光反射層を構成する光反射性を有する光反射体上に、発光体層を構成する熱可塑性樹脂フィルムを積層一体化させ、更に、熱可塑性樹脂フィルム上に、表面層を構成する光反射性を有する光反射体を積層一体化させる製造方法、(3)光反射層を構成する光反射性を有する光反射体上に、発光体層を構成する発光体を含有する塗料を塗布、乾燥させ、更に、発光体層上に、表面層を構成する光反射性を有する光反射体を積層一体化させる製造方法などにより製造することができ、各層の厚みの制御が容易で且つ生産性が高いので、上記(1)の共押出によって製造することが好ましい。例えば、熱可塑性樹脂及び上記粒子を含有する光反射層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、熱可塑性樹脂及び発光体を含有する発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、熱可塑性樹脂及び光反射性充填材を含有する表面層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、第一~三押出機を接続させている同一のダイに光反射層用熱可塑性樹脂組成物、発光体層用熱可塑性樹脂組成物及び表面層用熱可塑性樹脂組成物を供給して共押出しすることによって、光反射層用熱可塑性樹脂組成物からなる光反射層の一面に発光体層用熱可塑性樹脂組成物からなる発光体層を積層一体化していると共に、この発光体層の一面に表面層用熱可塑性樹脂組成物からなる表面層が積層一体化している光反射体を製造する方法などが挙げられる。 Also, a method for producing a light reflector having a surface layer will be described. The method for producing the light reflector is not particularly limited. For example, (1) a method for producing the light reflecting layer, the light emitting layer and the surface layer by coextrusion, and (2) a light reflecting property constituting the light reflecting layer. A thermoplastic resin film constituting the light emitter layer is laminated and integrated on the light reflector having the same, and a light reflecting material having light reflectivity constituting the surface layer is laminated and integrated on the thermoplastic resin film. (3) On the light reflector having light reflectivity constituting the light reflection layer, a paint containing a light emitter constituting the light emitter layer is applied and dried, and further on the light emitter layer, It can be manufactured by a manufacturing method in which light reflectors having light reflectivity constituting a surface layer are laminated and integrated, and the thickness of each layer can be easily controlled and the productivity is high. It is preferable to manufacture by. For example, a thermoplastic resin composition for a light reflecting layer containing a thermoplastic resin and the above-mentioned particles is supplied to a first extruder and melt-kneaded, and a thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor. The product is supplied to the second extruder and melt-kneaded, and the thermoplastic resin composition for the surface layer containing the thermoplastic resin and the light-reflective filler is supplied to the third extruder and melt-kneaded. By supplying and coextruding the thermoplastic resin composition for the light reflecting layer, the thermoplastic resin composition for the light emitter layer, and the thermoplastic resin composition for the surface layer to the same die to which the three extruders are connected, A light emitting layer made of a thermoplastic resin composition for a light emitter layer is laminated and integrated on one surface of a light reflecting layer made of a thermoplastic resin composition for a light reflecting layer, and heat for the surface layer is formed on one surface of this light emitter layer. The surface layer made of the plastic resin composition is laminated and integrated. And a method of manufacturing a light reflector and the like.
 又、光反射層が非発泡シートと発泡シートとを積層一体化させて構成されている光反射体の製造方法について説明する。この光反射体の製造方法としては、汎用の方法が用いられ、例えば、熱可塑性樹脂及び上記粒子を含有する光反射層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、熱可塑性樹脂及び発光体を含有する発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、熱可塑性樹脂及び必要に応じて含有されるルチル型酸化チタンなどの添加剤を含む熱可塑性樹脂組成物を第三押出機に供給して溶融混練すると共に第三押出機に発泡剤を圧入して溶融混練し発泡性熱可塑性樹脂組成物とし、第一~三押出機から合流ダイに押出して、発光体層用熱可塑性樹脂組成物、光反射層用熱可塑性樹脂組成物及び発泡性熱可塑性樹脂組成物がこの順序で積層されてなる積層体とし、この積層体を合流ダイの先端に取り付けたダイから押出発泡させて、発泡性熱可塑性樹脂組成物を発泡させてなる発泡シートの一面に光反射層用熱可塑性樹脂組成物からなる非発泡シートが積層一体化されてなる光反射層の一面に、発光体層用熱可塑性樹脂組成物からなる発光体層が積層一体化されてなる光反射体を製造することができる。 Also, a method for producing a light reflector in which the light reflecting layer is formed by laminating and integrating a non-foamed sheet and a foamed sheet will be described. As a manufacturing method of this light reflector, a general-purpose method is used, for example, a thermoplastic resin composition for a light reflection layer containing a thermoplastic resin and the above particles is supplied to a first extruder and melt-kneaded, A thermoplastic resin composition for a phosphor layer containing a thermoplastic resin and a phosphor is supplied to a second extruder and melt-kneaded, and the thermoplastic resin and additives such as rutile type titanium oxide contained as necessary A thermoplastic resin composition containing the above is supplied to a third extruder and melt-kneaded, and a foaming agent is injected into the third extruder and melt-kneaded to obtain a foamable thermoplastic resin composition. Extruded into a joining die to form a laminate in which the thermoplastic resin composition for the light emitter layer, the thermoplastic resin composition for the light reflecting layer, and the foamable thermoplastic resin composition are laminated in this order, and this laminate is joined Extrusion from a die attached to the tip of the die A non-foamed sheet made of a thermoplastic resin composition for a light reflecting layer is laminated on one side of a foamed sheet obtained by foaming a foamable thermoplastic resin composition, A light reflector formed by laminating and integrating light emitting layers made of the thermoplastic resin composition for layers can be produced.
 光反射層の非発泡シートを発泡シートから形成する場合には、第一押出機に発泡剤を圧入して光反射層用熱可塑性樹脂組成物を発泡性とすればよく、この場合において、光反射層を一層の発泡シートから構成するときには、第三押出機を合流ダイに接続させなければよい。又、発光体層上に表面層を形成する場合には、第四押出機を合流ダイに接続させ、第四押出機に、熱可塑性樹脂及び光反射性充填材を含有する表面層用熱可塑性樹脂組成物を供給して表面層用熱可塑性樹脂組成物を共押出し、表面層用熱可塑性樹脂組成物を発光体層上に表面層として積層一体化させればよい。上記ダイとしては、押出発泡において汎用されているものであれば、特に限定されず、例えば、Tダイ、環状ダイなどが挙げられる。 When the non-foamed sheet of the light reflecting layer is formed from the foamed sheet, a foaming agent may be press-fitted into the first extruder to make the thermoplastic resin composition for the light reflecting layer foamable. When the reflective layer is composed of a single foam sheet, the third extruder need not be connected to the joining die. In addition, when forming a surface layer on the light emitting layer, a fourth extruder is connected to a converging die, and the fourth extruder includes a thermoplastic resin and a light-reflective filler. The resin composition may be supplied to coextrude the surface layer thermoplastic resin composition, and the surface layer thermoplastic resin composition may be laminated and integrated as a surface layer on the phosphor layer. The die is not particularly limited as long as it is widely used in extrusion foaming, and examples thereof include a T die and an annular die.
 上記製造方法において、ダイとしてTダイを用いた場合には、押出機からシート状に押出発泡することによって上記構成を有する光反射体を製造することができる。 In the above production method, when a T die is used as the die, the light reflector having the above-described configuration can be produced by extrusion foaming into a sheet form from an extruder.
 又、ダイとして環状ダイを用いた場合には、環状ダイから円筒状に押出発泡して円筒状体を製造し、この円筒状体を徐々に拡径した上で冷却マンドレルに供給して冷却した後、円筒状体をその押出方向に連続的に内外周面間に亘って切断し切り開いて展開することによって上記構成を有する光反射体を製造することができる。 When an annular die is used as the die, a cylindrical body is produced by extrusion foaming from the annular die into a cylindrical shape, and the cylindrical body is gradually expanded in diameter and then supplied to a cooling mandrel for cooling. After that, the light reflector having the above-described configuration can be manufactured by cutting the cylindrical body continuously between the inner and outer peripheral surfaces in the direction of extrusion, and opening and developing the cylindrical body.
 なお、上記発泡剤としては、特に限定されず、プロパン、ブタン、ペンタンなどの飽和脂肪族炭化水素、テトラフルオロエタン、クロロジフルオロエタン、ジフルオロエタンなどのハロゲン化炭化水素などの有機ガス;二酸化炭素、窒素ガスなどの気体状の無機化合物;水などの液体状の無機化合物;重炭酸ナトリウムとクエン酸との混合物の如き、有機酸若しくはその塩と、重炭酸塩との混合物、ジニトロソペンタメチレンテトラミンなどの固体状の発泡剤などが挙げられ、有機酸若しくはその塩と、重炭酸塩との混合物、及び、有機ガスを併用することが好ましく、重炭酸ナトリウムとクエン酸との混合物、及び、有機ガスを併用することがより好ましい。 The blowing agent is not particularly limited, and is an organic gas such as saturated aliphatic hydrocarbons such as propane, butane and pentane, and halogenated hydrocarbons such as tetrafluoroethane, chlorodifluoroethane and difluoroethane; carbon dioxide and nitrogen gas. Gaseous inorganic compounds such as water; liquid inorganic compounds such as water; mixtures of organic acids or salts thereof with bicarbonate, such as a mixture of sodium bicarbonate and citric acid, dinitrosopentamethylenetetramine, etc. Solid foaming agents and the like are mentioned, and it is preferable to use a mixture of an organic acid or a salt thereof and bicarbonate and an organic gas, and a mixture of sodium bicarbonate and citric acid and an organic gas are used. It is more preferable to use together.
 このようにして得られた光反射体は、発光体層2に、可視光領域に発光する発光体を含有しており、光反射体の発光体層2に入射した紫外線又は可視光線を発光体が吸収して可視光領域に発光スペクトルのピークを有する光を放射するので、光源から放射された光の波長分布と、光反射体から放射される反射光の波長分布は相違し、表示装置や照明などの色相の重視される用途に好適に用いることができる。 The light reflector thus obtained contains a light emitter that emits light in the visible light region in the light emitter layer 2 and emits ultraviolet light or visible light incident on the light emitter layer 2 of the light reflector. Absorbs and emits light having an emission spectrum peak in the visible light region, so the wavelength distribution of the light emitted from the light source is different from the wavelength distribution of the reflected light emitted from the light reflector. It can be suitably used for applications where hue is important, such as lighting.
 そして、光反射体が、発光体層2中に400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している場合には、光反射体の発光体層2に入射した光を発光体が吸収して、これらの発光体が、400~470nmの波長領域に発光スペクトルのピークを有する光又は570~700nmの波長領域に発光スペクトルのピークを有する光の一方或いは双方を放射する。 The light reflector is either a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm in the light emitter layer 2 or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. Alternatively, when both are contained, the light emitters absorb light incident on the light emitter layer 2 of the light reflector, and these light emitters have an emission spectrum peak in the wavelength region of 400 to 470 nm. One or both of light and light having an emission spectrum peak in the wavelength region of 570 to 700 nm are emitted.
 しかも、発光体に吸収されることなく発光体層2を透過した入射光は、光反射層1によって発光体層2側に反射され、発光体層2中を再度、通過する途上に発光体に吸収されて上述のような発光スペクトルを有する光を放射し、更に、発光体が放射した光のうち、光反射層1側に放射された光も光反射層1が発光体層2側に反射する。従って、発光体層2の発光体から放射された上述のような発光スペクトルを有する光は発光体層2から効率良く放射される。 Moreover, the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter. Light that has been absorbed and emits light having the above-described emission spectrum is emitted, and among the light emitted by the light emitter, the light emitted to the light reflecting layer 1 side is also reflected by the light reflecting layer 1 to the light emitting layer 2 side. To do. Therefore, the light having the above emission spectrum emitted from the light emitter of the light emitter layer 2 is efficiently emitted from the light emitter layer 2.
 従って、本発明の光反射体Aによれば、光反射版Aに入射した光よりも光反射体Aから放射された光の方が、発光体層2中の発光体の発光作用により、400~470nmの波長領域又は570~700nmの波長領域における光量が多いため、緑系の光に比して視感度が劣る青系又は赤系の光を人間の目がより認識しやすくなり、表示装置や照明などの色相の重視される用途により好適に用いることができる。 Therefore, according to the light reflector A of the present invention, the light emitted from the light reflector A rather than the light incident on the light reflector A is 400 due to the light emitting action of the light emitter in the light emitter layer 2. Since the amount of light in the wavelength region of ˜470 nm or in the wavelength region of 570 to 700 nm is large, it becomes easier for human eyes to recognize blue or red light, which is inferior in visual sensitivity compared to green light, and a display device It can be suitably used for applications in which hue is important, such as lighting and lighting.
 上述では、本発明の光反射体は緑系の光に比して視感度が劣る青系又は赤系の光を人間の目が認識しやすくなっていることから、液晶表示装置などの表示装置や照明に好適に用いることができることを説明したが、植物栽培用途にも用いることができる。 In the above description, the light reflector according to the present invention makes it easier for human eyes to recognize blue or red light, which has inferior visibility compared to green light. However, it can also be used for plant cultivation applications.
 上述の通り、本発明の光反射体Aに蛍光灯などの人工光や太陽光を照射すると、発光体層2に含まれている発光体の作用によって、従来の白色又は銀色の光反射体で反射された反射光よりも、本発明の光反射体Aで反射された反射光の方が、400~470nmの波長領域又は570~700nmの波長領域の何れか一方或いは双方において光量が多くなっている。 As described above, when the light reflector A of the present invention is irradiated with artificial light such as a fluorescent lamp or sunlight, a conventional white or silver light reflector is produced by the action of the light emitter included in the light emitter layer 2. The amount of light reflected by the light reflector A of the present invention is larger than that of the reflected light in one or both of the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm. Yes.
 そして、400~470nmの波長領域の光、及び、570~700nmの波長領域の光は植物の生育に有効な光であり、よって、本発明の光反射体によれば、太陽光やCCFL、蛍光灯などの人工光を用いて植物栽培をする場合、植物の生育に有効な光をより多く植物に照射させることができるので、植物の生育の促進を図ることができ、又、植物の生育を屋外だけでなく、室内において行うこともできる。更に、人工光を用いた場合、人工光の光源の消費電力の節減も図ることができる。 The light in the wavelength region of 400 to 470 nm and the light in the wavelength region of 570 to 700 nm are light effective for plant growth. Therefore, according to the light reflector of the present invention, sunlight, CCFL, fluorescence When cultivating plants using artificial light such as lamps, the plant can be irradiated with more light that is effective for the growth of plants, so that the growth of plants can be promoted, and It can be performed indoors as well as outdoors. Furthermore, when artificial light is used, the power consumption of the artificial light source can be reduced.
 更に、発光体層2の一面、即ち、光反射体の光入射面側に表面層3が積層一体化されている場合、表面層3には光反射性充填材が含有されており、発光体層2に入射する光量が制限されている。従って、発光体層2中に含まれている発光体の発光作用を長期間に亘って安定的に持続させることができ、光反射体による光反射光の色相を変化させる効果を長期間に亘って持続させることができる。 Furthermore, when the surface layer 3 is laminated and integrated on one surface of the light emitter layer 2, that is, the light incident surface side of the light reflector, the surface layer 3 contains a light reflective filler, and the light emitter The amount of light incident on the layer 2 is limited. Therefore, the light emitting action of the light emitter included in the light emitter layer 2 can be stably maintained over a long period of time, and the effect of changing the hue of the light reflected by the light reflector can be maintained over a long period of time. Can be sustained.
 そして、表面層を構成している合成樹脂と、上記表面層に含有されている光反射性充填材との界面にて反射する反射光の波長領域が、発光体層に含有されている発光体における光吸収波長領域と重複している場合には、発光体層に入射したものの、発光体に吸収されずに光反射層によって反射されて発光体層から放出された光を再度、表面層によって発光体層方向に向かって反射させて発光体層に入射させ、発光体層中の発光体に吸収させることによって、発光体から更に多い光量の光が放射され、その結果、光反射体による反射光の色相をより確実に変化させることができる。 A light emitter in which a wavelength region of reflected light reflected at an interface between the synthetic resin constituting the surface layer and the light reflective filler contained in the surface layer is contained in the light emitter layer. In the case of overlapping with the light absorption wavelength region, the light that is incident on the light emitter layer but is not absorbed by the light emitter but is reflected by the light reflecting layer and emitted from the light emitter layer is again emitted by the surface layer. By reflecting the light in the direction of the light emitter layer, entering the light emitter layer, and absorbing the light in the light emitter layer, a larger amount of light is emitted from the light emitter, and as a result, reflected by the light reflector. The hue of light can be changed more reliably.
 又、表面層を構成している合成樹脂と、上記表面層に含有されている光反射性充填材との界面にて反射する反射光の波長領域が、発光体層に含有されている発光体の発光波長領域とが重複している場合には、光反射体に入射する光のうち、発光体が放射する波長領域の光を表面層によって光反射体外に反射させると共に、発光体から放射された光を光反射性充填材によって乱反射させながら光反射体外に均一に放出させることでき、光反射体による反射光の色相をより確実に且つ均一に変化させることができる。 In addition, the light emitter in which the wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the surface layer and the light reflective filler contained in the surface layer is contained in the light emitter layer. When the light emission wavelength region overlaps, light in the wavelength region emitted from the light emitter among the light incident on the light reflector is reflected outside the light reflector by the surface layer and emitted from the light emitter. The reflected light can be uniformly emitted to the outside of the light reflector while being irregularly reflected by the light reflective filler, and the hue of the reflected light from the light reflector can be changed more reliably and uniformly.
 しかも、発光体に吸収されることなく発光体層2を透過した入射光は、光反射層1によって発光体層2側に反射され、発光体層2中を再度、通過する途上に発光体に吸収されて発光体は可視光領域に光を放射し、更に、発光体が放射した光のうち、光反射層1側に放射された光も光反射層1によって発光体層2側に反射される。従って、発光体層2の発光体から放射された光は発光体層2から表面層3側に通じて反射され、表面層3を通じて外部に効率良く放射される。 Moreover, the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter. After being absorbed, the light emitter emits light to the visible light region, and among the light emitted from the light emitter, the light emitted to the light reflection layer 1 side is also reflected by the light reflection layer 1 to the light emitter layer 2 side. The Therefore, the light emitted from the light emitter of the light emitter layer 2 is reflected from the light emitter layer 2 to the surface layer 3 side and is efficiently emitted to the outside through the surface layer 3.
 従って、本発明の光反射体Aによれば、発光体層2中の発光体の発光作用により、可視光領域における特定波長領域において、光反射体Aに入射した光量よりも光反射体Aから放射された光量の方が多いため、表示装置や照明などの色相の重視される用途に好適に用いることができる。 Therefore, according to the light reflector A of the present invention, the light emitting action of the light emitter in the light emitter layer 2 causes the light reflector A to emit light more than the amount of light incident on the light reflector A in the specific wavelength region in the visible light region. Since the amount of emitted light is larger, it can be suitably used for applications in which hue is important, such as a display device or illumination.
 次に、本発明の光反射体Aを用いた照明装置の一例について説明する。照明装置Lは、図5に示すように、光源Bと、この光源Bの後方に配設された光反射体Aとを備えている。 Next, an example of a lighting device using the light reflector A of the present invention will be described. As shown in FIG. 5, the lighting device L includes a light source B and a light reflector A disposed behind the light source B.
 上記光源Bとしては、紫外領域及び/又は可視光領域に光を放射することができれば、特に限定されず、例えば、冷陰極管(CCFL)、蛍光灯、発光ダイオード(LED)、水銀灯、HIDランプ、白熱電球などが挙げられるが、光の拡散性能及び発光効率が優れており、発熱量が少ないので、蛍光灯が好ましい。なお、光源Bは、単独で用いられても二種以上が併用されてもよい。 The light source B is not particularly limited as long as it can emit light in the ultraviolet region and / or the visible light region. For example, a cold cathode tube (CCFL), a fluorescent lamp, a light emitting diode (LED), a mercury lamp, an HID lamp An incandescent bulb may be used, but a fluorescent lamp is preferred because of its excellent light diffusion performance and luminous efficiency and low calorific value. In addition, the light source B may be used independently or 2 or more types may be used together.
 蛍光灯は、一般的に、演色性によって3波長型と高演色型に、色によって白色型、昼光型、昼白型に、形状によって直管型、環状型などに分類されるが、照明装置Lでは何れの種類の蛍光灯であっても用いることができる。 Fluorescent lamps are generally classified into three-wavelength type and high color rendering type according to color rendering, white type, daylight type, day white type according to color, straight tube type, annular type, etc. depending on the shape. In the apparatus L, any kind of fluorescent lamp can be used.
 そして、光源Bの後方には、図5に示したように、例えば、凸円弧状に成形又は変形させた光反射体Aが光源Bから所定間隔を存して配設されている。この光反射体Aは、光源Bから放射された光の一部を吸収し、光源Bから放射された光の波長分布とは異なる波長分布を有する光を反射光として放射する。 Then, behind the light source B, as shown in FIG. 5, for example, a light reflector A formed or deformed into a convex arc shape is disposed at a predetermined interval from the light source B. The light reflector A absorbs part of the light emitted from the light source B, and emits light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source B as reflected light.
 発光体層2中に400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している場合、光源Bから放射されて光反射体の発光体層2に入射した光を発光体が吸収して、これらの発光体が、400~470nmの波長領域に発光スペクトルのピークを有する光又は570~700nmの波長領域に発光スペクトルのピークを有する光の一方或いは双方を放射する。 The light emitter layer 2 contains either or both of a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm and a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm. In this case, the light emitted from the light source B and incident on the light emitter layer 2 of the light reflector is absorbed by the light emitters, and these light emitters have light having an emission spectrum peak in the wavelength region of 400 to 470 nm or 570. One or both of light having emission spectrum peaks in a wavelength region of ˜700 nm are emitted.
 しかも、発光体に吸収されることなく発光体層2を透過した入射光は、光反射層1によって発光体層2側に反射され、発光体層2中を再度、通過する途上に発光体に吸収されて上述のような発光スペクトルを有する光を放射し、更に、発光体が放射した光のうち、光反射層1側に放射された光も光反射層1が発光体層2側に反射する。従って、発光体層2の発光体から放射された上述のような発光スペクトルを有する光は発光体層2から効率良く放射される。 Moreover, the incident light that has passed through the light emitter layer 2 without being absorbed by the light emitter is reflected by the light reflecting layer 1 toward the light emitter layer 2 and passes through the light emitter layer 2 again to the light emitter. Light that has been absorbed and emits light having the above-described emission spectrum is emitted, and among the light emitted by the light emitter, the light emitted to the light reflecting layer 1 side is also reflected by the light reflecting layer 1 to the light emitting layer 2 side. To do. Therefore, the light having the above emission spectrum emitted from the light emitter of the light emitter layer 2 is efficiently emitted from the light emitter layer 2.
 従って、本発明の照明装置Lによれば、光源Bから放射されて光反射体Aに入射した光よりも光反射体Aから放射された光の方が、発光体層2中の発光体の発光作用により、400~470nmの波長領域又は570~700nmの波長領域における光量が多いため、緑系の光に比して視感度が劣る青系又は赤系の光を人間の目がより認識しやすくなり、色相の重視される用途に好適に用いることができる。 Therefore, according to the illuminating device L of the present invention, the light emitted from the light reflector A is more emitted from the light reflector A than the light emitted from the light source B and incident on the light reflector A. Due to the light-emitting action, the amount of light in the wavelength region of 400 to 470 nm or the wavelength region of 570 to 700 nm is large, so that the human eye recognizes blue or red light that is less visible than green light. It becomes easy and can be suitably used for applications in which hue is important.
 上述の色相の重視される用途の一つとして、例えば、小売店などに配設されている商品陳列棚上に配置されている物品を照らす照明用途に上記照明装置を用いることができる。なお、物品としては、特に限定されず、例えば、食品、衣類、貴金属製品などが挙げられる。 As one of the above-mentioned applications in which the hue is regarded as important, for example, the above-described illumination device can be used for an illumination application for illuminating an article arranged on a merchandise display shelf arranged in a retail store or the like. In addition, it does not specifically limit as articles | goods, For example, foodstuffs, clothing, a noble metal product etc. are mentioned.
 例えば、発光体層2に含まれている発光体が、400~470nmの波長領域に発光スペクトルのピークを有する発光体である場合、照明装置から放射される光は、青系の光が強調されており、商品陳列棚に配置されている物品を青系の色相に近づけた状態に視認させることができる。 For example, when the illuminant included in the illuminant layer 2 is an illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, blue light is emphasized as light emitted from the illumination device. Therefore, the articles placed on the merchandise display shelf can be visually recognized in a state close to a blue hue.
 又、発光体層2に含まれている発光体が、570~700nmの波長領域に発光スペクトルのピークを有する発光体である場合、照明装置から放射される光は、赤系の光が強調されており、商品陳列棚に配置されている物品を赤系の色相に近づけた状態に視認させることができる。 When the light emitter included in the light emitter layer 2 is a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, red light is emphasized as light emitted from the illumination device. Therefore, the articles placed on the merchandise display shelf can be visually recognized in a state close to a red hue.
 このように、本発明の照明装置によって商品陳列棚上に配置された物品を照らすことによって、物品を青系又は赤系の色相に近づけた状態に視認させて商品価値を向上させることができる。 In this way, by illuminating the article placed on the merchandise display shelf with the lighting device of the present invention, the merchandise value can be visually recognized in a state close to a blue or red hue, and the merchandise value can be improved.
 例えば、商品陳列棚上に、冷たい飲料が配置されている場合には、発光体層2に、400~470nmの波長領域に発光スペクトルのピークを有する発光体を含有させることによって、冷たい飲料を青系の色相に近づけた状態に視認させ、飲料に更に涼感を与えて飲料の販促を図ることができる。 For example, when a cold beverage is placed on a merchandise display shelf, the light emitter layer 2 contains an illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm, whereby the cold beverage is made blue. It can be visually recognized in a state close to the hue of the system, and the drink can be further promoted to promote sales of the drink.
 又、商品陳列棚上に、温かい飲料が配置されている場合には、発光体層2に、570~700nmの波長領域に発光スペクトルのピークを有する発光体を含有させることによって、温かい飲料を赤系の色相に近づけた状態に視認させ、飲料に更に温かい印象を与えて飲料の販促を図ることができる。 In addition, when a warm beverage is arranged on the product display shelf, the warm beverage is made red by adding a luminous body having an emission spectrum peak in the wavelength region of 570 to 700 nm to the luminous body layer 2. It can be visually recognized in a state close to the hue of the system, and a beverage can be given a warmer impression to promote sales of the beverage.
 上述では、本発明の照明装置Lで用いられている光反射体Aは、緑系の光に比して視感度が劣る青系又は赤系の光を人間の目が認識しやすくなっていることから、色相の重視される用途に好適に用いることができることを説明したが、植物栽培用途にも好適に用いることができる。 In the above description, the light reflector A used in the illumination device L of the present invention makes it easier for human eyes to recognize blue or red light, which has poor visibility compared to green light. From this, it has been explained that it can be suitably used for applications in which hue is important, but it can also be suitably used for plant cultivation applications.
 上述の通り、本発明の照明装置Lの光源Bから光反射体Aに光を照射すると、発光体層2に含まれている発光体の作用によって、従来の白色又は銀色の光反射体で反射された反射光よりも、光反射体Aで反射された反射光の方が、400~470nmの波長領域又は570~700nmの波長領域の何れか一方或いは双方において光量が多くなっている。 As described above, when the light reflector A is irradiated with light from the light source B of the lighting device L of the present invention, it is reflected by the conventional white or silver light reflector due to the action of the light emitter included in the light emitter layer 2. The amount of light reflected by the light reflector A is greater in one or both of the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm than the reflected light.
 そして、400~470nmの波長領域の光、及び、570~700nmの波長領域の光は植物の生育に有効な光であり、よって、本発明の照明装置Lによれば、冷陰極管(CCFL)、蛍光灯などの人工光、特に蛍光灯を用いて植物栽培をする場合、植物の生育に有効な光をより多く植物に照射させることができるので、植物の生育の促進を図ることができる。更に、人工光、特に蛍光灯を用いた場合、光源の消費電力の節減も図ることができる。 The light in the wavelength region of 400 to 470 nm and the light in the wavelength region of 570 to 700 nm are light that is effective for the growth of plants. Therefore, according to the lighting device L of the present invention, a cold cathode tube (CCFL) When plants are cultivated using artificial light such as fluorescent lamps, especially fluorescent lamps, the plant can be irradiated with more light that is effective for the growth of the plants, so that the growth of the plants can be promoted. Further, when artificial light, particularly fluorescent lamps are used, the power consumption of the light source can be reduced.
 上述のように、本発明の照明装置Lを植物栽培用に用いる場合には、例えば、図6に示したように、照明装置Lの光源Bの前方に所定間隔を存して、水耕栽培棚、土壌栽培棚などの植物栽培棚Cを配設し、光反射体Aから放射される反射光が植物栽培棚Cにて育成されている植物に照射されるようにすればよい。 As described above, when the lighting device L of the present invention is used for plant cultivation, for example, as shown in FIG. 6, hydroponics with a predetermined interval in front of the light source B of the lighting device L Plant cultivation shelves C such as shelves and soil cultivation shelves may be arranged so that the reflected light emitted from the light reflector A is irradiated to the plants grown on the plant cultivation shelf C.
 そして、照明装置Lの光源として蛍光灯を用いた場合には、蛍光灯からは光が全方向に放射状に放出され、この放射された光は光反射体Aによって拡散されながら反射されるので、光源Bの前方に配設された植物栽培棚Cにて育成されている植物に必要な光が略均一に照射され、植物栽培棚C内の植物を安定的に且つ確実に育成することができる。 When a fluorescent lamp is used as the light source of the lighting device L, light is emitted from the fluorescent lamp radially in all directions, and the emitted light is reflected while being diffused by the light reflector A. The light required for the plants grown on the plant cultivation shelf C disposed in front of the light source B is irradiated almost uniformly, and the plants in the plant cultivation shelf C can be stably and reliably grown. .
 更に、図6の植物栽培用照明装置Lでは、光反射体Aと植物栽培棚Cとの間に隙間が形成されており、光反射体Aで反射された反射光が植物栽培棚C以外の部分に照射され、植物の栽培の効率が低下することがある。 Furthermore, in the plant cultivation lighting device L of FIG. 6, a gap is formed between the light reflector A and the plant cultivation shelf C, and the reflected light reflected by the light reflector A is other than the plant cultivation shelf C. Irradiation of the part may reduce the efficiency of plant cultivation.
 このような場合には、図7に示したように、植物栽培用照明装置Lにおける凸円弧状に成形された光反射体Aを第一光反射体Aとし、この第一光反射体Aの両端、即ち、光反射体Aの湾曲端部A1、A1と、植物栽培棚Cとの間に、第二光反射体Dを配設し、第一光反射体Aから放射された反射光を第二光反射体Dで植物栽培棚C方向に反射させることによって、第一光反射体Aで反射された光を効率良く植物栽培棚Cにて育成されている植物に照射し、植物の生育をより確実なものとすることができる。 In such a case, as shown in FIG. 7, the light reflector A formed in a convex arc shape in the plant cultivation lighting device L is used as the first light reflector A, and the first light reflector A The second light reflector D is disposed between both ends, that is, the curved ends A1 and A1 of the light reflector A and the plant cultivation shelf C, and the reflected light emitted from the first light reflector A is reflected. By reflecting the light reflected by the first light reflector A in the direction of the plant cultivation shelf C with the second light reflector D, the plant grown on the plant cultivation shelf C is efficiently irradiated to grow the plant. Can be made more reliable.
 そして、第二光反射体Dで反射された光は、第二光反射体Dにて更に拡散されるので植物栽培棚Cにて育成されている植物に必要な光をより均一に且つ確実に照射することができる。 And since the light reflected by the second light reflector D is further diffused by the second light reflector D, the light necessary for the plants grown on the plant cultivation shelf C is more uniformly and reliably obtained. Can be irradiated.
 上記第二光反射体Dは、第一光反射体Aと同一の構成の光反射体が用いられてもよいし、或いは、第一光反射体Aと相違する構成の光反射体が用いられてもよく、第二光反射体Dも、第一光反射体Aと同様に、光源Bから放射された光の波長分布とは異なる波長分布の光を反射光として放射するように構成されていることが好ましい。 As the second light reflector D, a light reflector having the same configuration as that of the first light reflector A may be used, or a light reflector having a configuration different from that of the first light reflector A may be used. Similarly to the first light reflector A, the second light reflector D is configured to emit light having a wavelength distribution different from the wavelength distribution of the light emitted from the light source B as reflected light. Preferably it is.
 本発明の光反射体は、上述のような構成を有しているので、光源から放射される光とは異なる波長領域の光を強調させ、従来の白色及び銀色反射板では表現できなかった色相にすることができ、照明の演出効果を発揮させ、例えば、商品陳列棚上に配置した物品の照明用途などの色相が重視される用途において好適に用いることができる。 Since the light reflector of the present invention has the above-described configuration, it emphasizes light in a wavelength region different from the light emitted from the light source, and has a hue that cannot be expressed by conventional white and silver reflectors. For example, it can be suitably used in applications in which hue is important, such as illumination of articles placed on merchandise display shelves.
 更に、光反射体の発光体層が、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有している場合には、反射光は、400~470nmの波長領域(青系)又は570~700nmの波長領域(赤系)の光が強調され、人間の目では認識しにくい青色又は赤色を認識しやすくすることができる。光反射体によれば、照明、表示装置、及び、それらにより照らされた物体の色相を従来の白色及び銀色反射板では表現できなかった色相にすることができ、表示装置や照明用途などの色相が重視される用途において好適に用いることができる。 Furthermore, the light emitter layer of the light reflector is either a light emitter having an emission spectrum peak in the wavelength region of 400 to 470 nm or a light emitter having an emission spectrum peak in the wavelength region of 570 to 700 nm, or both. In the case where it contains, the reflected light is emphasized in the wavelength region of 400 to 470 nm (blue system) or in the wavelength region of 570 to 700 nm (red system), and is blue or red that is difficult to be recognized by human eyes Can be easily recognized. According to the light reflector, the hue of the illumination, the display device, and the object illuminated by them can be changed to a hue that could not be expressed by the conventional white and silver reflectors, and the hue of the display device and the illumination application, etc. It can be suitably used in applications where importance is attached.
 更に、上記光反射体は、入射光よりも反射光の方が、植物の生育に有効な波長領域において、即ち、400~470nmの波長領域又は570~700nmの波長領域の一方或いは双方において、光量が多くなっている。従って、上記光反射体によれば、太陽光や人工光を用いて植物の生育の促進を図ることができる。 Further, the light reflector has a reflected light amount that is higher than that of incident light in a wavelength region effective for plant growth, that is, in one or both of a wavelength region of 400 to 470 nm and a wavelength region of 570 to 700 nm. Is increasing. Therefore, according to the said light reflector, growth of a plant can be aimed at using sunlight or artificial light.
 そして、上記光反射体を用いた照明装置は、光源の消費電力を増加させる必要がないので、省エネルギー化を図ることができ且つ光源から放散される熱を抑制して植物の育成雰囲気の温度制御を容易に行うことができ、植物栽培をより確実に且つ効率的に行うことができる。 And since the illuminating device using the said light reflector does not need to increase the power consumption of a light source, it can aim at energy saving and suppresses the heat dissipated from a light source, and temperature control of the plant cultivation atmosphere Can be easily performed, and plant cultivation can be performed more reliably and efficiently.
 又、上記光反射体において、表面層を有している場合には、発光体層に入射する光量が制限されており、発光体層中の発光体が必要以上に光を吸収しないようにし、発光体の発光作用が長期間に亘って持続するようにして、光反射体による反射光の色相を変化させる効果を長期間に亘って安定的に持続可能にしている。 Further, in the above light reflector, when the surface layer is provided, the amount of light incident on the light emitter layer is limited so that the light emitter in the light emitter layer does not absorb light more than necessary. The light emitting action of the light emitter is sustained over a long period of time so that the effect of changing the hue of the reflected light by the light reflector can be stably maintained over a long period of time.
本発明の光反射体を示した縦断面図である。It is the longitudinal cross-sectional view which showed the light reflector of this invention. 本発明の光反射体の他の一例を示した縦断面図である。It is the longitudinal cross-sectional view which showed another example of the light reflector of this invention. 本発明の光反射体の他の一例を示した縦断面図である。It is the longitudinal cross-sectional view which showed another example of the light reflector of this invention. 本発明の光反射体の他の一例を示した縦断面図である。It is the longitudinal cross-sectional view which showed another example of the light reflector of this invention. 本発明の照明装置を示した模式側面図である。It is the model side view which showed the illuminating device of this invention. 本発明の植物栽培用照明装置を示した模式側面図である。It is the model side view which showed the illuminating device for plant cultivation of this invention. 本発明の植物栽培用照明装置の他の一例を示した模式側面図である。It is the model side view which showed another example of the illuminating device for plant cultivation of this invention. 実施例で作製した照明装置を示した模式側面図である。It is the model side view which showed the illuminating device produced in the Example. 実施例1、5、7及び比較例1の光反射体の反射スペクトルを示したグラフである。5 is a graph showing reflection spectra of light reflectors of Examples 1, 5, 7 and Comparative Example 1. FIG. 実施例16~18及び比較例3の光反射体の反射スペクトルを示したグラフである。10 is a graph showing reflection spectra of light reflectors of Examples 16 to 18 and Comparative Example 3. 実施例21、33、34の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflection board of Examples 21, 33, and 34. FIG. 実施例29、35、36の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflecting plate of Examples 29, 35, and 36. 光反射板の発光体層中の光反射性充填剤量の変化に伴う光反射板の最大光線反射率の変化を示したグラフである。It is the graph which showed the change of the maximum light reflectivity of the light reflection board accompanying the change of the light reflective filler amount in the light-emitting body layer of a light reflection board. 光反射板の発光体層中の光反射性充填剤量の変化に伴う光反射板の最大光線反射率の変化を示したグラフである。It is the graph which showed the change of the maximum light reflectivity of the light reflection board accompanying the change of the light reflective filler amount in the light-emitting body layer of a light reflection board. 光反射板の発光体層中の光反射性充填剤量の変化に伴う光反射板の最大光線反射率の変化を示したグラフである。It is the graph which showed the change of the maximum light reflectivity of the light reflection board accompanying the change of the light reflective filler amount in the light-emitting body layer of a light reflection board. 光反射板の発光体層中の光反射性充填剤量の変化に伴う光反射板の最大光線反射率の変化を示したグラフである。It is the graph which showed the change of the maximum light reflectivity of the light reflection board accompanying the change of the light reflective filler amount in the light-emitting body layer of a light reflection board. 実施例55における促進暴露試験前後の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflection board before and behind the accelerated exposure test in Example 55. 実施例56における促進暴露試験前後の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflection board before and behind the accelerated exposure test in Example 56. 実施例57における促進暴露試験前後の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflection board before and behind the accelerated exposure test in Example 57. 実施例67における促進暴露試験前後の光反射板の反射スペクトルを示したグラフである。It is the graph which showed the reflection spectrum of the light reflection board before and behind the accelerated exposure test in Example 67. 実施例68における促進暴露試験前後の光反射板の反射スペクトルを示したグラフである。42 is a graph showing reflection spectra of a light reflector before and after an accelerated exposure test in Example 68.
 以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, the embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部及び発光体として蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部を含有する発光体層用熱可塑性樹脂組成物を第一押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、及び、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部を含有する光反射層用熱可塑性樹脂組成物を第二押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)24重量部、ポリプロピレン(日本ポリプロ社製 商品名「FB3312」)76重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)25重量部、及び、気泡剤として重炭酸ナトリウムとクエン酸との混合物1.4重量部を含有する発泡体層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、第一~三押出機から発光体層用熱可塑性樹脂組成物、光反射層用熱可塑性樹脂組成物及び発泡体層用熱可塑性樹脂組成物を合流ダイに押出し、発泡体層用熱可塑性樹脂組成物からなる断面円環状の発泡性樹脂層と、この発泡性樹脂層の外面に積層され且つ光反射層用熱可塑性樹脂組成物からなる断面円環状の非発泡性樹脂層と、この非発泡性樹脂層の外面に積層され且つ発光体層用熱可塑性樹脂組成物からなる断面円環状の発光樹脂層とからなる積層体を形成し、この積層体を合流ダイに接続させた環状ダイに供給し、環状ダイから円筒状に押出発泡させて円筒状発泡体を得た。
Example 1
A thermoplastic resin composition for a phosphor layer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant Co., Ltd.) as a light emitter. In the first extruder, 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and a master batch containing rutile titanium oxide in an ethylene-propylene block copolymer (trade name “manufactured by Toyo Ink Co., Ltd.”) PPM 1KB662 WHT FD ”, ethylene-propylene block copolymer: 100 parts by weight of titanium oxide = 30% by weight: 70% by weight) A thermoplastic resin composition for a light reflection layer containing 100 parts by weight of polypropylene (Sun Aroma) Product name "PL500A") 24 parts by weight, polypropylene (Nippon Polypro) Product name “FB3312”) 76 parts by weight, masterbatch containing rutile titanium oxide in an ethylene-propylene block copolymer (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd., ethylene-propylene block co-weight) A thermoplastic resin composition for a foam layer containing 25 parts by weight of titanium oxide = 30% by weight: 70% by weight) and 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a foaming agent. Supplied to the three extruders and melt-kneaded. From the first to third extruders, the light emitting layer thermoplastic resin composition, the light reflecting layer thermoplastic resin composition, and the foam layer thermoplastic resin composition are joined together. A foamed resin layer having an annular cross section made of a thermoplastic resin composition for a foam layer, and laminated on the outer surface of the foamable resin layer and from a thermoplastic resin composition for a light reflecting layer A non-foaming resin layer having an annular cross section, and a laminated light emitting resin layer laminated on the outer surface of the non-foaming resin layer and made of a thermoplastic resin composition for a phosphor layer. The laminate was supplied to an annular die connected to a merging die and extruded and foamed into a cylindrical shape from the annular die to obtain a cylindrical foam.
 しかる後、円筒状発泡体を徐々に拡径させた後に冷却マンドレルに供給して成形しながら冷却した後、円筒状発泡体を径方向の対向する二点において押出し方向に連続的に内外周面間に亘って切断することによって切り開いて展開し、全体の密度が0.7g/cm3である板状の光反射体を得た。 Then, after gradually expanding the diameter of the cylindrical foam, it is supplied to the cooling mandrel and cooled while being molded, and then the cylindrical foam is continuously inner and outer peripheral surfaces in the extrusion direction at two opposing points in the radial direction. A plate-like light reflector having an overall density of 0.7 g / cm 3 was obtained by cutting open and expanding.
 なお、光反射体は、発泡性樹脂層を発泡させてなる厚みが0.5mmの発泡シート1bの一面に非発泡性樹脂層からなる厚みが0.15mmの非発泡シート1aが積層一体化されてなる光反射層1と、この光反射層1の非発泡シート1a上に積層一体化され且つ発光樹脂層から形成されてなる厚みが0.05mmの発光体層2とから構成されていた。 In the light reflector, a non-foamed sheet 1a having a thickness of 0.15 mm made of a non-foamable resin layer is laminated and integrated on one surface of a foam sheet 1b having a thickness of 0.5 mm formed by foaming a foamable resin layer. The light reflecting layer 1 and the light emitting layer 2 having a thickness of 0.05 mm formed by being laminated and integrated on the non-foamed sheet 1a of the light reflecting layer 1 and formed of a light emitting resin layer.
(実施例2)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-301」)1重量部を用いたこと以外は実施例1と同様にして光反射体を得た。
(Example 2)
A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-301”, manufactured by Sinloihi) was used instead of the fluorescent dye.
(実施例3)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-303」)1重量部を用いたこと以外は実施例1と同様にして光反射体を得た。
(Example 3)
A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例4)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-303」)65重量部を用いたこと以外は実施例1と同様にして光反射体を得た。
Example 4
A light reflector was obtained in the same manner as in Example 1 except that 65 parts by weight of a fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例5)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を用いたこと以外は実施例1と同様にして光反射体を得た。
(Example 5)
A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-307”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例6)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-327」)1重量部を用いたこと以外は実施例1と同様にして光反射体を得た。
(Example 6)
A light reflector was obtained in the same manner as in Example 1 except that 1 part by weight of a fluorescent pigment (trade name “FX-327”, manufactured by Sinlohi) was used instead of the fluorescent dye as the luminescent material.
(実施例7)
 発光体として、蛍光染料を単独で用いる代わりに、蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部及び蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を併用したこと以外は実施例1と同様にして光反射体を得た。
(Example 7)
Instead of using a fluorescent dye alone as a luminescent material, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinloihi) A light reflector was obtained in the same manner as in Example 1 except that was used together.
(実施例8)
 発光体として、蛍光染料を単独で用いる代わりに、蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部及び蛍光顔料(シンロイヒ社製 商品名「FX-327」)1重量部を併用したこと以外は実施例1と同様にして光反射体を得た。
(Example 8)
Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-327” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 1 except that was used together.
(実施例9)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部及び発光体として蛍光染料(クラリアント社製 商品名「ホスタックス KCB」)0.1重量部を含有する発光体層用熱可塑性樹脂組成物を第一押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、及び、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部を含有する光反射層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、第一、二押出機から発光体層用熱可塑性樹脂組成物及び光反射層用熱可塑性樹脂組成物を合流ダイに押出し、光反射層用熱可塑性樹脂組成物からなる非発泡性樹脂層上に、発光体層用熱可塑性樹脂組成物からなる発光樹脂層が積層されてなる積層シートを形成し、この積層シートを合流ダイに接続したTダイに供給してTダイから全体の密度が1.3g/cm3である光反射体を共押出成形した。なお、光反射体の厚みが0.2mmとなるように引き取った。
Example 9
A thermoplastic resin composition for a luminous body layer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and 0.1 part by weight of a fluorescent dye (trade name “Hostax KCB” manufactured by Clariant Co., Ltd.) as a light emitter. In the first extruder, 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and a master batch containing rutile titanium oxide in an ethylene-propylene block copolymer (trade name “manufactured by Toyo Ink Co., Ltd.”) PPM 1KB662 WHT FD ", ethylene-propylene block copolymer: titanium oxide = 30 wt%: 70 wt%) 100 parts by weight of thermoplastic resin composition for light reflecting layer is supplied to the second extruder and melted Kneading, from the first and second extruders, the thermoplastic resin composition for the phosphor layer and the thermoplastic resin composition for the light reflection layer Extruded into a flow die to form a laminated sheet in which a light emitting resin layer made of a thermoplastic resin composition for a light emitter layer is laminated on a non-foamable resin layer made of a thermoplastic resin composition for a light reflecting layer. The laminated sheet was supplied to a T die connected to a merging die, and a light reflector having an overall density of 1.3 g / cm 3 was coextruded from the T die. The light reflector was taken up so that the thickness was 0.2 mm.
 なお、光反射体は、非発泡性樹脂層から形成されてなる厚みが0.15mmの光反射層1と、この光反射層1上に積層一体化され且つ発光樹脂層から形成されてなる厚みが0.05mmの発光体層2とから構成されていた。 The light reflector is formed of a non-foaming resin layer and has a thickness of 0.15 mm. The light reflecting layer 1 is laminated and integrated on the light reflecting layer 1 and is formed of a light emitting resin layer. Of the phosphor layer 2 having a thickness of 0.05 mm.
(実施例10)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-301」)1重量部を用いたこと以外は実施例9と同様にして光反射体を得た。
(Example 10)
A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-301”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例11)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-303」)1重量部を用いたこと以外は実施例9と同様にして光反射体を得た。
Example 11
A light reflector was obtained in the same manner as in Example 9, except that 1 part by weight of a fluorescent pigment (trade name “FX-303”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例12)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を用いたこと以外は実施例9と同様にして光反射体を得た。
(Example 12)
A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例13)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-327」)1重量部を用いたこと以外は実施例9と同様にして光反射体を得た。
(Example 13)
A light reflector was obtained in the same manner as in Example 9 except that 1 part by weight of a fluorescent pigment (trade name “FX-327”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material.
(実施例14)
 発光体として、蛍光染料を単独で用いる代わりに、蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部及び蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を併用したこと以外は実施例9と同様にして光反射体を得た。
(Example 14)
Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 9 except that was used together.
(実施例15)
 発光体として、蛍光染料を単独で用いる代わりに、蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部及び蛍光顔料(シンロイヒ社製 商品名「FX-327」)1重量部を併用したこと以外は実施例9と同様にして光反射体を得た。
(Example 15)
Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-327” manufactured by Sinroich) A light reflector was obtained in the same manner as in Example 9 except that was used together.
(比較例1)
 発光体を用いなかったこと以外は実施例1と同様にして光反射体を得た。
(Comparative Example 1)
A light reflector was obtained in the same manner as in Example 1 except that the light emitter was not used.
(比較例2)
 発光体を用いなかったこと以外は実施例9と同様にして光反射体を得た。
(Comparative Example 2)
A light reflector was obtained in the same manner as in Example 9 except that the light emitter was not used.
(実施例16)
 実施例1と同様の要領で板状の光反射体を得た。得られた板状の光反射体を短辺50cm×長辺120cmの平面矩形状に裁断した。一方、長辺方向の全長に亘って凸円弧状に成形された鉄製の支持部材Eを用意し、この支持部材Eの内側表面に光反射体をその発光体層2が露出した状態となるように支持部材Eに沿って凸円弧状に変形させながら積層一体化して凸円弧状の光反射体Aを製造した(図8参照)。
(Example 16)
A plate-like light reflector was obtained in the same manner as in Example 1. The obtained plate-shaped light reflector was cut into a planar rectangular shape having a short side of 50 cm and a long side of 120 cm. On the other hand, an iron support member E formed in a convex arc shape over the entire length in the long side direction is prepared, and the light reflector is exposed on the inner surface of the support member E. A convex arc-shaped light reflector A was manufactured by laminating and integrating them while being deformed into a convex arc shape along the support member E (see FIG. 8).
 次に、光反射体Aの発光体層2の前方に蛍光灯Bを配設し、支持部材に取り付けられたソケット部(図示せず)に蛍光灯Bを電気的に接続させることによって照明装置Lを作製した。そして、照明装置Lの前方に水耕栽培棚を配設して植物栽培用に用いた。 Next, the fluorescent lamp B is disposed in front of the light-emitting body layer 2 of the light reflector A, and the fluorescent lamp B is electrically connected to a socket portion (not shown) attached to the support member. L was produced. And the hydroponic cultivation shelf was arrange | positioned ahead of the illuminating device L, and it was used for plant cultivation.
(実施例17)
 発光体として、蛍光染料の代わりに、蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を用いたこと以外は実施例16と同様にして照明装置Lを作製した。そして、照明装置Lの前方に水耕栽培棚を配設して植物栽培用に用いた。
(Example 17)
An illuminator L was produced in the same manner as in Example 16 except that 1 part by weight of a fluorescent pigment (trade name “FX-307”, manufactured by Sinloihi) was used instead of the fluorescent dye as the luminescent material. And the hydroponic cultivation shelf was arrange | positioned ahead of the illuminating device L, and it was used for plant cultivation.
(実施例18)
 発光体として、蛍光染料を単独で用いる代わりに、蛍光染料(クラリアント社製 商品名「ホスタルックス KCB」)0.1重量部及び蛍光顔料(シンロイヒ社製 商品名「FX-307」)1重量部を併用したこと以外は実施例16と同様にして照明装置Lを作製した。そして、照明装置Lの前方に水耕栽培棚を配設して植物栽培用に用いた。
(Example 18)
Instead of using a fluorescent dye alone as the illuminant, 0.1 part by weight of a fluorescent dye (trade name “Hostalx KCB” manufactured by Clariant) and 1 part by weight of a fluorescent pigment (trade name “FX-307” manufactured by Sinroich) A lighting device L was produced in the same manner as in Example 16 except that the above was used together. And the hydroponic cultivation shelf was arrange | positioned ahead of the illuminating device L, and it was used for plant cultivation.
(比較例3)
 発光体を用いなかったこと以外は実施例16と同様にして照明装置Lを作製した。
(Comparative Example 3)
A lighting device L was produced in the same manner as in Example 16 except that the light emitter was not used.
 得られた光反射体及び照明装置について、下記の要領で光線反射率を測定し、その結果を表1及び図9、10に示した。図9には、実施例1、5、7及び比較例1の結果のみを示した。図10には、実施例16、17、18及び比較例3の結果のみを示した。又、得られた光反射体の光反射層における光線全反射率及び360~740nmの波長領域の平均光線透過率を下記の要領で測定し、その結果を表1に示した。 For the obtained light reflector and lighting device, the light reflectance was measured in the following manner, and the results are shown in Table 1 and FIGS. FIG. 9 shows only the results of Examples 1, 5, and 7 and Comparative Example 1. FIG. 10 shows only the results of Examples 16, 17, 18 and Comparative Example 3. Further, the total light reflectance in the light reflection layer of the obtained light reflector and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the following manner, and the results are shown in Table 1.
(光線反射率)
 光反射体の光線反射率の測定には分光測色計(コニカミノルタ社製 商品名「CM-2600d」)を使用し、JIS Z 8722に準拠し、測定雰囲気の室温が20℃、測定雰囲気の相対湿度が60%の条件において、光反射体の光線反射率を360~740nmの波長領域において10nm毎に測定した。
(Light reflectance)
A spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z 8722, the room temperature of the measurement atmosphere is 20 ° C. Under the condition of relative humidity of 60%, the light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm.
 得られた光線反射率において、400~470nmの波長領域、及び、570~700nmの波長領域において最大光線反射率を求め、470~570nmの波長領域において最小光線反射率を求めた。 In the obtained light reflectance, the maximum light reflectance was determined in the wavelength region of 400 to 470 nm and the wavelength region of 570 to 700 nm, and the minimum light reflectance was determined in the wavelength region of 470 to 570 nm.
 400~470nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差Δ1を算出すると共に、570~700nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差Δ2を算出した。 A difference Δ 1 between the maximum light reflectance in the wavelength region of 400 to 470 nm and the minimum light reflectance in the wavelength region of 470 to 570 nm is calculated, and the maximum light reflectance in the wavelength region of 570 to 700 nm is calculated from 470 to 570 nm. The difference Δ 2 from the minimum light reflectance in the wavelength region was calculated.
(光反射層の光線全反射率及び360~740nmの波長領域の平均光線透過率)
 光反射体の光反射層と同一の構成及び同一厚みを有する試験シートを押出成形した。得られた試験シートの光線全反射率の測定には分光側色計(コニカミノルタ社製 商品名「CM-2600d」)を用い、JIS Z8722に準拠して測定雰囲気の温度20℃、相対湿度60%の条件にて、試験シートの光線反射率を360~740nmの波長領域において10nm毎に測定した。得られた光線反射率において、360~740nmの波長領域の光線反射率の相加平均値を求め、光反射層の光線全反射率とした。
(Total light reflectance of light reflecting layer and average light transmittance in wavelength region of 360 to 740 nm)
A test sheet having the same configuration and the same thickness as the light reflecting layer of the light reflector was extruded. A spectroscopic colorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) was used to measure the total light reflectance of the obtained test sheet, and the measurement atmosphere temperature was 20 ° C. and relative humidity was 60 according to JIS Z8722. %, The light reflectance of the test sheet was measured every 10 nm in the wavelength region of 360 to 740 nm. In the obtained light reflectivity, an arithmetic average value of the light reflectivities in the wavelength region of 360 to 740 nm was obtained and used as the total light reflectivity of the light reflection layer.
 又、得られた試験シートの光線透過率の測定には分光光度計(島津製作所社製 商品名「UV-2450」)を用い、JIS Z8722に準拠して測定雰囲気の温度20℃、相対湿度60%の条件にて、試験シートの光線透過率を360~740nmの波長領域において1nm毎に測定した。得られた光線透過率において、360~740nmの波長領域の光線透過率の相加平均値を求め、光反射層の平均光線透過率とした。 In addition, a spectrophotometer (trade name “UV-2450” manufactured by Shimadzu Corporation) was used to measure the light transmittance of the obtained test sheet, and the measurement atmosphere temperature was 20 ° C. and relative humidity was 60 according to JIS Z8722. %, The light transmittance of the test sheet was measured every 1 nm in the wavelength region of 360 to 740 nm. In the obtained light transmittance, the arithmetic average value of the light transmittance in the wavelength region of 360 to 740 nm was obtained and used as the average light transmittance of the light reflecting layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例19~36)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」、屈折率:1.48)100重量部、発光体として表2に示した所定量の蛍光染料(チバスペシャリティケミカルズ社製 商品名「OB」)又は蛍光顔料(シンロイヒ社製 商品名「FX-327」)、及び、表2に示した所定量のルチル型酸化チタン(屈折率:2.71)を含有する発光体層用熱可塑性樹脂組成物を第一押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、及び、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部を含有する光反射層用熱可塑性樹脂組成物を第二押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)25重量部、ポリプロピレン(日本ポリプロ社製 商品名「FB3312」)75重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)20重量部、及び、気泡剤として重炭酸ナトリウムとクエン酸との混合物1.4重量部を含有する発泡体層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、第一~三押出機から発光体層用熱可塑性樹脂組成物、光反射層用熱可塑性樹脂組成物及び発泡体層用熱可塑性樹脂組成物を合流ダイに押出し、発泡体層用熱可塑性樹脂組成物からなる断面円環状の発泡性樹脂層と、この発泡性樹脂層の外面に積層され且つ光反射層用熱可塑性樹脂組成物からなる断面円環状の非発泡性樹脂層と、この非発泡性樹脂層の外面に積層され且つ発光体層用熱可塑性樹脂組成物からなる断面円環状の発光樹脂層とからなる積層体を形成し、この積層体を合流ダイに接続させた環状ダイに供給し、環状ダイから円筒状に押出発泡させて円筒状発泡体を得た。
(Examples 19 to 36)
100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd., refractive index: 1.48), a predetermined amount of fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) shown in Table 2 as a light emitter, or fluorescent pigment (Product name “FX-327” manufactured by Sinloihi) and a thermoplastic resin composition for a phosphor layer containing a predetermined amount of rutile-type titanium oxide (refractive index: 2.71) shown in Table 2 A master batch (trade name “PPM 1KB662 manufactured by Toyo Ink Co., Ltd.”) containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and an ethylene-propylene block copolymer containing rutile titanium oxide in an extruder. WHT FD ", ethylene-propylene block copolymer: titanium oxide = 30 wt%: 70 wt%) 100 parts by weight 25 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 75 parts by weight of polypropylene (trade name “FB3312” manufactured by Nippon Polypro Co., Ltd.), ethylene-propylene Master batch containing rutile-type titanium oxide in block copolymer (trade name “PPM 1KB662 WHT FD” manufactured by Toyo Ink Co., Ltd., ethylene-propylene block copolymer: titanium oxide = 30 wt%: 70 wt%) 20 A thermoplastic resin composition for a foam layer containing 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a foaming agent is supplied to a third extruder and melt-kneaded. From the three extruders, the thermoplastic resin composition for the light emitter layer, the thermoplastic resin composition for the light reflecting layer, and the thermoplastic resin composition for the foam layer are joined together. A foamed resin layer having an annular cross section made of a thermoplastic resin composition for a foam layer, and an annular cross section made of a thermoplastic resin composition for a light reflecting layer laminated on the outer surface of the foamable resin layer. A laminate comprising a non-foamable resin layer and a light-emitting resin layer having an annular cross-section made of a thermoplastic resin composition for a phosphor layer and laminated on the outer surface of the non-foamable resin layer is formed. The product was supplied to an annular die connected to a confluence die and extruded and foamed into a cylindrical shape from the annular die to obtain a cylindrical foam.
 しかる後、円筒状発泡体を徐々に拡径させた後に冷却マンドレルに供給して成形しながら冷却した後、円筒状発泡体を径方向の対向する二点において押出し方向に連続的に内外周面間に亘って切断することによって切り開いて展開し、全体の密度が0.7g/cm3である光反射体を得た。 Then, after gradually expanding the diameter of the cylindrical foam, it is supplied to the cooling mandrel and cooled while being molded, and then the cylindrical foam is continuously inner and outer peripheral surfaces in the extrusion direction at two opposing points in the radial direction. A light reflector having an overall density of 0.7 g / cm 3 was obtained by cutting open and expanding.
 なお、光反射体は、発泡性樹脂層を発泡させてなる厚みが0.5mmの発泡シート1bの一面に非発泡性樹脂層からなる厚みが0.15mmの非発泡シート1aが積層一体化されてなる光反射層1と、この光反射層1の非発泡シート1a上に積層一体化され且つ発光樹脂層から形成されてなる厚みが0.05mmの発光体層2とから構成されていた。 In the light reflector, a non-foamed sheet 1a having a thickness of 0.15 mm made of a non-foamable resin layer is laminated and integrated on one surface of a foam sheet 1b having a thickness of 0.5 mm formed by foaming a foamable resin layer. The light reflecting layer 1 and the light emitting layer 2 having a thickness of 0.05 mm formed by being laminated and integrated on the non-foamed sheet 1a of the light reflecting layer 1 and formed of a light emitting resin layer.
 蛍光染料(チバスペシャリティケミカルズ社製 商品名「OB」)は、紫外領域の光を吸収して400~500nmに発光波長領域を有していた。蛍光顔料(シンロイヒ社製 商品名「FX-327」)は、可視光領域の光を吸収して570~710nmに発光波長領域を有していた。発光体層2において、ポリプロピレンとルチル型酸化チタンとの界面にて反射する反射光の反射波長領域は380~780nmであった。 Fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) absorbed light in the ultraviolet region and had an emission wavelength region of 400 to 500 nm. The fluorescent pigment (trade name “FX-327” manufactured by Sinloihi) absorbed light in the visible light region and had an emission wavelength region of 570 to 710 nm. In the phosphor layer 2, the reflection wavelength region of the reflected light reflected at the interface between polypropylene and rutile titanium oxide was 380 to 780 nm.
(実施例37~54)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」、屈折率:1.48)100重量部、発光体として表2に示した所定量の蛍光染料(チバスペシャリティケミカルズ社製 商品名「OB」)又は蛍光顔料(シンロイヒ社製 商品名「FX-327」)、及び、表2に示した所定量のルチル型酸化チタン(屈折率:2.71)を含有する発光体層用熱可塑性樹脂組成物を第一押出機に、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、及び、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部を含有する光反射層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、第一、二押出機から発光体層用熱可塑性樹脂組成物及び光反射層用熱可塑性樹脂組成物を合流ダイに押出し、光反射層用熱可塑性樹脂組成物からなる非発泡性樹脂層上に、発光体層用熱可塑性樹脂組成物からなる発光樹脂層が積層されてなる積層シートを形成し、この積層シートを合流ダイに接続したTダイに供給してTダイから全体の密度が1.3g/cm3である光反射体を共押出成形した。なお、光反射体の厚みが0.2mmとなるように引き取った。
(Examples 37 to 54)
100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd., refractive index: 1.48), a predetermined amount of fluorescent dye (trade name “OB” manufactured by Ciba Specialty Chemicals Co., Ltd.) shown in Table 2 as a light emitter, or fluorescent pigment (Product name “FX-327” manufactured by Sinloihi) and a thermoplastic resin composition for a phosphor layer containing a predetermined amount of rutile-type titanium oxide (refractive index: 2.71) shown in Table 2 A master batch (trade name “PPM 1KB662 manufactured by Toyo Ink Co., Ltd.”) containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) and an ethylene-propylene block copolymer containing rutile titanium oxide in an extruder. WHT FD ", ethylene-propylene block copolymer: titanium oxide = 30 wt%: 70 wt%) 100 parts by weight The thermoplastic resin composition for the light reflection layer is supplied to the second extruder and melt-kneaded, and the thermoplastic resin composition for the light emitter layer and the thermoplastic resin composition for the light reflection layer are merged from the first and second extruders. Extruded into a die to form a laminated sheet in which a light emitting resin layer made of a thermoplastic resin composition for a light emitter layer is laminated on a non-foamable resin layer made of a thermoplastic resin composition for a light reflecting layer. The sheet was supplied to a T die connected to a joining die, and a light reflector having an overall density of 1.3 g / cm 3 was coextruded from the T die. The light reflector was taken up so that the thickness was 0.2 mm.
 なお、光反射体は、非発泡性樹脂層から形成されてなる厚みが0.15mmの光反射層1と、この光反射層1上に積層一体化され且つ発光樹脂層から形成されてなる厚みが0.05mmの発光体層2とから構成されていた。 The light reflector is formed of a non-foaming resin layer and has a thickness of 0.15 mm. The light reflecting layer 1 is laminated and integrated on the light reflecting layer 1 and is formed of a light emitting resin layer. Of the phosphor layer 2 having a thickness of 0.05 mm.
 得られた光反射体について、下記の要領で光線反射率及び最大光線反射率を測定し、その結果を表2及び図11~16に示した。又、得られた光反射体の光反射層における光線全反射率及び360~740nmの波長領域の平均光線透過率を上述と同様の要領で測定し、その結果を表2に示した。 For the obtained light reflector, the light reflectance and the maximum light reflectance were measured in the following manner, and the results are shown in Table 2 and FIGS. Further, the total light reflectance in the light reflecting layer of the obtained light reflector and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the same manner as described above, and the results are shown in Table 2.
 なお、図11には実施例21、33、34の反射スペクトルを示した。図12には実施例29、35、36の反射スペクトルを示した。図13には実施例19~25、33、34の最大光線反射率をルチル型酸化チタンの添加量に対してプロットした結果を示した。図14には実施例26~32、35、36の最大光線反射率をルチル型酸化チタンの添加量に対してプロットした結果を示した。図15には実施例37~43、51、52の最大光線反射率をルチル型酸化チタンの添加量に対してプロットした結果を示した。図16には実施例44~50、53、54の最大光線反射率をルチル型酸化チタンの添加量に対してプロットした結果を示した。 FIG. 11 shows the reflection spectra of Examples 21, 33, and 34. FIG. 12 shows the reflection spectra of Examples 29, 35, and 36. FIG. 13 shows the results of plotting the maximum light reflectance of Examples 19 to 25, 33 and 34 against the amount of rutile titanium oxide added. FIG. 14 shows the results of plotting the maximum light reflectance of Examples 26 to 32, 35 and 36 against the amount of rutile titanium oxide added. FIG. 15 shows the results of plotting the maximum light reflectance of Examples 37 to 43, 51 and 52 against the amount of added rutile titanium oxide. FIG. 16 shows the results of plotting the maximum light reflectance of Examples 44 to 50, 53 and 54 against the addition amount of rutile-type titanium oxide.
(光線反射率)
 光反射体の光線反射率の測定には分光測色計(コニカミノルタ社製 商品名「CM-2600d」)を使用し、JIS Z 8722に準拠し、測定雰囲気の室温が20℃、測定雰囲気の相対湿度が60%の条件において、光反射体の光線反射率を360~740nmの波長領域において10nm毎に測定した。
(Light reflectance)
A spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z 8722, the room temperature of the measurement atmosphere is 20 ° C. Under the condition of relative humidity of 60%, the light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm.
 得られた光線反射率において、360~740nmの波長領域にて最大光線反射率を求めた。 In the obtained light reflectance, the maximum light reflectance was determined in the wavelength region of 360 to 740 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例55)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:ルチル型酸化チタン=30重量%:70重量%)100重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.2重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.2重量部を含む光反射層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、発光体(蛍光顔料 シンロイヒ社製 商品名「FX-303」)1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」、屈折率:1.48)100重量部、光反射性充填材としてルチル型酸化チタン(屈折率:2.71)1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む表面層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、第一~三押出機を接続させている合流ダイに光反射層用熱可塑性樹脂組成物、発光体層用熱可塑性樹脂組成物及び表面層用熱可塑性樹脂組成物を供給して合流ダイに接続させているTダイから共押出しすることによって、光反射層用熱可塑性樹脂組成物からなる光反射層1と、この光反射層1の一面に積層一体化され且つ発光体層用熱可塑性樹脂組成物からなる発光体層2と、この発光体層2の一面に積層一体化され且つ表面層用熱可塑性樹脂組成物からなる表面層3とからなる光反射体を製造した。
(Example 55)
Master batch (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd.), ethylene-propylene block copolymer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), ethylene-propylene block copolymer Propylene block copolymer: Rutile-type titanium oxide = 30% by weight: 70% by weight) 100 parts by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) and light stabilizer (Ciba Specialty) Chemicals Co., Ltd., trade name “CHIMASSORB 119”) The thermoplastic resin composition for light reflecting layer containing 0.2 parts by weight is supplied to the first extruder and melt-kneaded to obtain polypropylene (trade name “PL500A”, manufactured by Sun Allomer Co., Ltd.). 100 parts by weight, luminous body (fluorescent pigment manufactured by Sinloihi) Product name “FX-303”) 1 part by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) 0.1 part by weight and light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) 0 A thermoplastic resin composition for a phosphor layer containing 1 part by weight is supplied to a second extruder and melt-kneaded, and 100 parts by weight of polypropylene (trade name “PL500A”, refractive index: 1.48) manufactured by Sun Allomer Co., Ltd. As a light-reflective filler, 1 part by weight of rutile type titanium oxide (refractive index: 2.71), 0.1 part by weight of an ultraviolet absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) and a light stabilizer (Ciba Specialty Chemicals) Product name “CHIMASSORB 119” manufactured by the company) Thermoplastic resin composition for surface layer containing 0.1 part by weight Is supplied to the third extruder and melt-kneaded, and the thermoplastic resin composition for the light reflecting layer, the thermoplastic resin composition for the light emitting layer, and the surface layer are joined to the confluence die connecting the first to third extruders. The thermoplastic resin composition is supplied and coextruded from the T-die connected to the converging die, so that the light reflecting layer 1 made of the thermoplastic resin composition for the light reflecting layer is formed on one surface of the light reflecting layer 1. A light emitting layer 2 which is laminated and integrated and is made of a thermoplastic resin composition for a light emitting layer, and a surface layer 3 which is laminated and integrated on one surface of the light emitting layer 2 and is made of a thermoplastic resin composition for a surface layer. A light reflector was produced.
 なお、光反射体は、その全体の厚みが0.25mm、密度が1.3g/cm3であり、光反射層1の厚みが0.15mm、発光体層2の厚みが0.05mm、表面層3の厚みが0.05mmであった。 The light reflector has a total thickness of 0.25 mm, a density of 1.3 g / cm 3 , a light reflection layer 1 thickness of 0.15 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface. The thickness of layer 3 was 0.05 mm.
 蛍光顔料(シンロイヒ社製 商品名「FX-303」)は、可視光領域の光を吸収して570~710nmに発光波長領域を有していた。表面層3において、ポリプロピレンとルチル型酸化チタンとの界面にて反射する反射光の反射波長領域は380~780nmであった。 Fluorescent pigment (trade name “FX-303” manufactured by Sinloihi) absorbed light in the visible light region and had an emission wavelength region of 570 to 710 nm. In the surface layer 3, the reflection wavelength region of the reflected light reflected at the interface between polypropylene and rutile titanium oxide was 380 to 780 nm.
(実施例56)
 表面層用熱可塑性樹脂組成物中のルチル型酸化チタン量を1重量部の代わりに8重量部としたこと以外は実施例55と同様にて光反射体を製造した。
(Example 56)
A light reflector was produced in the same manner as in Example 55 except that the amount of rutile titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
(実施例57)
 表面層用熱可塑性樹脂組成物中のルチル型酸化チタン量を1重量部の代わりに16重量部としたこと以外は実施例55と同様にて光反射体を製造した。
(Example 57)
A light reflector was produced in the same manner as in Example 55 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
(実施例58)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)25重量部、ポリプロピレン(日本ポリプロ社製 商品名「FB3312」)75重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」エチレン-プロピレンブロック共重合体:ルチル型酸化チタン=30重量%:70重量%)25重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部、光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部及び発泡剤として重炭酸ナトリウムとクエン酸との混合物1.4重量部を含む発泡性熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、発光体(蛍光顔料 シンロイヒ社製 商品名「FX-303」)1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、光反射性充填材としてルチル型酸化チタン1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む表面層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、第一~三押出機を接続させている合流ダイに押出して、表面層用熱可塑性樹脂組成物、発光体層用熱可塑性樹脂組成物及び発泡性熱可塑性樹脂組成物がこの順序で外側から内側に向かって積層されてなる円筒状積層体とし、この円筒状積層体を合流ダイの先端に取り付けた環状ダイから押出発泡させて円筒状体を製造し、この円筒状体を徐々に拡大させた上で冷却マンドレルに供給して冷却した後、円筒状体をその押出方向に連続的に内外周面間に亘って切断し切り開いて展開することによって、発泡性熱可塑性樹脂組成物を発泡させて得られた発泡シートからなる光反射層1と、この光反射層1の一面に積層一体化され且つ発光体層用熱可塑性樹脂組成物からなる発光体層2と、この発光体層2の一面に積層一体化され且つ表面層用熱可塑性樹脂組成物からなる表面層3とからなる光反射体を製造した。
(Example 58)
25 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 75 parts by weight of polypropylene (trade name “FB3312” manufactured by Nippon Polypro Co., Ltd.), a masterbatch containing rutile titanium oxide in an ethylene-propylene block copolymer (Trade name “PPM 1KB662 WHT FD” manufactured by Toyo Ink Co., Ltd.) ethylene-propylene block copolymer: rutile type titanium oxide = 30 wt%: 70 wt%, 25 parts by weight, ultraviolet absorber (trade name “Ciba Specialty Chemicals, Inc. Tinuvin 234 ”) 0.1 parts by weight, light stabilizer (trade name“ CHIMASORB 119 ”manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight, and 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a blowing agent Expandable thermoplastic resin composition into the first extruder 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 1 part by weight of a phosphor (trade name “FX-303” manufactured by Sinloihi Co., Ltd.), an ultraviolet absorber (Ciba Specialty Chemicals Co., Ltd.) Product name “Tinuvin 234”) 0.1 parts by weight and light stabilizer (product name “CHIMASORB 119”, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight To 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 1 part by weight of rutile titanium oxide as a light-reflective filler, and ultraviolet absorber (trade name “Tinvin 234 manufactured by Ciba Specialty Chemicals Co., Ltd.). ]) 0.1 parts by weight and light stabilizer (manufactured by Ciba Specialty Chemicals) (Product name “CHIMASSORB 119”) The thermoplastic resin composition for the surface layer containing 0.1 part by weight is supplied to a third extruder, melted and kneaded, and extruded to a converging die connected to the first to third extruders. A cylindrical laminate in which the thermoplastic resin composition for the surface layer, the thermoplastic resin composition for the light emitter layer, and the foamable thermoplastic resin composition are laminated in this order from the outside to the inside, and this cylinder The cylindrical laminate is produced by extrusion foaming from an annular die attached to the tip of the converging die, and the cylindrical body is gradually expanded and then supplied to the cooling mandrel for cooling. The light-reflecting layer 1 made of a foamed sheet obtained by foaming a foamable thermoplastic resin composition by continuously cutting in the extruding direction between the inner and outer peripheral surfaces, and opening and developing the foamed thermoplastic resin composition. Laminated on one side of the reflective layer 1 And a surface layer 3 that is laminated and integrated on one surface of the light-emitting layer 2 and is made of the surface-layer thermoplastic resin composition. A light reflector was manufactured.
 なお、光反射体は、その全体の厚みが0.6mm、密度が0.6g/cm3であり、光反射層1の厚みが0.5mm、発光体層2の厚みが0.05mm、表面層3の厚みが0.05mmであった。 The light reflector has a total thickness of 0.6 mm, a density of 0.6 g / cm 3 , a light reflection layer 1 thickness of 0.5 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface. The thickness of layer 3 was 0.05 mm.
(実施例59)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに8重量部としたこと以外は実施例58と同様にて光反射体を製造した。
(Example 59)
A light reflector was produced in the same manner as in Example 58 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
(実施例60)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに16重量部としたこと以外は実施例58と同様にて光反射体を製造した。
(Example 60)
A light reflector was produced in the same manner as in Example 58 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was changed to 16 parts by weight instead of 1 part by weight.
(実施例61)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.2重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.2重量部を含有する光反射層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、発光体(蛍光顔料 シンロイヒ社製 商品名「FX-303」)1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、光反射性充填材としてルチル型酸化チタン1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む表面層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)50重量部、ポリプロピレン(日本ポリプロ社製 商品名「FB3312」)50重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部、光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部及び発泡剤として重炭酸ナトリウムとクエン酸との混合物1重量部を含む発泡性熱可塑性樹脂組成物を第四押出機に供給して溶融混練し、第一~四押出機を接続させている合流ダイに押出して、表面層用熱可塑性樹脂組成物、発光体層用熱可塑性樹脂組成物、光反射層用熱可塑性樹脂組成物及び発泡性熱可塑性樹脂組成物がこの順序で外側から内側に向かって積層されてなる円筒状積層体とし、この円筒状積層体を合流ダイの先端に取り付けた環状ダイから押出発泡させて円筒状体を製造し、この円筒状体を徐々に拡大させた上で冷却マンドレルに供給して冷却した後、円筒状体をその押出方向に連続的に内外周面間に亘って切断し切り開いて展開することによって、光反射層用熱可塑性樹脂組成物からなる光反射層1と、この光反射層1の一面に積層一体化され且つ発光体層用熱可塑性樹脂組成物からなる発光体層2と、上記発光体層2の一面に積層一体化され且つ表面層用熱可塑性樹脂組成物からなる表面層3と、上記光反射層の他面に積層一体化され且つ発泡性熱可塑性樹脂組成物を発泡させてなる発泡体層4とからなる光反射体を製造した。
(Example 61)
Master batch (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd.), ethylene-propylene block copolymer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), ethylene-propylene block copolymer Propylene block copolymer: Titanium oxide = 30% by weight: 70% by weight) 100 parts by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) 0.2 part by weight and light stabilizer (Ciba Specialty Chemicals) (Product name “CHIMASSORB 119”)) 0.2 parts by weight of thermoplastic resin composition for light reflecting layer is supplied to the first extruder, melt-kneaded, and polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) 100 Parts by weight, illuminant (fluorescent pigment manufactured by Sinloihi) Name “FX-303”) 1 part by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) 0.1 part by weight and light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) A thermoplastic resin composition for a phosphor layer containing 1 part by weight is supplied to a second extruder and melt-kneaded, 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), rutile type as a light reflective filler. 1 part by weight of titanium oxide, 0.1 part by weight of ultraviolet absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) and 0.1 part by weight of light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) The thermoplastic resin composition for the surface layer is supplied to a third extruder, melted and kneaded, and 50 parts by weight of pyrene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 50 parts by weight of polypropylene (trade name “FB3312” manufactured by Nippon Polypro Co., Ltd.), 0.1 weight of ultraviolet absorber (trade name “Tinvin 234” manufactured by Ciba Specialty Chemicals) Part, 0.1 parts by weight of light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) and 1 part by weight of a mixture of sodium bicarbonate and citric acid as a foaming agent Supply to a four extruder, melt knead, and extrude to a converging die connected to the first to fourth extruders, surface layer thermoplastic resin composition, phosphor layer thermoplastic resin composition, light reflecting layer A cylindrical laminate in which the thermoplastic resin composition and the foamable thermoplastic resin composition are laminated in this order from the outside to the inside; The cylindrical laminate is extruded and foamed from an annular die attached to the tip of the converging die to produce a cylindrical body, and the cylindrical body is gradually expanded and then supplied to the cooling mandrel for cooling. The cylindrical body is continuously cut in the extruding direction between the inner and outer peripheral surfaces, cut open, and developed, so that the light reflecting layer 1 made of the thermoplastic resin composition for the light reflecting layer and the light reflecting layer 1 A light emitter layer 2 laminated and integrated on one surface and made of a thermoplastic resin composition for a light emitter layer, and a surface layer 3 laminated and integrated on one surface of the light emitter layer 2 and made of a thermoplastic resin composition for a surface layer. And a foam layer 4 laminated and integrated on the other surface of the light reflection layer and foamed with a foamable thermoplastic resin composition.
 なお、光反射体は、その全体の厚みが0.65mm、密度が0.7g/cm3であり、光反射層1の厚みが0.15mm、発光体層2の厚みが0.05mm、表面層3の厚みが0.05mm、発泡体層の厚みは0.4mmであった。 The light reflector has an overall thickness of 0.65 mm, a density of 0.7 g / cm 3 , a light reflection layer 1 thickness of 0.15 mm, a light emitter layer 2 thickness of 0.05 mm, and a surface. The thickness of the layer 3 was 0.05 mm, and the thickness of the foam layer was 0.4 mm.
(実施例62)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに8重量部としたこと以外は実施例61と同様にて光反射体を製造した。
(Example 62)
A light reflector was produced in the same manner as in Example 61 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
(実施例63)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに16重量部としたこと以外は実施例61と同様にて光反射体を製造した。
(Example 63)
A light reflector was produced in the same manner as in Example 61 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
(実施例64)
 ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」、エチレン-プロピレンブロック共重合体:酸化チタン=30重量%:70重量%)100重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.2重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.2重量部を含有する光反射層用熱可塑性樹脂組成物を第一押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、発光体(蛍光顔料 シンロイヒ社製 商品名「FX-303」)1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む発光体層用熱可塑性樹脂組成物を第二押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)100重量部、光反射性充填材としてルチル型酸化チタン1重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部及び光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部を含む表面層用熱可塑性樹脂組成物を第三押出機に供給して溶融混練し、ポリプロピレン(サンアロマー社製 商品名「PL500A」)25重量部、ポリプロピレン(日本ポリプロ社製 商品名「FB3312」)75重量部、エチレン-プロピレンブロック共重合体中にルチル型酸化チタンを含有させたマスターバッチ(東洋インキ社製 商品名「PPM 1KB662 WHT FD」エチレン-プロピレンブロック共重合体:ルチル型酸化チタン=30重量%:70重量%)25重量部、紫外線吸収剤(チバスペシャリティケミカルズ社製 商品名「Tinuvin234」)0.1重量部、光安定剤(チバスペシャリティケミカルズ社製 商品名「CHIMASSORB 119」)0.1重量部及び発泡剤として重炭酸ナトリウムとクエン酸との混合物1.4重量部を含む発泡性熱可塑性樹脂組成物を第四押出機に供給して溶融混練し、第一~四押出機を接続させている合流ダイに押出して、表面層用熱可塑性樹脂組成物、発光体層用熱可塑性樹脂組成物、光反射層用熱可塑性樹脂組成物及び発泡性熱可塑性樹脂組成物がこの順序で外側から内側に向かって積層されてなる円筒状積層体とし、この円筒状積層体を合流ダイの先端に取り付けた環状ダイから押出発泡させて円筒状体を製造し、この円筒状体を徐々に拡大させた上で冷却マンドレルに供給して冷却した後、円筒状体をその押出方向に連続的に内外周面間に亘って切断し切り開いて展開することによって、発泡性熱可塑性樹脂組成物を発泡させてなる発泡シート1b及びこの発泡シート1bの一面に積層一体化され且つ光反射層用熱可塑性樹脂組成物からなる非発泡シート1aとからなる光反射層1と、この光反射層1の一面にが積層一体化され且つ発光体層用熱可塑性樹脂組成物からなる発光体層2と、この発光体層2の一面に積層一体化され且つ表面層用熱可塑性樹脂組成物からなる表面層3とからなる光反射体を製造した。
(Example 64)
Master batch (trade name “PPM 1KB662 WHT FD”, manufactured by Toyo Ink Co., Ltd.), ethylene-propylene block copolymer containing 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), ethylene-propylene block copolymer Propylene block copolymer: Titanium oxide = 30% by weight: 70% by weight) 100 parts by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) 0.2 part by weight and light stabilizer (Ciba Specialty Chemicals) (Product name “CHIMASSORB 119”)) 0.2 parts by weight of thermoplastic resin composition for light reflecting layer is supplied to the first extruder, melt-kneaded, and polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.) 100 Parts by weight, illuminant (fluorescent pigment manufactured by Sinloihi) Name “FX-303”) 1 part by weight, UV absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) 0.1 part by weight and light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) A thermoplastic resin composition for a phosphor layer containing 1 part by weight is supplied to a second extruder and melt-kneaded, 100 parts by weight of polypropylene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), rutile type as a light reflective filler. 1 part by weight of titanium oxide, 0.1 part by weight of ultraviolet absorber (trade name “Tinuvin 234” manufactured by Ciba Specialty Chemicals) and 0.1 part by weight of light stabilizer (trade name “CHIMASSORB 119” manufactured by Ciba Specialty Chemicals) The thermoplastic resin composition for the surface layer is supplied to a third extruder, melted and kneaded, and 25 parts by weight of pyrene (trade name “PL500A” manufactured by Sun Allomer Co., Ltd.), 75 parts by weight of polypropylene (trade name “FB3312” manufactured by Nippon Polypro Co., Ltd.), a masterbatch containing rutile titanium oxide in an ethylene-propylene block copolymer (Trade name “PPM 1KB662 WHT FD” manufactured by Toyo Ink Co., Ltd.) ethylene-propylene block copolymer: rutile type titanium oxide = 30 wt%: 70 wt%, 25 parts by weight, ultraviolet absorber (trade name “Ciba Specialty Chemicals, Inc. Tinuvin 234 ”) 0.1 parts by weight, light stabilizer (trade name“ CHIMASORB 119 ”manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.1 parts by weight, and 1.4 parts by weight of a mixture of sodium bicarbonate and citric acid as a blowing agent Supplying the foamable thermoplastic resin composition to the fourth extruder Melting and kneading and extruding to a converging die connected with first to fourth extruders, surface layer thermoplastic resin composition, phosphor layer thermoplastic resin composition, light reflecting layer thermoplastic resin composition and A cylindrical laminate is formed by laminating a foamable thermoplastic resin composition in this order from the outside to the inside, and the cylindrical laminate is extruded and foamed from an annular die attached to the tip of a converging die. After the cylindrical body is gradually enlarged and supplied to the cooling mandrel for cooling, the cylindrical body is continuously cut in the extruding direction between the inner and outer peripheral surfaces, opened and developed. A foam sheet 1b formed by foaming a foamable thermoplastic resin composition, and a non-foamed sheet 1a made of a thermoplastic resin composition for a light reflecting layer laminated and integrated on one surface of the foam sheet 1b. Reflective layer 1 and this light A light-emitting layer 2 made of a thermoplastic resin composition for a light-emitting body layer, which is laminated and integrated on one surface of the layer 1, and a thermoplastic resin composition for a surface layer, laminated and integrated on one surface of the light-emitting body layer 2. A light reflector made of the surface layer 3 was produced.
 なお、光反射体は、その全体の厚みが0.75mm、密度が0.7g/cm3であり、光反射層1を構成している非発泡シート1aの厚みが0.15mmで且つ発泡シート1bの厚みが0.5mm、発光体層2の厚みが0.05mm、表面層3の厚みが0.05mmであった。 The light reflector has a total thickness of 0.75 mm, a density of 0.7 g / cm 3 , a non-foamed sheet 1a constituting the light reflecting layer 1 has a thickness of 0.15 mm, and a foamed sheet The thickness of 1b was 0.5 mm, the thickness of the light emitter layer 2 was 0.05 mm, and the thickness of the surface layer 3 was 0.05 mm.
(実施例65)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに8重量部としたこと以外は実施例64と同様にて光反射体を製造した。
(Example 65)
A light reflector was produced in the same manner as in Example 64 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 8 parts by weight instead of 1 part by weight.
(実施例66)
 表面層用熱可塑性樹脂組成物中におけるルチル型酸化チタン量を1重量部の代わりに16重量部としたこと以外は実施例64と同様にて光反射体を製造した。
Example 66
A light reflector was produced in the same manner as in Example 64 except that the amount of rutile-type titanium oxide in the thermoplastic resin composition for the surface layer was 16 parts by weight instead of 1 part by weight.
(実施例67)
 合流ダイに第三押出機を接続せず、表面層を形成しなかったこと以外は実施例55と同様にして光反射体を得た。
(Example 67)
A light reflector was obtained in the same manner as in Example 55 except that the third extruder was not connected to the joining die and the surface layer was not formed.
(実施例68)
 表面層用熱可塑性樹脂組成物中にルチル型酸化チタンを含有させなかったこと以外は実施例55と同様にて光反射体を製造した。
Example 68
A light reflector was produced in the same manner as in Example 55 except that the thermoplastic resin composition for the surface layer did not contain rutile titanium oxide.
(実施例69)
 合流ダイに第三押出機を接続せず、表面層を形成しなかったこと以外は実施例58と同様にして光反射体を製造した。
(Example 69)
A light reflector was produced in the same manner as in Example 58 except that the third extruder was not connected to the converging die and the surface layer was not formed.
(実施例70)
 表面層用熱可塑性樹脂組成物中にルチル型酸化チタンを含有させなかったこと以外は実施例58と同様にて光反射体を製造した。
(Example 70)
A light reflector was produced in the same manner as in Example 58 except that the thermoplastic resin composition for the surface layer did not contain rutile titanium oxide.
(実施例71)
 合流ダイに第三押出機を接続せず、表面層を形成しなかったこと以外は実施例61と同様にして光反射体を製造した。
(実施例72)
 表面層用熱可塑性樹脂組成物中にルチル型酸化チタンを含有させなかったこと以外は実施例61と同様にて光反射体を製造した。
(Example 71)
A light reflector was produced in the same manner as in Example 61 except that the third extruder was not connected to the converging die and the surface layer was not formed.
(Example 72)
A light reflector was produced in the same manner as in Example 61 except that the surface layer thermoplastic resin composition did not contain rutile titanium oxide.
(実施例73)
 合流ダイに第三押出機を接続せず、表面層を形成しなかったこと以外は実施例64と同様にして光反射体を得た。
(Example 73)
A light reflector was obtained in the same manner as in Example 64 except that the third extruder was not connected to the converging die and the surface layer was not formed.
(実施例74)
 表面層用熱可塑性樹脂組成物中にルチル型酸化チタンを含有させなかったこと以外は実施例64と同様にて光反射体を製造した。
(Example 74)
A light reflector was produced in the same manner as in Example 64, except that the surface layer thermoplastic resin composition did not contain rutile titanium oxide.
 得られた光反射体について、光線反射率、最大光線反射率、及び、表面層における360~740nmの波長領域での平均光線透過率を下記の要領で測定し、その結果を表3、4及び図17~21に示した。表3、4に、光反射層中に含有されている酸化チタンの総含有量を記載した。得られた光反射体について、光反射層の光線全反射率及び360~740nmの波長領域の平均光線透過率を上述と同様の要領で測定し、その結果を表3、4に示した。 For the obtained light reflector, the light reflectance, the maximum light reflectance, and the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer were measured in the following manner, and the results are shown in Tables 3, 4 and It is shown in FIGS. Tables 3 and 4 list the total content of titanium oxide contained in the light reflecting layer. For the obtained light reflector, the total light reflectance of the light reflecting layer and the average light transmittance in the wavelength region of 360 to 740 nm were measured in the same manner as described above, and the results are shown in Tables 3 and 4.
 なお、図17は、実施例55の促進暴露試験前後の反射スペクトルを示した。図18は、実施例56の促進暴露試験前後の反射スペクトルを示した。図19は、実施例57の促進暴露試験前後の反射スペクトルを示した。図20は、実施例67の促進暴露試験前後の反射スペクトルを示した。図21は、実施例68の促進暴露試験前後の反射スペクトルを示した。 FIG. 17 shows the reflection spectra before and after the accelerated exposure test of Example 55. FIG. 18 shows the reflection spectra before and after the accelerated exposure test of Example 56. FIG. 19 shows the reflection spectra before and after the accelerated exposure test of Example 57. FIG. 20 shows the reflection spectra before and after the accelerated exposure test of Example 67. FIG. 21 shows the reflection spectra before and after the accelerated exposure test of Example 68.
(表面層の平均光線透過率)
 光反射体の表面層と同一の構成及び同一厚みを有する試験シートを押出成形した。得られた試験シートの光線透過率の測定には分光光度計(島津製作所社製 商品名「UV-2450」)を用い、JIS Z8722に準拠して測定雰囲気の温度20℃、相対湿度60%の条件にて、試験シートの光線透過率を360~740nmの波長領域において1nm毎に測定した。得られた光線透過率において、360~740nmの波長領域の光線透過率の相加平均値を求め、表面層の平均光線透過率とした。
(Average light transmittance of surface layer)
A test sheet having the same configuration and the same thickness as the surface layer of the light reflector was extruded. For the measurement of the light transmittance of the obtained test sheet, a spectrophotometer (trade name “UV-2450” manufactured by Shimadzu Corporation) was used, and the temperature of the measurement atmosphere was 20 ° C. and the relative humidity was 60% in accordance with JIS Z8722. Under the conditions, the light transmittance of the test sheet was measured every 1 nm in the wavelength region of 360 to 740 nm. In the obtained light transmittance, the arithmetic average value of the light transmittance in the wavelength region of 360 to 740 nm was determined and used as the average light transmittance of the surface layer.
(光線反射率)
 光反射体の光線反射率の測定には分光測色計(コニカミノルタ社製 商品名「CM-2600d」)を使用し、JIS Z8722に準拠し、測定雰囲気の室温が20℃、測定雰囲気の相対湿度が60%の条件において、光反射体の光線反射率を360~740nmの波長領域において10nm毎に測定した。
(Light reflectance)
A spectrocolorimeter (trade name “CM-2600d” manufactured by Konica Minolta Co., Ltd.) is used to measure the light reflectance of the light reflector, and in accordance with JIS Z8722, the room temperature of the measurement atmosphere is 20 ° C. The light reflectance of the light reflector was measured every 10 nm in the wavelength region of 360 to 740 nm under the condition where the humidity was 60%.
 得られた光線反射率において、360~740nmの波長領域にて最大光線反射率を求め、表3、4の「促進暴露試験前」の欄に結果を記載した。 In the obtained light reflectivity, the maximum light reflectivity was determined in the wavelength region of 360 to 740 nm, and the results are shown in the columns of “Before accelerated exposure test” in Tables 3 and 4.
 更に、促進暴露試験機(スガ試験機社製 商品名「サンシャインスーパーロングライフウェザーメーターWEL-SUN-HC・B型」)を用いてJIS K7350-4に準拠して試験槽の設定温度50℃、設定相対湿度20%の条件に調節して、光反射体の表面層にカーボンアークランプの光を100時間に亘って照射して促進暴露試験を行った。なお、実施例67、69、71、73の光反射体については、発光体層に光を照射した。 Furthermore, using an accelerated exposure tester (trade name “Sunshine Super Long Life Weather Meter WEL-SUN-HC / B type” manufactured by Suga Test Instruments Co., Ltd.), the test tank has a set temperature of 50 ° C. according to JIS K7350-4. The accelerated exposure test was performed by adjusting the surface relative humidity of 20% and irradiating the surface layer of the light reflector with carbon arc lamp light for 100 hours. In addition, about the light reflector of Example 67, 69, 71, 73, the light-emitting body layer was irradiated with light.
 次に、促進暴露試験後の光反射体について上述と同様の要領で360~740nmの波長領域における最大光線反射率を求め、表3、4の「促進暴露試験後」の欄に結果を記載した。 Next, for the light reflector after the accelerated exposure test, the maximum light reflectance in the wavelength region of 360 to 740 nm was determined in the same manner as described above, and the results were listed in the columns of “After accelerated exposure test” in Tables 3 and 4. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、光源から放射される光とは異なる波長領域の光を強調させ、例えば、商品陳列棚上に配置した物品の照明用途、表示装置の用途などの色相が重視される用途に好適に用いることができる。 The present invention emphasizes light in a wavelength region different from the light emitted from the light source, and is suitable for applications in which hue is important, for example, illumination use of articles placed on a product display shelf, use of a display device, etc. Can be used.
1   光反射層
2   発光体層
3   表面層
A   光反射体、第一光反射体
A1   湾曲端部
B   光源
C   植物栽培棚
D   第二光反射体
L   照明装置、植物栽培用照明装置
DESCRIPTION OF SYMBOLS 1 Light reflection layer 2 Light-emitting body layer 3 Surface layer A Light reflector, 1st light reflector
A1 Curved end B Light source C Plant cultivation shelf D Second light reflector L Lighting device, Plant cultivation lighting device

Claims (31)

  1. 光源から放射された光の波長分布とは異なる波長分布を有する光を反射光として放射することを特徴とする光反射体。 A light reflector characterized by emitting light having a wavelength distribution different from that of light emitted from a light source as reflected light.
  2. 光反射体は、光源から放射された光を吸収し、蛍光又は燐光を放射することを特徴とする請求項1に記載の光反射体。 The light reflector according to claim 1, wherein the light reflector absorbs light emitted from the light source and emits fluorescence or phosphorescence.
  3. 光反射体は、光反射層と、上記光反射層上に積層一体化され且つ可視光領域に発光する発光体を含有している発光体層とを備えていることを特徴とする請求項1に記載の光反射体。 2. The light reflector includes a light reflecting layer and a light emitting layer containing a light emitting body that is laminated and integrated on the light reflecting layer and emits light in a visible light region. The light reflector as described in.
  4. 可視光領域に発光する発光体は、400~470nmの波長領域に発光スペクトルのピークを有する発光体、又は、570~700nmの波長領域に発光スペクトルのピークを有する発光体の何れか一方或いは双方を含有していることを特徴とする請求項3に記載の光反射体。 The illuminant that emits light in the visible light region is either an illuminant having an emission spectrum peak in the wavelength region of 400 to 470 nm or an illuminant having an emission spectrum peak in the wavelength region of 570 to 700 nm. It contains, The light reflector of Claim 3 characterized by the above-mentioned.
  5. 可視光領域に発光する発光体は、紫外領域又は可視光領域の光を吸収して、400~470nm又は570~700nmの波長領域に、蛍光又は燐光を発する顔料であることを特徴とする請求項3に記載の光反射体。 The phosphor that emits light in the visible light region is a pigment that absorbs light in the ultraviolet region or visible light region and emits fluorescence or phosphorescence in a wavelength region of 400 to 470 nm or 570 to 700 nm. 3. The light reflector according to 3.
  6. 可視光領域に発光する発光体は、紫外領域又は可視光領域の光を吸収して、400~470nm又は570~700nmの波長領域に、蛍光又は燐光を発する染料であることを特徴とする請求項3に記載の光反射体。 The phosphor that emits light in the visible light region is a dye that absorbs light in the ultraviolet region or visible light region and emits fluorescence or phosphorescence in a wavelength region of 400 to 470 nm or 570 to 700 nm. 3. The light reflector according to 3.
  7. 光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ1とし、570~700nmの波長領域における最大光線反射率と、470~570nmの波長領域における最小光線反射率との差をΔ2としたとき、Δ1又はΔ2の何れか一方或いは双方が1%以上であることを特徴とする請求項4に記載の光反射体。 In the reflection spectrum of the light reflector, the maximum light reflectance in the wavelength region of 400 ~ 470 nm, the difference between the minimum light reflectance in the wavelength region of 470 ~ 570 nm and delta 1, the maximum light reflectance in the wavelength region of 570 ~ 700 nm 5. One or both of Δ 1 and Δ 2 are 1% or more, where Δ 2 is a difference between the ratio and the minimum light reflectance in the wavelength region of 470 to 570 nm. The light reflector described.
  8. 光反射体の反射スペクトルにおいて、400~470nmの波長領域における最大光線反射率、又は、570~700nmの波長領域における最大光線反射率の何れか一方或いは双方が100%を越えていることを特徴とする請求項4に記載の光反射体。 In the reflection spectrum of the light reflector, one or both of the maximum light reflectance in the wavelength region of 400 to 470 nm and the maximum light reflectance in the wavelength region of 570 to 700 nm exceed 100%. The light reflector according to claim 4.
  9. 発光体層は、合成樹脂100重量部、光反射性充填剤0.05~50重量部及び可視光領域に発光する発光体を含有していることを特徴とする請求項3に記載の光反射体。 The light reflecting layer according to claim 3, wherein the light emitting layer contains 100 parts by weight of a synthetic resin, 0.05 to 50 parts by weight of a light reflective filler, and a light emitting body that emits light in a visible light region. body.
  10. 発光体層を構成している合成樹脂と光反射性充填剤との界面にて反射する反射光の波長領域が、発光体層に含有されている発光体における光吸収波長領域又は発光波長領域と重複していることを特徴とする請求項9に記載の光反射体。 The wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the light emitter layer and the light reflective filler is a light absorption wavelength region or a light emission wavelength region in the light emitter contained in the light emitter layer. The light reflector according to claim 9, wherein the light reflector overlaps.
  11. 発光体層を構成している合成樹脂の屈折率と、光反射性充填剤の屈折率との差が0.05以上であることを特徴とする請求項9に記載の光反射体。 The light reflector according to claim 9, wherein a difference between a refractive index of the synthetic resin constituting the light emitting layer and a refractive index of the light reflective filler is 0.05 or more.
  12. 発光体層中に合成樹脂100重量部に対して光反射性充填剤0.05~25重量部含有されていることを特徴とする請求項9に記載の光反射体。 10. The light reflector according to claim 9, wherein the light emitter layer contains 0.05 to 25 parts by weight of a light reflective filler with respect to 100 parts by weight of the synthetic resin.
  13. 光反射性充填剤が白色顔料であることを特徴とする請求項9に記載の光反射体。 The light reflector according to claim 9, wherein the light reflective filler is a white pigment.
  14. 光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が100%以上であることを特徴とする請求項9に記載の光反射体。 The light reflector according to claim 9, wherein, in the reflection spectrum of the light reflector, the maximum light reflectance in a wavelength region of 360 to 740 nm is 100% or more.
  15. 発光体層上に積層一体化され且つ合成樹脂及び光反射性充填材を含有する表面層を有することを特徴とする請求項3に記載の光反射体。 4. The light reflector according to claim 3, wherein the light reflector has a surface layer laminated and integrated on the light emitter layer and containing a synthetic resin and a light reflective filler.
  16. 表面層を構成している合成樹脂と、上記表面層に含有されている光反射性充填材との界面にて反射する反射光の波長領域が、発光体層に含有されている発光体における光吸収波長領域又は発光波長領域と重複していることを特徴とする請求項15に記載の光反射体。 The wavelength region of the reflected light reflected at the interface between the synthetic resin constituting the surface layer and the light reflective filler contained in the surface layer is light in the light emitter contained in the light emitter layer. The light reflector according to claim 15, wherein the light reflector overlaps with an absorption wavelength region or an emission wavelength region.
  17. 光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が100%以上であることを特徴とする請求項15に記載の光反射体。 The light reflector according to claim 15, wherein in the reflection spectrum of the light reflector, the maximum light reflectance in a wavelength region of 360 to 740 nm is 100% or more.
  18. 光反射体の反射スペクトルにおいて、360~740nmの波長領域における最大光線反射率が、JIS K7350-4に準拠して温度50℃及び相対湿度20%の条件下にて行われた促進暴露試験100時間後において、100%以上であることを特徴とする請求項15に記載の光反射体。 In the reflection spectrum of the light reflector, the maximum light reflectance in the wavelength region of 360 to 740 nm is 100 hours in an accelerated exposure test conducted under conditions of a temperature of 50 ° C. and a relative humidity of 20% in accordance with JIS K7350-4. The light reflector according to claim 15, which is 100% or more later.
  19. 表面層を構成している合成樹脂の屈折率と、上記表面層に含有されている光反射性充填材の屈折率との差が0.05以上であることを特徴とする請求項15に記載の光反射体。 The difference between the refractive index of the synthetic resin constituting the surface layer and the refractive index of the light reflective filler contained in the surface layer is 0.05 or more. Light reflector.
  20. 表面層中に合成樹脂100重量部に対して光反射性充填材0.05~50重量部が含有されていることを特徴とする請求項15に記載の光反射体。 The light reflector according to claim 15, wherein the surface layer contains 0.05 to 50 parts by weight of a light reflective filler with respect to 100 parts by weight of the synthetic resin.
  21. 表面層における360~740nmの波長領域での平均光線透過率が70%以下であることを特徴とする請求項15に記載の光反射体。 The light reflector according to claim 15, wherein the average light transmittance in the wavelength region of 360 to 740 nm in the surface layer is 70% or less.
  22. 光反射層が発泡体から形成されていることを特徴とする請求項3に記載の光反射体。 4. The light reflector according to claim 3, wherein the light reflection layer is formed of a foam.
  23. 光反射層の一部が発泡体から形成されていることを特徴とする請求項3に記載の光反射体。 4. The light reflector according to claim 3, wherein a part of the light reflection layer is formed of a foam.
  24. 光反射層の他面に発泡体層が積層一体化されていることを特徴とする請求項3に記載の光反射体。 The light reflector according to claim 3, wherein a foam layer is laminated and integrated on the other surface of the light reflective layer.
  25. 植物栽培に用いられることを特徴とする請求項4に記載の光反射体。 The light reflector according to claim 4, wherein the light reflector is used for plant cultivation.
  26. 光源と、請求項3に記載の光反射体とを備えていることを特徴とする照明装置。 An illumination device comprising: a light source; and the light reflector according to claim 3.
  27. 光源が蛍光灯であることを特徴とする請求項26に記載の照明装置。 27. The illumination device according to claim 26, wherein the light source is a fluorescent lamp.
  28. 商品陳列棚上に配置された物品を照らすために用いられることを特徴とする請求項26に記載の照明装置。 27. The lighting device according to claim 26, wherein the lighting device is used to illuminate an article placed on a merchandise display shelf.
  29. 光源と、請求項4に記載の光反射体とを備えていることを特徴とする植物栽培用照明装置。 An illumination device for plant cultivation comprising a light source and the light reflector according to claim 4.
  30. 光源と、請求項4に記載の光反射体と、上記光源の前方に配設された植物栽培棚とを備えた植物栽培用照明装置。 An illumination device for plant cultivation comprising a light source, the light reflector according to claim 4, and a plant cultivation shelf arranged in front of the light source.
  31. 光反射体は、円弧状に湾曲された状態で光源の後方に配設されている第一光反射体と、この第一光反射体の湾曲端部と植物栽培棚との間に配設された第二光反射体とを備えていることを特徴とする請求項30に記載の植物栽培用照明装置。 The light reflector is disposed between the first light reflector disposed behind the light source in a curved shape, and the curved end portion of the first light reflector and the plant cultivation shelf. The lighting device for plant cultivation according to claim 30, comprising a second light reflector.
PCT/JP2010/055274 2009-03-30 2010-03-25 Light reflector, lighting device, and lighting device for cultivating plant WO2010113771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080014218.2A CN102365564B (en) 2009-03-30 2010-03-25 Light reflector, lighting device, and lighting device for cultivating plant

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009083586A JP2010234583A (en) 2009-03-30 2009-03-30 Light reflecting plate
JP2009-083586 2009-03-30
JP2009-171459 2009-07-22
JP2009171459A JP2011028914A (en) 2009-07-22 2009-07-22 Lighting device, and lighting system for cultivating plant
JP2009229037A JP2011075944A (en) 2009-09-30 2009-09-30 Light reflection plate
JP2009-229037 2009-09-30
JP2010-036586 2010-02-22
JP2010036586A JP5379042B2 (en) 2010-02-22 2010-02-22 Light reflector

Publications (1)

Publication Number Publication Date
WO2010113771A1 true WO2010113771A1 (en) 2010-10-07

Family

ID=42828064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055274 WO2010113771A1 (en) 2009-03-30 2010-03-25 Light reflector, lighting device, and lighting device for cultivating plant

Country Status (3)

Country Link
CN (1) CN102365564B (en)
TW (1) TW201044025A (en)
WO (1) WO2010113771A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031713B1 (en) * 2013-08-07 2019-02-28 Андрей Николаевич Петушок Heat-regulating and light-reflecting installation
WO2017042207A1 (en) * 2015-09-07 2017-03-16 Beaulieu International Group Nv Agro- and geotextiles
JP6998118B2 (en) * 2017-03-29 2022-01-18 デンカ株式会社 A vinylidene fluoride resin-based composite sheet containing a phosphorescent phosphor and a method for producing the same.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164622A (en) * 1995-12-18 1997-06-24 Oike Ind Co Ltd Stimulable diffuse reflecting film
JP2002243938A (en) * 2001-02-13 2002-08-28 Nitto Denko Corp Optical element, polarized surface light source and liquid crystal display device
JP2003021708A (en) * 2001-07-05 2003-01-24 Fujitsu Ltd Reflection substrate, method for forming the same and reflective display element using the same
JP2003084139A (en) * 2001-09-13 2003-03-19 Toppan Printing Co Ltd Hologram reflector and reflection liquid crystal display device having the same mounted thereon
JP2008019296A (en) * 2006-07-11 2008-01-31 Mitsubishi Chemicals Corp Light-reflective resin composition and light-reflective member produced by molding the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809781B2 (en) * 2002-09-24 2004-10-26 General Electric Company Phosphor blends and backlight sources for liquid crystal displays
CN100339934C (en) * 2003-08-27 2007-09-26 筑光光电股份有限公司 High brightness plane lamp and its mfg. method
CN100543500C (en) * 2005-04-19 2009-09-23 积水化成品工业株式会社 Reflecting plate is used the manufacture method of foam sheet with foam sheet, reflecting plate and reflecting plate
JP2007178998A (en) * 2005-12-01 2007-07-12 Sekisui Film Kk Reflective film, reflective laminated film and reflective laminated board
CN101320669A (en) * 2008-07-04 2008-12-10 黄明荣 Fluorescent lamp tube with mirror face reflection coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09164622A (en) * 1995-12-18 1997-06-24 Oike Ind Co Ltd Stimulable diffuse reflecting film
JP2002243938A (en) * 2001-02-13 2002-08-28 Nitto Denko Corp Optical element, polarized surface light source and liquid crystal display device
JP2003021708A (en) * 2001-07-05 2003-01-24 Fujitsu Ltd Reflection substrate, method for forming the same and reflective display element using the same
JP2003084139A (en) * 2001-09-13 2003-03-19 Toppan Printing Co Ltd Hologram reflector and reflection liquid crystal display device having the same mounted thereon
JP2008019296A (en) * 2006-07-11 2008-01-31 Mitsubishi Chemicals Corp Light-reflective resin composition and light-reflective member produced by molding the same

Also Published As

Publication number Publication date
TW201044025A (en) 2010-12-16
CN102365564A (en) 2012-02-29
CN102365564B (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP2011170295A (en) Light reflection plate
KR100932464B1 (en) Optical filter and lighting device
US6893147B2 (en) Lamp lens or bezel with visual effect
KR100854233B1 (en) Light reflector
US9726349B2 (en) Decorative light
US10781999B2 (en) Luminous systems
US10240737B2 (en) Vehicle light assembly
TW201535018A (en) Optical device including remote downconverter
WO2010113771A1 (en) Light reflector, lighting device, and lighting device for cultivating plant
JP2009103916A (en) Light reflection board and lighting body using the same
JP5379042B2 (en) Light reflector
JP5574642B2 (en) Illumination body
JP2011028914A (en) Lighting device, and lighting system for cultivating plant
JP2011075944A (en) Light reflection plate
JP2010234583A (en) Light reflecting plate
JP2010237326A (en) Light reflection plate
JP2011075945A (en) Light reflection plate
WO2021204581A1 (en) A light emitting device
JP2019129134A (en) Illumination cover for white led light source and production method
JP2007294206A (en) Light filter and lighting fixture using it

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014218.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758544

Country of ref document: EP

Kind code of ref document: A1