WO2010110301A1 - Head-mounted display apparatus - Google Patents

Head-mounted display apparatus Download PDF

Info

Publication number
WO2010110301A1
WO2010110301A1 PCT/JP2010/055056 JP2010055056W WO2010110301A1 WO 2010110301 A1 WO2010110301 A1 WO 2010110301A1 JP 2010055056 W JP2010055056 W JP 2010055056W WO 2010110301 A1 WO2010110301 A1 WO 2010110301A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mounted display
display device
head
observer
Prior art date
Application number
PCT/JP2010/055056
Other languages
French (fr)
Japanese (ja)
Inventor
岳雄 岩崎
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010110301A1 publication Critical patent/WO2010110301A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the observer's eyes while attached to the viewer's head.
  • the present invention relates to a head-mounted display device that displays an image, and in particular, for an observer to adjust the position of the exit pupil to the position of the pupil so that the image light from the exit pupil enters the pupil of the observer's eye.
  • the present invention relates to a technique for facilitating alignment work.
  • a technique for optically displaying an image for example, there is a technique for projecting image light representing an image to be displayed on the retina of the observer, thereby allowing the observer to observe the image.
  • planar light that is simultaneously incident from a light source is applied to each pixel using a spatial modulation element such as an LCD.
  • Spatial modulation thereby forming a planar image light, or a beam-shaped light incident from a light source and intensity-modulated for each pixel using a scanner.
  • Japanese Patent Laid-Open No. 7-115607 discloses an example of a conventional head mounted display device as a device for optically displaying an image.
  • This head-mounted display device projects image light representing an image to be displayed on the retina, thereby enabling the observer to observe the image, and planar light incident from the light source all at once. Is used to spatially modulate each pixel using a spatial modulation element such as an LCD, thereby forming planar image light.
  • This type of head-mounted display device has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the viewer's eyes while being mounted on the observer's head. An image is displayed to an observer.
  • the observer when using this type of head-mounted display device, the observer must position the exit pupil so that the image light from the exit pupil enters the pupil of the observer's eye prior to the image observation event. Alignment work for aligning the eye with the pupil position is required.
  • the Japanese Patent Laid-Open No. 7-115607 further discloses a technique for facilitating such alignment work.
  • the observer adjusts the position of the display device relative to the position of the observer's eye while observing the image of his / her eye so that the image of the eye is at the center of the display screen. It becomes possible to do.
  • the observer can match the position of the exit pupil of the eyepiece optical system with the position of the pupil of the eyeball.
  • an observer who desires to observe an image using a head-mounted display device of the above-described type can receive image light from the exit pupil of the head-mounted display device prior to the image observation event. It is required to perform an alignment operation for adjusting the position of the exit pupil to the position of the pupil so as to enter the pupil of the observer's eye.
  • the observer positions the pupil so that the image light from the exit pupil that cannot be seen because it is out of his field of view, i.e., the light spot, enters his field of view.
  • the position of the exit pupil relative to must be adjusted.
  • the observer cannot accurately grasp the initial position of the light spot outside the field of view. Therefore, the observer can predict the position of the light spot outside the field of view only by intuition and experience, and trial and error so that the light spot falls within the field of view. The position must be changed.
  • the diameter of the image light emitted from the exit pupil of the head mounted display device is as small as about 3 to about 10 mm.
  • the present invention has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the observer's eyes while being mounted on the observer's head.
  • a head-mounted display device that displays an image to an observer, and the observer positions the exit pupil so that the image light from the exit pupil enters the pupil of the observer's eye.
  • An object of the present invention is to provide an apparatus that can easily perform an alignment operation for adjusting the position.
  • each section in the form of quoting the numbers of the other sections does not necessarily prevent the technical features described in each section from being separated from the technical features described in the other sections. It should not be construed as meaning, but it should be construed that the technical features described in each section can be appropriately made independent depending on the nature.
  • An image is displayed, and the position of the exit pupil can be adjusted relative to the position of the pupil of the observer, A light source;
  • a modulator that temporally or spatially modulates light from the light source, thereby forming the image light;
  • a scanner that scans and emits incident light, and has a region where light enters and reflects the incident light, and the reflection region includes an optical scanning region in which the scanner can perform optical scanning, A scanner having a non-optical scanning area where optical scanning cannot be performed;
  • the image light emitted from the modulator is guided to the optical scanning region, while guide light is guided to the non-optical scanning region, and the image light and the non-light reflected from the optical scanning region of the scanner.
  • an optical system that emits the guide light reflected from the scanning area together toward the pupil of the observer.
  • this head mounted display device not only image light but also guide light is emitted toward the observer's pupil. If the position of the guide light with respect to the position of the pupil is moved, the position of the image light with respect to the position of the pupil is also moved accordingly.
  • the observer relies on the guide light to position the exit pupil so that the image light moves from outside the field of view to the field of view, i.e., so that the image light enters the pupil of the observer's eye. Alignment work can be performed to match the position.
  • the observer can easily perform the alignment operation for adjusting the position of the exit pupil to the position of the pupil as compared with the case where the observer cannot refer to the guide light.
  • the larger the diameter of the guide light the more the guide light will coincide with the position of the pupil by the ability of the guide light to assist the observer in moving the image light from outside the field of view to the field of view. Probability is high.
  • the larger the area of the non-light scanning region of the scanner the easier it is to increase the diameter of reflected light therefrom.
  • the guide light is generated not as the reflected light from the optical scanning area of the scanner but as the reflected light from the non-optical scanning area.
  • this head-mounted display device it is possible to freely set the diameter of the guide light independently from the request regarding the scanning frequency for the scanner. Therefore, according to this head mounted display device, the diameter of the guide light can be increased without sacrificing the original performance of the scanner.
  • the entire optical system in the head mounted display device is In addition, it is possible to employ a method of displacing relative to the eyes of the observer, but the present invention is not limited to this. For example, by changing the position, angle, optical characteristics, etc. of at least one of the plurality of optical elements constituting the entire optical system without changing the position of the entire optical system, the exit pupil becomes the pupil of the observer. On the other hand, it may be adjusted relatively and variably.
  • the guide light is generated so as to have a natural color for the observer.
  • the guide light is generated so as to have a diameter that is easier for the observer to find than the image light.
  • the guide light has a common optical axis with the image light, and the optical system reflects the image light reflected from the optical scanning area of the scanner and the non-optical scanning area.
  • the head-mounted display device according to any one of (1) to (3), wherein the guide light is emitted from the exit pupil toward the observer's pupil together.
  • the guide light has an optical axis common to the image light, so that the image light and the guide light are emitted together from the exit pupil toward the observer's pupil.
  • the guide light has an optical axis common to the image light and has a diameter larger than that of the image light.
  • the exit pupil is enlarged as compared with the case where only the image light is irradiated to the observer's eye.
  • the observer can easily perform an alignment operation for adjusting the position of the exit pupil to the position of the pupil.
  • the information processing device according to any one of (1) to (4), further including a selector that switches between an irradiation permission state that allows the guide light to be irradiated to an observer's eye and an irradiation blocking state that blocks the irradiation.
  • a selector that switches between an irradiation permission state that allows the guide light to be irradiated to an observer's eye and an irradiation blocking state that blocks the irradiation.
  • Head mounted display device further including a selector that switches between an irradiation permission state that allows the guide light to be irradiated to an observer's eye and an irradiation blocking state that blocks the irradiation.
  • the guide light does not always exist in the observer's field of view.
  • the selector switches from the irradiation permission state to the irradiation blocking state, and as a result, the guide light is extinguished from the observer's field of view.
  • the head mounted display device according to (5), further including a second light source different from the light source that emits the guide light.
  • this head mounted display device unlike the head mounted display device according to item (8) described later, it is not necessary to depend on a light source for generating image light in order to generate guide light.
  • the image light and the guide light are generated from the light source common to them. Therefore, according to this head mounted display device, unlike the head mounted display device according to the above item (6), a light source different from the light source for generating image light is used to generate guide light. You do n’t have to.
  • the same light is emitted from the light source common to the image light and the guide light in a state where the portion that forms the guide light is prevented from being irradiated to the observer's eyes.
  • the emitted light only the portion that forms the image light is irradiated to the viewer's eyes, thereby realizing a state in which the viewer can observe the image.
  • the portion of the emitted light from the light source common to the image light and the guide light forms the guide light.
  • the part of the same emitted light that forms the image light is irradiated to the observer's eyes, thereby realizing a state in which the observer can observe the image Is done.
  • the selector can be switched from the irradiation permission state to the irradiation blocking state based on the intention of the observer.
  • the predetermined condition is that the elapsed time from the time when the head mounted display device is turned on, the time when the guide light is generated, or the time when an event occurs between the two times reaches the reference time.
  • the selector can be automatically switched from the irradiation permission state to the irradiation blocking state without waiting for the observer's operation.
  • this head mounted display device it is possible to prevent the unnecessary guide light from continuing to exist because the observer forgets to turn off the guide light even after the guide light is no longer needed. It becomes possible to do.
  • the scanner includes a scanning mirror that reflects the incident light and scans the reflected light by reciprocating oscillation.
  • the optical scanning region is disposed on the scanning mirror;
  • the head-mounted display device according to any one of (1) to (13), wherein the non-light scanning region is disposed in a portion of the scanner excluding the scanning mirror.
  • the non-optical scanning area that reflects the light that generates the guide light is arranged in a portion of the scanner excluding the scanning mirror.
  • the scanning mirror of the scanner is required to meet the requirements regarding the scanning frequency, so it is difficult to increase the size of the scanner.
  • the portion of the scanner excluding the scanning mirror is larger than the scanning mirror. It is easy to make.
  • a portion of the scanner excluding the scanning mirror which is easier to enlarge than the scanning mirror, is used to generate the guide light, thereby The diameter of the guide light can be increased more easily than when the guide light is generated using a scanning mirror.
  • the scanning mirror and a portion excluding the scanning mirror are formed on a common member of both,
  • a portion of the scanner excluding the scanning mirror includes a package that accommodates the scanning mirror therein.
  • the non-light scanning region includes a first region that reflects the image light and a second region that reflects the guide light, whereby the guide light is transmitted from the non-light scanning region and the non-light scanning region.
  • the head mounted display device according to any one of (1) to (16), which is generated by both the optical scanning region.
  • this head mounted display device guide light is generated using not only the non-light scanning area but also a part of the light scanning area in the scanner. Therefore, according to this head mounted display device, it is easier to increase the intensity of the guide light than when it is necessary to generate the guide light using only the non-optical scanning region.
  • the head mounted display device it is possible to generate guide light having a large diameter relative to the size of the non-light scanning region.
  • FIG. 2 is an optical path diagram illustrating an upstream partial optical path from a light source unit to a horizontal scanning scanner in the head mounted display device illustrated in FIG. 1.
  • FIG. 2 is an optical path diagram showing a downstream partial optical path from a vertical scanning scanner to an eyepiece optical system in the head mounted display device shown in FIG. 1.
  • FIG. 3 is an enlarged plan view showing an internal structure of the horizontal scanning scanner shown in FIG. 2.
  • FIG. 2 is a block diagram conceptually showing an electric circuit unit in the head mounted display device shown in FIG. 1.
  • 6 is a flowchart conceptually showing an image display processing program executed by the computer shown in FIG. 5.
  • FIG. 7D show an image observed by the observer wearing the head mounted display device shown in FIG. 1 within the visual field of the image display processing program shown in FIG. It is a figure which shows an example of a mode that changes with time. It is an optical path diagram which shows the upstream partial optical path from a light source part to an achromatic collimating lens among the head mounted display apparatuses according to 2nd Embodiment of this invention which use a mechanical shutter as an example of a selector.
  • FIG. 9 is a block diagram conceptually showing an electric circuit unit in the head mounted display device shown in FIG. 8. 10 is a flowchart conceptually showing an image display processing program executed by the computer shown in FIG. 9.
  • FIG. 1 is a plan view showing the head mounted display device 10 according to the first embodiment of the present invention mounted on the head 12 of an observer (user).
  • the head-mounted display device 10 has an exit pupil (see FIG. 3) that emits image light that represents an image to be displayed to the observer, and is provided on the head 12 of the observer. In an attached state, image light is emitted from the exit pupil and irradiated to the eyeball 14 of the observer, thereby displaying an image to the observer.
  • the head mounted display device 10 is configured such that the position of the exit pupil can be adjusted relative to the position of the pupil 16 of the observer.
  • the head-mounted display device 10 is configured to be a see-through type capable of observing a display image superimposed on the actual outside world.
  • the head mounted display device 10 includes a device main body 20.
  • the apparatus main body 20 includes a housing 22 that is generally rectangular and has an internal space.
  • the housing 22 accommodates an entire optical system 24 shown in optical path diagrams separately in FIGS. 2 and 3, and an electric circuit section 26 conceptually shown in a block diagram in FIG.
  • the overall optical system 24 and the electric circuit unit 26 will be described in detail later with reference to FIGS.
  • the head mounted display device 10 further includes a joint device 30.
  • the joint device 30 is an example of a relative displacement device that can displace the position of the exit pupil of the head mounted display device 10 relative to the position of the eyeball 14 of the observer.
  • the joint device 30 is configured to detachably attach the device main body 20 to eyeglasses 34 attached to an observer.
  • eyeglasses has a function of correcting the diopter of the observer, and has a function of correcting the diopter of the observer and the glasses put on the ears 36 and 36 and the nose 38 of the observer.
  • the eyeglasses 36 and 36 of the observer and the glasses that can be put on the nose 38 are included.
  • the latter glasses can be used by an observer who does not need to correct diopter, or an observer who needs to correct diopter but uses a contact lens or the like for correction.
  • the head-mounted display device 10 is attached to the observer's head 12 so that the head-mounted display device 10 can be attached to the observer's head 12.
  • the term “eyeglass” focuses on functioning to attach the apparatus main body 20 to the head 12 of the observer, and is referred to as an adapter, an attachment, or a support frame. It is possible.
  • the eyeglasses 34 are a pair of vines 40, 40 that are hung on the observer's ears 36, 36, respectively, and a bridge 42 that connects the vines 40, 40 through the pad portion 44. It is provided with what can be put on the nose 38.
  • the vines 40 and 40 and the bridge 42 are generally connected to each other in a foldable manner.
  • the left and right eye lenses 46 are mounted on the bridge 42.
  • the joint device 30 is used to attach the device main body 20 to the glasses 34.
  • the head mounted display device 10 is configured to project image light only on one of the observer's eyes 14, 14, for example, only the left eyeball 14 as shown in FIG. 1.
  • the joint device 30 can be mounted in a cantilever manner only on the device main body 20 on one of the pair of vines 40, 40, for example, the vine 40 hung on the left ear 36 as shown in FIG. It is configured. Further, the joint device 30 is configured to connect the device main body 20 to the eyeglasses 34 so that relative rotation about at least two axes is possible.
  • the joint device 30 includes a clip 50 that is detachably attached to the temple 40, first and second links 52 and 54, and first and second balls. Joints (an example of a universal joint) 56 and 58.
  • the first link 52 is fixed to the clip 50 at one end thereof, and is rotatably connected to one end of the second link 54 at the other end via a first ball joint 56.
  • the second link 54 is rotatably connected to the ball joint receiving portion 60 formed in the housing 22 of the apparatus main body 20 via the second ball joint 58 at the other end thereof. ing.
  • the head mounted display device 10 further includes a half mirror 64.
  • the half mirror 64 reflects incident light from the apparatus main body 20 toward the eyeball 14 of the observer and transmits light from the actual outside located in front of the observer toward the eyeball 14 of the observer.
  • the observer can observe the actual external environment through the half mirror 64 and simultaneously receive the image light from the apparatus main body 20 by the reflection of the half mirror 64 and observe the display image. That is, as described above, the head mounted display device 10 is a see-through type capable of observing a display image superimposed on the actual outside world.
  • FIG. 1 shows an observation optical axis OA and a field of view FOV when an observer observes a display image by the head mounted display device 10 with the left eyeball 14.
  • the entire optical system 24 includes a light source unit 70 shown in FIG. 2 and a scanning unit 72 shown in FIGS. 2 and 3.
  • the beam-shaped light incident from the light source unit 70 and intensity-modulated for each pixel is converted into planar image light using the scanning unit 72.
  • the image light thus formed is projected directly onto the observer's retina via the observer's pupil 16, thereby enabling the observer to observe the image as a virtual image.
  • the overall optical system 24 includes a light source unit 70, an achromatic collimating lens 74 and a horizontal scanning scanner 76 shown in FIG. 2, and a vertical scanning scanner 78 and an eyepiece optical system 80 shown in FIG.
  • the light beam incident on the horizontal scanning scanner 76 is horizontally scanned by the horizontal scanning scanner 76 and emitted therefrom.
  • the emitted light is incident on the vertical scanning scanner 78 through a relay lens (not shown) so as to converge on the vertical scanning scanner 78.
  • the incident light is vertically scanned by the vertical scanning scanner 78 and emitted therefrom.
  • the horizontal scanning scanner 76 and the vertical scanning scanner 78 together constitute a scanning unit 72.
  • a horizontal scanning scanner 76 is arranged as a high-speed scanner on the upstream side of the optical path of the entire optical system 24, and a vertical scanning scanner 78 is arranged on the downstream side as a low-speed scanner.
  • the vertical scanning scanner 78 is disposed on the downstream side, but on the upstream side. While the vertical scanning scanner 78 is disposed, the horizontal scanning scanner 76 may be disposed on the downstream side.
  • the scanning unit 72 is configured as a combination of the horizontal scanning scanner 76 and the vertical scanning scanner 78, but swings one deflection mirror about two axes. Accordingly, horizontal scanning and vertical scanning may be realized by a single deflection mirror.
  • the entire optical system 24 has an entire optical path from the light source unit 70 to the eyepiece optical system 80.
  • FIG. 2 shows the upstream optical path from the light source unit 70 to the horizontal scanning scanner 76 in the entire optical path
  • FIG. 3 shows the downstream from the vertical scanning scanner 78 to the eyepiece optical system 80 in the entire optical path.
  • the optical path is shown.
  • FIG. 4 is an enlarged plan view showing a main part of the horizontal scanning scanner 76 (high-speed scanner).
  • the light source unit 70 includes a main light source 82 that generates color laser light (image light) and an auxiliary light source 84 that generates guide light.
  • the main light source 82 is configured as a composite light source, and includes an R laser (red light source) 90 that emits a red laser beam, and a G laser (green light source) 92 that emits a green laser beam. And a B laser (blue light source) 94 for emitting a blue laser beam,
  • the laser beams 90, 92, and 94 are modulated by the individual laser drivers 100, 102, and 104, respectively.
  • the laser beams of three colors emitted from the lasers 90, 92, and 94 are combined as one color laser beam (image light) that reflects the color of the corresponding pixel at each moment.
  • the synthesized laser beam is incident on the achromatic collimating lens 74.
  • the light source unit 70 further transmits an upstream dichroic mirror (wavelength selective mirror) 110 that transmits the red laser beam but reflects the green laser beam, and transmits the red laser beam and the green laser beam. Is provided with a downstream dichroic mirror (wavelength selective mirror) 112 for reflecting the blue laser beam.
  • an upstream dichroic mirror (wavelength selective mirror) 110 that transmits the red laser beam but reflects the green laser beam, and transmits the red laser beam and the green laser beam.
  • a downstream dichroic mirror (wavelength selective mirror) 112 for reflecting the blue laser beam.
  • the red laser beam emitted from the R laser 90 passes through the upstream dichroic mirror 110 and the downstream dichroic mirror 112 in that order.
  • the green laser beam emitted from the G laser 92 is reflected by the upstream dichroic mirror 110 and then passes through the downstream dichroic mirror 112.
  • the blue laser beam emitted from the B laser 94 is reflected by the downstream dichroic mirror 112.
  • the red laser beam, the green laser beam reflected from the upstream dichroic mirror 110, and the blue laser beam reflected from the downstream dichroic mirror 112 share the same optical axis.
  • one color laser beam (image light) obtained by combining the red laser beam, the green laser beam, and the blue laser beam is emitted from the downstream dichroic mirror 112.
  • the light source unit 70 further includes a laser beam stop 114.
  • the laser beam stop 114 can shape the cross-sectional outline of the combined color laser beam so as to be a circle having a prescribed diameter.
  • the laser beam stop 114 can shape the cross-sectional outer shape of the synthesized color laser beam so that it becomes an ellipse having a specified short axis diameter and long axis diameter as necessary. Good.
  • the laser beam stop 114 is described as one that shapes the cross-sectional outline of the combined color laser beam to be circular.
  • the auxiliary light source 84 is configured as a single light source and includes a white LED (white light source) 120 that generates white guide light.
  • the light source unit 70 further includes a half mirror 122 at a position downstream of the downstream dichroic mirror 112.
  • the half mirror 122 is a glass plate on which a metal such as chromium is deposited as a thin film, and each of the red laser beam, the green laser beam, the blue laser beam, and the white guide light is transmitted through the half mirror 122.
  • the transmittance and reflectance of the half mirror 122 are set so as to be reflected by the half mirror 122.
  • the white guide light is incident on the achromatic collimating lens 74 from the half mirror 122 by being reflected along the optical axis common to the color laser beam.
  • the light source unit 70 further includes a guide light diaphragm 124.
  • the guide light diaphragm 124 shapes the cross-sectional outer shape of the white guide light emitted from the half mirror 122 so as to be a circle having a prescribed diameter or an ellipse having a prescribed major axis diameter and minor axis diameter. To do.
  • the circle has a diameter that is greater than the diameter of the circle defined for the cross-sectional profile of the color laser beam, and the ellipse has a diameter that is greater than the diameter in the longitudinal direction of the profile profile of the color laser beam.
  • the guide light diaphragm 124 will be described as one that shapes the cross-sectional outer shape of the white guide light to be circular.
  • the color laser beam and the white guide light are emitted coaxially from the achromatic collimating lens 74, and the cylindrical inner portion of the white guide light is a color laser beam.
  • the outer portion of the hollow cylindrical shape is located outside the color laser beam.
  • Both the color laser beam and white guide light emitted from the achromatic collimating lens 74 are incident on the horizontal scanning scanner 76.
  • the horizontal scanning scanner 76 includes a package 130 (see FIG. 12), a plate-shaped main body (for example, metal) 132 housed in the package 130, and an excitation source.
  • the plate-like piezoelectric element 134 is provided.
  • the main body 132 includes a hollow outer peripheral frame 136 and a vibration transmission unit 138 that extends integrally from the outer peripheral frame 136 toward the inside thereof.
  • the main body portion 132 further includes a pair of torsion beam portions 140 and 140 extending integrally from the vibration transmitting portion 138 and a deflection mirror (scanning mirror) 142 integrally coupled to the torsion beam portions 140 and 140. ing.
  • the entire surface of the main body 132 has a function of reflecting incident light.
  • the surface of the deflecting mirror 142 is surface-treated by depositing a high reflectivity metal such as aluminum so as to efficiently reflect incident light, whereas the surface of the main body 132 excluding the deflecting mirror 142 is treated.
  • the surface is not subjected to such surface treatment for improving the reflectance, and conversely, the antireflection treatment is not performed. That is, the main body 132 reflects light with the reflectance of the main body 132 itself.
  • a piezo-type piezoelectric element 134 made of a polarized PZT material is attached to the vibration transmitting portion 138.
  • swing vibration is excited in the vibration transmission unit 138.
  • the excited oscillation vibration is transmitted to the deflection mirror 142 via the pair of torsion beam portions 140 and 140, thereby exciting the reciprocating torsional oscillation.
  • the deflecting mirror 142 is reciprocally swung at a high speed at the resonance frequency of itself.
  • the deflection mirror 142 is an optical scanning region where optical scanning is performed, and a portion of the main body 132 excluding the deflection mirror 142 is a non-optical scanning region.
  • the color laser beam (image light) emitted from the achromatic collimating lens 74 is incident only on the light scanning area of the horizontal scanning scanner 76.
  • a main irradiation region 150 irradiated with the color laser beam is formed in an inner portion of the optical scanning region.
  • the portion located outside the color laser beam is mainly incident on the non-light scanning region of the horizontal scanning scanner 76, and In addition, the light is incident on a portion of the optical scanning region located outside the main irradiation region 150.
  • the guide light irradiation region 152 irradiated with the white guide light is formed outside the main irradiation region 150 so as to straddle the non-light scanning region and the light scanning region.
  • image light is formed by the light reflected from the main irradiation region 150, while white guide light is formed by the light reflected from the guide light irradiation region 152.
  • a scanner is used so that light does not enter a non-optical scanning region. This is because the reflected light from the non-light scanning region creates disturbance light such as ghost light and stray light.
  • the white guide light is imaged prior to the event that the observer displays the original image, as will be described later. Along with the light, the eyeball 14 of the observer is irradiated.
  • the exit pupil of the head mounted display device 10 is enlarged from the image display stage in which only the image light is irradiated on the eyeball 14 of the observer. Therefore, the observer can easily perform the operation of capturing the image light (original exit pupil) with the eyes by trial and error, thanks to the white guide light.
  • the color laser beam and white guide light emitted from the horizontal scanning scanner 76 are incident on the vertical scanning scanner 78 shown in FIG.
  • the vertical scanning scanner 78 has a structure common to the horizontal scanning scanner 76 shown in FIG.
  • the vertical scanning scanner 78 is configured as a low-speed scanner in the present embodiment, a scanning frequency as high as that of the resonant horizontal scanning scanner 76 is not required. Therefore, an electromagnetically driven vertical scanning scanner (not shown) can be used in place of the piezo-driven vertical scanning scanner 78. Similarly, an electromagnetic drive system can be used as a drive system for the resonance type horizontal scanning scanner 76. As described above, the driving method of the horizontal scanning scanner 76 and the vertical scanning scanner 78 can be arbitrarily selected according to use conditions and application requirements, such as a piezo drive type, an electromagnetic drive type, and an electrostatic drive type. .
  • the deflection mirror 142 is an optical scanning area for performing optical scanning, and the deflection mirror 142 is excluded from the main body 132.
  • the portion is a non-light scanning region.
  • the color laser beam emitted from the horizontal scanning scanner 76 is incident only on the optical scanning area of the vertical scanning scanner 78. As a result, a main irradiation region 150 irradiated with the color laser beam is formed in an inner portion of the optical scanning region.
  • the portion located outside the color laser beam is mainly incident on the non-optical scanning area of the vertical scanning scanner 78, and further, In addition, the light is incident on a portion of the optical scanning region located outside the main irradiation region 150.
  • the guide light irradiation region 152 irradiated with the white guide light is formed outside the main irradiation region 150 so as to straddle the non-light scanning region and the light scanning region.
  • image light is formed by the light reflected from the main irradiation region 150, while white guide light is formed by the light reflected from the guide light irradiation region 152.
  • both the main irradiation region 150 and the guide light irradiation region 152 are disposed on the surface of the main body 132 which is a member common to them.
  • the image light and the white guide light emitted from the vertical scanning scanner 78 pass through the eyepiece optical system 80, and then are shown in FIG. 1, although not shown in FIG.
  • the light is reflected by the half mirror 64 and enters the eyeball 14 of the observer.
  • the eyeball 14 has a pupil 16 through which light enters and an iris 160 located around the pupil 16.
  • the image light and the white guide light are emitted toward the observer's eyeball 14 from the same exit pupil along the common optical axis OA.
  • the image light is incident on the eyeball 14 in a pre-eye image light region (for example, a circular region having a diameter of about 3 to about 10 mm).
  • the white guide light is incident on the eyeball 14 in a pre-ocular guide light region (for example, a circular region having a diameter of about 20 mm).
  • the observer can adjust the position of the apparatus main body 20 so that the position of the exit pupil coincides with the position of the pupil 16 (positioning operation).
  • White guide light can be easily incident on the pupil 16 of the observer.
  • the electric circuit unit 26 includes a controller 172 mainly composed of a computer 170.
  • a CPU an example of a processor
  • ROM an example of memory
  • RAM another example of memory
  • the ROM 176 stores in advance various programs including an image display processing program conceptually represented in the flowchart of FIG. At any time, necessary programs are read from the ROM 176 and executed by the CPU 174.
  • the R laser 90, the G laser 92, and the B laser 94 are connected to a controller 172 via respective drivers 100, 102, and 104.
  • the controller 172 controls the on / off and the intensity of the red laser beam, the green laser beam, and the blue laser beam emitted from the R laser 90, the G laser 92, and the B laser 94 via the respective drivers 100, 102, and 104.
  • the white LED 120 is connected to the controller 172 via the driver 182.
  • the controller 172 controls on / off of the white LED 120 via the driver 182.
  • the piezoelectric element 134 of the horizontal scanning scanner 76 and the piezoelectric element 134 of the vertical scanning scanner 78 are connected to a controller 172 via respective drivers 184 and 184.
  • the controller 172 controls the driving of the piezoelectric elements 134 and 134 via the drivers 184 and 184.
  • the controller 172 is connected with an adjustment completion switch 190 which is an example of an adjustment completion operation member.
  • the adjustment completion switch 190 is operated by the observer so as to input to the computer 170 that the observer has moved the apparatus main body 20 and completed the adjustment work for adjusting the position of the exit pupil to the position of the pupil 16.
  • This image display processing program is executed by the computer 170 with the main power switch (not shown) of the head mounted display device 10 being turned on by the observer.
  • step S1 When the execution of the image display processing program is started, first, the horizontal scanning scanner 76 and the vertical scanning scanner 78 are driven in step S1. Eventually, both scanners 76 and 78 reach a steady driving state.
  • step S2 the main light source 82 is turned on. Since it is currently before alignment adjustment, the main light source 82 is driven so that image light (color laser beam) for displaying an initial screen having a specific two-dimensional image is generated. In the example shown in FIG. 7, the main light source 82 is driven so that image light for displaying the initial screen shown in FIG. 7C is generated.
  • image light color laser beam
  • step S3 the auxiliary light source 84 is turned on, and as a result, white guide light is generated.
  • the observer moves the apparatus main body 20 relative to the eyeball 14 by trial and error based on intuition and experience so that the white guide light enters the pupil 16.
  • the white guide light WGL is a white light spot (apparent emission) in the field of view FOV. It will appear as a pupil. Thereby, the observer perceives that the image light (original exit pupil) is currently located in the vicinity of the position of the pupil 16.
  • the observer moves the apparatus body 20 toward the eyeball 14 by trial and error based on intuition and experience so that not only the white guide light but also the image light (exit pupil) enters the pupil 16. Move.
  • the initial screen is white guide light WGL in the field of view FOV. It appears in a state overlapping with a white light spot representing. Thereby, the adjustment work for aligning the position of the exit pupil with the position of the pupil 16 is completed.
  • step S4 shown in FIG. 6 it is determined whether or not the adjustment work is completed.
  • the observer has operated the adjustment completion switch 190, and if it has been operated, it is determined that the adjustment work has been completed.
  • step S4 determines whether the adjustment work is completed. If the adjustment work is completed, the determination in step S4 is YES, and then the auxiliary light source 84 is turned off in step S5.
  • the white guide light WGL disappears from the field of view FOV, and only the initial screen exists in the field of view FOV. Thereby, the observer can visually recognize the initial screen without being disturbed by the white guide light.
  • the elapsed time from the time when the main power switch of the head mounted display device 10 is turned on, the time when the white guide light is generated, or the time when a specific event occurs between the two times is a reference. It is possible to determine whether or not the adjustment work has been completed when it is determined whether the time has been reached and the elapsed time has reached the reference time. In this case, the auxiliary light source 84 is automatically turned off.
  • step S6 one of a plurality of options related to the video content to be displayed is selected by the observer.
  • step S7 the main light source 82 is controlled so that image light representing the selected video content is generated. As a result, an event of image display is started.
  • image display is started, whereby the viewer can select the video content selected from the beginning of the image display. Can be reliably recognized.
  • step S8 it is determined whether or not the current image display is completed. If completed, the determination in step S8 is YES, and then an end process is performed in step S9.
  • This termination processing includes turning off the main light source 82, stopping the horizontal scanning scanner 76, stopping the vertical scanning scanner 78, and the like.
  • the main light source 82 constitutes an example of the “light source” in the item (1), and the drivers 100, 102, and 104 are in the same item.
  • the scanning unit 72 is an example of a “scanner” in the same term
  • the entire optical system 24 is an example of an “optical system” in the same term. It is.
  • the auxiliary light source 84 constitutes an example of “second light source” in the item (6)
  • the controller 172 constitutes an example of “controller” in the item (7)
  • the driver 182 and the computer 170 are considered that the part that executes steps S3 to S5 shown in FIG. 6 cooperates with each other to constitute an example of the “selector” in the item (11).
  • white guide light is generated by using an auxiliary light source 84 different from the main light source 82.
  • the main light source 82 is used for both generation of image light and generation of guide light.
  • the head mounted display device 210 allows light from the main light source 82 to enter the achromatic collimating lens 74 as both image light and guide light (guide light). Is allowed to irradiate the observer's eyeball 14) and is incident on the achromatic collimating lens 74 only as image light (the guide light is prevented from being applied to the observer's eyeball 14). It is designed to have a selector 212 that switches to an irradiation prevention state.
  • the selector 212 is configured as a mechanical shutter 214 that can move at high speed by a linear motion or an arc motion between an open position and a blocking position, as shown in FIG.
  • the mechanical shutter 214 includes a shutter plate 218 having a light transmission portion (for example, an air opening) 216 and an electromagnetic actuator 220 (which drives the shutter plate 218). 9).
  • the actuator 220 opens the shutter plate 218 at a blocking position (a position indicated by a broken line in FIG. 8) that blocks the portion of the light from the main light source 82 that will form the guide light, and a block that does not block that portion. It is selectively moved to a position (position indicated by a solid line in FIG. 8).
  • An example of the actuator 220 is a step motor.
  • image light and guide light are generated by the light from the main light source 82.
  • the image light is incident on the optical scanning area, while the portion of the guide light that is located outside the image light is incident on the non-optical scanning area. To do.
  • the guide light has the same color as the image light. This is because the guide light and the image light are generated by the main light source 82 common to them. Therefore, in the present embodiment, unlike the first embodiment, it is not guaranteed that the color of the guide light is always completely white.
  • the guide light is a mixture of a plurality of colors of image light. As a result, the observer observes a rainbow-colored bright spot whose color changes with time.
  • FIG. 9 conceptually shows a block diagram of the electric circuit section 26 of the device main body 20 in the head mounted display device 210.
  • the electric circuit unit 26 is basically the same as the electric circuit unit 26 of the first embodiment, but the actuator 220 of the mechanical shutter 214 is connected to the controller 172 via the driver 222, and an auxiliary light source It is different in that the white LED 120 as 84 does not exist.
  • the controller 172 changes the stop position of the shutter plate 218 to a selected one of the open position and the cutoff position via the driver 222.
  • FIG. 10 conceptually shows an image display processing program executed by the computer 170 of the controller 172.
  • This image display processing program is executed by the computer 170 with a main power switch (not shown) of the head mounted display device 210 being turned on by an observer.
  • step S101 the horizontal scanning scanner 76 and the vertical scanning scanner 78 are driven as in step S1 shown in FIG.
  • step S102 the main light source 82 is turned on as in step S2 shown in FIG. As a result, the main light source 82 emits image light and guide light for displaying the initial screen.
  • step S103 the actuator 220 is controlled so that the shutter plate 218 is positioned at the open position indicated by the solid line in FIG. As a result, not only image light but also guide light is incident on the achromatic collimating lens 74.
  • the observer first moves the apparatus body 20 against the eyeball 14 by trial and error based on intuition and experience so that the guide light (apparent exit pupil) enters the pupil 16. move. If successful, the observer then continues trial and error using the intuition and experience of the apparatus main body 20 so that not only the guide light but also the image light (original exit pupil) enters the pupil 16. The eyeball 14 is moved. Eventually, the adjustment work for adjusting the position of the exit pupil to the position of the pupil 16 is completed.
  • step S104 as in step S4 shown in FIG. 6, it is determined whether or not the adjustment work has been completed. If the adjustment work is completed, the determination in step S104 is YES.
  • step S105 the actuator 220 is controlled so that the shutter plate 218 is positioned at the blocking position indicated by the broken line in FIG.
  • the actuator 220 is controlled so that the shutter plate 218 is positioned at the blocking position indicated by the broken line in FIG.
  • the guide light disappears from the field of view FOV, and only the initial screen exists in the field of view FOV.
  • the observer can visually recognize the initial screen without being disturbed by the guide light.
  • step S106 as in step S6 shown in FIG. 6, one of a plurality of options related to the video content to be displayed is selected by the observer.
  • step S107 as in step S7 shown in FIG. 6, the main light source 82 is controlled so that image light representing the selected video content is generated. As a result, an event of image display is started.
  • step S108 as in step S8 shown in FIG. 6, it is determined whether or not the current image display is completed. If completed, the determination in step S108 is YES, and then, in step S109, an end process is performed as in step S9 shown in FIG.
  • the main light source 82 constitutes an example of the “light source” in the item (8)
  • the mechanical shutter 214 is the above (5), (9) or ( It can be considered that it constitutes an example of the “selector” in item 11).
  • the selector 212 is configured as a mechanical shutter 214 as shown in FIG.
  • the selector 212 is configured as a liquid crystal shutter 242 as shown in FIG.
  • the liquid crystal shutter 242 is disposed in the head-mounted display device 240 so as not to move at the same position as the blocking position of the mechanical shutter 214.
  • the liquid crystal shutter 242 is generally plate-shaped, and has a planar circular permanent light transmitting portion 244 that transmits incident light in the inner region, and uses the polarization of liquid crystal in the outer portion, A selective light transmission part 246 that switches between a state of transmitting incident light and a state of blocking incident light is provided.
  • the portion that has passed through the permanent light transmitting portion 244 enters the light scanning region of each of the scanners 76 and 78 as image light, while passing through the selective light transmitting portion 246. This portion enters the non-light scanning area of each of the scanners 76 and 78 as guide light.
  • the selective light transmission unit 246 is connected to the controller 172 of the head mounted display device 240 via the driver 250.
  • the controller 172 allows the selective light transmission unit 246 to transmit the light incident on the selective light transmission unit 246 out of the light from the main light source 82 in the same manner as the control of the mechanical shutter 214 in the second embodiment. Switch between the transmission state and the blocking state to block.
  • the main light source 82 constitutes an example of the “light source” in the item (8)
  • the liquid crystal shutter 242 is the above (5), (10) or ( It can be considered that it constitutes an example of the “selector” in item 11).
  • this embodiment has many elements that are common to the first to third embodiments, and the only difference is the element related to the non-light scanning region used for generating the guide light in the scanner. For the elements to be repeated, a duplicate description will be omitted, and only different elements will be described in detail.
  • a portion of the main body 132 of each of the scanners 76 and 78 excluding the deflection mirror 142 generates guide light as a non-light scanning region. Used for.
  • the main irradiation region 150 irradiated with the image light and the guide light irradiation region 152 irradiated with the guide light in the scanners 76 and 78 are members common to them. It is arrange
  • the surface of the package 130 of the scanners 76 and 78 reflects the guide light as a non-optical scanning region. It is configured.
  • the main irradiation area 150 irradiated with the image light and the guide light irradiation area 152 irradiated with the guide light are different from each other. Respectively.
  • a plurality of electrodes 274 are exposed on the surface of the package 130, and these electrodes 274 are not shown when other scanners 76 and 78 are incorporated in the apparatus main body 20. Used for connection with electronic components.

Abstract

Provided is a head-mounted display apparatus which displays an image to a viewer by emitting image light from an exit pupil onto a viewer's eye when the apparatus is mounted on a head of the viewer, wherein the adjustment operation to adjust the position of the exit pupil in accordance with the position of the pupil of the viewer in order to make the image light from the exit pupil incident upon the pupil of the eye of the viewer can be carried out by the viewer more easily than in a known head-mounted display apparatus. In the head-mounted display apparatus, a scanner (78) has an area which receives light and reflects the received light. The reflection area has a beam scanning area (150) in which the scanner performs the beam scanning and a beam non-scanning area (152) in which the scanner cannot perform the beam scanning. The image light is incident upon the beam scanning area and guide light is incident upon the beam non-scanning area. The image light reflected by the beam scanning area and the guide light reflected from the beam non-scanning area are emitted together from the exit pupil toward the pupil (16) of the viewer.

Description

ヘッドマウントディスプレイ装置Head mounted display device
 本発明は、画像光を出射する射出瞳を有するとともに、観察者の頭部に装着された状態で、射出瞳から画像光を出射して観察者の眼に照射することによって観察者に対して画像を表示するヘッドマウントディスプレイ装置に関するものであり、特に、観察者が、射出瞳からの画像光が観察者の眼の瞳孔に入射するように、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を容易にする技術に関するものである。 The present invention has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the observer's eyes while attached to the viewer's head. The present invention relates to a head-mounted display device that displays an image, and in particular, for an observer to adjust the position of the exit pupil to the position of the pupil so that the image light from the exit pupil enters the pupil of the observer's eye. The present invention relates to a technique for facilitating alignment work.
 画像を光学的に表示する技術として、例えば、表示すべき画像を表す画像光を観察者の網膜上に投影し、それにより、観察者が画像を観察することを可能にする技術が存在する。 As a technique for optically displaying an image, for example, there is a technique for projecting image light representing an image to be displayed on the retina of the observer, thereby allowing the observer to observe the image.
 また、光源からの光を、表示すべき画像を表す画像光に変換する技術として、例えば、光源から一斉に入射した面状の光を、LCD等、空間変調素子を用いて、各画素ごとに空間的に変調し、それにより、面状の画像光を形成する技術や、光源から入射したビーム状の光であって各画素ごとに強度変調されたものを、スキャナを用いて、面状の画像光に変換する技術が存在する。 In addition, as a technique for converting light from a light source into image light representing an image to be displayed, for example, planar light that is simultaneously incident from a light source is applied to each pixel using a spatial modulation element such as an LCD. Spatial modulation, thereby forming a planar image light, or a beam-shaped light incident from a light source and intensity-modulated for each pixel using a scanner There is a technique for converting to image light.
 日本国特開平7-115607号公報は、画像を光学的に表示する装置として、従来のヘッドマウントディスプレイ装置の一例を開示している。 Japanese Patent Laid-Open No. 7-115607 discloses an example of a conventional head mounted display device as a device for optically displaying an image.
 このヘッドマウントディスプレイ装置は、表示すべき画像を表す画像光を網膜上に投影し、それにより、観察者が画像を観察することを可能にする技術と、光源から一斉に入射した面状の光を、LCD等、空間変調素子を用いて、各画素ごとに空間的に変調し、それにより、面状の画像光を形成する技術とを採用している。 This head-mounted display device projects image light representing an image to be displayed on the retina, thereby enabling the observer to observe the image, and planar light incident from the light source all at once. Is used to spatially modulate each pixel using a spatial modulation element such as an LCD, thereby forming planar image light.
 この種のヘッドマウントディスプレイ装置は、画像光を出射する射出瞳を有するとともに、観察者の頭部に装着された状態で、射出瞳から画像光を出射して観察者の眼に照射することによって観察者に対して画像を表示するように構成されている。 This type of head-mounted display device has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the viewer's eyes while being mounted on the observer's head. An image is displayed to an observer.
 そのため、この種のヘッドマウントディスプレイ装置を使用する場合には、観察者は、画像観察というイベントに先立ち、射出瞳からの画像光が観察者の眼の瞳孔に入射するように、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を要求される。 Therefore, when using this type of head-mounted display device, the observer must position the exit pupil so that the image light from the exit pupil enters the pupil of the observer's eye prior to the image observation event. Alignment work for aligning the eye with the pupil position is required.
 前記日本国特開平7-115607号公報は、さらに、そのような位置合わせ作業を容易にする技術も開示している。その技術によれば、観察者は、自分の眼の像を観察しつつ、その眼の像が表示画面の中心にくるように、観察者の眼の位置に対する表示装置の相対的な位置を調整することが可能となる。その結果、観察者は、接眼光学系の射出瞳の位置と眼球の瞳孔の位置とを互いに一致させることが可能となる。 The Japanese Patent Laid-Open No. 7-115607 further discloses a technique for facilitating such alignment work. According to the technology, the observer adjusts the position of the display device relative to the position of the observer's eye while observing the image of his / her eye so that the image of the eye is at the center of the display screen. It becomes possible to do. As a result, the observer can match the position of the exit pupil of the eyepiece optical system with the position of the pupil of the eyeball.
 上述のように、上述の形式のヘッドマウントディスプレイ装置を使用して画像を観察することを希望する観察者は、その画像観察というイベントに先立ち、当該ヘッドマウントディスプレイ装置の射出瞳からの画像光が観察者の眼の瞳孔に入射するように、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を行うことを要求される。 As described above, an observer who desires to observe an image using a head-mounted display device of the above-described type can receive image light from the exit pupil of the head-mounted display device prior to the image observation event. It is required to perform an alignment operation for adjusting the position of the exit pupil to the position of the pupil so as to enter the pupil of the observer's eye.
 具体的には、その位置合わせ作業において、観察者は、自分の視野外にあるために見えない射出瞳からの画像光、すなわち、光スポットを、自分の視野内に入るように、瞳孔の位置に対する射出瞳の位置を調整しなければならない。 Specifically, in the alignment operation, the observer positions the pupil so that the image light from the exit pupil that cannot be seen because it is out of his field of view, i.e., the light spot, enters his field of view. The position of the exit pupil relative to must be adjusted.
 しかしながら、その位置合わせ作業は、従来、ヘッドマウントディスプレイ装置に不慣れな観察者にとっては簡単な作業ではなかった。 However, the alignment work has not been an easy task for an observer who is not accustomed to the head-mounted display device.
 なぜなら、自分の視野外にある光スポットは、その存在が観察者に見えないため、観察者は、その光スポットの初期位置を、その視野外において正確に把握することができない。そのため、観察者は、勘と経験のみを頼りに、視野外にある光スポットの位置を予測しながら、試行錯誤しつつ、その光スポットが視野内に入るように、瞳孔の位置に対する射出瞳の位置を変化させなければならない。 Because the presence of the light spot outside the field of view is not visible to the observer, the observer cannot accurately grasp the initial position of the light spot outside the field of view. Therefore, the observer can predict the position of the light spot outside the field of view only by intuition and experience, and trial and error so that the light spot falls within the field of view. The position must be changed.
 一方、一般に、ヘッドマウントディスプレイ装置の射出瞳から出射する画像光の直径、すなわち、光スポットの直径は、約3ないし約10mmというように小さい。 On the other hand, generally, the diameter of the image light emitted from the exit pupil of the head mounted display device, that is, the diameter of the light spot is as small as about 3 to about 10 mm.
 そのため、観察者が、瞳孔の位置に対する射出瞳の位置を変化させている間に、瞳孔の位置と射出瞳の位置とが偶然に互いに一致する可能性が低い。 Therefore, it is unlikely that the position of the pupil and the position of the exit pupil coincide with each other by chance while the observer changes the position of the exit pupil with respect to the position of the pupil.
 以上説明した事情を背景として、本発明は、画像光を出射する射出瞳を有するとともに、観察者の頭部に装着された状態で、射出瞳から画像光を出射して観察者の眼に照射することによって観察者に対して画像を表示するヘッドマウントディスプレイ装置であって、観察者が、射出瞳からの画像光が観察者の眼の瞳孔に入射するように、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を従来より容易に行い得るものを提供することを課題としてなされたものである。 Against the background described above, the present invention has an exit pupil that emits image light, and emits image light from the exit pupil to irradiate the observer's eyes while being mounted on the observer's head. A head-mounted display device that displays an image to an observer, and the observer positions the exit pupil so that the image light from the exit pupil enters the pupil of the observer's eye. An object of the present invention is to provide an apparatus that can easily perform an alignment operation for adjusting the position.
 本発明によって下記の各態様が得られる。各態様は、項に区分し、各項には番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本発明が採用し得る技術的特徴の一部およびそれの組合せの理解を容易にするためであり、本発明が採用し得る技術的特徴およびそれの組合せが以下の態様に限定されると解釈すべきではない。すなわち、下記の態様には記載されていないが本明細書には記載されている技術的特徴を本発明の技術的特徴として適宜抽出して採用することは妨げられないと解釈すべきなのである。 The following aspects are obtained by the present invention. Each aspect is divided into sections, each section is given a number, and is described in a form that cites other section numbers as necessary. This is to facilitate understanding of some of the technical features that the present invention can employ and combinations thereof, and the technical features that can be employed by the present invention and combinations thereof are limited to the following embodiments. Should not be interpreted. That is, it should be construed that it is not impeded to appropriately extract and employ the technical features described in the present specification as technical features of the present invention although they are not described in the following embodiments.
 さらに、各項を他の項の番号を引用する形式で記載することが必ずしも、各項に記載の技術的特徴を他の項に記載の技術的特徴から分離させて独立させることを妨げることを意味するわけではなく、各項に記載の技術的特徴をその性質に応じて適宜独立させることが可能であると解釈すべきである。 Further, describing each section in the form of quoting the numbers of the other sections does not necessarily prevent the technical features described in each section from being separated from the technical features described in the other sections. It should not be construed as meaning, but it should be construed that the technical features described in each section can be appropriately made independent depending on the nature.
(1) 画像光を出射する射出瞳を有するとともに、観察者の頭部に装着された状態で、前記射出瞳から前記画像光を出射して観察者の眼に照射することによって観察者に対して画像を表示し、かつ、前記射出瞳の位置を観察者の瞳孔の位置に対して相対的に調整することが可能であるヘッドマウントディスプレイ装置であって、
 光源と、
 その光源からの光を、時間的または空間的に変調し、それにより、前記画像光を形成する変調器と、
 入射した光を走査して出射するスキャナであって、光が入射するとともにその入射した光を反射する領域を有し、その反射領域は、当該スキャナが光走査を行い得る光走査領域と、当該スキャナが光走査を行い得ない非光走査領域とを有するものと、
 前記変調器から出射した前記画像光を前記光走査領域に誘導する一方、ガイド光を前記非光走査領域に誘導し、かつ、前記スキャナの前記光走査領域から反射した前記画像光と前記非光走査領域から反射した前記ガイド光とを一緒に観察者の瞳孔に向かって出射する光学系と
 を含むヘッドマウントディスプレイ装置。
(1) Having an exit pupil that emits image light and being attached to the viewer's head, the image light is emitted from the exit pupil and irradiated to the viewer's eyes. An image is displayed, and the position of the exit pupil can be adjusted relative to the position of the pupil of the observer,
A light source;
A modulator that temporally or spatially modulates light from the light source, thereby forming the image light;
A scanner that scans and emits incident light, and has a region where light enters and reflects the incident light, and the reflection region includes an optical scanning region in which the scanner can perform optical scanning, A scanner having a non-optical scanning area where optical scanning cannot be performed;
The image light emitted from the modulator is guided to the optical scanning region, while guide light is guided to the non-optical scanning region, and the image light and the non-light reflected from the optical scanning region of the scanner. And an optical system that emits the guide light reflected from the scanning area together toward the pupil of the observer.
 このヘッドマウントディスプレイ装置によれば、観察者の瞳孔に向かって、画像光のみならずガイド光も出射する。瞳孔の位置に対するガイド光の位置を移動させれば、それに応じて、瞳孔の位置に対する画像光の位置も移動させられる。 According to this head mounted display device, not only image light but also guide light is emitted toward the observer's pupil. If the position of the guide light with respect to the position of the pupil is moved, the position of the image light with respect to the position of the pupil is also moved accordingly.
 その結果、観察者は、ガイド光を頼りに、画像光が視野外から視野内に移動するように、すなわち、画像光が観察者の眼の瞳孔に入射するように、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を行い得る。 As a result, the observer relies on the guide light to position the exit pupil so that the image light moves from outside the field of view to the field of view, i.e., so that the image light enters the pupil of the observer's eye. Alignment work can be performed to match the position.
 したがって、このヘッドマウントディスプレイ装置によれば、観察者は、ガイド光を参照することができない場合に比較し、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を容易に行い得る。 Therefore, according to this head mounted display device, the observer can easily perform the alignment operation for adjusting the position of the exit pupil to the position of the pupil as compared with the case where the observer cannot refer to the guide light.
 一般に、スキャナにおいては、画像光の走査周波数を高めたいという要請から、スキャナのうちの光走査領域(例えば、走査ミラー)の面積を増加するのに限界がある。なぜなら、光走査領域の面積が大きいほど、スキャナのうち光走査領域を構成する部分の重量が増加し、ひいては、走査周波数の最大値が低下するからである。 Generally, in a scanner, there is a limit in increasing the area of an optical scanning region (for example, a scanning mirror) in the scanner because of a demand for increasing the scanning frequency of image light. This is because, as the area of the optical scanning region is larger, the weight of the portion constituting the optical scanning region in the scanner increases, and as a result, the maximum value of the scanning frequency decreases.
 一方、ガイド光の直径が大きいほど、ガイド光が、観察者が画像光を視野外から視野内に移動させる際に観察者を支援する能力、すなわち、ガイド光が瞳孔の位置に偶然に一致する確率が高い。また、スキャナのうち非光走査領域の面積が大きいほど、そこからの反射光を大径化することが容易である。 On the other hand, the larger the diameter of the guide light, the more the guide light will coincide with the position of the pupil by the ability of the guide light to assist the observer in moving the image light from outside the field of view to the field of view. Probability is high. In addition, the larger the area of the non-light scanning region of the scanner, the easier it is to increase the diameter of reflected light therefrom.
 これに対し、本項に係るヘッドマウントディスプレイ装置によれば、ガイド光が、スキャナのうちの光走査領域からの反射光としてではなく、非光走査領域からの反射光として生成される。 On the other hand, according to the head mounted display device according to this section, the guide light is generated not as the reflected light from the optical scanning area of the scanner but as the reflected light from the non-optical scanning area.
 したがって、このヘッドマウントディスプレイ装置によれば、スキャナに対する走査周波数に関する要請とは切り離して、ガイド光の直径を自由に設定することが可能となる。よって、このヘッドマウントディスプレイ装置によれば、スキャナの本来の性能を犠牲にすることなく、ガイド光の直径を増加させることが可能となる。 Therefore, according to this head-mounted display device, it is possible to freely set the diameter of the guide light independently from the request regarding the scanning frequency for the scanner. Therefore, according to this head mounted display device, the diameter of the guide light can be increased without sacrificing the original performance of the scanner.
 なお付言するに、このヘッドマウントディスプレイ装置の射出瞳の位置を観察者の瞳孔の位置に対して相対的に調整可能であるようにするために、当該ヘッドマウントディスプレイ装置における全体光学系を全体的に、観察者の眼に対して相対的に変位させる方式を採用可能であるが、これに限定されない。例えば、その全体光学系の位置は変えずに、その全体光学系を構成する複数の光学素子の少なくとも一つにつき、位置や角度、光学特性などを変えることにより、射出瞳が観察者の瞳孔に対して相対的にかつ可変に調整可能であるようにしてもよい。 In addition, in order to make it possible to adjust the position of the exit pupil of the head mounted display device relative to the position of the pupil of the observer, the entire optical system in the head mounted display device is In addition, it is possible to employ a method of displacing relative to the eyes of the observer, but the present invention is not limited to this. For example, by changing the position, angle, optical characteristics, etc. of at least one of the plurality of optical elements constituting the entire optical system without changing the position of the entire optical system, the exit pupil becomes the pupil of the observer. On the other hand, it may be adjusted relatively and variably.
(2) 前記ガイド光は、白色光である(1)項に記載のヘッドマウントディスプレイ装置。 (2) The head mounted display device according to item (1), wherein the guide light is white light.
 このヘッドマウントディスプレイ装置によれば、ガイド光が、観察者にとって自然な色を有するように生成される。 According to this head mounted display device, the guide light is generated so as to have a natural color for the observer.
(3) 前記ガイド光は、前記画像光より大径である(1)または(2)項に記載のヘッドマウントディスプレイ装置。 (3) The head mounted display device according to (1) or (2), wherein the guide light has a larger diameter than the image light.
 このヘッドマウントディスプレイ装置によれば、ガイド光が、観察者が画像光より見つけ易い直径を有するように生成される。 According to this head mounted display device, the guide light is generated so as to have a diameter that is easier for the observer to find than the image light.
(4) 前記ガイド光は、前記画像光と共通の光軸を有し、それにより、前記光学系は、前記スキャナの前記光走査領域から反射した前記画像光と前記非光走査領域から反射した前記ガイド光とを一緒に前記射出瞳から観察者の瞳孔に向かって出射する(1)ないし(3)項のいずれかに記載のヘッドマウントディスプレイ装置。 (4) The guide light has a common optical axis with the image light, and the optical system reflects the image light reflected from the optical scanning area of the scanner and the non-optical scanning area. The head-mounted display device according to any one of (1) to (3), wherein the guide light is emitted from the exit pupil toward the observer's pupil together.
 このヘッドマウントディスプレイ装置によれば、ガイド光が、画像光と共通の光軸を有し、それにより、画像光とガイド光とが一緒に、射出瞳から観察者の瞳孔に向かって出射する。 According to this head-mounted display device, the guide light has an optical axis common to the image light, so that the image light and the guide light are emitted together from the exit pupil toward the observer's pupil.
 このヘッドマウントディスプレイ装置の一具体例においては、ガイド光が、画像光と共通の光軸を有し、かつ、画像光より大きい直径を有する。この具体例においては、ガイド光が観察者の眼に照射されると、射出瞳が、画像光のみが観察者の眼に照射される場合より拡大する。その結果、観察者は、射出瞳の位置を瞳孔の位置に合わせるための位置合わせ作業を容易に行い得る。 In one specific example of this head mounted display device, the guide light has an optical axis common to the image light and has a diameter larger than that of the image light. In this specific example, when the guide light is irradiated to the observer's eye, the exit pupil is enlarged as compared with the case where only the image light is irradiated to the observer's eye. As a result, the observer can easily perform an alignment operation for adjusting the position of the exit pupil to the position of the pupil.
(5) さらに、前記ガイド光が観察者の眼に照射されることを許可する照射許可状態と阻止する照射阻止状態とに切り換わるセレクタを含む(1)ないし(4)項のいずれかに記載のヘッドマウントディスプレイ装置。 (5) The information processing device according to any one of (1) to (4), further including a selector that switches between an irradiation permission state that allows the guide light to be irradiated to an observer's eye and an irradiation blocking state that blocks the irradiation. Head mounted display device.
 このヘッドマウントディスプレイ装置によれば、ガイド光が常時、観察者の視野内に存在せずに済む。このヘッドマウントディスプレイ装置の一具体例においては、ガイド光の存在が不要となった後に、セレクタが照射許可状態から照射阻止状態に切り換わり、その結果、ガイド光が観察者の視野から消滅させられる。 According to this head mounted display device, the guide light does not always exist in the observer's field of view. In one specific example of this head-mounted display device, after the presence of the guide light becomes unnecessary, the selector switches from the irradiation permission state to the irradiation blocking state, and as a result, the guide light is extinguished from the observer's field of view. .
 それにより、ガイド光が無駄に存在することが防止されるとともに、ガイド光が観察者による画像光の観察を邪魔することが防止される。 This prevents the guide light from being wasted, and prevents the guide light from interfering with the observation of the image light by the observer.
(6) さらに、前記光源とは別の第2の光源であって前記ガイド光を出射するものを含む(5)項に記載のヘッドマウントディスプレイ装置。 (6) The head mounted display device according to (5), further including a second light source different from the light source that emits the guide light.
 このヘッドマウントディスプレイ装置によれば、後述の(8)項に係るヘッドマウントディスプレイ装置とは異なり、ガイド光を発生させるために、画像光を発生させるための光源に依存せずに済む。 According to this head mounted display device, unlike the head mounted display device according to item (8) described later, it is not necessary to depend on a light source for generating image light in order to generate guide light.
(7) 前記セレクタは、前記第2の光源のオンオフ状態を制御するコントローラを含むを(6)項に記載のヘッドマウントディスプレイ装置。 (7) The head mounted display device according to (6), wherein the selector includes a controller that controls an on / off state of the second light source.
(8) 前記光源は、前記画像光と前記ガイド光とを一緒に出射する(5)項に記載のヘッドマウントディスプレイ装置。 (8) The head mounted display device according to (5), wherein the light source emits the image light and the guide light together.
 このヘッドマウントディスプレイ装置によれば、画像光とガイド光とが、それらに共通の光源から発生させられる。よって、このヘッドマウントディスプレイ装置によれば、前記(6)項に係るヘッドマウントディスプレイ装置とは異なり、ガイド光を発生させるために、画像光を発生させるための光源とは別の光源を使用せずに済む。 According to this head mounted display device, the image light and the guide light are generated from the light source common to them. Therefore, according to this head mounted display device, unlike the head mounted display device according to the above item (6), a light source different from the light source for generating image light is used to generate guide light. You do n’t have to.
(9) 前記セレクタは、前記ガイド光を選択的に遮断することによって前記照射阻止状態を選択的に実現するメカニカルシャッタを含む(8)項に記載のヘッドマウントディスプレイ装置。 (9) The head mounted display device according to (8), wherein the selector includes a mechanical shutter that selectively realizes the irradiation blocking state by selectively blocking the guide light.
 このヘッドマウントディスプレイ装置によれば、画像光とガイド光とに共通の光源からの出射光のうち、ガイド光を形成する部分が観察者の眼に照射されることが阻止される状態において、同じ出射光のうち、画像光を形成する部分のみが観察者の眼に照射され、それにより、観察者が画像を観察し得る状態が実現される。 According to this head mounted display device, the same light is emitted from the light source common to the image light and the guide light in a state where the portion that forms the guide light is prevented from being irradiated to the observer's eyes. Of the emitted light, only the portion that forms the image light is irradiated to the viewer's eyes, thereby realizing a state in which the viewer can observe the image.
(10) 前記セレクタは、前記ガイド光を選択的に遮断することによって前記照射阻止状態を選択的に実現する液晶シャッタを含む(8)項に記載のヘッドマウントディスプレイ装置。 (10) The head-mounted display device according to (8), wherein the selector includes a liquid crystal shutter that selectively realizes the irradiation blocking state by selectively blocking the guide light.
 このヘッドマウントディスプレイ装置によれば、前記(9)項に係るヘッドマウントディスプレイ装置と同様に、画像光とガイド光とに共通の光源からの出射光のうち、ガイド光を形成する部分が観察者の眼に照射されることが阻止される状態において、同じ出射光のうち、画像光を形成する部分のみが観察者の眼に照射され、それにより、観察者が画像を観察し得る状態が実現される。 According to this head mounted display device, as in the head mounted display device according to the item (9), the portion of the emitted light from the light source common to the image light and the guide light forms the guide light. In the state where irradiation to the eyes is blocked, only the part of the same emitted light that forms the image light is irradiated to the observer's eyes, thereby realizing a state in which the observer can observe the image Is done.
(11) 前記セレクタは、前記照射許可状態において予め定められた条件が成立すると、前記照射阻止状態に切り換わる(5)ないし(10)項のいずれかに記載のヘッドマウントディスプレイ装置。 (11) The head-mounted display device according to any one of (5) to (10), wherein the selector switches to the irradiation prevention state when a predetermined condition is satisfied in the irradiation permission state.
(12) 前記予め定められた条件は、観察者が特定の操作を行ったときに成立する条件を含む(11)項に記載のヘッドマウントディスプレイ装置。 (12) The head-mounted display device according to (11), wherein the predetermined condition includes a condition that is satisfied when an observer performs a specific operation.
 このヘッドマウントディスプレイ装置によれば、セレクタの、照射許可状態から照射阻止状態への切換えを、観察者の意思に基づいて行い得る。 According to this head mounted display device, the selector can be switched from the irradiation permission state to the irradiation blocking state based on the intention of the observer.
 したがって、このヘッドマウントディスプレイ装置によれば、観察者は、ガイド光が不要であると自ら判断したときに、その不要なガイド光を観察者の視野から消滅させることが可能となる。 Therefore, according to this head mounted display device, when the observer determines that the guide light is unnecessary, the unnecessary guide light can be extinguished from the observer's visual field.
(13) 前記予め定められた条件は、当該ヘッドマウントディスプレイ装置の電源投入時期、前記ガイド光の発生開始時期、または両時期の間に起こるイベントの発生時期からの経過時間が基準時間に到達したときに成立する条件を含む(11)または(12)項に記載のヘッドマウントディスプレイ装置。 (13) The predetermined condition is that the elapsed time from the time when the head mounted display device is turned on, the time when the guide light is generated, or the time when an event occurs between the two times reaches the reference time. The head mounted display device according to (11) or (12), which includes a condition that is sometimes satisfied.
 このヘッドマウントディスプレイ装置によれば、セレクタの、照射許可状態から照射阻止状態への切換えを、観察者の操作を待つことなく、自動的に行い得る。 According to this head mounted display device, the selector can be automatically switched from the irradiation permission state to the irradiation blocking state without waiting for the observer's operation.
 したがって、このヘッドマウントディスプレイ装置によれば、ガイド光が不要になった後であるにもかかわらず、観察者がそのガイド光を消し忘れたために、その不要なガイド光が存在し続けることを防止することが可能となる。 Therefore, according to this head mounted display device, it is possible to prevent the unnecessary guide light from continuing to exist because the observer forgets to turn off the guide light even after the guide light is no longer needed. It becomes possible to do.
(14) 前記スキャナは、前記入射した光を反射するとともにその反射光を往復揺動によって走査する走査ミラーを有し、
 前記光走査領域は、その走査ミラーに配置され、
 前記非光走査領域は、前記スキャナのうち前記走査ミラーを除く部分に配置される(1)ないし(13)項のいずれかに記載のヘッドマウントディスプレイ装置。
(14) The scanner includes a scanning mirror that reflects the incident light and scans the reflected light by reciprocating oscillation.
The optical scanning region is disposed on the scanning mirror;
The head-mounted display device according to any one of (1) to (13), wherein the non-light scanning region is disposed in a portion of the scanner excluding the scanning mirror.
 このヘッドマウントディスプレイ装置によれば、スキャナのうち、ガイド光を生成する光を反射する非光走査領域が、そのスキャナのうち走査ミラーを除く部分に配置される。一方、スキャナのうちの走査ミラーは、走査周波数に関する要請を満たすことが必要であるために、大型化することが困難であるのに対し、スキャナのうち走査ミラーを除く部分は、走査ミラーより大型化することが容易である。 According to the head-mounted display device, the non-optical scanning area that reflects the light that generates the guide light is arranged in a portion of the scanner excluding the scanning mirror. On the other hand, the scanning mirror of the scanner is required to meet the requirements regarding the scanning frequency, so it is difficult to increase the size of the scanner. On the other hand, the portion of the scanner excluding the scanning mirror is larger than the scanning mirror. It is easy to make.
 したがって、このヘッドマウントディスプレイ装置によれば、スキャナのうち走査ミラーを除く部分であって、走査ミラーより大型化することが容易である部分が、ガイド光を生成するために利用され、それにより、ガイド光の直径を、走査ミラーを利用してガイド光が生成される場合より容易に増加させることができる。 Therefore, according to this head-mounted display device, a portion of the scanner excluding the scanning mirror, which is easier to enlarge than the scanning mirror, is used to generate the guide light, thereby The diameter of the guide light can be increased more easily than when the guide light is generated using a scanning mirror.
(15) 前記スキャナのうち、前記走査ミラーと、その走査ミラーを除く部分とは、両者の共通の部材に形成されており、
 前記光走査領域および前記非光走査領域は、前記共通の部材に配置されている(14)項に記載のヘッドマウントディスプレイ装置。
(15) Of the scanner, the scanning mirror and a portion excluding the scanning mirror are formed on a common member of both,
The head mounted display device according to item (14), wherein the optical scanning region and the non-optical scanning region are disposed on the common member.
(16) 前記スキャナのうち前記走査ミラーを除く部分は、その内部において、前記走査ミラーを収容するパッケージを含み、
 前記非光走査領域は、前記パッケージに配置されている(14)項に記載のヘッドマウントディスプレイ装置。
(16) A portion of the scanner excluding the scanning mirror includes a package that accommodates the scanning mirror therein.
The head mounted display device according to item (14), wherein the non-light scanning region is disposed in the package.
(17) 前記非光走査領域は、前記画像光を反射する第1領域と、前記ガイド光を反射する第2領域とを有し、それにより、前記ガイド光が、前記非光走査領域と前記光走査領域との双方によって生成される(1)ないし(16)項のいずれかに記載のヘッドマウントディスプレイ装置。 (17) The non-light scanning region includes a first region that reflects the image light and a second region that reflects the guide light, whereby the guide light is transmitted from the non-light scanning region and the non-light scanning region. The head mounted display device according to any one of (1) to (16), which is generated by both the optical scanning region.
 このヘッドマウントディスプレイ装置によれば、スキャナのうち、非光走査領域のみならず、光走査領域の一部をも利用して、ガイド光が生成される。したがって、このヘッドマウントディスプレイ装置によれば、非光走査領域しか利用せずにガイド光を生成しなければならない場合より、ガイド光の強度を増加させることが容易となる。 According to this head mounted display device, guide light is generated using not only the non-light scanning area but also a part of the light scanning area in the scanner. Therefore, according to this head mounted display device, it is easier to increase the intensity of the guide light than when it is necessary to generate the guide light using only the non-optical scanning region.
 その結果、このヘッドマウントディスプレイ装置によれば、それの非光走査領域のサイズの割りに大きな直径を有するガイド光を生成することが可能となる。 As a result, according to the head mounted display device, it is possible to generate guide light having a large diameter relative to the size of the non-light scanning region.
本発明の第1実施形態に従うヘッドマウントディスプレイ装置を示す平面図である。It is a top view which shows the head mounted display apparatus according to 1st Embodiment of this invention. 図1に示すヘッドマウントディスプレイ装置のうち、光源部から水平走査用スキャナまでの上流側部分光路を示す光路図である。FIG. 2 is an optical path diagram illustrating an upstream partial optical path from a light source unit to a horizontal scanning scanner in the head mounted display device illustrated in FIG. 1. 図1に示すヘッドマウントディスプレイ装置のうち、垂直走査用スキャナからアイピース光学系までの下流側部分光路を示す光路図である。FIG. 2 is an optical path diagram showing a downstream partial optical path from a vertical scanning scanner to an eyepiece optical system in the head mounted display device shown in FIG. 1. 図2に示す水平走査用スキャナの内部構造を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing an internal structure of the horizontal scanning scanner shown in FIG. 2. 図1に示すヘッドマウントディスプレイ装置のうちの電気回路部を概念的に表すブロック図である。FIG. 2 is a block diagram conceptually showing an electric circuit unit in the head mounted display device shown in FIG. 1. 図5に示すコンピュータによって実行される画像表示処理プログラムを概念的に表すフローチャートである。6 is a flowchart conceptually showing an image display processing program executed by the computer shown in FIG. 5. 図7(a)ないし図7(d)は、図1に示すヘッドマウントディスプレイ装置を装着した観察者がそれの視野内に観察するイメージが、図6に示す画像表示処理プログラムの実行中に、時間と共に変化する様子の一例を示す図である。FIG. 7A to FIG. 7D show an image observed by the observer wearing the head mounted display device shown in FIG. 1 within the visual field of the image display processing program shown in FIG. It is a figure which shows an example of a mode that changes with time. 本発明の第2実施形態に従うヘッドマウントディスプレイ装置であって、セレクタの一例としてメカニカルシャッタを用いるもののうち、光源部から色消しコリメートレンズまでの上流側部分光路を示す光路図である。It is an optical path diagram which shows the upstream partial optical path from a light source part to an achromatic collimating lens among the head mounted display apparatuses according to 2nd Embodiment of this invention which use a mechanical shutter as an example of a selector. 図8に示すヘッドマウントディスプレイ装置のうちの電気回路部を概念的に表すブロック図である。FIG. 9 is a block diagram conceptually showing an electric circuit unit in the head mounted display device shown in FIG. 8. 図9に示すコンピュータによって実行される画像表示処理プログラムを概念的に表すフローチャートである。10 is a flowchart conceptually showing an image display processing program executed by the computer shown in FIG. 9. 本発明の第3実施形態に従うヘッドマウントディスプレイ装置がセレクタの別の例として用いる液晶シャッタを示す斜視図である。It is a perspective view which shows the liquid-crystal shutter which the head mounted display apparatus according to 3rd Embodiment of this invention uses as another example of a selector. 本発明の第4実施形態に従うヘッドマウントディスプレイ装置のうちのスキャナを示す斜視図である。It is a perspective view which shows the scanner of the head mounted display apparatuses according to 4th Embodiment of this invention.
 以下、本発明のさらに具体的な実施の形態のうちのいくつかを図面に基づいて詳細に説明する。 Hereinafter, some of more specific embodiments of the present invention will be described in detail with reference to the drawings.
 図1には、本発明の第1実施形態に従うヘッドマウントディスプレイ装置10が、観察者(ユーザ)の頭部12に装着された状態で、平面図で示されている。 FIG. 1 is a plan view showing the head mounted display device 10 according to the first embodiment of the present invention mounted on the head 12 of an observer (user).
 まず、概略的に説明するに、このヘッドマウントディスプレイ装置10は、観察者に表示すべき画像を表現する画像光を出射する射出瞳(図3参照)を有するとともに、観察者の頭部12に装着された状態で、射出瞳から画像光を出射して観察者の眼球14に照射することによって観察者に対して画像を表示するように構成されている。 First, as schematically described, the head-mounted display device 10 has an exit pupil (see FIG. 3) that emits image light that represents an image to be displayed to the observer, and is provided on the head 12 of the observer. In an attached state, image light is emitted from the exit pupil and irradiated to the eyeball 14 of the observer, thereby displaying an image to the observer.
 さらに、このヘッドマウントディスプレイ装置10は、射出瞳の位置が観察者の瞳孔16の位置に対して相対的に調整可能であるように構成されている。 Furthermore, the head mounted display device 10 is configured such that the position of the exit pupil can be adjusted relative to the position of the pupil 16 of the observer.
 さらに、このヘッドマウントディスプレイ装置10は、現実外界に重ねて表示画像を観察可能なシースルー型であるように構成されている。 Furthermore, the head-mounted display device 10 is configured to be a see-through type capable of observing a display image superimposed on the actual outside world.
 図1に示すように、このヘッドマウントディスプレイ装置10は、装置本体20を備えている。 As shown in FIG. 1, the head mounted display device 10 includes a device main body 20.
 装置本体20は、概して矩形状を成すとともに内部空間を有するハウジング22を備えている。そのハウジング22内に、図2および図3にそれぞれ分けて光路図で示す全体光学系24と、図5にブロック図で概念的に表す電気回路部26とが収容されている。それら全体光学系24および電気回路部26は、後に、図2、図3および図5を参照して詳細に説明する。 The apparatus main body 20 includes a housing 22 that is generally rectangular and has an internal space. The housing 22 accommodates an entire optical system 24 shown in optical path diagrams separately in FIGS. 2 and 3, and an electric circuit section 26 conceptually shown in a block diagram in FIG. The overall optical system 24 and the electric circuit unit 26 will be described in detail later with reference to FIGS.
 図1に示すように、このヘッドマウントディスプレイ装置10は、さらに、ジョイント装置30を備えている。このジョイント装置30は、ヘッドマウントディスプレイ装置10の射出瞳の位置を観察者の眼球14の位置に対して相対的に変位させることを可能にする相対変位装置の一例である。このジョイント装置30は、装置本体20を、観察者に装着されているめがね34に着脱可能に装着するように構成されている。 As shown in FIG. 1, the head mounted display device 10 further includes a joint device 30. The joint device 30 is an example of a relative displacement device that can displace the position of the exit pupil of the head mounted display device 10 relative to the position of the eyeball 14 of the observer. The joint device 30 is configured to detachably attach the device main body 20 to eyeglasses 34 attached to an observer.
 ここに、「めがね」という用語は、観察者の視度を矯正する機能を有して観察者の両耳36,36と鼻38にかけられるめがねと、観察者の視度を矯正する機能を有することなく観察者の両耳36,36と鼻38にかけられるめがねとを含んでいる。 Here, the term “eyeglasses” has a function of correcting the diopter of the observer, and has a function of correcting the diopter of the observer and the glasses put on the ears 36 and 36 and the nose 38 of the observer. The eyeglasses 36 and 36 of the observer and the glasses that can be put on the nose 38 are included.
 後者のめがねは、視度を矯正することが不要である観察者や、視度を矯正することが必要であるが矯正のためにコンタクトレンズなどを眼球14に使用している観察者により、このヘッドマウントディスプレイ装置10を観察者の頭部12に装着可能とするために、観察者の頭部12に装着される。 The latter glasses can be used by an observer who does not need to correct diopter, or an observer who needs to correct diopter but uses a contact lens or the like for correction. The head-mounted display device 10 is attached to the observer's head 12 so that the head-mounted display device 10 can be attached to the observer's head 12.
 したがって、本明細書において、「めがね」という用語は、装置本体20を観察者の頭部12に装着するために機能することに着目し、アダプタと称したり、アタッチメントと称したり、支持フレームと称することが可能である。 Accordingly, in the present specification, the term “eyeglass” focuses on functioning to attach the apparatus main body 20 to the head 12 of the observer, and is referred to as an adapter, an attachment, or a support frame. It is possible.
 いずれにしても、めがね34は、観察者の両耳36,36にそれぞれかけられる一対のつる40,40と、それらつる40,40をつなぐブリッジ42であってパッド部44を介して観察者の鼻38にかけられるものとを備えている。それらつる40,40とブリッジ42とは、一般に、折り畳み可能に互いに連結される。ブリッジ42には、左眼用および右眼用のレンズ46,46が装着されている。 In any case, the eyeglasses 34 are a pair of vines 40, 40 that are hung on the observer's ears 36, 36, respectively, and a bridge 42 that connects the vines 40, 40 through the pad portion 44. It is provided with what can be put on the nose 38. The vines 40 and 40 and the bridge 42 are generally connected to each other in a foldable manner. The left and right eye lenses 46 are mounted on the bridge 42.
 ジョイント装置30は、装置本体20をめがね34に装着するために使用される。ヘッドマウントディスプレイ装置10は、観察者の両眼球14,14のうちの一方、例えば、図1に示すように、左眼球14のみに画像光を投影するように構成されている。 The joint device 30 is used to attach the device main body 20 to the glasses 34. The head mounted display device 10 is configured to project image light only on one of the observer's eyes 14, 14, for example, only the left eyeball 14 as shown in FIG. 1.
 そのため、ジョイント装置30は、装置本体20を、一対のつる40,40のうちの一方、例えば、図1に示すように、左耳36にかけられるつる40のみに、片持ち状で装着するように構成されている。さらに、このジョイント装置30は、装置本体20をめがね34に、少なくとも2軸まわりの相対回動が可能であるように連結するように構成されている。 Therefore, the joint device 30 can be mounted in a cantilever manner only on the device main body 20 on one of the pair of vines 40, 40, for example, the vine 40 hung on the left ear 36 as shown in FIG. It is configured. Further, the joint device 30 is configured to connect the device main body 20 to the eyeglasses 34 so that relative rotation about at least two axes is possible.
 具体的には、図1に示すように、このジョイント装置30は、つる40に着脱可能に装着されるクリップ50と、第1および第2のリンク52,54と、第1および第2のボールジョイント(ユニバーサルジョイントの一例)56,58とを備えている。 Specifically, as shown in FIG. 1, the joint device 30 includes a clip 50 that is detachably attached to the temple 40, first and second links 52 and 54, and first and second balls. Joints (an example of a universal joint) 56 and 58.
 第1のリンク52は、それの一端部においてクリップ50に固定される一方、他端部において、第2のリンク54の一端部に、第1のボールジョイント56を介して回動可能に連結されている。これに対し、第2のリンク54は、それの他端部において、第2のボールジョイント58を介して、装置本体20のハウジング22に形成されたボールジョイント受部60に回動可能に連結されている。 The first link 52 is fixed to the clip 50 at one end thereof, and is rotatably connected to one end of the second link 54 at the other end via a first ball joint 56. ing. On the other hand, the second link 54 is rotatably connected to the ball joint receiving portion 60 formed in the housing 22 of the apparatus main body 20 via the second ball joint 58 at the other end thereof. ing.
 図1に示すように、このヘッドマウントディスプレイ装置10は、さらに、ハーフミラー64を備えている。このハーフミラー64は、装置本体20からの入射光を、観察者の眼球14に向かって反射するとともに、観察者の前方に位置する現実外界からの光を、観察者の眼球14に向かって透過させる。 As shown in FIG. 1, the head mounted display device 10 further includes a half mirror 64. The half mirror 64 reflects incident light from the apparatus main body 20 toward the eyeball 14 of the observer and transmits light from the actual outside located in front of the observer toward the eyeball 14 of the observer. Let
 その結果、観察者は、ハーフミラー64を通して現実外界を観察すると同時に、装置本体20からの画像光を、ハーフミラー64の反射によって受光して表示画像を観察することが可能である。すなわち、このヘッドマウントディスプレイ装置10は、前述のように、現実外界に重ねて表示画像を観察可能なシースルー型なのである。 As a result, the observer can observe the actual external environment through the half mirror 64 and simultaneously receive the image light from the apparatus main body 20 by the reflection of the half mirror 64 and observe the display image. That is, as described above, the head mounted display device 10 is a see-through type capable of observing a display image superimposed on the actual outside world.
 図1には、観察者が、左眼球14により、ヘッドマウントディスプレイ装置10による表示画像を観察する際の観察光軸OAと視野FOVとが示されている。 FIG. 1 shows an observation optical axis OA and a field of view FOV when an observer observes a display image by the head mounted display device 10 with the left eyeball 14.
 次に、図2ないし図4を参照することにより、装置本体20のうちの全体光学系24を説明する。 Next, the entire optical system 24 in the apparatus main body 20 will be described with reference to FIGS.
 まず、概略的に説明するに、全体光学系24は、図2に示す光源部70と、図2および図3に示す走査部72とを有する。この全体光学系24においては、光源部70から入射したビーム状の光であって各画素ごとに強度変調されたものが、走査部72を用いて、面状の画像光に変換される。そのようにして形成された画像光は、観察者の瞳孔16を経て直接的に観察者の網膜上に投影され、それにより、観察者が画像を虚像として観察することが可能になる。 First, as schematically described, the entire optical system 24 includes a light source unit 70 shown in FIG. 2 and a scanning unit 72 shown in FIGS. 2 and 3. In the overall optical system 24, the beam-shaped light incident from the light source unit 70 and intensity-modulated for each pixel is converted into planar image light using the scanning unit 72. The image light thus formed is projected directly onto the observer's retina via the observer's pupil 16, thereby enabling the observer to observe the image as a virtual image.
 全体光学系24は、図2に示す光源部70、色消しコリメートレンズ74および水平走査用スキャナ76と、図3に示す垂直走査用スキャナ78およびアイピース光学系80とを備えている。 The overall optical system 24 includes a light source unit 70, an achromatic collimating lens 74 and a horizontal scanning scanner 76 shown in FIG. 2, and a vertical scanning scanner 78 and an eyepiece optical system 80 shown in FIG.
 水平走査用スキャナ76に入射した光ビームは、その水平走査用スキャナ76によって水平走査されてそこから出射する。その出射光は、図示しないリレーレンズ等を経て垂直走査用スキャナ78に収束するようにその垂直走査用スキャナ78に入射する。その入射光は、その垂直走査用スキャナ78によって垂直走査されてそこから出射する。それら水平走査用スキャナ76および垂直走査用スキャナ78が互いに共同して走査部72を構成している。 The light beam incident on the horizontal scanning scanner 76 is horizontally scanned by the horizontal scanning scanner 76 and emitted therefrom. The emitted light is incident on the vertical scanning scanner 78 through a relay lens (not shown) so as to converge on the vertical scanning scanner 78. The incident light is vertically scanned by the vertical scanning scanner 78 and emitted therefrom. The horizontal scanning scanner 76 and the vertical scanning scanner 78 together constitute a scanning unit 72.
 本実施形態においては、全体光学系24の光路の上流側に水平走査用スキャナ76が高速スキャナとして配置される一方、下流側に垂直走査用スキャナ78が低速スキャナとして配置されている。 In this embodiment, a horizontal scanning scanner 76 is arranged as a high-speed scanner on the upstream side of the optical path of the entire optical system 24, and a vertical scanning scanner 78 is arranged on the downstream side as a low-speed scanner.
 なお付言するに、本実施形態においては、全体光学系24の光路の上流側に水平走査用スキャナ76が配置される一方、下流側に垂直走査用スキャナ78が配置されているが、上流側に垂直走査用スキャナ78を配置する一方、下流側に水平走査用スキャナ76を配置してもよい。 In addition, in this embodiment, while the horizontal scanning scanner 76 is disposed on the upstream side of the optical path of the entire optical system 24, the vertical scanning scanner 78 is disposed on the downstream side, but on the upstream side. While the vertical scanning scanner 78 is disposed, the horizontal scanning scanner 76 may be disposed on the downstream side.
 さらに付言するに、本実施形態においては、走査部72が、水平走査用スキャナ76と垂直走査用スキャナ78との組合せとして構成されているが、1枚の偏向ミラーを2軸まわりに揺動させることにより、1枚の偏向ミラーによって水平走査と垂直走査とを実現してもよい。 In addition, in the present embodiment, the scanning unit 72 is configured as a combination of the horizontal scanning scanner 76 and the vertical scanning scanner 78, but swings one deflection mirror about two axes. Accordingly, horizontal scanning and vertical scanning may be realized by a single deflection mirror.
 全体光学系24は、光源部70からアイピース光学系80までの全体光路を有する。図2は、その全体光路のうち、光源部70から水平走査用スキャナ76までの上流光路を示し、一方、図3は、全体光路のうち、垂直走査用スキャナ78からアイピース光学系80までの下流光路を示している。図4は、水平走査用スキャナ76(高速スキャナ)の要部を拡大して平面図で示している。 The entire optical system 24 has an entire optical path from the light source unit 70 to the eyepiece optical system 80. FIG. 2 shows the upstream optical path from the light source unit 70 to the horizontal scanning scanner 76 in the entire optical path, while FIG. 3 shows the downstream from the vertical scanning scanner 78 to the eyepiece optical system 80 in the entire optical path. The optical path is shown. FIG. 4 is an enlarged plan view showing a main part of the horizontal scanning scanner 76 (high-speed scanner).
 図2に示すように、光源部70は、カラーレーザ光(画像光)を発生させる主光源82と、ガイド光を発生させる補助光源84とを備えている。 As shown in FIG. 2, the light source unit 70 includes a main light source 82 that generates color laser light (image light) and an auxiliary light source 84 that generates guide light.
 補助光源84については後に説明するが、主光源82は、複合光源として構成されていて、赤レーザビームを発するRレーザ(赤光源)90と、緑レーザビームを発するGレーザ(緑光源)92と、青レーザビームを発するBレーザ(青光源)94とを備えている、 Although the auxiliary light source 84 will be described later, the main light source 82 is configured as a composite light source, and includes an R laser (red light source) 90 that emits a red laser beam, and a G laser (green light source) 92 that emits a green laser beam. And a B laser (blue light source) 94 for emitting a blue laser beam,
 それらレーザ90,92,94はそれぞれ、図5に示すように、個別のレーザドライバ100,102,104により、発するレーザビームの強度が変調される。それらレーザ90,92,94から出射する3色のレーザビームは、各瞬間ごとに、対応する画素の色を反映する1本のカラーレーザビーム(画像光)として合成される。その合成されたレーザビームは、色消しコリメートレンズ74に入射する。 As shown in FIG. 5, the laser beams 90, 92, and 94 are modulated by the individual laser drivers 100, 102, and 104, respectively. The laser beams of three colors emitted from the lasers 90, 92, and 94 are combined as one color laser beam (image light) that reflects the color of the corresponding pixel at each moment. The synthesized laser beam is incident on the achromatic collimating lens 74.
 図2に示すように、光源部70は、さらに、赤レーザビームは透過するが緑レーザビームは反射する上流側ダイクロイックミラー(波長選択性ミラー)110と、赤レーザビームおよび緑レーザビームは透過するが青レーザビームは反射する下流側ダイクロイックミラー(波長選択性ミラー)112とを備えている。 As shown in FIG. 2, the light source unit 70 further transmits an upstream dichroic mirror (wavelength selective mirror) 110 that transmits the red laser beam but reflects the green laser beam, and transmits the red laser beam and the green laser beam. Is provided with a downstream dichroic mirror (wavelength selective mirror) 112 for reflecting the blue laser beam.
 Rレーザ90から出射した赤レーザビームは、上流側ダイクロイックミラー110および下流側ダイクロイックミラー112をそれらの順に透過する。Gレーザ92から出射した緑レーザビームは、上流側ダイクロイックミラー110で反射した後、下流側ダイクロイックミラー112を透過する。Bレーザ94から出射した青レーザビームは、下流側ダイクロイックミラー112で反射する。 The red laser beam emitted from the R laser 90 passes through the upstream dichroic mirror 110 and the downstream dichroic mirror 112 in that order. The green laser beam emitted from the G laser 92 is reflected by the upstream dichroic mirror 110 and then passes through the downstream dichroic mirror 112. The blue laser beam emitted from the B laser 94 is reflected by the downstream dichroic mirror 112.
 図2に示すように、赤レーザビームと、上流側ダイクロイックミラー110から反射した緑レーザビームと、下流側ダイクロイックミラー112から反射した青レーザビームとは、同じ光軸を共有する。その結果、下流側ダイクロイックミラー112からは、赤レーザビームと緑レーザビームと青レーザビームとが合成された1本のカラーレーザビーム(画像光)が出射する。 As shown in FIG. 2, the red laser beam, the green laser beam reflected from the upstream dichroic mirror 110, and the blue laser beam reflected from the downstream dichroic mirror 112 share the same optical axis. As a result, one color laser beam (image light) obtained by combining the red laser beam, the green laser beam, and the blue laser beam is emitted from the downstream dichroic mirror 112.
 図2に示すように、光源部70は、さらに、レーザビーム絞り114を備えている。このレーザビーム絞り114は、合成されたカラーレーザビームの断面外形を、規定された直径を有する円形となるように、整形することが可能である。これに対し、このレーザビーム絞り114は、合成されたカラーレーザビームの断面外形を、必要に応じて、規定された短軸直径および長軸直径を有する楕円形となるように、整形してもよい。本実施形態においては、このレーザビーム絞り114を、合成されたカラーレーザビームの断面外形を円形となるように整形するものとして説明する。 As shown in FIG. 2, the light source unit 70 further includes a laser beam stop 114. The laser beam stop 114 can shape the cross-sectional outline of the combined color laser beam so as to be a circle having a prescribed diameter. On the other hand, the laser beam stop 114 can shape the cross-sectional outer shape of the synthesized color laser beam so that it becomes an ellipse having a specified short axis diameter and long axis diameter as necessary. Good. In the present embodiment, the laser beam stop 114 is described as one that shapes the cross-sectional outline of the combined color laser beam to be circular.
 図2に示すように、補助光源84は、単一光源として構成されていて、白ガイド光を発生させる白色LED(白光源)120を備えている。 As shown in FIG. 2, the auxiliary light source 84 is configured as a single light source and includes a white LED (white light source) 120 that generates white guide light.
 図2に示すように、光源部70は、さらに、下流側ダイクロイックミラー112より下流側の位置に、ハーフミラー122を備えている。このハーフミラー122は、クロム等の金属が薄膜として蒸着されたガラス板であり、赤レーザビーム、緑レーザビームおよび青レーザビームならびに白ガイド光のそれぞれが、このハーフミラー122を透過し、またこのハーフミラー122で反射するように、このハーフミラー122の透過率および反射率が設定されている。その結果、このハーフミラー122からは、白ガイド光が、カラーレーザビームと共通の光軸に沿って反射することにより、色消しコリメートレンズ74に入射する。 As shown in FIG. 2, the light source unit 70 further includes a half mirror 122 at a position downstream of the downstream dichroic mirror 112. The half mirror 122 is a glass plate on which a metal such as chromium is deposited as a thin film, and each of the red laser beam, the green laser beam, the blue laser beam, and the white guide light is transmitted through the half mirror 122. The transmittance and reflectance of the half mirror 122 are set so as to be reflected by the half mirror 122. As a result, the white guide light is incident on the achromatic collimating lens 74 from the half mirror 122 by being reflected along the optical axis common to the color laser beam.
 光源部70は、さらに、ガイド光絞り124を備えている。このガイド光絞り124は、ハーフミラー122から出射した白ガイド光の断面外形を、規定された直径を有する円形、または規定された長軸直径および短軸直径を有する楕円形となるように、整形する。その円形は、カラーレーザビームの断面外形について規定された円形の直径より大きい直径を有し、また、その楕円形は、カラーレーザビームの断面外形の、長軸方向における直径より大きい直径を有する。本実施形態においては、このガイド光絞り124を、白ガイド光の断面外形を円形となるように整形するものとして説明する。 The light source unit 70 further includes a guide light diaphragm 124. The guide light diaphragm 124 shapes the cross-sectional outer shape of the white guide light emitted from the half mirror 122 so as to be a circle having a prescribed diameter or an ellipse having a prescribed major axis diameter and minor axis diameter. To do. The circle has a diameter that is greater than the diameter of the circle defined for the cross-sectional profile of the color laser beam, and the ellipse has a diameter that is greater than the diameter in the longitudinal direction of the profile profile of the color laser beam. In the present embodiment, the guide light diaphragm 124 will be described as one that shapes the cross-sectional outer shape of the white guide light to be circular.
 その結果、図2に示すように、色消しコリメートレンズ74からは、カラーレーザビームと白ガイド光とが同軸的に出射するとともに、白ガイド光のうち、円柱状を成す内側部分はカラーレーザビームとオーバラップする一方、白ガイド光のうち、中空円筒状を成す外側部分は、カラーレーザビームの外側に位置する。 As a result, as shown in FIG. 2, the color laser beam and the white guide light are emitted coaxially from the achromatic collimating lens 74, and the cylindrical inner portion of the white guide light is a color laser beam. In the white guide light, the outer portion of the hollow cylindrical shape is located outside the color laser beam.
 色消しコリメートレンズ74から出射したカラーレーザビームおよび白ガイド光は、共に、水平走査用スキャナ76に入射する。 Both the color laser beam and white guide light emitted from the achromatic collimating lens 74 are incident on the horizontal scanning scanner 76.
 図4に示すように、水平走査用スキャナ76は、パッケージ130(図12参照)と、そのパッケージ130内に収容された板状を成す本体部(例えば、金属製)132と、加振源としての板状の圧電素子134とを備えている。 As shown in FIG. 4, the horizontal scanning scanner 76 includes a package 130 (see FIG. 12), a plate-shaped main body (for example, metal) 132 housed in the package 130, and an excitation source. The plate-like piezoelectric element 134 is provided.
 本体部132は、中空の外周枠体136と、その外周枠体136から一体的に、それの内側に向かって延びる振動伝達部138とを備えている。本体部132は、さらに、振動伝達部138から一体的に延びる一対のねじりはり部140,140と、それらねじりはり部140,140に一体的に結合された偏向ミラー(走査ミラー)142とを備えている。 The main body 132 includes a hollow outer peripheral frame 136 and a vibration transmission unit 138 that extends integrally from the outer peripheral frame 136 toward the inside thereof. The main body portion 132 further includes a pair of torsion beam portions 140 and 140 extending integrally from the vibration transmitting portion 138 and a deflection mirror (scanning mirror) 142 integrally coupled to the torsion beam portions 140 and 140. ing.
 本体部132の全表面は、入射した光を反射する機能を有する。偏向ミラー142の表面は、入射光を効率的に反射するように、アルミニウム等の高反射率金属を蒸着して表面処理されているのに対し、本体部132のうち偏向ミラー142を除く部分の表面は、そのような反射率改善のための表面処理が施されておらず、また、逆に、反射防止処理も施されていない。すなわち、本体部132は、それ自身が有する反射率で、光を反射するのである。 The entire surface of the main body 132 has a function of reflecting incident light. The surface of the deflecting mirror 142 is surface-treated by depositing a high reflectivity metal such as aluminum so as to efficiently reflect incident light, whereas the surface of the main body 132 excluding the deflecting mirror 142 is treated. The surface is not subjected to such surface treatment for improving the reflectance, and conversely, the antireflection treatment is not performed. That is, the main body 132 reflects light with the reflectance of the main body 132 itself.
 図4に示すように、振動伝達部138に、分極されたPZT材料から形成されるピエゾ型の圧電素子134が装着されている。この圧電素子134がせん断振動すると、振動伝達部138に揺動振動が励起される。その励起された揺動振動は、一対のねじりはり部140,140を介して偏向ミラー142に伝達され、往復ねじり揺動を励起する。その偏向ミラー142は、それ自身が有する共振周波数にて、高速で往復揺動させられる。 As shown in FIG. 4, a piezo-type piezoelectric element 134 made of a polarized PZT material is attached to the vibration transmitting portion 138. When the piezoelectric element 134 undergoes shear vibration, swing vibration is excited in the vibration transmission unit 138. The excited oscillation vibration is transmitted to the deflection mirror 142 via the pair of torsion beam portions 140 and 140, thereby exciting the reciprocating torsional oscillation. The deflecting mirror 142 is reciprocally swung at a high speed at the resonance frequency of itself.
 図4に示すように、この水平走査用スキャナ76は、偏向ミラー142が、光走査を行う光走査領域であり、本体部132のうち偏向ミラー142を除く部分が、非光走査領域である。 As shown in FIG. 4, in the horizontal scanning scanner 76, the deflection mirror 142 is an optical scanning region where optical scanning is performed, and a portion of the main body 132 excluding the deflection mirror 142 is a non-optical scanning region.
 図4に示すように、色消しコリメートレンズ74から出射したカラーレーザビーム(画像光)は、水平走査用スキャナ76のうちの光走査領域のみに入射する。その結果、その光走査領域のうちの内側部分に、カラーレーザビームが照射される主照射領域150が形成される。 As shown in FIG. 4, the color laser beam (image light) emitted from the achromatic collimating lens 74 is incident only on the light scanning area of the horizontal scanning scanner 76. As a result, a main irradiation region 150 irradiated with the color laser beam is formed in an inner portion of the optical scanning region.
 一方、色消しコリメートレンズ74から出射した白ガイド光のうち、カラーレーザビームの外側に位置する部分は、主体的には、水平走査用スキャナ76のうちの非光走査領域に入射し、さらに、補助的に、光走査領域のうち、主照射領域150の外側に位置する部分に入射する。その結果、主照射領域150の外側に、白ガイド光が照射されるガイド光照射領域152が、非光走査領域と光走査領域とに跨るように形成される。 On the other hand, of the white guide light emitted from the achromatic collimating lens 74, the portion located outside the color laser beam is mainly incident on the non-light scanning region of the horizontal scanning scanner 76, and In addition, the light is incident on a portion of the optical scanning region located outside the main irradiation region 150. As a result, the guide light irradiation region 152 irradiated with the white guide light is formed outside the main irradiation region 150 so as to straddle the non-light scanning region and the light scanning region.
 本実施形態においては、主照射領域150から反射した光によって画像光が形成される一方、ガイド光照射領域152から反射した光によって白ガイド光が形成される。 In the present embodiment, image light is formed by the light reflected from the main irradiation region 150, while white guide light is formed by the light reflected from the guide light irradiation region 152.
 ところで、一般に、スキャナは、非光走査領域に光が入射しないように使用される。非光走査領域からの反射光は、ゴースト光や迷光等の外乱光を作り出すからである。これに対し、本実施形態においては、そのような外乱光をむしろ積極的に利用することにより、後述のように、観察者が、本来の画像を表示するというイベントに先立ち、白ガイド光が画像光と共に、観察者の眼球14に照射される。 Incidentally, in general, a scanner is used so that light does not enter a non-optical scanning region. This is because the reflected light from the non-light scanning region creates disturbance light such as ghost light and stray light. On the other hand, in this embodiment, by using such disturbance light rather positively, the white guide light is imaged prior to the event that the observer displays the original image, as will be described later. Along with the light, the eyeball 14 of the observer is irradiated.
 したがって、画像表示に先行する段階においては、ヘッドマウントディスプレイ装置10の射出瞳が、画像光のみが観察者の眼球14に照射される画像表示段階より、拡大される。よって、観察者は、白ガイド光のおかげで、画像光(本来の射出瞳)を試行錯誤しつつ眼で捕捉する作業を容易に行い得る。 Therefore, in the stage preceding the image display, the exit pupil of the head mounted display device 10 is enlarged from the image display stage in which only the image light is irradiated on the eyeball 14 of the observer. Therefore, the observer can easily perform the operation of capturing the image light (original exit pupil) with the eyes by trial and error, thanks to the white guide light.
 水平走査用スキャナ76から出射したカラーレーザビームおよび白ガイド光は、図3に示す垂直走査用スキャナ78に入射する。 The color laser beam and white guide light emitted from the horizontal scanning scanner 76 are incident on the vertical scanning scanner 78 shown in FIG.
 この垂直走査用スキャナ78は、図4に示す水平走査用スキャナ76と共通する構造を有するため、重複した説明を省略する。 The vertical scanning scanner 78 has a structure common to the horizontal scanning scanner 76 shown in FIG.
 ただし、この垂直走査用スキャナ78は、本実施形態においては、低速スキャナとして構成されるため、共振型の水平走査用スキャナ76ほどに高い走査周波数を要求されない。したがって、ピエゾ駆動型の垂直走査用スキャナ78に代えて、電磁駆動型の垂直走査用スキャナ(図示しない)を使用することも可能である。同様に、共振型の水平走査用スキャナ76の駆動方式に、電磁駆動方式を使用することも可能である。このように、水平走査用スキャナ76および垂直走査用スキャナ78の駆動方式は、ピエゾ駆動型、電磁駆動型、静電駆動型等、使用条件やアプリケーション要求に応じて、任意に選択することができる。 However, since the vertical scanning scanner 78 is configured as a low-speed scanner in the present embodiment, a scanning frequency as high as that of the resonant horizontal scanning scanner 76 is not required. Therefore, an electromagnetically driven vertical scanning scanner (not shown) can be used in place of the piezo-driven vertical scanning scanner 78. Similarly, an electromagnetic drive system can be used as a drive system for the resonance type horizontal scanning scanner 76. As described above, the driving method of the horizontal scanning scanner 76 and the vertical scanning scanner 78 can be arbitrarily selected according to use conditions and application requirements, such as a piezo drive type, an electromagnetic drive type, and an electrostatic drive type. .
 図3に示すように、この垂直走査用スキャナ78は、水平走査用スキャナ76と同様に、偏向ミラー142が、光走査を行う光走査領域であり、本体部132のうち、偏向ミラー142を除く部分が、非光走査領域である。 As shown in FIG. 3, in the vertical scanning scanner 78, like the horizontal scanning scanner 76, the deflection mirror 142 is an optical scanning area for performing optical scanning, and the deflection mirror 142 is excluded from the main body 132. The portion is a non-light scanning region.
 水平走査用スキャナ76から出射したカラーレーザビームは、垂直走査用スキャナ78のうちの光走査領域のみに入射する。その結果、その光走査領域のうちの内側部分に、カラーレーザビームが照射される主照射領域150が形成される。 The color laser beam emitted from the horizontal scanning scanner 76 is incident only on the optical scanning area of the vertical scanning scanner 78. As a result, a main irradiation region 150 irradiated with the color laser beam is formed in an inner portion of the optical scanning region.
 一方、水平走査用スキャナ76から出射した白ガイド光のうち、カラーレーザビームの外側に位置する部分は、主体的には、垂直走査用スキャナ78のうちの非光走査領域に入射し、さらに、補助的に、光走査領域のうち、主照射領域150の外側に位置する部分に入射する。その結果、主照射領域150の外側に、白ガイド光が照射されるガイド光照射領域152が、非光走査領域と光走査領域とに跨るように形成される。 On the other hand, of the white guide light emitted from the horizontal scanning scanner 76, the portion located outside the color laser beam is mainly incident on the non-optical scanning area of the vertical scanning scanner 78, and further, In addition, the light is incident on a portion of the optical scanning region located outside the main irradiation region 150. As a result, the guide light irradiation region 152 irradiated with the white guide light is formed outside the main irradiation region 150 so as to straddle the non-light scanning region and the light scanning region.
 本実施形態においては、主照射領域150から反射した光によって画像光が形成される一方、ガイド光照射領域152から反射した光によって白ガイド光が形成される。 In the present embodiment, image light is formed by the light reflected from the main irradiation region 150, while white guide light is formed by the light reflected from the guide light irradiation region 152.
 さらに、本実施形態においては、主照射領域150もガイド光照射領域152も、それらに共通の部材である本体部132の表面に配置されている。 Furthermore, in the present embodiment, both the main irradiation region 150 and the guide light irradiation region 152 are disposed on the surface of the main body 132 which is a member common to them.
 図3に示すように、垂直走査用スキャナ78から出射した画像光および白ガイド光は、アイピース光学系80を通過し、その後、図2には示されていないが図1には示されているハーフミラー64で反射して、観察者の眼球14に入射する。眼球14は、その内部に光が進入するための瞳孔16と、その周辺に位置する虹彩160とを有している。 As shown in FIG. 3, the image light and the white guide light emitted from the vertical scanning scanner 78 pass through the eyepiece optical system 80, and then are shown in FIG. 1, although not shown in FIG. The light is reflected by the half mirror 64 and enters the eyeball 14 of the observer. The eyeball 14 has a pupil 16 through which light enters and an iris 160 located around the pupil 16.
 図3に示すように、画像光および白ガイド光は、共通の光軸OAに沿って、同じ射出瞳から、観察者の眼球14に向けて出射する。 As shown in FIG. 3, the image light and the white guide light are emitted toward the observer's eyeball 14 from the same exit pupil along the common optical axis OA.
 図3に示すように、画像光は、眼前画像光領域(例えば、直径が約3ないし約10mmである円形領域)において、眼球14に入射する。一方、白ガイド光は、眼前ガイド光領域(例えば、直径が約20mmである円形領域)において、眼球14に入射する。 As shown in FIG. 3, the image light is incident on the eyeball 14 in a pre-eye image light region (for example, a circular region having a diameter of about 3 to about 10 mm). On the other hand, the white guide light is incident on the eyeball 14 in a pre-ocular guide light region (for example, a circular region having a diameter of about 20 mm).
 眼前ガイド光領域が眼前画像光領域より広いため、観察者は、射出瞳の位置が瞳孔16の位置と一致するように装置本体20の位置を調整する作業(位置合わせ作業)により、画像光より容易に白ガイド光を観察者の瞳孔16に入射させることが可能となる。 Since the front eye guide light region is wider than the front eye image light region, the observer can adjust the position of the apparatus main body 20 so that the position of the exit pupil coincides with the position of the pupil 16 (positioning operation). White guide light can be easily incident on the pupil 16 of the observer.
 次に、図5を参照することにより、電気回路部26を説明する。 Next, the electric circuit unit 26 will be described with reference to FIG.
 図5に示すように、電気回路部26は、コンピュータ170を主体とするコントローラ172を備えている。コンピュータ170は、よく知られているように、CPU(プロセッサの一例)174と、ROM(メモリの一例)176と、RAM(メモリの別の一例)178とがバス180を介して互いに接続されることによって構成されている。 As shown in FIG. 5, the electric circuit unit 26 includes a controller 172 mainly composed of a computer 170. As is well known, in the computer 170, a CPU (an example of a processor) 174, a ROM (an example of memory) 176, and a RAM (another example of memory) 178 are connected to each other via a bus 180. Is made up of.
 ROM176には、図6にフローチャートで概念的に表されている画像表示処理プログラムを始めとする各種プログラムが予め記憶されている。随時、必要なプログラムがROM176から読み出されてCPU174によって実行される。 The ROM 176 stores in advance various programs including an image display processing program conceptually represented in the flowchart of FIG. At any time, necessary programs are read from the ROM 176 and executed by the CPU 174.
 図5に示すように、Rレーザ90、Gレーザ92およびBレーザ94は、それぞれのドライバ100,102,104を介して、コントローラ172に接続されている。コントローラ172は、Rレーザ90、Gレーザ92およびBレーザ94から出射する赤レーザビーム、緑レーザビームおよび青レーザビームのオンオフならびに強度を、それぞれのドライバ100,102,104を介して制御する。 As shown in FIG. 5, the R laser 90, the G laser 92, and the B laser 94 are connected to a controller 172 via respective drivers 100, 102, and 104. The controller 172 controls the on / off and the intensity of the red laser beam, the green laser beam, and the blue laser beam emitted from the R laser 90, the G laser 92, and the B laser 94 via the respective drivers 100, 102, and 104.
 図5に示すように、白色LED120は、ドライバ182を介してコントローラ172に接続されている。コントローラ172は、ドライバ182を介して、白色LED120のオンオフを制御する。 As shown in FIG. 5, the white LED 120 is connected to the controller 172 via the driver 182. The controller 172 controls on / off of the white LED 120 via the driver 182.
 図5に示すように、水平走査用スキャナ76の圧電素子134および垂直走査用スキャナ78の圧電素子134は、それぞれのドライバ184,184を介してコントローラ172に接続されている。コントローラ172は、ドライバ184,184を介して、圧電素子134,134の駆動を制御する。 As shown in FIG. 5, the piezoelectric element 134 of the horizontal scanning scanner 76 and the piezoelectric element 134 of the vertical scanning scanner 78 are connected to a controller 172 via respective drivers 184 and 184. The controller 172 controls the driving of the piezoelectric elements 134 and 134 via the drivers 184 and 184.
 図5に示すように、コントローラ172には、調整完了操作部材の一例である調整完了スイッチ190が接続されている。この調整完了スイッチ190は、観察者が装置本体20を動かして射出瞳の位置を瞳孔16の位置に合わせる調整作業が完了したことをコンピュータ170に入力するために、観察者によって操作される。 As shown in FIG. 5, the controller 172 is connected with an adjustment completion switch 190 which is an example of an adjustment completion operation member. The adjustment completion switch 190 is operated by the observer so as to input to the computer 170 that the observer has moved the apparatus main body 20 and completed the adjustment work for adjusting the position of the exit pupil to the position of the pupil 16.
 次に、図6を参照することにより、前述の画像表示処理プログラムを説明する。 Next, the above-described image display processing program will be described with reference to FIG.
 この画像表示処理プログラムは、ヘッドマウントディスプレイ装置10の主電源スイッチ(図示しない)が観察者によってオンに操作されたことを動機として、コンピュータ170によって実行される。 This image display processing program is executed by the computer 170 with the main power switch (not shown) of the head mounted display device 10 being turned on by the observer.
 この画像表示処理プログラムの実行が開始されると、まず、ステップS1において、水平走査用スキャナ76および垂直走査用スキャナ78が駆動される。やがて、いずれのスキャナ76,78も、定常的な駆動状態に至る。 When the execution of the image display processing program is started, first, the horizontal scanning scanner 76 and the vertical scanning scanner 78 are driven in step S1. Eventually, both scanners 76 and 78 reach a steady driving state.
 次に、ステップS2において、主光源82が点灯される。現在、位置合わせ調整前であるから、主光源82は、特定の2次元画像を有する初期画面を表示するための画像光(カラーレーザビーム)が生成されるように、駆動される。図7に示す例においては、図7(c)に示す初期画面を表示するための画像光が生成されるように、主光源82が駆動される。 Next, in step S2, the main light source 82 is turned on. Since it is currently before alignment adjustment, the main light source 82 is driven so that image light (color laser beam) for displaying an initial screen having a specific two-dimensional image is generated. In the example shown in FIG. 7, the main light source 82 is driven so that image light for displaying the initial screen shown in FIG. 7C is generated.
 続いて、ステップS3において、補助光源84が点灯され、その結果、白ガイド光が生成される。 Subsequently, in step S3, the auxiliary light source 84 is turned on, and as a result, white guide light is generated.
 現時点では、画像光(眼前画像光領域)はもとより、白ガイド光(眼前ガイド光領域)も、瞳孔16に入射しないと仮定すると、図7に示す例においては、図7(a)に示すように、観察者の視野FOVには、初期画面も白ガイド光WGLも存在しない。 At this time, assuming that not only image light (anterior eye image light region) but also white guide light (anterior eye guide light region) does not enter the pupil 16, in the example shown in FIG. 7, as shown in FIG. Furthermore, neither the initial screen nor the white guide light WGL exists in the field of view FOV of the observer.
 その後、観察者は、白ガイド光が瞳孔16内に入射するように、装置本体20を、勘と経験を頼りに、試行錯誤しつつ、眼球14に対して動かす。 Thereafter, the observer moves the apparatus main body 20 relative to the eyeball 14 by trial and error based on intuition and experience so that the white guide light enters the pupil 16.
 白ガイド光のみが瞳孔16内に入射するに至れば、図7に示す例においては、図7(b)に示すように、視野FOV内に、白ガイド光WGLが白い光スポット(みかけの射出瞳)として出現することになる。これにより、観察者は、現在、瞳孔16位置の近傍に画像光(本来の射出瞳)が位置していることを知覚する。 When only the white guide light enters the pupil 16, in the example shown in FIG. 7, as shown in FIG. 7B, the white guide light WGL is a white light spot (apparent emission) in the field of view FOV. It will appear as a pupil. Thereby, the observer perceives that the image light (original exit pupil) is currently located in the vicinity of the position of the pupil 16.
 続いて、観察者は、白ガイド光のみならず画像光(射出瞳)も瞳孔16内に入射するように、装置本体20を、勘と経験を頼りに、試行錯誤しつつ、眼球14に対して動かす。 Subsequently, the observer moves the apparatus body 20 toward the eyeball 14 by trial and error based on intuition and experience so that not only the white guide light but also the image light (exit pupil) enters the pupil 16. Move.
 白ガイド光のみならず画像光も瞳孔16内に入射するに至れば、図7に示す例においては、図7(c)に示すように、視野FOV内に、初期画面が、白ガイド光WGLを表す白い光スポットに重なる状態で出現することになる。これにより、瞳孔16の位置に射出瞳の位置を合わせる調整作業が完了する。 If not only white guide light but also image light enters the pupil 16, in the example shown in FIG. 7, as shown in FIG. 7C, the initial screen is white guide light WGL in the field of view FOV. It appears in a state overlapping with a white light spot representing. Thereby, the adjustment work for aligning the position of the exit pupil with the position of the pupil 16 is completed.
 その後、図6に示すステップS4において、調整作業が完了したか否かが判定される。本実施形態においては、例えば、観察者が調整完了スイッチ190を操作したか否かが判定され、操作されたならば、調整作業が完了したと判定される。 Thereafter, in step S4 shown in FIG. 6, it is determined whether or not the adjustment work is completed. In the present embodiment, for example, it is determined whether or not the observer has operated the adjustment completion switch 190, and if it has been operated, it is determined that the adjustment work has been completed.
 調整作業が完了したならば、ステップS4の判定がYESとなり、その後、ステップS5において、補助光源84が消灯される。 If the adjustment work is completed, the determination in step S4 is YES, and then the auxiliary light source 84 is turned off in step S5.
 その結果、図7に示す例においては、図7(d)に示すように、視野FOVから白ガイド光WGLが消滅して、視野FOV内に初期画面のみが存在することになる。これにより、観察者は、白ガイド光に邪魔されることなく、初期画面を視認することができる。 As a result, in the example shown in FIG. 7, as shown in FIG. 7D, the white guide light WGL disappears from the field of view FOV, and only the initial screen exists in the field of view FOV. Thereby, the observer can visually recognize the initial screen without being disturbed by the white guide light.
 なお付言するに、ヘッドマウントディスプレイ装置10の前記主電源スイッチがオンに操作された時期、白ガイド光の発生開始時期、または両時期の間に起こる特定のイベントの発生時期からの経過時間が基準時間に到達したか否かを判定し、その経過時間が基準時間に到達した場合に、調整作業が完了したと判定することが可能である。この場合には、補助光源84の消灯が自動的に行われることになる。 In addition, the elapsed time from the time when the main power switch of the head mounted display device 10 is turned on, the time when the white guide light is generated, or the time when a specific event occurs between the two times is a reference. It is possible to determine whether or not the adjustment work has been completed when it is determined whether the time has been reached and the elapsed time has reached the reference time. In this case, the auxiliary light source 84 is automatically turned off.
 続いて、ステップS6において、表示すべき映像コンテンツに関する複数の選択肢のうちのいずれかが観察者によって選択される。 Subsequently, in step S6, one of a plurality of options related to the video content to be displayed is selected by the observer.
 その後、ステップS7において、選択された映像コンテンツを表す画像光が生成されるように、主光源82が制御される。その結果、画像表示というイベントが開始される。 Thereafter, in step S7, the main light source 82 is controlled so that image light representing the selected video content is generated. As a result, an event of image display is started.
 このように、本実施形態においては、射出瞳の位置が瞳孔16の位置に一致させられた後に、画像表示が開始され、それにより、観察者は、画像表示の開始当初から、選択した映像コンテンツを確実に視認することが可能となる。 As described above, in this embodiment, after the position of the exit pupil is made to coincide with the position of the pupil 16, image display is started, whereby the viewer can select the video content selected from the beginning of the image display. Can be reliably recognized.
 続いて、ステップS8において、今回の画像表示が終了したか否かが判定される。終了した場合には、ステップS8の判定がYESとなり、続いて、ステップS9において、終了処理が行われる。この終了処理は、主光源82の消灯、水平走査用スキャナ76の停止、垂直走査用スキャナ78の停止等を含んでいる。 Subsequently, in step S8, it is determined whether or not the current image display is completed. If completed, the determination in step S8 is YES, and then an end process is performed in step S9. This termination processing includes turning off the main light source 82, stopping the horizontal scanning scanner 76, stopping the vertical scanning scanner 78, and the like.
 以上で、この画像表示処理プログラムの一回の実行が終了する。 This completes one execution of the image display processing program.
 以上の説明から明らかなように、本実施形態においては、説明の便宜上、例えば、主光源82が前記(1)項における「光源」の一例を構成し、ドライバ100,102,104が同項における「変調器」の一例を構成し、走査部72が同項における「スキャナ」の一例を構成し、全体光学系24が同項における「光学系」の一例を構成していると考えることが可能である。 As is apparent from the above description, in the present embodiment, for convenience of explanation, for example, the main light source 82 constitutes an example of the “light source” in the item (1), and the drivers 100, 102, and 104 are in the same item. It can be considered that an example of a “modulator” is configured, the scanning unit 72 is an example of a “scanner” in the same term, and the entire optical system 24 is an example of an “optical system” in the same term. It is.
 さらに、本実施形態においては、説明の便宜上、例えば、ドライバ182とコンピュータ170のうち図6に示すステップS3ないしS5を実行する部分とが互いに共同して、前記(5)項における「セレクタ」の一例を構成し、補助光源84が前記(6)項における「第2の光源」の一例を構成し、コントローラ172が前記(7)項における「コントローラ」の一例を構成し、ドライバ182とコンピュータ170のうち図6に示すステップS3ないしS5を実行する部分とが互いに共同して、前記(11)項における「セレクタ」の一例を構成していると考えることが可能である。 Further, in the present embodiment, for convenience of explanation, for example, the driver 182 and the portion of the computer 170 that executes steps S3 to S5 shown in FIG. The auxiliary light source 84 constitutes an example of “second light source” in the item (6), the controller 172 constitutes an example of “controller” in the item (7), the driver 182 and the computer 170. Of these, it can be considered that the part that executes steps S3 to S5 shown in FIG. 6 cooperates with each other to constitute an example of the “selector” in the item (11).
 次に、本発明の第2実施形態を説明する。ただし、本実施形態は、第1実施形態と共通する要素が多いため、共通する要素については、同一の名称または符号を使用して引用することにより、重複した説明を省略し、異なる要素についてのみ、詳細に説明する。 Next, a second embodiment of the present invention will be described. However, since this embodiment has many elements in common with the first embodiment, the common elements are quoted using the same name or reference numerals, and redundant description is omitted, and only different elements are cited. This will be described in detail.
 図2に示すように、第1実施形態に従うヘッドマウントディスプレイ装置10においては、主光源82とは別の補助光源84を使用することにより、白ガイド光が発生させられる。これに対し、本実施形態においては、主光源82が、画像光の生成とガイド光の生成との双方に使用される。 As shown in FIG. 2, in the head mounted display device 10 according to the first embodiment, white guide light is generated by using an auxiliary light source 84 different from the main light source 82. On the other hand, in the present embodiment, the main light source 82 is used for both generation of image light and generation of guide light.
 具体的には、本実施形態に従うヘッドマウントディスプレイ装置210は、主光源82からの光が、画像光とガイド光との双方として、色消しコリメートレンズ74に入射することを許容する状態(ガイド光が観察者の眼球14に照射されることを許可する照射許可状態)と、画像光のみとして色消しコリメートレンズ74に入射する状態(ガイド光が観察者の眼球14に照射されることを阻止する照射阻止状態)とに切り換わるセレクタ212を有するように、設計されている。 Specifically, the head mounted display device 210 according to the present embodiment allows light from the main light source 82 to enter the achromatic collimating lens 74 as both image light and guide light (guide light). Is allowed to irradiate the observer's eyeball 14) and is incident on the achromatic collimating lens 74 only as image light (the guide light is prevented from being applied to the observer's eyeball 14). It is designed to have a selector 212 that switches to an irradiation prevention state.
 そのセレクタ212は、本実施形態においては、図8に示すように、開放位置と遮断位置とに直線運動または円弧運動によって高速に移動可能なメカニカルシャッタ214として構成されている。 In the present embodiment, the selector 212 is configured as a mechanical shutter 214 that can move at high speed by a linear motion or an arc motion between an open position and a blocking position, as shown in FIG.
 具体的には、メカニカルシャッタ214は、図8に示すように、光透過部(例えば、空気開口部)216が形成されたシャッタ板218と、そのシャッタ板218を駆動する電磁型のアクチュエータ220(図9参照)とを備えている。 Specifically, as shown in FIG. 8, the mechanical shutter 214 includes a shutter plate 218 having a light transmission portion (for example, an air opening) 216 and an electromagnetic actuator 220 (which drives the shutter plate 218). 9).
 そのアクチュエータ220は、シャッタ板218を、主光源82からの光のうち、ガイド光を形成することになる部分を遮断する遮断位置(図8において破線で示す位置)と、その部分を遮断しない開放位置(図8において実線で示す位置)とに選択的に移動させる。そのアクチュエータ220の一例は、ステップモータである。 The actuator 220 opens the shutter plate 218 at a blocking position (a position indicated by a broken line in FIG. 8) that blocks the portion of the light from the main light source 82 that will form the guide light, and a block that does not block that portion. It is selectively moved to a position (position indicated by a solid line in FIG. 8). An example of the actuator 220 is a step motor.
 シャッタ板218が開放位置にある状態では、主光源82からの光により、画像光とガイド光とが生成される。水平走査用スキャナ76および垂直走査用スキャナ78のいずれについても、画像光は、光走査領域に入射し、一方、ガイド光のうち、画像光の外側に位置する部分は、非光走査領域に入射する。 When the shutter plate 218 is in the open position, image light and guide light are generated by the light from the main light source 82. In both the horizontal scanning scanner 76 and the vertical scanning scanner 78, the image light is incident on the optical scanning area, while the portion of the guide light that is located outside the image light is incident on the non-optical scanning area. To do.
 本実施形態においては、ガイド光が、画像光と同じ色を有する。ガイド光と画像光とが、それらに共通の主光源82によって生成されるからである。そのため、本実施形態においは、第1実施形態とは異なり、ガイド光の色が常に完全に白色であることは保証されない。ガイド光は、複数色の画像光が混合したものとなる。その結果、観察者は、時間的に色が変化する虹色の輝点を観察することになる。 In the present embodiment, the guide light has the same color as the image light. This is because the guide light and the image light are generated by the main light source 82 common to them. Therefore, in the present embodiment, unlike the first embodiment, it is not guaranteed that the color of the guide light is always completely white. The guide light is a mixture of a plurality of colors of image light. As a result, the observer observes a rainbow-colored bright spot whose color changes with time.
 図9には、ヘッドマウントディスプレイ装置210における装置本体20のうちの電気回路部26が概念的にブロック図で表されている。 FIG. 9 conceptually shows a block diagram of the electric circuit section 26 of the device main body 20 in the head mounted display device 210.
 この電気回路部26は、基本的には、第1実施形態の電気回路部26と共通するが、メカニカルシャッタ214のアクチュエータ220がドライバ222を介してコントローラ172に接続されている点と、補助光源84としての白色LED120が存在しない点では異なる。コントローラ172は、ドライバ222を介して、シャッタ板218の停止位置を開放位置と遮断位置とのうち選択されたものに変更する。 The electric circuit unit 26 is basically the same as the electric circuit unit 26 of the first embodiment, but the actuator 220 of the mechanical shutter 214 is connected to the controller 172 via the driver 222, and an auxiliary light source It is different in that the white LED 120 as 84 does not exist. The controller 172 changes the stop position of the shutter plate 218 to a selected one of the open position and the cutoff position via the driver 222.
 図10には、コントローラ172のうちのコンピュータ170によって実行される画像表示処理プログラムが概念的に表されている。 FIG. 10 conceptually shows an image display processing program executed by the computer 170 of the controller 172.
 以下、この画像表示処理プログラムを説明するが、図6に示す画像表示処理プログラムと共通するステップについては、共通するステップの番号を使用して引用することにより、重複した説明を省略する。 Hereinafter, this image display processing program will be described, but the steps common to the image display processing program shown in FIG. 6 are referred to by using the common step numbers, and redundant description is omitted.
 この画像表示処理プログラムは、ヘッドマウントディスプレイ装置210の主電源スイッチ(図示しない)が観察者によってオンに操作されたことを動機として、コンピュータ170によって実行される。 This image display processing program is executed by the computer 170 with a main power switch (not shown) of the head mounted display device 210 being turned on by an observer.
 この画像表示処理プログラムの実行が開始されると、まず、ステップS101において、図6に示すステップS1と同様に、水平走査用スキャナ76および垂直走査用スキャナ78が駆動される。 When the execution of the image display processing program is started, first, in step S101, the horizontal scanning scanner 76 and the vertical scanning scanner 78 are driven as in step S1 shown in FIG.
 次に、ステップS102において、図6に示すステップS2と同様に、主光源82が点灯される。その結果、主光源82から、初期画面を表示するための画像光とガイド光とが出射する。 Next, in step S102, the main light source 82 is turned on as in step S2 shown in FIG. As a result, the main light source 82 emits image light and guide light for displaying the initial screen.
 続いて、ステップS103において、シャッタ板218が、図8において実線で示す開放位置に位置するように、アクチュエータ220が制御される。その結果、画像光のみならずガイド光も色消しコリメートレンズ74に入射する。 Subsequently, in step S103, the actuator 220 is controlled so that the shutter plate 218 is positioned at the open position indicated by the solid line in FIG. As a result, not only image light but also guide light is incident on the achromatic collimating lens 74.
 この状態において、観察者は、まず、ガイド光(みかけの射出瞳)が瞳孔16内に入射するように、装置本体20を、勘と経験を頼りに、試行錯誤しつつ、眼球14に対して動かす。それに成功すると、観察者は、続いて、ガイド光のみならず画像光(本来の射出瞳)も瞳孔16内に入射するように、装置本体20を、勘と経験を頼りに、試行錯誤しつつ、眼球14に対して動かす。やがて、瞳孔16の位置に射出瞳の位置を合わせる調整作業が完了する。 In this state, the observer first moves the apparatus body 20 against the eyeball 14 by trial and error based on intuition and experience so that the guide light (apparent exit pupil) enters the pupil 16. move. If successful, the observer then continues trial and error using the intuition and experience of the apparatus main body 20 so that not only the guide light but also the image light (original exit pupil) enters the pupil 16. The eyeball 14 is moved. Eventually, the adjustment work for adjusting the position of the exit pupil to the position of the pupil 16 is completed.
 その後、ステップS104において、図6に示すステップS4と同様に、調整作業が完了したか否かが判定される。調整作業が完了したならば、ステップS104の判定がYESとなる。 Thereafter, in step S104, as in step S4 shown in FIG. 6, it is determined whether or not the adjustment work has been completed. If the adjustment work is completed, the determination in step S104 is YES.
 その後、ステップS105において、シャッタ板218が、図8において破線で示す遮断位置に位置するように、アクチュエータ220が制御される。その結果、画像光のみが色消しコリメートレンズ74に入射する。それにより、視野FOVからガイド光が消滅して、視野FOV内に初期画面のみが存在することになる。これにより、観察者は、ガイド光に邪魔されることなく、初期画面を視認することができる。 Thereafter, in step S105, the actuator 220 is controlled so that the shutter plate 218 is positioned at the blocking position indicated by the broken line in FIG. As a result, only the image light is incident on the achromatic collimating lens 74. Thereby, the guide light disappears from the field of view FOV, and only the initial screen exists in the field of view FOV. Thereby, the observer can visually recognize the initial screen without being disturbed by the guide light.
 続いて、ステップS106において、図6に示すステップS6と同様に、表示すべき映像コンテンツに関する複数の選択肢のうちのいずれかが観察者によって選択される。 Subsequently, in step S106, as in step S6 shown in FIG. 6, one of a plurality of options related to the video content to be displayed is selected by the observer.
 その後、ステップS107において、図6に示すステップS7と同様に、選択された映像コンテンツを表す画像光が生成されるように、主光源82が制御される。その結果、画像表示というイベントが開始される。 Thereafter, in step S107, as in step S7 shown in FIG. 6, the main light source 82 is controlled so that image light representing the selected video content is generated. As a result, an event of image display is started.
 続いて、ステップS108において、図6に示すステップS8と同様に、今回の画像表示が終了したか否かが判定される。終了した場合には、ステップS108の判定がYESとなり、続いて、ステップS109において、図6に示すステップS9と同様に、終了処理が行われる。 Subsequently, in step S108, as in step S8 shown in FIG. 6, it is determined whether or not the current image display is completed. If completed, the determination in step S108 is YES, and then, in step S109, an end process is performed as in step S9 shown in FIG.
 以上で、この画像表示処理プログラムの一回の実行が終了する。 This completes one execution of the image display processing program.
 以上の説明から明らかなように、本実施形態においては、例えば、主光源82が前記(8)項における「光源」の一例を構成し、メカニカルシャッタ214が前記(5)、(9)または(11)項における「セレクタ」の一例を構成していると考えることが可能である。 As is clear from the above description, in the present embodiment, for example, the main light source 82 constitutes an example of the “light source” in the item (8), and the mechanical shutter 214 is the above (5), (9) or ( It can be considered that it constitutes an example of the “selector” in item 11).
 次に、本発明の第3実施形態を説明する。ただし、本実施形態は、第2実施形態と共通する要素が多く、異なるのは、セレクタに関する要素のみであるため、共通する要素については、重複した説明を省略し、異なる要素についてのみ、詳細に説明する。 Next, a third embodiment of the present invention will be described. However, since this embodiment has many elements that are common to the second embodiment, and only the elements related to the selector are different, the duplicate description of the common elements is omitted, and only the different elements are described in detail. explain.
 第2実施形態においては、図8に示すように、セレクタ212がメカニカルシャッタ214として構成されている。これに対し、本実施形態に従うヘッドマウントディスプレイ装置240においては、図11に示すように、セレクタ212が液晶シャッタ242として構成されている。 In the second embodiment, the selector 212 is configured as a mechanical shutter 214 as shown in FIG. On the other hand, in the head mounted display device 240 according to the present embodiment, the selector 212 is configured as a liquid crystal shutter 242 as shown in FIG.
 この液晶シャッタ242は、ヘッドマウントディスプレイ装置240において、メカニカルシャッタ214の遮断位置と同じ位置に、移動不能に配置される。この液晶シャッタ242は、概して板状を成しており、内側領域において、入射光を透過させる平面円形状の恒久的光透過部244を有するとともに、外側部分において、液晶の偏光を利用して、入射光を、透過させる状態と遮断する状態とに切り換わる選択的光透過部246を有する。 The liquid crystal shutter 242 is disposed in the head-mounted display device 240 so as not to move at the same position as the blocking position of the mechanical shutter 214. The liquid crystal shutter 242 is generally plate-shaped, and has a planar circular permanent light transmitting portion 244 that transmits incident light in the inner region, and uses the polarization of liquid crystal in the outer portion, A selective light transmission part 246 that switches between a state of transmitting incident light and a state of blocking incident light is provided.
 主光源82からの光のうち、恒久的光透過部244を通過した部分は、画像光として、各スキャナ76,78のうちの光走査領域に入射し、一方、選択的光透過部246を通過した部分は、ガイド光として、各スキャナ76,78のうちの非光走査領域に入射する。 Of the light from the main light source 82, the portion that has passed through the permanent light transmitting portion 244 enters the light scanning region of each of the scanners 76 and 78 as image light, while passing through the selective light transmitting portion 246. This portion enters the non-light scanning area of each of the scanners 76 and 78 as guide light.
 選択的光透過部246は、ドライバ250を介して、ヘッドマウントディスプレイ装置240のコントローラ172に接続されている。そのコントローラ172は、第2実施形態におけるメカニカルシャッタ214の制御と同様にして、選択的光透過部246を、主光源82からの光のうち、選択的光透過部246に入射した光を透過させる透過状態と、遮断する遮断状態とに切り換える。 The selective light transmission unit 246 is connected to the controller 172 of the head mounted display device 240 via the driver 250. The controller 172 allows the selective light transmission unit 246 to transmit the light incident on the selective light transmission unit 246 out of the light from the main light source 82 in the same manner as the control of the mechanical shutter 214 in the second embodiment. Switch between the transmission state and the blocking state to block.
 以上の説明から明らかなように、本実施形態においては、例えば、主光源82が前記(8)項における「光源」の一例を構成し、液晶シャッタ242が前記(5)、(10)または(11)項における「セレクタ」の一例を構成していると考えることが可能である。 As is clear from the above description, in the present embodiment, for example, the main light source 82 constitutes an example of the “light source” in the item (8), and the liquid crystal shutter 242 is the above (5), (10) or ( It can be considered that it constitutes an example of the “selector” in item 11).
 次に、本発明の第4実施形態を説明する。ただし、本実施形態は、第1ないし3実施形態と共通する要素が多く、異なるのは、スキャナのうち、ガイド光を生成するために使用される非光走査領域に関する要素のみであるため、共通する要素については、重複した説明を省略し、異なる要素についてのみ、詳細に説明する。 Next, a fourth embodiment of the present invention will be described. However, this embodiment has many elements that are common to the first to third embodiments, and the only difference is the element related to the non-light scanning region used for generating the guide light in the scanner. For the elements to be repeated, a duplicate description will be omitted, and only different elements will be described in detail.
 第1ないし3実施形態においては、図4に示すように、各スキャナ76,78のうちの本体部132のうち、偏向ミラー142を除く部分が、非光走査領域として、ガイド光を生成するために使用される。 In the first to third embodiments, as shown in FIG. 4, a portion of the main body 132 of each of the scanners 76 and 78 excluding the deflection mirror 142 generates guide light as a non-light scanning region. Used for.
 したがって、第1ないし第3実施形態においては、各スキャナ76,78のうち、画像光が照射される主照射領域150も、ガイド光が照射されるガイド光照射領域152も、それらに共通の部材である本体部132の表面に配置されている。 Therefore, in the first to third embodiments, the main irradiation region 150 irradiated with the image light and the guide light irradiation region 152 irradiated with the guide light in the scanners 76 and 78 are members common to them. It is arrange | positioned on the surface of the main-body part 132 which is.
 これに対し、本実施形態に従うヘッドマウントディスプレイ装置270においては、図12に示すように、各スキャナ76,78のうちのパッケージ130の表面が、非光走査領域として、ガイド光を反射するように構成されている。 On the other hand, in the head mounted display device 270 according to the present embodiment, as shown in FIG. 12, the surface of the package 130 of the scanners 76 and 78 reflects the guide light as a non-optical scanning region. It is configured.
 したがって、本実施形態においては、各スキャナ76,78のうち、画像光が照射される主照射領域150と、ガイド光が照射されるガイド光照射領域152とが、互いに異なる2個の部材の表面にそれぞれ配置されている。 Therefore, in the present embodiment, of the scanners 76 and 78, the main irradiation area 150 irradiated with the image light and the guide light irradiation area 152 irradiated with the guide light are different from each other. Respectively.
 図12に示すように、パッケージ130の表面には、複数の電極274が露出させられており、それら電極274は、各スキャナ76,78が装置本体20に組み込まれたときに、図示しない他の電子部品との接続のために使用される。 As shown in FIG. 12, a plurality of electrodes 274 are exposed on the surface of the package 130, and these electrodes 274 are not shown when other scanners 76 and 78 are incorporated in the apparatus main body 20. Used for connection with electronic components.
 以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、前記[発明の開示]の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. However, these are exemplifications, and are based on the knowledge of those skilled in the art including the aspects described in the section of [Disclosure of the Invention]. The present invention can be implemented in other forms with various modifications and improvements.

Claims (17)

  1.  画像光を出射する射出瞳を有するとともに、観察者の頭部に装着された状態で、前記射出瞳から前記画像光を出射して観察者の眼に照射することによって観察者に対して画像を表示し、かつ、前記射出瞳の位置を観察者の瞳孔の位置に対して相対的に調整することが可能であるヘッドマウントディスプレイ装置であって、
     光源と、
     その光源からの光を、時間的または空間的に変調し、それにより、前記画像光を形成する変調器と、
     入射した光を走査して出射するスキャナであって、光が入射するとともにその入射した光を反射する領域を有し、その反射領域は、当該スキャナが光走査を行い得る光走査領域と、当該スキャナが光走査を行い得ない非光走査領域とを有するものと、
     前記変調器から出射した前記画像光を前記光走査領域に誘導する一方、ガイド光を前記非光走査領域に誘導し、かつ、前記スキャナの前記光走査領域から反射した前記画像光と前記非光走査領域から反射した前記ガイド光とを一緒に観察者の瞳孔に向かって出射する光学系と
     を含むヘッドマウントディスプレイ装置。
    In addition to having an exit pupil that emits image light and being mounted on the observer's head, the image light is emitted from the exit pupil and irradiated to the viewer's eyes. A head mounted display device capable of displaying and adjusting the position of the exit pupil relative to the position of the pupil of the observer,
    A light source;
    A modulator that temporally or spatially modulates light from the light source, thereby forming the image light;
    A scanner that scans and emits incident light, and has a region where light enters and reflects the incident light, and the reflection region includes an optical scanning region in which the scanner can perform optical scanning, A scanner having a non-optical scanning area where optical scanning cannot be performed;
    The image light emitted from the modulator is guided to the optical scanning region, while guide light is guided to the non-optical scanning region, and the image light and the non-light reflected from the optical scanning region of the scanner. An optical system that emits the guide light reflected from the scanning area together with the guide light toward the pupil of the observer.
  2.  前記ガイド光は、白色光である請求の範囲第1項に記載のヘッドマウントディスプレイ装置。 The head mounted display device according to claim 1, wherein the guide light is white light.
  3.  前記ガイド光は、前記画像光より大径である請求の範囲第1項に記載のヘッドマウントディスプレイ装置。 2. The head mounted display device according to claim 1, wherein the guide light has a diameter larger than that of the image light.
  4.  前記ガイド光は、前記画像光と共通の光軸を有し、それにより、前記光学系は、前記スキャナの前記光走査領域から反射した前記画像光と前記非光走査領域から反射した前記ガイド光とを一緒に前記射出瞳から観察者の瞳孔に向かって出射する請求の範囲第1項に記載のヘッドマウントディスプレイ装置。 The guide light has an optical axis in common with the image light, so that the optical system reflects the image light reflected from the optical scanning area of the scanner and the guide light reflected from the non-optical scanning area. The head-mounted display device according to claim 1, wherein the head-mounted display device is emitted from the exit pupil toward the observer's pupil together.
  5.  さらに、前記ガイド光が観察者の眼に照射されることを許可する照射許可状態と阻止する照射阻止状態とに切り換わるセレクタを含む請求の範囲第1項に記載のヘッドマウントディスプレイ装置。 The head-mounted display device according to claim 1, further comprising a selector that switches between an irradiation permission state for allowing the guide light to be irradiated to an observer's eye and an irradiation blocking state for blocking.
  6.  さらに、前記光源とは別の第2の光源であって前記ガイド光を出射するものを含む請求の範囲第5項に記載のヘッドマウントディスプレイ装置。 The head mounted display device according to claim 5, further comprising a second light source different from the light source and emitting the guide light.
  7.  前記セレクタは、前記第2の光源のオンオフ状態を制御するコントローラを含むを請求の範囲第6項に記載のヘッドマウントディスプレイ装置。 The head mounted display device according to claim 6, wherein the selector includes a controller that controls an on / off state of the second light source.
  8.  前記光源は、前記画像光と前記ガイド光とを一緒に出射する請求の範囲第5項に記載のヘッドマウントディスプレイ装置。 The head mounted display device according to claim 5, wherein the light source emits the image light and the guide light together.
  9.  前記セレクタは、前記ガイド光を選択的に遮断することによって前記照射阻止状態を選択的に実現するメカニカルシャッタを含む請求の範囲第8項に記載のヘッドマウントディスプレイ装置。 9. The head mounted display device according to claim 8, wherein the selector includes a mechanical shutter that selectively realizes the irradiation blocking state by selectively blocking the guide light.
  10.  前記セレクタは、前記ガイド光を選択的に遮断することによって前記照射阻止状態を選択的に実現する液晶シャッタを含む請求の範囲第8項に記載のヘッドマウントディスプレイ装置。 9. The head mounted display device according to claim 8, wherein the selector includes a liquid crystal shutter that selectively realizes the irradiation blocking state by selectively blocking the guide light.
  11.  前記セレクタは、前記照射許可状態において予め定められた条件が成立すると、前記照射阻止状態に切り換わる請求の範囲第5項に記載のヘッドマウントディスプレイ装置。 The head-mounted display device according to claim 5, wherein the selector switches to the irradiation prevention state when a predetermined condition is satisfied in the irradiation permission state.
  12.  前記予め定められた条件は、観察者が特定の操作を行ったときに成立する条件を含む請求の範囲第11項に記載のヘッドマウントディスプレイ装置。 The head-mounted display device according to claim 11, wherein the predetermined condition includes a condition that is satisfied when an observer performs a specific operation.
  13.  前記予め定められた条件は、当該ヘッドマウントディスプレイ装置の電源投入時期、前記ガイド光の発生開始時期、または両時期の間に起こるイベントの発生時期からの経過時間が基準時間に到達したときに成立する条件を含む請求の範囲第11項に記載のヘッドマウントディスプレイ装置。 The predetermined condition is satisfied when the head mounted display device power-on timing, the guide light generation start timing, or the elapsed time from the event occurrence timing between both timings reaches a reference time. The head-mounted display device according to claim 11, wherein the head-mounted display device includes a condition to perform.
  14.  前記スキャナは、前記入射した光を反射するとともにその反射光を往復揺動によって走査する走査ミラーを有し、
     前記光走査領域は、その走査ミラーに配置され、
     前記非光走査領域は、前記スキャナのうち前記走査ミラーを除く部分に配置される請求の範囲第1項に記載のヘッドマウントディスプレイ装置。
    The scanner has a scanning mirror that reflects the incident light and scans the reflected light by reciprocating oscillation,
    The optical scanning region is disposed on the scanning mirror;
    The head-mounted display device according to claim 1, wherein the non-light scanning region is disposed in a portion of the scanner excluding the scanning mirror.
  15.  前記スキャナのうち、前記走査ミラーと、その走査ミラーを除く部分とは、両者の共通の部材に形成されており、
     前記光走査領域および前記非光走査領域は、前記共通の部材に配置されている請求の範囲第14項に記載のヘッドマウントディスプレイ装置。
    Of the scanner, the scanning mirror and the portion excluding the scanning mirror are formed on a common member of both,
    15. The head mounted display device according to claim 14, wherein the optical scanning region and the non-optical scanning region are disposed on the common member.
  16.  前記スキャナのうち前記走査ミラーを除く部分は、その内部において、前記走査ミラーを収容するパッケージを含み、
     前記非光走査領域は、前記パッケージに配置されている請求の範囲第14項に記載のヘッドマウントディスプレイ装置。
    The portion of the scanner excluding the scanning mirror includes a package that accommodates the scanning mirror therein.
    The head mounted display device according to claim 14, wherein the non-light scanning region is disposed in the package.
  17.  前記非光走査領域は、前記画像光を反射する第1領域と、前記ガイド光を反射する第2領域とを有し、それにより、前記ガイド光が、前記非光走査領域と前記光走査領域との双方によって生成される請求の範囲第1項に記載のヘッドマウントディスプレイ装置。 The non-light scanning region includes a first region that reflects the image light and a second region that reflects the guide light, whereby the guide light is transmitted to the non-light scanning region and the light scanning region. The head-mounted display device according to claim 1, which is generated by both of the methods.
PCT/JP2010/055056 2009-03-26 2010-03-24 Head-mounted display apparatus WO2010110301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-077184 2009-03-26
JP2009077184A JP2010230893A (en) 2009-03-26 2009-03-26 Head-mounted display apparatus

Publications (1)

Publication Number Publication Date
WO2010110301A1 true WO2010110301A1 (en) 2010-09-30

Family

ID=42780995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055056 WO2010110301A1 (en) 2009-03-26 2010-03-24 Head-mounted display apparatus

Country Status (2)

Country Link
JP (1) JP2010230893A (en)
WO (1) WO2010110301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158827A1 (en) * 2014-04-17 2015-10-22 Carl Zeiss Smart Optics Gmbh Method for adjusting a display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115607A (en) * 1993-10-19 1995-05-02 Olympus Optical Co Ltd Head mounting type video display device
WO2001033282A1 (en) * 1999-10-29 2001-05-10 Microvision, Inc. Personal display with vision tracking
WO2005114631A2 (en) * 2004-05-07 2005-12-01 Microvision, Inc. Scanned light display system using large numerical aperture light source
JP2005351990A (en) * 2004-06-08 2005-12-22 Canon Inc Scan type display optical system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115607A (en) * 1993-10-19 1995-05-02 Olympus Optical Co Ltd Head mounting type video display device
WO2001033282A1 (en) * 1999-10-29 2001-05-10 Microvision, Inc. Personal display with vision tracking
WO2005114631A2 (en) * 2004-05-07 2005-12-01 Microvision, Inc. Scanned light display system using large numerical aperture light source
JP2005351990A (en) * 2004-06-08 2005-12-22 Canon Inc Scan type display optical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158827A1 (en) * 2014-04-17 2015-10-22 Carl Zeiss Smart Optics Gmbh Method for adjusting a display device
CN106164747A (en) * 2014-04-17 2016-11-23 卡尔蔡司斯马特光学有限公司 Method of adjustment for display device
US10247949B2 (en) 2014-04-17 2019-04-02 tooz technologies GmbH Method for adjusting a display device

Also Published As

Publication number Publication date
JP2010230893A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
EP1225470B1 (en) Image display apparatus and system
JP5143772B2 (en) Image display device and image display method
US9519146B2 (en) Virtual image display apparatus
US5903397A (en) Display with multi-surface eyepiece
US8123352B2 (en) Head mounted display
WO2014192479A1 (en) Image projection device and projection device
CN110192143B (en) Image projection apparatus
WO2013146096A1 (en) Image display device and control method for image display device
JPH11160650A (en) Picture display device
JP2014126753A (en) Head-mounted display
JP4792970B2 (en) Image display device, retinal scanning image display device, and half mirror
JP4374708B2 (en) Retina scanning display device and optical scanning device
WO2017110370A1 (en) Image projection device
US8270087B2 (en) Head mounted display
JP5353361B2 (en) Color image display device
JP5163535B2 (en) Head mounted display
JP2002318365A (en) Retina projection type display
WO2010110301A1 (en) Head-mounted display apparatus
WO2009101960A1 (en) Image display device
JPH11109278A (en) Video display device
JP2010226217A (en) Head mount display
JPH11109279A (en) Video display device
JP5163534B2 (en) Head mounted display
JP2011070093A (en) Head-mounted display
JPH1195158A (en) Video observation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756097

Country of ref document: EP

Kind code of ref document: A1