WO2010110118A1 - Method for producing liposomes - Google Patents

Method for producing liposomes Download PDF

Info

Publication number
WO2010110118A1
WO2010110118A1 PCT/JP2010/054409 JP2010054409W WO2010110118A1 WO 2010110118 A1 WO2010110118 A1 WO 2010110118A1 JP 2010054409 W JP2010054409 W JP 2010054409W WO 2010110118 A1 WO2010110118 A1 WO 2010110118A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
liposome
membrane
liposomes
emulsification
Prior art date
Application number
PCT/JP2010/054409
Other languages
French (fr)
Japanese (ja)
Inventor
武寿 磯田
武志 和田
康之 元杭
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010110118A1 publication Critical patent/WO2010110118A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q7/00Preparations for affecting hair growth

Definitions

  • the present invention relates to a method for producing liposomes used in the fields of pharmaceuticals, cosmetics, foods and the like.
  • Liposomes are closed vesicles composed of a single or multiple lipid bilayer membrane, and are known to be able to retain water-soluble and hydrophobic drugs in the inner aqueous phase and inside the lipid bilayer membrane, respectively.
  • the lipid bilayer membrane of liposomes is similar to biological membranes, so it has high in-vivo safety, so various applications such as pharmaceuticals for DDS (Drug Delivery System) have been attracting attention, Research and development is ongoing.
  • the water-soluble drug can be contained in the internal aqueous phase of the liposome.
  • the encapsulation method the final liposome suspension (liposome and external aqueous phase)
  • the ratio of the mass of the drug encapsulated in the liposome to the total mass of the drug contained is about 20%, and in many cases, the unencapsulated drug is lost.
  • the reverse phase evaporation method such as a liposome production method having a higher encapsulation rate
  • the reverse phase evaporation method is poor in reproducibility and is not industrially suitable.
  • nucleic acid drugs and the like since they are unstable in a living body alone, a carrier that stabilizes them is desired.
  • a method capable of efficiently encapsulating a water-soluble drug and capable of producing liposomes having an average particle size of nano-size (preferably 200 nm or less suitable for intravenous injection) is desired.
  • VISUDYNE registered trademark
  • AmBismome registered trademark
  • DOXIL registered trademark
  • Non-Patent Document 1 proposes a microencapsulation method in which a W / O / W emulsion emulsified in two stages is dried in a liquid to form liposomes. Although this method can encapsulate drugs more efficiently than other methods, the size of the resulting liposome is large, and in Non-Patent Document 2, the encapsulation rate of drugs with high water solubility (low log P) is not so high It has been reported that it does not improve.
  • Patent Document 1 describes that, in a method for producing a liposome preparation including a two-stage emulsification process, the inclusion rate of drugs can be improved by using a lipid having a larger carbon number as the lipid component of the liposome. ing.
  • the liposomes obtained by this method are multivesicular liposomes (containing many non-concentric aqueous chambers) and the average particle size is micrometer size, this method allows uniform nano-sized liposomes. It is difficult to obtain monolayer liposomes (single cell liposomes).
  • Patent Document 2 discloses a method for producing a W / O / W emulsion by allowing a W / O emulsion to permeate through a porous glass membrane, which is useful in an inner aqueous phase by using a predetermined ester compound as an aqueous emulsifier. A method of suppressing material leakage is described. However, this document does not specifically describe the use of the above method for liposome production.
  • Patent Document 3 describes a method for producing liposomes from a formed W / O / W emulsion, in which a solvent is removed from the emulsion and subjected to cross flow filtration.
  • liposomes obtained by this method are multivesicular liposomes, and it is difficult to obtain uniform nano-sized monolayer liposomes (monovesicular liposomes).
  • the present invention can efficiently obtain liposomes (single-cell liposomes) having a nano-size particle size and containing a large amount of monolayers while maintaining a relatively high encapsulation rate, and there is almost no multivesicular liposome, It is an object of the present invention to provide a method for producing liposomes suitable for water-soluble drugs.
  • the present inventor performs membrane emulsification using a membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less in a secondary emulsification step when preparing a W / O / W emulsion in two steps.
  • the inventors have unexpectedly found that the above problems can be solved, and have completed the present invention.
  • the method for producing a liposome of the present invention is characterized by having the following steps (1) to (3); (1) Primary emulsification step: a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1); (2) Secondary emulsification step: The W1 / O emulsion obtained in the above step (1) and the aqueous solvent (W2) are emulsified using a membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less, Preparing a W1 / O / W2 emulsion; (3) A step of preparing a liposome suspension by removing the organic solvent contained in the W1 / O / W2 emulsion obtained by the step (2); However, you may perform the said primary emulsification process, after adding the substance further included in a liposome.
  • the W1 / O emulsion is passed through a membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less and dispersed as droplets in the aqueous solvent (W2)
  • W2 aqueous solvent
  • An emulsification method for preparing a W1 / O / W2 emulsion is preferred.
  • the membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less in the step (2) an SPG membrane is preferably used. It is preferable that medical drugs are used as the substance to be encapsulated in the liposome, and the average particle size of the obtained liposome is 50 nm or more and 200 nm or less.
  • the aqueous solvent (W2) and the W1 / O emulsion it is preferable to use at least one of a water-soluble emulsifier or a mixed lipid component (F2) that does not break the liposome lipid membrane.
  • the “average particle diameter” in the present invention refers to the volume average particle diameter.
  • the volume average particle size of the W1 / O emulsion or liposome was determined by diluting these solutions 10-fold with a chloroform / hexane mixed solvent (volume ratio: 4/6) as shown in the examples described later. It is a value calculated using an optical light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.).
  • the production method of the present invention it becomes possible to efficiently produce liposomes having a nano-sized average particle size suitable for pharmaceuticals and maintaining a high encapsulation rate. Moreover, many of the obtained liposomes are monolayer (monovesicles), and the ratio of those remaining as multivesicular liposomes is remarkably reduced as compared with the prior art.
  • an SPG membrane in the secondary emulsification step it can be an industrially advantageous method with a low cost and a large throughput.
  • the primary emulsification step is performed after adding substances (especially water-soluble drugs) that encapsulate the liposomes, the above properties are imparted to the liposomes while being relatively higher than the conventional one. It is possible to achieve liposomes that can be applied to pharmaceutical products such as injection at an encapsulation rate. By using such a method for producing liposomes of the present invention, the productivity of liposomes suitable for various applications can be remarkably improved.
  • the mixed lipid component (F1) used in the primary emulsification step mainly constitutes the inner membrane of the lipid bilayer of the liposome, and in some cases also contributes to the outer membrane.
  • the mixed lipid component (F2) mainly constitutes the outer membrane of the liposome.
  • the mixed lipid components (F1) and (F2) may have the same composition or different compositions.
  • the compounding composition of these mixed lipid components is not particularly limited, but in general, phospholipids (lecithin derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or fatty acid esters thereof) Consists mainly of certain glycerophospholipids; sphingophospholipids; derivatives thereof, and sterols (cholesterol, phytosterols, ergosterol, derivatives thereof, etc.) that contribute to the stabilization of lipid membranes.
  • phospholipids lecithin derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or fatty acid esters thereof
  • Aliphatic amines, long chain fatty acids (oleic acid, stearic acid, palmitic acid, etc.), and other compounds imparting various functionalities may be blended.
  • F2 contains a lipid component necessary for imparting functionality as a DDS, such as PEGylated phospholipid, so that the liposome surface can be efficiently modified.
  • the blending ratio of the mixed lipid component may be appropriately adjusted according to the application while taking into consideration properties such as the stability of the lipid membrane and the behavior of the liposome in vivo.
  • W1 aqueous solvent
  • W2 organic solvent
  • known general solvents can be used.
  • the aqueous solvent include pure water and those to which salts, saccharides, and other compounds suitable for osmotic pressure adjustment and pH adjustment are added.
  • W1 may contain a gelling agent such as gelatin, a thickening polysaccharide such as dextran, and a charged polymer such as chitin / chitosan and poly-L-lysine.
  • organic solvent examples include those that are not miscible with water, such as hexane (n-hexane), chloroform, and methylene chloride, and these may be used alone or in combination. Moreover, it is preferable to use an organic solvent having a boiling point lower than that of water.
  • substances to be encapsulated in liposomes are not particularly limited, and various substances known in the fields of pharmaceuticals, cosmetics, foods, etc., depending on the use of liposomes Can be used.
  • water-soluble drugs for medical use include, for example, contrast agents (nonionic iodine compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast), anticancer agents, and the like.
  • contrast agents nonionic iodine compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast
  • anticancer agents and the like.
  • antibacterial, antioxidant, anti-inflammatory, blood circulation promotion Agent whitening agent, rough skin prevention agent, anti-aging agent, hair growth promoting agent, moisturizer, hormone agent, vitamins, nucleic acid (DNA or RNA sense strand or antisense strand, plasmi
  • the method for producing a liposome of the present invention includes the following steps (1) to (3), and other steps can be appropriately combined as necessary.
  • the primary emulsification step is a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1).
  • the method for preparing the W1 / O emulsion is not particularly limited, and can be performed using an apparatus such as an ultrasonic emulsifier, a stirring emulsifier, a membrane emulsifier, or a high-pressure homogenizer.
  • the means is not particularly limited, but a method in which the average particle diameter can be controlled in a wide range and the obtained W1 / O emulsion is monodispersed is preferable.
  • the pH of the aqueous solvent (W1) is selected in the range of 3 to 10, and an appropriate buffer may be used to adjust the pH.
  • an appropriate buffer may be used to adjust the pH.
  • the pH is preferably 6 to 8.5.
  • the ratio of the mixed lipid component (F1) added to the organic solvent (O), the volume ratio of the organic solvent (O) and the aqueous solvent (W1), and other operating conditions are the conditions of the subsequent secondary emulsification step.
  • it can be appropriately adjusted according to the emulsification method to be adopted, taking into consideration the aspect of the liposome finally prepared.
  • the ratio of the mixed lipid component (F1) is 1 to 50% by mass with respect to the organic solvent (O)
  • the volume ratio of the organic solvent (O) and the aqueous solvent (W1) is 100: 1 to 1: 2. is there.
  • the average particle size of the W1 / O emulsion needs to be at least 1 ⁇ 2 or less of the pore size of the membrane used in the secondary emulsification step, 50 to 1,000 nm within a range not exceeding this upper limit. Is more preferable, and 50 to 200 nm is more preferable.
  • the water-soluble drug in order to encapsulate the water-soluble drug in the liposome, (i) the water-soluble drug is preliminarily dissolved in the aqueous solvent (W1) in the primary emulsification step, and is encapsulated at the end of the secondary emulsification step. (Ii) after obtaining (empty) liposomes that do not contain water-soluble drugs, and then redispersing the aqueous solvent in which the liposomes are dispersed or the lyophilized product of the liposomes. Any method can be used in which a water-soluble drug is added to an aqueous solvent, and the liposome is incorporated into the liposome by stirring.
  • the encapsulation rate is relatively high, and water-soluble drugs can be efficiently encapsulated in liposomes.
  • water-insoluble drugs are also added to the aqueous solvent (W1) or the organic solvent (O) in advance at the time of the primary emulsification step as in (i) above, or empty as in (ii) above. It is possible to encapsulate the liposome by adding it after obtaining the liposome.
  • the W1 / O emulsion obtained by the above step (1) has a pore diameter of 0.1 ⁇ m to 5.0 ⁇ m, preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • This is a step of preparing a W1 / O / W2 emulsion dispersed as droplets in an aqueous solvent (W2) by a membrane emulsification method using a membrane having the same.
  • an SPG (Shirasu Porous Glass) film is suitable, and can be purchased from, for example, SPG Techno Co., Ltd.
  • the W1 / O emulsion is passed through a membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less, and dispersed as droplets in the aqueous solvent (W2), whereby W1 / O An O / W2 emulsion can be prepared. Further, after obtaining a W1 / O / W2 emulsion by membrane emulsification by the above method or other methods, the obtained W1 / O / W2 emulsion is further passed through a membrane having a pore diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the final W1 / O / W2 emulsion can also be prepared by performing the membrane treatment.
  • This film treatment may be performed not only once but a plurality of times.
  • the membrane used for membrane emulsification and the membrane used for membrane treatment may be the same or different, and the pore diameters of the membrane may be the same or different.
  • the pore size of the membrane used for membrane treatment smaller than the pore size of the membrane used for membrane emulsification, compared to the case of preparing a W1 / O / W2 emulsion by one membrane emulsification without membrane treatment. It is more preferable because the load on the membrane can be reduced. The pressure required to allow the emulsion to pass through the membrane can be reduced, which can contribute to extending the life of the membrane and shorten the processing time required for the secondary emulsification process, improving the productivity of liposomes and lower costs. It is also advantageous to make it easier.
  • a water-soluble emulsifier that does not break the liposomal lipid membrane composed of the mixed lipid component (F1), the mixed lipid component (F2), or both It may be used.
  • a water-soluble emulsifier that does not destroy the liposomal lipid membrane because it can reduce the number of multivesicular liposomes.
  • emulsifiers are known in the field of surface chemistry, and typically, proteins, polysaccharides, nonionic surfactants, and the like are used in the emulsification / dispersion process as water-soluble emulsifiers.
  • water-soluble emulsifiers that do not destroy the liposome lipid membrane can be appropriately selected and used.
  • water-soluble emulsifiers that do not break the liposome lipid membrane include sodium caseinate as a protein, dextran as a polysaccharide, and polyalkylene glycol derivatives as nonionic surfactants.
  • a protein emulsifier such as sodium caseinate is preferable as a water-soluble emulsifier that does not destroy such a liposomal lipid membrane.
  • the mixing mode (addition order, etc.) of the aqueous solvent (W2), W1 / O emulsion, water-soluble emulsifier and / or mixed lipid component (F2) is not particularly limited, and an appropriate mode may be selected.
  • F2 is mainly composed of a water-soluble lipid
  • such F2 and / or a water-soluble emulsifier can be added to W2 in advance, and a W1 / O emulsion can be added thereto for emulsification.
  • F2 is mainly composed of a fat-soluble lipid
  • such F2 is added to the oil phase of the W1 / O emulsion in advance, and if necessary, a water-soluble emulsifier is added.
  • the emulsification treatment can be performed by adding to the added W2.
  • the total proportion of the water-soluble emulsifier and the mixed lipid component (F2) added to the aqueous solvent (W2) or the mixed lipid component (F2) added to the organic solvent (O) of the W1 / O emulsion The volume ratio between the W1 / O emulsion and the aqueous solvent (W2) and other operating conditions can be appropriately adjusted in consideration of the application of the liposome to be finally prepared.
  • the total ratio of the components added to the aqueous solvent (W2) to the organic solvent (O) is 0.01 to 10% by mass with respect to them, and the volume ratio of the W1 / O emulsion to the aqueous solvent (W2) is 1: 100 to 2: 1.
  • the solvent removal step is a suspension of liposomes having lipid bilayers by removing the organic solvent (O) contained in the W1 / O / W2 emulsion obtained by the secondary emulsification step. This is a step of preparing a liquid.
  • the method for removing the solvent from the W1 / O / W2 emulsion is not limited to this, although the solvent of the W1 / O / W2 emulsion can be distilled off by heating or decompression according to a conventional method. Although it is affected by the type of solvent used, a condition range in which the solvent does not bump suddenly is set, and the temperature condition is preferably in the range of 0 to 60 ° C., more preferably 0 to 25 ° C.
  • the decompression condition is preferably set within the range of the saturated vapor pressure of the solvent to atmospheric pressure, and more preferably within the range of + 1% to 10% of the saturated vapor pressure of the solvent.
  • solvents When different solvents are used in combination, conditions that match the solvent species having a higher saturated vapor pressure are preferred. These removal conditions may be combined within a range in which the solvent does not bump. For example, when a heat-sensitive chemical is used, it is preferable that the solvent is distilled off at a lower temperature and under reduced pressure. The solvent removal may not require stirring of the W1 / O / W2 emulsion, but the solvent removal proceeds more uniformly with stirring. Moreover, the time required for solvent removal can be shortened by widening the gas-liquid interface.
  • the liposome finally obtained by the production method of the present invention contains almost no multivesicular liposome, and the average particle size can be controlled between 50 and 1,000 nm.
  • liposomes having an average particle size of 50 to 200 nm have almost no risk of occluding capillaries and can pass through gaps formed in blood vessels in the vicinity of cancer tissues. Convenient above.
  • the aqueous liposome solution was diluted 10 times with a chloroform / hexane mixed solvent (volume ratio: 4/6), and the volume average particle size was determined using a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.). Calculated.
  • Example 1 (Production of W1 / O emulsion by primary emulsification process) 15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (manufactured by NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) (O) and 5 ml of Tris-HCl buffer solution (pH 8, 50 mmol / L) containing calcein (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase.
  • COATSOME NC-50 egg yolk lecithin
  • OA oleic acid
  • the mixed solution was put into a 50 ml beaker, and an ultrasonic dispersion device “UH-600S” (manufactured by SMT Co., Ltd.) equipped with a 20 mm diameter probe was irradiated with ultrasonic waves for 15 minutes at 25 ° C. went.
  • the average particle size of the obtained W1 / O emulsion at room temperature was 247 nm.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to an open glass container without a lid and stirred at room temperature for about 24 hours to volatilize hexane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
  • the obtained liposomes had an average particle size at room temperature of 233 nm and a calcein encapsulation rate of 71%, and multivesicular liposomes were not confirmed.
  • Example 2 The same operation as in Example 1 was performed except that an SPG membrane having a pore diameter of 5.0 ⁇ m was used in the secondary emulsification step and the pressure required for membrane emulsification was about 10 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposome had an average particle size at room temperature of 244 nm, a calcein encapsulation rate of 70%, and three multivesicular liposomes.
  • a W1 / O / W2 emulsion was produced by the SPG emulsification method.
  • a SPG membrane having a pore diameter of 1.0 ⁇ m was used in the same membrane emulsification apparatus as in Example 1, and Tris-hydrochloric acid buffer (pH 7.4) containing 3% sodium caseinate as an external aqueous phase solution (W2) on the outlet side of the apparatus. 50 mmol / L), and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion.
  • the pressure required for membrane emulsification was about 10 kPa.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar.
  • a suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
  • the obtained liposomes had an average particle size at room temperature of 203 nm and a calcein encapsulation rate of 49%, and multivesicular liposomes were not confirmed.
  • Example 4 In the primary emulsification step, emulsification was performed under a pressure condition of 100 MPa using a high-pressure homogenizer (Nanomizer, manufactured by Yoshida Kikai Kogyo Co., Ltd.). The same operation as in Example 3 was performed.
  • the average particle size of the obtained W1 / O emulsion at room temperature was 127 nm
  • the average particle size of the obtained liposome at room temperature was 123 nm
  • the calcein encapsulation rate was 53%
  • one multivesicular liposome Met The pressure required for membrane emulsification was about 20 kPa.
  • Example 5 Except that 0.3 g of egg yolk lecithin “PL-100M” (manufactured by Kewpie) having a phosphatidylcholine content of 80%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) were used as lipids. The same operation as 3 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 232 nm, the average particle size of the obtained liposome at room temperature was 237 nm, the calcein encapsulation rate was 62%, and multivesicular liposomes were confirmed. There wasn't. The pressure required for membrane emulsification was about 10 kPa.
  • the average particle size of the obtained W1 / O emulsion at room temperature was 189 nm
  • the average particle size of the obtained liposome at room temperature was 197 nm
  • the calcein encapsulation rate was 42%
  • there were 6 multivesicular liposomes Met The pressure required for membrane emulsification was about 10 kPa.
  • Example 7 The same operation as in Example 3 was performed except that an SPG membrane having a pore diameter of 5.0 ⁇ m was used in the secondary emulsification step.
  • the average particle size of the obtained W1 / O emulsion at room temperature was 203 nm
  • the average particle size of the obtained liposome at room temperature was 210 nm
  • the calcein encapsulation rate was 46%
  • one multivesicular liposome Met The pressure required for membrane emulsification was about 2 kPa.
  • Example 8 The same operation as in Example 4 was performed except that an SPG membrane having a pore diameter of 0.2 ⁇ m was used in the secondary emulsification step.
  • the obtained liposomes had an average particle size of 120 nm at room temperature, a calcein encapsulation rate of 40%, and two multivesicular liposomes.
  • the pressure required for membrane emulsification was about 25 kPa.
  • a SPG membrane having a pore diameter of 1.0 ⁇ m was used in the same membrane emulsification apparatus as in Example 1, and Tris-hydrochloric acid buffer (pH 7.4) containing 3% sodium caseinate as an external aqueous phase solution (W2) on the outlet side of the apparatus. 50 mmol / L), and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion.
  • the pressure required for membrane emulsification was about 10 kPa.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar.
  • a suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
  • the obtained liposomes had an average particle size at room temperature of 231 nm and a calcein encapsulation rate of 70%, and multivesicular liposomes were not confirmed.
  • Comparative Example 1 The same operation as in Example 1 was performed except that an SPG membrane having a pore size of 7.0 ⁇ m was used in the secondary emulsification step, and the pressure required for membrane emulsification was about 7 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The average particle diameter of the obtained liposomes at room temperature was 255 nm and the calcein encapsulation rate was 70%, but the number of multivesicular liposomes was slightly high at 58.
  • Comparative Example 2 The same operation as in Example 1 was performed except that an SPG membrane having a pore size of 10.0 ⁇ m was used in the secondary emulsification step, and the pressure required for membrane emulsification was about 5 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposome had an average particle size at room temperature of 277 nm and a calcein encapsulation rate of 68%, but the number of multivesicular liposomes was as high as 170.
  • DPPC dipalmitoyl phosphatidylcholine
  • DPPG dipalmitoyl phosphatidylglycerol
  • O organic solvent phase
  • Tris-HCl buffer solution pH 7.4, 50
  • aqueous dispersion phase (W1) was obtained. These mixed liquids were put into a 50 ml beaker and subjected to an emulsification treatment by irradiating ultrasonic waves at 25 ° C. for 15 minutes with an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) equipped with a ⁇ 20 mm probe.
  • UH-600S ultrasonic dispersion apparatus
  • the W1 / O emulsion obtained in this primary emulsification step had a volume average particle size of about 212 nm.
  • the final W1 / O / W2 emulsion obtained by the secondary emulsification step is transferred to a closed container and stirred for about 8 hours under a reduced pressure condition of 20 ° C. and 500 mbar, and then under a reduced pressure condition of 20 ° C. and 180 mbar. The mixture was stirred for about 8 hours, and the solvent was volatilized stepwise. It was confirmed that calcein was contained in the particles of the obtained liposome suspension. The average particle diameter of the obtained liposome was 190 nm, and the calcein encapsulation rate was 62%. Multivesicular liposomes were not confirmed.
  • Example 11 (Production of W1 / O emulsion by primary emulsification process)
  • a mixed solvent hexane: dichloromethane
  • containing 6.0 g of egg yolk lecithin “COATSOME NC-50” manufactured by NOF CORPORATION
  • 3.04 g of cholesterol (Chol) and 2.16 g of oleic acid (OA) having a phosphatidylcholine content of 95% 8: 2
  • the same primary emulsification process as in Example 4 was performed.
  • the average particle size of the obtained W1 / O emulsion at room temperature was 135 nm.
  • a W1 / O / W2 emulsion was produced by the SPG emulsification method. Same as Example 4 except that a cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 1.0 ⁇ m is used in an SPG membrane emulsifying device (trade name “High Speed Mini Kit KH-125” manufactured by SPG Techno Co., Ltd.). Thus, a W1 / O / W2 emulsion was produced. The pressure required for membrane emulsification was about 10 kPa.
  • the W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar.
  • a suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles.
  • the obtained liposomes had an average particle size at room temperature of 140 nm and a calcein encapsulation rate of 53%, and multivesicular liposomes were not confirmed.
  • Comparative Example 3 In the secondary emulsification step, a cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 10.0 ⁇ m was used, and the same operation as in Example 11 was performed except that the pressure required for membrane emulsification was about 5 kPa. Went. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 134 nm and a calcein encapsulation rate of 65%, but the number of multivesicular liposomes was as large as 220.
  • Example 12 The same operation as in Example 1 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM).
  • W1 aqueous dispersion phase
  • the obtained liposomes had an average particle size at room temperature of 168 nm and an encapsulation rate of 32%, and multivesicular liposomes were not confirmed.
  • Example 13 The same operation as in Example 2 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM).
  • W1 aqueous dispersion phase
  • the average particle diameter of the obtained liposome at room temperature was 200 nm, the encapsulation rate was 33%, and multivesicular liposomes were not confirmed.
  • Comparative Example 4 The same operation as in Comparative Example 2 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM).
  • W1 aqueous dispersion phase
  • the average particle diameter of the obtained liposomes at room temperature was 195 nm and the encapsulation rate was 30%, but the number of multivesicular liposomes was as large as 201.
  • Example 10 After obtaining a W1 / O / W2 emulsion from a W1 / O emulsion by membrane emulsification with an SPG membrane (pore size 5.0 ⁇ m), an SPG membrane (pore size 0.5 ⁇ m) was used again.
  • the W1 / O / W2 emulsion was subjected to membrane treatment.
  • a W1 / O / W2 emulsion was produced from a W1 / O emulsion by a single treatment using an SPG film.

Abstract

Disclosed is a method for producing liposomes, which is characterized by comprising: a primary emulsification step wherein a W1/O emulsion is prepared; a secondary emulsification step wherein a W1/O/W2 emulsion is prepared by emulsifying the W1/O emulsion and an aqueous solvent (W2) using a membrane that has a pore diameter of not less than 0.1 μm but not more than 5.0 μm; and a step wherein a suspension of liposomes is prepared by removing the organic solvent contained in the W1/O/W2 emulsion. By this method, liposomes including a large number of unilamellar (univesicular) liposomes which have a nano-sized particle diameter, while maintaining a relatively high encapsulation rate can be efficiently obtained. The method for producing liposomes enables the production of liposomes which include almost no multivesicular liposomes and are particularly suitable for water-soluble drugs.

Description

リポソームの製造方法Method for producing liposome
 本発明は、医薬品、化粧品、食品などの分野で用いられるリポソームの製造方法に関する。 The present invention relates to a method for producing liposomes used in the fields of pharmaceuticals, cosmetics, foods and the like.
 リポソームは、単層または複数層の脂質二重膜からなる閉鎖小胞体であり、内水相および脂質二重膜内部にそれぞれ水溶性および疎水性の薬剤類を保持できることが知られている。また、リポソームの脂質二重膜は生体膜に類似しているため生体内での安全性が高いことなどから、たとえばDDS(ドラック・デリバリー・システム)用の医薬品などの、各種用途が注目され、研究開発が進められている。 Liposomes are closed vesicles composed of a single or multiple lipid bilayer membrane, and are known to be able to retain water-soluble and hydrophobic drugs in the inner aqueous phase and inside the lipid bilayer membrane, respectively. In addition, the lipid bilayer membrane of liposomes is similar to biological membranes, so it has high in-vivo safety, so various applications such as pharmaceuticals for DDS (Drug Delivery System) have been attracting attention, Research and development is ongoing.
 これまでにリポソームの製造方法は数多く提案されてきたが、医薬品として承認されうるリポソームを製造できる、コスト的・工業的に優れた汎用的な技術は少ない。水溶性薬剤はリポソームの内水相に含ませることができるが、一般的には良いとされるリポソーム製造方法でも内包率(最終的に得られたリポソーム懸濁液(リポソームおよび外水相)に含まれる薬剤類の総質量に対する、リポソームに内包された薬物類の質量の割合)は20%程度であり、多くの場合、内包されない薬剤はロスとなる。これよりも内包率の高くなるリポソーム製造方法など、たとえば逆相蒸発法、は再現性が悪く、工業的に適さない。また、近年では核酸医薬など注目されているが、単体では生体内で不安定なため、これらを安定化させるキャリアが望まれている。このため、水溶性薬剤を効率的に内包させることができ、かつナノサイズ(好ましくは静脈注射に適する200nm以下)の平均粒径を有するリポソームを製造できる方法が望まれている。 So far, many methods for producing liposomes have been proposed, but there are few general-purpose technologies excellent in cost and industry that can produce liposomes that can be approved as pharmaceuticals. The water-soluble drug can be contained in the internal aqueous phase of the liposome. However, it is generally accepted that the encapsulation method (the final liposome suspension (liposome and external aqueous phase)) is included in the liposome production method. The ratio of the mass of the drug encapsulated in the liposome to the total mass of the drug contained is about 20%, and in many cases, the unencapsulated drug is lost. For example, the reverse phase evaporation method, such as a liposome production method having a higher encapsulation rate, is poor in reproducibility and is not industrially suitable. In recent years, attention has been paid to nucleic acid drugs and the like, but since they are unstable in a living body alone, a carrier that stabilizes them is desired. For this reason, a method capable of efficiently encapsulating a water-soluble drug and capable of producing liposomes having an average particle size of nano-size (preferably 200 nm or less suitable for intravenous injection) is desired.
 なお、日本国内では「ビジュダイン(VISUDYNE)」(登録商標)、「アムビゾーム(AmBisome)」(登録商標)および「ドキシル(DOXIL)」(登録商標)の3種類のリポソーム製剤が市販されている。しかしながら、ビジュダインおよびアムビゾームは、リポソームに内包させやすい疎水性の薬剤を内包するものである。また、ドキシルは、リポソーム形成後に外水相に薬剤を添加し、内外濃度差を利用して薬剤をリポソームに内包するリモートローディング法と呼ばれる方法により、80%以上の高い内包率を達成している。しかし、この方法は、初期は水溶性であるが内水相内で塩を形成することができ、かつリポソームの脂質膜を通過することのできる特殊な低分子水溶性薬剤でなければ用いることはできない。 In Japan, three types of liposome preparations, “VISUDYNE” (registered trademark), “AmBismome” (registered trademark), and “DOXIL” (registered trademark), are commercially available. However, bijudyne and ambisome encapsulate hydrophobic drugs that are easily encapsulated in liposomes. In addition, Doxil achieves a high encapsulation rate of 80% or more by a method called a remote loading method in which a drug is added to the external aqueous phase after liposome formation and the drug is encapsulated in the liposome using a difference in internal and external concentrations. . However, this method can be used only when it is a special low-molecular-weight water-soluble drug that is initially water-soluble but can form a salt in the inner aqueous phase and can pass through the lipid membrane of the liposome. Can not.
 リポソームの粒径を小さくするための工程として、従来からエクストルーダによるサイジングが行われているが、この工程により粒径はナノサイズになるものの、リポソームに内包される薬剤の量は大幅に減少してしまう。 As a process for reducing the particle size of liposomes, sizing with an extruder has been conventionally performed, but although this process makes the particle size nano-sized, the amount of drug encapsulated in the liposome is greatly reduced. End up.
 非特許文献1では、2段階で乳化したW/O/Wエマルションを液中乾燥し、リポソームを形成するマイクロカプセル化法が提案されている。この方法は他の方法と比較して効率的に薬剤類を内包できるが、得られるリポソームのサイズは大きく、また非特許文献2では水溶性の高い(logPの低い)薬剤類の内包率はあまり向上しないことが報告されている。 Non-Patent Document 1 proposes a microencapsulation method in which a W / O / W emulsion emulsified in two stages is dried in a liquid to form liposomes. Although this method can encapsulate drugs more efficiently than other methods, the size of the resulting liposome is large, and in Non-Patent Document 2, the encapsulation rate of drugs with high water solubility (low log P) is not so high It has been reported that it does not improve.
 特許文献1には、2段階の乳化工程を含むリポソーム製剤の製造方法において、リポソームの脂質成分として炭素数がより大きな脂質を用いることにより、薬剤類の内包率を向上させることができることが記載されている。しかしながら、この方法により得られるリポソームはほとんどが多胞リポソーム(多数の非同心の水性小室を内包するもの)で、かつ平均粒径もマイクロメートルサイズであることから、この方法により均一なナノサイズの単層のリポソーム(単胞リポソーム)を得ることは困難である。 Patent Document 1 describes that, in a method for producing a liposome preparation including a two-stage emulsification process, the inclusion rate of drugs can be improved by using a lipid having a larger carbon number as the lipid component of the liposome. ing. However, since most of the liposomes obtained by this method are multivesicular liposomes (containing many non-concentric aqueous chambers) and the average particle size is micrometer size, this method allows uniform nano-sized liposomes. It is difficult to obtain monolayer liposomes (single cell liposomes).
 特許文献2には、W/Oエマルションを多孔質ガラス膜に透過させてW/O/Wエマルションを製造する方法であって、水性乳化剤として所定のエステル化合物を用いることにより内水相内の有用物質の漏洩を抑制する方法が記載されている。しかしながらこの文献には、上記の方法をリポソーム製造に使用することについては何ら具体的に記載されていない。 Patent Document 2 discloses a method for producing a W / O / W emulsion by allowing a W / O emulsion to permeate through a porous glass membrane, which is useful in an inner aqueous phase by using a predetermined ester compound as an aqueous emulsifier. A method of suppressing material leakage is described. However, this document does not specifically describe the use of the above method for liposome production.
 特許文献3には、形成したW/O/Wエマルションからリポソームを製造する方法であって、溶媒をエマルション中から除去しクロスフローろ過にかける方法が記載されている。しかしながら、この方法によって得られるリポソームは多胞リポソームであり、均一なナノサイズの単層のリポソーム(単胞リポソーム)を得ることは困難である。 Patent Document 3 describes a method for producing liposomes from a formed W / O / W emulsion, in which a solvent is removed from the emulsion and subjected to cross flow filtration. However, liposomes obtained by this method are multivesicular liposomes, and it is difficult to obtain uniform nano-sized monolayer liposomes (monovesicular liposomes).
特表2001-505549号公報JP-T-2001-505549 特開2003-164754号公報JP 2003-164754 A 特表2001-522870号公報JP-T-2001-522870
 本発明は、ナノサイズの粒径を有し、比較的高い内包率を維持しながら単層のものを多く含むリポソーム(単胞リポソーム)が効率的に得られ、多胞リポソームのほとんど無い、特に水溶性薬剤に適したリポソームの製造方法を提供することを課題とする。 The present invention can efficiently obtain liposomes (single-cell liposomes) having a nano-size particle size and containing a large amount of monolayers while maintaining a relatively high encapsulation rate, and there is almost no multivesicular liposome, It is an object of the present invention to provide a method for producing liposomes suitable for water-soluble drugs.
 本発明者は鋭意検討した結果、2段階でW/O/Wエマルションを調製する際の二次乳化工程において、0.1μm以上5.0μm以下の細孔径を有する膜を用いた膜乳化を行うことにより、意外にも上記課題を解決しうることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventor performs membrane emulsification using a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less in a secondary emulsification step when preparing a W / O / W emulsion in two steps. As a result, the inventors have unexpectedly found that the above problems can be solved, and have completed the present invention.
 すなわち、本発明のリポソームの製造方法は、下記工程(1)~(3)を有することを特徴とする;
 (1)一次乳化工程:有機溶媒(O)、水性溶媒(W1)、および混合脂質成分(F1)を乳化することにより、W1/Oエマルションを調製する工程;
 (2)二次乳化工程:上記工程(1)により得られたW1/Oエマルションと水性溶媒(W2)とを、0.1μm以上5.0μm以下の細孔径を有する膜を用いて乳化し、W1/O/W2エマルションを調製する工程;
 (3)上記工程(2)により得られたW1/O/W2エマルションに含まれる有機溶媒を除去することにより、リポソームの懸濁液を調製する工程;
 ただし、上記一次乳化工程は、さらにリポソームに内包させる物質を添加した上で行ってもよい。
That is, the method for producing a liposome of the present invention is characterized by having the following steps (1) to (3);
(1) Primary emulsification step: a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1);
(2) Secondary emulsification step: The W1 / O emulsion obtained in the above step (1) and the aqueous solvent (W2) are emulsified using a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less, Preparing a W1 / O / W2 emulsion;
(3) A step of preparing a liposome suspension by removing the organic solvent contained in the W1 / O / W2 emulsion obtained by the step (2);
However, you may perform the said primary emulsification process, after adding the substance further included in a liposome.
 前記工程(2)の乳化方法としては、W1/Oエマルションを、0.1μm以上5.0μm以下の細孔径を有する膜を通過させ、水性溶媒(W2)中に液滴として分散させることにより、W1/O/W2エマルションを調製する乳化方法が好ましい。また、前記工程(2)において、W1/Oエマルションを膜乳化して得られたW1/O/W2エマルションを、0.1μm以上5.0μm以下の細孔径を有する膜を通過させる膜処理工程をさらに有することにより、最終的なW1/O/W2エマルションを調製することも好ましい。前記工程(2)の0.1μm以上5.0μm以下の細孔径を有する膜としては、SPG膜を用いることが好ましい。前記リポソームに内包させる物質として医療用の薬剤類を用い、かつ得られるリポソームの平均粒径を50nm以上200nm以下とすることが好ましい。前記工程(2)では、水性溶媒(W2)およびW1/Oエマルション以外にさらに、リポソーム脂質膜を破壊しない水溶性乳化剤または混合脂質成分(F2)の少なくともどちらか一方を用いることが好ましい。 As the emulsification method of the step (2), the W1 / O emulsion is passed through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less and dispersed as droplets in the aqueous solvent (W2), An emulsification method for preparing a W1 / O / W2 emulsion is preferred. In the step (2), a membrane treatment step of passing the W1 / O / W2 emulsion obtained by membrane emulsification of the W1 / O emulsion through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less. It is also preferable to prepare the final W1 / O / W2 emulsion by further having it. As the membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less in the step (2), an SPG membrane is preferably used. It is preferable that medical drugs are used as the substance to be encapsulated in the liposome, and the average particle size of the obtained liposome is 50 nm or more and 200 nm or less. In the step (2), in addition to the aqueous solvent (W2) and the W1 / O emulsion, it is preferable to use at least one of a water-soluble emulsifier or a mixed lipid component (F2) that does not break the liposome lipid membrane.
 なお、本発明における「平均粒径」とは体積平均粒子径を指す。また、W1/Oエマルションやリポソームの体積平均粒子径は、後述する実施例に示したように、それらの溶液をクロロホルム/ヘキサン混合溶媒(体積比:4/6)で10倍に希釈し、動的光散乱式ナノトラック粒度分析計(UPA-EX150、日機装株式会社)を用いて算出される値である。 The “average particle diameter” in the present invention refers to the volume average particle diameter. The volume average particle size of the W1 / O emulsion or liposome was determined by diluting these solutions 10-fold with a chloroform / hexane mixed solvent (volume ratio: 4/6) as shown in the examples described later. It is a value calculated using an optical light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.).
 本発明の製造方法によれば、医薬品用としても好適なナノサイズの平均粒径を有し高い内包率を維持したリポソームを効率的に製造できるようになる。しかも、得られるリポソーム中には単層(単胞)のものが多く、多胞リポソームとして残るものの割合が従来よりも著しく減少している。特に二次乳化工程においてSPG膜を用いることにより、コストが安く処理量が多い、工業的に有利な方法とすることができる。また、一次乳化工程をさらにリポソームに内包させる物質(特に水溶性の薬剤類)を添加した上で行った場合には、リポソームに上記のような性状を賦与しつつ従来と同等以上の比較的高い内包率で注射等の医薬品用に適用可能なリポソームを達成することができる。このような本発明のリポソームの製造方法を利用することにより、各種の用途に好適なリポソームの生産性を著しく改善することができる。 According to the production method of the present invention, it becomes possible to efficiently produce liposomes having a nano-sized average particle size suitable for pharmaceuticals and maintaining a high encapsulation rate. Moreover, many of the obtained liposomes are monolayer (monovesicles), and the ratio of those remaining as multivesicular liposomes is remarkably reduced as compared with the prior art. In particular, by using an SPG membrane in the secondary emulsification step, it can be an industrially advantageous method with a low cost and a large throughput. In addition, when the primary emulsification step is performed after adding substances (especially water-soluble drugs) that encapsulate the liposomes, the above properties are imparted to the liposomes while being relatively higher than the conventional one. It is possible to achieve liposomes that can be applied to pharmaceutical products such as injection at an encapsulation rate. By using such a method for producing liposomes of the present invention, the productivity of liposomes suitable for various applications can be remarkably improved.
 -製造原料-
 混合脂質成分(F1)・(F2)
 一次乳化工程で用いる混合脂質成分(F1)は主としてリポソームの脂質二重膜の内膜を構成し、場合によっては外膜の構成にも寄与する。混合脂質成分(F2)は主としてリポソームの外膜を構成する。混合脂質成分(F1)および(F2)は、同一の組成であっても、異なる組成であってもよい。
-Raw materials-
Mixed lipid component (F1) ・ (F2)
The mixed lipid component (F1) used in the primary emulsification step mainly constitutes the inner membrane of the lipid bilayer of the liposome, and in some cases also contributes to the outer membrane. The mixed lipid component (F2) mainly constitutes the outer membrane of the liposome. The mixed lipid components (F1) and (F2) may have the same composition or different compositions.
 これらの混合脂質成分の配合組成は特に限定されるものではないが、一般的には、リン脂質(動植物由来のレシチン;ホスファチジルコリン、ホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトール、ホスファチジン酸またはそれらの脂肪酸エステルであるグリセロリン脂質;スフィンゴリン脂質;これらの誘導体等)と、脂質膜の安定化に寄与するステロール類(コレステロール、フィトステロール、エルゴステロール、これらの誘導体等)とを中心に構成され、さらに糖脂質、グリコール、脂肪族アミン、長鎖脂肪酸(オレイン酸、ステアリン酸、パルミチン酸等)、その他各種の機能性を賦与する化合物が配合されていてもよい。特にF2には、PEG化リン脂質などDDSとしての機能性の付与に必要な脂質成分を含むことで、リポソーム表面に効率的な修飾が可能となる。混合脂質成分の配合比も、脂質膜の安定性やリポソームの生体内での挙動などの性状を考慮しながら、用途に応じて適切に調整すればよい。 The compounding composition of these mixed lipid components is not particularly limited, but in general, phospholipids (lecithin derived from animals and plants; phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidic acid or fatty acid esters thereof) Consists mainly of certain glycerophospholipids; sphingophospholipids; derivatives thereof, and sterols (cholesterol, phytosterols, ergosterol, derivatives thereof, etc.) that contribute to the stabilization of lipid membranes. , Aliphatic amines, long chain fatty acids (oleic acid, stearic acid, palmitic acid, etc.), and other compounds imparting various functionalities may be blended. In particular, F2 contains a lipid component necessary for imparting functionality as a DDS, such as PEGylated phospholipid, so that the liposome surface can be efficiently modified. The blending ratio of the mixed lipid component may be appropriately adjusted according to the application while taking into consideration properties such as the stability of the lipid membrane and the behavior of the liposome in vivo.
 水性溶媒(W1)・(W2)、有機溶媒(O)
 水性溶媒(W1)および(W2)ならびに有機溶媒(O)は公知の一般的なものを用いることができる。水性溶媒としては、純水や、浸透圧調整やpH調整に適した塩類や糖類、その他の化合物を添加したものが挙げられる。また、リポソームの用途に合わせて、W1にはゼラチンなどのゲル化剤、デキストランなどの増粘多糖類、キチン/キトサンやポリ-L-リジンなどの荷電性高分子といった物質を封入してもよい。有機溶媒としては、たとえばヘキサン(n-ヘキサン)やクロロホルム、塩化メチレンなどの水と混和しにくいものが挙げられ、これらを単独で使用しても混合して使用してもよい。また、水よりも沸点の低い有機溶媒を使用することが好ましい。
Aqueous solvent (W1) / (W2), organic solvent (O)
As the aqueous solvents (W1) and (W2) and the organic solvent (O), known general solvents can be used. Examples of the aqueous solvent include pure water and those to which salts, saccharides, and other compounds suitable for osmotic pressure adjustment and pH adjustment are added. Further, according to the use of liposome, W1 may contain a gelling agent such as gelatin, a thickening polysaccharide such as dextran, and a charged polymer such as chitin / chitosan and poly-L-lysine. . Examples of the organic solvent include those that are not miscible with water, such as hexane (n-hexane), chloroform, and methylene chloride, and these may be used alone or in combination. Moreover, it is preferable to use an organic solvent having a boiling point lower than that of water.
 内包させる物質
 本発明において、リポソームに内包させる物質(薬剤類と総称する)は特に限定されるものではなく、リポソームの用途に応じて医薬品、化粧品、食品などの分野で知られている各種の物質を用いることができる。
Substances to be encapsulated In the present invention, substances to be encapsulated in liposomes (collectively referred to as drugs) are not particularly limited, and various substances known in the fields of pharmaceuticals, cosmetics, foods, etc., depending on the use of liposomes Can be used.
 薬剤類のうち医療用の水溶性のものとしては、たとえば、造影剤(X線造影用の非イオン性ヨード化合物、MRI造影用のガドリニウムとキレート化剤とからなる錯体等)、抗がん剤(アドリアマイシン、ビラルビシン、ビンクリスチン、タキソール、シスプラチン、マイトマイシン、5-フルオロウラシル、イリノテカン、エストラサイト、エピルビシン、カルボプラチン、イントロン、ジェムザール、メソトレキセート、シタラビン等)、抗菌剤、抗酸化性剤、抗炎症剤、血行促進剤、美白剤、肌荒れ防止剤、老化防止剤、発毛促進性剤、保湿剤、ホルモン剤、ビタミン類、核酸(DNAもしくはRNAのセンス鎖もしくはアンチセンス鎖、プラスミド、ベクター、mRNA、siRNA等)、タンパク質(酵素、抗体、ペプチド等)、ワクチン製剤(破傷風などのトキソイドを抗原とするもの;ジフテリア、日本脳炎、ポリオ、風疹、おたふくかぜ、肝炎などのウイルスを抗原とするもの;DNAまたはRNAワクチン等)などの薬理的作用を有する物質や、色素・蛍光色素、キレート化剤、安定化剤、保存剤などの製薬助剤が挙げられる。 Examples of water-soluble drugs for medical use include, for example, contrast agents (nonionic iodine compounds for X-ray contrast, complexes composed of gadolinium and chelating agents for MRI contrast), anticancer agents, and the like. (Adriamycin, viralubicin, vincristine, taxol, cisplatin, mitomycin, 5-fluorouracil, irinotecan, estrasite, epirubicin, carboplatin, intron, gemzar, methotrexate, cytarabine, etc.), antibacterial, antioxidant, anti-inflammatory, blood circulation promotion Agent, whitening agent, rough skin prevention agent, anti-aging agent, hair growth promoting agent, moisturizer, hormone agent, vitamins, nucleic acid (DNA or RNA sense strand or antisense strand, plasmid, vector, mRNA, siRNA, etc.) , Proteins (enzymes, antibodies, peptides, etc.) A substance having a pharmacological action, such as a vaccine preparation (toxoid such as tetanus as an antigen; diphtheria, Japanese encephalitis, polio, rubella, mumps, hepatitis or other virus as an antigen; DNA or RNA vaccine, etc.) Pharmaceutical aids such as dyes / fluorescent dyes, chelating agents, stabilizers, preservatives and the like can be mentioned.
 -リポソームの製造方法-
 本発明のリポソームの製造方法は、下記工程(1)~(3)を有し、必要に応じてその他の工程を適宜組み合わせることができるものである。
-Method for producing liposome-
The method for producing a liposome of the present invention includes the following steps (1) to (3), and other steps can be appropriately combined as necessary.
 (1)一次乳化工程
 一次乳化工程は、有機溶媒(O)、水性溶媒(W1)、および混合脂質成分(F1)を乳化することにより、W1/Oエマルションを調製する工程である。
(1) Primary emulsification step The primary emulsification step is a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1).
 W1/Oエマルションを調製するための方法は特に限定されるものではなく、超音波乳化機、撹拌乳化機、膜乳化機、高圧ホモジナイザーなどの装置を用いて行うことができる。特に手段は限定されないが、平均粒径を広い範囲で制御でき、かつ得られるW1/Oエマルションが単分散性である方法が好ましい。 The method for preparing the W1 / O emulsion is not particularly limited, and can be performed using an apparatus such as an ultrasonic emulsifier, a stirring emulsifier, a membrane emulsifier, or a high-pressure homogenizer. The means is not particularly limited, but a method in which the average particle diameter can be controlled in a wide range and the obtained W1 / O emulsion is monodispersed is preferable.
 水性溶媒(W1)のpHは3~10の範囲に選択され、pHの調整には適切な緩衝液を用いればよい。たとえば、混合脂質成分にオレイン酸を用いる場合、pHは6~8.5とすることが好ましい。 The pH of the aqueous solvent (W1) is selected in the range of 3 to 10, and an appropriate buffer may be used to adjust the pH. For example, when oleic acid is used for the mixed lipid component, the pH is preferably 6 to 8.5.
 一次乳化工程における、有機溶媒(O)に添加する混合脂質成分(F1)の割合、有機溶媒(O)と水性溶媒(W1)の体積比、その他の操作条件は、続く二次乳化工程の条件や最終的に調製するリポソームの態様などを考慮しながら、採用する乳化方法に応じて適宜調整することができる。通常、混合脂質成分(F1)の割合は有機溶媒(O)に対して1~50質量%であり、有機溶媒(O)と水性溶媒(W1)の体積比は100:1~1:2である。W1/Oエマルションの平均粒径は、二次乳化工程で用いる膜の細孔径の少なくとも1/2以下のサイズであることが必要であるため、この上限を超えない範囲内で50~1,000nmが好ましく、50~200nmであることがより好ましい。 In the primary emulsification step, the ratio of the mixed lipid component (F1) added to the organic solvent (O), the volume ratio of the organic solvent (O) and the aqueous solvent (W1), and other operating conditions are the conditions of the subsequent secondary emulsification step. In addition, it can be appropriately adjusted according to the emulsification method to be adopted, taking into consideration the aspect of the liposome finally prepared. Usually, the ratio of the mixed lipid component (F1) is 1 to 50% by mass with respect to the organic solvent (O), and the volume ratio of the organic solvent (O) and the aqueous solvent (W1) is 100: 1 to 1: 2. is there. Since the average particle size of the W1 / O emulsion needs to be at least ½ or less of the pore size of the membrane used in the secondary emulsification step, 50 to 1,000 nm within a range not exceeding this upper limit. Is more preferable, and 50 to 200 nm is more preferable.
 本発明では、リポソームに水溶性薬剤類を内包させるために、(i)一次乳化工程の水性溶媒(W1)に水溶性薬剤類をあらかじめ溶解させておき、二次乳化工程終了時点でそれを内包するリポソームが得られるようにする方法、(ii)水溶性薬剤類を内包しない(空の)リポソームを得た後に、そのリポソームが分散している水性溶媒またはそのリポソームの凍結乾燥物を再分散させた水性溶媒に水溶性薬剤類を添加し、撹拌するなどして、リポソームにそれを取り込ませる方法、いずれを用いることもできる。本発明の製造方法では、上記(i)の方法を用いた場合であっても内包率が比較的高く、効率的にリポソームに水溶性薬剤類を内包させることができる。なお、非水溶性薬剤類についても、上記(i)のように一次乳化工程の時点で水性溶媒(W1)あるいは有機溶媒(O)にあらかじめ添加しておくか、上記(ii)のように空のリポソームを得た後に添加することにより、リポソームに内包させることができる。 In the present invention, in order to encapsulate the water-soluble drug in the liposome, (i) the water-soluble drug is preliminarily dissolved in the aqueous solvent (W1) in the primary emulsification step, and is encapsulated at the end of the secondary emulsification step. (Ii) after obtaining (empty) liposomes that do not contain water-soluble drugs, and then redispersing the aqueous solvent in which the liposomes are dispersed or the lyophilized product of the liposomes. Any method can be used in which a water-soluble drug is added to an aqueous solvent, and the liposome is incorporated into the liposome by stirring. In the production method of the present invention, even when the method (i) is used, the encapsulation rate is relatively high, and water-soluble drugs can be efficiently encapsulated in liposomes. Note that water-insoluble drugs are also added to the aqueous solvent (W1) or the organic solvent (O) in advance at the time of the primary emulsification step as in (i) above, or empty as in (ii) above. It is possible to encapsulate the liposome by adding it after obtaining the liposome.
 (2)二次乳化工程
 二次乳化工程は、上記工程(1)により得られたW1/Oエマルションを、細孔径0.1μm以上5.0μm以下、好ましくは0.1μm以上3.0μm以下を有する膜を用いる膜乳化法により、水性溶媒(W2)中に液滴として分散したW1/O/W2エマルションを調製する工程である。
(2) Secondary emulsification step In the secondary emulsification step, the W1 / O emulsion obtained by the above step (1) has a pore diameter of 0.1 µm to 5.0 µm, preferably 0.1 µm to 3.0 µm. This is a step of preparing a W1 / O / W2 emulsion dispersed as droplets in an aqueous solvent (W2) by a membrane emulsification method using a membrane having the same.
 上記のような細孔径を有する多孔質膜としては、SPG(Shirasu Porous Glass:シラス多孔質ガラス)膜が好適であり、たとえばSPGテクノ株式会社から購入することができる。 As the porous film having the above pore diameter, an SPG (Shirasu Porous Glass) film is suitable, and can be purchased from, for example, SPG Techno Co., Ltd.
 この二次乳化工程では、たとえば、W1/Oエマルションを、0.1μm以上5.0μm以下の細孔径を有する膜を通過させ、水性溶媒(W2)中に液滴として分散させることにより、W1/O/W2エマルションを調製することができる。また、上記方法や他の方法による膜乳化でW1/O/W2エマルションを得た後、得られたW1/O/W2エマルションを更に0.1μm以上5.0μm以下の細孔径を有する膜に通過させる膜処理をすることにより、最終的なW1/O/W2エマルションを調製することもできる。この膜処理は1回だけでなく、複数回行うようにしてもよい。また、膜乳化に用いる膜と膜処理に用いる膜とは同じであっても異なるものであってもよく、膜の細孔径も同じであっても異なっていてもよい。膜処理を行うことによりW1/O/W2エマルションの平均粒径の単分散性を向上することができる(粒径分布の広がりを狭くすることに寄与できる)。 In this secondary emulsification step, for example, the W1 / O emulsion is passed through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less, and dispersed as droplets in the aqueous solvent (W2), whereby W1 / O An O / W2 emulsion can be prepared. Further, after obtaining a W1 / O / W2 emulsion by membrane emulsification by the above method or other methods, the obtained W1 / O / W2 emulsion is further passed through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less. The final W1 / O / W2 emulsion can also be prepared by performing the membrane treatment. This film treatment may be performed not only once but a plurality of times. The membrane used for membrane emulsification and the membrane used for membrane treatment may be the same or different, and the pore diameters of the membrane may be the same or different. By performing the membrane treatment, the monodispersity of the average particle diameter of the W1 / O / W2 emulsion can be improved (contributing to narrowing the spread of the particle size distribution).
 特に、膜処理に用いる膜の細孔径を膜乳化に用いる膜の細孔径よりも小さくすることにより、膜処理を行うことなく1回の膜乳化でW1/O/W2エマルションを調製する場合に較べて膜への負荷を軽減できる上でより好ましい。エマルションを膜に通過させるために必要な圧力を小さくすることができ、膜の長寿命化に貢献できる上に二次乳化工程に要する処理時間を短縮できるため、リポソームの生産性の向上及び低コスト化にも有利である。 In particular, by making the pore size of the membrane used for membrane treatment smaller than the pore size of the membrane used for membrane emulsification, compared to the case of preparing a W1 / O / W2 emulsion by one membrane emulsification without membrane treatment. It is more preferable because the load on the membrane can be reduced. The pressure required to allow the emulsion to pass through the membrane can be reduced, which can contribute to extending the life of the membrane and shorten the processing time required for the secondary emulsification process, improving the productivity of liposomes and lower costs. It is also advantageous to make it easier.
 二次乳化工程では、水性溶媒(W2)およびW1/Oエマルション以外にさらに、混合脂質成分(F1)からなるリポソーム脂質膜を破壊しない水溶性乳化剤、または混合脂質成分(F2)、あるいはその双方を用いてもよい。特にリポソーム脂質膜を破壊しない水溶性乳化剤を用いることが多胞リポソームを減少できる上で好ましい。界面化学の分野では多くの乳化剤が知られており、代表的には、タンパク質、多糖類および非イオン性界面活性剤などが、水溶性乳化剤として乳化・分散プロセスに用いられている。これら公知の水溶性乳化剤のうちリポソーム脂質膜を破壊しない水溶性乳化剤を適宜選択して用いることができる。このようなリポソーム脂質膜を破壊しない水溶性乳化剤には、タンパク質としてはカゼインナトリウム、多糖類としてはデキストラン、非イオン性界面活性剤としてはポリアルキレングリコール誘導体が例示できる。特に、混合脂質成分(F1)にホスファチジルコリンを配合する場合、カゼインナトリウムのようなタンパク質乳化剤はそのようなリポソーム脂質膜を破壊しない水溶性乳化剤として好ましい。 In the secondary emulsification step, in addition to the aqueous solvent (W2) and W1 / O emulsion, a water-soluble emulsifier that does not break the liposomal lipid membrane composed of the mixed lipid component (F1), the mixed lipid component (F2), or both It may be used. In particular, it is preferable to use a water-soluble emulsifier that does not destroy the liposomal lipid membrane because it can reduce the number of multivesicular liposomes. Many emulsifiers are known in the field of surface chemistry, and typically, proteins, polysaccharides, nonionic surfactants, and the like are used in the emulsification / dispersion process as water-soluble emulsifiers. Among these known water-soluble emulsifiers, water-soluble emulsifiers that do not destroy the liposome lipid membrane can be appropriately selected and used. Examples of such water-soluble emulsifiers that do not break the liposome lipid membrane include sodium caseinate as a protein, dextran as a polysaccharide, and polyalkylene glycol derivatives as nonionic surfactants. In particular, when phosphatidylcholine is blended with the mixed lipid component (F1), a protein emulsifier such as sodium caseinate is preferable as a water-soluble emulsifier that does not destroy such a liposomal lipid membrane.
 上記水性溶媒(W2)、W1/Oエマルション、水溶性乳化剤および/または混合脂質成分(F2)の混合態様(添加順序等)は特に限定されるものではなく、適切な態様を選択すればよい。たとえばF2が主として水溶性脂質からなる場合、あらかじめそのようなF2および/または水溶性乳化剤をW2に添加しておき、それにW1/Oエマルションを添加して乳化処理を行うことができる。一方、F2が主として脂溶性脂質からなる場合、あらかじめ(W1/Oエマルション調製後)そのようなF2をW1/Oエマルションの油相に添加しておき、それを、必要に応じて水溶性乳化剤が添加されているW2に添加して乳化処理を行うことができる。 The mixing mode (addition order, etc.) of the aqueous solvent (W2), W1 / O emulsion, water-soluble emulsifier and / or mixed lipid component (F2) is not particularly limited, and an appropriate mode may be selected. For example, when F2 is mainly composed of a water-soluble lipid, such F2 and / or a water-soluble emulsifier can be added to W2 in advance, and a W1 / O emulsion can be added thereto for emulsification. On the other hand, when F2 is mainly composed of a fat-soluble lipid, (after preparation of the W1 / O emulsion) such F2 is added to the oil phase of the W1 / O emulsion in advance, and if necessary, a water-soluble emulsifier is added. The emulsification treatment can be performed by adding to the added W2.
 二次乳化工程における、水性溶媒(W2)に添加する水溶性乳化剤および混合脂質成分(F2)、ないしW1/Oエマルションの有機溶媒(O)に添加する混合脂質成分(F2)の合計の割合、W1/Oエマルションと水性溶媒(W2)の体積比、その他の操作条件は、最終的に調製するリポソームの用途などを考慮しながら適宜調節することができる。通常、水性溶媒(W2)ないし有機溶媒(O)に添加する成分の合計の割合はそれらに対して0.01~10質量%であり、W1/Oエマルションと水性溶媒(W2)の体積比は1:100~2:1である。 In the secondary emulsification step, the total proportion of the water-soluble emulsifier and the mixed lipid component (F2) added to the aqueous solvent (W2) or the mixed lipid component (F2) added to the organic solvent (O) of the W1 / O emulsion, The volume ratio between the W1 / O emulsion and the aqueous solvent (W2) and other operating conditions can be appropriately adjusted in consideration of the application of the liposome to be finally prepared. Usually, the total ratio of the components added to the aqueous solvent (W2) to the organic solvent (O) is 0.01 to 10% by mass with respect to them, and the volume ratio of the W1 / O emulsion to the aqueous solvent (W2) is 1: 100 to 2: 1.
 (3)溶媒除去工程
 溶媒除去工程は、前記二次乳化工程により得られたW1/O/W2エマルションに含まれる有機溶媒(O)を除去することにより、脂質二重膜を有するリポソームの懸濁液を調製する工程である。
(3) Solvent removal step The solvent removal step is a suspension of liposomes having lipid bilayers by removing the organic solvent (O) contained in the W1 / O / W2 emulsion obtained by the secondary emulsification step. This is a step of preparing a liquid.
 W1/O/W2エマルションからの溶媒除去の方法は、定法に従い加温や減圧によってW1/O/W2エマルションの溶媒を溜去できるが、これに限定されない。用いる溶媒種に影響されるが、溶媒が突沸することのない条件範囲が設定され、温度条件は0~60℃の範囲が好ましく、0~25℃がより好ましい。また、減圧条件は溶媒の飽和蒸気圧~大気圧の範囲内に設定されることが好ましく、溶媒の飽和蒸気圧の+1%~10%の範囲内に設定されることがより好ましい。異なる溶媒を混合して用いる場合、より飽和蒸気圧の高い溶媒種に合わせた条件が好ましい。また、これらの除去条件は、溶媒が突沸しない範囲で組み合わせてもよく、例えば、熱に弱い薬剤を使用する際は、より低温側でかつ減圧条件で溶媒を溜去することが好ましい。溶媒除去にはW1/O/W2エマルションの攪拌が無くともよいが、攪拌をしたほうがより均一に溶媒除去が進む。また、気液界面を広くすることで、溶媒除去にかかる時間を短縮することができる。 The method for removing the solvent from the W1 / O / W2 emulsion is not limited to this, although the solvent of the W1 / O / W2 emulsion can be distilled off by heating or decompression according to a conventional method. Although it is affected by the type of solvent used, a condition range in which the solvent does not bump suddenly is set, and the temperature condition is preferably in the range of 0 to 60 ° C., more preferably 0 to 25 ° C. The decompression condition is preferably set within the range of the saturated vapor pressure of the solvent to atmospheric pressure, and more preferably within the range of + 1% to 10% of the saturated vapor pressure of the solvent. When different solvents are used in combination, conditions that match the solvent species having a higher saturated vapor pressure are preferred. These removal conditions may be combined within a range in which the solvent does not bump. For example, when a heat-sensitive chemical is used, it is preferable that the solvent is distilled off at a lower temperature and under reduced pressure. The solvent removal may not require stirring of the W1 / O / W2 emulsion, but the solvent removal proceeds more uniformly with stirring. Moreover, the time required for solvent removal can be shortened by widening the gas-liquid interface.
 本発明の製造方法により最終的に得られるリポソームには、多胞リポソームがほとんど含まれることなく、その平均粒径を50~1,000nmの間で制御することができる。特に平均粒径が50~200nmのリポソームは、毛細血管を閉塞するおそれがほとんどなく、またがん組織近辺の血管にできる間隙を通過することもできるため、医薬品等として人体に投与されて使用する上で好都合である。 The liposome finally obtained by the production method of the present invention contains almost no multivesicular liposome, and the average particle size can be controlled between 50 and 1,000 nm. In particular, liposomes having an average particle size of 50 to 200 nm have almost no risk of occluding capillaries and can pass through gaps formed in blood vessels in the vicinity of cancer tissues. Convenient above.
 (カルセイン内包率の測定方法)
 リポソーム水溶液(1ml)全体の蛍光強度(Ftotal)を分光光度計(U-3310、日本分光株式会社)により測定した。次に0.01M,CoClトリス塩酸緩衝液30μLを加えて水性溶媒(W2)に漏出したカルセインの蛍光をCo2+により消光することで、ベシクル内の蛍光強度(Fin)を測定した。さらに、カルセインを加えないでサンプルと同じ条件でベシクルを作製し、脂質自身が発する蛍光(F)を測定した。内包率は下記式より算出した;
内包率E(%) = (Fin-F)/(Ftotal-F)×100。
(Measurement method of calcein inclusion rate)
The fluorescence intensity (F total ) of the entire liposome aqueous solution (1 ml) was measured with a spectrophotometer (U-3310, JASCO Corporation). Next, 30 μL of 0.01 M CoCl 2 Tris-HCl buffer was added and the fluorescence of calcein leaked into the aqueous solvent (W2) was quenched by Co 2+ to measure the fluorescence intensity (F in ) in the vesicle. Furthermore, vesicles were prepared under the same conditions as the sample without adding calcein, and the fluorescence (F 1 ) emitted by the lipids themselves was measured. The inclusion rate was calculated from the following formula;
Inclusion rate E (%) = (F in −F l ) / (F total −F l ) × 100.
 (シタラビンの内包率の測定方法)
 超遠心装置で固形分(リポソーム)を分離(デカント)し、上澄と固形分をそれぞれHPLCで定量した。HPLCカラムとしてVarian Polaris C18-A(3μm,2x40mm)を用いてアッセイされた。内包されていない当該化合物と内包されている当該化合物の絶対値から、シタラビンの内包率を算出した。
(Measurement method of inclusion rate of cytarabine)
The solid (liposome) was separated (decanted) with an ultracentrifuge, and the supernatant and solid were each quantified by HPLC. Assayed using a Varian Polaris C18-A (3 μm, 2 × 40 mm) as the HPLC column. The inclusion rate of cytarabine was calculated from the compound not included and the absolute value of the compound included.
 (体積平均粒径の測定方法)
 リポソーム水溶液をクロロホルム/ヘキサン混合溶媒(体積比:4/6)で10倍に希釈し、動的光散乱式ナノトラック粒度分析計(UPA-EX150、日機装株式会社)を用いて体積平均粒径を算出した。
(Measurement method of volume average particle diameter)
The aqueous liposome solution was diluted 10 times with a chloroform / hexane mixed solvent (volume ratio: 4/6), and the volume average particle size was determined using a dynamic light scattering nanotrack particle size analyzer (UPA-EX150, Nikkiso Co., Ltd.). Calculated.
 (多胞リポソームの観察方法)
 くぼみのあるスライドガラスを用いてリポソーム水溶液25μLのプレパラートを作成し、正立顕微鏡(Axio Imager.A1、カールツァイス社製)の明視野条件で観察し、多胞リポソームの個数を測定した。
(Method for observing multivesicular liposomes)
Using a slide glass with a depression, a preparation of 25 μL of an aqueous liposome solution was prepared and observed under bright field conditions with an upright microscope (Axio Imager. A1, manufactured by Carl Zeiss) to measure the number of multivesicular liposomes.
 実施例1
 (一次乳化工程によるW1/Oエマルションの製造)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社製)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを含むヘキサン15mlを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH8、50mmol/L)5mlを内水相用の水分散相(W1)とした。50mlのビーカーにこれらの混合液を入れ、直径20mmのプローブをセットした超音波分散装置「UH-600S」(株式会社エスエムテー製)により、25℃にて15分間超音波を照射し、乳化処理を行った。得られたW1/Oエマルションの室温下での平均粒径は247nmであった。
Example 1
(Production of W1 / O emulsion by primary emulsification process)
15 ml of hexane containing 0.3 g of egg yolk lecithin “COATSOME NC-50” (manufactured by NOF Corporation) having a phosphatidylcholine content of 95%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) (O) and 5 ml of Tris-HCl buffer solution (pH 8, 50 mmol / L) containing calcein (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase. The mixed solution was put into a 50 ml beaker, and an ultrasonic dispersion device “UH-600S” (manufactured by SMT Co., Ltd.) equipped with a 20 mm diameter probe was irradiated with ultrasonic waves for 15 minutes at 25 ° C. went. The average particle size of the obtained W1 / O emulsion at room temperature was 247 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。SPG膜乳化装置(SPGテクノ社製、商品名「外圧式マイクロキット」)に直径10mm、長さ20mm、細孔径2.0μmの円筒形SPG膜を用い、装置出口側に外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH8、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約25kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
Using the W1 / O emulsion obtained by the primary emulsification step as a dispersed phase, a W1 / O / W2 emulsion was produced by the SPG emulsification method. A cylindrical SPG membrane having a diameter of 10 mm, a length of 20 mm, and a pore diameter of 2.0 μm was used for an SPG membrane emulsifying device (trade name “external pressure type micro kit” manufactured by SPG Techno Co., Ltd.). ) 3% sodium caseinate tris-hydrochloric acid buffer solution (pH 8, 50 mmol / L) was filled, and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion. . The pressure required for membrane emulsification was about 25 kPa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られたW1/O/W2エマルションを蓋のない開放ガラス製容器に移し替え、室温下で約24時間攪拌し、ヘキサンを揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は233nm、カルセイン内包率は71%であり、多胞リポソームは確認されなかった。
(Production of liposomes by removal of organic solvent phase)
The W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to an open glass container without a lid and stirred at room temperature for about 24 hours to volatilize hexane. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 233 nm and a calcein encapsulation rate of 71%, and multivesicular liposomes were not confirmed.
 実施例2
 二次乳化工程で細孔径5.0μmのSPG膜を使用し、膜乳化に必要とした圧力は約10kPaであること以外は、実施例1と同様の操作を行った。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は244nm、カルセイン内包率は70%であり、多胞リポソームは3個であった。
Example 2
The same operation as in Example 1 was performed except that an SPG membrane having a pore diameter of 5.0 μm was used in the secondary emulsification step and the pressure required for membrane emulsification was about 10 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposome had an average particle size at room temperature of 244 nm, a calcein encapsulation rate of 70%, and three multivesicular liposomes.
 実施例3
 (一次乳化工程によるW1/Oエマルションの製造)
 実施例1と同様の脂質組成を含む混合溶媒(ヘキサン:ジクロロメタン=8:2)15mlを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH7.4、50mmol/L)5mlを内水相用の水分散相(W1)とした。50mlのビーカーにこれらの混合液を入れ、実施例1と同様の乳化処理を行った。得られたW1/Oエマルションの室温下での平均粒径は207nmであった。
Example 3
(Production of W1 / O emulsion by primary emulsification process)
15 ml of a mixed solvent (hexane: dichloromethane = 8: 2) containing the same lipid composition as in Example 1 was used as the organic solvent phase (O), and Tris-HCl buffer (pH 7.4, 50 mmol) containing calcein (0.4 mM) was used. / L) 5 ml was used as an aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 ml beaker, and the same emulsification treatment as in Example 1 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 207 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。実施例1と同様の膜乳化装置に細孔径1.0μmのSPG膜を用い、装置出口側に外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約10kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
Using the W1 / O emulsion obtained by the primary emulsification step as a dispersed phase, a W1 / O / W2 emulsion was produced by the SPG emulsification method. A SPG membrane having a pore diameter of 1.0 μm was used in the same membrane emulsification apparatus as in Example 1, and Tris-hydrochloric acid buffer (pH 7.4) containing 3% sodium caseinate as an external aqueous phase solution (W2) on the outlet side of the apparatus. 50 mmol / L), and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion. The pressure required for membrane emulsification was about 10 kPa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られたW1/O/W2エマルションを密閉容器に移し替え、500mbarの減圧室温条件下で約4時間攪拌し、次いで180mbarの減圧室温条件下で約18時間撹拌し、溶媒を揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は203nm、カルセイン内包率は49%であり、多胞リポソームは確認されなかった。
(Production of liposomes by removal of organic solvent phase)
The W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar. Was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 203 nm and a calcein encapsulation rate of 49%, and multivesicular liposomes were not confirmed.
 実施例4
 一次乳化工程で、高圧ホモジナイザー(ナノマイザー、吉田機械興業社製)を用いて100MPaの圧力条件で乳化処理を行い、二次乳化工程で、細孔径0.5μmのSPG膜を用いた以外は、実施例3と同様の操作を行った。得られたW1/Oエマルションの室温下での平均粒径は127nmであり、得られたリポソームの室温下での平均粒径は123nm、カルセイン内包率は53%であり、多胞リポソームは1個であった。膜乳化に必要とした圧力は約20kPaであった。
Example 4
In the primary emulsification step, emulsification was performed under a pressure condition of 100 MPa using a high-pressure homogenizer (Nanomizer, manufactured by Yoshida Kikai Kogyo Co., Ltd.). The same operation as in Example 3 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 127 nm, the average particle size of the obtained liposome at room temperature was 123 nm, the calcein encapsulation rate was 53%, and one multivesicular liposome Met. The pressure required for membrane emulsification was about 20 kPa.
 実施例5
 脂質として、ホスファチジルコリン含量が80%である卵黄レシチン「PL-100M」(キューピー社製)0.3g、コレステロール(Chol)0.152gおよびオレイン酸(OA)0.108gを使用した以外は、実施例3と同様の操作を行った。得られたW1/Oエマルションの室温下での平均粒径は232nmであり、得られたリポソームの室温下での平均粒径は237nm、カルセイン内包率は62%であり、多胞リポソームは確認されなかった。膜乳化に必要とした圧力は約10kPaであった。
Example 5
Except that 0.3 g of egg yolk lecithin “PL-100M” (manufactured by Kewpie) having a phosphatidylcholine content of 80%, 0.152 g of cholesterol (Chol) and 0.108 g of oleic acid (OA) were used as lipids. The same operation as 3 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 232 nm, the average particle size of the obtained liposome at room temperature was 237 nm, the calcein encapsulation rate was 62%, and multivesicular liposomes were confirmed. There wasn't. The pressure required for membrane emulsification was about 10 kPa.
 実施例6
 有機溶媒相(O)に混合溶媒(ヘキサン:酢酸エチル=2:1)を用い、有機溶媒除去の減圧条件を180mbar、22時間とした以外は、実施例3と同様の操作を行った。得られたW1/Oエマルションの室温下での平均粒径は189nmであり、得られたリポソームの室温下での平均粒径は197nm、カルセイン内包率は42%であり、多胞リポソームは6個であった。膜乳化に必要とした圧力は約10kPaであった。
Example 6
The same operation as in Example 3 was performed except that a mixed solvent (hexane: ethyl acetate = 2: 1) was used for the organic solvent phase (O) and the reduced pressure condition for removing the organic solvent was 180 mbar and 22 hours. The average particle size of the obtained W1 / O emulsion at room temperature was 189 nm, the average particle size of the obtained liposome at room temperature was 197 nm, the calcein encapsulation rate was 42%, and there were 6 multivesicular liposomes Met. The pressure required for membrane emulsification was about 10 kPa.
 実施例7
 二次乳化工程で細孔径5.0μmのSPG膜を使用したこと以外は、実施例3と同様の操作を行った。得られたW1/Oエマルションの室温下での平均粒径は203nmであり、得られたリポソームの室温下での平均粒径は210nm、カルセイン内包率は46%であり、多胞リポソームは1個であった。膜乳化に必要とした圧力は約2kPaであった。
Example 7
The same operation as in Example 3 was performed except that an SPG membrane having a pore diameter of 5.0 μm was used in the secondary emulsification step. The average particle size of the obtained W1 / O emulsion at room temperature was 203 nm, the average particle size of the obtained liposome at room temperature was 210 nm, the calcein encapsulation rate was 46%, and one multivesicular liposome Met. The pressure required for membrane emulsification was about 2 kPa.
 実施例8
 二次乳化工程で細孔径0.2μmのSPG膜を使用したこと以外は、実施例4と同様の操作を行った。得られたリポソームの室温下での平均粒径は120nm、カルセイン内包率は40%であり、多胞リポソームは2個であった。膜乳化に必要とした圧力は約25kPaであった。
Example 8
The same operation as in Example 4 was performed except that an SPG membrane having a pore diameter of 0.2 μm was used in the secondary emulsification step. The obtained liposomes had an average particle size of 120 nm at room temperature, a calcein encapsulation rate of 40%, and two multivesicular liposomes. The pressure required for membrane emulsification was about 25 kPa.
 実施例9
 (一次乳化工程によるW1/Oエマルションの製造)
 ジパルミトイルホスファチジルコリン(COATSOME MC-6060、日油株式会社製)0.25g、コレステロール(Chol)0.152gを含む混合溶媒(ヘキサン:ジクロロメタン=8:2)15mlを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH7.4、50mmol/L)5mlを内水相用の水分散相(W1)とした。50mlのビーカーにこれらの混合液を入れ、実施例1と同様の乳化処理を行った。得られたW1/Oエマルションの室温下での平均粒径は219nmであった。
Example 9
(Production of W1 / O emulsion by primary emulsification process)
Calcein was prepared by using 15 ml of a mixed solvent (hexane: dichloromethane = 8: 2) containing 0.25 g of dipalmitoylphosphatidylcholine (COATSOME MC-6060, manufactured by NOF Corporation) and 0.152 g of cholesterol (Chol) as the organic solvent phase (O). 5 ml of Tris-HCl buffer solution (pH 7.4, 50 mmol / L) containing (0.4 mM) was used as the aqueous dispersion phase (W1) for the inner aqueous phase. These mixed liquids were put into a 50 ml beaker, and the same emulsification treatment as in Example 1 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 219 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションの有機溶媒(O)にジパルミトイルホスファチジルグリセロール(COATSOME MG-6060LA、日油株式会社製)0.05gをさらに添加したものを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。実施例1と同様の膜乳化装置に細孔径1.0μmのSPG膜を用い、装置出口側に外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約10kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
SPG emulsification with a dispersion phase obtained by further adding 0.05 g of dipalmitoylphosphatidylglycerol (COATSOME MG-6060LA, manufactured by NOF Corporation) to the organic solvent (O) of the W1 / O emulsion obtained by the primary emulsification step. W1 / O / W2 emulsion was produced by the method. A SPG membrane having a pore diameter of 1.0 μm was used in the same membrane emulsification apparatus as in Example 1, and Tris-hydrochloric acid buffer (pH 7.4) containing 3% sodium caseinate as an external aqueous phase solution (W2) on the outlet side of the apparatus. 50 mmol / L), and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion. The pressure required for membrane emulsification was about 10 kPa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られたW1/O/W2エマルションを密閉容器に移し替え、500mbarの減圧室温条件下で約4時間攪拌し、次いで180mbarの減圧室温条件下で約18時間撹拌し、溶媒を揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は231nm、カルセイン内包率は70%であり、多胞リポソームは確認されなかった。
(Production of liposomes by removal of organic solvent phase)
The W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar. Was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 231 nm and a calcein encapsulation rate of 70%, and multivesicular liposomes were not confirmed.
 比較例1
 二次乳化工程で細孔径7.0μmのSPG膜を使用し、膜乳化に必要とした圧力は約7kPaであること以外は、実施例1と同様の操作を行った。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は255nm、カルセイン内包率は70%であったが、多胞リポソームは58個とやや多かった。
Comparative Example 1
The same operation as in Example 1 was performed except that an SPG membrane having a pore size of 7.0 μm was used in the secondary emulsification step, and the pressure required for membrane emulsification was about 7 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The average particle diameter of the obtained liposomes at room temperature was 255 nm and the calcein encapsulation rate was 70%, but the number of multivesicular liposomes was slightly high at 58.
 比較例2
 二次乳化工程で細孔径10.0μmのSPG膜を使用し、膜乳化に必要とした圧力は約5kPaであること以外は、実施例1と同様の操作を行った。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は277nm、カルセイン内包率は68%であったが、多胞リポソームは170個とかなり多かった。
Comparative Example 2
The same operation as in Example 1 was performed except that an SPG membrane having a pore size of 10.0 μm was used in the secondary emulsification step, and the pressure required for membrane emulsification was about 5 kPa. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposome had an average particle size at room temperature of 277 nm and a calcein encapsulation rate of 68%, but the number of multivesicular liposomes was as high as 170.
 実施例10
 (混合溶媒による一次乳化工程によるW1/Oエマルションの製造)
 ジパルミトイルホスファチジルコリン(DPPC)「COATSOME MC-6060」(日油株式会社)0.25g、コレステロール0.152g、およびジパルミトイルホスファチジルグリセロール(DPPG)「COATSOME MG-6060LA」(日油株式会社)0.25gを含む混合溶媒(ヘキサン/ジクロロメタン=8/2)15mlを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH7.4、50mM)5mlを内水相用の水分散相(W1)とした。50mlのビーカーにこれらの混合液を入れ、φ20mmのプローブをセットした超音波分散装置(UH-600S、株式会社エスエムテー)により、25℃にて15分間超音波を照射し乳化処理を行った。上記方法に従って測定したところ、この一次乳化工程で得られたW1/Oエマルションは体積平均粒径約212nmであった。
Example 10
(Manufacture of W1 / O emulsion by primary emulsification process with mixed solvent)
0.25 g of dipalmitoyl phosphatidylcholine (DPPC) “COATSOME MC-6060” (NOF Corporation), 0.152 g of cholesterol, and dipalmitoyl phosphatidylglycerol (DPPG) “COATSOME MG-6060LA” (NOF Corporation) 0.25 g 15 ml of a mixed solvent containing hexane (dichloromethane = 8/2) is used as the organic solvent phase (O), and 5 ml of Tris-HCl buffer solution (pH 7.4, 50 mM) containing calcein (0.4 mM) is used for the inner aqueous phase. An aqueous dispersion phase (W1) was obtained. These mixed liquids were put into a 50 ml beaker and subjected to an emulsification treatment by irradiating ultrasonic waves at 25 ° C. for 15 minutes with an ultrasonic dispersion apparatus (UH-600S, SMT Co., Ltd.) equipped with a φ20 mm probe. When measured according to the above method, the W1 / O emulsion obtained in this primary emulsification step had a volume average particle size of about 212 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。まず、膜乳化装置に実施例2と同様の細孔径5.0μmのSPG膜を用い、装置出口側に外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を満たしておき、装置入口側から上記W1/Oエマルションを供給して、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約10kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
Using the W1 / O emulsion obtained by the primary emulsification step as a dispersed phase, a W1 / O / W2 emulsion was produced by the SPG emulsification method. First, an SPG membrane having a pore diameter of 5.0 μm as in Example 2 was used in the membrane emulsifying device, and Tris-HCl buffer (pH 7) containing 3% sodium caseinate as an external aqueous phase solution (W2) on the outlet side of the device. 4, 50 mmol / L) was satisfied, and the W1 / O emulsion was supplied from the apparatus inlet side to produce a W1 / O / W2 emulsion. The pressure required for membrane emulsification was about 10 kPa.
 つづいて、得られたW1/O/W2エマルションを分散相として、膜乳化装置に実施例4と同様の細孔径0.5μmのSPG膜を用い、装置出口側に外水相溶液(W2)である3%のカゼインナトリウムを含むトリス-塩酸緩衝液(pH7.4、50mmol/L)を満たしておき、装置入口側から上記W1/O/W2エマルションを供給して膜処理を行い、最終的なW1/O/W2エマルションを製造した。この膜処理に必要とした圧力は約5Paであった。 Subsequently, using the obtained W1 / O / W2 emulsion as a dispersed phase, an SPG membrane having a pore diameter of 0.5 μm similar to that in Example 4 was used for the membrane emulsification device, and the outer aqueous phase solution (W2) was used on the device outlet side. A tris-hydrochloric acid buffer solution (pH 7.4, 50 mmol / L) containing 3% sodium casein is filled, and the above W1 / O / W2 emulsion is supplied from the inlet side of the apparatus to perform membrane treatment. A W1 / O / W2 emulsion was prepared. The pressure required for this membrane treatment was about 5 Pa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られた最終的なW1/O/W2エマルションを密閉容器に移し替え、20℃・500mbarの減圧条件下で約8時間攪拌し、次いで20℃・180mbarの減圧条件下で約8時間撹拌し、段階的に溶媒を揮発させた。得られたリポソーム懸濁液の粒子内にはカルセインが含まれていることが確認された。得られたリポソームの平均粒径は190nmであり、カルセイン内包率は62%であった。多胞リポソームは確認されなかった。
(Production of liposomes by removal of organic solvent phase)
The final W1 / O / W2 emulsion obtained by the secondary emulsification step is transferred to a closed container and stirred for about 8 hours under a reduced pressure condition of 20 ° C. and 500 mbar, and then under a reduced pressure condition of 20 ° C. and 180 mbar. The mixture was stirred for about 8 hours, and the solvent was volatilized stepwise. It was confirmed that calcein was contained in the particles of the obtained liposome suspension. The average particle diameter of the obtained liposome was 190 nm, and the calcein encapsulation rate was 62%. Multivesicular liposomes were not confirmed.
 実施例11
 (一次乳化工程によるW1/Oエマルションの製造)
 ホスファチジルコリン含量が95%である卵黄レシチン「COATSOME NC-50」(日油株式会社製)6.0g、コレステロール(Chol)3.04gおよびオレイン酸(OA)2.16gを含む混合溶媒(ヘキサン:ジクロロメタン=8:2)300mlを有機溶媒相(O)とし、カルセイン(0.4mM)を含むトリス-塩酸緩衝液(pH7.4、50mmol/L)100mlを内水相用の水分散相(W1)とした。実施例4と同様の一次乳化工程の処理を行った。得られたW1/Oエマルションの室温下での平均粒径は135nmであった。
Example 11
(Production of W1 / O emulsion by primary emulsification process)
A mixed solvent (hexane: dichloromethane) containing 6.0 g of egg yolk lecithin “COATSOME NC-50” (manufactured by NOF CORPORATION), 3.04 g of cholesterol (Chol) and 2.16 g of oleic acid (OA) having a phosphatidylcholine content of 95% = 8: 2) 300 ml of organic solvent phase (O) and 100 ml of Tris-HCl buffer solution (pH 7.4, 50 mmol / L) containing calcein (0.4 mM) as an aqueous dispersion phase (W1) for the inner aqueous phase It was. The same primary emulsification process as in Example 4 was performed. The average particle size of the obtained W1 / O emulsion at room temperature was 135 nm.
 (二次乳化工程によるW1/O/W2エマルションの製造)
 上記一次乳化工程により得られたW1/Oエマルションを分散相として、SPG乳化法によるW1/O/W2エマルションの製造を行った。SPG膜乳化装置(SPGテクノ社製、商品名「高速ミニキットKH-125」)に直径10mm、長さ125mm、細孔径1.0μmの円筒形SPG膜を使用すること以外は実施例4と同様にして、W1/O/W2エマルションを製造した。膜乳化に必要とした圧力は約10kPaであった。
(Production of W1 / O / W2 emulsion by secondary emulsification process)
Using the W1 / O emulsion obtained by the primary emulsification step as a dispersed phase, a W1 / O / W2 emulsion was produced by the SPG emulsification method. Same as Example 4 except that a cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 1.0 μm is used in an SPG membrane emulsifying device (trade name “High Speed Mini Kit KH-125” manufactured by SPG Techno Co., Ltd.). Thus, a W1 / O / W2 emulsion was produced. The pressure required for membrane emulsification was about 10 kPa.
 (有機溶媒相の除去によるリポソームの製造)
 上記二次乳化工程により得られたW1/O/W2エマルションを密閉容器に移し替え、500mbarの減圧室温条件下で約4時間攪拌し、次いで180mbarの減圧室温条件下で約18時間撹拌し、溶媒を揮発させた。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は140nm、カルセイン内包率は53%であり、多胞リポソームは確認されなかった。
(Production of liposomes by removal of organic solvent phase)
The W1 / O / W2 emulsion obtained by the secondary emulsification step was transferred to a closed container, stirred for about 4 hours under a reduced pressure room temperature of 500 mbar, and then stirred for about 18 hours under a reduced pressure room temperature of 180 mbar. Was volatilized. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 140 nm and a calcein encapsulation rate of 53%, and multivesicular liposomes were not confirmed.
 比較例3
 二次乳化工程で、直径10mm、長さ125mm、細孔径10.0μmの円筒形SPG膜を使用し、膜乳化に必要とした圧力は約5kPaであること以外は、実施例11と同様の操作を行った。微細なリポソーム粒子の懸濁液が得られ、この粒子内にはカルセインが含まれていることが確認された。得られたリポソームの室温下での平均粒径は134nm、カルセイン内包率は65%であったが、多胞リポソームは220個とかなり多かった。
Comparative Example 3
In the secondary emulsification step, a cylindrical SPG membrane having a diameter of 10 mm, a length of 125 mm, and a pore diameter of 10.0 μm was used, and the same operation as in Example 11 was performed except that the pressure required for membrane emulsification was about 5 kPa. Went. A suspension of fine liposome particles was obtained, and it was confirmed that calcein was contained in the particles. The obtained liposomes had an average particle size at room temperature of 134 nm and a calcein encapsulation rate of 65%, but the number of multivesicular liposomes was as large as 220.
 実施例12
 水分散相(W1)に、カルセイン(0.4mM)に代えて、シタラビン(4mM)を溶解させた以外は、実施例1と同様の操作を行った。得られたリポソームの室温下での平均粒径は168nm、内包率は32%であり、多胞リポソームは確認されなかった。
Example 12
The same operation as in Example 1 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM). The obtained liposomes had an average particle size at room temperature of 168 nm and an encapsulation rate of 32%, and multivesicular liposomes were not confirmed.
 実施例13
 水分散相(W1)に、カルセイン(0.4mM)に代えて、シタラビン(4mM)を溶解させた以外は、実施例2と同様の操作を行った。得られたリポソームの室温下での平均粒径は200nm、内包率は33%であり、多胞リポソームは確認されなかった。
Example 13
The same operation as in Example 2 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM). The average particle diameter of the obtained liposome at room temperature was 200 nm, the encapsulation rate was 33%, and multivesicular liposomes were not confirmed.
 比較例4
 水分散相(W1)に、カルセイン(0.4mM)に代えて、シタラビン(4mM)を溶解させた以外は、比較例2と同様の操作を行った。得られたリポソームの室温下での平均粒径は195nm、内包率は30%であったが、多胞リポソームは201個とかなり多かった。
Comparative Example 4
The same operation as in Comparative Example 2 was performed except that cytarabine (4 mM) was dissolved in the aqueous dispersion phase (W1) instead of calcein (0.4 mM). The average particle diameter of the obtained liposomes at room temperature was 195 nm and the encapsulation rate was 30%, but the number of multivesicular liposomes was as large as 201.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 *:実施例10は、SPG膜(細孔径5.0μm)によりW1/OエマルションからW1/O/W2エマルションを膜乳化により得た後、さらにもう一度SPG膜(細孔径0.5μm)を用いてそのW1/O/W2エマルションを膜処理した。その他の実施例および比較例は、SPG膜を用いた1回の処理で、W1/OエマルションからW1/O/W2エマルションを製造した。 *: In Example 10, after obtaining a W1 / O / W2 emulsion from a W1 / O emulsion by membrane emulsification with an SPG membrane (pore size 5.0 μm), an SPG membrane (pore size 0.5 μm) was used again. The W1 / O / W2 emulsion was subjected to membrane treatment. In other examples and comparative examples, a W1 / O / W2 emulsion was produced from a W1 / O emulsion by a single treatment using an SPG film.

Claims (7)

  1.  下記工程(1)~(3)を有することを特徴とする、リポソームの製造方法;
     (1)一次乳化工程:有機溶媒(O)、水性溶媒(W1)、および混合脂質成分(F1)を乳化することにより、W1/Oエマルションを調製する工程;
     (2)二次乳化工程:上記工程(1)により得られたW1/Oエマルションと水性溶媒(W2)とを、0.1μm以上5.0μm以下の細孔径を有する膜を用いて乳化し、W1/O/W2エマルションを調製する工程;
     (3)上記工程(2)により得られたW1/O/W2エマルションに含まれる有機溶媒を除去することにより、リポソームの懸濁液を調製する工程;
     ただし、上記一次乳化工程は、さらにリポソームに内包させる物質を添加した上で行ってもよい。
    A method for producing a liposome, comprising the following steps (1) to (3):
    (1) Primary emulsification step: a step of preparing a W1 / O emulsion by emulsifying the organic solvent (O), the aqueous solvent (W1), and the mixed lipid component (F1);
    (2) Secondary emulsification step: The W1 / O emulsion obtained in the above step (1) and the aqueous solvent (W2) are emulsified using a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less, Preparing a W1 / O / W2 emulsion;
    (3) A step of preparing a liposome suspension by removing the organic solvent contained in the W1 / O / W2 emulsion obtained by the step (2);
    However, you may perform the said primary emulsification process, after adding the substance further included in a liposome.
  2.  前記工程(2)が、W1/Oエマルションを、0.1μm以上5.0μm以下の細孔径を有する膜を通過させ、水性溶媒(W2)中に液滴として分散させることにより、W1/O/W2エマルションを調製する工程であることを特徴とする請求項1に記載のリポソームの製造方法。 In the step (2), the W1 / O emulsion is passed through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less and dispersed as droplets in the aqueous solvent (W2), whereby W1 / O / The method for producing a liposome according to claim 1, which is a step of preparing a W2 emulsion.
  3.  前記工程(2)が、前記膜を用いた乳化により得られたW1/O/W2エマルションを、0.1μm以上5.0μm以下の細孔径を有する膜を通過させる膜処理工程をさらに有することを特徴とする請求項1または2に記載のリポソームの製造方法。 The step (2) further includes a membrane treatment step of allowing a W1 / O / W2 emulsion obtained by emulsification using the membrane to pass through a membrane having a pore diameter of 0.1 μm or more and 5.0 μm or less. The method for producing a liposome according to claim 1 or 2, characterized in that:
  4.  前記工程(2)の膜としてSPG膜を用いることを特徴とする請求項1から3のいずれか1項に記載のリポソームの製造方法。 The method for producing a liposome according to any one of claims 1 to 3, wherein an SPG membrane is used as the membrane in the step (2).
  5.  前記リポソームに内包させる物質として医療用の薬剤類を用い、かつ得られるリポソームの平均粒径を50nm以上200nm以下とすることを特徴とする請求項1から4のいずれか1項に記載のリポソームの製造方法。 5. The liposome according to claim 1, wherein a medical drug is used as the substance to be encapsulated in the liposome, and the average particle size of the obtained liposome is 50 nm to 200 nm. Production method.
  6.  前記工程(2)において、水性溶媒(W2)およびW1/Oエマルション以外にさらに、リポソーム脂質膜を破壊しない水溶性乳化剤、または混合脂質成分(F2)の少なくともどちらか一方を用いることを特徴とする請求項1から5のいずれか1項に記載のリポソームの製造方法。 In the step (2), in addition to the aqueous solvent (W2) and the W1 / O emulsion, at least one of a water-soluble emulsifier that does not break the liposome lipid membrane and the mixed lipid component (F2) is used. The method for producing a liposome according to any one of claims 1 to 5.
  7.  前記リポソームが単胞リポソームであることを特徴とする請求項1から6のいずれか1項に記載のリポソームの製造方法。 The method for producing a liposome according to any one of claims 1 to 6, wherein the liposome is a single-cell liposome.
PCT/JP2010/054409 2009-03-23 2010-03-16 Method for producing liposomes WO2010110118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-069874 2009-03-23
JP2009069874 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010110118A1 true WO2010110118A1 (en) 2010-09-30

Family

ID=42780810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054409 WO2010110118A1 (en) 2009-03-23 2010-03-16 Method for producing liposomes

Country Status (2)

Country Link
JP (1) JP5494054B2 (en)
WO (1) WO2010110118A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450031A1 (en) * 2009-07-02 2012-05-09 Konica Minolta Holdings, Inc. Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby
CN110215435A (en) * 2018-05-09 2019-09-10 广东嘉博制药有限公司 A method of preparing multivesicular liposome
WO2020260895A1 (en) * 2019-06-27 2020-12-30 Loughborough University Nanovesicles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104572A (en) * 2009-11-20 2011-06-02 Konica Minolta Holdings Inc Method for manufacturing liposome and flow manufacturing apparatus
JP2012102043A (en) * 2010-11-10 2012-05-31 Konica Minolta Holdings Inc Method for producing univesicular liposome, univesicular liposome dispersion and dry powder thereof, and method for producing the univesicular liposome dispersion and dry powder thereof
JPWO2012105485A1 (en) 2011-01-31 2014-07-03 マルホ株式会社 Dermal composition containing polymer reverse micelle and method for producing the same
JP6005701B2 (en) * 2014-09-12 2016-10-12 柳衛 宏宣 W / O / W emulsion production apparatus and method for producing W / O / W emulsion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246382A (en) * 1975-10-11 1977-04-13 Lion Corp Method of preparing compound emulsion
WO2005053643A1 (en) * 2003-12-01 2005-06-16 Mitsubishi Pharma Corporation Liposome
JP2006272196A (en) * 2005-03-29 2006-10-12 Toshiba Corp Production method of composite type particulate and production apparatus of composite type particulate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720101B2 (en) * 1990-08-17 1998-02-25 明治乳業株式会社 W / O / W composite emulsion for injection and method for producing the same
US20100215582A1 (en) * 2007-05-14 2010-08-26 Konica Minolta Holdings, Inc. Liposome and method for producing liposome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246382A (en) * 1975-10-11 1977-04-13 Lion Corp Method of preparing compound emulsion
WO2005053643A1 (en) * 2003-12-01 2005-06-16 Mitsubishi Pharma Corporation Liposome
JP2006272196A (en) * 2005-03-29 2006-10-12 Toshiba Corp Production method of composite type particulate and production apparatus of composite type particulate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIDEKAZU YOSHIZAWA ET AL.: "Makunyukaho ni yoru Emulsion no Chosei", CHEMICAL ENGINEERING, 1993, pages 60 - 66 *
MASATAKA SHIMIZU ET AL.: "Preparation and Its Stability of Monodispersed W/O/W Emulsion by Membrane Emulsification", MIYAZAKI PREFECTURAL INDUSTRIAL TECHNOLOGY CENTER, REPORT OF MIYAZAKI PREFECTURE FOODS DEVELOPMENT CENTER, 2005, pages 13 - 19 *
NOBUO TAKARADA ET AL.: "BCS-3 Type no Shokakan kara no Kyushu o Takameru w/o/w Emulsion no Choseiho", THE PHARMACEUTICAL SOCIETY OF JAPAN DAI 129 NENKAI YOSHISHU 4, 5 March 2009 (2009-03-05) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450031A1 (en) * 2009-07-02 2012-05-09 Konica Minolta Holdings, Inc. Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby
EP2450031A4 (en) * 2009-07-02 2013-05-08 Konica Minolta Holdings Inc Method for producing liposomes by two-stage emulsification method using outer aqueous phase containing specific dispersing agent, method for producing liposome dispersion or dry powder thereof using the method for producing liposomes, and liposome dispersion or dry powder thereof produced thereby
CN110215435A (en) * 2018-05-09 2019-09-10 广东嘉博制药有限公司 A method of preparing multivesicular liposome
WO2020260895A1 (en) * 2019-06-27 2020-12-30 Loughborough University Nanovesicles

Also Published As

Publication number Publication date
JP5494054B2 (en) 2014-05-14
JP2010248171A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4900536B2 (en) Method for producing single cell liposomes by a two-stage emulsification method using an external aqueous phase containing a specific dispersant, and a method for producing a single cell liposome dispersion or a dry powder thereof using the method for producing single cell liposomes
Laouini et al. Preparation, characterization and applications of liposomes: state of the art
JP5494054B2 (en) Method for producing liposomes by two-stage emulsification
Tsai et al. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes
JP5741442B2 (en) Method for producing liposome
JP5983608B2 (en) Liposome-containing preparation using dissolution aid and method for producing the same
JP2006508126A (en) Protein-stabilized liposome formulation of pharmaceutical formulation
JP5487666B2 (en) Liposome production method comprising immobilizing an inner aqueous phase
JP5853453B2 (en) Method for producing liposomes
Wen et al. Liposomes and niosomes
JP2011104572A (en) Method for manufacturing liposome and flow manufacturing apparatus
JP5649074B2 (en) Method for producing liposome by two-stage emulsification using nano-sized primary emulsion
Nayak et al. Nanovesicular systems in drug delivery
JP5838970B2 (en) Method for producing single-cell liposome by two-stage emulsification method in which water-soluble lipid is added to the inner aqueous phase, and single-cell liposome obtained by the production method
WO2011062255A1 (en) Process for production of liposome through two-stage emulsification using mixed organic solvent as oily phase
JP2012102043A (en) Method for producing univesicular liposome, univesicular liposome dispersion and dry powder thereof, and method for producing the univesicular liposome dispersion and dry powder thereof
AU2018238684B2 (en) High-efficiency encapsulation of hydrophilic compounds in unilamellar liposomes
Краснопольский et al. “QUALITY BY DESIGN” IN LIPOSOMAL DRUGS CREATION
Raulkar et al. LIPOSOME AS DRUG DELIVERY SYSTEM: AN OVERVIEW AND THERAPEUTIC APPLICATION
Trucillo Optimization of a supercritical assisted process for the production of liposomes for industrial applications
KR20220092106A (en) pH-responsive capsosome using chitosan-coated solid lipid nanoparticles as core
CN112891308A (en) Liposome formulations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755916

Country of ref document: EP

Kind code of ref document: A1