WO2010109791A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2010109791A1
WO2010109791A1 PCT/JP2010/001641 JP2010001641W WO2010109791A1 WO 2010109791 A1 WO2010109791 A1 WO 2010109791A1 JP 2010001641 W JP2010001641 W JP 2010001641W WO 2010109791 A1 WO2010109791 A1 WO 2010109791A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
electromagnetic brake
pwm signal
control device
Prior art date
Application number
PCT/JP2010/001641
Other languages
French (fr)
Japanese (ja)
Inventor
野口幸一
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to KR1020117024438A priority Critical patent/KR101292683B1/en
Priority to CN201080013242.4A priority patent/CN102362423B/en
Publication of WO2010109791A1 publication Critical patent/WO2010109791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches

Definitions

  • the present invention relates to a motor and electromagnetic brake control device and control method.
  • the electromagnetic brake is selected according to the motor specification and application. For this reason, the motor and the electromagnetic brake motor do not necessarily have the same specification combination, and it is often necessary to provide a control unit for each of the motor and the electromagnetic brake. For example, as described in Patent Documents 1 and 2, these control units are preferably common to the motor and the electromagnetic brake. However, in the conventional common unit, the specifications of the motor and the electromagnetic brake are used. Will be limited.
  • the motor drive power source has both direct current and alternating current, and various voltages are supplied.
  • the voltage supplied to the electromagnetic brake also varies depending on the manufacturer and purpose of use. For this reason, if the specifications of the motor and the electromagnetic brake are limited, the versatility of the control unit is lost. In order to secure the drive voltage supplied to the electromagnetic brake, it is troublesome to prepare a unique power source each time, and wiring work between the power source and the control unit is also required.
  • An object of the present invention is to cope with the case where the drive voltage differs between the motor and the electromagnetic brake while eliminating the need for a unique power supply for the electromagnetic brake.
  • a motor and an electromagnetic brake are electrically connected to each other, and a control device that outputs a drive voltage to the motor and outputs a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake.
  • PWM signal output means and a part of the DC voltage used for driving the motor is input, and a part of the DC voltage is converted to a DC voltage proportional to the duty ratio of the PWM signal output from the PWM signal output means.
  • An electromagnetic brake driving means for converting and outputting to the electromagnetic brake is provided.
  • a control method for outputting a drive voltage to a motor and an electromagnetic brake wherein the PWM signal output step outputs a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake.
  • a control method characterized by comprising.
  • the present invention it is possible to cope with the case where the drive voltage differs between the motor and the electromagnetic brake while eliminating the need for a unique power source for the electromagnetic brake.
  • FIG. 1 is a block diagram illustrating an example of a control circuit 10.
  • FIG. 3 is a circuit diagram showing an example of an electromagnetic brake control circuit 20.
  • FIG. 4 is a diagram illustrating a voltage input to an input unit 21. It is a figure which shows the voltage output from the terminal 2a.
  • control device B concerning other embodiments of the present invention.
  • control apparatus C which concerns on other embodiment of this invention.
  • FIG. 1 is a block diagram of a control apparatus A according to an embodiment of the present invention.
  • the control device A includes a connection portion 1 to which the motor M is electrically connected and a connection portion 2 to which the electromagnetic brake Bk is electrically connected.
  • the motor M assumes an AC motor.
  • the electromagnetic brake Bk is driven by a DC voltage, and in the case of the present embodiment, it is assumed that the brake operates in a non-braking state while the DC voltage is being supplied and in a braking state when the supply is cut off. On the contrary, it may be a braking state during the supply of the DC voltage and a non-braking state when the supply is cut off.
  • the electromagnetic brake Bk is connected to the drive shaft of the motor M, and the connecting portions 1 and 2 that stop the rotation of the drive shaft of the motor M in the braking state connect the motor M and the electromagnetic brake Bk, respectively.
  • the control device A outputs a driving voltage from each of the connecting portions 1 and 2 to drive the motor M and the electromagnetic brake Bk.
  • the AC power supply 100 is, for example, a 200V commercial power supply.
  • the control device A has a connection portion 3 to which the AC power supply 100 is electrically connected, and an AC voltage output from the AC power supply 100 is input to the control device A.
  • the control device A includes a connection unit 4 to which a communication line with an external computer is connected. An instruction or the like from an external computer is input to the connection unit 4.
  • the control device A includes an AC / DC converter 5.
  • the AC / DC converter 5 is a rectifier that converts the AC voltage input to the connection unit 3 into a DC voltage (for example, 280 V) used for driving the motor M and outputs the DC voltage to the bus bb.
  • a motor drive circuit 6 and an electromagnetic brake drive circuit 20 are connected to the bus bb. That is, the motor drive circuit 6 and the electromagnetic brake drive circuit 20 are connected in parallel to the AC / DC converter 5, and a part of the DC voltage used for driving the motor M on the bus bb (in other words, the DC Part of electric power or direct current) is input to the electromagnetic brake drive circuit 20.
  • the motor drive circuit 6 is an inverter that converts a DC voltage input via the bus bb into an AC voltage and outputs the AC voltage as a drive voltage.
  • the motor drive circuit 6 outputs a stop signal for requesting an emergency stop to the control circuit 10 when an abnormality occurs in the drive of the motor M.
  • the motor drive circuit 6 also employs a drive circuit that outputs a DC voltage.
  • a voltage different from the DC voltage input via the bus bb is output to the motor M, for example, a DC-DC converter or the like can be used.
  • the measurement circuit 7 constantly measures the DC voltage on the bus bb and feeds back the measurement result to the control circuit 10.
  • the measurement circuit 7 constantly measures the DC voltage on the bus bb, thereby monitoring the voltage fluctuation on the bus bb in real time.
  • the measurement circuit 7 is an A / D converter, for example.
  • the control circuit 10 outputs a control signal related to the control of the motor M to the motor drive circuit 6. For example, when controlling the rotation speed of the motor M, the control circuit 10 outputs a PWM signal to the motor drive circuit 6 as a control signal.
  • the motor drive circuit 6 changes the speed of the motor M by outputting to the motor M a drive voltage having a frequency proportional to the duty ratio of the input PWM signal.
  • the control circuit 10 also outputs a PWM signal having a duty ratio calculated based on a preset voltage set in advance for the electromagnetic brake Bk to the electromagnetic brake drive circuit 20.
  • FIG. 2 is a block diagram showing an example of the control circuit 10.
  • the control circuit 10 includes a CPU 11, a RAM 12, a ROM 13, an I / F (interface) 14, and a controller 15.
  • the CPU 11 executes a program stored in the ROM 13.
  • the RAM 12 stores temporary data
  • the ROM 13 stores fixed data and programs. These may be other types of storage means.
  • the I / F 14 includes a communication interface that connects an external computer and the CPU 11 via the connection unit 4, and an I / O interface that connects the measurement circuit 7 and the like to the CPU 11. Note that power is supplied to the CPU 11 and the like by a DC power source (not shown).
  • the controller 15 is, for example, an FPGA (Field Program Gate Array).
  • the controller 15 first outputs a control signal for the motor drive circuit 6 in accordance with an instruction from the CPU 11. Further, a PWM signal is output to the electromagnetic brake drive circuit 20 in accordance with an instruction from the CPU 11. Further, when a stop signal is output from the motor drive circuit 6 to the controller 15, the controller 15 blocks power supply to the motor M and the electromagnetic brake Bk without going through the CPU 11. As a result, the driving of the motor M is stopped, and the electromagnetic brake Bk enters a braking state.
  • FPGA Field Program Gate Array
  • the controller 15 controls both the motor M and the electromagnetic brake Bk and does not go through the CPU 11, it is possible to stop the drive of the motor M and minimize the time lag in the event of an emergency, and to put the brake Bk into a braking state.
  • an emergency stop condition for executing such an emergency stop in addition to a case where a stop signal is output from the motor drive circuit 6, for example, a case where an emergency stop instruction is received from an external computer via the CPU 11 can be cited. .
  • the CPU 11 calculates the duty ratio of the PWM signal output to the electromagnetic brake drive circuit 20.
  • CPU11 calculates a duty ratio from the setting voltage preset about electromagnetic brake Bk, and the DC voltage on bus-line bb.
  • the set voltage is a target drive voltage to be applied to the electromagnetic brake Bk, and is, for example, 24V or 90V, depending on the type of the electromagnetic brake Bk.
  • the set voltage is input from an external computer via the connection unit 4 and stored in the RAM 12.
  • the type of the electromagnetic brake Bk and each set voltage are stored in the ROM 13, and when the type of the electromagnetic brake Bk is input from an external computer via the connection unit 4, the corresponding set voltage is read from the ROM 13. You may do it.
  • the DC voltage on the bus bb is the measurement result of the measurement circuit 7.
  • a DC voltage on the specifications output from the AC / DC converter 5 may be stored in the ROM 13 and regarded as a DC voltage on the bus bb.
  • the CPU 11 outputs information indicating the calculated duty ratio to the controller 15, and the controller 15 outputs a PWM signal having the duty ratio indicated by the information to the electromagnetic brake drive circuit 20.
  • the CPU 11 calculates the duty ratio in real time and instructs the controller 51 on the duty ratio, so that the motor M generates the regenerative voltage. Even if a voltage fluctuation occurs on the bus bb due to noise or noise mixing, the duty ratio is adjusted according to the voltage fluctuation, and the DC voltage supplied to the electromagnetic brake Bk can be stabilized.
  • FIG. 3A is a circuit diagram showing an example of the electromagnetic brake control circuit 20.
  • the electromagnetic brake control circuit includes an input unit 21 that is connected to the bus bb and receives a DC voltage on the bus bb, and an input 22 that receives a PWM signal from the controller 15.
  • R is a resistor.
  • the electromagnetic brake drive circuit 20 includes switching elements 23 and 24.
  • the switching element 24 is an FET, and its drain is connected to one terminal 2 b constituting the connection unit 2.
  • the other terminal 2 a constituting the connection unit 2 is connected to the input unit 21.
  • An electromagnetic brake Bk is connected to the terminals 2a and 2b, and a surge absorbing diode 25 is connected between the terminals 2a and 2b. Therefore, when the switching element 24 is ON, the DC voltage on the bus bb is output to the electromagnetic brake Bk, and when the switching element 24 is OFF, the DC voltage is cut off. Therefore, the output / interruption of the drive voltage to the electromagnetic brake Bk can be switched by turning the switching element 24 ON / OFF.
  • the switching element 23 is a photoelectric element (for example, a photocoupler) in which the input and the output are insulated.
  • the control circuit 10 can be prevented from being affected by noise on the drive circuit side such as noise on the bus bb, for example.
  • the PWM signal from the controller 15 is input to the LED 23a to blink the LED 23a.
  • the collector of the phototransistor 23b is connected to a DC power source (not shown), and is turned on / off by the blinking of the LED 23a to turn on / off the switching element 24. In this way, the output / cutoff of the drive voltage to the electromagnetic brake Bk can be switched by the PWM signal from the controller 15.
  • FIG. 3B is a diagram illustrating a voltage input to the input unit 21 and illustrates a DC voltage V on the bus bb.
  • FIG. 3C shows the voltage output from the terminal 2a, which is the drive voltage to the electromagnetic brake Bk.
  • the drive voltage to the electromagnetic brake Bk is a pulse signal corresponding to the duty ratio of the PWM signal. Therefore, by adjusting the pulse width, the per unit time between t 0 and t The average voltage can be controlled. For this reason, the DC voltage on the bus bb can be converted into the set voltage.
  • the DC voltage used for driving the motor M is partially used, adjusted to a voltage suitable for driving the electromagnetic brake Bk, and supplied to the electromagnetic brake Bk.
  • the drive voltage is different between the motor M and the electromagnetic brake Bk, while eliminating the need for a power source specific to the motor.
  • the control device A includes the AC / DC converter 5.
  • a configuration that does not include the AC / DC converter 5 may be employed.
  • FIG. 4 is a block diagram of a control device B according to another embodiment of the present invention. In the figure, the same components as those of the control device A are denoted by the same reference numerals and the description thereof is omitted, and only different components will be described below.
  • the control device B does not include the AC / DC converter 5 unlike the control device A, and the AC / DC converter 5 has a configuration outside the control device B.
  • a DC voltage output from the AC / DC converter 5 is input to the connection unit 3, and the bus bb is connected to the connection unit 3.
  • FIG. 5 is a block diagram of a control device C according to another embodiment of the present invention.
  • the same components as those of the control device A are denoted by the same reference numerals and the description thereof is omitted, and only different components will be described below.
  • the control device C does not include the AC / DC converter 5 unlike the control device A, and the AC / DC converter 5 has a configuration outside the control device C.
  • a DC voltage output from the AC / DC converter 5 is input to the connection unit 3, and the bus bb is connected to the connection unit 3.
  • the motor M is a direct current motor, and the control device C does not have the motor drive circuit 6 unlike the control device A. That is, regarding the drive of the motor M, the control device C simply supplies the voltage output from the AC / DC converter 5 to the motor M as it is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Regulating Braking Force (AREA)

Abstract

A control device has a motor and an electromagnetic brake which are electrically connected to each other and outputs a driving voltage to the motor and the electromagnetic brake. The control device comprises a PWM signal output means for outputting a PWM signal of duty ratio based on a set voltage which is set with respect to the electromagnetic brake in advance, and an electromagnetic brake driving means which receives part of a direct-current (DC) voltage used for driving the motor, converts the part of the DC voltage into a DC voltage in proportion to the duty ratio of the PWM signal outputted from the PWM signal output means, and outputs the converted DC voltage to the electromagnetic brake.

Description

制御装置及び制御方法Control apparatus and control method
 本発明は、モータ及び電磁ブレーキの制御装置及び制御方法に関する。 The present invention relates to a motor and electromagnetic brake control device and control method.
 一般に、モータと電磁ブレーキを併用する場合、モータの仕様及び用途に合わせて電磁ブレーキが選定される。その為、モータと電磁ブレーキモータとが必ずしも同じ仕様の組合せであるとは限らず、モータと電磁ブレーキとにそれぞれ制御ユニットを設けなければならないことも多い。これらの制御ユニットは、例えば、特許文献1及び2に記載されるように、モータと電磁ブレーキとに共通のものとされることが望ましいが、従来の共通のユニットでは、モータの仕様及び電磁ブレーキの仕様が限定されてしまう。 Generally, when a motor and an electromagnetic brake are used in combination, the electromagnetic brake is selected according to the motor specification and application. For this reason, the motor and the electromagnetic brake motor do not necessarily have the same specification combination, and it is often necessary to provide a control unit for each of the motor and the electromagnetic brake. For example, as described in Patent Documents 1 and 2, these control units are preferably common to the motor and the electromagnetic brake. However, in the conventional common unit, the specifications of the motor and the electromagnetic brake are used. Will be limited.
特開平11-113295号公報Japanese Patent Laid-Open No. 11-113295 特開平11-215892号公報JP-A-11-215892
 しかし、例えば、モータの駆動電源は直流、交流の双方があり、且つ、供給する電圧も様々である。また電磁ブレーキに供給する電圧も、そのメーカーや使用目的によって変わってくる。このため、モータと電磁ブレーキの仕様が限定されると、制御ユニットの汎用性がなくなってしまう。そして、電磁ブレーキに供給する駆動電圧を確保するために、固有の電源をその都度用意するのは手間がかかり、また、電源と制御ユニットとの配線作業も必要となる。 However, for example, the motor drive power source has both direct current and alternating current, and various voltages are supplied. The voltage supplied to the electromagnetic brake also varies depending on the manufacturer and purpose of use. For this reason, if the specifications of the motor and the electromagnetic brake are limited, the versatility of the control unit is lost. In order to secure the drive voltage supplied to the electromagnetic brake, it is troublesome to prepare a unique power source each time, and wiring work between the power source and the control unit is also required.
 本発明の目的は、電磁ブレーキ用の固有の電源を不要としながら、モータと電磁ブレーキとで駆動電圧が異なる場合にも対応することにある。 An object of the present invention is to cope with the case where the drive voltage differs between the motor and the electromagnetic brake while eliminating the need for a unique power supply for the electromagnetic brake.
 本発明によれば、モータと電磁ブレーキとが電気的に接続され、これらに駆動電圧を出力する制御装置であって、前記電磁ブレーキについて予め設定された設定電圧に基づくデューティ比のPWM信号を出力するPWM信号出力手段と、前記モータの駆動に用いる直流電圧の一部が入力され、該直流電圧の一部を前記PWM信号出力手段から出力される前記PWM信号のデューティ比に比例した直流電圧に変換して前記電磁ブレーキへ出力する電磁ブレーキ駆動手段と、を備えたことを特徴とする制御装置が提供される。 According to the present invention, a motor and an electromagnetic brake are electrically connected to each other, and a control device that outputs a drive voltage to the motor and outputs a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake. PWM signal output means, and a part of the DC voltage used for driving the motor is input, and a part of the DC voltage is converted to a DC voltage proportional to the duty ratio of the PWM signal output from the PWM signal output means. An electromagnetic brake driving means for converting and outputting to the electromagnetic brake is provided.
 また、本発明によれば、モータと電磁ブレーキとに駆動電圧を出力する制御方法であって、前記電磁ブレーキについて予め設定された設定電圧に基づくデューティ比のPWM信号を出力するPWM信号出力工程と、前記モータの駆動に用いる直流電圧の一部を前記PWM信号出力工程で出力される前記PWM信号のデューティ比に比例した直流電圧に変換して前記電磁ブレーキへ出力する電磁ブレーキ駆動工程と、を備えたことを特徴とする制御方法が提供される。 According to the present invention, there is also provided a control method for outputting a drive voltage to a motor and an electromagnetic brake, wherein the PWM signal output step outputs a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake. An electromagnetic brake driving step of converting a part of the DC voltage used for driving the motor into a DC voltage proportional to the duty ratio of the PWM signal output in the PWM signal output step and outputting the DC voltage to the electromagnetic brake; There is provided a control method characterized by comprising.
 本発明によれば、電磁ブレーキ用の固有の電源を不要としながら、モータと電磁ブレーキとで駆動電圧が異なる場合にも対応することができる。 According to the present invention, it is possible to cope with the case where the drive voltage differs between the motor and the electromagnetic brake while eliminating the need for a unique power source for the electromagnetic brake.
本発明の一実施形態に係る制御装置Aのブロック図である。It is a block diagram of control device A concerning one embodiment of the present invention. 制御回路10の例を示すブロック図である。2 is a block diagram illustrating an example of a control circuit 10. FIG. 電磁ブレーキ制御回路20の例を示す回路図である。3 is a circuit diagram showing an example of an electromagnetic brake control circuit 20. FIG. 入力部21に入力される電圧を示す図である。FIG. 4 is a diagram illustrating a voltage input to an input unit 21. 端子2aから出力される電圧を示す図である。It is a figure which shows the voltage output from the terminal 2a. 本発明の他の実施形態に係る制御装置Bのブロック図である。It is a block diagram of control device B concerning other embodiments of the present invention. 本発明の他の実施形態に係る制御装置Cのブロック図である。It is a block diagram of the control apparatus C which concerns on other embodiment of this invention.
 <第1実施形態>
 図1は本発明の一実施形態に係る制御装置Aのブロック図である。制御装置Aは、モータMが電気的に接続される接続部1と、電磁ブレーキBkが電気的に接続される接続部2と、を備える。モータMは、本実施形態の場合、交流モータを想定している。電磁ブレーキBkは、直流電圧により駆動されるものであって、本実施形態の場合、直流電圧の供給中は非制動状態、供給遮断時に制動状態に作動するものを想定する。これとは逆に、直流電圧の供給中に制動状態、供給遮断時に非制動状態となるものであってもよい。
<First Embodiment>
FIG. 1 is a block diagram of a control apparatus A according to an embodiment of the present invention. The control device A includes a connection portion 1 to which the motor M is electrically connected and a connection portion 2 to which the electromagnetic brake Bk is electrically connected. In the case of this embodiment, the motor M assumes an AC motor. The electromagnetic brake Bk is driven by a DC voltage, and in the case of the present embodiment, it is assumed that the brake operates in a non-braking state while the DC voltage is being supplied and in a braking state when the supply is cut off. On the contrary, it may be a braking state during the supply of the DC voltage and a non-braking state when the supply is cut off.
 電磁ブレーキBkは、例えば、モータMの駆動軸に連結されて、制動状態においてはモータMの駆動軸の回転を停止させる接続部1、2は、それぞれ、モータM、電磁ブレーキBkを接続するのに必要な数の端子を有し、制御装置Aは、接続部1、2からそれぞれ駆動電圧を出力し、モータM、電磁ブレーキBkを駆動する。交流電源100は、例えば、200Vの商用電源である。制御装置Aは、交流電源100が電気的に接続される接続部3を有し、交流電源100から出力される交流電圧が制御装置Aに入力される。制御装置Aは、外部のコンピュータとの通信回線が接続される接続部4を備える。接続部4には、外部のコンピュータからの指示等が入力される。 For example, the electromagnetic brake Bk is connected to the drive shaft of the motor M, and the connecting portions 1 and 2 that stop the rotation of the drive shaft of the motor M in the braking state connect the motor M and the electromagnetic brake Bk, respectively. The control device A outputs a driving voltage from each of the connecting portions 1 and 2 to drive the motor M and the electromagnetic brake Bk. The AC power supply 100 is, for example, a 200V commercial power supply. The control device A has a connection portion 3 to which the AC power supply 100 is electrically connected, and an AC voltage output from the AC power supply 100 is input to the control device A. The control device A includes a connection unit 4 to which a communication line with an external computer is connected. An instruction or the like from an external computer is input to the connection unit 4.
 制御装置Aは、AC/DCコンバータ5を備える。AC/DCコンバータ5は、接続部3に入力された交流電圧を、モータMの駆動に用いる直流電圧(例えば、280V)に変換して母線bbへ出力する整流器である。母線bbには、モータ駆動回路6及び電磁ブレーキ駆動回路20が接続されている。つまり、モータ駆動回路6及び電磁ブレーキ駆動回路20は、AC/DCコンバータ5に対して並列に接続されており、母線bb上のモータMの駆動に用いる直流電圧の一部(換言すれば、直流電力又は直流電流の一部)が電磁ブレーキ駆動回路20に入力される。 The control device A includes an AC / DC converter 5. The AC / DC converter 5 is a rectifier that converts the AC voltage input to the connection unit 3 into a DC voltage (for example, 280 V) used for driving the motor M and outputs the DC voltage to the bus bb. A motor drive circuit 6 and an electromagnetic brake drive circuit 20 are connected to the bus bb. That is, the motor drive circuit 6 and the electromagnetic brake drive circuit 20 are connected in parallel to the AC / DC converter 5, and a part of the DC voltage used for driving the motor M on the bus bb (in other words, the DC Part of electric power or direct current) is input to the electromagnetic brake drive circuit 20.
 モータ駆動回路6は、本実施形態の場合、母線bbを介して入力される直流電圧を交流電圧に変換してモータMに駆動電圧として出力するインバータである。本実施形態の場合、モータ駆動回路6は、モータMの駆動に異常が生じた場合には非常停止を要求する停止信号を制御回路10に出力する。なお、モータMとして直流モータを採用する場合は、モータ駆動回路6も、直流電圧を出力する駆動回路を採用する。その際、母線bbを介して入力される直流電圧と異なる電圧をモータMに出力する場合には、例えば、DC-DCコンバータ等を用いることができる。計測回路7は、母線bb上の直流電圧を常時計測し、その計測結果を制御回路10にフィードバックする。計測回路7により母線bb上の直流電圧を常時計測することで、母線bb上の電圧変動をリアルタイムで監視する。計測回路7は例えばA/D変換器である。 In the case of this embodiment, the motor drive circuit 6 is an inverter that converts a DC voltage input via the bus bb into an AC voltage and outputs the AC voltage as a drive voltage. In the case of this embodiment, the motor drive circuit 6 outputs a stop signal for requesting an emergency stop to the control circuit 10 when an abnormality occurs in the drive of the motor M. When a DC motor is employed as the motor M, the motor drive circuit 6 also employs a drive circuit that outputs a DC voltage. At that time, when a voltage different from the DC voltage input via the bus bb is output to the motor M, for example, a DC-DC converter or the like can be used. The measurement circuit 7 constantly measures the DC voltage on the bus bb and feeds back the measurement result to the control circuit 10. The measurement circuit 7 constantly measures the DC voltage on the bus bb, thereby monitoring the voltage fluctuation on the bus bb in real time. The measurement circuit 7 is an A / D converter, for example.
 制御回路10は、モータ駆動回路6に対してモータMの制御に関わる制御信号を出力する。例えば、モータMの回転数を制御する場合、制御回路10から制御信号としてPWM信号をモータ駆動回路6に出力する。モータ駆動回路6は、入力されたPWM信号のデューティ比に比例した周波数の駆動電圧をモータMに出力することで、モータMの速度を変更する。制御回路10は、また、電磁ブレーキBkについて予め設定された設定電圧に基づいて演算されたデューティ比のPWM信号を電磁ブレーキ駆動回路20に出力する。 The control circuit 10 outputs a control signal related to the control of the motor M to the motor drive circuit 6. For example, when controlling the rotation speed of the motor M, the control circuit 10 outputs a PWM signal to the motor drive circuit 6 as a control signal. The motor drive circuit 6 changes the speed of the motor M by outputting to the motor M a drive voltage having a frequency proportional to the duty ratio of the input PWM signal. The control circuit 10 also outputs a PWM signal having a duty ratio calculated based on a preset voltage set in advance for the electromagnetic brake Bk to the electromagnetic brake drive circuit 20.
 図2は制御回路10の例を示すブロック図である。制御回路10は、CPU11、RAM12、ROM13、I/F(インタフェース)14、及び、コントローラ15を備える。CPU11は、ROM13に記憶されたプログラムを実行する。RAM12には一時的なデータが格納され、ROM13には固定的なデータ及びプログラムが格納される。これらは他の種類の記憶手段でもよい。I/F14には、接続部4を介して外部コンピュータとCPU11とを接続する通信インタフェースや、計測回路7等とCPU11とを接続するI/Oインタフェースが含まれる。なお、CPU11等には不図示のDC電源により電力が供給される。 FIG. 2 is a block diagram showing an example of the control circuit 10. The control circuit 10 includes a CPU 11, a RAM 12, a ROM 13, an I / F (interface) 14, and a controller 15. The CPU 11 executes a program stored in the ROM 13. The RAM 12 stores temporary data, and the ROM 13 stores fixed data and programs. These may be other types of storage means. The I / F 14 includes a communication interface that connects an external computer and the CPU 11 via the connection unit 4, and an I / O interface that connects the measurement circuit 7 and the like to the CPU 11. Note that power is supplied to the CPU 11 and the like by a DC power source (not shown).
 コントローラ15は、例えば、FPGA(Field Program Gate Array)である。本実施形態の場合、コントローラ15は、まず、CPU11からの指示に従ってモータ駆動回路6に対する制御信号を出力する。また、CPU11からの指示に従って電磁ブレーキ駆動回路20に対してPWM信号を出力する。更に、モータ駆動回路6から停止信号がコントローラ15に出力された場合、コントローラ15は、CPU11を介さずにモータM及び電磁ブレーキBkに対する電力供給を遮断させる。これによりモータMの駆動が停止し、電磁ブレーキBkは制動状態となる。コントローラ15がモータM及び電磁ブレーキBkの双方の制御を行い、かつ、CPU11を介さないことにより、緊急時にタイムラグを最小にしてモータMの駆動を停止し、ブレーキBkを制動状態とすることができる。なお、このような緊急停止を実行する緊急停止条件としては、モータ駆動回路6から停止信号が出力された場合の他、例えば、CPU11を介して外部コンピュータから緊急停止指示を受けた場合が挙げられる。 The controller 15 is, for example, an FPGA (Field Program Gate Array). In the present embodiment, the controller 15 first outputs a control signal for the motor drive circuit 6 in accordance with an instruction from the CPU 11. Further, a PWM signal is output to the electromagnetic brake drive circuit 20 in accordance with an instruction from the CPU 11. Further, when a stop signal is output from the motor drive circuit 6 to the controller 15, the controller 15 blocks power supply to the motor M and the electromagnetic brake Bk without going through the CPU 11. As a result, the driving of the motor M is stopped, and the electromagnetic brake Bk enters a braking state. Since the controller 15 controls both the motor M and the electromagnetic brake Bk and does not go through the CPU 11, it is possible to stop the drive of the motor M and minimize the time lag in the event of an emergency, and to put the brake Bk into a braking state. . In addition, as an emergency stop condition for executing such an emergency stop, in addition to a case where a stop signal is output from the motor drive circuit 6, for example, a case where an emergency stop instruction is received from an external computer via the CPU 11 can be cited. .
 電磁ブレーキ駆動回路20に対して出力するPWM信号のデューティ比は、本実施形態の場合、CPU11が演算する。CPU11は、電磁ブレーキBkについて予め設定された設定電圧と、母線bb上の直流電圧と、からデューティ比を演算する。設定電圧は、電磁ブレーキBkに印加する目標駆動電圧であり、電磁ブレーキBkの種類によるが、例えば、24Vや90V等である。設定電圧は、例えば、接続部4を介して外部コンピュータから入力され、RAM12に格納される。或いは、ROM13に電磁ブレーキBkの種類と、各設定電圧とを記憶しておき、接続部4を介して外部コンピュータから電磁ブレーキBkの種類が入力された場合に、対応する設定電圧をROM13から読み出すようにしてもよい。 In the present embodiment, the CPU 11 calculates the duty ratio of the PWM signal output to the electromagnetic brake drive circuit 20. CPU11 calculates a duty ratio from the setting voltage preset about electromagnetic brake Bk, and the DC voltage on bus-line bb. The set voltage is a target drive voltage to be applied to the electromagnetic brake Bk, and is, for example, 24V or 90V, depending on the type of the electromagnetic brake Bk. For example, the set voltage is input from an external computer via the connection unit 4 and stored in the RAM 12. Alternatively, the type of the electromagnetic brake Bk and each set voltage are stored in the ROM 13, and when the type of the electromagnetic brake Bk is input from an external computer via the connection unit 4, the corresponding set voltage is read from the ROM 13. You may do it.
 本実施形態の場合、母線bb上の直流電圧は計測回路7の計測結果とする。なお、計測回路7を設けない場合は、AC/DCコンバータ5から出力される仕様上の直流電圧をROM13に記憶しておき、これを母線bb上の直流電圧とみなしてもよい。そして、PWM信号のデューティ比Dは、D=(設定電圧)/(母線bb上の直流電圧)から演算できる。CPU11は演算したデューティ比を示す情報をコントローラ15に出力し、コントローラ15は該情報が示すデューティ比のPWM信号を電磁ブレーキ駆動回路20に出力する。 In the present embodiment, the DC voltage on the bus bb is the measurement result of the measurement circuit 7. In the case where the measurement circuit 7 is not provided, a DC voltage on the specifications output from the AC / DC converter 5 may be stored in the ROM 13 and regarded as a DC voltage on the bus bb. The duty ratio D of the PWM signal can be calculated from D = (set voltage) / (DC voltage on the bus bb). The CPU 11 outputs information indicating the calculated duty ratio to the controller 15, and the controller 15 outputs a PWM signal having the duty ratio indicated by the information to the electromagnetic brake drive circuit 20.
 本実施形態のように、母線bb上の直流電圧を計測回路7の計測結果とすると、CPU11がリアルタイムでデューティ比を演算してコントローラ51にデューティ比を指示することで、モータMが回生電圧を生じたり、ノイズの混入により母線bb上に電圧変動が生じても、電圧変動に応じてデューティ比が調整され、電磁ブレーキBkに供給する直流電圧を安定させることができる。 As in this embodiment, when the DC voltage on the bus bb is the measurement result of the measurement circuit 7, the CPU 11 calculates the duty ratio in real time and instructs the controller 51 on the duty ratio, so that the motor M generates the regenerative voltage. Even if a voltage fluctuation occurs on the bus bb due to noise or noise mixing, the duty ratio is adjusted according to the voltage fluctuation, and the DC voltage supplied to the electromagnetic brake Bk can be stabilized.
 次に、電磁ブレーキ駆動回路20について説明する。図3Aは電磁ブレーキ制御回路20の例を示す回路図である。電磁ブレーキ制御回路は、母線bbと接続されて母線bb上の直流電圧が入力される入力部21と、コントローラ15からのPWM信号が入力される入力部22と、を有する。図中、Rは抵抗器である。電磁ブレーキ駆動回路20はスイッチング素子23、24を備える。 Next, the electromagnetic brake drive circuit 20 will be described. FIG. 3A is a circuit diagram showing an example of the electromagnetic brake control circuit 20. The electromagnetic brake control circuit includes an input unit 21 that is connected to the bus bb and receives a DC voltage on the bus bb, and an input 22 that receives a PWM signal from the controller 15. In the figure, R is a resistor. The electromagnetic brake drive circuit 20 includes switching elements 23 and 24.
 スイッチング素子24は、本実施形態の場合、FETであり、そのドレインは接続部2を構成する一方の端子2bに接続されている。接続部2を構成する他方の端子2aは入力部21に接続されている。端子2a、2bには電磁ブレーキBkが接続されており、また、端子2a、2b間にはサージ吸収用のダイオード25が接続されている。しかして、スイッチング素子24がONの場合に、電磁ブレーキBkに母線bb上の直流電圧が出力され、OFFの場合には該直流電圧が遮断される。よって、スイッチング素子24のON・OFFにより、電磁ブレーキBkへの駆動電圧の出力・遮断を切り替えることができる。 In the case of this embodiment, the switching element 24 is an FET, and its drain is connected to one terminal 2 b constituting the connection unit 2. The other terminal 2 a constituting the connection unit 2 is connected to the input unit 21. An electromagnetic brake Bk is connected to the terminals 2a and 2b, and a surge absorbing diode 25 is connected between the terminals 2a and 2b. Therefore, when the switching element 24 is ON, the DC voltage on the bus bb is output to the electromagnetic brake Bk, and when the switching element 24 is OFF, the DC voltage is cut off. Therefore, the output / interruption of the drive voltage to the electromagnetic brake Bk can be switched by turning the switching element 24 ON / OFF.
 スイッチング素子23は、本実施形態の場合、入力-出力間が絶縁された光電素子(例えばフォトカプラ)であり、発光素子(本実施形態ではLED)23aと、受光素子(本実施形態ではフォトトランジスタ)23bと、を備える。スイッチング素子23として、入力-出力間が絶縁されたフォトカプラを用いることにより、制御回路10が、例えば母線bb上のノイズ等、駆動回路側のノイズの影響を受けないようにすることができ、また、故障によって制御回路10側に駆動電圧が印加される事態を回避できる。コントローラ15からのPWM信号はLED23aに入力されてLED23aを点滅させる。フォトトランジスタ23bは、そのコレクタが不図示のDC電源に接続され、LED23aの点滅によってON・OFFし、スイッチング素子24をON・OFFする。こうして、コントローラ15からのPWM信号によって、電磁ブレーキBkへの駆動電圧の出力・遮断を切り替えることができる。 In the present embodiment, the switching element 23 is a photoelectric element (for example, a photocoupler) in which the input and the output are insulated. The light emitting element (LED in this embodiment) 23a and the light receiving element (in this embodiment, a phototransistor). ) 23b. By using a photocoupler in which the input and output are insulated as the switching element 23, the control circuit 10 can be prevented from being affected by noise on the drive circuit side such as noise on the bus bb, for example. In addition, it is possible to avoid a situation in which the drive voltage is applied to the control circuit 10 due to a failure. The PWM signal from the controller 15 is input to the LED 23a to blink the LED 23a. The collector of the phototransistor 23b is connected to a DC power source (not shown), and is turned on / off by the blinking of the LED 23a to turn on / off the switching element 24. In this way, the output / cutoff of the drive voltage to the electromagnetic brake Bk can be switched by the PWM signal from the controller 15.
 図3Bは入力部21に入力される電圧を示す図であり、母線bb上の直流電圧Vを示している。図3Cは端子2aから出力される電圧を示し、電磁ブレーキBkへの駆動電圧である。図3Cに示すように、電磁ブレーキBkへの駆動電圧は、PWM信号のデューティ比に応じたパルス信号になっており、したがって、パルス幅を調整することで、t0-t間の単位時間当たりの平均電圧を制御することができる。このため、母線bb上の直流電圧を設定電圧に変換できる。 FIG. 3B is a diagram illustrating a voltage input to the input unit 21 and illustrates a DC voltage V on the bus bb. FIG. 3C shows the voltage output from the terminal 2a, which is the drive voltage to the electromagnetic brake Bk. As shown in FIG. 3C, the drive voltage to the electromagnetic brake Bk is a pulse signal corresponding to the duty ratio of the PWM signal. Therefore, by adjusting the pulse width, the per unit time between t 0 and t The average voltage can be controlled. For this reason, the DC voltage on the bus bb can be converted into the set voltage.
 このように本実施形態では、モータMの駆動に用いる直流電圧を部分的に利用し、これを電磁ブレーキBkの駆動に適した電圧に調整して電磁ブレーキBkに供給することで、電磁ブレーキBk用の固有の電源を不要としながら、モータMと電磁ブレーキBkとで駆動電圧が異なる場合にも対応することができる。 As described above, in this embodiment, the DC voltage used for driving the motor M is partially used, adjusted to a voltage suitable for driving the electromagnetic brake Bk, and supplied to the electromagnetic brake Bk. Thus, it is possible to cope with the case where the drive voltage is different between the motor M and the electromagnetic brake Bk, while eliminating the need for a power source specific to the motor.
 <第2実施形態>
 上記第1実施形態では、制御装置AがAC/DCコンバータ5を備える構成としたが、これを備えない構成も採用可能である。図4は本発明の他の実施形態に係る制御装置Bのブロック図である。同図において、制御装置Aと同様の構成については同じ符号を付して説明を割愛し、以下、異なる構成についてのみ説明する。
Second Embodiment
In the first embodiment, the control device A includes the AC / DC converter 5. However, a configuration that does not include the AC / DC converter 5 may be employed. FIG. 4 is a block diagram of a control device B according to another embodiment of the present invention. In the figure, the same components as those of the control device A are denoted by the same reference numerals and the description thereof is omitted, and only different components will be described below.
 制御装置Bは、制御装置AのようにAC/DCコンバータ5を備えておらず、AC/DCコンバータ5は制御装置Bの外部の構成となっている。そして、接続部3には、AC/DCコンバータ5から出力される直流電圧が入力され、母線bbが接続部3に接続されている。 The control device B does not include the AC / DC converter 5 unlike the control device A, and the AC / DC converter 5 has a configuration outside the control device B. A DC voltage output from the AC / DC converter 5 is input to the connection unit 3, and the bus bb is connected to the connection unit 3.
 <第3実施形態>
 上記第1実施形態では、電磁ブレーキBkの駆動電圧の生成に、モータMの駆動に用いる直流電圧として、モータMの駆動電圧を生成する過程で生じる直流電圧を利用したが、モータMの駆動電圧を利用してもよい。図5は本発明の他の実施形態に係る制御装置Cのブロック図である。同図において、制御装置Aと同様の構成については同じ符号を付して説明を割愛し、以下、異なる構成についてのみ説明する。
<Third Embodiment>
In the first embodiment, the DC voltage generated in the process of generating the drive voltage of the motor M is used as the DC voltage used for driving the motor M to generate the drive voltage of the electromagnetic brake Bk. May be used. FIG. 5 is a block diagram of a control device C according to another embodiment of the present invention. In the figure, the same components as those of the control device A are denoted by the same reference numerals and the description thereof is omitted, and only different components will be described below.
 制御装置Cは、制御装置AのようにAC/DCコンバータ5を備えておらず、AC/DCコンバータ5は制御装置Cの外部の構成となっている。そして、接続部3には、AC/DCコンバータ5から出力される直流電圧が入力され、母線bbが接続部3に接続されている。モータMは直流モータであり、制御装置Cは制御装置Aのようにモータ駆動回路6を有していない。つまり、モータMの駆動に関して、制御装置CはAC/DCコンバータ5から出力される電圧を、そのままモータMに供給しているだけのものである。 The control device C does not include the AC / DC converter 5 unlike the control device A, and the AC / DC converter 5 has a configuration outside the control device C. A DC voltage output from the AC / DC converter 5 is input to the connection unit 3, and the bus bb is connected to the connection unit 3. The motor M is a direct current motor, and the control device C does not have the motor drive circuit 6 unlike the control device A. That is, regarding the drive of the motor M, the control device C simply supplies the voltage output from the AC / DC converter 5 to the motor M as it is.

Claims (11)

  1.  モータと電磁ブレーキとが電気的に接続され、これらに駆動電圧を出力する制御装置であって、
     前記電磁ブレーキについて予め設定された設定電圧に基づくデューティ比のPWM信号を出力するPWM信号出力手段と、
     前記モータの駆動に用いる直流電圧の一部が入力され、該直流電圧の一部を前記PWM信号出力手段から出力される前記PWM信号のデューティ比に比例した直流電圧に変換して前記電磁ブレーキへ出力する電磁ブレーキ駆動手段と、
    を備えたことを特徴とする制御装置。
    A control device in which a motor and an electromagnetic brake are electrically connected to each other and outputs a drive voltage to them,
    PWM signal output means for outputting a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake;
    A part of the DC voltage used for driving the motor is input, and a part of the DC voltage is converted into a DC voltage proportional to the duty ratio of the PWM signal output from the PWM signal output means to the electromagnetic brake. Electromagnetic brake driving means for outputting;
    A control device comprising:
  2.  交流電圧が入力され、該交流電圧を前記モータの駆動に用いる直流電圧に変換する交流-直流変換手段を備えたことを特徴とする請求項1に記載の制御装置。 2. The control device according to claim 1, further comprising AC-DC converting means for receiving an AC voltage and converting the AC voltage into a DC voltage used for driving the motor.
  3.  直流電圧が入力され、モータに駆動電圧を出力するモータ駆動手段を備え、
     前記電磁ブレーキ駆動手段には、前記モータ駆動手段に入力される前記直流電圧の一部が入力されることを特徴とする請求項1に記載の制御装置。
    A motor driving means for inputting a DC voltage and outputting a driving voltage to the motor is provided.
    The control device according to claim 1, wherein a part of the DC voltage input to the motor driving unit is input to the electromagnetic brake driving unit.
  4.  前記モータ駆動手段が、
     入力された直流電圧を交流電圧に変換して前記モータに駆動電圧として出力するインバータであることを特徴とする請求項3に記載の制御装置。
    The motor driving means is
    The control device according to claim 3, wherein the control device is an inverter that converts an input DC voltage into an AC voltage and outputs the drive voltage to the motor.
  5.  前記電磁ブレーキ駆動手段は、
     前記モータの駆動に用いる直流電圧の一部の、前記電磁ブレーキへの出力・遮断を切り替える第1スイッチング素子と、
     前記PWM信号出力手段から出力される前記PWM信号が入力され、前記PWM信号に応じて前記第1スイッチング素子をON・OFFする、入力-出力間が絶縁された第2スイッチング素子と、
    を備えたことを特徴とする請求項1に記載の制御装置。
    The electromagnetic brake driving means includes
    A first switching element that switches between output and cutoff of a part of a DC voltage used for driving the motor to the electromagnetic brake;
    A second switching element that receives the PWM signal output from the PWM signal output means and turns on / off the first switching element in accordance with the PWM signal;
    The control device according to claim 1, further comprising:
  6.  前記第1スイッチング素子がFETであり、
     前記第2スイッチング素子がフォトカプラであることを特徴とする請求項5に記載の制御装置。
    The first switching element is an FET;
    The control device according to claim 5, wherein the second switching element is a photocoupler.
  7.  前記PWM信号出力手段は、
     前記設定電圧に基づいて前記デューティ比を演算し、演算した前記デューティ比を示す情報を出力する演算手段と、
     前記演算出段が出力した前記情報に基づいて、前記電磁ブレーキ駆動手段に前記PWM信号を出力するコントローラと、
    を備えたことを特徴とする請求項1に記載の制御装置。
    The PWM signal output means includes
    A calculating means for calculating the duty ratio based on the set voltage and outputting information indicating the calculated duty ratio;
    A controller that outputs the PWM signal to the electromagnetic brake driving means based on the information output by the calculation output stage;
    The control device according to claim 1, further comprising:
  8.  前記モータの駆動に用いる直流電圧を常時計測し、計測結果を前記演算手段にフィードバックする計測手段を備え、
     前記演算手段は、前記計測手段の計測結果に基づいて前記デューティ比を調整することを特徴とする請求項7に記載の制御装置。
    A DC voltage used for driving the motor is constantly measured, and a measurement unit that feeds back a measurement result to the calculation unit is provided.
    The control device according to claim 7, wherein the calculation unit adjusts the duty ratio based on a measurement result of the measurement unit.
  9.  前記PWM信号出力手段は、
     前記設定電圧に基づいて前記デューティ比を演算し、演算した前記デューティ比を示す情報を出力する演算手段と、
     前記演算出段が出力した前記情報に基づいて、前記電磁ブレーキ駆動手段に前記PWM信号を出力するFPGAと、を備え、
     前記FPGAは、
     前記モータ駆動手段に制御信号を出力する一方、予め定めた緊急停止条件が成立した場合は、前記モータを停止させると共に前記電磁ブレーキを作動させることを特徴とする請求項3に記載の制御装置。
    The PWM signal output means includes
    A calculating means for calculating the duty ratio based on the set voltage and outputting information indicating the calculated duty ratio;
    An FPGA for outputting the PWM signal to the electromagnetic brake driving means based on the information output by the calculation output stage;
    The FPGA is
    The control device according to claim 3, wherein the control device outputs a control signal to the motor driving unit and, when a predetermined emergency stop condition is satisfied, stops the motor and activates the electromagnetic brake.
  10.  モータと電磁ブレーキとに駆動電圧を出力する制御方法であって、
     前記電磁ブレーキについて予め設定された設定電圧に基づくデューティ比のPWM信号を出力するPWM信号出力工程と、
     前記モータの駆動に用いる直流電圧の一部を前記PWM信号出力工程で出力される前記PWM信号のデューティ比に比例した直流電圧に変換して前記電磁ブレーキへ出力する電磁ブレーキ駆動工程と、
    を備えたことを特徴とする制御方法。
    A control method for outputting a drive voltage to a motor and an electromagnetic brake,
    A PWM signal output step of outputting a PWM signal having a duty ratio based on a preset voltage set for the electromagnetic brake;
    An electromagnetic brake driving step of converting a part of the DC voltage used for driving the motor into a DC voltage proportional to the duty ratio of the PWM signal output in the PWM signal output step and outputting the DC voltage to the electromagnetic brake;
    A control method comprising:
  11.  前記モータの駆動に用いる直流電圧を常時計測する計測工程と、
     前記計測工程の計測結果に基づいて前記デューティ比を調整する工程と、
    を備えたことを特徴とする請求項10に記載の制御方法。
    A measurement step of constantly measuring a DC voltage used for driving the motor;
    Adjusting the duty ratio based on the measurement result of the measurement step;
    The control method according to claim 10, further comprising:
PCT/JP2010/001641 2009-03-24 2010-03-09 Control device and control method WO2010109791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117024438A KR101292683B1 (en) 2009-03-24 2010-03-09 Control device and control method
CN201080013242.4A CN102362423B (en) 2009-03-24 2010-03-09 Control device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072819A JP5192430B2 (en) 2009-03-24 2009-03-24 Control apparatus and control method
JP2009-072819 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109791A1 true WO2010109791A1 (en) 2010-09-30

Family

ID=42780490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001641 WO2010109791A1 (en) 2009-03-24 2010-03-09 Control device and control method

Country Status (4)

Country Link
JP (1) JP5192430B2 (en)
KR (1) KR101292683B1 (en)
CN (1) CN102362423B (en)
WO (1) WO2010109791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005391B2 (en) 2017-02-03 2021-05-11 Sumitomo Heavy Industries, Ltd. Brake drive circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552564B1 (en) * 2013-09-24 2014-07-16 川崎重工業株式会社 Multi-axis robot power cutoff device and multi-axis robot
DE102016103766B4 (en) * 2015-11-13 2018-09-20 Preh Gmbh Control element with electrical evaluation of the haptic feedback, as well as a test method and control method
GB2588035B (en) * 2018-06-12 2022-08-03 Nachi Fujikoshi Corp Brake circuit discharge system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106200A (en) * 1988-10-15 1990-04-18 Fanuc Ltd Controlling circuit for dc brake
JPH06261570A (en) * 1993-03-08 1994-09-16 Toshiba Corp Inverter device
JPH06335286A (en) * 1993-05-18 1994-12-02 Kokusan Denki Co Ltd Drive circuit for direct current motor
JPH06351294A (en) * 1993-06-11 1994-12-22 Hitachi Kiden Kogyo Ltd Crane driving method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130913A (en) * 1995-10-31 1997-05-16 Sanyo Electric Co Ltd Drive controller for electric automobile
JP2001082378A (en) * 1999-09-09 2001-03-27 Hitachi Ltd Method for controlling submerged motor-driven pump for drainage
JP3759709B2 (en) * 2001-10-31 2006-03-29 三井金属鉱業株式会社 Control method of power sliding device for vehicle sliding door
JP2007143311A (en) * 2005-11-18 2007-06-07 Yaskawa Electric Corp Motor controller and motor with electromagnetic brake

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106200A (en) * 1988-10-15 1990-04-18 Fanuc Ltd Controlling circuit for dc brake
JPH06261570A (en) * 1993-03-08 1994-09-16 Toshiba Corp Inverter device
JPH06335286A (en) * 1993-05-18 1994-12-02 Kokusan Denki Co Ltd Drive circuit for direct current motor
JPH06351294A (en) * 1993-06-11 1994-12-22 Hitachi Kiden Kogyo Ltd Crane driving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005391B2 (en) 2017-02-03 2021-05-11 Sumitomo Heavy Industries, Ltd. Brake drive circuit

Also Published As

Publication number Publication date
KR101292683B1 (en) 2013-08-02
CN102362423A (en) 2012-02-22
KR20110128939A (en) 2011-11-30
JP2010226897A (en) 2010-10-07
CN102362423B (en) 2014-05-21
JP5192430B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR101561722B1 (en) Motor control device
CN104885357A (en) Electric power tool
JP5391100B2 (en) Power supply
CA2726581A1 (en) Apparatus and method of power control
JP6400658B2 (en) Operation control device for power converter
JP4778055B2 (en) Regenerative braking device
EP2800236B1 (en) Power supply device and power supply switching method
WO2010109791A1 (en) Control device and control method
CN104852356B (en) The control protective unit of motor
CN102651614A (en) Constant voltage power supply device
TWI577514B (en) Robot control system
WO2012127926A1 (en) Power supply circuit
WO2007034996A1 (en) Electric power steering device
US7932689B2 (en) Motor drive system for driving motor provided with a plurality of windings
KR102123375B1 (en) Apparatus and method for protection of bi-directional dc-dc converter
JP4876162B2 (en) Dynamic brake circuit and motor controller with failure detection function
US9148042B2 (en) Method and apparatus for detection of drive misconfiguration in a multi-axis configuration
JP5142108B2 (en) Elevator motor control device
CN108430685B (en) Constant current control system and method
JP5662008B2 (en) Control system for power supply to the load
CN111030512A (en) Control system and control method for dynamic braking of motor
CN107206912B (en) Power supply auxiliary device
JP6106900B2 (en) Constant power factor power supply and control method of constant power factor output
CN111670083A (en) Bi-directional 3-level converter in energy storage system for welding generator
KR20130120136A (en) Power supply apparatus for navigation light

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013242.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117024438

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10755595

Country of ref document: EP

Kind code of ref document: A1