WO2010109600A1 - Fuel and fuel manufacturing method - Google Patents

Fuel and fuel manufacturing method Download PDF

Info

Publication number
WO2010109600A1
WO2010109600A1 PCT/JP2009/055912 JP2009055912W WO2010109600A1 WO 2010109600 A1 WO2010109600 A1 WO 2010109600A1 JP 2009055912 W JP2009055912 W JP 2009055912W WO 2010109600 A1 WO2010109600 A1 WO 2010109600A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
water
sample
fuel
glycerin
Prior art date
Application number
PCT/JP2009/055912
Other languages
French (fr)
Japanese (ja)
Inventor
健彦 松村
倫孝 廣瀬
貴子 泉
Original Assignee
ナノマイザー・プライベート・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノマイザー・プライベート・リミテッド filed Critical ナノマイザー・プライベート・リミテッド
Priority to PCT/JP2009/055912 priority Critical patent/WO2010109600A1/en
Priority to US13/259,037 priority patent/US20120090222A1/en
Priority to CN2009801594964A priority patent/CN102449126A/en
Priority to JP2011505724A priority patent/JPWO2010109600A1/en
Publication of WO2010109600A1 publication Critical patent/WO2010109600A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a fuel using crude glycerin or a fatty acid admixture produced as a by-product in the process of producing biofuel from fats and oils derived from animals and plants, and a method for producing the same.
  • biodiesel fuel (BDF) using biomass as a raw material has attracted much attention.
  • BDF is produced by transesterification of animal and vegetable oils extracted from plants such as soybean, palm and corn, and animals such as cattle, pigs, sheep and fish, with alcohol as a by-product of fatty acids and glycerin. A large amount of crude glycerin as a main component is generated, and most of it is discarded without being effectively used.
  • this crude glycerin has a calorific value of about 5,400 kcal / kg, and the fatty acid in the crude glycerin has a calorific value of about 8,500 kcal / kg.
  • the inventors of the present application focused on this point and examined the possibility of using crude glycerin produced as a by-product in the production of BDF using various animal and vegetable oils as a fuel.
  • the following findings were obtained as a result. Therefore, it was concluded that it was difficult to use crude glycerin as a fuel as it was.
  • the pH value of crude glycerin is high due to the influence of an alkali catalyst used in the production of BDF, and deteriorates combustion equipment such as boilers.
  • the crude glycerin generally contains sodium or potassium. These ionic species may cause deterioration of the combustion equipment.
  • the present invention has been made in view of the above situation, and is a fuel excellent in handleability and a fuel excellent in combustion characteristics from crude glycerin or a fatty acid mixture by-produced in the process of producing biofuel from fats and oils derived from animals and plants.
  • An object of the present invention is to provide a fuel that has little adverse effect on combustion equipment during combustion and / or a fuel that can generate a high amount of heat by combustion.
  • This invention solves the said subject,
  • the present invention is characterized in that the fatty acid in the crude glycerin or fatty acid mixture is water-insolubilized, whereby glycerin, sodium ions, potassium ions are obtained from the water-insoluble material by washing and filtration or centrifugation. It is possible to separate water-soluble components such as.
  • the fatty acid water-insolubilized product can be solid or powdered. In addition, it can be used as a solid fuel having excellent handleability.
  • the “fats and fats derived from animals and plants” of the present invention are arbitrary fats and oils derived from animals and plants that can be used as raw materials for producing biofuels.
  • the oils and fats derived from animals and plants of the present invention include soybean oil, palm oil, and palm oil.
  • the “fatty acid blend” of the present invention refers to a blend composed mainly of fatty acid and glycerin, which are by-produced in the process of producing biofuel from fats and oils derived from animals and plants.
  • the fatty acid water-insolubilized product in the present invention is preferably produced by combining a fatty acid with a cation (Claim 2), and particularly produced by combining a fatty acid with a divalent or trivalent metal ion ( Claim 3) is preferred.
  • salts of fatty acids and divalent or trivalent metal ions have low solubility in water, it is possible to obtain the advantage of facilitating separation of water-soluble components by washing with water, filtration, etc. Since the salt is not strongly alkaline, it is possible to reduce the adverse effects on the combustion engine when burned.
  • the fuel of the present invention is obtained by refining and / or highly dispersing the fatty acid water-insoluble material in the suspension in which the fatty acid water-insoluble material is dispersed using a high-pressure dispersing device, and It is preferable that the fatty acid water-insolubilized product purified by separating all or part of the sexual component is contained (claim 4), and the method for producing a fuel of the present invention is made from animal and plant-derived fats and oils.
  • liquid Having a fourth step of separating all or a portion of water and a water-soluble component from the fatty acid-insoluble product (claim 8) is preferable.
  • water-soluble components such as glycerin, sodium ions, and potassium ions contained in the suspension It becomes possible to take in more parts of the water. Therefore, by performing water washing using a high-pressure dispersing device, water-soluble components can be more efficiently removed compared to water washing using an ordinary stirrer such as a mixer or a stirrer.
  • the “high pressure dispersion device” in the present invention includes a homogenizer and a nanomizer defined as follows.
  • Homogenizer makes particles finer and / or highly dispersed by colliding the liquid in which the particles are dispersed with each other and / or the wall surface at high pressure and high speed (pressure 30 MPa or more and / or flow velocity 50 m / sec or more). Refers to the device to turn into.
  • Nanonomizer makes particles finer and / or highly dispersed by cavitation and shear force when the liquid in which the particles are dispersed is passed through the capillary at high pressure and high speed (pressure 30 MPa or more and / or flow velocity 50 m / second or more). Refers to the device to turn into.
  • the tubule used in the nanomizer may be linear, curved, bent or branched.
  • the fatty acid water-insoluble product particles are coated with a membrane substance (Claim 5).
  • the present invention microcapsules the fatty acid water-insolubilized particles containing glycerin to some extent by covering them with a membrane substance, and the fatty acid water-insoluble materials are mainly used without significant increase in cost. It is possible to obtain a solid or powdered fuel excellent in handleability as a component.
  • the non-water-soluble particles covered with the membrane material of the present invention can be further formed into pellets or blocks of any shape and size using a pelletizer, etc. Fuel can be obtained.
  • an ether derivative of cellulose or an organic acid ester derivative of cellulose as the film substance.
  • a source of a component in which the ether derivative of cellulose or the organic acid ester derivative of cellulose acts as a binder Therefore, it can be consolidated into an arbitrary size and shape using a pelletizer or the like without adding a binder component separately.
  • the membrane substance in the present invention is not necessarily required to completely cover all the fatty acid water-insolubilized particles. It may be exposed.
  • Explanatory drawing which shows schematic structure of a nanomizer device
  • Explanatory drawing which shows the structure of the generator used in the Example Appearance photo of the sample created in the example Explanatory drawing of the apparatus used for evaluation of combustibility. Photo of filter paper with dust attached in the evaluation of flammability
  • FIG. 1 (A) is an explanatory diagram showing the configuration of the nanomizer device 1 used in the examples described below.
  • the nanomizer device 1 includes a metal housing 2, a retainer 4 that holds the generator 3, which is the main body of the nanomizer device 1, by pressing force from the left and right by screwing or the like, and couplers 5 and 6 for connecting to external piping. And an inflow path 7 and an outflow path 8 that connect the retainer 4 and the couplers 5 and 6.
  • a container 9 for storing a liquid (suspension) to be processed is connected to the inlet-side coupler 5 of the nanomizer device 1 by a pipe 10 so that the liquid pressurized by the high-pressure pump 11 is sent into the nanomizer device 1.
  • the pipe 12 is connected to the outlet side coupler 6, and the treated liquid is stored in the container 13.
  • the container 9 can have the mixer 14 for maintaining the suspension state of a suspension as needed.
  • FIG. 1B is an explanatory diagram showing a generator 3 a having a simple structure that can be used in the nanomizer device 1.
  • a linear thin tube 30 having a channel cross-sectional area S and a channel length L is formed near the center thereof.
  • the cross-sectional shape of the thin tube 30 is arbitrary, such as a circle, an ellipse, and a polygon.
  • particles in the liquid passing through the tubule 30 are caused by cavitation generated between the liquid and the tube wall or shear force generated by a flow velocity difference depending on the distance from the tube wall. Refined and / or highly dispersed.
  • the length L of the thin tube 30 is preferably 2 mm or more, and particularly preferably 3 mm or more.
  • the cross-sectional area S of the thin tube 30 does not need to be constant over the entire length, but in that case, the average cross-sectional area (a value obtained by dividing the integral value of the cross-sectional area in the length direction of the thin tube 30 by L) is used.
  • AS, aspect ratio R L / AS, AS ⁇ 1 mm 2 , R ⁇ 10 mm ⁇ 1 is preferable, AS ⁇ 0.5 mm 2 , R ⁇ 50 mm ⁇ 1 is more preferable, and AS ⁇ 0. It is particularly preferable that 1 mm 2 and R ⁇ 100 mm ⁇ 1 . It is also possible to form a plurality of thin tubes 30 in the generator 3a.
  • FIG. 2 is an explanatory diagram showing the configuration of the generator 3b used in the following embodiments.
  • the generator 3b includes a first flow path element 31, two second flow path elements 32 and 33, and a third flow path element 34.
  • the first to third flow path elements 31 to 34 are composed of sintered diamond substrates S1 to S4 having a substantially square planar shape, and metal ring members R1 to R4 that are integrally fitted to the outer periphery thereof. Yes.
  • the substrate S1 of the first flow path element 31 has two through holes 31a and 31b having a predetermined radius r1 at positions separated from each other by a predetermined distance D1, and the substrates S2 and S3 of the second flow path elements 32 and 33 are
  • the substrate S4 of the third flow path element 34 is located at a position separated by the same distance as D1, having the long holes 32a and 33a whose width dimension w is about r1 and length D2 is about D1. It has through holes 34a and 34b having a radius r2 that is about three times r1, and four pin insertion holes P are formed in the metal ring members R1 to R4 of the first to third flow path elements 31 to 33. It is formed at equal intervals in the circumferential direction.
  • FIG. 2B shows the first to third flow path elements 31 to 34 in a state of being attached to the holding unit 4 of the nanomizer device 1 in a cross-sectional view, and the first to third flow path elements 31 to 34 are shown.
  • the through holes 31a and 31b communicate with both ends of the long hole 32a, the long hole 32a and the long hole 33a communicate with each other at the crossing positions, and the both ends of the long hole 33a communicate with the through holes 34a and 34b, respectively. Further, they are stacked in a state where they are positioned with respect to each other with the pins inserted into the pin insertion holes 36.
  • narrow tubes 30 that is, (1) a narrow tube 30 that enters from the through hole 31a and exits from the through hole 34a through the long holes 32a and 33a, and (2) enters from the through hole 31 and is long.
  • the narrow tube 30 of the route that enters into the through hole 34b through the long holes 32a and 33a is formed.
  • the generator 3b when the liquid goes straight through the through holes 31a, 31b, 34a, 34b and the long holes 32a, 33a, particles in the liquid are refined and / or highly dispersed by the same cavitation and shearing force as the generator 3a. Is done. Further, when the liquid in the through holes 31a and 31b collides with the surface of the flow path element 33, or when the liquid collides with each other at the position where the long holes 32a and 33a intersect, the particles in the liquid are fine. And / or high dispersion.
  • the flow path cross-sectional area S and the flow path length L of the narrow tube 30 in the generator 3b are the plate thicknesses of the first to third flow path elements 31 to 34, the diameters r1, r2 of the through holes 31a, 31b, 34a, 34b, and the long holes. It can be set by the width W and the lengths D1 and D2 of 32a and 33a.
  • Fatty acid magnesium is precipitated by adding 100 g of 20% magnesium chloride hexahydrate solution little by little while stirring a crude glycerin aqueous solution in which 20 g of crude glycerin is dissolved in 100 g of purified water with a stirrer. As a result, a brownish suspension containing fatty acid magnesium deposits, glycerin, potassium ions, water and the like was obtained.
  • Sample B was obtained by drying 6.9 g of a solid substance obtained by drying a brownish brown slurry-like filtration residue (fatty acid magnesium slurry) when this suspension was filtered in a thermostatic bath at 105 ° C. for 2 hours.
  • Sample B was relatively dark brown and viscous, and it appeared that a considerable amount of glycerin remained. An appearance photograph of Sample B is shown in FIG.
  • Sample C1 (stirrer washing + filtration once) 100 g of purified water was added to 23 g of fatty acid magnesium slurry, stirred for 10 minutes with a stirrer, filtered, and 17.5 g of the filtration residue was dried in a thermostatic bath at 105 ° C. for 2 hours to obtain 6.1 g of a solid material (Fatty acid magnesium) was designated as Sample C1. Sample C1 was much less wet than sample B, and the brown color was also lighter. An appearance photograph of Sample C1 is shown in FIG.
  • Sample C3 (Nanomizer water washing + filtration once) 100 g of purified water is added to 18.2 g of the fatty acid magnesium slurry, and the fatty acid magnesium in the suspension is refined or highly dispersed by passing it through the nanomizer device 1 at a pressure of 100 MPa of the high pressure pump 11. Purified water was added and stirred with a stirrer for 10 minutes, followed by filtration to obtain 19.7 g of a filtration residue. And 5.3 g of solids (fatty acid magnesium) obtained by drying this for 2 hours in a 105 degreeC thermostat were used as sample C3. The sample C3 had a wet feeling less than the samples C1 and C2, and the hue was also thinner than the samples C1 and C2. An appearance photograph of Sample C3 is shown in FIG.
  • sample C4 had the same wet feeling as sample C3, and the color was much lighter than sample C3. An appearance photograph of Sample C4 is shown in FIG.
  • W1 (g) is a weighed value of each sample used for the measurement
  • W2 (g) and W3 (g) are weighed values of the filter paper (2 sheets) before and after the test
  • Samples A, B, and C4 were tested.
  • a photograph of the filter paper 45 after the test for each sample is shown in FIG.
  • the observation results of the combustion state and dust generation state of each sample are as follows.
  • Sample A It was confirmed that the sample A ignited in a relatively short time after the ignition of the burner 47, but the size and momentum of the flame were clearly smaller than those of the samples B and C4.
  • FIG. 5 (A) not so much dust adhered to the filter paper 45, which is probably because the sample A did not burn sufficiently.
  • Sample B The sample was ignited within a few seconds after the burner 46 was ignited, and thereafter, a vigorous flame was raised and combustion continued stably until the end. During the combustion, soot that was thick to some extent was generated, and as shown in FIG. 5B, the filter paper 45 was also considerably blackened.
  • Sample C4 The sample was ignited within a few seconds after the burner 46 was ignited, and thereafter, a vigorous flame was raised and combustion continued stably until the end. Although dust was generated during combustion, the level was much lighter than that of sample B, and the amount of dust adhering to the filter paper was clearly less than that of sample B as shown in FIG.
  • the evaluation of the glycerin content in the above examples is not a direct measurement of the glycerin amount in each sample, the calculated glycerin ratio R is consistent with the observation results of the properties and appearance of each sample, and at least It is considered that the magnitude relationship of the amount of glycerin in each sample is faithfully represented.
  • sample D Microencapsulation
  • the fatty acid magnesium of sample C1 contains glycerin to such an extent that a certain wet feeling can be felt. By coating this with ethyl cellulose, a smooth powder (sample D) can be obtained. It was.
  • the glycerin content of samples C2 to C4 is considered to be the same as or lower than that of sample C1, when using samples C2 to C4, it is possible to obtain a more smooth powder (where glycerin does not exude). Conceivable.
  • Sample C2 (fatty acid magnesium) has a high calorific value (6984 kcal / kg), and is increased by about 1600 kcal / kg with respect to sample A (crude glycerin). confirmed. This is considered to be due to the removal of glycerin having a small amount of combustion heat.
  • Samples C1, C3, and C4 have not been measured for the calorific value, but as shown in Table 1, these samples have the same glycerin content as sample C2 and have the same high caloric value as sample C2. it is conceivable that.
  • Samples C1 to C4 still have some wet feeling and are limited in use because of the property that glycerin exudes by pressurization, but have high combustion heat and good combustibility as described above. Since it can be handled as a solid, it can be used as a solid fuel.
  • Microcapsulated fatty acid magnesium obtained from crude glycerin (sample D) is a smooth powder and has a high calorific value (6600 kcal / kg). Thus, the amount of dust can be significantly reduced by washing with fatty acid magnesium. Since it is a powder, it may have a problem in handling properties such as transportation, but it can be used as an excellent solid fuel depending on applications.
  • the fatty acid water-insolubilized product is fatty acid magnesium
  • the fatty acid in the crude glycerin is water-insoluble, it is possible to separate glycerin, sodium ions, potassium ions, etc.
  • a salt of a fatty acid and a divalent or trivalent metal ion such as calcium or aluminum has properties common to fatty acid magnesium such as low water solubility and weak alkalinity.
  • fatty acid calcium, fatty acid aluminum or the like is used, the same effect as in the above embodiment can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fats And Perfumes (AREA)

Abstract

The issue is to obtain fuel having high combustion heat and superior handleability from crude glycerin and fatty acid mixtures that have been discarded as industrial waste products. Disclosed is a fuel comprising water-insoluble fatty acids obtained by water-insolubilizing fatty acids that are contained in crude glycerin and fatty acid mixtures that are produced as by-products in the process of producing biofuels from animal and plant-derived fats and oils. It is preferable that the water-insoluble fatty acids be water-insoluble fatty acid salts, particularly salts of fatty acids with divalent or trivalent metal ions.

Description

燃料及び燃料の製造方法Fuel and fuel production method
 本発明は、動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン又は脂肪酸混和物を原料とする燃料及びその製造方法に関する。 The present invention relates to a fuel using crude glycerin or a fatty acid admixture produced as a by-product in the process of producing biofuel from fats and oils derived from animals and plants, and a method for producing the same.
 近年の石化燃料の枯渇、CO排出による環境負荷の問題等に鑑み、バイオマスを原料とするバイオディーゼル燃料(BDF)が大きく注目を集めている。 In view of the recent depletion of petrochemical fuels and the problem of environmental burden due to CO 2 emissions, biodiesel fuel (BDF) using biomass as a raw material has attracted much attention.
 BDFは、大豆、パーム、トウモロコシなどの植物や牛、豚、羊、魚類などの動物から抽出される動植物油とアルコールとのエステル交換反応により製造されるが、その副生成物として脂肪酸及びグリセリンを主成分とする大量の粗製グリセリンが生成され、その多くが有効利用されることなく廃棄されている。 BDF is produced by transesterification of animal and vegetable oils extracted from plants such as soybean, palm and corn, and animals such as cattle, pigs, sheep and fish, with alcohol as a by-product of fatty acids and glycerin. A large amount of crude glycerin as a main component is generated, and most of it is discarded without being effectively used.
 一方で、この粗製グリセリンは、約5,400kcal/kgの熱量を有し、粗製グリセリン中の脂肪酸に至っては、約8,500kcal/kgの熱量を有している。 On the other hand, this crude glycerin has a calorific value of about 5,400 kcal / kg, and the fatty acid in the crude glycerin has a calorific value of about 8,500 kcal / kg.
 本願発明者らはこの点に着眼し、種々の動植物油を原料とするBDF製造において副生された粗製グリセリンについて燃料としての使用可能性の検討を行ったが、その結果得られた以下の知見から、粗製グリセリンをそのまま燃料として使用することは困難であるとの結論に至った。
(1)BDF製造時に使用するアルカリ触媒の影響で粗製グリセリンのpH値が高く、ボイラー等の燃焼機器を劣化させる。
(2)粗製グリセリンには、一般にナトリウム若しくはカリウムが含まれている。これらのイオン種は燃焼機器の劣化を招く恐れがある。特にナトリウムは硫黄が共存すると硫酸ナトリウムが生成され、五酸化バナジウムによる燃焼機器の金属表面の酸化被膜破壊(バナジウムアタック)を一層促進する。
(3)粗製グリセリンは燃焼によってダイオキシン等の有害物質は発生させないが、大量の煤塵が発生することが知られており、煤塵の発生量を低減できなければ燃料としての使用は困難である。
(4)粗製グリセリンは粘性の高い液体であり、液体、固体いずれの燃料にも代替えしにくく、取扱いが厄介である。
The inventors of the present application focused on this point and examined the possibility of using crude glycerin produced as a by-product in the production of BDF using various animal and vegetable oils as a fuel. The following findings were obtained as a result. Therefore, it was concluded that it was difficult to use crude glycerin as a fuel as it was.
(1) The pH value of crude glycerin is high due to the influence of an alkali catalyst used in the production of BDF, and deteriorates combustion equipment such as boilers.
(2) The crude glycerin generally contains sodium or potassium. These ionic species may cause deterioration of the combustion equipment. In particular, when sodium coexists with sulfur, sodium sulfate is generated, which further promotes the destruction of the oxide film (vanadium attack) on the metal surface of the combustion equipment by vanadium pentoxide.
(3) Although crude glycerin does not generate harmful substances such as dioxin by combustion, it is known that a large amount of dust is generated, and it is difficult to use it as a fuel unless the amount of dust generated can be reduced.
(4) Crude glycerin is a highly viscous liquid that is difficult to replace with either liquid or solid fuel and is difficult to handle.
特開2008-023426号公報JP 2008-023426 A
 本発明は、上記状況に鑑みてなされたものであり、動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン乃至脂肪酸混和物から取扱性に優れる燃料、燃焼特性に優れる燃料、燃焼の際の燃焼機器への悪影響の少ない燃料、及び/又は、燃焼により高熱量を発生することが可能な燃料を提供することをその目的とする。 The present invention has been made in view of the above situation, and is a fuel excellent in handleability and a fuel excellent in combustion characteristics from crude glycerin or a fatty acid mixture by-produced in the process of producing biofuel from fats and oils derived from animals and plants. An object of the present invention is to provide a fuel that has little adverse effect on combustion equipment during combustion and / or a fuel that can generate a high amount of heat by combustion.
 本発明は、上記課題を解決したものであり、動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン又は脂肪酸混和物に含まれる脂肪酸を非水溶化することにより得られる脂肪酸非水溶化物を含有することを特徴とする燃料(請求項1)である。 This invention solves the said subject, The fatty acid obtained by water-solubilizing the fatty acid contained in the crude glycerin or fatty acid mixture byproduced in the process of producing | generating a biofuel from fats and oils derived from animals and plants A fuel comprising a water-insoluble material (Claim 1).
 本発明は、粗製グリセリン又は脂肪酸混和物中の脂肪酸を非水溶化した点に特徴を有しており、これにより、水洗と濾過又は遠心分離などによって脂肪酸非水溶化物からグリセリンやナトリウムイオン、カリウムイオン等の水溶性成分を分離することが可能となる。 The present invention is characterized in that the fatty acid in the crude glycerin or fatty acid mixture is water-insolubilized, whereby glycerin, sodium ions, potassium ions are obtained from the water-insoluble material by washing and filtration or centrifugation. It is possible to separate water-soluble components such as.
 従って、グリセリンの除去乃至減量により、燃焼性の改善や単位重量当たりの燃焼熱量の増大を達成することが可能であり、グリセリンの除去をより完全に行うことで脂肪酸非水溶化物を固形乃至粉末状にし、取扱性に優れる固形燃料として使用することも可能である。 Therefore, it is possible to improve flammability and increase the amount of combustion heat per unit weight by removing or reducing the amount of glycerin, and by removing the glycerin more completely, the fatty acid water-insolubilized product can be solid or powdered. In addition, it can be used as a solid fuel having excellent handleability.
 また、ナトリウムイオン、カリウムイオン等の有害成分が除去乃至減量されるために、ボイラー等の燃焼機器の劣化の問題を解消することも可能である。 Also, since harmful components such as sodium ions and potassium ions are removed or reduced, it is possible to eliminate the problem of deterioration of combustion equipment such as boilers.
 また、上記水溶性成分を除去乃至減量することにより、燃焼時に発生する煤塵の発生量を低減できることが確認された。 It has also been confirmed that the amount of dust generated during combustion can be reduced by removing or reducing the water-soluble components.
 本発明の「動植物由来の油脂類」は、バイオ燃料の生成原料として使用可能な動植物に由来する任意の油脂類であり、本発明の動植物由来の油脂類には、大豆油、ヤシ油、パーム油、パーム核油、トウモロコシ油、オリーブ油、サフラワー油、紅花油、綿実油、ナタネ油、ヒマシ油、ゴマ油等の植物油、ラード油、バター油、イワシ油、サバ油、牛脂、馬脂、豚脂、羊脂、鯨油などの動物油、及び、レストランや食品工場、一般家庭などから廃棄される廃食用油、並びに、これらの混合物が含まれる。 The “fats and fats derived from animals and plants” of the present invention are arbitrary fats and oils derived from animals and plants that can be used as raw materials for producing biofuels. The oils and fats derived from animals and plants of the present invention include soybean oil, palm oil, and palm oil. Oil, palm kernel oil, corn oil, olive oil, safflower oil, safflower oil, cottonseed oil, rapeseed oil, castor oil, sesame oil and other vegetable oils, lard oil, butter oil, sardine oil, mackerel oil, beef tallow, horse fat, lard , Animal oil such as sheep oil and whale oil, and edible oil discarded from restaurants, food factories, general households, and the like, and mixtures thereof.
 本発明の「脂肪酸混和物」は、動植物由来の油脂類からバイオ燃料を生成する過程で副生される脂肪酸とグリセリンを主成分とする混和物を言う。 The “fatty acid blend” of the present invention refers to a blend composed mainly of fatty acid and glycerin, which are by-produced in the process of producing biofuel from fats and oils derived from animals and plants.
 本発明における脂肪酸非水溶化物は、脂肪酸を陽イオンと結合させることにより生成すること(請求項2)が好ましく、特に、脂肪酸を2価又は3価の金属イオンと結合させることにより生成すること(請求項3)が好ましい。 The fatty acid water-insolubilized product in the present invention is preferably produced by combining a fatty acid with a cation (Claim 2), and particularly produced by combining a fatty acid with a divalent or trivalent metal ion ( Claim 3) is preferred.
 即ち、脂肪酸と2価又は3価の金属イオンなどとの塩は、水に対する溶解度が低いために水洗、濾過などによる水溶性成分の分離の容易化という利点を得ることができ、また、これらの塩は強アルカリ性ではないため、燃焼させた場合の燃焼機関への悪影響を低減することが可能である。 That is, since salts of fatty acids and divalent or trivalent metal ions have low solubility in water, it is possible to obtain the advantage of facilitating separation of water-soluble components by washing with water, filtration, etc. Since the salt is not strongly alkaline, it is possible to reduce the adverse effects on the combustion engine when burned.
 本発明の燃料は、高圧分散装置を用いて前記脂肪酸非水溶化物が分散した懸濁液中の前記脂肪酸非水溶化物を微細化及び/又は高分散化した後に、前記懸濁液から水及び水溶性成分の全部又は一部を分離することにより高純度化された前記脂肪酸非水溶化物を含有すること(請求項4)が好ましく、本発明の燃料の製造方法は、動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン又は脂肪酸混和物に含まれる脂肪酸を非水溶化させることにより脂肪酸非水溶化物を生成する第1ステップと、前記脂肪酸非水溶化物を分散させた懸濁液を生成する第2ステップと、高圧分散装置を用いて前記懸濁液中の前記脂肪酸非水溶化物を微細化及び/又は高分散化する第3ステップと、前記第3ステップを経た前記懸濁液中の前記脂肪酸非水溶化物から水及び水溶性成分の全部又は一部を分離する第4ステップを有すること(請求項8)が好ましい。 The fuel of the present invention is obtained by refining and / or highly dispersing the fatty acid water-insoluble material in the suspension in which the fatty acid water-insoluble material is dispersed using a high-pressure dispersing device, and It is preferable that the fatty acid water-insolubilized product purified by separating all or part of the sexual component is contained (claim 4), and the method for producing a fuel of the present invention is made from animal and plant-derived fats and oils. A first step of producing a fatty acid water-insoluble product by dewatering the fatty acid contained in crude glycerin or fatty acid mixture produced as a by-product in the process of producing fuel, and a suspension in which the fatty acid water-insoluble product is dispersed A second step of producing a liquid, a third step of refining and / or highly dispersing the fatty acid water-insoluble material in the suspension using a high-pressure dispersing device, and the suspension obtained through the third step. In liquid Having a fourth step of separating all or a portion of water and a water-soluble component from the fatty acid-insoluble product (claim 8) is preferable.
 かかる発明では、高圧分散装置を用いて懸濁液中の脂肪酸非水溶化物を微細化及び/又は高分散化するために、懸濁液に含まれるグリセリンやナトリウムイオン、カリウムイオン等の水溶性成分のより多くの部分を水中に取り込むことが可能となる。従って、高圧分散装置を用いた水洗を行うことで、ミキサーやスターラーなどの通常の攪拌機を用いた水洗と比較して、水溶性成分のより効率的な除去が可能となる。 In this invention, in order to refine and / or highly disperse the fatty acid water-insoluble material in the suspension using a high-pressure dispersion device, water-soluble components such as glycerin, sodium ions, and potassium ions contained in the suspension It becomes possible to take in more parts of the water. Therefore, by performing water washing using a high-pressure dispersing device, water-soluble components can be more efficiently removed compared to water washing using an ordinary stirrer such as a mixer or a stirrer.
 本発明における「高圧分散装置」には、以下に定義されるホモゲナイザー及びナノマイザーが含まれる。 The “high pressure dispersion device” in the present invention includes a homogenizer and a nanomizer defined as follows.
 「ホモゲナイザー」は、粒子が分散した液体を、高圧、高速(圧力30MPa以上及び/又は流速50m/sec以上)で、相互に及び/又は壁面に衝突させることで粒子を微細化及び/又は高分散化する装置を言う。 "Homogenizer" makes particles finer and / or highly dispersed by colliding the liquid in which the particles are dispersed with each other and / or the wall surface at high pressure and high speed (pressure 30 MPa or more and / or flow velocity 50 m / sec or more). Refers to the device to turn into.
 「ナノマイザー」は、粒子が分散した液体を高圧、高速(圧力30MPa以上及び/又は流速50m/秒以上)で細管内を通過させた際のキャビテーションや剪断力により粒子を微細化及び/又は高分散化する装置を言う。ナノマイザーにおいて使用される細管は、直線状であっても良く、湾曲、屈曲又は分岐したものでも良い。 "Nanomizer" makes particles finer and / or highly dispersed by cavitation and shear force when the liquid in which the particles are dispersed is passed through the capillary at high pressure and high speed (pressure 30 MPa or more and / or flow velocity 50 m / second or more). Refers to the device to turn into. The tubule used in the nanomizer may be linear, curved, bent or branched.
 本発明では、前記脂肪酸非水溶化物の粒子が膜物質により被覆されていること(請求項5)が好ましい。 In the present invention, it is preferable that the fatty acid water-insoluble product particles are coated with a membrane substance (Claim 5).
 脂肪酸を非水溶化することにより得られる脂肪酸非水溶化物の性状等によっては、脂肪酸非水溶化物からのグリセリンの除去が容易でない場合があり、水洗と濾過又は遠心分離等のみによって脂肪酸非水溶化物が固形又は粉末状となるまでグリセリンを除去することがコスト的に見合わない場合がある。 Depending on the properties of the fatty acid water-insolubilized product obtained by water-solubilizing the fatty acid, it may not be easy to remove glycerin from the fatty acid water-insolubilized material. It may not be cost effective to remove glycerin until solid or powdered.
 本発明は、このような場合に、ある程度グリセリンを含んだ状態の脂肪酸非水溶化物の粒子を膜物質で覆うことでマイクロカプセル化し、大幅なコスト増を伴うことなく、脂肪酸の非水溶化物を主成分とする取扱性に優れる固形又は粉末状の燃料を得ることを可能にしたものである。 In such a case, the present invention microcapsules the fatty acid water-insolubilized particles containing glycerin to some extent by covering them with a membrane substance, and the fatty acid water-insoluble materials are mainly used without significant increase in cost. It is possible to obtain a solid or powdered fuel excellent in handleability as a component.
 本発明の膜物質により覆われた非水溶化物の粒子は、更にペレタイザー等を用いて任意の形状、サイズのペレット状又はブロック状にすることが可能であり、これにより、より取扱性に優れる固形燃料を得ることができる。 The non-water-soluble particles covered with the membrane material of the present invention can be further formed into pellets or blocks of any shape and size using a pelletizer, etc. Fuel can be obtained.
 また、上記膜物質としてはセルロースのエーテル誘導体又はセルロースの有機酸エステル誘導体を使用することが好ましく、この場合には、セルロースのエーテル誘導体又はセルロースの有機酸エステル誘導体がバインダーとして作用する成分の供給源となるため、別途バインダー成分を添加することなくペレタイザー等を用いて任意のサイズ、形状に固結させることが可能になる。 In addition, it is preferable to use an ether derivative of cellulose or an organic acid ester derivative of cellulose as the film substance. In this case, a source of a component in which the ether derivative of cellulose or the organic acid ester derivative of cellulose acts as a binder. Therefore, it can be consolidated into an arbitrary size and shape using a pelletizer or the like without adding a binder component separately.
 なお、本発明における膜物質は、全ての脂肪酸非水溶化物の粒子を完全に被覆するものであることは必ずしも必要ではなく、固形又は粉末状にできさえすれば、脂肪酸非水溶化物の粒子が部分的に露出していても構わない。 Note that the membrane substance in the present invention is not necessarily required to completely cover all the fatty acid water-insolubilized particles. It may be exposed.
ナノマイザー装置の概略構成を示す説明図Explanatory drawing which shows schematic structure of a nanomizer device 実施例において使用したジェネレータの構成を示す説明図Explanatory drawing which shows the structure of the generator used in the Example 実施例において作成したサンプルの外観写真Appearance photo of the sample created in the example 燃焼性の評価に用いた装置の説明図。Explanatory drawing of the apparatus used for evaluation of combustibility. 燃焼性の評価において煤塵が付着した濾紙の写真Photo of filter paper with dust attached in the evaluation of flammability
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 図1(A)は、以下に述べる実施例において使用したナノマイザー装置1の構成を示す説明図である。 FIG. 1 (A) is an explanatory diagram showing the configuration of the nanomizer device 1 used in the examples described below.
 ナノマイザー装置1は、金属製のハウジング2と、ナノマイザー装置1の本体であるジェネレータ3をネジ締め等による左右からの押圧力により保持する保持質4と、外部配管と接続するためのカプラー5、6と、保持質4とカプラー5、6を接続する流入路7及び流出路8を有している。 The nanomizer device 1 includes a metal housing 2, a retainer 4 that holds the generator 3, which is the main body of the nanomizer device 1, by pressing force from the left and right by screwing or the like, and couplers 5 and 6 for connecting to external piping. And an inflow path 7 and an outflow path 8 that connect the retainer 4 and the couplers 5 and 6.
 上記ナノマイザー装置1の入口側カプラー5には、処理対象の液体(懸濁液)を貯留する容器9が配管10により接続され、高圧ポンプ11で加圧された液体がナノマイザー装置1に送り込まれるようになっており、出口側カプラー6には配管12が接続され、処理後の液体は容器13に貯留される。なお、容器9は、必要に応じて懸濁液の懸濁状態を保つためのミキサー14を有することができる。 A container 9 for storing a liquid (suspension) to be processed is connected to the inlet-side coupler 5 of the nanomizer device 1 by a pipe 10 so that the liquid pressurized by the high-pressure pump 11 is sent into the nanomizer device 1. The pipe 12 is connected to the outlet side coupler 6, and the treated liquid is stored in the container 13. In addition, the container 9 can have the mixer 14 for maintaining the suspension state of a suspension as needed.
 図1(B)は、ナノマイザー装置1で使用可能なシンプルな構造のジェネレータ3aを示す説明図である。 FIG. 1B is an explanatory diagram showing a generator 3 a having a simple structure that can be used in the nanomizer device 1.
 このジェネレータ3aでは、その中央付近に流路断面積S、流路長Lの直線状の細管30が形成されている。なお、細管30の断面形状は、円形、楕円、多角形など、任意である。 In this generator 3a, a linear thin tube 30 having a channel cross-sectional area S and a channel length L is formed near the center thereof. In addition, the cross-sectional shape of the thin tube 30 is arbitrary, such as a circle, an ellipse, and a polygon.
 このような直線状の細管30を有するナノマイザー装置1では、液体と管壁の間に生じるキャビテーションや管壁からの距離による流速差によって生じる剪断力などにより、細管30を通過する液体中の粒子が微細化及び/又は高分散化される。 In the nanomizer device 1 having such a straight tubule 30, particles in the liquid passing through the tubule 30 are caused by cavitation generated between the liquid and the tube wall or shear force generated by a flow velocity difference depending on the distance from the tube wall. Refined and / or highly dispersed.
 細管30は、アスペクト比R=L/Sとして、S≦1mm、R≧10mm-1であることが好ましく、S≦0.5mm、R≧50mm-1であることがより好ましく、S≦0.1mm、R≧100mm-1であることが特に好ましい。細管30の長さLは2mm以上であることが好ましく、3mm以上であることが特に好ましい。 The thin tube 30 has an aspect ratio R = L / S, preferably S ≦ 1 mm 2 and R ≧ 10 mm −1 , more preferably S ≦ 0.5 mm 2 and R ≧ 50 mm −1 , and S ≦ It is particularly preferable that 0.1 mm 2 and R ≧ 100 mm −1 . The length L of the thin tube 30 is preferably 2 mm or more, and particularly preferably 3 mm or more.
 なお、細管30の断面積Sは全長に渡って一定である必要はないが、その場合は、平均断面積(断面積の細管30の長さ方向での積分値をLで除した値)をAS、アスペクト比R=L/ASとして、AS≦1mm、R≧10mm-1であることが好ましく、AS≦0.5mm、R≧50mm-1であることがより好ましく、AS≦0.1mm、R≧100mm-1であることが特に好ましい。ジェネレータ3aに複数の細管30を形成することも可能である。 The cross-sectional area S of the thin tube 30 does not need to be constant over the entire length, but in that case, the average cross-sectional area (a value obtained by dividing the integral value of the cross-sectional area in the length direction of the thin tube 30 by L) is used. AS, aspect ratio R = L / AS, AS ≦ 1 mm 2 , R ≧ 10 mm −1 is preferable, AS ≦ 0.5 mm 2 , R ≧ 50 mm −1 is more preferable, and AS ≦ 0. It is particularly preferable that 1 mm 2 and R ≧ 100 mm −1 . It is also possible to form a plurality of thin tubes 30 in the generator 3a.
 図2は、以下の実施例で使用したジェネレータ3bの構成を示す説明図である。 FIG. 2 is an explanatory diagram showing the configuration of the generator 3b used in the following embodiments.
 図2(A)に示されるように、このジェネレータ3bは、第1流路素子31、2枚の第2流路素子32、33及び第3流路素子34を有している。 As shown in FIG. 2A, the generator 3b includes a first flow path element 31, two second flow path elements 32 and 33, and a third flow path element 34.
 第1~第3流路素子31~34は、平面形状が略正方形状の焼結ダイヤモンド製基板S1~S4と、その外周に一体に嵌着された金属製リング部材R1~R4で構成されている。 The first to third flow path elements 31 to 34 are composed of sintered diamond substrates S1 to S4 having a substantially square planar shape, and metal ring members R1 to R4 that are integrally fitted to the outer periphery thereof. Yes.
 第1流路素子31の基板S1は、相互に所定距離D1だけ離間した位置に所定半径r1の2つの貫通孔31a、31bを有し、第2流路素子32、33の基板S2、S3は、幅寸法wがr1と同程度で長さD2がD1と同程度の長孔32a、33aを有し、第3流路素子34の基板S4は、D1と同程度の距離だけ離間した位置にr1の3倍程度の半径r2を有する貫通孔34a、34bを有しており、第1~第3流路素子31~33の金属製リング部材R1~R4には4個のピン挿入孔Pが周方向に等間隔に形成されている。 The substrate S1 of the first flow path element 31 has two through holes 31a and 31b having a predetermined radius r1 at positions separated from each other by a predetermined distance D1, and the substrates S2 and S3 of the second flow path elements 32 and 33 are The substrate S4 of the third flow path element 34 is located at a position separated by the same distance as D1, having the long holes 32a and 33a whose width dimension w is about r1 and length D2 is about D1. It has through holes 34a and 34b having a radius r2 that is about three times r1, and four pin insertion holes P are formed in the metal ring members R1 to R4 of the first to third flow path elements 31 to 33. It is formed at equal intervals in the circumferential direction.
 図2(B)は、ナノマイザー装置1の保持部4に取り付けられた状態の第1~第3流路素子31~34を断面視で示しており、第1~第3流路素子31~34は、貫通孔31a、31bが長孔32aの両端にそれぞれ連通し、長孔32aと長孔33aは相互の交差位置で連通し、長孔33aの両端が貫通孔34a、34bにそれぞれ連通するように、ピン挿入孔36に挿入されたピンで相互に位置決めされた状態で積層されている。 FIG. 2B shows the first to third flow path elements 31 to 34 in a state of being attached to the holding unit 4 of the nanomizer device 1 in a cross-sectional view, and the first to third flow path elements 31 to 34 are shown. The through holes 31a and 31b communicate with both ends of the long hole 32a, the long hole 32a and the long hole 33a communicate with each other at the crossing positions, and the both ends of the long hole 33a communicate with the through holes 34a and 34b, respectively. Further, they are stacked in a state where they are positioned with respect to each other with the pins inserted into the pin insertion holes 36.
 上記ジェネレータ3bでは、4つの細管30、即ち、(1)貫通孔31aから入り、長孔32a及び33aを経て貫通孔34aからに抜けるルートの細管30と、(2)貫通孔31から入り、長孔32a及び33aを経て貫通孔34bに抜けるルートの細管30と、(3)貫通孔31bから入り、長孔32a及び33aを経て貫通孔34aに抜けるルートの細管30と、(4)貫通孔31bに入り、長孔32a及び33aを経て貫通孔34bに抜けるルートの細管30が形成されることになる。 In the generator 3b, there are four narrow tubes 30, that is, (1) a narrow tube 30 that enters from the through hole 31a and exits from the through hole 34a through the long holes 32a and 33a, and (2) enters from the through hole 31 and is long. A narrow tube 30 of a route that goes through the holes 32a and 33a to the through hole 34b, and (3) a thin tube 30 of the route that enters from the through hole 31b and goes through the long holes 32a and 33a to the through hole 34a, and (4) the through hole 31b. The narrow tube 30 of the route that enters into the through hole 34b through the long holes 32a and 33a is formed.
 上記ジェネレータ3bでは、貫通孔31a、31b、34a、34b及び長孔32a、33aで液体が直進する際にジェネレータ3aと同様のキャビテーションや剪断力により液体中の粒子が微細化及び/又は高分散化される。更に、貫通孔31a、31bの液体が流路素子33の表面に衝突する際や、長孔32a、33aが交差する位置で液体同士が衝突する際の衝撃力等によっても液体中の粒子が微細化及び/又は高分散化される。 In the generator 3b, when the liquid goes straight through the through holes 31a, 31b, 34a, 34b and the long holes 32a, 33a, particles in the liquid are refined and / or highly dispersed by the same cavitation and shearing force as the generator 3a. Is done. Further, when the liquid in the through holes 31a and 31b collides with the surface of the flow path element 33, or when the liquid collides with each other at the position where the long holes 32a and 33a intersect, the particles in the liquid are fine. And / or high dispersion.
 ジェネレータ3bにおける細管30の流路断面積S及び流路長Lは、第1~第3流路素子31~34の板厚、貫通孔31a、31b、34a、34bの径r1、r2、長孔32a、33aの幅W及び長さD1、D2により設定することができる。下記の実施例では、上記4つのいずれの細管30においても流路断面積Sが0.0113~0.0133mm(内径0.12~0.13mmφ)、流路長Lが3.8mmのジェネレータ3を使用した。 The flow path cross-sectional area S and the flow path length L of the narrow tube 30 in the generator 3b are the plate thicknesses of the first to third flow path elements 31 to 34, the diameters r1, r2 of the through holes 31a, 31b, 34a, 34b, and the long holes. It can be set by the width W and the lengths D1 and D2 of 32a and 33a. In the following embodiment, a generator having a channel cross-sectional area S of 0.0113 to 0.0133 mm 2 (inner diameter 0.12 to 0.13 mmφ) and a channel length L of 3.8 mm in any of the four narrow tubes 30 described above. 3 was used.
<実施例>
 廃食油から水酸化カリウム触媒下でのエステル交換反応によりBDFを製造した際に副生された粗製グリセリンをBDFメーカーである株式会社セベックから入手し、これを用いて本発明に従う燃料の生成実験を行った。株式会社セベックから入手した粗製グリセリンをサンプルAとした。
<Example>
Crude glycerin produced as a by-product when BDF was produced from waste cooking oil by transesterification under a potassium hydroxide catalyst was obtained from Sebec Co., Ltd., a BDF manufacturer, and fuel production experiments according to the present invention were performed using this. went. Crude glycerin obtained from Sebec Co., Ltd. was used as sample A.
(1)脂肪酸マグネシウムの生成
 精製水100gに対して粗製グリセリン20gを溶解した粗製グリセリン水溶液をスターラーで攪拌しながら、塩化マグネシウム六水和物20%溶液100gを少量ずつ加えることで脂肪酸マグネシウムが析出し、脂肪酸マグネシウムの析出物、グリセリン、カリウムイオン、水等からなる茶褐色の懸濁液が得られた。
(1) Formation of fatty acid magnesium Fatty acid magnesium is precipitated by adding 100 g of 20% magnesium chloride hexahydrate solution little by little while stirring a crude glycerin aqueous solution in which 20 g of crude glycerin is dissolved in 100 g of purified water with a stirrer. As a result, a brownish suspension containing fatty acid magnesium deposits, glycerin, potassium ions, water and the like was obtained.
 この懸濁液を濾過したときの茶褐色のスラリー状の濾過残滓(脂肪酸マグネシウムスラリー)を105℃の恒温槽で2時間乾燥させることで得られた固形物6.9gをサンプルBとした。 Sample B was obtained by drying 6.9 g of a solid substance obtained by drying a brownish brown slurry-like filtration residue (fatty acid magnesium slurry) when this suspension was filtered in a thermostatic bath at 105 ° C. for 2 hours.
 サンプルBは比較的濃い茶褐色で粘性があり、相当量のグリセリンが残っているように思われた。サンプルBの外観写真を図3(A)に示す。 Sample B was relatively dark brown and viscous, and it appeared that a considerable amount of glycerin remained. An appearance photograph of Sample B is shown in FIG.
 なお、上記濾過を含め、本実施例における濾過は、全て濾紙(Whatman No.2 150mmΦ)を用いて行った。 In addition, all the filtration in a present Example including the said filtration was performed using the filter paper (Whatman No. 2 150mm (PHI)).
(2)水溶性成分の除去
 上記(1)の方法で生成した脂肪酸マグネシウムスラリーを下記(a)~(d)の条件で水洗、濾過することで、グリセリン、カリウムイオン等の水溶性成分の除去を行った。
(2) Removal of water-soluble components Water-soluble components such as glycerin and potassium ions are removed by washing and filtering the fatty acid magnesium slurry produced by the method (1) above under the conditions (a) to (d) below. Went.
(a)サンプルC1(スターラー水洗+濾過1回)
 脂肪酸マグネシウムスラリー23gに100gの精製水を加え、スターラーで10分間攪拌した後に濾過し、その濾過残滓17.5gを105℃の恒温槽で2時間乾燥することで得られた6.1gの固形物(脂肪酸マグネシウム)をサンプルC1とした。
 サンプルC1は、サンプルBと比較して格段にウェットさが少なくなっており、茶褐色の色も薄くなっていた。サンプルC1の外観写真を図3(B)に示す。
(A) Sample C1 (stirrer washing + filtration once)
100 g of purified water was added to 23 g of fatty acid magnesium slurry, stirred for 10 minutes with a stirrer, filtered, and 17.5 g of the filtration residue was dried in a thermostatic bath at 105 ° C. for 2 hours to obtain 6.1 g of a solid material (Fatty acid magnesium) was designated as Sample C1.
Sample C1 was much less wet than sample B, and the brown color was also lighter. An appearance photograph of Sample C1 is shown in FIG.
(b)サンプルC2(スターラー水洗+濾過3回)
 上記(a)と同様の方法での水洗と濾過を3回繰り返して行った。即ち、23.3gの脂肪酸マグネシウムスラリーに100gの精製水を加えてスターラーで10分間攪拌した後に濾過することで得られた18.1gの濾過残滓に、再度100gの精製水を加えてスターラーで10分間攪拌した後に濾過することで得られた16.2gの濾過残滓に、再度100gの精製水を加えてスターラーで10分間攪拌した後に濾過することで14.8gの濾過残滓を得た。そして、これを105℃の恒温槽で2時間乾燥することで得られた5.4gの固形物(脂肪酸マグネシウム)をサンプルC2とした。
 サンプルC2は、ウェットさ、色合いともにサンプルC1と同程度であった。サンプルC2の外観写真を図3(C)に示す。
(B) Sample C2 (stirrer washing + filtration 3 times)
Washing with water and filtration in the same manner as in the above (a) were repeated 3 times. That is, 100 g of purified water was added to 23.3 g of fatty acid magnesium slurry, stirred for 10 minutes with a stirrer, and then filtered. 100 g of purified water was again added to 16.2 g of the filtration residue obtained by filtering after stirring for 1 minute, and after stirring for 10 minutes with a stirrer, 14.8 g of filtration residue was obtained. Then, 5.4 g of a solid (fatty acid magnesium) obtained by drying this in a thermostatic bath at 105 ° C. for 2 hours was used as Sample C2.
Sample C2 was almost the same as sample C1 in both wetness and color. An appearance photograph of Sample C2 is shown in FIG.
(c)サンプルC3(ナノマイザー水洗+濾過1回)
 脂肪酸マグネシウムスラリー18.2gに100gの精製水を加え、ナノマイザー装置1に高圧ポンプ11の圧力100MPaで通すことで懸濁液中の脂肪酸マグネシウムを微細化乃至高分散化させ、更に、これに100gの精製水を加えてスターラーで10分間攪拌した後に濾過することで19.7gの濾過残滓を得た。そして、これを105℃の恒温槽で2時間乾燥することで得られた5.3gの固形物(脂肪酸マグネシウム)をサンプルC3とした。
 サンプルC3は、ウェット感がサンプルC1、C2よりも少なくなっており、色合いもサンプルC1、C2よりも薄くなっていた。サンプルC3の外観写真を図3(D)に示す。
(C) Sample C3 (Nanomizer water washing + filtration once)
100 g of purified water is added to 18.2 g of the fatty acid magnesium slurry, and the fatty acid magnesium in the suspension is refined or highly dispersed by passing it through the nanomizer device 1 at a pressure of 100 MPa of the high pressure pump 11. Purified water was added and stirred with a stirrer for 10 minutes, followed by filtration to obtain 19.7 g of a filtration residue. And 5.3 g of solids (fatty acid magnesium) obtained by drying this for 2 hours in a 105 degreeC thermostat were used as sample C3.
The sample C3 had a wet feeling less than the samples C1 and C2, and the hue was also thinner than the samples C1 and C2. An appearance photograph of Sample C3 is shown in FIG.
(d)サンプルC4(ナノマイザー水洗+スターラー+濾過6回)
 上記(c)と同様の方法での水洗と濾過を6回繰り返して行った。即ち、脂肪酸マグネシウムスラリー22.6gに100gの精製水を加え、ナノマイザー装置1に圧力100MPaで通した後に100gの精製水を加えてスターラーで10分間攪拌した後に濾過する作業を6回行った。6回の濾過で得られた濾過残滓は、それぞれ、27.5g、22.5g、24.3g、17.5g、20.8g、18.1gであった。そして、6回目の濾過残滓18.1gを105℃の恒温槽で2時間乾燥することで得られた5.0gの固形物(脂肪酸マグネシウム)をサンプルC4とした。
 サンプルC4は、サンプルC3と同程度のウェット感であり、色はサンプルC3よりも更に薄くなっていた。サンプルC4の外観写真を図3(E)に示す。
(D) Sample C4 (Nanomizer water washing + stirrer + 6 filtrations)
Washing with water and filtration in the same manner as in the above (c) were repeated 6 times. That is, 100 g of purified water was added to 22.6 g of the fatty acid magnesium slurry, passed through the nanomizer device 1 at a pressure of 100 MPa, 100 g of purified water was added, and the mixture was stirred for 10 minutes with a stirrer and then filtered six times. The filtration residues obtained by 6 filtrations were 27.5 g, 22.5 g, 24.3 g, 17.5 g, 20.8 g, and 18.1 g, respectively. And the solid residue (fatty acid magnesium) obtained by drying 18.1g of filtration residue of the 6th time in a 105 degreeC thermostat for 2 hours was made into sample C4.
Sample C4 had the same wet feeling as sample C3, and the color was much lighter than sample C3. An appearance photograph of Sample C4 is shown in FIG.
(3)マイクロカプセル化(膜物質の被覆)
 サンプルC1と同様の方法でスターラー水洗+濾過を1回行った脂肪酸マグネシウム(但し、105℃2時間の乾燥は行っていない)20gをメタノール(和光純薬・試薬特級)100gにエチルセルロース10(和光純薬)3gを溶解させたエチルセルロース溶液に添加し、スターラーで攪拌しながら、精製水を6mL/minで200mL滴下させることでエチルセルロース被膜を脂肪酸マグネシウム粒子上に析出させ、これを濾過した濾過残滓を105℃の恒温槽で6時間乾燥させることで得られた7.4gの粉末をサンプルDとした。
 サンプルDは、ウェットさが殆ど感じられないドライで薄い茶褐色の粉末であった。サンプルDの外観写真を図3(F)に示す。
(3) Microencapsulation (coating with membrane material)
20 g of fatty acid magnesium (but not dried at 105 ° C. for 2 hours) 20 g of methanol (Wako Pure Chemicals / reagent grade), ethyl cellulose 10 (Wako Pure) Medicine) Add 3 g of the ethylcellulose solution in which 3 g is dissolved, and drop 200 mL of purified water at 6 mL / min while stirring with a stirrer to precipitate an ethylcellulose coating on the fatty acid magnesium particles, and filter the filtered residue. 7.4 g of powder obtained by drying in a constant temperature bath at 6 ° C. for 6 hours was used as Sample D.
Sample D was a dry, light brown powder with little wetness. An appearance photograph of Sample D is shown in FIG.
(4)ペレット化
 上田鉄工株式会社製ペレタイザー(PM-350)を用いて下記配合1~3のペレット化を試みた。ペレタイザーのダイ温度は全て54℃とした(下記の%は重量表示である)。
 配合1:サンプルD 20%+パームカーネルミール80%
 配合2:サンプルD 50%+パームカーネルミール50%
 配合3:パームカーネルミール100%
 その結果、配合1~3のいずれについても、固形燃料としての使用に好適な十分な固さのペレットを成型することができた。
 配合1~3から成型したペレットをそれぞれサンプルE1~E3とした。
(4) Pelletization Using the pelletizer (PM-350) manufactured by Ueda Tekko Co., Ltd., pelletization of the following formulations 1 to 3 was attempted. The pelletizer die temperatures were all 54 ° C. (the following percentages are by weight).
Formulation 1: Sample D 20% + Palm kernel meal 80%
Formula 2: Sample D 50% + Palm kernel meal 50%
Formulation 3: 100% palm kernel meal
As a result, pellets having sufficient hardness suitable for use as a solid fuel could be formed for any of Formulations 1 to 3.
The pellets molded from the blends 1 to 3 were designated as samples E1 to E3, respectively.
(5)グリセリン含有量の評価
<測定方法>
 約3gのサンプル(C1~C4及びD)を予め秤量した2枚の濾紙(Whatman No.2 150mmΦ)で挟み、これにサランラップを掛けた状態で4.4kgの重りを載せて17時間放置した後に、濾紙上のサンプルを丁寧に除去して秤量することで濾紙に滲出したグリセリン量を算出した。
<測定結果>
 結果を表1に示す。なお、表1においてW1(g)は測定に用いた各サンプルの秤量値であり、W2(g)、W3(g)は試験前後の濾紙(2枚)の秤量値であり、滲出したグリセリン量W4(g)及び各サンプルのグリセリン比率R(%)は、W4=W3-W2、R=W4/W1×100として計算した。
Figure JPOXMLDOC01-appb-T000001
(5) Evaluation of glycerin content <Measurement method>
About 3 g of the sample (C1 to C4 and D) was sandwiched between two pre-weighed filter papers (Whatman No. 2 150 mmΦ), and a weight of 4.4 kg was placed on this with a Saran wrap on it and left for 17 hours. The amount of glycerin exuded on the filter paper was calculated by carefully removing the sample on the filter paper and weighing it.
<Measurement results>
The results are shown in Table 1. In Table 1, W1 (g) is a weighed value of each sample used for the measurement, W2 (g) and W3 (g) are weighed values of the filter paper (2 sheets) before and after the test, and the amount of glycerin exuded W4 (g) and the glycerin ratio R (%) of each sample were calculated as W4 = W3-W2, R = W4 / W1 × 100.
Figure JPOXMLDOC01-appb-T000001
(6)燃焼熱量の測定
<測定方法>
 株式会社島津テクノリサーチに依頼してサンプルA、C2、D、E1~E3の燃焼熱量を測定した。測定は島津製作所製 燃研式自動ボンベ熱量計CA-4AJを用いてJIS-M8814に従って行われた。
<測定結果>
 上記により測定した各サンプルの燃焼性及び単位重量当たりの燃焼熱量は以下の通りであった。
 サンプルA : 5380kcal/kg
 サンプルC2: 6984kcal/kg
 サンプルD : 6600kcal/kg
 サンプルE1: 5447kcal/kg
 サンプルE2: 6020kcal/kg
 サンプルE3: 4920kcal/kg
(6) Measurement of combustion heat quantity <Measurement method>
The amount of combustion heat of samples A, C2, D, and E1 to E3 was measured at Shimadzu Techno Research Co., Ltd. The measurement was carried out according to JIS-M8814 using a Shimadzu-type Ikenken automatic cylinder calorimeter CA-4AJ.
<Measurement results>
The combustibility and the amount of combustion heat per unit weight of each sample measured as described above were as follows.
Sample A: 5380 kcal / kg
Sample C2: 6984 kcal / kg
Sample D: 6600 kcal / kg
Sample E1: 5447 kcal / kg
Sample E2: 6020 kcal / kg
Sample E3: 4920 kcal / kg
(7)燃焼性の評価
<評価方法>
 図4に示すように、約5gのサンプル41を入れた灰分測定用灰皿42を三脚架台43上にセットして上下面開放の透明ガラス容器44で覆い、その上面開口44aに濾紙45を載せた状態でバーナー47に着火し、上部から吸引しながら灰分測定用灰皿42上のサンプルを燃焼させることで濾紙45に煤塵を吸着させた(図中の46は濾紙45を固定するための円環状の錘である)。
 サンプルの燃焼状態及び煤塵の発生状態を目視で観察するとともに、上記試験により煤塵が付着した濾紙45の写真を撮影した。
<評価結果>
 サンプルA、B、C4について試験を行った。
 各サンプルについての試験後の濾紙45の写真を図5に示す。
 各サンプルの燃焼状態及び煤塵の発生状態の観察結果は以下の通りである。
サンプルA:バーナー47の着火から比較的短時間でサンプルAに着火したことは確認できたが、サンプルB、C4と比較すると炎の大きさ、勢いは明らかに小さかった。ただし、燃焼中に白煙が立ちこめて途中からガラス容器44の中が見えなくなり、燃焼の様子を確認できなくなった。図5(A)に示すように、濾紙45には余り煤塵が付着しなかったが、これは、サンプルAが十分に燃焼しなかったためと思われる。
サンプルB:バーナー46の着火から数秒でサンプルに着火し、以後、勢いのある炎を上げて最期まで安定に燃焼し続けた。燃焼中にある程度濃い煤塵が発生し、図5(B)に示すように、濾紙45も相当程度に黒くなった。
サンプルC4:バーナー46の着火から数秒でサンプルに着火し、以後、勢いのある炎を上げて最期まで安定に燃焼し続けた。燃焼中に煤塵は発生したが、その程度はサンプルBに比べて格段に軽微であり、図5(C)に示すように、濾紙に付着した煤塵量も明らかにサンプルBよりも少なかった。
(7) Evaluation of flammability <Evaluation method>
As shown in FIG. 4, an ashtray for ash measurement 42 containing about 5 g of a sample 41 was set on a tripod mount 43 and covered with a transparent glass container 44 open at the top and bottom, and a filter paper 45 was placed on the top opening 44a. In this state, the burner 47 is ignited, and dust on the filter paper 45 is adsorbed by burning the sample on the ashtray 42 for ash measurement while sucking from above (46 in the figure is an annular shape for fixing the filter paper 45). A weight).
While visually observing the burning state of the sample and the generation state of the dust, a photograph of the filter paper 45 to which the dust was attached was taken by the above test.
<Evaluation results>
Samples A, B, and C4 were tested.
A photograph of the filter paper 45 after the test for each sample is shown in FIG.
The observation results of the combustion state and dust generation state of each sample are as follows.
Sample A: It was confirmed that the sample A ignited in a relatively short time after the ignition of the burner 47, but the size and momentum of the flame were clearly smaller than those of the samples B and C4. However, white smoke stood up during combustion, and the inside of the glass container 44 was not visible from the middle, making it impossible to confirm the state of combustion. As shown in FIG. 5 (A), not so much dust adhered to the filter paper 45, which is probably because the sample A did not burn sufficiently.
Sample B: The sample was ignited within a few seconds after the burner 46 was ignited, and thereafter, a vigorous flame was raised and combustion continued stably until the end. During the combustion, soot that was thick to some extent was generated, and as shown in FIG. 5B, the filter paper 45 was also considerably blackened.
Sample C4: The sample was ignited within a few seconds after the burner 46 was ignited, and thereafter, a vigorous flame was raised and combustion continued stably until the end. Although dust was generated during combustion, the level was much lighter than that of sample B, and the amount of dust adhering to the filter paper was clearly less than that of sample B as shown in FIG.
(8)考察
 上記実験結果から以下のことが言える。
(8) Discussion The following can be said from the experimental results.
[a]固形の脂肪酸マグネシウムの生成
 高粘度の液状の粗製グリセリン(サンプルA)に塩化マグネシウム水溶液を添加し、水洗、濾過することで、固形の脂肪酸マグネシウム(サンプルC1~C4)を得ることができた。
[A] Formation of solid fatty acid magnesium Solid magnesium fatty acid (samples C1 to C4) can be obtained by adding magnesium chloride aqueous solution to high viscosity liquid crude glycerin (sample A), washing with water and filtering. It was.
[b]グリセリン含有量
 表1におけるサンプルBとサンプルC1~C4のグリセリン含有量の比較から、脂肪酸マグネシウムを水洗、濾過することでグリセリンを効果的に除去できることが判る。
 サンプルC1、C2とサンプルC3、C4の比較から、水洗の方法としては、攪拌によるよりも、ナノマイザー装置1による方がグリセリンの除去効果は高いと言える。
 ただし、サンプルC1とC2、サンプルC3とC4の比較から、水洗の方法が同じである場合には、水洗+濾過の回数を増やしてもグリセリン含有量はさほど小さくならなかった。
 なお、上記実施例のグリセリン含有量の評価は各サンプル中のグリセリン量を直接測定したものではないが、算出されたグリセリン比率Rは各サンプルの性状や外観の観察結果と整合しており、少なくとも各サンプル中のグリセリン量の大小関係を忠実に表しているものと考えられる。
[B] Glycerin content From the comparison of the glycerin contents of Sample B and Samples C1 to C4 in Table 1, it can be seen that glycerin can be effectively removed by washing and filtering the fatty acid magnesium.
From the comparison between the samples C1 and C2 and the samples C3 and C4, it can be said that the nanomizer device 1 has a higher glycerin removal effect than the stirring method as a washing method.
However, from the comparison of samples C1 and C2 and samples C3 and C4, when the washing method was the same, the glycerin content did not decrease so much even if the number of washing and filtration was increased.
In addition, although the evaluation of the glycerin content in the above examples is not a direct measurement of the glycerin amount in each sample, the calculated glycerin ratio R is consistent with the observation results of the properties and appearance of each sample, and at least It is considered that the magnitude relationship of the amount of glycerin in each sample is faithfully represented.
[c]カリウム含有量
 実験日程の関係で各サンプルのカリウムイオン含有量は未測定である。
 しかし、カリウムイオンの水溶性が非常に高いことから、サンプルC1~C4、Dのカリウムイオン含有量は水洗により大幅に低下していると考えられる。
[C] Potassium content The potassium ion content of each sample is not measured due to the experimental schedule.
However, since the water solubility of potassium ions is very high, it is considered that the potassium ion contents of Samples C1 to C4 and D are greatly reduced by washing with water.
[d]マイクロカプセル化
 サンプルC1の脂肪酸マグネシウムは、ある程度のウェット感が感じられる程度にグリセリンを含有しているが、これにエチルセルロースを被覆することでさらさらの粉末(サンプルD)を得ることができた。
 なお、サンプルC2~C4のグリセリン含有量はサンプルC1と同程度又はそれ以下と考えられるため、サンプルC2~C4を用いた場合はよりさらさらの(グリセリンが滲み出さない)粉末を得ることができると考えられる。
[D] Microencapsulation The fatty acid magnesium of sample C1 contains glycerin to such an extent that a certain wet feeling can be felt. By coating this with ethyl cellulose, a smooth powder (sample D) can be obtained. It was.
In addition, since the glycerin content of samples C2 to C4 is considered to be the same as or lower than that of sample C1, when using samples C2 to C4, it is possible to obtain a more smooth powder (where glycerin does not exude). Conceivable.
[e]ペレット化
 パームカーネルミールにサンプルDを20%又は50%配合したものをペレット化することに成功した(サンプルE1、E2)。
 なお、サンプルDの配合量を更に増やしてペレット化することも試みたが成功しなかった。これは、油分(グリセリン)の滲み出しでペレット温度が上昇しないことが原因であるため、水洗、濾過やマイクロカプセル化の条件の改善などによってマイクロカプセル化した脂肪酸マグネシウムの配合量をより大きくすることは可能と考えられる。
[E] Pelletization A 20% or 50% sample D blended with palm kernel meal was successfully pelletized (samples E1, E2).
In addition, although it tried also increasing the compounding quantity of the sample D and pelletizing, it was not successful. This is because the pellet temperature does not increase due to the oil (glycerin) oozing out, so the amount of fatty acid magnesium that has been microencapsulated should be increased by improving the conditions of washing with water, filtration, and microencapsulation. Is considered possible.
[f]燃料としての性能
・脂肪酸マグネシウム
 サンプルC2(脂肪酸マグネシウム)が高い燃焼熱量(6984kcal/kg)を有しており、サンプルA(粗製グリセリン)に対して約1600kcal/kg増加していることが確認された。これは、燃焼熱量の小さいグリセリンを除去したことによるものと考えられる。
 サンプルC1、C3、C4の燃焼熱量は未測定であるが、表1に示すように、これらのサンプルはサンプルC2と同等のグリセリン含有量であり、サンプルC2と同程度の高い燃焼熱量を有するものと考えられる。
 燃焼性の評価では、目視の観察により、サンプルB、C4(脂肪酸マグネシウム)は、サンプルA(組成グリセリン)に対して燃焼性が大幅に向上していることが確認された。これは、サンプルB、C4のグリセリン含有量がサンプルAよりも大幅に小さくなっているためであると考えられる。
 一方、上記のように、サンプルAとサンプルB、C4で燃焼性が大きく相違したため、両者間での煤塵発生量を適切に比較することは出来なかった。ただし、サンプルBとサンプルC4の比較では、明らかにサンプルC4の煤塵量が低減されており、水洗によって煤塵量を低減できることが確認できた。
 サンプルC1~C4は、ある程度のウェット感が残っており、加圧によりグリセリンが滲出する性状であるために用途は限定されるが、上記のように高い燃焼熱量と良好な燃焼性を有し、固体として取り扱うことも可能であるために、固形燃料として使用可能と考えられる。
[F] Performance as fuel-Fatty acid magnesium Sample C2 (fatty acid magnesium) has a high calorific value (6984 kcal / kg), and is increased by about 1600 kcal / kg with respect to sample A (crude glycerin). confirmed. This is considered to be due to the removal of glycerin having a small amount of combustion heat.
Samples C1, C3, and C4 have not been measured for the calorific value, but as shown in Table 1, these samples have the same glycerin content as sample C2 and have the same high caloric value as sample C2. it is conceivable that.
In the evaluation of combustibility, it was confirmed by visual observation that the combustibility of Samples B and C4 (fatty acid magnesium) was significantly improved with respect to Sample A (composition glycerin). This is considered to be because the glycerin content of Samples B and C4 is significantly smaller than that of Sample A.
On the other hand, as described above, the combustibility was greatly different between Sample A and Samples B and C4. Therefore, it was not possible to properly compare the amount of dust generated between them. However, in the comparison between sample B and sample C4, it was confirmed that the amount of dust in sample C4 was clearly reduced, and that the amount of dust could be reduced by washing with water.
Samples C1 to C4 still have some wet feeling and are limited in use because of the property that glycerin exudes by pressurization, but have high combustion heat and good combustibility as described above. Since it can be handled as a solid, it can be used as a solid fuel.
・マイクロカプセル化した脂肪酸マグネシウム
 粗製グリセリンから得られた脂肪酸マグネシウムをマイクロカプセル化したもの(サンプルD)は、さらさらの粉末状であり、高い燃焼熱量(6600kcal/kg)を有しており、上記のように脂肪酸マグネシウムの水洗によって煤塵量も大幅に低減することが可能である。粉末であるために運搬等の取扱性に問題を有し得るが、用途によっては優れた固形燃料として使用可能と考えられる。
-Microencapsulated fatty acid magnesium Microcapsulated fatty acid magnesium obtained from crude glycerin (sample D) is a smooth powder and has a high calorific value (6600 kcal / kg). Thus, the amount of dust can be significantly reduced by washing with fatty acid magnesium. Since it is a powder, it may have a problem in handling properties such as transportation, but it can be used as an excellent solid fuel depending on applications.
・ペレット化した脂肪酸マグネシウム
 粗製グリセリンから得られた脂肪酸マグネシウムをマイクロカプセル化したものをパームカーネルミールと配合することで、固形燃料としての使用に好適な十分な固さのペレットを成型することができた(サンプルE1、E2)。これらは、脂肪酸マグネシウムを含有するために、パームカーネルミール100%のサンプルE3(4920kcal/kg)よりも高い燃焼熱量(5447kcal/kg、6020kcal/kg)を有しており、上記のように脂肪酸マグネシウムの水洗によって煤塵量も大幅に低減することが可能であることから、様々な用途において優れた固形燃料として使用可能と考えられる。
・ Pelletized Fatty Magnesium By blending microcapsulated fatty acid magnesium obtained from crude glycerin with palm kernel meal, pellets with sufficient hardness suitable for use as solid fuel can be molded. (Samples E1, E2). Since these contain fatty acid magnesium, they have a higher calorific value (5447 kcal / kg, 6020 kcal / kg) than the sample E3 (4920 kcal / kg) of palm kernel meal 100%. Since the amount of dust can be greatly reduced by washing with water, it can be used as an excellent solid fuel in various applications.
 以上説明したように、粗製グリセリンから得られる脂肪酸非水溶化物から優れた性能の固形燃料が得られることが実証された。 As described above, it was demonstrated that a solid fuel having excellent performance can be obtained from a fatty acid water-insoluble product obtained from crude glycerin.
 上記実施例では、脂肪酸非水溶化物が脂肪酸マグネシウムである場合につき説明したが、粗製グリセリン中の脂肪酸を非水溶化すれば、グリセリンやナトリウムイオン、カリウムイオン等の分離が可能であるため、上記実施例と同様の効果を達成することができる。特に、脂肪酸とカルシウムやアルミニウムなどの2価又は3価の金属イオンとの塩は、水溶性が低く、弱アルカリ性であるなど、脂肪酸マグネシウムと共通の性質を有しているため、脂肪酸非水溶化物を脂肪酸カルシウムや脂肪酸アルミニウムなどとした場合も、上記実施例と同様の効果を達成することができる。 In the above examples, the case where the fatty acid water-insolubilized product is fatty acid magnesium has been described. However, if the fatty acid in the crude glycerin is water-insoluble, it is possible to separate glycerin, sodium ions, potassium ions, etc. The same effect as the example can be achieved. In particular, a salt of a fatty acid and a divalent or trivalent metal ion such as calcium or aluminum has properties common to fatty acid magnesium such as low water solubility and weak alkalinity. When fatty acid calcium, fatty acid aluminum or the like is used, the same effect as in the above embodiment can be achieved.

Claims (8)

  1.  動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン又は脂肪酸混和物に含まれる脂肪酸を非水溶化することにより得られる脂肪酸非水溶化物を含有することを特徴とする燃料。 A fuel comprising a fatty acid water-insolubilized product obtained by water-solubilizing a fatty acid contained in crude glycerin or a fatty acid mixture produced as a by-product in the process of generating biofuel from fats and oils derived from animals and plants.
  2.  前記脂肪酸非水溶化物が、前記粗製グリセリン又は前記脂肪酸混和物に含まれる脂肪酸が陽イオンと結合することにより生成される非水溶性の脂肪酸塩であることを特徴とする請求項1に記載の燃料。 2. The fuel according to claim 1, wherein the fatty acid water-insolubilized product is a water-insoluble fatty acid salt produced by combining a fatty acid contained in the crude glycerin or the fatty acid mixture with a cation. .
  3.  前記所定の陽イオンが2価又は3価の金属イオンであることを特徴とする請求項2に記載の燃料。 3. The fuel according to claim 2, wherein the predetermined cation is a divalent or trivalent metal ion.
  4.  高圧分散装置を用いて前記脂肪酸非水溶化物が分散した懸濁液中の前記脂肪酸非水溶化物を微細化及び/又は高分散化した後に、前記懸濁液から水及び水溶性成分の全部又は一部を分離することにより高純度化された前記脂肪酸非水溶化物を含有することを特徴とする請求項1~3のいずれか一項に記載の燃料。 After the fatty acid water-insoluble material in the suspension in which the fatty acid water-insoluble material is dispersed is refined and / or highly dispersed using a high-pressure dispersing device, all or one of water and water-soluble components is removed from the suspension. The fuel according to any one of claims 1 to 3, comprising the fatty acid water-insolubilized product that has been highly purified by separating a part thereof.
  5.  前記脂肪酸非水溶化物の粒子が膜物質により被覆されていることを特徴とする請求項1~4のいずれか一項に記載の燃料。 The fuel according to any one of claims 1 to 4, wherein the fatty acid water-insoluble product particles are coated with a membrane substance.
  6.  前記膜物質が、セルロースのエーテル誘導体又はセルロースの有機酸エステル誘導体で構成されることを特徴とする請求項5に記載の燃料。 6. The fuel according to claim 5, wherein the membrane substance is composed of an ether derivative of cellulose or an organic acid ester derivative of cellulose.
  7.  請求項1~6のいずれかの燃料を単体で、若しくは他の材料と混合して加圧することで所定のサイズ、形状に固結させたことを特徴とする燃料。 A fuel characterized in that the fuel according to any one of claims 1 to 6 is solidified into a predetermined size and shape by being pressed alone or mixed with another material and pressurized.
  8.  動植物由来の油脂類からバイオ燃料を生成する過程で副生される粗製グリセリン又は脂肪酸混和物に含まれる脂肪酸を非水溶化させることにより脂肪酸非水溶化物を生成する第1ステップと、
     前記脂肪酸非水溶化物を分散させた懸濁液を生成する第2ステップと、
     高圧分散装置を用いて前記懸濁液中の前記脂肪酸非水溶化物を微細化及び/又は高分散化する第3ステップと、
     前記第3ステップを経た前記懸濁液中の前記脂肪酸非水溶化物から水及び水溶性成分の全部又は一部を分離する第4ステップとを有することを特徴とする燃料の製造方法。
    A first step of producing a fatty acid water-insolubilized product by water-solubilizing a fatty acid contained in crude glycerin or a fatty acid mixture produced as a by-product in the process of producing biofuel from fats and oils derived from animals and plants;
    A second step of producing a suspension in which the fatty acid water-insoluble material is dispersed;
    A third step in which the fatty acid water-insoluble product in the suspension is refined and / or highly dispersed using a high-pressure dispersing device;
    And a fourth step of separating all or part of water and water-soluble components from the fatty acid water-insolubilized product in the suspension subjected to the third step.
PCT/JP2009/055912 2009-03-25 2009-03-25 Fuel and fuel manufacturing method WO2010109600A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/055912 WO2010109600A1 (en) 2009-03-25 2009-03-25 Fuel and fuel manufacturing method
US13/259,037 US20120090222A1 (en) 2009-03-25 2009-03-25 Fuel manufacturing method
CN2009801594964A CN102449126A (en) 2009-03-25 2009-03-25 Fuel and fuel manufacturing method
JP2011505724A JPWO2010109600A1 (en) 2009-03-25 2009-03-25 Fuel and fuel production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055912 WO2010109600A1 (en) 2009-03-25 2009-03-25 Fuel and fuel manufacturing method

Publications (1)

Publication Number Publication Date
WO2010109600A1 true WO2010109600A1 (en) 2010-09-30

Family

ID=42780309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055912 WO2010109600A1 (en) 2009-03-25 2009-03-25 Fuel and fuel manufacturing method

Country Status (4)

Country Link
US (1) US20120090222A1 (en)
JP (1) JPWO2010109600A1 (en)
CN (1) CN102449126A (en)
WO (1) WO2010109600A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794283A (en) * 2016-08-29 2018-03-13 中国农业大学 Motor vehicle new energy materialses and its application
CN109536235A (en) * 2018-10-19 2019-03-29 鄞瑞扬 Solid-state bio-fuel-oil and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259972A (en) * 1995-03-20 1996-10-08 Sekiyu Sangyo Kasseika Center Fuel additive and fuel
JP2006193683A (en) * 2005-01-17 2006-07-27 Cdm Consulting:Kk Diesel fuel containing fatty acid metal compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192500A (en) * 1986-02-18 1987-08-24 株式会社資生堂 Recovery of crude glycerine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259972A (en) * 1995-03-20 1996-10-08 Sekiyu Sangyo Kasseika Center Fuel additive and fuel
JP2006193683A (en) * 2005-01-17 2006-07-27 Cdm Consulting:Kk Diesel fuel containing fatty acid metal compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Bio Ekitai Nenryo", 22 June 2007, NTS INC., pages: 240 - 242 *

Also Published As

Publication number Publication date
CN102449126A (en) 2012-05-09
US20120090222A1 (en) 2012-04-19
JPWO2010109600A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
Etim et al. Effectiveness of biogenic waste‐derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production
RU2503714C2 (en) Integrated method of producing biofuel from different types of raw material and related products
US20170226330A1 (en) Fluid composition comprising lignin
Dagde Extraction of vegetable oil from avocado seeds for production of biodiesel
WO2010109600A1 (en) Fuel and fuel manufacturing method
JP2010265334A (en) Fuel oil, and dispersion-stabilizing agent for use for dissolution of water added in waste oil
ES2784707T3 (en) Fuel composition from biomass, its preparation and combustion procedure
KR20120002889A (en) Additives for manufacturing emulsion fuel oil and emulsion fuel oil comprising the same
CN102892871B (en) Process for production of liquefied material from glycerin-type solid material
Jaiswal et al. Valorization of fish processing industry waste for biodiesel production: Opportunities, challenges, and technological perspectives
JP2008239751A (en) Diesel engine fuel produced by using oil derived from vegetable (biomass oil)
Vasco et al. A simple method for extraction of Ricinus communis L. oil and its application for biodiesel production by ethylic route
JP5933071B2 (en) Additive for water fuel and method for producing the same
Sinha et al. Study on yield percentage of biodiesel from waste cooking oil using transesterification
Dulawat et al. Study on biodiesel production and characterization for used cooking oil
JP5744696B2 (en) Method for producing liquid fuel, liquid fuel produced by the production method, and A fuel oil alternative fuel composition comprising the liquid fuel
US8535398B1 (en) Chemical complexes comprising glycerine and monoglycerides for thickening purposes
Harsono et al. Biodiesel production from waste fish for zero waste concept in remote area of Eastern of Java, Indonesia
US20180002621A1 (en) Liquid biofuel compositions
US7850747B2 (en) System for blending and storing petroleum based fuel and vegetable oil
Sivamani et al. Process modelling and simulation of biodiesel synthesis reaction for non-edible yellow oleander (yellow bells) oil and waste chicken fat
Deepika et al. The potential for fish processing wastes for biodiesel production
Gorji A review on the biodiesel production, key parameters in transesterification reaction, its effects on the environment and human health
Arbune et al. Performance and emission analysis of biodiesel (jatropha+ chicken fat) on diesel engine
ES2736103T3 (en) Procedure for preparing a combustible acid oil from the acidification of a neutralization paste of vegetable and / or animal origin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159496.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505724

Country of ref document: JP

Ref document number: 12011501875

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13259037

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09842214

Country of ref document: EP

Kind code of ref document: A1