WO2010109037A1 - Simulador solar de espectro variable - Google Patents

Simulador solar de espectro variable Download PDF

Info

Publication number
WO2010109037A1
WO2010109037A1 PCT/ES2010/000126 ES2010000126W WO2010109037A1 WO 2010109037 A1 WO2010109037 A1 WO 2010109037A1 ES 2010000126 W ES2010000126 W ES 2010000126W WO 2010109037 A1 WO2010109037 A1 WO 2010109037A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
source
solar simulator
simulator according
variable
Prior art date
Application number
PCT/ES2010/000126
Other languages
English (en)
French (fr)
Other versions
WO2010109037A4 (es
Inventor
Juan Carlos MARTÍNEZ ANTÓN
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Priority to EP10755467.7A priority Critical patent/EP2413019A4/en
Priority to US13/257,465 priority patent/US8579446B2/en
Publication of WO2010109037A1 publication Critical patent/WO2010109037A1/es
Publication of WO2010109037A4 publication Critical patent/WO2010109037A4/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/02Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for simulating daylight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1282Spectrum tailoring

Definitions

  • the invention falls within the field of solar simulators, more specifically the system serves to generate a laboratory source with the characteristics of the sun, reproducing its spectrum and its angular or collimation properties. Both the spectrum and the collimation can be modulated at will. STATE OF THE TECHNIQUE
  • Photovoltaic technology is based on the photoelectric effect.
  • semiconductors When certain materials called semiconductors are exposed to sunlight, the valence band electrons can be excited to the conduction band. When this phenomenon occurs, the physical structure of the semiconductors creates an electric field that establishes a path of the electrons so that an electric current is generated. This photoelectric effect takes place in photovoltaic cells.
  • the characterization of the response of photovoltaic cells is carried out through systems that essentially reproduce a spectrum similar to solar.
  • the AM1.5G spectrum is the reference standard that is used for the characterization of photovoltaic systems and cells of flat module technology (according to IEC 61904-1).
  • a laboratory light source capable of reproducing that spectrum is necessary. They are called solar simulators, which essentially reproduce a spectrum similar to solar.
  • conventional simulators make use of a primary source (xenon and halogen lamps) that reproduce a spectrum quite similar to AM1.5G. These lamps have a series of near-infrared peaks (800 to 1,000 nm) that are usually removed by using dichroic filters.
  • the optics are configured to obtain a uniform irradiance and as close as possible to the solar irradiance. This configuration is useful in conventional flat module photovoltaic technologies and even those that work at low concentration as with silicon cells and homo-junction photovoltaic cells.
  • the fact of using a high concentration optics causes the need to strictly align the system towards the sun.
  • the usual solar simulators are also not designed to cover the need for a simulated source that has the same angular distribution characteristics as the sun and thus be able to faithfully reproduce the actual operating conditions of the photovoltaic device.
  • the light source consists of a single lamp. Use is made of one or several different filters equipped with an actuation system that allows it to be moved by allowing the necessary amount of light to pass through each one to reproduce the desired spectrum in the receiver.
  • the present invention describes a variable spectrum solar simulator for characterization of photovoltaic systems or components thereof. It solves the problems existing in the State of the Art described above, since it allows to obtain a spectrum adjusted to the solar spectrum, whether it is a standard spectrum or a real spectrum adjusted to local irradiation conditions as well as allowing the reproduction of the space-angular characteristics of the sun. Basically it includes:
  • DA Diaphragm
  • the mechanisms and optical systems to accomplish said tasks can be of various types, but the key of the invention is the spatial distribution of the spectrum of a source to be able to filter it spatially at will by means of a mask and obtain a radiation with a custom designed spectrum, in particular for the application of solar simulation but not limited to it.
  • an analog or digital control system comprising:
  • Part C represents A and B drawn on the same graph.
  • a broad-spectrum radiation source or a combination of several sources adapted to illuminate a slit or slits (fig. 1: A , B, ...) or other form of openings.
  • the set of source openings (102) make up the opening diaphragm of the system (D.A) or primary source and has the spectral characteristics of the original sources.
  • a collimation of the D.A. is first performed. (102) by means of lenses, mirrors or any equivalent optical system (103) that allow to perform said function (known to anyone versed in the subject).
  • the dispersing element (104) can be a diffraction network (by reflection or by transmission), a prism, a Zenger prism or a matrix or grouping of conventional or Zenger prisms.
  • An optical system (105) then projects an image (106) of the primary source (102) (or Exit Pupil (PS) of the system), but spectrally separated, that is, to each wavelength D Ie corresponds to a position of the image or PS different (fig. 1: A ', B', ).
  • a spatial mask (107) or an active device such as a DMA (Digital Mirror Array), an LCD (Liquid Crystal Dysplay), LCOS (LC On Silicon) or any other device that allows the selective passage of light point by point, which allows that when acting with a spatial filtering it translates into a customized spectral filtering.
  • DMA Digital Mirror Array
  • LCD Liquid Crystal Dysplay
  • LCOS LC On Silicon
  • a pickup optics such as a mirror (108) or a lens (208) whose function is to collect the filtered light to introduce it into a spectrum remixing system.
  • This re-mixing system can be an integrating sphere (215), or the remixing can work by applying the reversibility principle by means of a mirror (108). That is, the light that returns along the same path and forms an image of the D.A. or secondary source, for example in Figure 1 in A ", B" (110).
  • This secondary source (110, 210) has the desired spectrum and mixed.
  • An additional angular and spatial mixing is performed through an integrating sphere (210) or a specific optical homogenizer (113).
  • the light has a spatial distribution similar to that of the primary source (A ", B"), when passing through the homogenizer, the light is distributed through a different opening, typically a circle (110B , 210), ensuring a minimum loss of irradiance from the secondary source.
  • the homogenizer (113) may comprise a matrix of micro-lenses, a diffuser, a transparent cylinder or an elongated mixing device, which alone or in combination allow redistributing and mixing the light within a solid angle of propagation similar to that of the input. In this way, at the outlet opening of the homogenizer the light is distributed uniformly spatially and angularly.
  • a transmission (111) or reflection (211) optics collects the mixed light (110B, 210) and the collimatically appropriately to maintain a specific or arbitrary collimation angular relationship, in particular one close to the solar collimation, and thus have a beam of rays (112) according to specifications.
  • a beam splitter (109) is added. If not present, all filtered and re-mixed light would fall back on the primary opening (102).
  • the beam splitter (109) allows the incident light in the system and the output light to work separately.
  • the beam splitter (109) is a simple mirror that would act at the entrance of the light, but not at the exit, for example, slightly misaligning the system (108) in order to save the mirror ( 109).
  • slightly misaligning the system (108) in order to save the mirror ( 109).
  • it allows to save that the image of the D.A. fall on itself, regardless of whether there is a beam splitter or not, allowing to operate with the secondary source (110) below.
  • the simulated source covers an angular distribution greater than the solar one, which allows saturating the angular acceptance or field of vision of the photovoltaic concentration systems and that the cell receives an irradiance close to that of real operation.
  • This entire system is accompanied by an analog or digital control system, which includes: - a system for detecting and measuring the spectrum emitted by the synthetic or simulated source.
  • control system obtains the spectrum measured at the output of the device, compares it with the desired one and calculates how it should act on the spatial mask or spectral filter to adjust to the level of radiation and spectrum sought.
  • Figure 3A shows the standard solar spectrum AM1.5D of direct solar irradiation.
  • Figure 3B shows the spectrum generated by the solar simulator based on the invention, for a spectral resolution of 10 nm, transferable to a specific spatial resolution in the space mask.
  • Figure 3C the spectra A and B are shown in the same graph, where the great similarity between the AM1.5 standard and that generated by the solar simulator of the invention is observed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Simulador solar de espectro variable para caracterización de sistemas fotovoltaicos. Permite obtener un espectro ajustado al espectro solar, tanto si éste es un espectro estándar o un espectro real ajustado a unas condiciones locales de irradiación. También permite la reproducción de las características espacio-angulares del sol. Comprende una fuente luminosa de amplio espectro cuyo flujo sale a través de una apertura, un sistema óptico que colima dicha fuente primaria, un sistema que dispersa el haz cromáticamente, un sistema óptico que forma imagen de la fuente primaria dispersada en una cierta posición, dónde se coloca, una máscara espacial que permite filtrar espectralmente la irradiancia recibida, un sistema óptico que captura el espectro filtrado y lo reconduce, mezcla y concentra en una fuente secundaria con las características espectrales, angulares y espaciales buscadas, un sistema óptico que colima dicha fuente secundaria de forma que reproduzca las características angulares del sol y un sistema de control.

Description

SIMULADOR SOLAR DE ESPECTRO VARIABLE
SECTOR DE LA TÉCNICA
La invención se encuadra dentro del campo de los simuladores solares, más concretamente el sistema sirve para generar una fuente de laboratorio con las características del sol, reproduciendo su espectro y sus propiedades angulares o de colimación. Tanto el espectro como Ia colimación pueden ser modulados a voluntad. ESTADO DE LA TÉCNICA
La creciente necesidad de energías renovables y sostenibles ha dado un nuevo impulso a Ia conversión fotovoltaica de Ia energía solar. La tecnología fotovoltaica se basa en el efecto fotoeléctrico. Cuando ciertos materiales llamados semiconductores son expuestos a los rayos solares, los electrones de Ia banda de valencia pueden ser excitados a Ia banda de conducción. Cuando este fenómeno ocurre, Ia estructura física de los semiconductores crea un campo eléctrico que establece una trayectoria de los electrones de manera que se genera una corriente eléctrica. Este efecto fotoeléctrico tiene lugar en las células fotovoltaicas.
La caracterización de Ia respuesta de las células fotovoltaicas se realiza a través de sistemas que en esencia reproducen un espectro similar al solar. El espectro AM1.5G es el patrón de referencia que se emplea para Ia caracterización de sistemas y células fotovoltaicas de tecnología de módulo plano (atendiendo a Ia norma IEC 61904-1). Para poder llevar a cabo caracterización de dichos sistemas en el interior, es necesaria una fuente de luz de laboratorio capaz de reproducir ese espectro. Son los denominados simuladores solares, que en esencia reproducen un espectro similar al solar.
En este sentido, los simuladores convencionales hacen uso de una fuente primaria (lámparas de xenón y halógenas) que reproducen un espectro bastante parecido al AM1.5G. Estas lámparas presentan una serie de picos en el infrarrojo cercano (800 a 1.000 nm) que suelen eliminarse mediante el uso de filtros dicroicos. La óptica se configura para obtener una irradiancia uniforme y Io más próxima posible a Ia irradiancia solar. Esta configuración es útil en tecnologías fotovoltaicas convencionales de módulo plano e incluso en aquellas que trabajan a baja concentración como con las células de silicio y células fotovoltaicas de homo-unión.
En el caso de sistemas de alta concentración, en los que se hace uso de un sistema óptico para concentrar Ia luz solar por encima de 200 veces sobre una célula de alta eficiencia, Ia situación es distinta. A día de hoy no existe ningún estándar de referencia para caracterización de este tipo de sistemas. No obstante, el uso lámparas de xenón con filtros espectrales no proporciona datos tan fiables como en el caso de módulo plano ya que las células fotovoltaicas usadas, típicamente multi-unión organizadas en tándem, como por ejemplo las basadas en semiconductores Ml-V, necesitan de un acoplo en serie de Ia corriente eléctrica que atraviesa Ia célula. Cada unión p-n genera una cierta cantidad de foto-electrones en su banda de absorción y que debe ser Ia misma cantidad en las otras uniones p-n acopladas en serie para que el rendimiento sea óptimo. Este diseño hace que las células fotovoltaicas tengan una gran sensibilidad a Ia distribución espectral de Ia fuente solar, Io cual obliga a un diseño cuidadoso que debe considerar el espectro de radiación que nominalmente va a recibir Ia célula.
Por tanto, Ia caracterización de su respuesta no es posible realizarla con los simuladores solares conocidos, pues Ia similitud con el espectro solar es pobre, está fijada de antemano y está limitada por diseño, ya que los filtros dicroicos no permiten ajustar el espectro de una manera fina sin aumentar el coste del simulador de forma prohibitiva. Es por ello necesario un sistema de menor coste que permita generar espectros variables y mucho más próximos a Ia distribución espectral de energía solar.
Por otro lado, el hecho de usar una óptica de alta concentración provoca Ia necesidad de alinear estrictamente el sistema hacia el sol. Los simuladores solares habituales tampoco están pensados para cubrir Ia necesidad de una fuente simulada que tenga las mismas características de distribución angular que el sol y con ello poder reproducir fielmente las condiciones de operación real del dispositivo fotovoltaico.
El estado de Ia técnica actual muestra multitud de variantes de simuladores solares. En Io que respecta a caracterización de células solares convencionales, tal y como se comentó previamente, en Ia norma IEC 61904-1 se especifican las condiciones mínimas que debe cumplir Ia fuente de iluminación. Dichos requisitos suelen cumplirse mediante el uso de una lámpara de xenón seguida de un filtro AM1.5. No obstante, continuamente han aparecido mejoras orientadas a aplicaciones concretas.
Centrando el análisis en simuladores cuyas propuestas de mejora coincidan con las de Ia invención, principalmente Ia capacidad de reproducir de forma muy precisa Ia distribución espectral solar, se pueden encontrar en el estado de Ia técnica diversas aproximaciones.
Por ejemplo, en US 4641227 el sistema propuesto es bastante simple y en consecuencia poco versátil. Se plantea el uso de una lámpara de xenón en combinación con una lámpara de filamento incandescente. La suma de ambas reproduce con cierta exactitud el espectro AM 1.5, no obstante, no se dispone de Ia posibilidad de reproducir distintas distribuciones espectrales. Además, para caracterización de sistemas de concentración el grado de aproximación al espectro solar es aún insuficiente.
Por su parte en US 4789989 y US005217285 A, se plantean sistemas que hacen uso de una serie de lámparas y guías de ondas para obtener distintas fuentes de radiación en determinados rangos espectrales. Controlando el tipo y el número de lámparas y Ia intensidad de radiación de cada una se puede controlar el espectro de salida.
Finalmente, en US6590149B2 Ia fuente de luz consiste en una única lámpara. Se hace uso de uno o varios filtros distintos dotados de un sistema de accionamiento que permite moverlo dejando pasar Ia cantidad de luz necesaria por cada uno de ellos para reproducir en el receptor el espectro deseado.
En Io que respecta a simuladores solares diseñados específicamente para sistemas de concentración, Ia mayoría de las propuestas se orientan a Ia caracterización de células de triple unión. Son escasas las aportaciones al estado de Ia técnica en las que el objeto final de Ia invención es el de Ia caracterización de sistemas completos o de ópticas de concentración. Además, en aquellos casos en los que es éste el objetivo fundamental, se observan una serie de carencias que inducirán diferencias significativas frente a los resultados obtenidos ante condiciones reales de radiación solar. La principal carencia identificada es Ia incapacidad para reproducir el espectro solar dentro de ciertos márgenes de error. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención describe un simulador solar de espectro variable para caracterización de sistemas fotovoltaicos o componentes del mismo. En ella se solucionan los problemas existentes en el Estado de Ia Técnica descritos anteriormente, ya que permite obtener un espectro ajustado al espectro solar, tanto si éste es un espectro estándar o un espectro real ajustado a unas condiciones locales de irradiación así como también permite Ia reproducción de las características espacio-angulares del sol. Básicamente comprende:
1) una fuente luminosa de amplio espectro o combinación de varias, cuyo flujo radiante de salida se realiza a través de una apertura o conjunto de varias específicas, que en adelante llamaremos fuente primaria o Diafragma de Apertura (D.A.) , por ejemplo una dos rendijas (Fig.1 : A, B)
2) un sistema óptico que colima dicha fuente primaria
3) un sistema que dispersa el haz cromáticamente, por ejemplo, una red de difracción
4) un sistema óptico que forma imagen de Ia fuente primaria dispersada en una cierta posición, dónde se coloca
5) una máscara espacial fija o dinámica que permite filtrar espectralmente Ia irradiancia recibida
6) un sistema óptico que captura el espectro filtrado y Io reconduce, mezcla y concentra en una fuente secundaria con las características espectrales, espaciales y angulares buscadas
7) un sistema óptico que colima dicha fuente secundaria de forma que reproduzca las características angulares del sol u otras características angulares específicas.
Los mecanismos y sistemas ópticos para cumplir dichas tareas pueden ser de diversos tipos, pero Ia clave de Ia invención es Ia distribución espacial del espectro de una fuente para poder filtrarla espacialmente a voluntad mediante una máscara y obtener una radiación con un espectro diseñado a medida, en particular para Ia aplicación de simulación solar pero no limitada a ello.
Finalmente, con objeto de facilitar Ia caracterización de los sistemas fotovoltaicos y de dotar de mayor versatilidad al simulador, se podrá añadir un sistema de control analógico o digital, que comprende:
1) un sistema de detección y medida del espectro emitido por Ia fuente sintética o simulada.
2) un actuador sobre Ia máscara espacial activa que permita controlar el filtrado espectral de Ia luz primaria conforme al espectro de radiación deseado
Descripción breve de las figuras
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de Ia misma se acompaña un juego de dibujos donde, con carácter ilustrativo y no limitativo, se representa, de acuerdo con una realización preferente de Ia misma, Io siguiente: Figura 1
Esquema básico de funcionamiento de un simulador solar espectral en una posible realización en dónde Ia luz filtrada se retro-refleja, de manera que se recombina en el elemento dispersor para dar una fuente secundaria que posteriormente se colima para representar al sol. Figura 2
Esquema básico de funcionamiento de un simulador solar espectral en una posible realización en dónde Ia luz filtrada se introduce a una esfera integradora para su mezcla y esta fuente secundaria se colima a posteriori para simular el sol Figura 3a
Aspecto del espectro solar estándar AM 1.5D de irradiación solar directa Figura 3B
Espectro generable por el simulador solar basado en Ia invención, para una resolución espectral de 10 nm, trasladable a una determinada resolución espacial en Ia máscara espacial. Figura 3C
La parte C representa Ia A y B dibujadas en Ia misma gráfica. Realización preferente de Ia invención
Tal y como se muestra en Ia Figura 1 y en Ia Figura 2 en el sistema objeto de Ia invención debemos partir de una fuente de radiación de amplio espectro o una combinación de varias fuentes adaptadas para iluminar una rendija o rendijas (fig.1 : A, B,...) u otra forma de aberturas. El conjunto de aberturas fuente (102) conforman el diafragma de apertura del sistema (D.A) o fuente primaria y posee las características espectrales de las fuentes originales.
Para filtrarla de manera que el espectro obtenido tenga Ia distribución espectral buscada (por ejemplo Ia solar) se realiza primero una colimación del D.A. (102) mediante lentes, espejos o cualquier sistema óptico equivalente (103) que permitan realizar dicha función (conocidos para cualquiera versado en el tema).
Después se hace pasar este haz por un elemento dispersor (cromáticamente) (104) que desvíe el haz de forma diferente para cada longitud de onda. El elemento dispersor (104) puede ser una red de difracción (por reflexión o por transmisión), un prisma, un prisma Zenger o una matriz o agrupación de prismas convencionales o de Zenger.
Un sistema óptico (105) proyecta a continuación una imagen (106) de Ia fuente primaria (102) (o Pupila de Salida (P. S.) del sistema), pero separada espectralmente, es decir, a cada longitud de onda D Ie corresponde una posición de Ia imagen o P.S. diferente (fig.1: A', B',...).
En Ia zona dónde se forma Ia imagen y se distribuye espacialmente el espectro de Ia fuente primaria, se coloca una máscara espacial (107) o un dispositivo activo como un DMA (Digital Mirror Array), un LCD (Liquid Cristal Dysplay), LCOS (LC On Silicon) o cualquier otro dispositivo que permita el paso selectivo de luz punto por punto, Io que permite que al actuar con un filtrado espacial se traduzca en un filtrado espectral a medida.
A continuación se coloca una óptica de captación como un espejo (108) o una lente (208) cuya función es recoger Ia luz filtrada para introducirla en un sistema de remezcla del espectro.
Este sistema de re-mezcla puede ser una esfera integradora (215), o bien, Ia remezcla puede funcionar aplicando el principio de reversibilidad mediante un espejo (108). Es decir, Ia luz que vuelve por el mismo camino y forma una imagen del D.A. o fuente secundaria, por ejemplo en Ia figura 1 en A", B" (110). Esta fuente secundaria (110, 210) tiene el espectro deseado y mezclado. Un mezclado angular y espacial adicional se realiza a través de una esfera integradora (210) o de un homogeneizador óptico específico (113). Si a Ia entrada del homogeneizador (110) Ia luz tiene una distribución espacial similar al de Ia fuente primaria (A", B"), al pasar a través del homogeneizador, Ia luz se distribuye por una abertura diferente, típicamente un círculo (110B, 210), procurando una pérdida mínima de irradiancia de Ia fuente secundaria.
El homogeneizador (113) puede comprender una matriz de micro-lentes, un difusor, un cilindro transparente o dispositivo alargado de mezcla, que en solitario o en combinación permitan redistribuir y mezclar Ia luz dentro de un ángulo sólido de propagación similar al de entrada. De esta manera, en Ia apertura de salida del homogeneizador Ia luz se distribuye de manera uniforme espacial y angularmente.
Finalmente, una óptica de transmisión (111) o de reflexión (211) recoge Ia luz mezclada (110B, 210) y Ia colima apropiadamente para mantener una relación angular de colimación específica o arbitraria, en particular una próxima a Ia colimación solar, y así tener un haz de rayos (112) según especificaciones.
En el caso de Ia Figura 1 se añade un divisor de haz (109). De no estar presente, toda Ia luz filtrada y re-mezclada volvería a caer sobre Ia abertura primaria (102). El divisor de haz (109) permite trabajar de forma separada Ia luz incidente en el sistema y Ia de salida. En Ia realización preferente, el divisor de haz (109) es un simple espejo que actuaría en Ia entrada de Ia luz, pero no en Ia salida, por ejemplo, desalineando ligeramente el sistema (108) para así salvar a Ia vuelta el espejo (109). En esencia, en el modo de re-mezcla por reversibilidad un cierto desalineamiento a Ia vuelta, permite salvar que Ia imagen del D.A. caiga sobre si mismo, independientemente de si hay un divisor de haz o no, permitiendo operar con Ia fuente secundaria (110) a continuación.
La fuente simulada, abarca una distribución angular mayor que Ia solar, Io que permite saturar Ia aceptancia angular o campo de visión de los sistemas de concentración fotovoltaicos y que Ia célula reciba una irradiancia cercana a Ia de operación real.
Todo este sistema va acompañado de un sistema de control analógico o digital, que comprende: - un sistema de detección y medida del espectro emitido por Ia fuente sintética o simulada.
- un actuador sobre Ia máscara espacial activa que permita controlar el filtrado espectral de Ia luz primaria conforme al espectro de radiación deseado. Para ello el sistema de control obtiene el espectro medido a Ia salida del dispositivo, Io compara con el deseado y calcula cómo debe de actuar sobre Ia máscara espacial o filtro espectral para ajustarse al nivel de radiación y espectro buscado.
En Ia figura 3A está representado el espectro solar estándar AM1.5D de irradiación solar directa. En Ia Figura 3B aparece el espectro generable por el simulador solar basado en Ia invención, para una resolución espectral de 10 nm, trasladable a una determinada resolución espacial en Ia máscara espacial. En Ia Figura 3C se representan en Ia misma gráfica los espectros A y B, donde se observa Ia gran similitud entre el estándar AM1.5 y el generado por el simulador solar de Ia invención.

Claims

REIVINDICACIONES
1 -. Simulador solar de espectro variable caracterizado porque comprende: una fuente de radiación original o combinación de varias fuentes cubriendo un amplio espectro, cuyo flujo de radiación se hace salir o se reconduce por una abertura con forma específica, típicamente una rendija, a Ia que llamamos fuente primaria y/o diafragma de apertura (D.A.)
- un sistema óptico recolector-dispersor-proyector que recoge Ia radiación del D.A. y proyecta Ia radiación de esa fuente sobre su imagen (Pupila de salida o P. S.), pero dispersada espectralmente,
- una máscara espacial (activa o pasiva) que cubre las posiciones de las imágenes P. S. para dejar pasar, en mayor o menor grado, Ia luz correspondiente a diferentes longitudes de onda,
- un sistema óptico de captación de Ia luz filtrada y que reconduce el flujo radiante para volver a mezclarlo espacial y angularmente en una fuente de tamaño reducido o fuente secundaria,
- un sistema óptico que permite colimar o adaptar Ia geometría del flujo proveniente de Ia fuente secundaria o filtrada al propósito final de simular el tipo de fuente buscada (solar, por ejemplo).
- un sistema de control
2 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque su aplicación se orienta a reproducir alguna o todas las propiedades angulares y espectrales del sol.
3 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque su distribución angular es mayor que Ia del sol, Io que permite saturar Ia aceptancia angular de los concentradores ópticos en aplicación fotovoltaica o cualesquiera otra.
4 -. Simulador de espectro variable según reivindicación 1 caracterizado porque el sistema dispersor sea un prisma convencional, un prisma de visión directa o de tipo Zenger, o una agrupación de dichos prismas reducidos en tamaño y cubriendo un área extensa a Io largo de una superficie de captación.
5 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque el sistema dispersor sea una red de difracción u holograma inscrito en superficie o en volumen.
6 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque se añaden al diseño espejos planos y divisores de haz, para Ia desviación y separación de los haces luminosos atendiendo a diferentes modalidades de diseño.
7 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque se añaden al diseño filtros dicroicos, prismas o redes de difracción adicionales para separar órdenes de difracción en Ia distribución espectral sobre máscara.
8 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque el mezclado de Ia luz para generar Ia fuente secundaria, se realiza aplicando el principio de reversibilidad.
9 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque el mezclado de Ia luz para generar Ia fuente secundaria, se realiza por medio de un difusor, o una matriz de micro-lentes y/o un cilindro o vastago alargado de material transparente o una combinación de los elementos anteriores.
10 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque el mezclado de Ia luz para generar Ia fuente secundaria se realiza dentro de una esfera integradora.
11 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque Ia colimación de Ia fuente secundaria se realiza a través de una lente o de un espejo (esférico o parabólico)
12 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque se añade un sistema de control analógico o digital, que comprende:
- un sistema de detección y medida del espectro emitido por Ia fuente sintética o simulada.
- un actuador sobre Ia máscara espacial activa que permita controlar el filtrado espectral de Ia luz primaria conforme al espectro de radiación deseado que mide el espectro a Ia salida, Io compara con el deseado y calcula cómo debe actuar sobre Ia máscara espacial.
13 -. Simulador solar de espectro variable según reivindicación 1 caracterizado porque su aplicación se orienta a Ia simulación de Ia fuente solar bajo diferentes circunstancias (espectro y colimación) y para Ia caracterización de células fotovoltaicas, módulos de concentración u ópticas de concentración solar no sólo en relación a su aplicación fotovoltaica.
PCT/ES2010/000126 2009-03-27 2010-03-26 Simulador solar de espectro variable WO2010109037A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10755467.7A EP2413019A4 (en) 2009-03-27 2010-03-26 SOLAR SIMULATOR WITH VARIABLE SPECTRUM
US13/257,465 US8579446B2 (en) 2009-03-27 2010-03-26 Variable-spectrum solar simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200900845 2009-03-27
ES200900845A ES2345649B1 (es) 2009-03-27 2009-03-27 Simulador solar de espectro variable.

Publications (2)

Publication Number Publication Date
WO2010109037A1 true WO2010109037A1 (es) 2010-09-30
WO2010109037A4 WO2010109037A4 (es) 2010-11-18

Family

ID=42729395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000126 WO2010109037A1 (es) 2009-03-27 2010-03-26 Simulador solar de espectro variable

Country Status (4)

Country Link
US (1) US8579446B2 (es)
EP (1) EP2413019A4 (es)
ES (1) ES2345649B1 (es)
WO (1) WO2010109037A1 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641860A (zh) * 2007-02-23 2010-02-03 加利福尼亚大学董事会 利用菲涅耳透镜和非成像次级光学的聚光光伏系统
WO2010062532A2 (en) 2008-10-27 2010-06-03 The Regents Of The University Of California Light concentration apparatus, systems and methods
US8684545B2 (en) * 2009-07-30 2014-04-01 The Regents Of The University Of California Light concentration apparatus, systems and methods
US8355214B2 (en) * 2009-07-30 2013-01-15 The Regents Of The University Of California Light collection apparatus, system and method
US9039213B2 (en) 2009-07-30 2015-05-26 The Regents Of The University Of California Light concentration apparatus, systems and methods
US9504100B2 (en) * 2011-05-31 2016-11-22 Munro Design & Technologies, Llc Selective radiation utilization apparatuses for high-efficiency photobioreactor illumination and methods thereof
EP2824434A1 (en) * 2013-07-12 2015-01-14 Applied Materials Italia S.R.L. System and method for calibrating a light source for simulating a spectrum of solar radiation
US9910266B2 (en) * 2013-08-15 2018-03-06 The Boeing Company Spectral balancing technique
JP6485459B2 (ja) * 2014-07-25 2019-03-20 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜およびリチウムイオン二次電池
US9876133B2 (en) 2014-08-19 2018-01-23 King Fahd University Of Petroleum And Minerals Photovoltaic system for spectrally resolved solar light
US10720883B2 (en) 2017-04-24 2020-07-21 Angstrom Designs, Inc Apparatus and method for testing performance of multi-junction solar cells

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202811A (en) * 1961-06-23 1965-08-24 Bausch & Lomb Laboratory sun simulator
US3744879A (en) * 1971-10-26 1973-07-10 Hughes Aircraft Co Liquid crystal optical processor
US4641227A (en) 1984-11-29 1987-02-03 Wacom Co., Ltd. Solar simulator
US4789989A (en) 1987-09-25 1988-12-06 General Dynamics Corp./Space Systems Div. Solar simulator employing flexible-optics
US5217285A (en) 1991-03-15 1993-06-08 The United States Of America As Represented By United States Department Of Energy Apparatus for synthesis of a solar spectrum
EP1126294A2 (en) * 2000-02-17 2001-08-22 JDS Uniphase Inc. Optical configuration for a dynamic gain equalizer and a configurable add/drop multiplexer
WO2002044800A2 (en) * 2000-11-02 2002-06-06 Cambridge Research & Instrumentation, Inc. Folded liquid-crystal variable optical attenuator
US6590149B2 (en) 2001-03-02 2003-07-08 Astrium Gmbh Solar simulator with movable filter
US20050270524A1 (en) * 2004-04-02 2005-12-08 Wang David Y Broadband wavelength selective filter
US20070146700A1 (en) * 2005-12-28 2007-06-28 Kowarz Marek W Programmable spectral imaging system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623149A (en) * 1995-02-14 1997-04-22 The Aerospace Corporation High fidelity dual source solar simulator
GB2410122A (en) * 2004-01-16 2005-07-20 Imp College Innovations Ltd Tunable source of electromagnetic radiation
DE102005063373A1 (de) * 2005-05-06 2007-05-16 Ralf Adelhelm Sonnensimulator mit Messapparatur

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202811A (en) * 1961-06-23 1965-08-24 Bausch & Lomb Laboratory sun simulator
US3744879A (en) * 1971-10-26 1973-07-10 Hughes Aircraft Co Liquid crystal optical processor
US4641227A (en) 1984-11-29 1987-02-03 Wacom Co., Ltd. Solar simulator
US4789989A (en) 1987-09-25 1988-12-06 General Dynamics Corp./Space Systems Div. Solar simulator employing flexible-optics
US5217285A (en) 1991-03-15 1993-06-08 The United States Of America As Represented By United States Department Of Energy Apparatus for synthesis of a solar spectrum
EP1126294A2 (en) * 2000-02-17 2001-08-22 JDS Uniphase Inc. Optical configuration for a dynamic gain equalizer and a configurable add/drop multiplexer
WO2002044800A2 (en) * 2000-11-02 2002-06-06 Cambridge Research & Instrumentation, Inc. Folded liquid-crystal variable optical attenuator
US6590149B2 (en) 2001-03-02 2003-07-08 Astrium Gmbh Solar simulator with movable filter
US20050270524A1 (en) * 2004-04-02 2005-12-08 Wang David Y Broadband wavelength selective filter
US20070146700A1 (en) * 2005-12-28 2007-06-28 Kowarz Marek W Programmable spectral imaging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2413019A4 *

Also Published As

Publication number Publication date
US8579446B2 (en) 2013-11-12
EP2413019A1 (en) 2012-02-01
WO2010109037A4 (es) 2010-11-18
ES2345649B1 (es) 2011-07-07
EP2413019A4 (en) 2014-04-02
ES2345649A1 (es) 2010-09-28
US20120057324A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
ES2345649B1 (es) Simulador solar de espectro variable.
US20090279277A1 (en) Optical source assembly suitable for use as a solar simulator and associated methods
CN102434854A (zh) 一种高倍聚光准直型太阳模拟器光学系统
US9063006B2 (en) Optical source assembly suitable for use as a solar simulator and associated methods
CN104502304A (zh) 基于虚拟狭缝技术的微型固化近红外光谱仪
Saura et al. Experimental characterisation of irradiance and spectral non-uniformity and its impact on multi-junction solar cells: Refractive vs. reflective optics
ES2628597T3 (es) Reflectómetro portátil y método de caracterización de espejos de centrales termosolares
CN107014491B (zh) 基于散射原理的光谱测量系统及方法
CN107389602A (zh) 一种基于dlp技术的光谱系统
US20150244314A1 (en) Pseudo sunlight irradiation apparatus and method for evaluating solar battery module
RU2380663C1 (ru) Имитатор солнечного излучения
WO2012052578A1 (es) Espectrofotómetro para caracterización óptica automatizada de tubos colectores solares y método de funcionamiento
CN208537399U (zh) 一种先分光的光谱仪
CN108594412B (zh) 一种太阳模拟器
US20140307411A1 (en) Multi-lamp Solar Simulator
CN207181290U (zh) 一种基于dlp技术的光谱系统
CN212008328U (zh) Icp-aes光路系统
ES2956835B2 (es) Dispositivo de iluminacion y modulador espectral
CN207366081U (zh) 一种摄谱仪
CN214480478U (zh) 一种火星表面光谱模拟器
CN104198383A (zh) 多光路近紫外模拟器
Chen et al. A Brief Review of Solar Indoor Lighting System Integrated with Optofluidic Technologies
CN102734664A (zh) 聚光型光源模拟器
CN107965709A (zh) 一种太阳光模拟系统
CN210639086U (zh) 一种gt200低噪声高精度阿达玛变换多参数检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010755467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010755467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13257465

Country of ref document: US