WO2010108457A1 - 处理无连接消息的方法、系统和设备 - Google Patents

处理无连接消息的方法、系统和设备 Download PDF

Info

Publication number
WO2010108457A1
WO2010108457A1 PCT/CN2010/071371 CN2010071371W WO2010108457A1 WO 2010108457 A1 WO2010108457 A1 WO 2010108457A1 CN 2010071371 W CN2010071371 W CN 2010071371W WO 2010108457 A1 WO2010108457 A1 WO 2010108457A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
reset
connectionless
core network
resource
Prior art date
Application number
PCT/CN2010/071371
Other languages
English (en)
French (fr)
Inventor
叶思海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010108457A1 publication Critical patent/WO2010108457A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements

Definitions

  • TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a method, system, and device for processing connectionless messages.
  • BACKGROUND In a mobile communication system, signaling messages between a core network and an access network are classified into two types, one is a connection-oriented message, such as an Initial UE Message of an Iu interface, a Direct Transfer message, etc. It is the use of the Signaling Connection Control Protocol (SCCP).
  • SCCP Signaling Connection Control Protocol
  • a connectionless message such as a RESET, OVERLOAD message, etc., which is transmitted between the core network and the access network using SCCP connectionless services, ie, the delivery of such messages does not require an SCCP connection.
  • NSF non-access stratum node selection function
  • NAS Node Selection Function NAS Node Selection Function
  • the embodiments of the present invention provide a method, a system, and a device for processing a connectionless message, so as to implement effective processing of a connectionless message in a case where the NNSF is deployed in a resource pool on the access network.
  • the embodiment of the invention discloses a method for processing a connectionless message, which is applied to a resource pool networking scenario, and includes:
  • the preset rule is used to implement a non-access stratum node selection function.
  • the connectionless message sent by the network device is processed.
  • the embodiment of the present invention further discloses a device for processing a connectionless message, where the device is deployed between an access network device and a core network control device, and the plurality of core network control devices form a resource pool, including:
  • the receiving determining unit is configured to receive a connectionless message sent by the access network device or the core network control device, and determine a type of the connectionless message;
  • Processing unit configured to process the connectionless message according to the result of the determining and a preset rule.
  • the embodiment of the invention further discloses a system for processing a connectionless message, comprising a non-access stratum node selection function NNSF, an access network device and a core network device, wherein the non-access stratum node selection function NNSF is deployed on the access network device
  • NNSF non-access stratum node selection function
  • a plurality of the core network control devices form a resource pool, and the core network control device includes:
  • the core network control device is configured to send a connectionless message to the access network device, and receive a response message returned by the access network device;
  • a non-access stratum node selection function NNSF a connectionless message for receiving a core network control device or an access network device, determining a type of the connectionless message, and processing the no connection according to the determination result and a preset rule Message
  • the access network device is configured to send a connectionless message to the core network control device, and receive a response message returned by the core network control device.
  • FIG. 1 is a first schematic diagram of a NNSF deployment structure in the prior art
  • FIG. 2 is a second schematic diagram of a NNSF deployment structure in the prior art
  • FIG. 3 is a schematic flowchart of a connectionless message processing method according to an embodiment of the present invention
  • FIG. 4 is a first schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention
  • FIG. 6 is a third schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention
  • FIG. 7 is a fourth schematic flowchart diagram of a method for processing a connectionless message according to an embodiment of the present invention.
  • FIG. 8 is a fifth schematic flowchart diagram of a method for processing a connectionless message according to an embodiment of the present invention.
  • FIG. 9 is a sixth schematic flowchart diagram of a connectionless message processing method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a device for processing a connectionless message according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a system for processing a connectionless message according to an embodiment of the present invention.
  • the core network has a resource pool networking mode. There are two types of resource pool networking.
  • Type 1 As shown in Figure 1, the non-access stratum node selection function (NNSF, NAS Node Selection Function) is deployed on the access network device, that is, deployed on the access network device such as the Radio Network Controller (RNC). , a scenario in a base station controller (BSC, Base Station Controller);
  • NSF non-access stratum node selection function
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • Type 2 As shown in Figure 2, the NNSF is deployed between the access network device and the core network control device. That is, the scenario in which the NNSF is deployed on the access network;
  • the difference between the two types is that, in the first type, the signaling from the RNC (Radio Network Controller) to the Mobile Switching Center (MSC) is distributed to the MSCs in the resource pool through the RNC.
  • Type II from the RNC signaling between the MSC, signaling by NNSF distributed to the MSC pool of resources, signaling to the RNC just need NNSF 0
  • the RNC is connected to a plurality of NNSF, may be distributed in any An NNSF.
  • the NNSF can be a stand-alone node or can be combined with other network devices, such as the media gateway MGW (Media Gateway).
  • connectionless message (such as RESET message, Overload message, Reset Resource message, etc.) has no effective processing mechanism, resulting in failure of the service, and the function of the connectionless message. Cannot be implemented effectively.
  • the RESET message is used to notify the peer network element to initialize resources related to the local network element. If the RNC loses power and restarts, it can send a RESET message to the core network (CN, Core Network), and the CN can clear all connections established with the RNC.
  • the over load message notifies the peer network element of the overload state when the network element is overloaded, and reduces the service by the peer network element, thereby reducing the load.
  • the Reset Resource message indicates that the local connection has been cleared in the case of some faults, but the peer network element cannot be cleared by the normal clear connection mode.
  • the Reset Resource message is sent to the peer in the message. Instructs the peer network element to clear related connections. For example: RNC and MSC establish 10 IU connections (10 people call).
  • the normal release process of these connections is after the user hangs up, the core network initiates the di sconnect and release process.
  • the network and access network clear related connections. If the connection-oriented service fails due to the SCCP layer between the RNC and the MSC, the RNC will clear the connection associated with the user after the user hangs up, but the RNC cannot take the user due to the connection-oriented service failure between the RNC and the MSC.
  • the hang-up information is notified to the MSC, and the MSC cannot clear the connection resources related to the user through the normal di sconnect and release processes.
  • the RNC can send a RESET RESOURCE message to send the RESET RESOURCE message through the SCCP connectionless service.
  • Core network including the need in the message Connection information released by the core network.
  • the RNC when the NNSF is deployed in the resource pool networking on the access network and above, there is no effective mechanism for handling connectionless messages. For example, when the RESET message sent by the RNC needs to be notified to all the MSCs in the pool, since the NNSF is deployed on the access network, the RNC can only send the RESET message to the NNSF and will not send it to all MSCs. The RNC sends the RESET message to the NNSF. The NNSF does not know what to do: If it is sent to only one of the MSCs, which MSC should be given? If the other MSC does not receive the RESET message, the connection information associated with the RNC will not be cleared. The RNC sends the RESET message.
  • each MSC will return a RESET ACKNOWLEDGE message. What should the NNSF do after receiving the RESET ACKNOWLEDGE message? If one of the MSCs is received first, such as MSC1's RESET ACKNOWLEDGE message, it is forwarded to the RNC (at this time another MSC, such as MSC2, still processing RESET, has not returned RESET ACKNOWLEDGE message), RNC will consider the core network RESET If the process is completed, it is possible to initiate a service. If the service is distributed to MSC2, MSC2 is in the process of RESET, which will cause the service to fail.
  • the OVERLOAD message sent by the RNC needs to be notified to all MSCs in the pool.
  • the RNC can only send messages to the NNSF and will not send them to all MSCs.
  • RNC sends the OVERLOAD message to NNSF. What should NNSF do? If only one of the MSCs is sent, which MSC should be given? What should the other MSC do? If other MSCs do not receive the OVERLOAD message, only the MSC that receives the OVERLOAD message will reduce the traffic to the RNC. The other MSCs do not reduce the traffic, and the RNC overload condition cannot be effectively alleviated.
  • the OVERLOAD message is sent to the NNSF. If the NNSF forwards directly to the RNC, the RNC will reduce the traffic to the core network after receiving the message of the core network overload, because when the NNSF is deployed on the access network. RNC cannot identify multiple MSCs in the pool and is processed by one MSC. This feature is determined by the networking mode in which the SF is deployed on the access network. If only MSC1 is overloaded, MSC2 is not overloaded, RNC reduces the traffic to the core network, and the traffic to MSC2 is also reduced. There will be many users whose business cannot be completed, which affects the end user's feelings.
  • FIG. 3 is a schematic flowchart of a method for processing a connectionless message according to an embodiment of the present disclosure, where the method is applied to a resource pool networking scenario, including:
  • Step 301 Receive a connectionless message sent by the network device.
  • Step 302 Determine a type of the connectionless message.
  • Step 303 Process the connectionless message according to the result of the determination and a preset rule.
  • connectionless message processing method determines the connectionless message type in the resource pool networking scenario, and the non-access stratum node selection function NNSF is deployed on the access network device and the core network control device.
  • different processing is performed according to the preset rule, which can effectively process the connectionless message and ensure the realization of the connectionless message function between the access network device and the core network device.
  • the following takes the Iu interface of the wireless code division multiple access (WCDMA) system as an example, and describes a method for processing a connectionless message according to the present invention for different connectionless messages.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multiple Access
  • TD-SCDMA Time Division Multiple Access
  • MSC1 and the MSC2 are included in the resource pool as an example, but the number of MSCs in the resource pool is not limited.
  • the implementation of other resource pools can be implemented by referring to the following embodiments, and details are not described herein.
  • the implementation of the timer T1 or the T2 is similar to that of the prior art, but is different in the setting time according to the specific application scenario, and the embodiment of the present invention is not described in detail.
  • FIG. 4 is a first schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention
  • Step 401 The NNSF receives the connectionless message sent by the RNC, and determines that the connectionless message is a RESET message sent by the RNC.
  • Step 402 The NNSF broadcasts the RESET message to all the MSCs in the pool, and starts the timer T1;
  • the purpose of starting the timer T1 is to directly discard the NNSF if the MSC RESET ACKNOWLEDGE message is received after the T1 timeout.
  • the duration of the T1 can be configured according to the specific requirements. The embodiment of the present invention does not limit the duration of the timer;
  • the timer T1 may not be provided.
  • the NNSF receives the RESET ACKNOWLEDGE message of the MSC, the NNSF forwards the message to the RNC, if the RNC has ended in the RESET process. After receiving the RESET ACKNOWLEDGE message, these messages are discarded.
  • Step 403 After the NNSF receives the first RESET ACKNOWLEDGE message, the timer is started.
  • the number of connected MSCs will be recorded on the NNSF.
  • the connected MSCs have MSC1 and MSC2.
  • the NNSF Each time the NNSF receives a message from the MSC, it will make a record. For example, when the message of the MSC1 is received, the message of the MSC1 is recorded. If the message of the MSC2 is also received, all the messages of the MSC (such as the response message) are recorded. Done.
  • the NNSF After receiving the first RESET ACKNOWLEDGE message, the NNSF starts the timer T2. If the RESET ACKNOWLEDGE message of all the MSCs in the resource pool is received before the T2 timeout, the timer T2 is stopped and step 404 is performed; if the timer T2 times out, NNSF only received part MSC RESET ACKNOWLEDGE message (because if the RESET ACKNOWLEDGE message of all MSCs is received, the timer T2 will be terminated), then step 404 is executed, and the timer T1 is stopped, and the RESET processing flow ends. The subsequent RESET ACKNOWLEDGE message received by other MSCs is no longer forwarded to the RNC.
  • the timing duration of the above T1 generally requires a timing duration greater than T2.
  • the timer T2 may not be set, that is, the step 403 may not be performed, but the corresponding processing may be performed according to the timer T1 set in step 402.
  • Step 404 The NNSF sends one of the RESET ACKNOWLEDGE messages to the RNC.
  • the RNC After the RNC sends a RESET message, if it does not receive the RESET ACKNOWLEDGE message for a certain period of time, the RNC will resend the RESET message.
  • the NNSF receives the retransmission message from the RNC, broadcasts it to all MSCs, and restarts the timer T1. As an alternative, the NNSF may also broadcast only to MSCs that do not send a RESET ACKNOWLEDGE message.
  • another implementation manner of the timer T1 is: if the NNSF receives a RESET ACKNOWLEDGE message returned by all MSCs in the pool, the NNSF sends a RESET ACKNOWLEDGE message to the RNC and stops. The timer T1.
  • the RESET ACKNOWLEDGE message may have Two implementations, one is that the MSC sends a RESET ACKNOWLEDGE message to the NNSF that forwards the RESET message; the other is that the MSC configures a default NNSF, and the MSC sends a RESET ACKNOWLEDGE message to the default NNSF, which is RESET by the default NNSF.
  • the ACKNOWLEDGE message is forwarded to the RNC.
  • the configuration mode all MSCs are configured the same, that is, the RESET ACKNOWLEDGE message for the same RNC is sent to the same NNSF for processing.
  • the configuration mode if the default SF is not the same as the NNSF receiving the RESET. , the timer Tl is not started on the default NNSF.
  • FIG. 5 is a second flow diagram of a method for processing a connectionless message according to an embodiment of the present invention. Intention
  • Step 501 Configure one of the MSCs in the resource pool as the default MSC on the NNSF.
  • Step 502 The NNSF receives the connectionless message sent by the RNC, and determines that the connectionless message is a RESET message sent by the RNC, and the NNSF forwards the RESET message to the default MSC.
  • the default MSC may perform different settings according to specific conditions. The embodiment of the invention is not limited to the specific implementation manner thereof;
  • the default MSC can be configured multiple times, and the NNSF can prefer the first default MSC or other load balancing methods such as round robin.
  • the purpose of configuring multiple is to prevent the RESET message from being processed when the default MSC fails.
  • the use of load balancing also avoids the problem of using a fixed MSC, resulting in high load on the MSC and uneven load.
  • Step 503 The default MSC (using MSC1 as an example) receives the RESET message, clears the connection resource associated with the RNC, and broadcasts the RNC RESET message to other MSCs in the resource pool, and starts the timer T1;
  • the other MSC After the other MSC processes the RESET, it sends a RESET ACK LED message to the default MSC1.
  • Step 504 The default MSC (MSC1) ⁇ timer expires for processing, and the RESET ACKNOWLEDGE message is sent to the RNC through the NNSF.
  • the MSC1 If the RESET ACKNOWLEDGE message of all other MSCs in the resource pool is received before the timer T1 times out, the MSC1 returns a response message RESET ACKNOWLEDGE to the RNC, and the response message is sent to the NNSF and then forwarded to the RNC by the NNSF; if the timer T1 times out , indicating that only part of the MSC RESET ACKNOWLEDGE message is received, MSC1 returns a response message RESET ACKNOWLEDGE to the RNC, and discards the RESET ACKNOWLEDGE message sent by other MSCs in the subsequently received resource pool.
  • FIG. 6 is a third schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention.
  • a RESET message is sent by an MSC
  • a RESET message is sent by MSC1 as an example.
  • Step 601 Receive a connectionless message, and determine a type of the connectionless message
  • the NNSF receives the connectionless message sent by the MSC1, and determines that the connectionless message is sent by the MSC1.
  • Step 602 Determine whether the RESET message of all the MSCs is received in the timer T1; if the RESET message of all the MSCs is received before the T1 timeout, go to step 604, otherwise go to step 603;
  • Step 603 In the timer T2, isolate the MSC that sends the RESET message, and the timer T2 is set to be shorter than the time set by the T1;
  • the RESET message sent by the MSC1 is received, so the isolated MSC is the MSC1.
  • the MSC1 is isolated, that is, the message sent from the RNC is not distributed to the MSC1.
  • the RESET message is not sent to the RNC here, because if it is forwarded to the RNC, the RNC will clear all connections with the MSC, that is, the connection of the MSC2 that has not sent the RESET will be cleared, affecting the normal service. If the RESET message of MSC1 is not sent to the RNC, the connection between the RNC and MSC1 is cleared by the TEST mechanism of the SCCP layer.
  • the reason why the MSC1 is isolated before the T2 timeout is because the MSC1 has cleared the connection resources between the MSC1 and the RNC, but the RESET message is not sent to the RNC.
  • the RNC may still have a connection with the MSC1, which takes a certain time. Clearing, quarantining for a period of time ensures that the connection resources between the RNC and MSC1 can be cleared.
  • the timer T2 may not be set, that is, the step 603 may not be performed, but the corresponding processing may be performed according to the timer T1 set in step 602.
  • Step 604 If any RESET message sent by the MSC is received before the T1 timeout, one of the RESETs is forwarded to the RNC, and the timers T1 and T2 are stopped. If the RESET message sent by all the MSCs is not received after the timer T1 expires, it indicates that some MSCs do not need to clear the connection with the RNC; and by the isolation of step 603, the MSC and the RNC that need to clear the connection can be realized. Clearance between connections. Of course, after the T1 timer has been started, T1 will not restart after the subsequent RESET message, and can only be restarted after the timeout or receiving RESET message of all MSCs causes T1 to stop.
  • step 603 if the above step 603 is not performed, that is, the timer T2 is not set, in step 604, if all the RESET messages sent by the MSC are received before the T1 timeout, one of the RESETs is forwarded to the RNC, and Stop the timer Tl.
  • the above-mentioned different processing modes of the RESET message are used to process the RESET message according to the preset rule for the scenario where the NNSF is deployed between the core network and the access network, which not only ensures the accurate processing of the RESET message, but also ensures the normal operation of other services. Going on.
  • FIG. 7 is a fourth schematic flowchart of a connectionless message processing method according to an embodiment of the present invention.
  • Step 701 Receive a connectionless message, and determine a type of the connectionless message.
  • the NNSF receives the connectionless message sent by the MSC1, and determines that the connectionless message is sent by the MSC1.
  • Step 702 Determine whether the OVERLOAD message sent by all the MSCs is received in the timer T1; if all the OVERLOAD messages sent by the MSC are received before the T1 timeout, go to step 704, otherwise go to step 703;
  • Step 703 Discard the OVERLOAD message after the T1 times out, and adjust the traffic of the MSC in the resource pool.
  • the NNSF If the NNSF only receives the OVERLOAD message from some MSCs, it cannot forward it to the RNC. If forwarded to the RNC, the RNC will treat the entire core network as overloaded, reducing the traffic to the core network. The business between the RNC and other MSCs will also be reduced, affecting the normal business. Therefore, the OVERLOAD message needs to be discarded after T1 times out.
  • the NNSF adjusts the traffic of the MSC in the resource pool, which can be reduced to
  • the OVERLOAD message is implemented by adding the traffic of the MSC to the traffic of other MSCs. For example: On the ⁇ SF, the algorithm for load balancing between MSCs is distributed in a ratio of 3:3:3. However, if the NNSF receives the OVERLOAD message of MSC1 and does not receive the OVERLOAD message of other MSCs, the NNSF can load balance. The algorithm is adjusted to: 2: 3. 5: 3. 5. When NNSF adjusts the load balancing algorithm, it can be adjusted according to the degree and level of Over load. The embodiment of the present invention does not limit the manner of specific adjustment.
  • Step 704 Forward one of the OVERLOAD messages to the RNC, and stop the timer Tl.
  • the NNSF can broadcast to all MSCs after receiving it. After receiving the Over load message, the MSC performs corresponding processing.
  • the foregoing embodiment determines whether the OVERLOAD message sent by all the MSCs is received within the time set by T1 by using a preset rule, that is, setting the timer T1, and forwarding the OVERLOAD message sent by all the MSCs to the RNC.
  • a preset rule that is, setting the timer T1
  • FIG. 8 is a fifth schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention, including:
  • Step 801 The NNSF receives the connectionless message sent by the RNC, and determines that the connectionless message is a RESET RESOURCE message sent by the RNC, and broadcasts the RESET RESOURCE message to all MSCs;
  • Step 802 After receiving the RESET RESOURCE message, the MSC determines whether the connection indicated in the RESET RESOURCE message is established locally. If the connection indicated in the RESET RESOURCE message is established in the MSC, the corresponding connection is cleared. Resources, and give RNC back RESET RESOURCE ACKNOWLEDGE ⁇ ';
  • the parameters indicating the connection in the RESET RESOURCE message are: Iu S igna ll ing Connect ion Ident if ier (Iu ID) ,
  • the MSC determines whether the connection corresponding to the lu ID is established in the local office and can query all the lu connections established by the local office. If it can be found, it indicates that the connection is established in the local office; when the confirmation is established in the local office, the connection is released.
  • the parameter indicating the connection in the RESET RESOURCE message is: Call Identifier.
  • the processing method after the MSC receives the RESET RESOURCE message is the same as that in the 3G, and will not be described again.
  • Lu Signalling Connection Identifier or Call Identifier is a unique identifier that requires all MSCs to be unique with the same RNC/BSC (can be repeated between different RNC/BSCs). For example, if the lu ID between RNC and MSC1 is: 1, 2, 3, 4, 5, 6, 7, 8, 9; the lu ID between RNC and MSC2 is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, that is, the lu IDs of MSC1 and MSC2 are not unique to the same RNC.
  • the RNC sends a RESET RESOURCE message to the MSC, if the lu ID carried in the message is 8, MSC1 and MSC2 will release this connection, but in fact, the RNC indicates that a connection is released. Therefore, this situation needs to be avoided, and the identity between all MSCs and the same RNC/BSC must be unique.
  • the lu ID may be assigned by the RNC or may be assigned by the MSC; the Call Identifier ⁇ is assigned by the MSC. If the lu ID is assigned by the RNC, the lu ID is guaranteed to be unique. If the lu ID I Call Identifier is an MSC allocation, the lu ID / Call Identifier is required to be uniformly allocated between the MSCs. The following is an example of using lu ID as an example:
  • Identifier for example, bit 15 - bit 19, because the NRI of each MSC is different, so the lu ID assigned by each MSC will not be repeated;
  • Method 2 The lu ID is uniformly distributed among the MSCs. The total number of ⁇ lu IDs is 10000, then 0-2999 is assigned to MSC1, 3000-6999 is assigned to MSC2, and 7000-9999 is assigned to MSC3. Each MSC can only allocate resources belonging to the MSC when assigning lu ID.
  • Step 803 The NNSF receives the first RESET RESOURCE sent by an MSC. After the ACKNOWLEDGE message, the timer T1 is started. If any RESET RESOURCE ACKNOWLEDGE message sent by the MSC is received before the T1 timeout, one of the RESET RESOURCE ACKNOWLEDGE messages is forwarded to the RNC, and the timer T1 is stopped. Otherwise, after T1 times out, the NNSF forwards a RESET RESOURCE ACKNOWLEDGE message to the RNC and discards the RESET RESOURCE ACKNOWLEDGE message sent by the subsequent MSC.
  • the NNSF After receiving the RESET RESOURCE message of the RNC, the NNSF broadcasts a RESET RESOURCE message to all MSCs;
  • the NNSF After receiving the RESET RESOURCE ACKNOWLEDGE message of the MSC, the NNSF forwards the message to the RNC;
  • the RNC After receiving the first RESET RESOURCE ACK LEDGE message, the RNC discards the subsequent received RESET RESOURCE ACKNOWLEDGE message.
  • FIG. 9 is a sixth schematic flowchart of a method for processing a connectionless message according to an embodiment of the present invention, including:
  • Step 901 Receive a connectionless message, and determine a type of the connectionless message
  • the NNSF receives the connectionless message, and determines that the RESET RESOURCE is sent by the core network device.
  • Step 902 Record the correspondence between the MSC that sends the RESET RESOURCE message and the target RNC, and send the RESET RESOURCE message to the RNC.
  • Step 903 The correspondence between the records is sent to the corresponding MSC by the RESET RESOURCE ACKNOWLEDGE message.
  • the RNC processes the RESET RESOURCE process, it returns a RESET RESOURCE ACK LEDGE message to the core network device.
  • the NNSF forwards the RESET RESOURCE ACKNOWLEDGE message to the MSC1 according to the corresponding relationship recorded;
  • the timer T1 is started. After the T1 times out, the corresponding relationship is deleted. If the timer T1 expires when the RESET RESOURCE ACKNOWLEDGE message is received, the NNSF cannot obtain the NNSF. The correspondence between the MSC and the target RNC that sent the RESET message. In this case, the NNSF may discard the RESET RESOURCE ACKNOWLEDGE message.
  • the NNSF may also broadcast RESET to all MSCs.
  • the RESET RESOURCE ACKNOWLEDGE message returned by the RNC will only be returned to an NNSF.
  • the following two methods can be implemented:
  • Manner 1 The MSC sends a RESET RESOURCE message to all NNSFs connected to the RNC.
  • the NNSF forwards the RESET RESOURCE message to the RNC. Any NNSF receives the RESET RESOURCE ACKNOWLEDGE message and forwards it to the MSC. In this case, the RNC will receive multiple RESET RESOURCE messages and only process the first message. Since the connection has been cleared, the subsequent received RESET RESOURCE ACKNOWLEDGE message will not be processed again.
  • MSC1 sends a RESET RESOURCE message only to one of the ⁇ SFs connected to the RNC, and the NNSF that receives the RESET RESOURCE message forwards the RESET RESOURCE message to the RNC and notifies other NNSFs connected to the RNC; other NNSFs The correspondence between the MSC and the target RNC of the RESET RESOURCE message is recorded. Any NNSF receives the RESET RESOURCE ACK LEDGE message and forwards it to the MSC.
  • the above-mentioned processing of the RESET RESOURCE message effectively solves the problem that the NNSF is deployed in the resource pool between the core network device and the access network device, and the RESET RESOURCE message is valid.
  • the effective forwarding of send and response messages enables efficient processing of connectionless messages.
  • the NNSF receives the INFORMATION TRANSFER INDICATION message from the MSC and forwards it to
  • the NNSF receives the INFORMATION TRANSFER CONFIRMATION / Information Transfer FAILURE message of the MSC and broadcasts it to all MSCs;
  • the MSC can determine whether the message is related to the MSC according to the ID, and discard it if it is irrelevant;
  • the information transfer ID is required to be uniformly allocated between the MSC and the same RNC in the pool source pool.
  • the allocation is the same as that of the Iu Signalling Identifier.
  • the NNSF After receiving the ERROR INDICATION message sent by the RNC, the NNSF broadcasts to all MSCs. After receiving the ERROR INDICATION message sent by the MSC, the NNSF forwards the message to the RNC.
  • the NNSF After receiving the ERROR INDICATION message sent by the RNC, the NNSF broadcasts to all MSCs. After receiving the ERROR INDICATION message sent by the MSC, the NNSF forwards the message to the RNC.
  • the NNSF After receiving the UPLINK INFORMATION EXCHANGE REQUEST message sent by the RNC, the NNSF broadcasts to all MSCs; After receiving the UPLINK INFORMATION EXCHANGE RESPONSE message sent by the MSC, the NNSF forwards it to all MSCs.
  • the NNSF After receiving the UPLINK INFORMATION EXCHANGE REQUEST message sent by the RNC, the NNSF broadcasts to all the MSCs in the resource pool;
  • the NNSF After receiving the first UPLINK INFORMATION EXCHANGE RESPONSE message sent by the MSC, the NNSF starts the timer Tl. If the UPLINK INFORMATION EXCHANGE RESPONSE message of all the MSCs is received before the Tl timeout, one of the RNCs is forwarded to the RNC, and the timer T1 is stopped.
  • the RESPONSE message forwards one of the UPLINK INFORMATION EXCHANGE RESPONSE messages to the RNC, and discards the UPLINK INFORMATION EXCHANGE RESPONSE message of the subsequently received MSC.
  • mode 1 the difference between mode 1 and mode 2 is as follows: In scenario 1, the RNC receives multiple UPLINK I NFORMAT I ON EXCHANGE RESPONSE messages; in scenario 2, the RNC receives only one UPL I NK INFORMATION EXCHANGE RESPONSE message.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 10 is a schematic structural diagram of a device for processing a connectionless message according to an embodiment of the present invention.
  • the device is deployed between an access network device and a core network control device, and the plurality of core network control devices form a resource. Pool, including:
  • the receiving determining unit 1001 is configured to receive a connectionless message sent by the access network device or the core network control device, and determine a type of the connectionless message;
  • the processing unit 1002 is configured to process the connectionless message according to the result of the determining and a preset rule.
  • connectionless message device disclosed in the embodiment of the present invention may be an NNSF, and receives the connectionless message sent by the network device, and determines the type of the connectionless message, and processes the according to the result of the determination and the preset rule.
  • the connectionless message is processed according to different connectionless messages according to the preset rules, which can effectively process the connectionless message and ensure the connectionless message function between the access network device and the core network device.
  • the preset rule may be implemented by referring to the processing manner of different types of connectionless messages in the foregoing method embodiments, and only a part of the description will be described herein.
  • connectionless message received by the NNSF is a RESET message sent by the core network control device
  • the receiving determining unit 1001 receives the connectionless message, and determines that the connectionless message is a RESET message sent by the MSC1;
  • the processing unit 1002 determines, according to the result of the determination by the receiving and determining unit 1001, whether the RESET message of all the MSCs is received in the timer T1 according to the preset rule ij, and if the RESET message of all the MSCs is received before the T1 timeout, One of the RESETs is forwarded to the RNC, and the timer T1 is stopped; otherwise, in the timer T2, the MSC transmitting the RESET message is isolated, and the timer T2 is set to be shorter than the time set by the T1.
  • the processing unit 1002 may not set the timer T2, and only set the timing T1, that is, determine whether the RESET of all the MSCs is received in the timer T1. The message, if a RESET message of all MSCs is received before the T1 timeout, forwards one of the RESETs to the RNC and stops the timer T1.
  • connectionless message received by the NNSF is an OVERLOAD message sent by the core network control device.
  • the connectionless message received by the NNSF is an OVERLOAD message sent by the core network control device.
  • the OVERLOAD message sent by all the MSCs is received before the T1 timeout, one of the OVERLOAD messages is forwarded to the RNC, and the timer T1 is stopped. If the T1 times out, the OVERLOAD message is discarded, and the traffic of the MSC in the resource pool is adjusted.
  • the traffic of the MSC in the resource pool is adjusted.
  • connectionless message received by the NNSF is a RESET RESOURCE message sent by an access network device (such as RNC);
  • connectionless message received by the NNSF is a RESET RESOURCE message sent by the RNC, according to a preset rule, the RESET RESOURCE message is broadcasted to all MSCs, and the RESET RESOURCE message is used to receive the core of the RESET RESOURCE message.
  • the network control device determines whether the connection indicated in the RESET RESOURCE message is established locally; if yes, clears the resource corresponding to the connection, and returns a RESET RESOURCE ACKNOWLEDGE message to the access network device, where the RESET RESOURCE message is carried
  • the connection-related information is uniformly distributed in the resource pool;
  • the timer T1 After receiving the RESET RESOURCE ACKNOWLEDGE message sent by an MSC, the timer T1 is started, and if all the RESET RESOURCE ACKNOWLEDGE messages sent by the MSC are received before the T1 timeout, one of the RESET RESOURCE ACKNOWLEDGE is forwarded to the RNC, and the timer T1 is stopped. . Otherwise, after T1 times out, the SF forwards a RESET RESOURCE ACKNOWLEDGE message to the RNC and discards the RESET RESOURCE ACKNOWLEDGE message sent by the subsequent MSC.
  • FIG. 11 is a schematic structural diagram of a system for processing a connectionless message according to an embodiment of the present invention, including: a non-access stratum node selection function NNSF 1102, an access network device 1103, and a core network device 1101, where a non-access stratum node
  • the selection function NNSF1102 is deployed between the access network device 1103 and the core network control device 1101, and the plurality of core network control devices 1101 form a resource pool;
  • the core network control device 11 01 is configured to send a connectionless message to the access network device 1103, and receive a response message returned by the access network device;
  • the non-access stratum node selection function NNSF 1102 is configured to receive a connectionless message of the core network control device 1101 or the access network device 1103, determine the type of the connectionless message, and process the according to the determination result and the preset rule. No connection message;
  • the access network device 1103 is configured to send a connectionless message to the core network control device 1103, and receive a response message returned by the core network control device.
  • connectionless message system For the implementation of the connectionless message system, refer to the above non-access stratum node selection, and details are not described herein.
  • the NNSF may also be an SNSF (Serving Node Selection Function), and the foregoing implementation manners of the NNSF may be performed by the SNSF, and details are not described herein.
  • SNSF Serving Node Selection Function
  • a system for processing a connectionless message disclosed in the embodiment of the present invention receives a connectionless message sent by a network device (a core network control device or an access device), and determines a type of the connectionless message, and according to the result of the determination And the preset rule, the non-connected message is processed, and the different connectionless messages are processed according to the preset rule, so that the connectionless message can be effectively processed, and the connection between the access network device and the core network device is ensured.
  • the implementation of the message function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

处理无连接消息的方法、 系统和设备
本申请要求于 2009 年 03 月 27 日提交中国专利局、 申请号为 200910106358.1、 发明名称为 "处理无连接消息的方法、 系统和设备" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信领域, 尤其涉及一种处理无连接消息的方法、 系统和 设备。 背景技术 在移动通信系统中, 核心网与接入网之间的信令消息分为两种类型, 一类是面向连接的消息,如 Iu接口的 Initial UE Message, Direct Transfer 消 息等,这类消息是利用信令连接控制协议(SCCP, Signal Control Connection Part ) 面向连接的服务在核心网和接入网之间传递的, 即传递这类消息需 要建立 SCCP连接。 另一类消息是无连接的消息, 如 RESET, OVERLOAD 消息等, 这类消息是利用 SCCP无连接的服务在核心网与接入网之间传递 的, 即传递这类消息无需建立 SCCP连接。
现有技术中, 当非接入层节点选择功能(NNSF, NAS Node Selection Function ) 部署在接入网之上时, 无连接消息不能得到有效的处理, 影响 到用户的业务感受。
发明内容
本发明实施例提供一种处理无连接消息的方法、 系统和设备, 以实现 NNSF部署在接入网之上的资源池组网情况下, 无连接消息的有效处理。
本发明实施例公开了一种无连接消息的处理方法, 应用于资源池组网 场景下, 包括:
接收网络设备发送的无连接消息;
判断所述无连接消息的类型; 根据所述判断的结果以及预设规则, 处理所述无连接消息;
所述预设规则用于实现非接入层节点选择功能 NNSF部署在接入网设 备与核心网控制设备之间时, 网络设备发送的无连接消息的处理。
本发明实施例还公开了一种处理无连接消息的设备, 所述设备部署在 接入网设备与核心网控制设备之间, 多个所述核心网控制设备构成一个资 源池, 包括:
接收判断单元: 用于接收所述接入网设备或核心网控制设备发送的无 连接消息, 并判断所述无连接消息的类型;
处理单元: 用于根据所述判断的结果以及预设规则, 处理所述无连接 消息。
本发明实施例还公开了一种处理无连接消息的系统, 包括非接入层节 点选择功能 NNSF、接入网设备和核心网设备,其中非接入层节点选择功能 NNSF部署在接入网设备与核心网控制设备之间,多个所述核心网控制设备 构成一个资源池, 包括:
核心网控制设备: 用于向接入网设备发送无连接消息, 并接收所述接 入网设备返回的响应消息;
非接入层节点选择功能 NNSF: 用于接收核心网控制设备或接入网设备 的无连接消息, 判断所述无连接消息的类型, 根据所述判断结果及预设规 则, 处理所述无连接消息;
接入网设备: 用于向核心网控制设备发送无连接消息, 并接收所述核 心网控制设备返回的响应消息。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为现有技术中 NNSF部署结构第一示意图;
图 2为现有技术中 NNSF部署结构第二示意图;
图 3为本发明实施例提供的一种无连接消息处理方法的流程示意图; 图 4为本发明实施例一种无连接消息的处理方法第一流程示意图; 图 5为本发明实施例一种无连接消息的处理方法第二流程示意图; 图 6 为本发明实施例提供的一种无连接消息处理方法的第三流程示意 图;
图 7 为本发明实施例提供的一种无连接消息处理方法的第四流程示意 图;
图 8 为本发明实施例提供的一种无连接消息处理方法的第五流程示意 图;
图 9 为本发明实施例提供的一种无连接消息处理方法的第六流程示意 图;
图 10为本发明实施例一种处理无连接消息设备的结构示意图; 图 11为本发明实施例一种处理无连接消息系统的结构示意图。
具体实施方式 核心网有资源池组网的方式, 资源池组网有两种类型。
类型一: 如图 1 所示, 非接入层节点选择功能 (NNSF , NAS Node Selection Function ) 部署在接入网设备, 即部署在接入网设备如无线网络 控制器(RNC, Radio Network Controller ),基站控制器(BSC, Base Station Controller基站控制器) 中的场景;
类型二:如图 2所示, NNSF部署在接入网设备与核心网控制设备之间, 即 NNSF部署在接入网之上的场景;
两种类型的区别在于,类型一,从无线网络控制器( RNC, Radio Network Controller )到移动交换中心( MSC, Mobile Switching Center )之间的信令, 是通过 RNC分发给资源池内各个 MSC的。 类型二, 从 RNC到 MSC之间 的信令, 是通过 NNSF把信令分发给资源池内各个 MSC的, RNC只需要 把信令发送给 NNSF0 如果 RNC连接了多个 NNSF, 则可以分发给任意一 个 NNSF。 NNSF可以是一个独立的节点, 也可以与其他网络设备合设, 如与媒体网关 MGW ( Media Gateway )合设。
对于类型二的情况, 即 NNSF部署在接入网之上时, 无连接消息(如 RESET消息、 Overload消息、 Reset Resource消息等)没有有效处理的机制, 导致业务的失败, 使无连接消息的功能无法有效实现。
其中, RESET消息是为了通知对端网元初始化与本端网元相关的资源。 如 RNC丢电重启, 可以给核心网 (CN, Core Network )发一个 RESET消息, CN就可以清除与该 RNC之间建立的所有连接。 Over load消息是在网元过载 时把过载状态通知对端网元, 由对端网元减少业务, 从而达到减少负荷的 目的。 Reset Resource消息指在发生某些故障的情况下, 本端的连接已经 清除了, 但无法通过正常的清除连接方式通知对端网元清除相应的连接, 就给对端发 Reset Resource消息, 在消息中指示对端网元清除相关连接, 例如: RNC和 MSC建立了 10个 IU连接(有 10个人打电话), 这些连接正 常的释放流程是在用户挂机后, 核心网发起 di sconnect和 release流程, 核心网和接入网清除相关连接。 如果由于 RNC和 MSC之间 SCCP层提供面向 连接的服务故障, 在用户挂机后, RNC会清除与该用户相关的连接, 但由于 RNC和 MSC之间 SCCP层面向连接的服务故障, RNC无法把用户的挂机信息 通知到 MSC, MSC无法通过正常的 di sconnect和 release流程清除与该用 户相关的连接资源, 这时, RNC可以发送 RESET RESOURCE消息, 通过 SCCP 的无连接的服务, 把 RESET RESOURCE消息送到核心网, 在消息中包含需要 核心网释放的连接信息。
现有技术中, 在 NNSF部署在接入网和之上的资源池组网时, 没有有 效的处理无连接消息的机制。 例如, 当 RNC发出的 RESET消息需要通知 到池内所有的 MSC时, 由于 NNSF部署在接入网之上, RNC只能将所述 RESET消息发给 NNSF, 不会发给所有的 MSC。 RNC把 RESET 消息发给 了 NNSF, NNSF不知该如何处理: 如果只发给其中一个 MSC, 应该给哪 一个 MSC? 如果其他 MSC没有收到 RESET消息, 不会清除与该 RNC相 关的连接信息, 没有达到 RNC发送 RESET消息的目的; 如果 NNSF把 RESET给所有的 MSC都发送 RESET消息, 则每个 MSC都会回 RESET ACKNOWLEDGE消息, NNSF收到 RESET ACKNOWLEDGE消息后又该 如何处理? 如果先收到其中一个 MSC, 如 MSC1 的 RESET ACKNOWLEDGE消息就转发给 RNC (此时另一个 MSC, 如 MSC2, 还 在处理 RESET的过程中, 还没有回 RESET ACKNOWLEDGE消息), RNC 会认为核心网 RESET 过程已经完成, 就可能发起业务, 如果业务分发给 MSC2, MSC2正在 RESET处理过程中, 会导致业务失败。
再如, RNC发出的 OVERLOAD消息需要通知到池内所有的 MSC, 但由于 匪 SF在接入网之上, RNC只能消息发给 NNSF, 不会发给所有的 MSC。 RNC把 OVERLOAD消息发给了 NNSF, NNSF该如何处理? 如果只发给其中一个 MSC, 应该给哪一个 MSC? 其他 MSC该如何处理? 其他 MSC如果没有收到 OVERLOAD 消息, 只有收到 OVERLOAD消息的 MSC会减少到该 RNC的业务量, 其他 MSC 没有减少业务量, RNC过载的状况无法有效的缓解。 如果 MSC1过载了, 把 OVERLOAD消息发给了 NNSF, 如果 NNSF直接转发给 RNC, RNC收到核心网过 载的消息后,会减少到核心网的业务量, 因为在 NNSF部署在接入网之上时, RNC无法识别池内多个 MSC, 是当一个 MSC处理的。 这个特性是由匪 SF部 署在接入网之上的组网模式决定的。 而如果只有 MSC1过载了, MSC2没有过 载, RNC却减少了到核心网的业务量, 到 MSC2的业务量也会减少, 这样, 就会有艮多用户的业务无法完成, 影响了最终用户的感受。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
参考图 3,图 3为本发明实施例提供的一种无连接消息处理方法的流程 示意图, 所述方法应用于资源池组网场景下, 包括:
步骤 301 : 接收网络设备发送的无连接消息;
步骤 302: 判断所述无连接消息的类型;
步骤 303: 根据所述判断的结果以及预设规则, 处理所述无连接消息; 步骤 304:所述预设规则用于实现非接入层节点选择功能 NNSF部署在 接入网设备与核心网控制设备之间时, 网络设备发送的无连接消息的处理。
本发明实施例提供的一种无连接消息处理的方法, 通过判断资源池组 网场景下的无连接消息类型, 对于非接入层节点选择功能 NNSF部署在接 入网设备与核心网控制设备之间时, 根据不同的无连接消息按照预设规则 进行不同的处理, 能够实现对无连接消息的有效处理, 保证接入网设备与 核心网设备之间无连接消息功能的实现。
下面以无线码分多址接入 ( WCDMA, wireless Code Division Multiple Access ) 系统的 Iu接口为例, 针对不同的无连接消息, 对本发明一种无连 接消息的处理方法实施例进行详细的说明, 可以理解, 全球移动通信系统 (GSM, Global System for Mobile communication) 、码分多址接入 ( CDMA, Code Division Multiple Access )、 TD-SCDMA系统与 WCDMA系统中的无连 接消息类似, 本领域普通技术人员根据 WCDMA 系统中实现方式的描述, 无 需创造性劳动即能够在其它系统如 GSM等的实现。 并且, 本发明实施例以 资源池中包含 MSC1、 MSC2为例进行说明,但并不限定资源池中 MSC的个数, 其它资源池的实现方式可参考下述实施例实现, 不再赘述。
本发明实施例中, 定时器 T1或 T2的实现方式与现有技术类同, 只是 对于设定时间上根据具体的应用场景有所不同, 本发明实施例不再详细说 明。
参考图 4,图 4为本发明实施例一种无连接消息的处理方法第一流程示 意图;
步骤 401 : NNSF接收 RNC发送的无连接消息, 并判断该无连接消息是 RNC发送的 RESET消息;
步骤 402 : NNSF把 RESET消息广播给池内所有的 MSC , 并启动定时器 T1 ;
启动定时器 T1的目的, 是为了在 T1超时后, 如果收到 MSC的 RESET ACKNOWLEDGE消息, NNSF则直接丢弃。 T1的时长可才据具体的需求配置, 本发明实施例不限定定时器的时长;
作为另外一种可选的方案, 也可以不设定时器 T1 , 在这种情况下, 如 果 NNSF收到某个 MSC的 RESET ACKNOWLEDGE消息, NNSF把消息转发给 RNC , 如果 RNC在 RESET流程已经结束后还收到 RESET ACKNOWLEDGE消息, 则丢 弃这些消息。
步骤 403 : NNSF收到第一条 RESET ACKNOWLEDGE消息后, 启动定时器
T2 ;
在 NNSF上会记录连接的 MSC的个数, 比如连接的 MSC有 MSC1、 MSC2 ,
NNSF每收到一个 MSC的消息就会做一个记录, 比如收到 MSC1的消息时, 就 记录 MSC1的消息收到了; 如果 MSC2的消息也收到了, 则记录所有 MSC的 消息(如响应消息)收齐了。
NNSF收到第一条 RESET ACKNOWLEDGE消息后, 启动定时器 T2 , 在 T2 超时前, 如果收到了资源池内所有 MSC的 RESET ACKNOWLEDGE消息, 则停 止定时器 T2并执行步骤 404 ; 如果定时器 T2超时, 说明 NNSF只收到部分 MSC 的 RESET ACKNOWLEDGE 消息 (原因是如果收到全部 MSC 的 RESET ACKNOWLEDGE消息, 定时器 T2就会终止) , 则执行步骤 404, 并停止定时 器 Tl, RESET处理流程结束。 对后续收到其他 MSC的 RESET ACKNOWLEDGE 消息,则不再转发给 RNC。上述 T1的定时时长一般要求大于 T2的定时时长。
作为本发明实施例的另一种实施方式, 也可以不用设置定时器 T2 , 即 可以不执行步骤 403, 而是根据步骤 402中设定的定时器 T1进行相应的处 理。
步骤 404: NNSF将其中一条 RESET ACKNOWLEDGE消息发送给 RNC。
RNC 在发出 RESET 消息后, 如果在一段时间内没有收到 RESET ACKNOWLEDGE消息, RNC会重发 RESET消息。 NNSF收到 RNC的重发消息, 向 所有的 MSC广播, 并重启定时器 Tl。 作为可选的方案, NNSF也可以只向没 有发送 RESET ACKNOWLEDGE消息的 MSC广播。
在本发明实施例中, 所述定时器 T1的另外一种实现方式是, 如果所述 NNSF收到池内所有 MSC返回的 RESET ACKNOWLEDGE消息, 则所述 NNSF发送 一条 RESET ACKNOWLEDGE消息给所述 RNC并且停止所述定时器 T1。
上述图 4所述的实施例中, 如果 RNC连接了多个 NNSF , 则只会有其中 一个 NNSF收到 RNC的 RESET消息, 由这个 NNSF向 MSC转发 RESET消息; 同时, 对 RESET ACKNOWLEDGE消息, 可以有两种实现方案, 一种是 MSC把 RESET ACKNOWLEDGE消息发送给转发 RESET消息的 NNSF; 另一种是在 MSC 配置一个默认 NNSF , MSC把 RESET ACKNOWLEDGE消息发送给默认的 NNSF , 由该默认的 NNSF把 RESET ACKNOWLEDGE消息转发给 RNC。
对于采用配置的方式,要求所有的 MSC上配置相同, 即针对同一个 RNC 的 RESET ACKNOWLEDGE消息, 要发给同一个 NNSF处理, 采用配置的方式, 如果默认匪 SF与收到 RESET的 NNSF不是同一个, 则在默认 NNSF上不启动 定时器 Tl。
参考图 5,图 5为本发明实施例一种无连接消息的处理方法第二流程示 意图;
步骤 501 : 在 NNSF上配置资源池中的其中一个 MSC为默认 MSC;
步骤 502: NNSF收到 RNC发送的无连接消息, 判断该无连接消息是 RNC 发送的 RESET消息, NNSF把该 RESET消息转发给默认 MSC, 该默认的 MSC 可以根据具体的情况进行不同的设置, 本发明实施例不限定其具体实现方 式;
默认 MSC可以配置多个, NNSF可以优选第一个默认 MSC, 或采用轮选 等其他负荷均衡的方式。 配置多个的目的是为了防止默认 MSC故障时无法 处理 RESET消息。 采用负荷均衡的方式还可以避免采用固定的 MSC, 导致该 MSC负荷高, 产生负荷不均衡的的问题。
步骤 503: 默认 MSC (以 MSC1为例)收到 RESET消息后, 清除与该 RNC 相关的连接资源, 并且向资源池内其他 MSC广播 RNC的 RESET消息, 并启 动定时器 T1;
其他 MSC 在处理完 RESET 的过程后, 给默认 MSC1 发送 RESET ACK廳 LEDGE消息。
步骤 504 : 默认 MSC (MSC1) ^定时器是否超时进行处理, 将 RESET ACKNOWLEDGE消息通过 NNSF发送给 RNC。
如果在定时器 T1 超时前收到资源池中所有其他 MSC 的 RESET ACKNOWLEDGE消息, MSC1就给 RNC回响应消息 RESET ACKNOWLEDGE, 所述响 应消息发送到 NNSF后, 由 NNSF转发给 RNC;如果定时器 T1超时,说明只收 到部分 MSC的 RESET ACKNOWLEDGE消息, MSC1给 RNC回响应消息 RESET ACKNOWLEDGE , 并且丢弃后续收到的资源池中其他 MSC 发送的 RESET ACKNOWLEDGE消息。
RNC 在发出 RESET 消息后, 如果在一段时间内没有收到 RESET ACKNOWLEDGE消息, RNC会重发 RESET消息, 所述时间段设定的时间大于上 述 T1设定的时间。默认 MSC收到 RNC的重发消息,向所有其他的 MSC广播。 可选的, 默认 MSC也可以只向没有发送 RESET RESOURCE消息的 MSC广播。 参考图 6,图 6为本发明实施例提供的一种无连接消息处理方法的第三 流程示意图, 本实施例以 MSC发送 RESET消息, 并且以 MSC1先发送 RESET 消息为例进行说明;
步骤 601 : 接收无连接消息, 并判断所述无连接消息的类型;
NNSF接收 MSC1发送的无连接消息, 判断该无连接消息是 MSC1发送的
RESET消息;
步骤 602: 判断定时器 T1内是否收到所有 MSC的 RESET消息; 如果在 T1超时前收到所有 MSC的 RESET消息, 则执行步骤 604, 否则 执行步骤 603;
步骤 603: 在定时器 T2内, 隔离发送 RESET消息的 MSC, 定时器 T2设 定的时间短于所述 T1设定的时间;
本实施例中,接收到的是 MSC1发送的 RESET消息,所以这里隔离的 MSC 是 MSC1。 隔离 MSC1 , 即对于从 RNC发来的消息不分发给所述 MSC1。 这里不 将 RESET消息发送给 RNC, 是因为如果转发给 RNC, RNC会清除与 MSC之间 的所有连接, 也就是没有发送 RESET的 MSC2的连接也会被清除, 影响正常 业务。 如果 MSC1的 RESET消息没有发给 RNC, RNC与 MSC1之间的连接关系 会通过 SCCP层的 TEST机制清除。 之所以在 T2超时前隔离 MSC1 , 是因为 MSC1已经清除了 MSC1与 RNC之间的连接资源,但 RESET消息没有发给 RNC, RNC上可能还存在部分与 MSC1之间的连接, 需要一定的时间才能清除, 隔 离一段时间可以保证 RNC与 MSC1之间的连接资源可以清除。
作为本发明实施例的另一种实施方式, 也可以不用设置定时器 T2 , 即 可以不执行步骤 603, 而是根据步骤 602中设定的定时器 T1进行相应的处 理。
步骤 604:在 T1超时前如果收到所有 MSC发送的 RESET消息,就给 RNC 转发其中一条 RESET, 并停止定时器 T1和 T2。 如果在定时器 Tl超时后, 没有收到所有 MSC发送的 RESET消息, 说明 还有部分 MSC不需要清除与 RNC之间的连接; 而通过步骤 603的隔离, 即 可实现需要清除连接的 MSC与 RNC之间连接的清除。 当然, 在 T1定时器已 经启动后, 后续收到的 RESET消息时 T1不再重启, 只有在超时或收到所有 MSC的 RESET消息导致 T1停止后才能重新启动。
作为一种可选方式, 如果上述步骤 603 没有执行, 即没有设定定时器 T2 , 则步骤 604中, 在 T1超时前如果收到所有 MSC发送的 RESET消息, 就 给 RNC转发其中一条 RESET, 并停止定时器 Tl。
上述关于 RESET消息的不同处理方式, 对于 NNSF部署于核心网和接入 网之间的场景, 据预设规则对 RESET消息进行处理, 既保证了 RESET消 息精确的处理, 有保证了其它业务的正常的进行。
参考图 7,图 7为本发明实施例提供的一种无连接消息处理方法的第四 流程示意图;
步骤 701 : 接收无连接消息, 并判断所述无连接消息的类型;
NNSF接收 MSC1发送的无连接消息, 判断该无连接消息是 MSC1发送的
OVERLOAD消息;
步骤 702: 判断定时器 T1内是否收到所有 MSC发送的 OVERLOAD消息; 如果在 T1超时前收到所有 MSC发送的 OVERLOAD消息,则执行步骤 704, 否则执行步骤 703;
步骤 703: 在 T1超时后丢弃所述 OVERLOAD消息, 并调整资源池中 MSC 的业务量;
NNSF如果只收到部分 MSC的 OVERLOAD消息, 不能转发给 RNC。 如果转 发给 RNC, RNC会当作整个核心网过载处理, 减少到核心网的业务量。 RNC 与其他 MSC之间的业务也会被减少, 影响正常业务的进行。 所以, 需要在 T1超时后丢弃所述 OVERLOAD消息。
在 T1超时后, NNSF调整资源池中 MSC的业务量, 可以通过减少到发出 OVERLOAD消息的 MSC的业务量, 增加到其他 MSC的业务量的方式来实现。 例如: 原来在匪 SF上, MSC间负荷均衡的算法按 3: 3: 3的比例分发 的,但 NNSF收到了 MSC1的 OVERLOAD消息, 没有收到其他 MSC的 OVERLOAD 消息, 则 NNSF可以把负荷均衡的算法调整为: 2: 3. 5: 3. 5。 NNSF调整负 荷均衡算法时, 可以根据 Over load的程度和级别调整。 本发明实施例不限 定具体调整的方式。
步骤 704: 向 RNC转发其中一个 OVERLOAD消息, 并停止定时器 Tl。 对于 RNC发出的 OVERLOAD消息, NNSF收到后可以广播给所有的 MSC。 MSC收到 Over load消息后进行相应的处理。
上述实施例通过预设规则,即设定定时器 T1,判断在 T1设定的时间内, 是否收到所有 MSC发送的 OVERLOAD消息, 并在判断收到所有 MSC发送的 OVERLOAD消息时, 向 RNC转发其中一个 OVERLOAD消息, 并停止定时器 T1; 如果没有收到所有 MSC发送的 OVERLOAD 消息, 则在 T1 超时后丢弃所述 OVERLOAD消息, 并调整资源池中 MSC的业务量, 实现了 OVERLOAD消息的有 效处理, 也保证了通信业务的均衡和正常高效处理。
参考图 8,图 8为本发明实施例提供的一种无连接消息处理方法的第五 流程示意图, 包括:
步骤 801 : NNSF接收 RNC发送的无连接消息, 并判断该无连接消息是 RNC发送的 RESET RESOURCE消息, 并将所述 RESET RESOURCE消息广播给所 有的 MSC;
步骤 802: MSC收到 RESET RESOURCE消息后, 判断所述 RESET RESOURCE 消息中指示的连接是否建立在本地, 如果所述 RESET RESOURCE消息中指示 的连接是建立在本 MSC的, 则清除所述连接对应的资源, 并给 RNC回 RESET RESOURCE ACKNOWLEDGE ^' ;
如果是第三代数字通信( 3G, 3rd Genera t ion )领域, RESET RESOURCE 消息中指示连接的参数为: Iu S igna l l ing Connect ion Ident if ier (Iu ID) , MSC判断 lu ID对应的连接是否建立在本局 可以通过查询本局建立的所有 lu连接, 如果能查到, 就表示该连接建立在本局; 当确认是建立在本局时, 释放该连接。
如果是 GSM领域, RESET RESOURCE 消息中指示连接的参数为: Call Identifier, MSC收到 RESET RESOURCE消息后的处理方式与 3G中的处理方 式相同, 不再赘述。
lu Signalling Connection Identifier (lu ID) 或 Call Identifier 是唯一标识一个连接的, 要求所有 MSC与同一个 RNC/BSC之间唯一(与不 同的 RNC/BSC之间可以重复) 。 例如, 如果 RNC与 MSC1之间的 lu ID有: 1, 2, 3, 4, 5, 6, 7, 8, 9 ; RNC 与 MSC2 之 间 的 lu ID 有 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 即 MSC1和 MSC2的 lu ID与同一个 RNC之 间不唯一, 则当 RNC给 MSC发 RESET RESOURCE消息时, 如果消息中携带的 lu ID是 8, 则 MSC1和 MSC2都会释放这个连接, 而实际上, RNC指示的是 释放一个连接。 因此, 需要避免这种情况, 所有 MSC与同一个 RNC/BSC之 间标识必须唯一。
lu ID可能是 RNC分配的, 也可能是 MSC分配的; Call Identifier^ 是由 MSC分配。 如果 lu ID是由 RNC分配的, 可以保证 lu ID唯一, 如果 lu ID I Call Identifier是 MSC分配, 要求 lu ID / Call Identifier在 MSC之间统一分配。 下面以 lu ID为例进行说明:
方法一: 在 lu ID 选择部分 bit 位分配 NRI ( Network Resource
Identifier ) , 比如选择 bit 15 ― bit 19, 则由于每个 MSC的 NRI不一 样, 这样, 每个 MSC分配的 lu ID就不会重复;
方法二: lu ID在 MSC之间统一分配。 殳 lu ID的总的个数是 10000 个,则 0-2999分配给 MSC1, 3000- 6999分配给 MSC2, 7000- 9999分配给 MSC3, 每个 MSC分配 lu ID 时只能分配属于本 MSC的资源。
步骤 803: NNSF 在收到某个 MSC 发送的第一条 RESET RESOURCE ACKNOWLEDGE消息后, 启动定时器 Tl, 在 Tl超时前如果收到所有 MSC发送 的 RESET RESOURCE ACKNOWLEDGE 消息, 就给 RNC 转发其中一条 RESET RESOURCE ACKNOWLEDGE, 并停止定时器 Tl。 否则, 在 T1超时后, NNSF给 RNC转发一条 RESET RESOURCE ACKNOWLEDGE消息, 并丢弃后续 MSC发送的 RESET RESOURCE ACKNOWLEDGE消息。
上述图 8中处理 RESET RESOURCE消息的方式, 也可以通过下述方式实 现:
NNSF收到 RNC的 RESET RESOURCE消息后, 给所有的 MSC广播 RESET RESOURCE消息;
NNSF收到 MSC的 RESET RESOURCE ACKNOWLEDGE消息后, 转发给 RNC;
RNC收到第一条 RESET RESOURCE ACK廳 LEDGE消息后, 丢弃后续收到 的 RESET RESOURCE ACKNOWLEDGE消息。
参考图 9,图 9为本发明实施例提供的一种无连接消息处理方法的第六 流程示意图, 包括:
步骤 901 : 接收无连接消息, 并判断所述无连接消息的类型;
NNSF接收无连接消息, 并判断是核心网设备发送的 RESET RESOURCE消 步骤 902: 记录发送 RESET RESOURCE消息的 MSC与目标 RNC的对应关 系, 并将所述 RESET RESOURCE消息发送给 RNC;
发送 RESET RESOURCE消息的 MSC与目标 RNC的对应关系可以通过表一 来实现:
Figure imgf000016_0001
表一
步骤 903: ^居所述记录的对应关系, 将 RESET RESOURCE ACKNOWLEDGE 消息发送给相应的 MSC。 RNC处理完 RESET RESOURCE过程后,给核心网设备返回 RESET RESOURCE ACK廳 LEDGE消息。 NNSF收到 RESET RESOURCE ACK應 LEDGE消息后, 根据 记录的所述对应关系, 把所述 RESET RESOURCE ACKNOWLEDGE 消息转发给 MSC1 ;
可选的, 可以在步骤 902发送给 RNC RESET RESOURCE消息时, 启动定 时器 T1 , 在 T1 超时后, 删除所述对应关系, 则在收到 RESET RESOURCE ACKNOWLEDGE消息时如果定时器 T1超时, NNSF无法获取 MSC与发送 RESET 消息的目标 RNC的对应关系,这种情况下, NNSF可以丢弃该 RESET RESOURCE ACKNOWLEDGE消息。
作为一种替换方案,步骤 903中, NNSF也可以向所有的 MSC广播 RESET
RESOURCE ACKNOWLEDGE消息。
如果与 RNC 相连的有多个 NNSF , 由于 RNC 回的 RESET RESOURCE ACKNOWLEDGE 消息只会回给一个 NNSF , 为了保证把 RESET RESOURCE ACKNOWLEDGE消息发送给 MSC1 , 可以通过如下两种方式实现:
方式一: MSC同时向 RNC连接的所有 NNSF发送 RESET RESOURCE消息,
NNSF收到所述 RESET RESOURCE消息后转发给 RNC。任何一个 NNSF收到 RESET RESOURCE ACKNOWLEDGE消息, 就转发给 MSC。 这种情况下, RNC会收到多个 RESET RESOURCE消息, 只处理第一条消息, 由于连接已经被清除, 后续收 到的 RESET RESOURCE ACKNOWLEDGE消息不会再被处理;
方式二: MSC1只向与 RNC连接的匪 SF中的一个发送 RESET RESOURCE 消息, 接收到所述 RESET RESOURCE消息的 NNSF把所述 RESET RESOURCE消 息转发给 RNC, 并且通知与 RNC连接的其他 NNSF; 其他 NNSF记录 MSC与与 所述 RESET RESOURCE消息的目标 RNC的之间的对应关系。 任何一个 NNSF 收到 RESET RESOURCE ACK廳 LEDGE消息后, 就转发给 MSC。
上述关于 RESET RESOURCE消息的处理, 有效的解决了 NNSF部署在核 心网设备与接入网设备之间的资源池场景下, RESET RESOURCE消息有效发 送和响应消息的有效转发, 实现了无连接消息的有效处理。
下面对其它的无连接消息: INFORMATION TRANSFER 消息、 ERROR INDICATION消息、 DIRECT INFORMATION TRANSFER消息、 UPLINK INFORMATION EXCHANGE消息的处理方式进行描述。
INFORMATION TRANSFER消息的处理方式:
NNSF 收到 MSC 的 INFORMATION TRANSFER INDICATION 消息后转发给
RNC;
NNSF收到 MSC的 INFORMATION TRANSFER CONFIRMATION / Information Transfer FAILURE消息后广播给所有的 MSC;
在 Information Transfer Indication / Information Transfer
Confirmation / Information Transfer Fai lure消息中 ,携带 Information Transfer ID, 把 Information Transfer Confirmation / Information Transfer Failure消息广播给所有的 MSC后, MSC可以根据这个 ID判断该 消息是否与本 MSC相关, 不相关就丢弃;
Information Transfer ID要求在池源池内 MSC与同一个 RNC之间统一 分配, 分配方式与前述的 Iu Signalling Identifier相同, 不再赘述。
ERROR INDICATION消息的处理方式:
NNSF收到 RNC发送的 ERROR INDICATION消息后, 广播给所有 MSC; NNSF收到 MSC发送的 ERROR INDICATION消息后, 转发给 RNC。
DIRECT INFORMATION TRANSFER消息的处理方式:
NNSF收到 RNC发送的 ERROR INDICATION消息后, 广播给所有 MSC; NNSF收到 MSC发送的 ERROR INDICATION消息后, 转发给 RNC。
UPLINK INFORMATION EXCHANGE消息的处理方式:
方式一:
NNSF收到 RNC发送的 UPLINK INFORMATION EXCHANGE REQUEST消息后, 广播给所有 MSC; NNSF收到 MSC发送的 UPLINK INFORMATION EXCHANGE RESPONSE消息后, 转发给所有 MSC。
方式二:
NNSF收到 RNC发送的 UPLINK INFORMATION EXCHANGE REQUEST消息后, 广播给资源池中所有 MSC;
NNSF收到 MSC发送的第一条 UPLINK INFORMATION EXCHANGE RESPONSE 消息后启动定时器 Tl, 在 Tl 超时前, 如果收到所有 MSC 的 UPLINK INFORMATION EXCHANGE RESPONSE消息, 转发其中一条给 RNC, 并停止定时 器 T1
如果 T1超时,说明只有部分 MSC返回的 UPLINK INFORMATION EXCHANGE
RESPONSE消息, 则转发其中一条 UPLINK INFORMATION EXCHANGE RESPONSE 消息给 RNC , 并丢弃后续收到的 MSC 的 UPLINK INFORMATION EXCHANGE RESPONSE消息。
方式一和方式二的区别在于: 方案一中 RNC 会收到多条 UPLINK I NFORMAT I ON EXCHANGE RESPONSE消息; 方案二中 RNC只会收到一条 UPL I NK INFORMATION EXCHANGE RESPONSE消息。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于计算机可 读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而 前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代 码的介质。
参考图 10,图 10为本发明实施例一种处理无连接消息设备的结构示意 图, 所述设备部署在接入网设备与核心网控制设备之间, 多个所述核心网 控制设备构成一个资源池, 包括:
接收判断单元 1001 : 用于接收所述接入网设备或核心网控制设备发送 的无连接消息, 并判断所述无连接消息的类型; 处理单元 1002 : 用于根据所述判断的结果以及预设规则, 处理所述无 连接消息。
本发明实施例公开的一种无连接消息的设备可以是 NNSF, 通过接收网 络设备发送的无连接消息, 并判断所述无连接消息的类型, 并根据判断的 结果以及预设规则, 处理所述无连接消息, 根据不同的无连接消息按照预 设规则进行不同的处理, 能够实现对无连接消息的有效处理, 保证接入网 设备与核心网设备之间无连接消息功能的实现。
所述预设规则可以参考上述方法实施例中不同种类无连接消息的处理 方式来实现, 在此仅以部分为例进行说明。
场景一: NNSF接收到的无连接消息是核心网控制设备发送的 RESET 消息;
当 NNSF接收到的无连接消息是核心网控制设备发送的 RESET消息 时,接收判断单元 1001接收所述无连接消息,并判断所述无连接消息是 MSC1 发送的 RESET消息;
处理单元 1002根据所述接收判断单元 1001判断的结果, 按照预设规 贝 ij, 即判断定时器 Tl 内是否收到所有 MSC的 RESET消息, 如果在 T1超时 前收到所有 MSC的 RESET消息, 就给 RNC转发其中一条 RESET, 并停止定时 器 T1 ; 否则, 在定时器 T2内, 隔离发送 RESET消息的 MSC, 定时器 T2设 定的时间短于所述 T1设定的时间。
作为本发明实施例一种处理无连接消息设备的另一种实施方式, 所述 处理单元 1002也可以不设置定时器 T2 , 只设置定时 T1 , 即判断定时器 T1 内是否收到所有 MSC的 RESET消息,如果在 T1超时前收到所有 MSC的 RESET 消息, 就给 RNC转发其中一条 RESET, 并停止定时器 Tl。
场景二: NNSF接收到的无连接消息是核心网控制设备发送的 OVERLOAD 消息;
当 NNSF接收到的无连接消息是核心网控制设备发送的 OVERLOAD消息 时,根据预设规则, 即判断定时器 T1内是否收到所有 MSC发送的 OVERLOAD 消息, 如果在 T1超时前收到所有 MSC发送的 OVERLOAD消息, 向 RNC转发 其中一个 OVERLOAD消息, 并停止定时器 T1 ; 如果在 T1超时, 则丢弃所述 OVERLOAD消息, 并调整资源池中 MSC的业务量。 调整业务量的方式可参考 上述方法实施例的描述, 在此不再赘述。
场景三: NNSF接收到的无连接消息是接入网设备(如 RNC )发送的 RESET RESOURCE消息;
当 NNSF接收到的无连接消息是 RNC发送的 RESET RESOURCE消息时, 根据预设规则,即将所述 RESET RESOURCE消息广播给所有的 MSC ,所述 RESET RESOURCE消息用于接收到所述 RESET RESOURCE消息的核心网控制设备, 判 断所述 RESET RESOURCE消息中指示的连接是否建立在本地; 如果是, 则清 除所述连接对应的资源,并给接入网设备返回 RESET RESOURCE ACKNOWLEDGE 消息, 所述 RESET RESOURCE消息中携带的与连接相关的信息在资源池中统 一分配;
在收到某个 MSC发送的 RESET RESOURCE ACKNOWLEDGE消息后, 启动定 时器 T1,在 T1超时前如果收到所有 MSC发送的 RESET RESOURCE ACKNOWLEDGE 消息, 就给 RNC转发其中一条 RESET RESOURCE ACKNOWLEDGE , 并停止定时 器 T1。否则,在 T1超时后,匪 SF给 RNC转发一条 RESET RESOURCE ACKNOWLEDGE 消息, 并丢弃后续 MSC发送的 RESET RESOURCE ACKNOWLEDGE消息。
参考图 11,图 11为本发明实施例一种处理无连接消息系统的结构示意 图, 包括: 非接入层节点选择功能 NNSF1102、 接入网设备 1103和核心网 设备 1101, 其中非接入层节点选择功能 NNSF1102部署在接入网设备 1103 与核心网控制设备 1101之间, 多个所述核心网控制设备 1101构成一个资 源池; 其中:
核心网控制设备 11 01 : 用于向接入网设备 1103发送无连接消息, 并接 收所述接入网设备返回的响应消息; 非接入层节点选择功能 NNSF1102:用于接收核心网控制设备 1101或接 入网设备 1103的无连接消息, 判断所述无连接消息的类型, 根据所述判断 结果及预设规则, 处理所述无连接消息;
接入网设备 1103: 用于向核心网控制设备 1103发送无连接消息, 并接 收所述核心网控制设备返回的响应消息。
所述处理无连接消息系统的实现方式, 可以参考上述非接入层节点选 不再赘述。
本发明实施例中, 所述 NNSF也可以是 SNSF ( Serving Node Select ion Funct ion,月良务节点选择功能),上述关于 NNSF的实现方式,均可以由 SNSF 来完成, 具体不再赘述。
本发明实施例公开的一种处理无连接消息的系统, 通过接收网络设备 (核心网控制设备或接入设备)发送的无连接消息, 并判断所述无连接消 息的类型, 并根据判断的结果以及预设规则, 处理所述无连接消息, 根据 不同的无连接消息按照预设规则进行不同的处理, 能够实现对无连接消息 的有效处理, 保证接入网设备与核心网设备之间无连接消息功能的实现。
上述实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照 前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者对其中部分技 术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质 脱离本发明实施例技术方案的精神和范围。

Claims

权利要求
1、 一种无连接消息的处理方法, 应用于资源池组网场景下, 其特征在 于:
接收网络设备发送的无连接消息;
判断所述无连接消息的类型;
根据所述判断的结果以及预设规则, 处理所述无连接消息;
所述预设规则用于实现非接入层节点选择功能 NNSF部署在接入网设 备与核心网控制设备之间时, 网络设备发送的无连接消息的处理。
2、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是接入网设备发送的 RESET消息, 所述根据所述判断 的结果以及预设规则, 处理所述无连接消息包括:
NNSF把所述 RESET消息广播给池内所有核心网控制设备, 并启动第 一定时器;
所述 NNSF收到第一条 RESET ACKNOWLEDGE消息后, 启动第二定时器, 所述第一定时器设定的时间长于所述第二定时器设定的时间;
所述 NNSF将一条 RESET ACKNOWLEDGE消息发送给接入网设备; 如果所述第二定时器超时, 对后续收到的其它 RESET ACKNOWLEDGE 消 息不再发送给接入网设备。
3、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是接入网设备发送的 RESET消息, 所述根据所述判断 的结果以及预设规则, 处理所述无连接消息包括:
NNSF把所述 RESET消息广播给池内所有核心网控制设备, 并启动第 一定时器;
如果所述 NNSF收到池内所有 MSC返回的 RESET ACKNOWLEDGE消息, 则 所述 NNSF发送一条 RESET ACKNOWLEDGE消息给接入网设备, 并停止所述第 一定时器。
4、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是接入网设备发送的 RESET消息, 所述根据所述判断 的结果以及预设规则, 处理所述无连接消息包括:
NNSF把所述 RESET消息广播给池内所有核心网控制设备;
所述 NNSF收到第一条 RESET ACKNOWLEDGE消息后, 启动第二定时器; 所述 NNSF将一条 RESET ACKNOWLEDGE消息发送给接入网设备; 如果所述第二定时器超时, 对后续收到的其它 RESET ACKNOWLEDGE 消 息不再发送给接入网设备;
所述接入网设备丢弃在 RESET 流程已经结束后收到的 RESET
ACKNOWLEDGE消息。
5、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是接入网设备发送的 RESET消息, 所述根据所述判断 的结果以及预设规则, 处理所述无连接消息包括:
NNSF把所述 RESET消息转发给默认的核心网控制设备;
所述默认核心网控制设备收到所述 RESET 消息后, 清除与该接入网设 备相关的连接资源, 并向资源池内其他核心网控制设备广播所述 RESET 消 息, 并启动第一定时器;
所述默认核心网控制设备根据定时器是否超时进行处理, 将 RESET ACKNOWLEDGE消息通过 NNSF发送给接入网设备。
6、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是核心网控制设备发送的 RESET消息, 所述根据所述 判断的结果以及预设规则, 处理所述无连接消息包括:
NNSF 判断在第一定时器设定的时间内是否收到资源池中所有核心网 控制设备发送的 RESET消息, 如果收到, 则转发其中一条 RESET消息给接 入网设备; 否则, 在第二定时器设定的时间内, 隔离发送所述 RESET 消息 的核心网控制设备, 所述第二定时器设定的时间短于所述第一定时器设定 的时间。
7、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是核心网控制设备发送的 OVERLOAD消息, 所述根据所 述判断的结果以及预设规则, 处理所述无连接消息包括:
NNSF 判断在第一定时器设定的时间内是否收到资源池中所有核心网 控制设备发送的 OVERLOAD消息, 如果收到, 则转发其中一条 OVERLOAD消 息给接入网设备; 否则, 在所述第一定时器超时后, 丢弃所述 OVERLOAD消 息, 并调整资源池中核心网控制设备的业务量。
8、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是核心网控制设备发送的 OVERLOAD消息, 所述根据所 述判断的结果以及预设规则, 处理所述无连接消息包括:
NNSF 判断在第一定时器设定的时间内是否收到资源池中所有核心网 控制设备发送的 OVERLOAD消息, 如果收到, 则转发其中一条 OVERLOAD消 息给接入网设备, 并停止所述第一定时器。
9、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是核心网控制设备发送的 RESET RESOURCE消息, 所述 根据所述判断的结果以及预设规则, 处理所述无连接消息包括:
NNSF将所述 RESET RESOURCE消息广播给资源池中所有的核心网控制 设备;
接收到所述 RESET RESOURCE消息的核心网控制设备, 判断所述 RESET RESOURCE消息中指示的连接是否建立在本地; 如果是, 则清除所述连接对 应的资源, 并给接入网设备返回 RESET RESOURCE ACKNOWLEDGE消息, 所述 RESET RESOURCE消息中携带的与连接相关的信息在资源池中统一分配; 所述 NNSF接收到第一条 RESET RESOURCE ACKNOWLEDGE消息后, 启动 第一定时器, 在所述第一定时器超时前, 如果收到所有核心网控制设备发 送的 RESET RESOURCE ACKNOWLEDGE 消息, 就给接入网设备转发其中一条 RESET RESOURCE ACKNOWLEDGE消息; 否则, 在所述第一定时器超时后, 给 接入网设备转发一条 RESET RESOURCE ACKNOWLEDGE消息, 并丢弃后续收到 的 RESET RESOURCE ACKNOWLEDGE消息。
10、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息是核心网控制设备发送的 RESET RESOURCE消息, 所述 根据所述判断的结果以及预设规则, 处理所述无连接消息包括:
匪 SF记录发送 RESET RESOURCE消息的核心网控制设备与目标接入网设 备的对应关系,并将所述 RESET RESOURCE消息发送给所述目标接入网设备; 所述 NNSF 才艮据记录的所述对应关系, 将接入网设备返回的 RESET
RESOURCE ACKNOWLEDGE消息发送给相应的核心网控制设备。
11、 根据权利要求 10所述的无连接消息处理方法, 其特征在于: 所述 NNSF发送 RESET RESOURCE 消息时, 启动第一定时器, 在第一定 时器超时后, 删除所述对应关系;
所述 匪 SF 在所述第一定时器超时后, 丢弃收到的 RESET RESOURCE
ACKNOWLEDGE消息。
12、 根据权利要求 1所述的无连接消息处理方法, 其特征在于: 所述无连接消息包括 RESET消息、 OVERLOAD消息、 RESET RESOURCE消 息、 INFORMATION TRANSFER 消息、 ERROR INDICATION 消息、 DIRECT INFORMATION TRANSFER消息、 UPLINK INFORMATION EXCHANGE消息。
13、 一种处理无连接消息的设备, 所述设备部署在接入网设备与核心 网控制设备之间, 多个所述核心网控制设备构成一个资源池, 其特征在于 包括:
接收判断单元: 用于接收所述接入网设备或核心网控制设备发送的无 连接消息, 并判断所述无连接消息的类型;
处理单元: 用于根据所述判断的结果以及预设规则, 处理所述无连接 消息。
14、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述接收判断单元接收的是核心网控制设备发送的 RESET消息; 所述处理单元根据所述判断的结果以及预设规则, 处理所述无连接消 息包括:
判断在第一定时器设定的时间内是否收到资源池中所有核心网控制设 备发送的 RESET消息, 如果收到, 则转发其中一条 RESET消息给接入网设 备; 否则, 在第二定时器设定的时间内, 隔离发送所述 RESET 消息的核心 网控制设备, 所述第二定时器设定的时间短于所述第一定时器设定的时间。
15、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述接收判断单元接收的是核心网控制设备发送的 RESET消息; 所述处理单元根据所述判断的结果以及预设规则, 处理所述无连接消 息包括:
判断在第一定时器设定的时间内是否收到资源池中所有核心网控制设 备发送的 RESET消息, 如果收到, 则转发其中一条 RESET消息给接入网设 备并停止所述第一定时器。
16、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述接收判断单元接收的是核心网控制设备发送的 OVERLOAD消息; 所述处理单元根据所述判断的结果以及预设规则, 处理所述无连接消 息包括:
判断在第一定时器设定的时间内是否收到资源池中所有核心网控制设 备发送的 OVERLOAD消息, 如果收到, 则转发其中一条 OVERLOAD消息给接 入网设备; 否则, 在所述第一定时器超时后, 丢弃所述 OVERLOAD消息, 并 调整资源池中核心网控制设备的业务量。
17、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述接收判断单元接收的是核心网控制设备发送的 OVERLOAD消息; 所述处理单元根据所述判断的结果以及预设规则, 处理所述无连接消 息包括:
判断在第一定时器设定的时间内是否收到资源池中所有核心网控制设 备发送的 OVERLOAD消息, 如果收到, 则转发其中一条 OVERLOAD消息给接 入网设备, 并停止所述第一定时器。
18、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述接收判断单元接收的是核心网控制设备发送的 RESET RESOURCE消 所述处理单元根据所述判断的结果以及预设规则, 处理所述无连接消 息包括:
将所述 RESET RESOURCE消息广播给资源池中所有的核心网控制设备, 所述 RESET RESOURCE消息用于接收到所述 RESET RESOURCE消息的核心网 控制设备, 判断所述 RESET RESOURCE消息中指示的连接是否建立在本地; 如果是,则清除所述连接对应的资源,并给接入网设备返回 RESET RESOURCE ACKNOWLEDGE消息, 所述 RESET RESOURCE消息中携带的与连接相关的信息 在资源池中统一分配;
接收到第一条 RESET RESOURCE ACKNOWLEDGE消息后, 启动第一定时器, 在所述第一定时器超时前, 如果收到所有核心网控制设备发送的 RESET RESOURCE ACKNOWLEDGE消息,就给接入网设备转发其中一条 RESET RESOURCE ACKNOWLEDGE消息; 否则, 在所述第一定时器超时后, 给接入网设备转发一 条 RESET RESOURCE ACKNOWLEDGE消息, 并丢弃后续收到的 RESET RESOURCE ACKNOWLEDGE消息。
19、 根据权利要求 13所述的处理无连接消息的设备, 其特征在于: 所述无连接消息包括 RESET消息、 OVERLOAD消息、 RESET RESOURCE消 息、 INFORMATION TRANSFER 消息、 ERROR INDICATION 消息、 DIRECT INFORMATION TRANSFER消息、 UPLINK INFORMATION EXCHANGE消息。
20、 一种处理无连接消息的系统, 包括非接入层节点选择功能 NNSF、 接入网设备和核心网设备, 其中非接入层节点选择功能 NNSF部署在接入 网设备与核心网控制设备之间, 多个所述核心网控制设备构成一个资源池, 其特征在于:
核心网控制设备: 用于向接入网设备发送无连接消息, 并接收所述接 入网设备返回的响应消息;
非接入层节点选择功能 NNSF: 用于接收核心网控制设备或接入网设备 的无连接消息, 判断所述无连接消息的类型, 根据所述判断结果及预设规 贝 ij, 处理所述无连接消息;
接入网设备: 用于向核心网控制设备发送无连接消息, 并接收所述核 心网控制设备返回的响应消息。
PCT/CN2010/071371 2009-03-27 2010-03-27 处理无连接消息的方法、系统和设备 WO2010108457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910106358.1 2009-03-27
CN 200910106358 CN101848488B (zh) 2009-03-27 2009-03-27 处理无连接消息的方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2010108457A1 true WO2010108457A1 (zh) 2010-09-30

Family

ID=42772912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071371 WO2010108457A1 (zh) 2009-03-27 2010-03-27 处理无连接消息的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN101848488B (zh)
WO (1) WO2010108457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301598A (zh) * 2021-05-24 2021-08-24 中国电信集团系统集成有限责任公司 一种基站及核心网的资源管理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105635936A (zh) * 2014-11-28 2016-06-01 中兴通讯股份有限公司 一种原始资源通告的方法及相应的节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248870A (zh) * 1998-09-24 2000-03-29 日本电气株式会社 用于传输无连接分组的移动通信系统和方法
US20040203736A1 (en) * 2002-11-20 2004-10-14 Pedro Serna Method, network node and system for selecting network nodes
CN101005633A (zh) * 2006-07-21 2007-07-25 华为技术有限公司 一种实现移动交换中心池的方法及系统
CN101394587A (zh) * 2007-09-18 2009-03-25 华为技术有限公司 一种MSC Pool组网中寻呼实现方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1248870A (zh) * 1998-09-24 2000-03-29 日本电气株式会社 用于传输无连接分组的移动通信系统和方法
US20040203736A1 (en) * 2002-11-20 2004-10-14 Pedro Serna Method, network node and system for selecting network nodes
CN101005633A (zh) * 2006-07-21 2007-07-25 华为技术有限公司 一种实现移动交换中心池的方法及系统
CN101394587A (zh) * 2007-09-18 2009-03-25 华为技术有限公司 一种MSC Pool组网中寻呼实现方法、设备及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113301598A (zh) * 2021-05-24 2021-08-24 中国电信集团系统集成有限责任公司 一种基站及核心网的资源管理方法

Also Published As

Publication number Publication date
CN101848488A (zh) 2010-09-29
CN101848488B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
KR101457823B1 (ko) 모바일 무선 장치에서 네트워크 혼잡 동안의 무선 자원 재설정 시그널링
US8165053B2 (en) Method for supporting MBMS service transmission in LTE system
CN110771242A (zh) 在没有映射数据无线电承载的情况下处理qos流
JP2019506076A (ja) 制御プレーンの最適化のためのデータレートを管理するためのシステム、方法、および装置
CN111919502B (zh) 用于处理网络的装置和方法
WO2010080056A1 (en) Method and arrangement for load balancing in a wireless communication system
WO2012136139A1 (zh) 一种多个终端接入的控制方法、控制设备、终端及系统
WO2017113562A1 (zh) 一种计费系统、方法及网络设备
WO2004089020A1 (fr) Procede de gestion de la mobilite d'un materiel utilisateur et systeme de communication s'y rapportant
WO2011044825A1 (zh) 一种eps中电路交换回落业务的实现方法和系统
KR20080096875A (ko) 이동통신 시스템의 무선자원 할당 제어방법
TW201947980A (zh) 用於在無線通信系統中使用區域資料網路的方法和裝置
WO2011095037A1 (zh) 一种传输保活信息的方法和设备
US11202338B2 (en) Session establishment method and apparatus
WO2010111814A1 (zh) 用于以最小包损失移动wcdma移动台的装置和方法
TWI792415B (zh) Ue和網路之間的多存取pdu會話狀態同步
WO2008014684A1 (fr) Procédé permettant la mise en oeuvre de l'équilibrage des charges
EP2596670B1 (en) Apparatus and method for acquisition of a common enhanced dedicated channel resource
WO2009065321A1 (fr) Procédé, système et dispositif pour traiter le service d'un domaine à commutation de circuits
WO2012152130A1 (zh) 承载处理方法及装置
WO2008154783A1 (fr) Procédé pour établir un tunnel à partir de sgsn vers la passerelle de service
WO2009067912A1 (fr) Procédé et dispositif de commutation pour mettre en œuvre une commutation
WO2012103773A1 (zh) 中继系统的过载控制方法及系统
WO2010108457A1 (zh) 处理无连接消息的方法、系统和设备
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755457

Country of ref document: EP

Kind code of ref document: A1