WO2010107156A1 - 표피성장인자 수용체 타이로신 키나제 저해제의 탐색방법, 및 그에 의해서 탐색된 저해제 - Google Patents
표피성장인자 수용체 타이로신 키나제 저해제의 탐색방법, 및 그에 의해서 탐색된 저해제 Download PDFInfo
- Publication number
- WO2010107156A1 WO2010107156A1 PCT/KR2009/001621 KR2009001621W WO2010107156A1 WO 2010107156 A1 WO2010107156 A1 WO 2010107156A1 KR 2009001621 W KR2009001621 W KR 2009001621W WO 2010107156 A1 WO2010107156 A1 WO 2010107156A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- egfr
- tyrosine kinase
- egfr tyrosine
- compound
- substrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
- C12Q1/485—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/566—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/71—Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
Definitions
- the present invention relates to an Epidermal Growth Factor Receptor (EGFR), and in particular, to a method for exploring a method for exploring a large amount of inhibitors that inhibit tyrosine kinase activity of the EGFR in a large amount. More specifically, the present invention relates to a method of searching for a high-speed and large amount of a substance that inhibits the activity of EGFR tyrosine kinase using a protein chip and an inhibitor searched by the same.
- EGFR Epidermal Growth Factor Receptor
- EGFR Epidermal Growth Factor Receptor
- EGFR is a protein product of the growth promoting oncogene erbB or ErbB1, which is a member of the protooncogenes ERBB family believed to play an important role in the development and progression of many human cancers. It is a member. In particular, increased expression of EGFR has been observed in glioblastomas as well as breast cancer, bladder cancer, lung cancer, head cancer, neck cancer, and gastric cancer.
- the ERBB oncogene family encodes four structurally related transmembrane receptors, EGFR, HER-2 / neu (erbB2), HER-3 (erbB3), and HER-4 (erbB4). Clinically, it has been reported that amplification of ERBB oncogenes and / or overexpression of receptors in tumors correlates not only with responsiveness to therapy, but also with disease relapse and poor prognosis in patients.
- EGFR consists of three major domains: an extracellular domain (ECD) that is glycosylated and contains a ligand-binding pocket with two cysteine rich regions; Short transmembrane domains; And intracellular domains with intrinsic tyrosine kinase activity.
- ECD extracellular domain
- Short transmembrane domains Short transmembrane domains
- intracellular domains with intrinsic tyrosine kinase activity The transmembrane region binds the ligand-binding domain with the intracellular domain.
- EGF or TGF- ⁇ binds to EGFR
- signaling pathways are activated, resulting in cell proliferation.
- Dimerization, conformational change, and internalization of EGFR molecules function to transmit intracellular signals, leading to regulation of cell growth.
- Cells proliferate as a result of genetic alterations that affect the regulation of growth factor receptor function or lead to overexpression of receptors or ligands.
- EGFR may be associated with chemotherapy or radiation resistance in the differentiation of cells, the enhancement of cell motility, the secretion of proteins, neovascularization of blood vessels, invasion, metastasis of cancer cells, etc. It is known to play a role.
- EGFR-TKIs EGFR tyrosine kinase inhibitors
- EGFR-TKIs block receptors on the cell surface that are responsible for triggering and / or maintaining the cell's signaling pathways that cause tumor cells to grow and differentiate. Specifically, it is believed that these inhibitors interfere with the EGFR kinase domain named HER-1.
- EGFR-TKIs are three series of compounds: quinazolines, pyridopyrimidines, and pyrrolopyrimidines.
- EGFR kinase present in the intracellular domain is present in the presence of a phosphate group.
- phosphorylation (pY) of tyrosine (Tyr) on EGFR kinase substrates such as PI3-K, GRB2, SOS triggers signal pathways in cells.
- EGFR-TKIs EGFR tyrosine kinase inhibitors
- Gefitinib compound ZD1839 developed by AstraZeneca UK Ltd .; available under the trade name IRESSA; "IRESSA”
- Erlotinib compound OSI774 developed by Genentech, Inc. and OSIPharmaceuticals, Inc .; available under the trade name TARCEVA; hereafter "TARCEVA”
- TARCEVA TARCEVA
- Conventional cancer treatments using IRESSA or TARCEVA require oral administration of each compound in an amount of no greater than 500 mg daily.
- tyrosine kinase inhibitors also include EGFR inhibitors, which include AG494, AG825, AG1478, EI-146, HDBA, Tyrphostin46, Tyrphostin47, Tyrphostin51, and Tyrphostin 1, among others.
- Small nucleotide inhibitors have also been developed for EGFR inhibition (U.S Pat. Nos. 5914269 and 6187585).
- tyrosine kinase inhibitor detection technology is the enzyme linked immunosorbentassay (ELISA), one of the technologies widely used in the laboratory or hospital for diagnostic purposes.
- ELISA enzyme linked immunosorbentassay
- this method not only consumes a large amount of protein, but also has a problem of being nonspecific and inadequate for mass screening.
- the present invention by preparing a compound pool by first selecting candidates from a plurality of compounds contained in a single compound library, it is easy to search for inhibitors having significantly superior inhibitory effect than the prior art while reducing the time and cost for searching It is for.
- the present invention for achieving the above object, as an exploration method of Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs), by the EGFR tyrosine kinase on a protein chip Attaching an activatable EGFR tyrosine kinase substrate; Reacting a compound pool of EGFR tyrosine kinase, ATP, Mg 2+ and a single compound library to the protein chip to which the substrate is attached; Reacting the phosphorylated substrate by the reaction and reacting an antibody having a fluorescent substance attached thereto with the phosphorylated substrate; Washing with a buffer solution after the reaction with the phosphorylated substrate; And measuring the intensity of the fluorescent material after the washing.
- the method of searching for an EGFR tyrosine kinase inhibitor comprising a.
- a docking simulation is performed to search for pharmacophores and virtually bind the structure of the EGFR tyrosine kinase to a plurality of compounds included in the single compound library. Performing; And preparing a compound pool with the compound selected by the pharmacological group search and the docking simulation.
- the searching of the pharmacological action group is performed based on one or more selected from the group consisting of quinazolines, pyridopyrimidines and pyrrolopyrimidines. It is preferable to select a certain number of compounds with high similarity to the structure of the basic model. More preferably, the docking simulation is performed by virtually combining the selected number of compounds with the EGFR tyrosine kinase to select a certain number of compounds that are structurally highly matchable.
- the EGFR tyrosine kinase substrate may be one or more selected from the group consisting of PLC-gamma1, EGFR, Shc, Grb2 / mSos, P91, PI3-kinase, Ras / Gap and Cbl, the single compound library is a low molecular compound And a compound derived from natural products.
- the step of reacting with the phosphorylated substrate may include reacting a first antibody capable of recognizing the phosphorylated substrate by the reaction with the phosphorylated substrate; And reacting the second antibody to which the first antibody reacted and having the fluorescent substance attached thereto are reacted with the first antibody.
- another embodiment of the present invention has an Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitory activity, and has 2- ⁇ [6- (5,6-Dihydroxy-4- oxo-2-phenyl-4H-chromen-7-yloxy) -3,4,5-trihydroxy-tetrahydro-pyran-2-carbonyl] -amino ⁇ -4-methylsulfanyl-butyric acid methyl ester structure, 6,7-Dihydroxy A 4- (o-tolylamino-methyl) -chromen-2-one structure, or N- [3- (3,4-Dihydroxy-phenyl) -acryloyl] -2-hydroxy-benzamide structure Compound.
- EGFR Epidermal Growth Factor Receptor
- the present invention is also possible for a pharmaceutical composition for the treatment or prevention of cancer, characterized in that it comprises the compound described above.
- the EGFR tyrosine kinase substrate which can be activated by EGFR tyrosine kinase, is attached on the protein chip, and the EGFR tyrosine kinase, ATP, Mg 2+ is attached to the protein chip to which the substrate is attached. And by reacting a compound pool of a single compound library, a large amount of new inhibitors capable of excellently inhibiting the activity of EGFR tyrosine kinase from various single compound libraries can be searched in large quantities.
- candidates are first selected to prepare a compound pool. While reducing the time and cost for the effect that can easily search for inhibitors having a significantly superior inhibitory effect than the conventional.
- the inhibitor having the EGFR kinase inhibitory effect explored according to the present invention is an excellent EGFR kinase inhibitor, exhibits an excellent effect on the inhibition of autophosphorylation and the phosphorylation of various other substrates by EGFR, medicines in EGFR-related diseases It is possible to further increase the effectiveness of.
- FIG. 1 is a schematic diagram illustrating an example of a process in which a ligand (EGF or TGF- ⁇ ) is coupled to an extracellular domain of EGFR according to the present invention to activate a signaling pathway.
- a ligand EGF or TGF- ⁇
- FIG. 2 is a schematic diagram for explaining an example of a process of performing a pharmacological action stage search and docking simulation in the search method according to the present invention
- Figure 3 is a photograph of the experimental results and the graph for illustratively explaining that phosphorylation of the substrate (PLC-gamma1) by the EGFR tyrosine kinase according to the present invention is concentration-dependent,
- FIG. 4 is a photograph and a graph of experimental results of an exemplary screening of EGFR tyrosine kinase inhibitor from a single compound library using PLC-gamma1 as a substrate according to the present invention.
- FIG. 5 is a photograph and a graph showing the results of exemplifying the degree of phosphorylation inhibition by concentration with respect to the inhibitors E12, H7, C12 and the conventional inhibitor Tyrphostin 51, which were discovered according to the present invention.
- Figure 6 is a schematic diagram showing the chemical structure of the inhibitors E12, H7 and C12 and the name and the binding structure of the EGFR tyrosine kinase produced through the docking simulation, according to the present invention
- FIG. 8 exemplarily shows the results of EGFR autophosphorylation inhibition experiments and inhibitory concentrations (IC 50 ; half-maximal inhibitory concentrations) for inhibitors E12, H7, C12 and the conventional inhibitor Tyrphostin 51, which were detected according to the present invention. It is a photograph,
- FIG. 9 exemplarily shows the results of proliferation inhibition experiments of HeLa cells against inhibitors E12, H7, C12, and the conventional inhibitor Tyrphostin 51, and the activity inhibitory concentration (IC 50 ; half-maximal inhibitory concentration) according to the present invention. The picture shown.
- an EGFR tyrosine kinase in order to search for an inhibitor capable of inhibiting the activity of EGFR tyrosine kinase, ie, an enzyme that phosphorylates tyrosine on an EGFR substrate, an EGFR tyrosine that can be activated by binding to the EGFR tyrosine kinase.
- ATP a compound pool of Mg 2+ as a co-factor and a single compound library, that attaches a kinase substrate onto a protein chip and supplies a phosphate group with EGFR tyrosine kinase to the protein chip to which the substrate is attached The pool was reacted.
- ProteoChip TM (Proteogen Inc., Seoul, Korea) was used as the protein chip.
- the ProteoChip TM is coated with a calixarene derivative on an aminated glass slide, which acts as a bifunctional molecular linker.
- any kind of substrate known in the art may be used without particular limitation as long as it is a protein that can be activated by EGFR tyrosine kinase.
- a protein that can be activated by EGFR tyrosine kinase For example, one or more selected from the group consisting of PLC-gamma1, EGFR, Shc, Grb2 / mSos, P91, PI3-kinase, Ras / Gap, and Cbl may be used.
- the single compound library may include a low molecular weight compound and a compound derived from natural products, and since most of the compounds conventionally known as EGFR tyrosine kinase inhibitors are single compounds, the present invention is a compound derived from natural products together with a single compound. It is characterized by including more.
- the present invention is characterized in that the phosphorylated antibody is further reacted with the protein chip reacted with the compound pool while the phosphorylated substrate is recognized. to be.
- receptors such as integrins are combined with a separate ligand protein that antagonizes with the inhibitor candidate, and could attach the fluorescent material directly to the ligand protein, but the EGFR tyrosine kinase according to the present invention antagonizes with the inhibitor candidate Phosphorylation activity of the kinase is inhibited by the inhibitor candidates, and the fluorescent substance cannot be directly attached to the kinase enzyme.
- the phosphorylated substrate is specifically recognized by the reaction of the compound pool.
- reacting a separate antibody capable of recognizing the phosphorylated substrate may react the first antibody capable of recognizing the phosphorylated substrate with the phosphorylated substrate, and subsequently recognize the reacted first antibody. It is also possible to perform a two-step process of reacting the second antibody with a fluorescent substance attached to the first antibody.
- the resultant was washed with a buffer solution and the intensity of the fluorescent material was measured to search for an EGFR tyrosine kinase inhibitor. Since the phosphorylation of the substrate is inhibited by a specific compound, the compound reacting with the spot with low intensity of the fluorescent substance can be determined as an inhibitor capable of excellently inhibiting the activity of EGFR tyrosine kinase.
- the present invention in order to reduce the time and cost for the search, to construct a compound pool of a single compound library, pharmacophore (search) for a plurality of compounds contained in the single compound library (pharmacophore) search and the EGFR tyrosine kinase
- search for a plurality of compounds contained in the single compound library (pharmacophore) search
- EGFR tyrosine kinase By docking simulation to virtually combine with the structure of the candidate material may be to prepare a compound pool.
- the pharmacophore refers to a 3D array of various functional groups (chemical features) that are essential for a specific enzyme, protein, receptor, and molecule (or compound) to bind efficiently (Sutter, etc.). , 2000), to screen for compounds with pharmacological groups similar to those of Iressa® or Taceva®, which are conventionally known as EGFR tyrosine kinase inhibitors.
- the structure and similarity of the basic model is set by using at least one selected from the group consisting of quinazolines, pyridopyrimidines and pyrrolopyrimidines as a base model. A high, constant number of compounds is selected first.
- performing the docking simulation virtually combines a plurality of compounds included in a single compound library with the EGFR tyrosine kinase, thereby selecting a certain number of compounds that are structurally matchable.
- the present invention by pharmacological action screening and docking simulation, by selecting the candidate material to prepare a compound pool, it is possible to easily search for inhibitors having a significantly superior inhibitory effect than the conventional while reducing the time and cost for the search It works.
- FIG. 2 is a schematic diagram illustrating an example of a process of performing a pharmacological action stage search and docking simulation in the search method according to the present invention
- MOE Molecular Operating Environment
- the virtual screening method used a combination of pharmachphore search and molecular docking simulation.
- the LondondG function uses parameters such as rotational / translation entropy change due to bonding, reduction of flexibility energy due to ligand binding, hydrogen bonding energy, metal ion ligation, and desolavtion energy difference.
- this embodiment confirmed the degree of reaction between the EGFR kinase substrate and EGFR kinase.
- ProteoChip TM Proteogen, Inc., Seoul, Korea was used as a protein chip, and microarray (CM-1000; Proteogen, Inc., Seoul, Korea) was used on ProteoChip TM (Proteogen, Inc., Seoul, Korea).
- EGFR kinase substrate microarray was constructed by spotting EGFR kinase substrate by concentration.
- PLC-gamma1 was purchased from Calbiochem as an EGFR kinase substrate. The substrate was dissolved in phosphate-buffered saline (PBS) containing 30% glycerol, and then spotted on ProteoChip TM . Fixed overnight at 4 ° C in a humid place.
- PBS phosphate-buffered saline
- the protein chips immobilized with EGFR kinase substrate (PLC-gamma1) were blocked with PBS containing 3% BSA (bovine serum albumin), followed by washing with PBS containing pH 0.5% Tween 20 (PBST, pH 7). .4) to remove unfixed substrate and BSA.
- PBS EGFR kinase substrate
- BSA bovine serum albumin
- EGFR tyrosine kinase was reacted with the ATP / Mg 2+ mixture on the protein chip to which the substrate was attached by concentration.
- the ATP / Mg 2+ mixture and EGFR tyrosine kinase were purchased and used by UPSTATE, and the concentration of EGFR tyrosine kinase was varied by 10-5,000 ⁇ l / ml.
- the reaction was performed using a buffer solution (100mM MOPS, 5mMDTT, PBS, pH 7.2), and the reaction was carried out in a humid place at 30 °C for one hour.
- the phosphoric acid of the triphosphate group caused the tyrosine sequence of the substrate to be phosphorylated, and then the diphosphate group and the EGFR tyrosine kinase and the buffer solution were removed after the reaction with the triphosphate group which did not react with the washing solution.
- the primary antibody recognizing the phosphorylated substrate (purchased by UPSTATE and Abby Frontier, Inc.) was diluted in a PBS solution containing 30% glycerol and 10% BSA in a ratio of 1: 100, In a humid place, the chip containing the phosphorylated substrate was reacted for one hour.
- the chip was washed with a washing solution, the fluorescent secondary antibody that recognizes the primary antibody was diluted 100: 1 in PBS solution containing 10% BSA and 30% glycerol, and then moist and lightless at 30 ° C. The reaction was performed for one hour with the chip containing the primary antibody.
- the chip was washed with a washing solution, and the intensity of fluorescence was analyzed in the chip using an Aquire® fluorescence scanner manufactured by GENETIX, and the results are shown in FIG. 3.
- FIG. 3 is a photograph and a graph of an experimental result for exemplarily illustrating that phosphorylation of a substrate (PLC-gamma1) is concentration-dependent by EGFR tyrosine kinase according to the present invention.
- the EGFR kinase substrate (PLC-gamma1) was attached to the protein chip, where the concentration of the substrate was 20 ⁇ g per 1 mm chip. Then, 1mM of Tyrphostin51 as a positive control, and 300 library compounds selected in Example 1 as a positive control together with the ATP / Mg 2+ mixture and the EGFR tyrosine kinase on the protein chip to which the substrate was attached, each at a concentration of 50mM Reacted. The other process is the same as in Example 2, and the result of analyzing the intensity of fluorescence for the chip after the reaction is shown in FIG.
- Figure 4 is a photograph and a graph of the results of an exemplary screening of EGFR tyrosine kinase inhibitor from a single compound library using PLC-gamma1 as a substrate according to the present invention, as shown here, conventionally as an EGFR tyrosine kinase inhibitor
- Compounds superior to EGFR tyrosine kinase inhibitory effect than the known Tyrphostin51 was able to be searched, for example, three of them were selected and named as H07, E12, C12.
- Example 3 Three compounds selected in Example 3 were tested for the effect of inhibiting the EGFR kinase activity by the concentration of the compound.
- Example 3 each of 300 compounds was reacted at a concentration of 50 mM, but in this example, each of H07, E12, and C12 compounds was reacted at a concentration of 1 ⁇ M to 100 ⁇ M, and the other process was the same as in Example 2.
- Example 3 As a result of analyzing the intensity of fluorescence of the reaction chip is as shown in FIG.
- FIG. 5 is a photograph and a graph of the results of exemplifying the degree of phosphorylation inhibition by concentration with respect to the inhibitors E12, H7, C12 and the conventional inhibitor Tyrphostin 51 detected according to the present invention, as shown here, Inhibitors E12, H7, C12 according to the concentration-dependent it can be confirmed that the activity of EGFR tyrosine kinase.
- FIG. 6 is a schematic diagram showing the chemical structure of the inhibitors E12, H7 and C12 and the name and the binding structure of the EGFR tyrosine kinase produced through the docking simulation according to the present invention, as shown here, Inhibitors E12, H7, C12 according to the present invention are 2- ⁇ [6- (5,6-Dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy) -3,4,5-trihydroxy- tetrahydro-pyran-2-carbonyl] -amino ⁇ -4-methylsulfanyl-butyric acid methyl ester (BOX1-E12), 6,7-Dihydroxy-4- (o-tolylamino-methyl) -chromen-2-one (BOX2- H07), N- [3- (3,4-Dihydroxy-phenyl) -acryloyl] -2-hydroxy-benzamide (BOX2-C12) structure, which is completely different from the known EGFR kinas
- Example 2 EGFR was used instead of PLC-gamma1 as the EGFR kinase substrate, and based on this, autophosphorylation of EGFR by EGFR kinase was tested. As a result, as shown in Figure 7, it can be confirmed that even if EGFR is used as the EGFR kinase substrate, phosphorylation of the substrate (EGFR) by the EGFR tyrosine kinase is concentration-dependent.
- EGFR was attached at a concentration of 10 mg / mL instead of PLC-gamma1 as the EGFR kinase substrate, and 100 ng / mL of EGFR kinase and ATP / Mg 2+ were buffered (100 mM MOPS, 5 mMDTT, PBS, pH).
- FIG. 8 exemplarily shows the results of EGFR autophosphorylation inhibition experiments and inhibitory concentrations (IC 50 ; half-maximal inhibitory concentrations) for inhibitors E12, H7, C12 and the conventional inhibitor Tyrphostin 51, which were detected according to the present invention. As shown here, it can be seen that E12, H7, and C12 inhibit the autophosphorylation of EGFR in a concentration-dependent manner.
- HeLa cells were added to a polystyrene-coated 96-well tissue culture plate at a concentration of 4 ⁇ 10 3 cells per well. After maintaining this for 24 hours, each well was added with the inhibitor E12, H07, C12 according to the present invention and the conventional inhibitor Tyrphostin 51 with a culture mixture containing 10% FBS, respectively, and reacted for 72 hours.
- E12, H07, C12 and Tyrphostin 51 was reacted for each concentration of 10 ⁇ M ⁇ 100 ⁇ M.
- 10 ⁇ l of 5 mg / ml MTT solution was added to each well, and the mixture was reacted at 37 ° C. for 3 hours. Then, after discarding the supernatant of each well, the color reaction (Formazancrystal) was dissolved in 100ul of DMSO, the absorbance was measured by ELISA reader (595nm).
- FIG. 9 exemplarily shows the results of proliferation inhibition experiments of HeLa cells against inhibitors E12, H7, C12, and the conventional inhibitor Tyrphostin 51, and the activity inhibitory concentration (IC 50 ; half-maximal inhibitory concentration) according to the present invention.
- IC 50 activity inhibitory concentration
- Media alone shows the result of proliferating HeLa cells in the culture medium without the sample.
- E12, H7, C12 compounds according to the present invention showed a superior inhibitory effect than Tyrphostin 51 (Tyrosin kinase inhibitor), of which E12 and H7 was the most excellent inhibition of EGFR tyrosine kinase.
- the concentration (half-maximal inhibitory concentration) required for 50% inhibition of proliferation of HeLa cells by the E12, H7, and C12 compounds was 27.96 ⁇ 3.30 ⁇ M, 11.95 ⁇ 0.39 ⁇ M, and 41.83 ⁇ 6.29 ⁇ M, respectively.
- H7 was shown to most effectively inhibit the proliferation of HeLa cells.
- the present invention provides a method capable of ultra-high-speed screening of substances having EGFR kinase inhibitory effect from various single compound libraries, and the inhibitors thus detected have excellent effects on inhibition of autophosphorylation and phosphorylation of other substrates by EGFR kinase. It is possible to further enhance the effectiveness of medicines in EGFR related diseases.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Endocrinology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 단백질 칩 상에 EGFR 타이로신 키나제에 의해 활성화될 수 있는 EGFR 타이로신 키나제 기질(substrate)을 부착하고, 상기 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제, ATP, Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시킴으로서, EGFR 타이로신 키나아제의 활성을 우수하게 억제할 수 있는 새로운 억제물질을 대량으로 신속하게 탐색할 수 있는 것이다.
Description
본 발명은 표피성장인자 수용체(Epidermal Growth Factor Receptor : EGFR)에 대한 것으로, 특히 상기 EGFR의 타이로신 키나제(tyrosine kinase) 활성을 억제시키는 저해제(inhibitors)를 대량으로 신속하게 탐색할 수 있는 탐색방법에 대한 것이며, 더욱 상세하게는 단백질 칩을 이용하여 EGFR 타이로신 키나아제의 활성을 억제하는 물질을 초고속 대량으로 탐색하는 방법과 그에 의해 탐색된 저해제에 관한 발명이다.
표피성장인자 수용체(Epidermal Growth Factor Receptor; 이하 "EGFR")는 질량이 170 킬로달톤(kDa)으로 막에 결합된 단백질인데, 상피세포의 표면에 발현된다. EGFR은 세포주기조절분자들의 부류(class)인 단백질 티로신 키나제의 성장인자수용체 군(family)에 속한다. EGFR은 세포외 도메인에 자신의 리간드(EGF 또는 TGF-α)가 결합하면 활성화되고, 그 결과로 동 수용체의 세포내 타이로신 키나제 도메인이 자가인산화 반응을 일으키게 된다.
EGFR은, 성장촉진 종양유전자(growth promoting oncogene)인 erbB 또는 ErbB1의 단백질 산물인데, 이 erbB 또는 ErbB1은 많은 인간 암들의 발병과 진행에서 중요한 역할을 한다고 믿어지고 있는 원발암유전자(protooncogenes) ERBB군의 일원이다. 특히, 아교모세포종(glioblastomas) 뿐만 아니라 유방암, 방광암, 폐암, 두부암, 목 부위 암, 및 위암에서 EGFR의 발현이 증대된다는 것이 관찰되어 왔다. ERBB 종양유전자 군은 구조적으로 연관된 4개의 막횡단(transmembrane) 수용체들, 즉, EGFR, HER-2/neu(erbB2), HER-3(erbB3), 및 HER-4(erbB4)를 코딩하고 있다. 임상적으로, 종양에 있어서 ERBB 종양유전자의 증폭 및/또는 수용체의 과다발현은 치료법에 대한 반응성과 상관관계가 있을 뿐만 아니라 병의 재발과 환자의 좋지 않은 예후와도 상관관계가 있다는 것이 보고되었다.
EGFR은 세 개의 주요 도메인들로 구성되어 있는데, 당화되어 있고(glycosylated), 2개의 시스테인 풍부 영역을 갖는 리간드-결합 포켓(ligand-binding pocket)을 함유하는 세포외 도메인(extracellular domain: ECD); 짧은 막횡단 도메인; 및 고유의 타이로신 키나제 활성을 갖는 세포내 도메인이 그것이다. 막횡단 영역은 리간드-결합 도메인을 세포내 도메인과 결합시켜준다. 비당화형태의 EGFR에 대한 연구와 함께 아미노산과 DNA 염기서열분석은 EGFR의 단백질 골격이 질량이 132 kDa이고, 1186개의 아미노산 잔기를 갖는다는 것을 보여준다.
EGF나 또는 TGF-α가 EGFR에 결합하면 신호전달경로가 활성화되고, 그 결과, 세포가 증식된다. EGFR 분자의 이량체화(dimerization), 입체구조의 변화 (conformational change), 그리고 내재화(internalization)는 세포내 신호를 전달하는 기능을 하는데, 이는 세포의 성장을 조절하는 것으로 이어진다. 성장인자수용체 기능의 조절에 영향을 주거나 또는 수용체 또는 리간드의 과다발현으로 이어지는 유전자적 변경들의 결과, 세포가 증식된다. 거기에 더해서, EGFR은 세포의 분화와, 세포의 운동성(motility)의 향상, 단백질의 분비, 혈관의 신생(neovascularization), 침범(invasion), 암세포의 전이 등에서 화학 요법 또는 방사선에 대한 내성에 있어서 어떤 역할을 하는 것으로 알려져 있다.
암 치료에 있어서 치료적 개입(therapeutic intervention)을 위한 유망한 표적의 세트에는 HER 키나제 축(HER-kinase axis)에 속하는 구성원들이 포함된다. 그것들은, 예를 들면, 전립선이나 폐, 유방의 고형상피세포종양(solid epithelial tumor)들에 있어서, 자주 상향조절(upregulated)되어 있고, 또한 아교모세포종 (glioblastoma)들에서도 상향조절되어 있다. EGFR은 HER 키나제 축의 구성원 중의 하나로서, 몇가지 서로 다른 암 치료법들의 개발을 위한 선택의 표적이 되어 왔다. EGFR 티로신 키나제 저해제(EGFR tyrosine kinase inhibitors: EGFR-TKIs)들은 이러한 치료법들 중의 하나인데, 그 이유는 EGFR 경로의 활성화에는 티로신 잔기들의 가역인산화 과정이 요구되기 때문이다. 달리 말하자면, EGFR-TKI들은 종양 세포들의 성장과 분화를 일으키는 세포의 신호경로를 촉발 및/또는 유지하는 일을 하고 있는 세포 표면의 수용체를 차단한다. 구체적으로는, 이들 저해제들이 HER-1로 명명되는 EGFR 키나제 도메인을 간섭(interfere)한다고 믿어진다. 보다 더 유망한 EGFR-TKI들 중에는 3가지의 화합물 시리즈들이 있는데, 그들은 퀴나졸린(quinazolines)과 피리도피리미딘(pyridopyrimidines), 그리고 피롤로피리미딘(pyrrolopyrimidines)이다.
상기한 EGFR에 대한 다양한 저해제들이 동정되었으며, 그 중에는 이미 다양한 암들에 대한 치료로서 임상 시험이 진행되고 있는 여러 개가 포함되어 있다. 최신의 요약은 de Bono, J. S. and Rowinsky, E.K. (2002), "The ErbB Receptor Family: A Therapeutic Target For Cancer", Trends in Molecular Medicine, 8, S19-26을 참조할 수 있다.
예를 들어, 도 1에 나타난 바와 같이, EGFR의 세포외 도메인에 자신의 리간드(EGF 또는 TGF-α)가 결합하여 신호전달경로가 활성화되면, 세포내 도메인에 존재하는 EGFR kinase는, 인산기의 존재하에, PI3-K, GRB2, SOS와 같은 EGFR kinase 기질(substrate) 상의 타이로신(Tyr)을 인산화(pY)시킴으로서, 세포의 신호경로를 촉발시킨다. 그러나, 이 때 EGFR 티로신 키나제 저해제(EGFR-TKIs)가 존재하면, 상기 EGFR-TKIs는 EGFR kinase 도메인을 간섭(interfere)함으로서 상기 기질의 타이로신이 인산화되는 것을 억제하여 세포의 신호경로를 차단하는 것이다.
근래에, 상기한 EGFR에 대한 다양한 저해제들이 동정되었으며, 임상적인 개발후 신약승인된 화합물들 2가지는 제피티니브(Gefitinib)(AstraZeneca UK Ltd.에 의해 개발된 화합물 ZD1839; 상표명 IRESSA 로 구입가능; 이하 "IRESSA")와 에를로티니브(Erlotinib)(Genentech, Inc.과 OSIPharmaceuticals, Inc.에 의해 개발된 화합물 OSI774; 상표명 TARCEVA로 구입가능; 이하 “TARCEVA")가 있는데, 둘다 고무적인 임상결과들을 낳았다(Presentations at ASCO 2003 and WCLC, Aug.2003). IRESSA나 TARCEVA를 사용하는 종래의 암 치료법은 각 화합물을 500 mg을 넘지 않는 양으로 매일, 경구 투여하는 것이다. 이레사®와 타쎄바®는 경구적으로 유효한(orally active) 퀴나졸린계 화합물로서 EGFR 분자상의 티로신 키나제의 인산화를 직접 저해한다. EGFR의 아데노신 삼인산(ATP)의 결합부위에 경쟁적으로 작용한다.
그외 타이로신 키나아제 저해제 중에 EGFR 억제제도 포함되어 있는데 종류를 보면 AG494, AG825, AG1478, EI-146, HDBA, Tyrphostin46, Tyrphostin47, Tyrphostin51, 그리고 Tyrphostin 1등이 알려져 있다. 또한 EGFR 억제를 위한 작은 뉴클레오티드 억제제도 개발되었다(U.S Pat. Nos. 5914269 and 6187585).
한편, 기존의 타이로신 키나아제 저해제 탐색기술은 연구소 또는 병원 등에서 진단을 목적으로 상용화되어 널리 쓰이는 기술 중에 하나인 효소면역항체법(enzyme linked immunosorbentassay, ELISA)이 전부였다. 그러나 이 방법은 단백질 양이 많이 소요될 뿐만 아니라, 비특이적 반응이며 대량 탐색에 부적절하다는 문제점이 있다.
이에 따라, EGFR kinase 억제제를 스크리닝 하기 위하여 수만개의 화합물을 빠르고 쉽게 탐색하는 방법이 절실히 요구되는 시점이다.
상기한 문제점을 해결하기 위한 본 발명은 각종 단일 화합물 라이브러리로부터 EGFR 타이로신 키나아제의 활성을 우수하게 억제할 수 있는 새로운 억제물질을 대량으로 신속하게 탐색할 수 있는 방법을 제공하는 것이 목적이다.
또한, 본 발명은 단일 화합물 라이브러리에 포함된 다수의 화합물 중에서 후보물질을 먼저 선별하여 화합물 풀을 준비함으로서, 탐색을 위한 시간과 비용을 줄이면서 종래보다 현저히 우수한 억제효과를 가지는 저해제를 용이하게 탐색하기 위한 것이다.
또한, 상기와 같은 방법을 통해 EGFR kinase에 의한 자가인산화 및 다른 여러가지 기질의 인산화를 우수하게 억제할 수 있는 EGFR 타이로신 키나아제 저해제를 탐색하고, 그렇게 탐색된 저해제를 통하여 EGFR관련 질환에서 의약(medicines)의 유효성을 더욱 높이고자 하는 것이다.
상기한 목적을 달성하기 위한 본 발명은, 표피성장인자 수용체(Epidermal Growth Factor Receptor : EGFR) 타이로신 키나제 저해제(EGFR tyrosine kinase inhibitors : EGFR-TKIs)의 탐색방법으로서, 단백질 칩 상에 EGFR 타이로신 키나제에 의해 활성화될 수 있는 EGFR 타이로신 키나제 기질(substrate)을 부착하는 단계; 상기 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제, ATP, Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시키는 단계; 상기 반응에 의해 인산화된 기질을 인식할 수 있고 형광물질이 부착된 항체를 상기 인산화된 기질과 반응시키는 단계; 상기 인산화된 기질과 반응이 끝난 후 완충용액으로 세척하는 단계; 및 상기 세척 후 형광물질의 강도를 측정하는 단계;를 포함하는 EGFR 타이로신 키나제 저해제의 탐색방법이다.
여기서, 상기 단일 화합물 라이브러리의 화합물 풀을 반응시키는 단계 이전에, 상기 단일 화합물 라이브러리에 포함된 다수의 화합물에 대하여 약리작용단(pharmacophore)을 검색하고 상기 EGFR 타이로신 키나제의 구조와 가상 결합시키는 도킹 시뮬레이션을 수행하는 단계; 및, 상기 약리작용단 검색과 도킹 시뮬레이션에 의해 선택된 화합물로 화합물 풀을 준비하는 단계;를 더 포함하는 것도 가능하다.
그리고, 상기 약리작용단을 검색하는 것은, 퀴나졸린(quinazolines), 피리도피리미딘(pyridopyrimidines) 및 피롤로피리미딘(pyrrolopyrimidines)으로 이루어진 군에서 하나 이상이 선택된 것을 기본 모델(model)로 하여, 상기 기본 모델의 구조와 유사성이 높은 일정한 수의 화합물을 선택하는 것임이 바람직하다. 상기 도킹 시뮬레이션을 수행하는 것은, 상기 선택된 일정한 수의 화합물을 상기 EGFR 타이로신 키나제와 가상으로 결합시켜서, 구조적으로 매칭 가능성이 높은 일정한 수의 화합물을 선택하는 것임이 더욱 바람직하다.
또한, 상기 EGFR 타이로신 키나제 기질은 PLC-gamma1, EGFR, Shc, Grb2/mSos, P91, PI3-kinase, Ras/Gap 및 Cbl로 이루어진 군에서 하나 이상이 선택된 것일 수 있고, 상기 단일 화합물 라이브러리는 저분자 화합물과 천연물 유래 화합물로 이루어진 것이 가능하다.
나아가, 상기 인산화된 기질과 반응시키는 단계는, 상기 반응에 의해 인산화된 기질을 인식할 수 있는 제1항체를 상기 인산화된 기질과 반응시키는 단계; 및, 상기 반응한 제1항체를 인식할 수 있고 형광물질이 부착된 제2항체를 상기 제1항체와 반응시키는 단계;를 포함하는 것이 바람직하다.
한편, 본 발명의 다른 실시형태는 표피성장인자 수용체(Epidermal Growth Factor Receptor : EGFR) 타이로신 키나제 저해작용(EGFR tyrosine kinase inhibiting)을 가지는 것으로, 2-{[6-(5,6-Dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonyl]-amino}-4-methylsulfanyl-butyric acid methyl ester 구조, 6,7-Dihydroxy-4-(o-tolylamino-methyl)-chromen-2-one 구조, 또는 N-[3-(3,4-Dihydroxy-phenyl)-acryloyl]-2-hydroxy-benzamide 구조를 포함하는 것을 특징으로 하는 화합물이다.
이와 함께, 본 발명은 상기한 화합물을 포함하는 것을 특징으로 하는 암 치료용 또는 예방용 약학적 조성물도 가능하다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
상기한 본 발명에 의하는 경우, 단백질 칩 상에 EGFR 타이로신 키나제에 의해 활성화될 수 있는 EGFR 타이로신 키나제 기질(substrate)을 부착하고, 상기 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제, ATP, Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시킴으로서, 각종 단일 화합물 라이브러리로부터 EGFR 타이로신 키나아제의 활성을 우수하게 억제할 수 있는 새로운 억제물질을 대량으로 신속하게 탐색할 수 있다.
또한, 상기 단일 화합물 라이브러리에 포함된 다수의 화합물에 대한 약리작용단(pharmacophore) 검색과 상기 EGFR 타이로신 키나제의 구조와 가상 결합시키는 도킹 시뮬레이션에 의해, 후보물질을 먼저 선별하여 화합물 풀을 준비함으로서, 탐색을 위한 시간과 비용을 줄이면서 종래보다 현저히 우수한 억제효과를 가지는 저해제를 용이하게 탐색할 수 있는 효과가 있다.
또한, 상기 본 발명에 따라 탐색된 EGFR kinase 억제효과를 가지는 저해제는 우수한 EGFR kinase 억제 물질로서, EGFR에 의한 자가인산화 및 다른 여러가지 기질의 인산화 억제에 우수한 효과를 나타내며, EGFR관련 질환에서 의약(medicines)의 유효성을 더욱 높일 수 있다.
도 1은 본 발명에 따른 EGFR의 세포외 도메인에 리간드(EGF 또는 TGF-α)가 결합하여 신호전달경로가 활성화되는 과정의 일례를 설명하기 위한 모식도이고,
도 2는 본 발명에 따른 탐색방법을 진행함에 있어서, 약리작용단 검색과 도킹 시뮬레이션을 수행하는 과정의 일례를 설명하기 위한 모식도이고,
도 3은 본 발명에 따른 EGFR 타이로신 키나제에 의해 기질(PLC-gamma1)의 인산화가 농도 의존적으로 이루어진다는 것을 예시적으로 설명하기 위한 실험 결과 사진 및 그 그래프이고,
도 4는 본 발명에 따라 PLC-gamma1을 기질로 사용하여 단일 화합물 라이브러리로부터 EGFR 타이로신 키나제 저해제를 예시적으로 스크리닝한 실험 결과 사진 및 그 그래프이고,
도 5는 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대하여 농도별 인산화 억제정도를 예시적으로 실험한 결과 사진 및 그 그래프이고,
도 6은 본 발명에 따라 탐색된 저해제 E12, H7 및 C12의 화학적 구조와 그 명칭, 그리고 도킹 시뮬레이션을 통하여 만들어진 EGFR 티로신 키나아제와의 결합 구조를 예시적으로 나타내는 모식도이고,
도 7은 본 발명에 따라 EGFR을 기질로 사용하여 자가인산화가 농도 의존적으로 이루어지는 것을 예시적으로 확인한 실험 결과 사진 및 그 그래프이고,
도 8은 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대한 EGFR 자가 인산화 억제실험 결과와 이에 따른 활성억제농도(IC50; half-maximal 억제 농도)를 예시적으로 나타낸 사진이고,
도 9는 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대한 HeLa 세포의 증식억제 실험 결과와 이에 따른 활성억제농도(IC50; half-maximal 억제 농도)를 예시적으로 나타낸 사진이다.
이하에서는 본 발명의 바람직한 하나의 실시형태를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
본 발명에서는 EGFR 타이로신 키나제(EGFR kinase), 즉 EGFR 기질(substrate)의 타이로신을 인산화시키는 효소의 활성을 억제할 수 있는 저해제를 탐색하고자, 상기 EGFR 타이로신 키나제와 결합하여 그에 의해 활성화될 수 있는 EGFR 타이로신 키나제 기질(substrate)를 단백질 칩 상에 부착하고, 상기 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제와 함께 인산기를 공급하는 ATP, 보조인자(co-factor)로서 Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시켰다.
상기 단백질 칩으로는 ProteoChipTM (Proteogen Inc., 서울, 한국)을 이용하였다. 상기 ProteoChipTM 은 아민화된(aminated) 글래스 슬라이드에 캘릭스아렌(calixarene) 유도체를 도포한 것으로 상기 캘릭스아렌 유도체는 Bifunctional molecular linker로서 작용한다.
그리고, 상기 EGFR 타이로신 키나제 기질로는 EGFR 타이로신 키나제에 의해 활성화될 수 있는 단백질이면 특별히 제한되는 일이 없이 이 기술분야에서 알려진 모든 종류의 기질을 이용할 수 있다. 예를 들면, PLC-gamma1, EGFR, Shc, Grb2/mSos, P91, PI3-kinase, Ras/Gap 및 Cbl로 이루어진 군에서 하나 이상이 선택된 것을 이용할 수 있다.
또한, 상기 단일 화합물 라이브러리는 저분자 화합물 및 천연물 유래 화합물을 포함할 수 있는데, 종래에 EGFR 타이로신 키나제 저해제로 알려져 있는 대부분의 화합물은 단일 화합물이라는 점에서, 본 발명은 단일 화합물과 함께 천연물에서 유래되는 화합물을 더 포함하는 것이 특징이다.
이와 같이, EGFR 타이로신 키나제 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제, ATP, Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시키면, 상기 화합물 풀에 포함된 특정한 화합물은 상기 EGFR 타이로신 키나제에 의해 상기 기질이 인산화되는 것을 억제할 수 있고, 이를 확인하기 위하여 본 발명에서는 상기 인산화된 기질을 인식할 수 있으면서 형광물질이 부착된 항체를 상기 화합물 풀을 반응시킨 단백질 칩에 추가로 반응시키는 것이 특징이다.
종래에, 인테그린과 같은 수용체는 저해제 후보물질과 길항작용을 하는 별도의 리간드 단백질과 결합되고, 상기 리간드 단백질에 바로 형광물질을 부착시킬 수 있었지만, 본 발명에 따른 EGFR 타이로신 키나제는 저해제 후보물질과 길항작용을 하는 것이 아니라 저해제 후보물질에 의해 상기 키나제의 인산화 활성이 저해되는 것이며, 상기 키나제 효소에 바로 형광물질을 부착할 수 없었던바, 본 발명에서는 특별히 상기 화합물 풀의 반응에 의해 인산화된 기질을 인식할 수 있는 별도의 항체를 이용하여, 여기에 형광물질을 부착함으로서, 나중에 형광물질의 강도를 조사하고자 한 것이다.
여기서, 상기 인산화된 기질을 인식할 수 있는 별도의 항체를 반응시키는 것은, 인산화된 기질을 인식할 수 있는 제1항체를 상기 인산화된 기질과 반응시키고, 이어서 상기 반응한 제1항체를 인식할 수 있으면서 형광물질이 부착된 제2항체를 상기 제1항체와 반응시키는 2단계 과정으로 수행하는 것도 가능하다.
이어서, 상기와 같이 인산화된 기질과 반응이 끝난 후에는 완충용액으로 세척하고, 형광물질의 강도를 측정함으로서, EGFR 타이로신 키나제 저해제를 탐색하는데, 상기 형광물질의 강도가 낮다는 것은 기질의 인산화 정도가 낮다는 것이고, 이는 특정한 화합물에 의해 상기 기질의 인산화가 억제되었다는 것이므로, 상기 형광물질의 강도가 낮은 스팟에 반응한 화합물을 EGFR 타이로신 키나아제의 활성을 우수하게 억제할 수 있는 저해제로 결정할 수 있는 것이다.
한편, 본 발명은 탐색을 위한 시간과 비용을 줄이기 위하여, 단일 화합물 라이브러리의 화합물 풀을 구성함에 있어서, 상기 단일 화합물 라이브러리에 포함된 다수의 화합물에 대한 약리작용단(pharmacophore) 검색과 상기 EGFR 타이로신 키나제의 구조와 가상 결합시키는 도킹 시뮬레이션에 의해, 후보물질을 선별하여 화합물 풀을 준비하는 것일 수 있다.
즉, 상기 약리작용단(Pharmacophore)은 특정 효소나, 단백질, 수용체와 분자(혹은 화합물)가 효율적으로 결합하기 위해 필수적으로 알아야 하는 다양한 기능적 그룹(화학적 특징)들의 3D 배열을 뜻하는 것으로(Sutter 등, 2000), 종래에 EGFR 타이로신 키나제 저해제로 알려진 이레사® 또는 타쎄바®의 구조와 유사한 약리작용기를 가지는 화합물을 선별하는 것이다. 예를 들어, 퀴나졸린(quinazolines), 피리도피리미딘(pyridopyrimidines) 및 피롤로피리미딘(pyrrolopyrimidines)으로 이루어진 군에서 하나 이상이 선택된 것을 기본 모델(model)로 하여, 상기 기본 모델의 구조와 유사성이 높은 일정한 수의 화합물을 먼저 선별하는 것이다.
또한, 상기 도킹 시뮬레이션을 수행하는 것은, 단일 화합물 라이브러리에 포함된 다수의 화합물을 상기 EGFR 타이로신 키나제와 가상으로 결합시켜서, 구조적으로 매칭 가능성이 높은 일정한 수의 화합물을 선별하는 것이다.
본 발명은 이러한 약리작용단 검색과 도킹 시뮬레이션에 의해, 후보물질을 선별하여 화합물 풀을 준비함으로서, 탐색을 위한 시간과 비용을 줄이면서 종래보다 현저히 우수한 억제효과를 가지는 저해제를 용이하게 탐색할 수 있는 효과가 있다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해 될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예 1: 화합물에 대한 약리작용단 검색과 도킹 시뮬레이션
도 2는 본 발명에 따른 탐색방법을 진행함에 있어서, 약리작용단 검색과 도킹 시뮬레이션을 수행하는 과정의 일례를 설명하기 위한 모식도이고, 이러한 가상 스크리닝을 위하여 Chemical Computing Group의 MOE(Molecular Operating Environment) 프로그램을 사용하였다. 가상 스크리닝 방법은 약리작용단 (pharmachphore) 검색과 분자 도킹 시뮬레이션을 병용하여 사용하였다.
먼저, 종래에 EGFR 타이로신 키나제 저해제로 널리 알려진 이레사® 및 타쎄바®의 구조와 유사한 약리작용단 기본 모델을 제작하였고, IBS의 40,000개의 라이브러리 화합물 중에서 상기 기본 모델과 유사한 약리작용단을 가지는 화합물 7,000개를 선별하였다.
그리고, 이러한 7,000개의 화합물을 대상으로 EGFR kinase의 X-Ray 구조에 대하여 도킹 시뮬레이션을 실시하여, 도킹 스코어가 가장 높은 300개의 화합물을 선정하였다. 도킹 계산을 위한 검색 알고리즘은 알파 트라이앵글 (Alpha Triangle) 방법을 사용하여 각 리간드 화합물당 최대 500,000번의 구조변화 에너지 계산을 실시하였다. 이 방법은 분자의 3개 point를 삼각형으로 형상화하고 리셉터 단백질의 또 다른 트라이앵글과 매칭 여부를 판단하여 도킹하는 알고리즘을 사용하였다. 스코어링 방법은 LondondG 방법을 사용하여 리간드당 최대 10개의 pose를 계산하였다. MOE에서 지원하는 스코어링 방법은 LondondG, AffinitydG, AlphaHB의 3가지가 있으며, 본 계산에 사용된 LondondG는 아래와 같다.
LondondG 함수는 결합으로 인한 rotational/translation entropy 변화, ligand의 결합으로 인한 flexibility energy의 감소, 수소결합 에너지, 금속이온 ligation, desolavtion energy 차이 등이 파라미터로 사용된다.
상기와 같은 방법으로, 도킹 시뮬레이션 결과 스코어인 LondondG 값이 가장 우수한 300 개 화합물을 선별하여, 단백질 칩 탐색을 위한 화합물 풀을 준비하였다.
실시예 2: EGFR kinase에 의한 기질의 인산화 반응 실험
먼저, 본 실시예는 칩 위에 결합된 EGFR 키나제 기질의 안정을 조사하기 위하여, 상기 EGFR 키나제 기질과 EGFR kinase 간의 반응정도를 확인하였다.
단백질 칩으로 ProteoChipTM(Proteogen, Inc., 서울, 한국)을 사용하였으며, ProteoChipTM(Proteogen, Inc., 서울, 한국) 상에 마이크로어레이어(CM-1000; Proteogen, Inc., 서울, 한국)로 EGFR 키나제 기질을 농도별로 스팟팅하여 EGFR 키나제 기질 마이크로어레이(microarray)를 구성하였다. EGFR 키나제 기질로는 PLC-gamma1을 Calbiochem 사로부터 구입하여 사용하였으며, 상기 기질을 30% 글리세롤이 포함된 인산-완충 생리식염수(phosphate-buffered saline, PBS)에 녹인 후, ProteoChipTM에 스팟팅 한 다음, 4℃의 습한 곳에서 밤새도록 고정하였다. 그런 다음, EGFR 키나제 기질(PLC-gamma1)이 고정된 단백질 칩을 3% BSA(bovine serum albumin)이 포함된 PBS로 블록킹을 한 후, 워싱용액(PBST: 0.5% Tween 20가 포함된 PBS, pH7.4)으로 씻어서 고정되지 않은 기질과 BSA를 제거하였다.
이어서, 상기 기질이 부착된 단백질 칩에 ATP/Mg2+ 혼합물과 함께 EGFR 타이로신 키나제를 농도별로 반응시켰다. 상기 ATP/Mg2+ 혼합물과 EGFR 타이로신 키나제는 UPSTATE사의 제품을 구입하여 사용하였고, 상기 EGFR 타이로신 키나제의 농도는 10~5,000㎕/ml 별로 다르게 하였다. 반응은 완충용액(100mM MOPS, 5mMDTT, PBS, pH 7.2)을 이용하였으며, 30℃의 습한 곳에서 한 시간 동안 반응시켰다.
상기 반응에 따라, 삼인산기(ATP)의 인산은 기질의 타이로신 서열이 인산화되도록 하였고, 이 후 워싱 용액으로 반응하지 않은 삼인산기와 반응 후 생성된 이인산기 그리고 EGFR 타이로신 키나제 및 완충용액을 제거하였다.
그런 다음, 상기 인산화된 기질을 인식하는 일차항체(UPSTATE사 및 에이비 프런티어사의 제품으로 구입)를 30% 글리세롤과 10%BSA가 1:100의 비율로 포함된 PBS 용액에 희석하여, 30℃의 습한 곳에서 상기 인산화된 기질이 포함된 칩과 한 시간 동안 반응시켰다.
그 후에, 칩을 워싱 용액으로 세척하고, 일차 항체를 인식하는 형광이 붙은 이차항체를 10% BSA와 30% 글리세롤을 포함하는 PBS용액에 100:1로 희석시킨 뒤, 30℃로 습하고 빛이 없는 곳에서 상기 일차 항체가 포함된 칩과 한 시간 동안 반응시켰다.
상기와 같은 반응이 끝난 칩을 워싱용액으로 세척하고, GENETIX 사에서 제조된 Aquire® 형광 스캐너를 이용하여 칩에서 형광의 세기를 분석하였으며, 그 결과는 도 3에 나타난 바와 같다.
도 3은 본 발명에 따른 EGFR 타이로신 키나제에 의해 기질(PLC-gamma1)의 인산화가 농도 의존적으로 이루어진다는 것을 예시적으로 설명하기 위한 실험 결과 사진 및 그 그래프이고, 여기에 도시된 바와 같이, 상기 기질(PLC-gamma1)과 EGFR kinase 간의 반응정도를 확인한 결과, 농도 의존적으로 EGFR kinase가 상기 EGFR 키나제 기질을 활성화시키는 것으로 보아, 고정화된 EGFR 키나제 기질에는 문제가 없는 것으로 확인되었다.
실시예 3: 단일 화합물 라이브러리로부터 EGFR kinase 저해제를 고속으로 대량 탐색
먼저, 상기 실시예 2와 같은 방법으로, 단백질 칩 상에 EGFR 키나제 기질(PLC-gamma1)을 부착하였는데, 여기서 기질의 농도는 칩 1 mm 당 20㎍으로 하였다. 그런 다음, 상기 기질이 부착된 단백질 칩에 ATP/Mg2+ 혼합물 및 EGFR 타이로신 키나제와 함께 포지티브 컨트롤로서 Tyrphostin51를 1mM, 그리고 상기 실시예 1에서 선택된 라이브러리 화합물 300개를 화합물별로 구분하여 각각 50mM 농도로 반응시켰다. 다른 과정은 실시예 2에서와 같고, 반응이 끝난 칩에 대하여 형광의 세기를 분석한 결과는 도 4에 나타난 바와 같다.
도 4는 본 발명에 따라 PLC-gamma1을 기질로 사용하여 단일 화합물 라이브러리로부터 EGFR 타이로신 키나제 저해제를 예시적으로 스크리닝한 실험 결과 사진 및 그 그래프이고, 여기에 나타난 바와 같이, 종래에 EGFR 타이로신 키나제 저해제로 알려진 Tyrphostin51 보다 EGFR 타이로신 키나제 억제 효과가 우수한 화합물을 탐색할 수 있었고, 예시적으로 그 중에서 3개를 선택하여 이를 H07, E12, C12로 명명하였다.
실시예 4: 탐색된 저해제의 농도별 EGFR kinase 억제 효과 실험
상기 실시예 3에서 선택된 3개의 화합물에 대하여 상기 화합물의 농도별로 EGFR kinase 활성 억제 효과를 실험하였다.
즉, 상기 실시예 3에서는 화합물 300개 각각을 50mM 농도로 반응시켰지만, 본 실시예에서는 H07, E12, C12 화합물 각각을 1μM~100μM 농도별로 반응시켰으며, 다른 과정은 실시예 2에서와 같다. 반응이 끝난 칩에 대하여 형광의 세기를 분석한 결과는 도 5에 나타난 바와 같다.
도 5는 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대하여 농도별 인산화 억제정도를 예시적으로 실험한 결과 사진 및 그 그래프이고, 여기에 나타난 바와 같이, 본 발명에 따른 저해제 E12, H7, C12 는 농도 의존적으로 EGFR 타이로신 키나제의 활성을 억제시키고 있음을 확인할 수 있다.
도 6은 본 발명에 따라 탐색된 저해제 E12, H7 및 C12의 화학적 구조와 그 명칭, 그리고 도킹 시뮬레이션을 통하여 만들어진 EGFR 티로신 키나아제와의 결합 구조를 예시적으로 나타내는 모식도이고, 여기에 나타난 바와 같이, 상기 본 발명에 따른 저해제 E12, H7, C12 는 각각 2-{[6-(5,6-Dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonyl]-amino}-4-methylsulfanyl-butyric acid methyl ester(BOX1-E12), 6,7-Dihydroxy-4-(o-tolylamino-methyl)-chromen-2-one(BOX2-H07), N-[3-(3,4-Dihydroxy-phenyl)-acryloyl]-2-hydroxy-benzamide(BOX2-C12) 구조를 가지고 있었으며, 이는 기존에 알려진 EGFR 키나제 저해제 구조와 전혀 상이한 것이다.
실시예 5: EGFR kinase에 의한 EGFR의 자가 인산화 반응 실험
먼저, 상기 실시예 2에서 EGFR 키나제 기질로서 PLC-gamma1 대신에 EGFR을 사용하였고, 이를 바탕으로 EGFR kinase에 의한 EGFR의 자가 인산화 반응 실험하였다. 그 결과는 도 7에 나타난 바와 같이, EGFR 키나제 기질로서 EGFR을 사용하더라도 EGFR 타이로신 키나제에 의해 기질(EGFR)의 인산화가 농도 의존적으로 이루어짐을 확인할 수 있다.
한편, EGFR 키나제 기질로서 EGFR을 사용하는 경우에도 본 발명에 따라 탐색된 저해제 E12, H7 및 C12가 EGFR kinase의 활성을 억제할 수 있는지 여부를 확인하였다. 상기 실시예 2에서 EGFR 키나제 기질로서 PLC-gamma1 대신에 EGFR를 10mg/mL 농도로 부착하였고, 여기에 EGFR kinase 100ng/mL과 ATP/Mg2+을 완충용액(100mM MOPS, 5mMDTT, PBS, pH 7.2)에 섞어서 처리하였으며, 이 때 상기 실시예 3과 실시예4를 통해 탐색된 화합물 E12(450mM), H7(1.8mM), C12(1.8mM), Tyrphostin(1mM)를 각각 5배씩 농도를 줄여가면서 함께 반응시켰다.
도 8은 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대한 EGFR 자가 인산화 억제실험 결과와 이에 따른 활성억제농도(IC50; half-maximal 억제 농도)를 예시적으로 나타낸 사진이고, 여기에 나타난 바와 같이, 상기 E12, H7, C12는 EGFR의 자가 인산화를 농도 의존적으로 억제하는 것을 확인할 수 있다.
실시예 6: 탐색된 저해제의 생물학적 활성 분석
HeLa 세포의 증식 억제 실험을 통하여, 본 발명에 따라 탐색된 저해제의 생물학적 활성을 분석하였다. 세포 증식 실험은 MTT[(3-(4,5-디메틸티아졸-2일_-2,5-디페닐-2H-테트라조리움 브로마이드] 실험 프로토골에 따라서 수행되었다.
먼저, HeLa 세포들을 Polystyrene이 코팅된 96-웰 조직배양 플레이트에 웰 당 4×103개의 세포 농도로 가하였다. 이것을 24시간 동안 유지 시킨 후, 각 웰에 본 발명에 따른 저해제 E12, H07, C12와 종래의 저해제 Tyrphostin 51를 각각 10%FBS가 포함된 배양혼합액과 함께 가하고 72시간 동안 반응시켰다. 여기서, 상기 E12, H07, C12와 Tyrphostin 51는 10μM~100μM의 농도별로 반응시켰다. 그리고 각 웰에 5㎎/㎖ MTT용액 10㎕를 가하고 37℃에서 3시간 동안 반응시켰다. 그런 다음, 각 웰의 상청액을 버린 후에, 발색 반응물(Formazancrystal)을 100㎕의 DMSO로 용해시키고, ELISA 리더기(595㎚)로 흡광도를 측정하였다.
도 9는 본 발명에 따라 탐색된 저해제 E12, H7, C12 및 종래의 저해제 Tyrphostin 51에 대한 HeLa 세포의 증식억제 실험 결과와 이에 따른 활성억제농도(IC50; half-maximal 억제 농도)를 예시적으로 나타낸 사진이다. 도 9에서 Media alone는 Sample이 들어가지 않은 배양액에서 HeLa 세포를 증식한 결과를 나타낸다. 이에 따르면, 본 발명에 따른 E12, H7, C12 화합물은 Tyrphostin 51(Tyrosin kinase inhibitor)보다 우수한 억제 효과를 보였으며, 이 중에서 E12과 H7이 EGFR tyrosine kinase의 억제를 가장 탁월하게 하였다.
또한, 상기 E12, H7, C12 화합물에 의해 HeLa 세포의 증식이 50% 저해되는데 필요한 농도(half-maximal 억제 농도)는 각각 27.96 ± 3.30μM, 11.95 ± 0.39μM, 41.83 ± 6.29μM로 나타나, 상기 화합물 중에서도 H7이 HeLa 세포의 증식을 가장 효과적으로 억제하는 것으로 나타났다.
한편, 상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다.
본 발명은 각종 단일 화합물 라이브러리로부터 EGFR kinase 억제효과를 가지는 물질을 초고속 대량으로 탐색할 수 있는 방법을 제공하고, 그에 따라 탐색된 저해제는 EGFR kinase 에 의한 자가인산화 및 다른 기질의 인산화 억제에 우수한 효과를 나타내어, EGFR 관련 질환에서 의약(medicines)의 유효성을 더욱 높일 수 있다.
Claims (9)
- 표피성장인자 수용체(Epidermal Growth Factor Receptor : EGFR) 타이로신 키나제 저해제(EGFR tyrosine kinase inhibitors : EGFR-TKIs)의 탐색방법으로서,단백질 칩 상에 EGFR 타이로신 키나제에 의해 활성화될 수 있는 EGFR 타이로신 키나제 기질(substrate)을 부착하는 단계;상기 기질이 부착된 단백질 칩에 EGFR 타이로신 키나제, ATP, Mg2+ 및 단일 화합물 라이브러리의 화합물 풀(pool)을 반응시키는 단계;상기 반응에 의해 인산화된 기질을 인식할 수 있고 형광물질이 부착된 항체를 상기 인산화된 기질과 반응시키는 단계;상기 인산화된 기질과 반응이 끝난 후 완충용액으로 세척하는 단계; 및상기 세척 후 형광물질의 강도를 측정하는 단계;를 포함하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제1항에 있어서, 상기 단일 화합물 라이브러리의 화합물 풀을 반응시키는 단계 이전에,상기 단일 화합물 라이브러리에 포함된 다수의 화합물에 대하여 약리작용단(pharmacophore)을 검색하고 상기 EGFR 타이로신 키나제의 구조와 가상 결합시키는 도킹 시뮬레이션을 수행하는 단계; 및,상기 약리작용단 검색과 도킹 시뮬레이션에 의해 선택된 화합물로 화합물 풀을 준비하는 단계;를 더 포함하는 것을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제2항에 있어서, 상기 약리작용단을 검색하는 것은, 퀴나졸린(quinazolines), 피리도피리미딘(pyridopyrimidines) 및 피롤로피리미딘(pyrrolopyrimidines)으로 이루어진 군에서 하나 이상이 선택된 것을 기본 모델(model)로 하여, 상기 기본 모델의 구조와 유사성이 높은 일정한 수의 화합물을 선택하는 것임을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제3항에 있어서, 상기 도킹 시뮬레이션을 수행하는 것은, 상기 선택된 일정한 수의 화합물을 상기 EGFR 타이로신 키나제와 가상으로 결합시켜서, 구조적으로 매칭 가능성이 높은 일정한 수의 화합물을 선택하는 것임을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제1항에 있어서, 상기 EGFR 타이로신 키나제 기질은 PLC-gamma1, EGFR, Shc, Grb2/mSos, P91, PI3-kinase, Ras/Gap 및 Cbl로 이루어진 군에서 하나 이상이 선택된 것임을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제1항에 있어서, 상기 단일 화합물 라이브러리는 저분자 화합물과 천연물 유래 화합물로 이루어진 것을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 제1항에 있어서, 상기 인산화된 기질과 반응시키는 단계는,상기 반응에 의해 인산화된 기질을 인식할 수 있는 제1항체를 상기 인산화된 기질과 반응시키는 단계; 및,상기 반응한 제1항체를 인식할 수 있고 형광물질이 부착된 제2항체를 상기 제1항체와 반응시키는 단계;를 포함하는 것을 특징으로 하는 EGFR 타이로신 키나제 저해제의 탐색방법.
- 표피성장인자 수용체(Epidermal Growth Factor Receptor : EGFR) 타이로신 키나제 저해작용(EGFR tyrosine kinase inhibiting)을 가지는 것으로,2-{[6-(5,6-Dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yloxy)-3,4,5-trihydroxy-tetrahydro-pyran-2-carbonyl]-amino}-4-methylsulfanyl-butyric acid methyl ester 구조, 6,7-Dihydroxy-4-(o-tolylamino-methyl)-chromen-2-one 구조, 또는 N-[3-(3,4-Dihydroxy-phenyl)-acryloyl]-2-hydroxy-benzamide 구조를 포함하는 것을 특징으로 하는 화합물.
- 제8항의 화합물을 포함하는 것을 특징으로 하는 암 치료용 또는 예방용 약학적 조성물.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980157759.8A CN102341708B (zh) | 2009-03-16 | 2009-03-31 | 表皮生长因子受体酪氨酸激酶抑制剂的筛选方法及由其筛选的抑制剂 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0022300 | 2009-03-16 | ||
KR1020090022300A KR100963102B1 (ko) | 2009-03-16 | 2009-03-16 | 표피성장인자 수용체 타이로신 키나제 저해제의 탐색방법, 및 그에 의해서 탐색된 저해제 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010107156A1 true WO2010107156A1 (ko) | 2010-09-23 |
Family
ID=42369926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/001621 WO2010107156A1 (ko) | 2009-03-16 | 2009-03-31 | 표피성장인자 수용체 타이로신 키나제 저해제의 탐색방법, 및 그에 의해서 탐색된 저해제 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR100963102B1 (ko) |
CN (1) | CN102341708B (ko) |
WO (1) | WO2010107156A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105891496A (zh) * | 2014-12-09 | 2016-08-24 | 上海华盈生物医药科技有限公司 | 酪氨酸激酶抑制剂类靶向用药指导抗体芯片和检测方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101524915B1 (ko) | 2013-05-10 | 2015-06-02 | 포항공과대학교 산학협력단 | 타이로신 인산화효소를 감지하는 형광 프로브 및 이의 용도 |
CN105712998B (zh) * | 2014-12-05 | 2019-12-13 | 上海润诺生物科技有限公司 | 氮杂吲哚类衍生物、其制备方法及其在医药上的应用 |
CN106918698B (zh) * | 2015-12-25 | 2019-11-22 | 广州瑞博奥生物科技有限公司 | 一种检测人受体酪氨酸激酶的磷酸化抗体芯片试剂盒 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080268460A1 (en) * | 2004-05-20 | 2008-10-30 | Wyeth | Assays to Identify Irreversibly Binding Inhibitors of Receptor Tyrosine Kinases |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL126351A0 (en) * | 1996-04-12 | 1999-05-09 | Warner Lambert Co | Irreversible inhibitors of tyrosine kinases |
DE60045474D1 (de) * | 1999-01-13 | 2011-02-17 | Univ New York State Res Found | Neues verfahren zum erschaffen von proteinkinase-inhibitoren |
-
2009
- 2009-03-16 KR KR1020090022300A patent/KR100963102B1/ko not_active IP Right Cessation
- 2009-03-31 CN CN200980157759.8A patent/CN102341708B/zh not_active Expired - Fee Related
- 2009-03-31 WO PCT/KR2009/001621 patent/WO2010107156A1/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080268460A1 (en) * | 2004-05-20 | 2008-10-30 | Wyeth | Assays to Identify Irreversibly Binding Inhibitors of Receptor Tyrosine Kinases |
Non-Patent Citations (3)
Title |
---|
"Design and synthesis of novel tyrosine kinase inhibitors using a pharmacophore model of the ATP-binding site of the EGF-R.", J PHARM BELG., vol. 52, no. 2, March 1997 (1997-03-01), pages 88 - 96 * |
12 July 2005 (2005-07-12), Retrieved from the Internet <URL:pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5575297&loc=ec_rcs> * |
9 July 2005 (2005-07-09), Retrieved from the Internet <URL:pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=904749&loc=ecrcs> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105891496A (zh) * | 2014-12-09 | 2016-08-24 | 上海华盈生物医药科技有限公司 | 酪氨酸激酶抑制剂类靶向用药指导抗体芯片和检测方法 |
Also Published As
Publication number | Publication date |
---|---|
KR100963102B1 (ko) | 2010-06-14 |
CN102341708B (zh) | 2014-02-19 |
CN102341708A (zh) | 2012-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sieg et al. | Pyk2 and Src‐family protein‐tyrosine kinases compensate for the loss of FAK in fibronectin‐stimulated signaling events but Pyk2 does not fully function to enhance FAK− cell migration | |
US20210015825A1 (en) | Theramutein modulators | |
Pinkas-Kramarski et al. | The oncogenic ErbB-2/ErbB-3 heterodimer is a surrogate receptor of the epidermal growth factor and betacellulin | |
EP2281901A2 (en) | Anti-tumour pharmaceutical composition with angiogenesis inhibitors | |
Xie et al. | Protein-tyrosine phosphatase (PTP) wedge domain peptides: a novel approach for inhibition of PTP function and augmentation of protein-tyrosine kinase function | |
Song et al. | ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells | |
WO2009113814A2 (ko) | 간암 진단용 단백질성 마커 | |
US20060019320A1 (en) | Wnt mediated erbb signalling, compositions and uses related thereto | |
WO2010107156A1 (ko) | 표피성장인자 수용체 타이로신 키나제 저해제의 탐색방법, 및 그에 의해서 탐색된 저해제 | |
WO2007106432A2 (en) | Egf receptor phosphorylation status for disease treatment | |
Wei et al. | Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects | |
Sun et al. | Critical role for non‑GAP function of Gαs in RGS1‑mediated promotion of melanoma progression through AKT and ERK phosphorylation | |
Schumacher et al. | Death associated protein kinase as a potential therapeutic target | |
Liu et al. | DYRK1A activates NFATC1 to increase glioblastoma migration | |
US8404458B2 (en) | Histone modifications as binary switches controlling gene expression | |
WO2018062726A1 (ko) | 2차원 겔 전기영동에서의 열 안정성 변화-기반 형광 차이를 이용한 표적 단백질의 규명 방법 | |
WO2005107803A2 (en) | Methods of determining the prognosis and treatment of subjects with lung cancer | |
Chatterjee et al. | Development and validation of a cell based assay for the detection of neutralizing antibodies against recombinant insulins | |
Marashi et al. | Granulosa cells exposed to fibroblast growth factor 8 and 18 reveal early onset of cell growth and survival | |
KR20070090197A (ko) | 히스티딘 데카복실라제 활성을 측정하기 위한 형광 편광검정법 | |
WO2024215053A1 (ko) | 폐암 치료의 반응 및 효능 평가와 예후 예측용 바이오 마커 | |
Moody et al. | Pituitary adenylate cyclase-activating polypeptide causes increased tyrosine phosphorylation of focal adhesion kinase and paxillin | |
Sun et al. | Probing homodimer formation of epidermal growth factor receptor by selective crosslinking | |
Kim et al. | Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library | |
WO2021060688A1 (ko) | Myo1d의 발현 억제제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980157759.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09841940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09841940 Country of ref document: EP Kind code of ref document: A1 |