WO2010107086A1 - Photocatalytic tile - Google Patents
Photocatalytic tile Download PDFInfo
- Publication number
- WO2010107086A1 WO2010107086A1 PCT/JP2010/054670 JP2010054670W WO2010107086A1 WO 2010107086 A1 WO2010107086 A1 WO 2010107086A1 JP 2010054670 W JP2010054670 W JP 2010054670W WO 2010107086 A1 WO2010107086 A1 WO 2010107086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tile
- photocatalyst
- photocatalytic
- particles
- oxide
- Prior art date
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 49
- 239000002245 particle Substances 0.000 claims abstract description 62
- 229910052573 porcelain Inorganic materials 0.000 claims abstract description 14
- 239000011941 photocatalyst Substances 0.000 claims description 88
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 15
- 238000010304 firing Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000005470 impregnation Methods 0.000 abstract description 6
- 229910052572 stoneware Inorganic materials 0.000 abstract 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- 239000002585 base Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229960003284 iron Drugs 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229940108928 copper Drugs 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 3
- 230000000843 anti-fungal effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 241000195493 Cryptophyta Species 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 2
- 229960004643 cupric oxide Drugs 0.000 description 2
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 2
- 229940112669 cuprous oxide Drugs 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229940100890 silver compound Drugs 0.000 description 2
- 150000003379 silver compounds Chemical class 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 206010011409 Cross infection Diseases 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 230000010802 Oxidation-Reduction Activity Effects 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/08—Flooring or floor layers composed of a number of similar elements only of stone or stone-like material, e.g. ceramics, concrete; of glass or with a top layer of stone or stone-like material, e.g. ceramics, concrete or glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/02—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/07—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
- E04F13/08—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
- E04F13/14—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
- E04F13/142—Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass with an outer layer of ceramics or clays
Definitions
- the present invention relates to a photocatalytic tile and a manufacturing method thereof.
- photocatalysts such as titanium oxide have been used in many applications such as building exterior materials and interior materials.
- solar energy can be used to provide a decomposition function for harmful substances such as NOx and SOx, to provide self-cleaning properties with rainwater, It becomes possible to give algae function.
- photocatalyst is applied to the surface of the base material to add a function of decomposing toxic substances such as VOC (volatile organic compounds) using light energy, cigarette odors and odors. It is possible to impart a decomposition function of, and an antibacterial / antifungal function.
- a technique for forming a photocatalytic layer on the tile surface is also known.
- the tiles provided with a photocatalyst layer on the surface prevent algae in the pool, prevent hospital infections in the hospital, prevent the bathroom floor from being slimmed, and self-cleaning of the outer wall with rainwater (see the following prior patent document).
- the object of the present invention is to provide a photocatalytic tile capable of sustaining a photocatalytic function and a method for producing the same even when exposed to severe wear conditions such as station concourses and airports.
- the photocatalytic tile according to the first aspect of the present invention is characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain-free sintered tile firing base.
- the photocatalyst tile according to the second aspect of the present invention is characterized in that a photocatalyst layer is further provided on the surface of the photocatalyst tile impregnated and fixed.
- the photocatalyst tile according to this aspect is a photocatalyst tile including a porcelain or porcelain-free ceramic tile firing base and a photocatalyst layer fixed on the firing base, and the photocatalytic layer in the firing base.
- the photocatalyst particles are impregnated and fixed in the vicinity of the surface on the side where is fixed.
- a method for producing the photocatalyst tile wherein the water absorption rate of the surface is 3% or less after impregnating the photocatalyst particles on the surface of the tile generating feature. It is characterized by firing at a temperature.
- a method for producing a photocatalytic tile according to the second aspect of the present invention wherein the method comprises impregnating the surface of the tile-generating feature with photocatalyst particles, and then absorbing the water on the surface. Baking is performed at a temperature at which the rate becomes 3% or less, and then a photocatalyst layer is formed on the surface side impregnated with the photocatalyst particles.
- the photocatalyst tile according to the present invention is a photocatalyst tile characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain glazed tile firing base.
- the photocatalytic tiles according to the present invention have good rub resistance, so that the photocatalytic function can last for a long time even when used in severe wear conditions such as station concourses and airports. To demonstrate.
- the photocatalyst particles impregnated and fixed near the surface of the tile firing substrate are preferably photocatalytic metal oxide particles, such as titanium oxide, preferably rutile titanium oxide, tin oxide, zinc oxide, strontium titanate. Tungsten oxide and cerium oxide can be suitably used. Two or more of the above may be mixed and used.
- the metal oxide particles may be doped with metals such as platinum, gold, silver, silver oxide, copper, cuprous oxide, cupric oxide, iron, and anions such as nitrogen and fluorine. You may use what gave antibacterial property, antifungal property, antiviral property, etc., or was excited by visible light.
- the photocatalyst particles preferably have an average particle size of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less.
- the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
- the photocatalytic tile according to the present invention preferably has a water absorption rate of 3% or less on the surface of the tile fired substrate on which the photocatalyst particles are impregnated and fixed.
- the water absorption rate refers to a ratio of the volume of so-called naturally absorbed water to the volume of the entire tile, which is measured by a method of immersing in water at room temperature for 24 hours to absorb the material.
- the portion where the photocatalyst particles are impregnated and fixed is preferably 1 mm or more from the surface, more preferably 2 mm or more, and further preferably 3 mm or more.
- the amount of the photocatalyst particles impregnated and fixed in the photocatalyst tile according to the present invention is the photocatalyst with respect to the sum of the calcined green area and the photocatalyst particle area on the surface obtained by cutting the lower part near the surface of the tile fired body horizontally (that is, parallel to the surface). It is preferable that the ratio of the particle area is 1 area% or more and 50 area% or less. When the amount of the photocatalyst particles is within this range, the sintered body is sufficiently firmly bonded by the sintering reaction, and excellent wear resistance is exhibited, and the photocatalytic function after wear is advantageously exhibited, preferable.
- the water absorption rate of the surface of the fired tile base impregnated with the photocatalyst particles is 0.1% or more, preferably 0.3% or more.
- the water absorption rate refers to a ratio of the volume of so-called naturally absorbed water to the volume of the entire tile, which is measured by a method of immersing in water at room temperature for 24 hours to absorb the material.
- vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper are provided in the vicinity of the surface of the tile firing substrate in order to express higher photocatalytic activity.
- At least one metal selected from the group consisting of silver, platinum and gold and / or a metal compound comprising the metal may be added.
- a photocatalyst tile characterized in that a photocatalyst layer is further provided on the surface of the photocatalyst tile impregnated and fixed.
- the photocatalyst particles constituting the photocatalyst layer are preferably photocatalytic metal oxide particles, such as anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, tin oxide, zinc oxide, strontium titanate, Tungsten oxide and cerium oxide can be suitably used. Two or more of the above may be mixed and used.
- the metal oxide particles may be doped with metals such as platinum, gold, silver, silver oxide, copper, cuprous oxide, cupric oxide, iron, and anions such as nitrogen and fluorine. Those having enhanced antibacterial performance, antifungal performance, antiviral performance, etc., or those excited by visible light may be used.
- the photocatalyst particles constituting the photocatalyst layer preferably have an average particle diameter of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less.
- the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
- a binder in addition to the photocatalyst particles, a binder may be added to the photocatalyst layer in order to enhance the wear of the photocatalyst layer.
- a binder an amorphous oxide such as amorphous silica, amorphous titania or alkali silicate, or a hard binder such as silicone can be suitably used.
- the photocatalyst layer has at least one selected from the group consisting of vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper, silver, platinum and gold in order to develop higher photocatalytic activity.
- a metal compound and / or a metal compound comprising the metal may be added.
- the binder is added in a large amount of 20 to 99% by weight to the photocatalyst layer, it is preferable to add these metal compounds. As a result, excellent wear resistance is exhibited, and an advantage that the photocatalytic function after wear is maintained is obtained.
- inorganic oxide particles may be added to the photocatalyst layer in order to develop a higher gas decomposition function.
- inorganic oxide particles include silica, alumina, zirconia, ceria, yttria, tin oxide, iron oxide, manganese oxide, nickel oxide, cobalt oxide, hafnia, barium titanate, calcium silicate, aluminum borate, titanic acid. Potassium, zeolite, apatite, calcium phosphate and the like can be suitably used.
- the inorganic oxide particles have an average particle size of more than 5 nm and not more than 50 nm, preferably not less than 10 and not more than 40 nm, in order to increase the contact probability between the photocatalyst and harmful gas and to make the film strong against wear and abrasion. Is preferable.
- the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the particle shape, a true sphere is the best, but it may be substantially circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
- the film thickness of the photocatalyst layer may be appropriately determined in consideration of its friction resistance, photocatalytic function, etc., but is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 5 ⁇ m or less.
- the film thickness of the photocatalyst layer is within this range, it is possible to obtain an advantage that the transparency of the photocatalyst layer is ensured while the sustainability of a good photocatalyst function is exhibited.
- the photocatalyst tile of the present invention has excellent abrasion resistance, and the photocatalytic function after wear is sustained, so that the floor tile applied to places exposed to severe wear conditions such as station concourses and airports, Furthermore, it can be suitably used as an exterior tile that is subjected to severe conditions regarding wear.
- the photocatalytic tile according to the first aspect of the present invention is produced by impregnating photocatalyst particles on the surface of the tile-forming form and then firing at a temperature at which the water absorption rate of the surface is 3% or less. Can do.
- impregnated formations made of porcelain or porcelain tile base material are impregnated with photocatalyst particles.
- the depth of impregnation of the photocatalyst particles from the surface of the formed body is preferably 1 mm or more from the surface.
- a wet method can be suitably used as the impregnation method for the photocatalyst particles.
- the photocatalyst particle-containing liquid is applied by a method such as spraying, dip, or flow to a generated shape obtained by molding a porcelain or porcelain tile base material, the surface of the generated shape is dried.
- the depth of impregnation of the photocatalyst particles from the surface of the formed body is a method of adjusting the viscosity of the photocatalyst-containing liquid, the factor governing the impregnation rate such as the application method of the photocatalyst-containing liquid, and the substrate drying temperature in advance. It can control by selecting suitably the factor which controls drying speeds, such as.
- firing is performed at a temperature at which the water absorption rate of the obtained surface is 3% or less to obtain a fired body.
- this temperature may be appropriately determined depending on the composition of the tile substrate, it is generally 1000 ° C or higher, preferably 1100 ° C or higher and 1500 ° C or lower, more preferably 1200 ° C or higher and 1400 ° C or lower. Therefore, when titanium oxide particles are used as the photocatalyst particles, even if the starting material is anatase or brookite, it often undergoes a phase transition to rutile.
- a photocatalyst layer is then formed on the surface side impregnated with the photocatalyst particles of the fired body.
- the photocatalyst formation method here is, for example, a dry method or a wet method known as a method for forming a photocatalyst layer described in WO96 / 29375 pamphlet, WO00 / 06300 pamphlet, JP-A-2003-93896, and the like. The law is available.
- Example 1 A plurality of solid shaped products formed from a porcelain tile base material by a dry press method are dried at 100 ° C., and when the surface is 60 ° C., anatase-type titanium oxide having an average particle size of 70 nm and a silver compound are contained. The solution was spray coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm. Next, this formed shape was fired at a temperature of 1250 to 1300 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
- Example 2 A plurality of solid generated shapes formed by porcelain tile base material by dry pressing are dried at 100 ° C. Thereafter, the substrate surface temperature was adjusted to 50 ° C. to 70 ° C., and a liquid containing anatase-type titanium oxide having an average particle diameter of 70 nm and a silver compound was spray-coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm. Next, this formed body was fired at a temperature of 1250 to 1350 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
- a liquid mixture of anatase-type titanium oxide having an average particle size of 50 nm and alkali silicate was applied to the surface of the fired body by a flow coating method, and then dried and cured to form a photocatalyst layer having a thickness of 0.5 ⁇ m.
- Comparative Example 1 A mixture of anatase-type titanium oxide having an average particle size of 50 nm and an alkali silicate was applied to the surface of the fired tile-free body by a flow coat method, and then dried and cured to obtain a film thickness of 0.5 ⁇ m. A photocatalytic layer was formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Architecture (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
Abstract
Disclosed is a photocatalytic tile capable of sustaining the photocatalytic action thereof even under severe wear conditions such as in a station concourse or in an airport. This photocatalytic tile is characterized in that photocatalytic particles have been fixed by impregnation in the vicinity of the surface of the baked body of a porcelain or stoneware unglazed tile. A photocatalytic tile, which is further provided with a photocatalytic layer on the surface having the photocatalytic particles fixed thereto by impregnation, also exhibits high wear resistance and good photocatalytic action.
Description
本発明は、光触媒タイル、およびその製造方法に関する。
The present invention relates to a photocatalytic tile and a manufacturing method thereof.
酸化チタンなどの光触媒が、近年、建築物の外装材、内装材など多くの用途において利用されている。外装用途については、基材表面に光触媒を塗装することにより、太陽光のエネルギーを利用してNOx、SOx等の有害物質の分解機能を付与したり、雨水によるセルフクリーニング性を付与したり、防藻機能を付与したりすることが可能となる。また内装用途についても、基材表面に光触媒を塗装することにより、光エネルギーを利用してVOC(揮発性有機化合物volatile organic compounds)等の有害物質の分解機能を付与したり、たばこの臭いや悪臭の分解機能を付与したり、抗菌・防カビ機能を付与したりすることが可能となる。
In recent years, photocatalysts such as titanium oxide have been used in many applications such as building exterior materials and interior materials. For exterior applications, by applying a photocatalyst to the surface of the base material, solar energy can be used to provide a decomposition function for harmful substances such as NOx and SOx, to provide self-cleaning properties with rainwater, It becomes possible to give algae function. For interior use, photocatalyst is applied to the surface of the base material to add a function of decomposing toxic substances such as VOC (volatile organic compounds) using light energy, cigarette odors and odors. It is possible to impart a decomposition function of, and an antibacterial / antifungal function.
タイル表面に光触媒層を形成する技術も知られている。その表面に光触媒層が設けられたタイルにより、プール内の防藻、病院内の院内感染防止、浴室床のぬめり防止、外壁の雨水によるセルフクリーニング等がなされている(下記先行特許文献参照)。
A technique for forming a photocatalytic layer on the tile surface is also known. The tiles provided with a photocatalyst layer on the surface prevent algae in the pool, prevent hospital infections in the hospital, prevent the bathroom floor from being slimmed, and self-cleaning of the outer wall with rainwater (see the following prior patent document).
駅のコンコースや空港などのような重歩行の場所(人が非常に多く通る場所)では、人が硬質な靴で歩き回る、重い台車が通る等のため、その表面には高い耐摩耗性が要求される。特に外装用途では、人が硬質な靴で歩き回るということに加え、その表面に強風で砂が吹き付けるなどの過酷な条件での使用も想定される。このような使用にタイルが耐え得るか否かを確認するために、PEI試験、すなわち砂とセラミックスとを混合した水中下で鉄球をタイルに擦ることを繰り返し、目視で変化がないことを確認する試験等が広く行われている。
In heavy-walking places such as station concourses and airports (places where a lot of people pass), the surface has high wear resistance because people walk around with hard shoes, heavy carts, etc. Required. In particular, in exterior applications, in addition to people walking around with hard shoes, use under severe conditions such as blowing sand on the surface with strong wind is also assumed. In order to confirm whether the tile can withstand such use, repeated PEI test, that is, rubbing the iron ball against the tile in water mixed with sand and ceramics, and confirming that there is no visual change There are a wide range of tests to be performed.
しかし、従来の光触媒タイルでは、光触媒層は一般に膜厚がサブミクロンオーダーかミクロンオーダーであるため、繰り返し回数が多くなると、上記評価では光触媒層が失われてしまう。従って、上述のような過酷な条件に耐え得る光触媒タイルの実現は難しいものと当業界では理解されていた。
しかしながら、今般、本発明者らは、磁器質またはせっ器質の無釉タイル焼成素地の表面近傍に光触媒を含浸固定させることで、良好な耐摩耗性が得られるとの知見を得た。本発明はかかる知見に基づくものである。
すなわち、本発明は、駅のコンコースや空港などのような過酷な摩耗条件に晒される場合であっても、光触媒機能を持続可能な光触媒タイルおよびその製造方法の提供をその目的としている。 However, in the conventional photocatalytic tile, since the film thickness of the photocatalyst layer is generally in the submicron order or micron order, if the number of repetitions increases, the photocatalyst layer is lost in the above evaluation. Accordingly, it has been understood in the art that it is difficult to realize a photocatalytic tile that can withstand the severe conditions described above.
However, the present inventors have recently found that good wear resistance can be obtained by impregnating and fixing a photocatalyst in the vicinity of the surface of a porcelain or porcelain-free solid tile firing base. The present invention is based on such knowledge.
That is, the object of the present invention is to provide a photocatalytic tile capable of sustaining a photocatalytic function and a method for producing the same even when exposed to severe wear conditions such as station concourses and airports.
しかしながら、今般、本発明者らは、磁器質またはせっ器質の無釉タイル焼成素地の表面近傍に光触媒を含浸固定させることで、良好な耐摩耗性が得られるとの知見を得た。本発明はかかる知見に基づくものである。
すなわち、本発明は、駅のコンコースや空港などのような過酷な摩耗条件に晒される場合であっても、光触媒機能を持続可能な光触媒タイルおよびその製造方法の提供をその目的としている。 However, in the conventional photocatalytic tile, since the film thickness of the photocatalyst layer is generally in the submicron order or micron order, if the number of repetitions increases, the photocatalyst layer is lost in the above evaluation. Accordingly, it has been understood in the art that it is difficult to realize a photocatalytic tile that can withstand the severe conditions described above.
However, the present inventors have recently found that good wear resistance can be obtained by impregnating and fixing a photocatalyst in the vicinity of the surface of a porcelain or porcelain-free solid tile firing base. The present invention is based on such knowledge.
That is, the object of the present invention is to provide a photocatalytic tile capable of sustaining a photocatalytic function and a method for producing the same even when exposed to severe wear conditions such as station concourses and airports.
そして、本発明の第一の態様による光触媒タイルは、磁器質またはせっ器質の無釉タイル焼成素地の表面近傍に光触媒粒子が含浸固定されてなることを特徴とするものである。
また、本発明の第二の態様による光触媒タイルは、上記の光触媒タイルの光触媒粒子が含浸固定された表面上に、さらに光触媒層が設けられてなることを特徴とするものである。言い換えれば、この態様による光触媒タイルは、磁器質またはせっ器質の無釉タイル焼成素地と、前記焼成素地上に固定された光触媒層とを備えた光触媒タイルであって、前記焼成素地における前記光触媒層が固定されている側の表面近傍には光触媒粒子が含浸固定されてなることを特徴とするものである。
また、本発明の別の態様によれば、上記光触媒タイルの製造方法が提供され、その方法は、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成することを特徴とするものである。
さらに本発明の別の態様によれば、上記本発明の第二の態様による光触媒タイルの製造方法が提供され、その方法は、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成し、その後に、前記光触媒粒子を含浸させた表面側に光触媒層を形成することを特徴とする。 The photocatalytic tile according to the first aspect of the present invention is characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain-free sintered tile firing base.
The photocatalyst tile according to the second aspect of the present invention is characterized in that a photocatalyst layer is further provided on the surface of the photocatalyst tile impregnated and fixed. In other words, the photocatalyst tile according to this aspect is a photocatalyst tile including a porcelain or porcelain-free ceramic tile firing base and a photocatalyst layer fixed on the firing base, and the photocatalytic layer in the firing base. The photocatalyst particles are impregnated and fixed in the vicinity of the surface on the side where is fixed.
According to another aspect of the present invention, there is provided a method for producing the photocatalyst tile, wherein the water absorption rate of the surface is 3% or less after impregnating the photocatalyst particles on the surface of the tile generating feature. It is characterized by firing at a temperature.
Furthermore, according to another aspect of the present invention, there is provided a method for producing a photocatalytic tile according to the second aspect of the present invention, wherein the method comprises impregnating the surface of the tile-generating feature with photocatalyst particles, and then absorbing the water on the surface. Baking is performed at a temperature at which the rate becomes 3% or less, and then a photocatalyst layer is formed on the surface side impregnated with the photocatalyst particles.
また、本発明の第二の態様による光触媒タイルは、上記の光触媒タイルの光触媒粒子が含浸固定された表面上に、さらに光触媒層が設けられてなることを特徴とするものである。言い換えれば、この態様による光触媒タイルは、磁器質またはせっ器質の無釉タイル焼成素地と、前記焼成素地上に固定された光触媒層とを備えた光触媒タイルであって、前記焼成素地における前記光触媒層が固定されている側の表面近傍には光触媒粒子が含浸固定されてなることを特徴とするものである。
また、本発明の別の態様によれば、上記光触媒タイルの製造方法が提供され、その方法は、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成することを特徴とするものである。
さらに本発明の別の態様によれば、上記本発明の第二の態様による光触媒タイルの製造方法が提供され、その方法は、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成し、その後に、前記光触媒粒子を含浸させた表面側に光触媒層を形成することを特徴とする。 The photocatalytic tile according to the first aspect of the present invention is characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain-free sintered tile firing base.
The photocatalyst tile according to the second aspect of the present invention is characterized in that a photocatalyst layer is further provided on the surface of the photocatalyst tile impregnated and fixed. In other words, the photocatalyst tile according to this aspect is a photocatalyst tile including a porcelain or porcelain-free ceramic tile firing base and a photocatalyst layer fixed on the firing base, and the photocatalytic layer in the firing base. The photocatalyst particles are impregnated and fixed in the vicinity of the surface on the side where is fixed.
According to another aspect of the present invention, there is provided a method for producing the photocatalyst tile, wherein the water absorption rate of the surface is 3% or less after impregnating the photocatalyst particles on the surface of the tile generating feature. It is characterized by firing at a temperature.
Furthermore, according to another aspect of the present invention, there is provided a method for producing a photocatalytic tile according to the second aspect of the present invention, wherein the method comprises impregnating the surface of the tile-generating feature with photocatalyst particles, and then absorbing the water on the surface. Baking is performed at a temperature at which the rate becomes 3% or less, and then a photocatalyst layer is formed on the surface side impregnated with the photocatalyst particles.
光触媒タイル
本発明による光触媒タイルは、磁器質またはせっ器質の無釉タイル焼成素地の表面近傍には光触媒粒子が含浸固定されていることを特徴とする光触媒タイルである。本発明による光触媒タイルは、良好な耐摩擦性を有し、その結果、駅のコンコースや空港などのような過酷な摩耗条件に晒される場合において使用されても、光触媒機能を長期にわたり持続して発揮する。 Photocatalyst tile The photocatalyst tile according to the present invention is a photocatalyst tile characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain glazed tile firing base. The photocatalytic tiles according to the present invention have good rub resistance, so that the photocatalytic function can last for a long time even when used in severe wear conditions such as station concourses and airports. To demonstrate.
本発明による光触媒タイルは、磁器質またはせっ器質の無釉タイル焼成素地の表面近傍には光触媒粒子が含浸固定されていることを特徴とする光触媒タイルである。本発明による光触媒タイルは、良好な耐摩擦性を有し、その結果、駅のコンコースや空港などのような過酷な摩耗条件に晒される場合において使用されても、光触媒機能を長期にわたり持続して発揮する。 Photocatalyst tile The photocatalyst tile according to the present invention is a photocatalyst tile characterized in that photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain glazed tile firing base. The photocatalytic tiles according to the present invention have good rub resistance, so that the photocatalytic function can last for a long time even when used in severe wear conditions such as station concourses and airports. To demonstrate.
本発明において、タイル焼成素地の表面近傍に含浸固定される光触媒粒子としては、光触媒性金属酸化物粒子が好ましく、例えば、酸化チタン、好ましくはルチル型酸化チタン、酸化錫、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化セリウムが好適に利用可能である。上記のうち2種以上を混合して利用してもよい。また、光触媒粒子として、上記金属酸化物粒子に白金、金、銀、酸化銀、銅、酸化第一銅、酸化第二銅、鉄等の金属や窒素、フッ素等の陰イオン等をドープして抗菌性、防黴性、抗ウィルス性等を付与し、あるいは可視光で励起するようにしたものを用いてもよい。
In the present invention, the photocatalyst particles impregnated and fixed near the surface of the tile firing substrate are preferably photocatalytic metal oxide particles, such as titanium oxide, preferably rutile titanium oxide, tin oxide, zinc oxide, strontium titanate. Tungsten oxide and cerium oxide can be suitably used. Two or more of the above may be mixed and used. In addition, as photocatalyst particles, the metal oxide particles may be doped with metals such as platinum, gold, silver, silver oxide, copper, cuprous oxide, cupric oxide, iron, and anions such as nitrogen and fluorine. You may use what gave antibacterial property, antifungal property, antiviral property, etc., or was excited by visible light.
本発明において、光触媒粒子は10nm以上100nm未満の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。
In the present invention, the photocatalyst particles preferably have an average particle size of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
本発明による光触媒タイルは、光触媒粒子が含浸固定されたタイル焼成素地表面の吸水率が3%以下であるのが好ましい。吸水率が3%以下であることで、優れた耐摩耗性が発揮されるとともに、ある程度の摩耗後も光触媒機能が持続されるとの利点が得られる。ここで、吸水率とは、24時間常温の水に浸漬して材料に吸水させる方法により測定される、いわゆる自然吸水された水の体積の、タイル全体の体積に対する比をいう。
The photocatalytic tile according to the present invention preferably has a water absorption rate of 3% or less on the surface of the tile fired substrate on which the photocatalyst particles are impregnated and fixed. When the water absorption is 3% or less, an excellent wear resistance is exhibited, and an advantage that the photocatalytic function is maintained even after a certain amount of wear is obtained. Here, the water absorption rate refers to a ratio of the volume of so-called naturally absorbed water to the volume of the entire tile, which is measured by a method of immersing in water at room temperature for 24 hours to absorb the material.
本発明による光触媒タイルにおいて、光触媒粒子が含浸固定されている部分は表面から1mm以上が好ましく、より好ましくは2mm以上、さらに好ましくは3mm以上である。これにより、ある程度摩耗が進んでも光触媒機能を充分に持続することが可能となる。
In the photocatalyst tile according to the present invention, the portion where the photocatalyst particles are impregnated and fixed is preferably 1 mm or more from the surface, more preferably 2 mm or more, and further preferably 3 mm or more. As a result, the photocatalytic function can be sufficiently maintained even if the wear proceeds to some extent.
本発明による光触媒タイルにおける、含浸固定されている光触媒粒子の量は、タイル焼成体表面近傍下部を水平(すなわち、表面と並行)に切断した面において、焼成素地面積と光触媒粒子面積の和に対する光触媒粒子面積の比率が1面積%以上50面積%以下であるのが好ましい。光触媒粒子の量がこの範囲にあることで、焼成素地が焼結反応により充分強固に結合し、優れた耐摩耗性が発揮されるとともに、摩耗後の光触媒機能が有利に発揮されることとなり、好ましい。
The amount of the photocatalyst particles impregnated and fixed in the photocatalyst tile according to the present invention is the photocatalyst with respect to the sum of the calcined green area and the photocatalyst particle area on the surface obtained by cutting the lower part near the surface of the tile fired body horizontally (that is, parallel to the surface). It is preferable that the ratio of the particle area is 1 area% or more and 50 area% or less. When the amount of the photocatalyst particles is within this range, the sintered body is sufficiently firmly bonded by the sintering reaction, and excellent wear resistance is exhibited, and the photocatalytic function after wear is advantageously exhibited, preferable.
本発明による光触媒タイルにおいて、光触媒粒子が含浸固定されたタイル焼成素地表面の吸水率が0.1%以上、好ましくは0.3%以上とすることが好ましい。吸水率をこの範囲に置くことで、優れた耐摩耗性が発揮されるとともに、ガス分解機能が良好に発揮され、さらにある程度の摩耗後であっても、光触媒によるガス分解機能がより良好な状態で持続される点で有利である。ここで、吸水率とは、24時間常温の水に浸漬して材料に吸水させる方法により測定される、いわゆる自然吸水された水の体積の、タイル全体の体積に対する比をいう。
In the photocatalyst tile according to the present invention, the water absorption rate of the surface of the fired tile base impregnated with the photocatalyst particles is 0.1% or more, preferably 0.3% or more. By setting the water absorption rate within this range, excellent wear resistance is exhibited, the gas decomposition function is demonstrated well, and even after some wear, the gas decomposition function by the photocatalyst is better It is advantageous in that it is sustained at Here, the water absorption rate refers to a ratio of the volume of so-called naturally absorbed water to the volume of the entire tile, which is measured by a method of immersing in water at room temperature for 24 hours to absorb the material.
本発明の好ましい態様によれば、タイル焼成素地の表面近傍には、光触媒粒子以外に、さらに高い光触媒能を発現するために、バナジウム、鉄、コバルト、ニッケル、パラジウム、亜鉛、ルテニウム、ロジウム、銅、銀、白金および金からなる群より選ばれる少なくとも一種の金属および/またはその金属からなる金属化合物を添加してもよい。これにより、本発明の光触媒タイルにあっては、優れた耐摩耗性とあわせて抗菌性が発揮されるとともに、摩耗後の光触媒機能がより良好な状態で持続される。
According to a preferred embodiment of the present invention, in addition to the photocatalyst particles, vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper are provided in the vicinity of the surface of the tile firing substrate in order to express higher photocatalytic activity. , At least one metal selected from the group consisting of silver, platinum and gold and / or a metal compound comprising the metal may be added. Thereby, in the photocatalyst tile of the present invention, antibacterial properties are exhibited together with excellent wear resistance, and the photocatalytic function after wear is maintained in a better state.
本発明の第二態様によれば、上記の光触媒タイルの光触媒粒子が含浸固定された表面上に、さらに光触媒層が設けられてなることを特徴とする光触媒タイルが提供される。このように光触媒層をさらに設けることで、光触媒機能が増強された光触媒タイルが実現される。
According to the second aspect of the present invention, there is provided a photocatalyst tile characterized in that a photocatalyst layer is further provided on the surface of the photocatalyst tile impregnated and fixed. By further providing a photocatalyst layer in this manner, a photocatalytic tile having an enhanced photocatalytic function is realized.
本発明において、光触媒層を構成する光触媒粒子としては、光触媒性金属酸化物粒子が好ましく、例えば、アナターゼ型酸化チタン、ルチル型酸化チタン、ブルッカイト型酸化チタン、酸化錫、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化セリウムが好適に利用可能である。上記のうち2種以上を混合して利用してもよい。また、光触媒粒子として、上記金属酸化物粒子に白金、金、銀、酸化銀、銅、酸化第一銅、酸化第二銅、鉄等の金属や窒素、フッ素等の陰イオン等をドープして抗菌性能、防黴性能、抗ウィルス性能等を高めたもの、あるいは可視光で励起するようにしたものを用いてもよい。
In the present invention, the photocatalyst particles constituting the photocatalyst layer are preferably photocatalytic metal oxide particles, such as anatase type titanium oxide, rutile type titanium oxide, brookite type titanium oxide, tin oxide, zinc oxide, strontium titanate, Tungsten oxide and cerium oxide can be suitably used. Two or more of the above may be mixed and used. In addition, as photocatalyst particles, the metal oxide particles may be doped with metals such as platinum, gold, silver, silver oxide, copper, cuprous oxide, cupric oxide, iron, and anions such as nitrogen and fluorine. Those having enhanced antibacterial performance, antifungal performance, antiviral performance, etc., or those excited by visible light may be used.
光触媒層を構成する光触媒粒子は10nm以上100nm未満の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出されるものである。
The photocatalyst particles constituting the photocatalyst layer preferably have an average particle diameter of 10 nm or more and less than 100 nm, more preferably 10 nm or more and 60 nm or less. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles entering a 200,000-fold field of view with a scanning electron microscope.
また、本発明において、光触媒層には、光触媒粒子以外に、光触媒層の摩耗性を高めるために、結着剤を添加してもよい。結着剤としては、無定形シリカ、無定形チタニア、アルカリシリケート等のアモルファス酸化物、シリコーン等の硬質な結着剤が好適に利用可能である。
In the present invention, in addition to the photocatalyst particles, a binder may be added to the photocatalyst layer in order to enhance the wear of the photocatalyst layer. As the binder, an amorphous oxide such as amorphous silica, amorphous titania or alkali silicate, or a hard binder such as silicone can be suitably used.
本発明において、光触媒層には、さらに高い光触媒能を発現するために、バナジウム、鉄、コバルト、ニッケル、パラジウム、亜鉛、ルテニウム、ロジウム、銅、銀、白金および金からなる群より選ばれる少なくとも一種の金属および/またはその金属からなる金属化合物を添加してもよい。特に、光触媒層に対して、結着剤を20重量~99重量%と多量に添加する場合には、これら金属化合物を添加することが好ましい。これにより優れた耐摩耗性が発揮されるとともに、摩耗後の光触媒機能が持続されるとの利点が得られる。
In the present invention, the photocatalyst layer has at least one selected from the group consisting of vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper, silver, platinum and gold in order to develop higher photocatalytic activity. A metal compound and / or a metal compound comprising the metal may be added. In particular, when the binder is added in a large amount of 20 to 99% by weight to the photocatalyst layer, it is preferable to add these metal compounds. As a result, excellent wear resistance is exhibited, and an advantage that the photocatalytic function after wear is maintained is obtained.
本発明の好ましい態様によれば、光触媒層には、さらに高いガス分解機能を発現するために、無機酸化物粒子を添加してもよい。無機酸化物粒子としては、例えば、シリカ、アルミナ、ジルコニア、セリア、イットリア、酸化錫、酸化鉄、酸化マンガン、酸化ニッケル、酸化コバルト、ハフニア、チタン酸バリウム、ケイ酸カルシウム、ホウ酸アルミニウム、チタン酸カリウム、ゼオライト、アパタイト、リン酸カルシウム等が好適に利用できる。
According to a preferred embodiment of the present invention, inorganic oxide particles may be added to the photocatalyst layer in order to develop a higher gas decomposition function. Examples of inorganic oxide particles include silica, alumina, zirconia, ceria, yttria, tin oxide, iron oxide, manganese oxide, nickel oxide, cobalt oxide, hafnia, barium titanate, calcium silicate, aluminum borate, titanic acid. Potassium, zeolite, apatite, calcium phosphate and the like can be suitably used.
上記無機酸化物粒子は、5nmを超え50nm以下、好ましくは10以上40nm以下、の平均粒径を有するのが、光触媒と有害ガスの接触確率を高めつつ摩耗磨耗に対して強固な膜にする上で好ましい。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。
The inorganic oxide particles have an average particle size of more than 5 nm and not more than 50 nm, preferably not less than 10 and not more than 40 nm, in order to increase the contact probability between the photocatalyst and harmful gas and to make the film strong against wear and abrasion. Is preferable. The average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope. As the particle shape, a true sphere is the best, but it may be substantially circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
本発明において光触媒層の膜厚はその耐摩擦性、光触媒機能などを考慮して適宜決定されてよいが、好ましくは0.1μm以上10μm以下、より好ましくは0.2μm以上5μm以下である。光触媒層の膜厚がこの範囲にあることで、良好な光触媒機能の持続性を発揮するとともに、光触媒層の透明性が確保されるとの利点が得られる。
In the present invention, the film thickness of the photocatalyst layer may be appropriately determined in consideration of its friction resistance, photocatalytic function, etc., but is preferably 0.1 μm or more and 10 μm or less, more preferably 0.2 μm or more and 5 μm or less. When the film thickness of the photocatalyst layer is within this range, it is possible to obtain an advantage that the transparency of the photocatalyst layer is ensured while the sustainability of a good photocatalyst function is exhibited.
本発明の光触媒タイルは優れた耐摩耗性を有するとともに、摩耗後の光触媒機能が持続されるので、駅のコンコースや空港などのような過酷な摩耗条件に晒される場所に適用した床タイル、さらには摩耗について過酷な条件におかれる外装タイルとして好適に使用可能となる。
The photocatalyst tile of the present invention has excellent abrasion resistance, and the photocatalytic function after wear is sustained, so that the floor tile applied to places exposed to severe wear conditions such as station concourses and airports, Furthermore, it can be suitably used as an exterior tile that is subjected to severe conditions regarding wear.
光触媒タイルの製造方法
本発明による第一の態様による光触媒タイルは、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成することにより製造することができる。 Method for Producing Photocatalytic Tile The photocatalytic tile according to the first aspect of the present invention is produced by impregnating photocatalyst particles on the surface of the tile-forming form and then firing at a temperature at which the water absorption rate of the surface is 3% or less. Can do.
本発明による第一の態様による光触媒タイルは、タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成することにより製造することができる。 Method for Producing Photocatalytic Tile The photocatalytic tile according to the first aspect of the present invention is produced by impregnating photocatalyst particles on the surface of the tile-forming form and then firing at a temperature at which the water absorption rate of the surface is 3% or less. Can do.
具体的には、まず、磁器質またはせっ器質のタイル素地原料を成形した無釉の生成形体に、光触媒粒子を含浸させる。この光触媒粒子の生成形体表面からの含浸の深さは、表面から1mm以上が好ましい。
Specifically, first, impregnated formations made of porcelain or porcelain tile base material are impregnated with photocatalyst particles. The depth of impregnation of the photocatalyst particles from the surface of the formed body is preferably 1 mm or more from the surface.
光触媒粒子の含浸方法は、湿式法が好適に利用できる。具体的には、磁器質またはせっ器質のタイル素地原料を成形した生成形体に、光触媒粒子含有液をスプレー、ディップ、フロー等の方法で適用した後に、生成形体表面を乾燥させる。ここで、光触媒粒子の生成形体表面からの含浸の深さは、光触媒含有液の粘性、光触媒含有液の適用方法等の含浸速度を支配する因子と、予め素地の乾燥温度を調整したりする方法等の乾燥速度を支配する因子とを適宜選択することで制御できる。
A wet method can be suitably used as the impregnation method for the photocatalyst particles. Specifically, after the photocatalyst particle-containing liquid is applied by a method such as spraying, dip, or flow to a generated shape obtained by molding a porcelain or porcelain tile base material, the surface of the generated shape is dried. Here, the depth of impregnation of the photocatalyst particles from the surface of the formed body is a method of adjusting the viscosity of the photocatalyst-containing liquid, the factor governing the impregnation rate such as the application method of the photocatalyst-containing liquid, and the substrate drying temperature in advance. It can control by selecting suitably the factor which controls drying speeds, such as.
次いで、得られた前記表面の吸水率が3%以下になる温度で焼成し、焼成体を得る。この温度は、タイル素地の組成により適宜決定されてよいが、一般的には1000℃以上、好ましくは1100℃以上1500℃以下、より好ましくは1200℃以上1400℃以下の温度であることが好ましい。従って、光触媒粒子として酸化チタン粒子を用いた場合は、出発原料がアナターゼやブルッカイトであっても、多くの場合、ルチルに相転移することになる。
Next, firing is performed at a temperature at which the water absorption rate of the obtained surface is 3% or less to obtain a fired body. Although this temperature may be appropriately determined depending on the composition of the tile substrate, it is generally 1000 ° C or higher, preferably 1100 ° C or higher and 1500 ° C or lower, more preferably 1200 ° C or higher and 1400 ° C or lower. Therefore, when titanium oxide particles are used as the photocatalyst particles, even if the starting material is anatase or brookite, it often undergoes a phase transition to rutile.
さらに、本発明の第二の態様による光触媒タイルの場合には、次いで、上記焼成体の光触媒粒子を含浸させた表面側に光触媒層を形成する。ここにおける光触媒形成方法は、例えば、国際公開第96/29375号パンフレット、国際公開第00/06300号パンフレット、特開2003-93896等に記載された、光触媒層の形成方法として公知の乾式法または湿式法が利用できる。
Further, in the case of the photocatalyst tile according to the second aspect of the present invention, a photocatalyst layer is then formed on the surface side impregnated with the photocatalyst particles of the fired body. The photocatalyst formation method here is, for example, a dry method or a wet method known as a method for forming a photocatalyst layer described in WO96 / 29375 pamphlet, WO00 / 06300 pamphlet, JP-A-2003-93896, and the like. The law is available.
湿式法を用いる場合は、スプレーコート、ディップコート、フローコート、印刷、ロールコート等の方法で光触媒粒子を含有するコーティング液を上記焼成体の光触媒粒子を含浸させた表面側に適用した後に、光触媒コーティング液を乾燥・硬化させる。
When using the wet method, after applying the coating liquid containing photocatalyst particles to the surface side impregnated with the photocatalyst particles of the fired body by a method such as spray coating, dip coating, flow coating, printing, roll coating, etc., the photocatalyst Dry and cure the coating solution.
本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。
The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples.
<塗装体試料の作製>
以下のようにして、実施例1および2ならびに比較例を作製した。
実施例1:
磁器質のタイル素地原料を乾式プレス法により成形した無釉の複数の生成形体を100℃で乾燥させ、表面が60℃のときに、平均粒径70nmのアナターゼ型酸化チタンと銀化合物とを含む液をスプレー塗布させた後に再び100℃で乾燥させた。こうして得た生成形体の1つの断面におけるTiおよびAgの分析から、生成形体表面からの光触媒粒子およびAgの浸透深さは約3mmと推定された。
次いで、この生成形体を1250~1300℃の温度で焼成して焼成体を作製した。尚、この焼成体の吸水率は0.2%であった。 <Preparation of painted body sample>
Examples 1 and 2 and a comparative example were produced as follows.
Example 1:
A plurality of solid shaped products formed from a porcelain tile base material by a dry press method are dried at 100 ° C., and when the surface is 60 ° C., anatase-type titanium oxide having an average particle size of 70 nm and a silver compound are contained. The solution was spray coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm.
Next, this formed shape was fired at a temperature of 1250 to 1300 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
以下のようにして、実施例1および2ならびに比較例を作製した。
実施例1:
磁器質のタイル素地原料を乾式プレス法により成形した無釉の複数の生成形体を100℃で乾燥させ、表面が60℃のときに、平均粒径70nmのアナターゼ型酸化チタンと銀化合物とを含む液をスプレー塗布させた後に再び100℃で乾燥させた。こうして得た生成形体の1つの断面におけるTiおよびAgの分析から、生成形体表面からの光触媒粒子およびAgの浸透深さは約3mmと推定された。
次いで、この生成形体を1250~1300℃の温度で焼成して焼成体を作製した。尚、この焼成体の吸水率は0.2%であった。 <Preparation of painted body sample>
Examples 1 and 2 and a comparative example were produced as follows.
Example 1:
A plurality of solid shaped products formed from a porcelain tile base material by a dry press method are dried at 100 ° C., and when the surface is 60 ° C., anatase-type titanium oxide having an average particle size of 70 nm and a silver compound are contained. The solution was spray coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm.
Next, this formed shape was fired at a temperature of 1250 to 1300 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
実施例2:
磁器質のタイル素地原料を乾式プレス法により成形した無釉の複数の生成形体を100℃で乾燥させる。その後、素地表面温度が50℃~70℃になるように調整して、平均粒径70nmのアナターゼ型酸化チタンと銀化合物とを含む液をスプレー塗布させた後に再び100℃で乾燥させた。こうして得た生成形体の1つの断面におけるTiおよびAgの分析から、生成形体表面からの光触媒粒子およびAgの浸透深さは約3mmと推定された。
次いで、この生成形体を1250~1350℃の温度で焼成して焼成体を作製した。尚、この焼成体の吸水率は0.2%であった。
この焼成体の表面に、フローコート法により、平均粒径50nmのアナターゼ型酸化チタンとアルカリシリケートとの混合液を塗布した後に乾燥・硬化させて、膜厚0.5μmの光触媒層を形成した。 Example 2:
A plurality of solid generated shapes formed by porcelain tile base material by dry pressing are dried at 100 ° C. Thereafter, the substrate surface temperature was adjusted to 50 ° C. to 70 ° C., and a liquid containing anatase-type titanium oxide having an average particle diameter of 70 nm and a silver compound was spray-coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm.
Next, this formed body was fired at a temperature of 1250 to 1350 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
A liquid mixture of anatase-type titanium oxide having an average particle size of 50 nm and alkali silicate was applied to the surface of the fired body by a flow coating method, and then dried and cured to form a photocatalyst layer having a thickness of 0.5 μm.
磁器質のタイル素地原料を乾式プレス法により成形した無釉の複数の生成形体を100℃で乾燥させる。その後、素地表面温度が50℃~70℃になるように調整して、平均粒径70nmのアナターゼ型酸化チタンと銀化合物とを含む液をスプレー塗布させた後に再び100℃で乾燥させた。こうして得た生成形体の1つの断面におけるTiおよびAgの分析から、生成形体表面からの光触媒粒子およびAgの浸透深さは約3mmと推定された。
次いで、この生成形体を1250~1350℃の温度で焼成して焼成体を作製した。尚、この焼成体の吸水率は0.2%であった。
この焼成体の表面に、フローコート法により、平均粒径50nmのアナターゼ型酸化チタンとアルカリシリケートとの混合液を塗布した後に乾燥・硬化させて、膜厚0.5μmの光触媒層を形成した。 Example 2:
A plurality of solid generated shapes formed by porcelain tile base material by dry pressing are dried at 100 ° C. Thereafter, the substrate surface temperature was adjusted to 50 ° C. to 70 ° C., and a liquid containing anatase-type titanium oxide having an average particle diameter of 70 nm and a silver compound was spray-coated and then dried again at 100 ° C. From the analysis of Ti and Ag in one cross section of the resulting shaped body, the penetration depth of the photocatalytic particles and Ag from the surface of the shaped body was estimated to be about 3 mm.
Next, this formed body was fired at a temperature of 1250 to 1350 ° C. to produce a fired body. The water absorption of this fired body was 0.2%.
A liquid mixture of anatase-type titanium oxide having an average particle size of 50 nm and alkali silicate was applied to the surface of the fired body by a flow coating method, and then dried and cured to form a photocatalyst layer having a thickness of 0.5 μm.
比較例1:無釉タイル焼成体の表面に、フローコート法により、平均粒径50nmのアナターゼ型酸化チタンとアルカリシリケートとの混合液を塗布した後に乾燥・硬化させて、膜厚0.5μmの光触媒層を形成した。
Comparative Example 1: A mixture of anatase-type titanium oxide having an average particle size of 50 nm and an alkali silicate was applied to the surface of the fired tile-free body by a flow coat method, and then dried and cured to obtain a film thickness of 0.5 μm. A photocatalytic layer was formed.
<評価>
得られた試料について、砂とセラミックスとを混合した水中下で鉄球をタイルに擦る試験を実施例1および比較例については6000回、実施例2については5000回繰り返した。
摩耗後の試料について10W/m2のBLBによる光触媒酸化還元活性を調べた。光触媒酸化還元活性は、試料表面に硝酸銀を塗布し10分経過後の色差Eを求め、光触媒を塗布しない試料に硝酸銀を塗布し10分経過後の色差E0との差ΔEで評価した。
その結果、上記実施例1および2ではΔEがそれぞれ2.6および1.5となり光触媒酸化還元活性が確認できたが、比較例1ではΔEが0で光触媒光触媒酸化還元活性は得られなかった。 <Evaluation>
About the obtained sample, the test which rubs an iron ball on a tile in the water which mixed sand and ceramics was repeated 6000 times about Example 1 and the comparative example, and 5000 times about Example 2. FIG.
The photocatalytic redox activity with 10 W / m 2 BLB was examined for the worn sample. The photocatalytic oxidation-reduction activity was evaluated based on the difference ΔE from the color difference E0 after 10 minutes had elapsed after silver nitrate was applied to the sample surface and silver nitrate was applied to the sample without application of the photocatalyst.
As a result, in Examples 1 and 2 above, ΔE was 2.6 and 1.5, respectively, and the photocatalytic redox activity was confirmed, but in Comparative Example 1, ΔE was 0 and no photocatalytic photocatalytic redox activity was obtained.
得られた試料について、砂とセラミックスとを混合した水中下で鉄球をタイルに擦る試験を実施例1および比較例については6000回、実施例2については5000回繰り返した。
摩耗後の試料について10W/m2のBLBによる光触媒酸化還元活性を調べた。光触媒酸化還元活性は、試料表面に硝酸銀を塗布し10分経過後の色差Eを求め、光触媒を塗布しない試料に硝酸銀を塗布し10分経過後の色差E0との差ΔEで評価した。
その結果、上記実施例1および2ではΔEがそれぞれ2.6および1.5となり光触媒酸化還元活性が確認できたが、比較例1ではΔEが0で光触媒光触媒酸化還元活性は得られなかった。 <Evaluation>
About the obtained sample, the test which rubs an iron ball on a tile in the water which mixed sand and ceramics was repeated 6000 times about Example 1 and the comparative example, and 5000 times about Example 2. FIG.
The photocatalytic redox activity with 10 W / m 2 BLB was examined for the worn sample. The photocatalytic oxidation-reduction activity was evaluated based on the difference ΔE from the color difference E0 after 10 minutes had elapsed after silver nitrate was applied to the sample surface and silver nitrate was applied to the sample without application of the photocatalyst.
As a result, in Examples 1 and 2 above, ΔE was 2.6 and 1.5, respectively, and the photocatalytic redox activity was confirmed, but in Comparative Example 1, ΔE was 0 and no photocatalytic photocatalytic redox activity was obtained.
Claims (7)
- 磁器質またはせっ器質の無釉タイル焼成素地の表面近傍に光触媒粒子が含浸固定されてなることを特徴とする、光触媒タイル。 A photocatalyst tile, wherein photocatalyst particles are impregnated and fixed in the vicinity of the surface of a porcelain or porcelain ceramic tile firing base.
- 前記焼成素地表面の吸水率が3%以下である、請求項1に記載の光触媒タイル。 The photocatalytic tile according to claim 1, wherein the water absorption rate of the surface of the fired substrate is 3% or less.
- 前記焼成素地の、光触媒粒子が含浸固定された表面上に、さらに光触媒層が設けられてなる、請求項1または2に記載の光触媒タイル。 The photocatalyst tile according to claim 1 or 2, wherein a photocatalyst layer is further provided on the surface of the calcined substrate impregnated and fixed with photocatalyst particles.
- 前記焼成素地表面の吸水率が0.1%以上である、請求項1~3のいずれか一項に記載の光触媒タイル。 The photocatalytic tile according to any one of claims 1 to 3, wherein a water absorption rate of the surface of the fired substrate is 0.1% or more.
- 床タイルまたは外装タイルである、請求項1~4のいずれか一項に記載の光触媒タイル。 The photocatalytic tile according to any one of claims 1 to 4, which is a floor tile or an exterior tile.
- タイル生成形体表面に光触媒粒子を含浸させた後に、前記表面の吸水率が3%以下になる温度で焼成することを特徴とする、光触媒タイルの製造方法。 A method for producing a photocatalytic tile, comprising impregnating photocatalyst particles on a surface of a tile-generating form and firing at a temperature at which the water absorption rate of the surface is 3% or less.
- 前記表面の吸水率が3%以下になる温度で焼成した後に、さらに前記光触媒粒子を含浸させた表面上に、光触媒層を形成する、請求項6に記載の光触媒タイルの製造方法。 The method for producing a photocatalytic tile according to claim 6, wherein a photocatalyst layer is formed on the surface impregnated with the photocatalyst particles after firing at a temperature at which the water absorption rate of the surface is 3% or less.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-065531 | 2009-03-18 | ||
JP2009-065530 | 2009-03-18 | ||
JP2009065531A JP2012107376A (en) | 2009-03-18 | 2009-03-18 | Photocatalyst tile |
JP2009065530A JP2012107375A (en) | 2009-03-18 | 2009-03-18 | Photocatalyst tile |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010107086A1 true WO2010107086A1 (en) | 2010-09-23 |
Family
ID=42739745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054670 WO2010107086A1 (en) | 2009-03-18 | 2010-03-18 | Photocatalytic tile |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010107086A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011136984A (en) * | 2009-12-01 | 2011-07-14 | Sumitomo Chemical Co Ltd | Antiviral agent and antiviral agent functional product using the same |
CN113402300A (en) * | 2021-07-16 | 2021-09-17 | 重庆大学 | Ag/BiVO with high sterilization activity4Photocatalytic ceramic tile and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1161708A (en) * | 1997-08-22 | 1999-03-05 | Fujikon:Kk | Concrete product removing nox in atmospheric air by using catalytic effect and manufacture thereof |
JP2002160984A (en) * | 2000-11-27 | 2002-06-04 | Inax Corp | Tile and its manufacturing method |
-
2010
- 2010-03-18 WO PCT/JP2010/054670 patent/WO2010107086A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1161708A (en) * | 1997-08-22 | 1999-03-05 | Fujikon:Kk | Concrete product removing nox in atmospheric air by using catalytic effect and manufacture thereof |
JP2002160984A (en) * | 2000-11-27 | 2002-06-04 | Inax Corp | Tile and its manufacturing method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011136984A (en) * | 2009-12-01 | 2011-07-14 | Sumitomo Chemical Co Ltd | Antiviral agent and antiviral agent functional product using the same |
CN113402300A (en) * | 2021-07-16 | 2021-09-17 | 重庆大学 | Ag/BiVO with high sterilization activity4Photocatalytic ceramic tile and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5835219B2 (en) | Photocatalyst-coated body and photocatalyst coating liquid | |
KR101323303B1 (en) | Porous composite compound, manufacturing method thereof and cement composition containing porous composite compound | |
US7754648B2 (en) | Photocatalytic hydrophilifiable material | |
EP0792687B1 (en) | Photocatalytic functional material and method of production thereof | |
CA2665988C (en) | Copper containing algicidal compounds | |
US20060078712A1 (en) | Ceramic molded body comprising a photocatalytic coating and method for production the same | |
EP1053788B1 (en) | Use of a photocatalyst composition for the removal of harmful substances from air | |
TW201006550A (en) | Object with photo-catalyst coating | |
JP6568630B2 (en) | Photocatalytic material and method for producing the same | |
US7922950B2 (en) | Monolithic building element with photocatalytic material | |
TW201238655A (en) | Photocatalyst coated body and photocatalyst coating liquid | |
JP5898944B2 (en) | Photocatalyst coating liquid and inorganic material having photocatalytic function | |
JP2017064707A (en) | Photocatalyst coated body | |
JP2001303276A (en) | Enamel material | |
WO2010107086A1 (en) | Photocatalytic tile | |
JP2012107376A (en) | Photocatalyst tile | |
JP2012107375A (en) | Photocatalyst tile | |
KR20110105433A (en) | Block structure having eco-friendly function | |
JP6593108B2 (en) | Photocatalyst body | |
CN111072404B (en) | Ceramic product with photocatalyst coating applied in set gradation and manufacturing method thereof | |
KR20160015057A (en) | Method for coating titanium oxide on the porous media and porous media coated titanium oxide | |
TW201223640A (en) | Use of composite material equipped with photocatalyst layer | |
JP2010280859A (en) | Photocatalytic coating composition for high temperature firing, and method for producing photocatalytic material | |
JP2004290974A (en) | Optical catalyst compound, optical catalyst containing substance, optical catalyst function exerting material and method for manufacturing it | |
JP5849698B2 (en) | Composite and coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10753577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |