WO2010107082A1 - Electric generator - Google Patents

Electric generator Download PDF

Info

Publication number
WO2010107082A1
WO2010107082A1 PCT/JP2010/054659 JP2010054659W WO2010107082A1 WO 2010107082 A1 WO2010107082 A1 WO 2010107082A1 JP 2010054659 W JP2010054659 W JP 2010054659W WO 2010107082 A1 WO2010107082 A1 WO 2010107082A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
disk rotor
magnet
gear
driving force
Prior art date
Application number
PCT/JP2010/054659
Other languages
French (fr)
Japanese (ja)
Inventor
厨 林
Original Assignee
Hayashi Kuriya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Kuriya filed Critical Hayashi Kuriya
Publication of WO2010107082A1 publication Critical patent/WO2010107082A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines

Definitions

  • the present invention relates to a generator used for wind power generation or hydroelectric power generation.
  • This power generation device includes an outer ring that can be rotated by an outer peripheral blade, and an inner ring that can be rotated in the opposite direction by an inner peripheral blade on the inner side thereof. Do.
  • the generated electric power is output through a slip ring formed of a rotating conductor and a fixed brush.
  • the power generation capacity can be increased by relative movement and enlargement of the outer ring or inner ring, such enlargement increases manufacturing and maintenance costs, shortens the service life, and installs them. The place is also limited.
  • electric power is taken out by a slip ring formed of a rotating conductor and a fixed brush, sparks, brush defects, etc. are relatively likely to occur, maintenance costs increase, output power decreases, and efficiency deteriorates. It becomes a factor of.
  • an object of the present invention is to provide a generator having an extremely high power generation capability, a long life, a small size, a low manufacturing cost, and a wide installation place.
  • the invention according to claim 1 is a coil-side rotating body including a coil, a magnet-side rotating body including a plurality of magnets arranged so as to sandwich the coil, and the coil-side rotating body. And a rotational driving force reversal transmission mechanism for reversing the rotational driving force applied to one of the magnet side rotating bodies and transmitting it to the other.
  • the rotational driving force reversal transmission mechanism is a gear or a gear group.
  • the invention according to claim 3 makes the operation smooth without lubrication, reduces maintenance costs and reduces maintenance costs, and provides strength and life compared to metals.
  • at least one gear in the gear or the gear group is a thermosetting resin. It is characterized by being formed by molding a thermosetting resin molding material whose main component is a composite containing fluorinated resin.
  • thermosetting resin molding material contains reinforcing fibers.
  • the coil side rotating body and / or the magnet side The rotating body is installed around a fixed shaft, and the central axis of the fixed shaft and the rotating shaft of the coil side rotating body and / or the magnet side rotating body are coaxial. To do.
  • the coil is rotated on the coil side.
  • a plurality of the magnets are arranged along the rotation axis direction of the body, and the magnets are arranged so as to sandwich each of the plurality of coils.
  • the invention described in claim 7 is the above invention, in order to achieve the object of taking out the electromotive force efficiently and stably, extending the life of the part from which the electric power is extracted, and reducing the maintenance cost. Furthermore, a slip ring for taking out the electric power generated in the coil is provided, and the slip ring includes a rotating conductor installed in the coil-side rotating body and a multipolar electrode in contact with the rotating conductor. It is characterized by this.
  • the coil-side rotator and the magnet-side rotator are driven in reverse by the rotational driving force reversal transmission mechanism. Therefore, it is possible to realize a fast relative rotation between the coil and magnet with a simple mechanism, providing a generator with extremely high power generation capacity, long life, small size, low manufacturing cost, and wide installation space. There is an effect that can be done.
  • FIG. 1 is a central sectional view of a generator 1 according to the embodiment.
  • the generator 1 includes a cylindrical main shaft 2 fixed to the ground or the like as appropriate through an arm or the like, and a main shaft 2 as a fixed shaft.
  • the coil shaft 4 and the housing 6 are provided so as to be able to rotate (reverse) in different directions around each other.
  • the coil shaft 4 is installed around the front end side (left side in FIG. 1) of the main shaft 2 via a plurality (two in FIG. 1) of first bearings 21.
  • the central axis of the coil shaft 4 is coaxial with the central axis of the main shaft 2, and can be rotated around the central axis by the first bearing 21 with the central axis of the main shaft 2 as a rotation axis.
  • a coil disk rotor 41 is attached which is wound with a conductive wire in a state of a disk having a hole in the center.
  • the coil disk rotor 41 is a coreless coil without a core, and is fixed in a state of being perpendicular to the rotation axis of the coil shaft 4.
  • the inner diameter of the central hole of the coil disk rotor 41 is the same as the outer diameter of the coil shaft 4, and the coil shaft 4 is passed through the central hole of the coil disk rotor 41.
  • the conductive wire includes a loop extending from the outer side of the central hole to the outer periphery along a plane substantially orthogonal to the longitudinal direction of the coil shaft 4, and such loops are stacked around the coil shaft 4. It is wound like so.
  • coil disk rotors 41 are provided, and are arranged so as to be aligned along the longitudinal direction (rotational axis direction) of the coil shaft 4 (multi-stage coil disk rotor 41 is provided. ).
  • or each coil disc rotor 41 comprise a coil side rotary body.
  • an inner gear 42 having teeth arranged on the outer periphery is provided on the tip side of the coil shaft 4.
  • the inner gear 42 meshes with the intermediate gear 24 serving as a rotational driving force reversal transmission mechanism, which is rotatably provided to the flange 22 at the tip end portion of the main shaft 2 via the second bearing 23.
  • the intermediate gear 24 as a rotational driving force reversal transmission mechanism is a gear having teeth arranged on the outer periphery thereof, and rotates around a protruding portion 25 protruding along the longitudinal direction of the main shaft 2 in the flange 22. Further, a plurality of intermediate gears 24 (two in the vertical direction in FIG. 1) are installed.
  • the housing 6 is arranged so as to cover the front end side of the main shaft 2 and the coil shaft 4 (coaxially with these).
  • the housing 6 is arranged around the main shaft 2 via the third bearings 61 respectively installed on the distal end side of the main shaft 2 (from the flange 22) and the proximal end side (right side in FIG. 1) of the coil shaft 4 (main shaft 2). It is installed so as to be rotatable (with the same axis as the central axis of the shaft 2 as the rotation axis).
  • An outer gear 62 that meshes with each intermediate gear 24 is fixed to the front end side inside the housing 6.
  • the outer gear 62 is a cylindrical gear having teeth formed on the inner surface.
  • One or more intermediate gears 24 that are external teeth are arranged between the external gear 62 that is internal teeth and the internal gear 42 that is external teeth, and the intermediate gear 24 is interposed between the external gear 62 and the internal gear 42.
  • the outer gear 62 and the inner gear 42 are reversed. It can be considered that the outer gear 62, the intermediate gear 24, and the inner gear 42 constitute a rotational driving force reversal transmission mechanism.
  • the outer gear 62, the intermediate gear 24, and the inner gear 42 are each made of resin and formed by molding a thermosetting resin molding material mainly composed of a composite including a thermosetting resin and a fluororesin (composite Molded product).
  • the thermosetting resin molding material preferably contains reinforcing fibers.
  • This composite has a structure in which the thermosetting resin covers all or part of the surface of the fluororesin particles, a particle structure in which both resins are combined microscopically, or a fluororesin on the surface of the thermosetting resin particles. Does not include a structure in which the particles are merely electrostatically assembled, including a structure in which the thermosetting resin is fused on the surface of the fluororesin particles.
  • thermosetting resin is solid at room temperature in an uncured state and can be dispersed in water, and preferably has a hydrophilic group such as a phenol resin.
  • a tetrafluoroethylene polymer as the fluororesin, particularly in view of low friction to improve sliding without lubrication, but hexafluoropropylene, perfluoro (alkyl vinyl ether), vinylidene.
  • a polymer or copolymer of monomers selected from fluoride and vinyl fluoride, or a copolymer of these monomers and ethylene may be used.
  • the thermosetting resin is preferably 10 or 20 weight percent or more and 60 or 80 weight percent or less with respect to the total mass of the thermosetting resin molding material.
  • the fluororesin is preferably 1, 3 or 5 weight percent or more and 30 or 40 weight percent or less based on the total mass of the thermosetting resin molding material. Furthermore, glass fiber, carbon fiber, metal fiber, ceramic fiber, polyamide fiber, polyester fiber, or the like can be used as the reinforcing fiber.
  • thermosetting resin molding material is preferably produced by dispersing and making a composite made of a thermosetting resin and a fluororesin (and reinforcing fibers) in water, and molding this by a known method.
  • An outer gear 62, an intermediate gear 24, and an inner gear 42 are formed.
  • a tip side magnet disk rotor 63 is attached to a portion inside the housing 6 and facing a tip side surface of the tip side coil disk rotor 41.
  • the tip side magnet disk rotor 63 is a disc-shaped magnet having a hole in the center, and is, for example, a rare earth magnet (neodymium magnet).
  • the tip side magnet disk rotor 63 is fixed perpendicularly to the rotation axis of the housing 6.
  • a base end side magnet disk rotor 64 that is the same as the front end side magnet disk rotor 63 is provided on the inner side of the housing 6 and facing the base end side surface of the base end side coil disk rotor 41. It is attached.
  • an intermediate magnet disk rotor 65 which is the same as the tip side magnet disk rotor 63 except for being thicker is attached between the coil disk rotors 41 inside the housing 6.
  • the intermediate magnet disk rotor 65 is fixed to the inside of the housing 6 via a ring-shaped inner frame 66, and is installed by the inner frame 66 so as to enter between the coil disk rotors 41 from the outside. Arranged between the disk rotors 41.
  • the directions of the magnetic poles are aligned with each other.
  • the proximal end side of the distal end side magnetic disk rotor 63 is an S pole
  • the distal end side of the intermediate magnet disk rotor 65 is an N pole and the proximal end side is an S pole
  • the distal end side of the proximal end side magnet disk rotor 64 is an N pole.
  • a cylindrical coupling 67 is fixed to the tip of the housing 6.
  • a rotating shaft (not shown) that generates a rotational driving force is connected to the coupling 67, and the rotational driving force is received by the coupling 67.
  • the rotating shaft include those relating to horizontal or vertical windmills and water turbines.
  • a slip ring 44 including a conductor band 43 and an electrode holder 27 is disposed at the base end portion of the coil shaft 4 or around it. That is, a conductor band 43 that is a band-like and ring-shaped conductor is fixed to the outer surface of the coil shaft 4, and an electrode holder 27 having a divided electrode 26 that contacts the conductor band 43 is installed on the outer periphery of the main shaft 2. Has been. The electrode holder 27 is installed via a skirt 28 fixed around the main shaft 2. The conductor band 43 is electrically connected to each coil disk rotor 41 by a conducting wire passing through the coil shaft 4 (not shown).
  • the divided electrode 26 of the electrode holder 27 is a multipolar electrode in which a plurality of electrodes are provided, and may be formed by dividing a lump of electrodes, or by forming a plurality of electrodes and electrically connecting them to each other. May be.
  • the split electrode 26 is electrically connected to the power output side, and is connected to the AC power transmission system via, for example, a rectifier or an inverter. Each electrode of the divided electrode 26 is connected in parallel to the power output side.
  • a plurality of divided electrodes 26 and electrode holders 27 are arranged.
  • Such a generator 1 operates mainly as described below.
  • the housing 6 rotates around the third bearing 61, and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnetic disk integrated therewith.
  • the rotor 65 also rotates.
  • each intermediate gear 24 meshed with the outer gear 61 rotates around the second bearing 23.
  • Each intermediate gear 24 rotates the meshed inner gear 42 or the coil shaft 4 integrated therewith in the direction of rotation opposite to the housing 6 around the first bearing 21.
  • the coil shaft 4 rotates each coil disk rotor 41 integral therewith in a direction opposite to the casing 6 or the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65.
  • each intermediate gear 24 reverses the rotational driving force in the casing 6 or the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65, thereby causing the coil shaft 4 or each coil disk rotor 41 to move. introduce.
  • Each coil disk rotor 41 rotates in the opposite direction between the rotating front end side magnetic disk rotor 63 and the intermediate magnet disk rotor 65 or between the proximal end side magnetic disk rotor 64 and the intermediate magnet disk rotor 65, Relatively fast with respect to the side magnet disk rotor 63, the base end side magnet disk rotor 64, and the intermediate magnet disk rotor 65 (at a speed twice as high as the speed when assuming that these are fixed to the main shaft 2) )Rotate.
  • Each of the coil disk rotors 41, the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 are perpendicular to the central axis of the main shaft 2 and the rotation axis of the coil shaft 4 and the casing 6. Since they are parallel to each other, they do not contact each other even during rotation. When three or more coil disk rotors 41 are provided, the coil disk rotors 4 other than both ends rotate between the intermediate magnet disk rotors 65.
  • each coil disk rotor 41 and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 causes the distal end side magnetic disk rotor 63, the proximal end side magnet disk rotor 64, and the intermediate magnet to rotate.
  • Each coil disk rotor 41 rotates relative to the magnetic field formed by the disk rotor 65. Due to such relative rotation, the magnetic field changes within the loop of the conducting wire of each coil disk rotor 41, and an electromotive force is generated in each coil disk rotor 41.
  • the electromotive force is taken out by the slip ring 44. That is, the electromotive force is transmitted to the conductor band 43 that rotates integrally with the coil shaft 4 and is taken out by the fixed divided electrode 26 in contact therewith.
  • the above generator 1 includes a coil shaft 4 including a coil disk rotor 41, and a front end side magnetic disk rotor 63, a base end side magnetic disk rotor 64, and an intermediate magnet disk rotor 65 disposed so as to sandwich the coil disk rotor 41.
  • a housing 6 and an intermediate gear 24 that reverses the rotational driving force applied to the housing 6 and transmits it to the coil shaft 4 are provided.
  • each coil disk rotor 41 rotates at a relatively high speed with respect to the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65. Then, electric power is generated in each coil disk rotor 41 by such relative rotation.
  • each coil disk rotor 41 can be rotated at a relatively high speed.
  • the power generation efficiency can be improved.
  • the generator 1 that performs relative high-speed rotation may be able to generate power, and this can further improve power generation efficiency by enabling generation from ultra-low-speed rotation.
  • the intermediate gear 24 (the outer gear 62 and the inner gear 42) is formed by molding a thermosetting resin molding material mainly composed of a composite containing a thermosetting resin and a fluororesin
  • the intermediate gear 24 has a high strength equivalent to that of a metal, but can be reduced in weight and imparted with low friction, and the generator 1 can be reduced in weight to increase the place where it can be installed.
  • the life of the drive force reversal transmission mechanism can be extended, and the rotational drive force reversal transmission mechanism can be operated smoothly without lubrication to improve operation reliability or efficiency and reduce maintenance costs. it can.
  • the intermediate gear 24 (the outer gear 62 and the inner gear 42) can have higher strength.
  • the coil shaft 4 and the housing 6 are installed around the fixed main shaft 2, and the main shaft 2, the coil shaft 4 and the housing 6 are coaxial, so the coil shaft 4.
  • the housing 6 can be installed compactly while ensuring reliable and smooth operation.
  • a plurality of coil disk rotors 41 are arranged along the rotational axis direction of the coil shaft 4, and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 are arranged as coil coils. It arrange
  • Magnetic power can be applied to the front and rear coil disk rotors 41 by the single intermediate magnet disk rotor 65, and the amount of magnets used can be reduced.
  • the number of magnets used can be reduced as the number of coils increases. For example, compared to the case where one set (24 pieces) of magnets is installed on each side of each coil disk rotor 41. In the present invention, it can be reduced by about 25 percent (%) in two stages (two sets of magnets in the center are shared by one set), reduced by about 32% in three stages, and reduced by about 40% in five stages.
  • a slip ring 44 for taking out the electric power generated in each coil disk rotor 41 is provided, and the slip ring 44 includes a rotating conductor 43 installed on the coil shaft 4 and a divided electrode 26 in contact with the rotating conductor 43. ing. Therefore, even when the coil shaft 4 is slightly inclined with respect to the main shaft 2 and the divided electrode 26 is inclined with respect to the conductor band 43, at least one of the divided electrodes 26 is in contact with the conductor band 43. The power can be reliably taken out even when the coil shaft 4 is rotating, the electrode is instantaneously completely separated from the conductor band 43, and a spark is generated, and the power is lost or divided. The situation where the electrode 26, the conductor band 43, etc. are damaged can be prevented.
  • the plurality of electrodes of the divided electrode 26 come into contact with the conductor band 43, and the resistance value in taking out the power can be reduced and the efficiency can be improved. Further, even if the pressing of the divided electrode 26 against the conductor band 43 is relatively loose, power can be reliably taken out, and the wear of the divided electrode 26 and the conductor band 43 can be prevented and the life of the slip ring 44 can be extended. it can. Furthermore, since the relative speed is increased by reversing the coil shaft 4 and the housing 6, sufficient power generation can be performed even when the rotational driving force is relatively low. The speed becomes low and the life of the slip ring 44 is extended (for example, the life of about 10 to 20 times that of the conventional one can be expected).
  • ⁇ ⁇ Apply rotational drive force to the coil shaft.
  • the coil disk rotor is fixed to the housing, and the magnet disk rotor is disposed on the shaft between the main shaft and the housing.
  • the number, position, etc. of various bearings are changed such that the number of first bearings is one or three or more, or all the third bearings are arranged on the main shaft.
  • the number of coil stages is changed, for example, the number of intermediate magnet disk rotors is one less than that of the disk rotor and coil disk rotor.
  • For the coil provide a core or change the way the conductor is wound.
  • magnets having different shapes or properties may be used as the distal end side magnetic disk rotor and the proximal end side magnetic disk rotor, the same magnet may be used as each magnetic disk rotor, or some of the plurality of coil disk rotors may be A coil disk rotor with a different shape or winding method is used.
  • the inner frame is omitted for the installation of the intermediate magnetic disk rotor.
  • the shape of various members is changed, such as using a polygonal plate with a hole in the center as a coil disk rotor or various magnetic disk rotors.
  • the number of intermediate gears is one or more than three, or an odd number of gear trains or a plurality of such gear trains are arranged to connect the outer gear and the inner gear, or revolve with rotation. (Planetary gear).
  • the material of various members is changed such that at least one of the housing, the various shafts, and the bearings is the composite molded product.

Abstract

Disclosed is a generator which has an extremely high generating ability, has a long service life, is compact, has a low production cost, and has a wide range of possible installation locations. The generator (1) is provided with a coil shaft (4), which includes coil disc rotors (41); a chassis (6), which includes a distal magnetic disc rotor (63), a proximal magnetic disc rotor (64), and a central magnetic disc rotor (65), which are disposed sandwiching the coil disc rotors (41); and a central gear (24), which inverts rotational driving force applied to the chassis (6) and transmits said force to the coil shaft (4).

Description

発電機Generator
 本発明は、風力発電や水力発電等に用いられる発電機に関する。 The present invention relates to a generator used for wind power generation or hydroelectric power generation.
 従来の風力発電装置として、下記特許文献1に記載のものが知られている。この発電装置は、外周翼により回転可能な外周輪と、その内側において内周翼により反対方向に回転可能な内周輪とを備えており、外周輪と内周輪との相対運動によって発電を行う。発電された電力は、回転導体と固定ブラシから形成されたスリップリングを介して出力される。 As a conventional wind power generator, the one described in Patent Document 1 below is known. This power generation device includes an outer ring that can be rotated by an outer peripheral blade, and an inner ring that can be rotated in the opposite direction by an inner peripheral blade on the inner side thereof. Do. The generated electric power is output through a slip ring formed of a rotating conductor and a fixed brush.
特開2003-129936号公報JP 2003-129936 A
 上記発電装置では、相対運動や外周輪ないし内周輪の大型化により発電能力を高めることができるものの、このような大型化により製造や保守のコストが甚大になるし、寿命も短くなり、設置場所も限定される。又、回転導体と固定ブラシから形成されたスリップリングにより電力を取り出すので、火花やブラシの欠損等が比較的に発生し易く、保守のコストが増大するし、出力させる電力が減少して効率悪化の要因となる。 In the above power generator, although the power generation capacity can be increased by relative movement and enlargement of the outer ring or inner ring, such enlargement increases manufacturing and maintenance costs, shortens the service life, and installs them. The place is also limited. In addition, since electric power is taken out by a slip ring formed of a rotating conductor and a fixed brush, sparks, brush defects, etc. are relatively likely to occur, maintenance costs increase, output power decreases, and efficiency deteriorates. It becomes a factor of.
 そこで、請求項1に記載の発明は、発電能力が極めて高く、長寿命であり、又小型であって製造コストが低く設置可能場所が広い発電機を提供することを目的としたものである。 Accordingly, an object of the present invention is to provide a generator having an extremely high power generation capability, a long life, a small size, a low manufacturing cost, and a wide installation place.
 上記目的を達成するために、請求項1に記載の発明は、コイルを含むコイル側回転体と、前記コイルを挟むように配置した複数の磁石を含む磁石側回転体と、前記コイル側回転体及び前記磁石側回転体の一方に付与された回転駆動力を反転して他方に伝達する回転駆動力反転伝達機構とを備えたことを特徴とするものである。 To achieve the above object, the invention according to claim 1 is a coil-side rotating body including a coil, a magnet-side rotating body including a plurality of magnets arranged so as to sandwich the coil, and the coil-side rotating body. And a rotational driving force reversal transmission mechanism for reversing the rotational driving force applied to one of the magnet side rotating bodies and transmitting it to the other.
 請求項2に記載の発明は、上記目的に加えて、より一層シンプルな機構として長寿命化ないし小型化、低コスト化、設置容易化を図る目的を達成するため、上記発明にあって、前記回転駆動力反転伝達機構は、歯車あるいは歯車群であることを特徴とするものである。 In addition to the above object, the invention described in claim 2 is the above invention, in order to achieve the object of achieving a longer life or downsizing, cost reduction, and ease of installation as a simpler mechanism. The rotational driving force reversal transmission mechanism is a gear or a gear group.
 請求項3に記載の発明は、上記目的に加えて、注油をしなくとも動作を円滑なものとし、メンテナンスの手間が省かれて保守コストの低減が可能となり、又金属と比べて強度や寿命が同等ながら軽量化が可能となって設置が容易となる発電機を提供する目的を達成するため、上記発明にあって、前記歯車、あるいは前記歯車群における少なくとも1つの歯車が、熱硬化性樹脂とフッ素樹脂とを含む複合体を主成分とする熱硬化性樹脂成形材料を成形することで形成されていることを特徴とするものである。 In addition to the above-mentioned object, the invention according to claim 3 makes the operation smooth without lubrication, reduces maintenance costs and reduces maintenance costs, and provides strength and life compared to metals. In order to achieve the object of providing a generator that can be reduced in weight and can be easily installed while being equivalent, in the above invention, at least one gear in the gear or the gear group is a thermosetting resin. It is characterized by being formed by molding a thermosetting resin molding material whose main component is a composite containing fluorinated resin.
 請求項4に記載の発明は、上記目的に加えて、更に強度を向上する目的を達成するため、上記発明にあって、前記熱硬化性樹脂成形材料は、強化繊維を含有することを特徴とするものである。 In order to achieve the object of further improving the strength in addition to the above object, the invention according to claim 4 is the above invention, wherein the thermosetting resin molding material contains reinforcing fibers. To do.
 請求項5に記載の発明は、上記目的に加えて、より一層動作を確実なものとして効率を向上する目的を達成するため、上記発明にあって、前記コイル側回転体及び/又は前記磁石側回転体は、固定シャフトの周りに設置されており、前記固定シャフトの中心軸と、前記コイル側回転体及び/又は前記磁石側回転体の回転軸とが、同軸とされていることを特徴とするものである。 According to a fifth aspect of the present invention, in addition to the above object, in order to achieve the object of improving the efficiency by further ensuring the operation, in the above invention, the coil side rotating body and / or the magnet side The rotating body is installed around a fixed shaft, and the central axis of the fixed shaft and the rotating shaft of the coil side rotating body and / or the magnet side rotating body are coaxial. To do.
 請求項6に記載の発明は、上記目的に加えて、磁石の使用量を低減して発電量を効率良く増加する目的を達成するため、上記発明にあって、前記コイルが、前記コイル側回転体の回転軸方向に沿って複数並べられており、前記磁石が、当該複数のコイルのそれぞれを挟むように配置されていることを特徴とするものである。 According to a sixth aspect of the present invention, in addition to the above object, in order to achieve the object of efficiently increasing the amount of power generation by reducing the amount of magnets used, in the above invention, the coil is rotated on the coil side. A plurality of the magnets are arranged along the rotation axis direction of the body, and the magnets are arranged so as to sandwich each of the plurality of coils.
 請求項7に記載の発明は、上記目的に加えて、起電力を効率良く安定して取り出し、電力を取り出す部分を長寿命化して保守コストを低減する目的を達成するため、上記発明にあって、更に、前記コイルに発生した電力を取り出すスリップリングを備えており、当該スリップリングは、前記コイル側回転体に設置された回転導体と、当該回転導体に接触する多極電極とを備えていることを特徴とするものである。 In addition to the above object, the invention described in claim 7 is the above invention, in order to achieve the object of taking out the electromotive force efficiently and stably, extending the life of the part from which the electric power is extracted, and reducing the maintenance cost. Furthermore, a slip ring for taking out the electric power generated in the coil is provided, and the slip ring includes a rotating conductor installed in the coil-side rotating body and a multipolar electrode in contact with the rotating conductor. It is characterized by this.
 本発明によれば、コイル側回転体と前記磁石側回転体とを回転駆動力反転伝達機構により反転駆動している。よって、コイルと磁石との速い相対回転をシンプルな機構で実現することができ、発電能力が極めて高く、長寿命であり、又小型であって製造コストが低く設置可能場所が広い発電機を提供することができる、という効果を奏する。 According to the present invention, the coil-side rotator and the magnet-side rotator are driven in reverse by the rotational driving force reversal transmission mechanism. Therefore, it is possible to realize a fast relative rotation between the coil and magnet with a simple mechanism, providing a generator with extremely high power generation capacity, long life, small size, low manufacturing cost, and wide installation space. There is an effect that can be done.
本発明に係る発電機の断面説明図である。It is a section explanatory view of the generator concerning the present invention.
 以下、本発明に係る実施の形態の例につき、適宜図面に基づいて説明する。なお、当該形態は、下記の例に限定されない。 Hereinafter, examples of embodiments according to the present invention will be described with reference to the drawings as appropriate. In addition, the said form is not limited to the following example.
 図1は当該形態に係る発電機1の中央断面図であって、発電機1は、適宜アーム等を介して地面等に固定された円柱形状のメインシャフト2と、固定シャフトとしてのメインシャフト2の周りにおいて互いに異なる方向に回転(反転)可能に設けられたコイルシャフト4及び筐体6とを備えている。 FIG. 1 is a central sectional view of a generator 1 according to the embodiment. The generator 1 includes a cylindrical main shaft 2 fixed to the ground or the like as appropriate through an arm or the like, and a main shaft 2 as a fixed shaft. The coil shaft 4 and the housing 6 are provided so as to be able to rotate (reverse) in different directions around each other.
 即ち、メインシャフト2の先端側(図1では左側)の周りには、複数(図1では2個)の第1ベアリング21を介してコイルシャフト4が設置されている。コイルシャフト4の中心軸は、メインシャフト2の中心軸と同軸とされており、第1ベアリング21によって、メインシャフト2の中心軸を回転軸として、当該中心軸の周りで回転可能である。 That is, the coil shaft 4 is installed around the front end side (left side in FIG. 1) of the main shaft 2 via a plurality (two in FIG. 1) of first bearings 21. The central axis of the coil shaft 4 is coaxial with the central axis of the main shaft 2, and can be rotated around the central axis by the first bearing 21 with the central axis of the main shaft 2 as a rotation axis.
 コイルシャフト4の周りには、全体が中央に孔の開いた円盤状となる状態で導線を巻いたコイルディスクローター41が取り付けられている。 Around the coil shaft 4, a coil disk rotor 41 is attached which is wound with a conductive wire in a state of a disk having a hole in the center.
 コイルディスクローター41は、芯を有さないコアレスのコイルであって、コイルシャフト4の回転軸に対し垂直となる状態で固定されている。コイルディスクローター41の中央の孔の内径は、コイルシャフト4の外径と同じであり、コイルディスクローター41の中央の孔に、コイルシャフト4が通されている。コイルディスクローター41においては、導線が、ほぼコイルシャフト4の長手方向に直交する面に沿い、中央の孔の外側から外周にわたるループを含み、このようなループが多数コイルシャフト4の周りで重ねられるように巻かれている。又、コイルディスクローター41は、複数(図1では2個)設けられており、コイルシャフト4の長手方向(回転軸方向)に沿って並ぶように配置されている(コイルディスクローター41の多段化)。なお、コイルシャフト4ないし各コイルディスクローター41が、コイル側回転体を構成する。 The coil disk rotor 41 is a coreless coil without a core, and is fixed in a state of being perpendicular to the rotation axis of the coil shaft 4. The inner diameter of the central hole of the coil disk rotor 41 is the same as the outer diameter of the coil shaft 4, and the coil shaft 4 is passed through the central hole of the coil disk rotor 41. In the coil disk rotor 41, the conductive wire includes a loop extending from the outer side of the central hole to the outer periphery along a plane substantially orthogonal to the longitudinal direction of the coil shaft 4, and such loops are stacked around the coil shaft 4. It is wound like so. A plurality of (two in FIG. 1) coil disk rotors 41 are provided, and are arranged so as to be aligned along the longitudinal direction (rotational axis direction) of the coil shaft 4 (multi-stage coil disk rotor 41 is provided. ). In addition, the coil shaft 4 thru | or each coil disc rotor 41 comprise a coil side rotary body.
 更に、コイルシャフト4の先端側には、外周に歯が配置される内ギア42が設けられている。内ギア42は、メインシャフト2先端部のフランジ22に対し第2ベアリング23を介して回転可能に設けられた、回転駆動力反転伝達機構としての中間ギア24と噛み合っている。回転駆動力反転伝達機構としての中間ギア24は、外周に歯が配置された歯車であり、フランジ22におけるメインシャフト2の長手方向に沿って突出した突出部25の周りで回転する。又、中間ギア24は、複数(図1のものでは上下に2個)設置されている。 Furthermore, an inner gear 42 having teeth arranged on the outer periphery is provided on the tip side of the coil shaft 4. The inner gear 42 meshes with the intermediate gear 24 serving as a rotational driving force reversal transmission mechanism, which is rotatably provided to the flange 22 at the tip end portion of the main shaft 2 via the second bearing 23. The intermediate gear 24 as a rotational driving force reversal transmission mechanism is a gear having teeth arranged on the outer periphery thereof, and rotates around a protruding portion 25 protruding along the longitudinal direction of the main shaft 2 in the flange 22. Further, a plurality of intermediate gears 24 (two in the vertical direction in FIG. 1) are installed.
 一方、筐体6は、メインシャフト2の先端側やコイルシャフト4を覆うように(これらと同軸に)配置されている。筐体6は、メインシャフト2(のフランジ22より)先端側及びコイルシャフト4の基端側(図1では右側)にそれぞれ設置された第3ベアリング61を介し、メインシャフト2の周りで(メインシャフト2の中心軸と同じ軸を回転軸として)回転可能に設置されている。 On the other hand, the housing 6 is arranged so as to cover the front end side of the main shaft 2 and the coil shaft 4 (coaxially with these). The housing 6 is arranged around the main shaft 2 via the third bearings 61 respectively installed on the distal end side of the main shaft 2 (from the flange 22) and the proximal end side (right side in FIG. 1) of the coil shaft 4 (main shaft 2). It is installed so as to be rotatable (with the same axis as the central axis of the shaft 2 as the rotation axis).
 筐体6の内側の先端側には、各中間ギア24と噛み合う外ギア62が固定されている。外ギア62は、内面に歯が形成された円筒状の歯車である。内歯である外ギア62と外歯である内ギア42との間に、1個以上の外歯である中間ギア24が配置されており、中間ギア24が外ギア62と内ギア42に介されることにより、外ギア62と内ギア42とが反転する。なお、外ギア62、中間ギア24及び内ギア42が回転駆動力反転伝達機構を構成するとみることもできる。 An outer gear 62 that meshes with each intermediate gear 24 is fixed to the front end side inside the housing 6. The outer gear 62 is a cylindrical gear having teeth formed on the inner surface. One or more intermediate gears 24 that are external teeth are arranged between the external gear 62 that is internal teeth and the internal gear 42 that is external teeth, and the intermediate gear 24 is interposed between the external gear 62 and the internal gear 42. As a result, the outer gear 62 and the inner gear 42 are reversed. It can be considered that the outer gear 62, the intermediate gear 24, and the inner gear 42 constitute a rotational driving force reversal transmission mechanism.
 外ギア62・中間ギア24・内ギア42は、それぞれ樹脂製であって、熱硬化性樹脂とフッ素樹脂とを含む複合体を主成分とする熱硬化性樹脂成形材料を成形したもの(複合体成形品)である。熱硬化性樹脂成形材料は好ましくは強化繊維を含有する。この複合体は、熱硬化性樹脂がフッ素樹脂粒子表面の全体又は一部を被覆している構造や、両樹脂が互いにミクロに組み合っている粒子構造、あるいは熱硬化性樹脂粒子の表面にフッ素樹脂が融着した構造や、フッ素樹脂粒子の表面に熱硬化性樹脂が融着した構造等を含み、各粒子が単に静電気的に集合している構造は含まない。 The outer gear 62, the intermediate gear 24, and the inner gear 42 are each made of resin and formed by molding a thermosetting resin molding material mainly composed of a composite including a thermosetting resin and a fluororesin (composite Molded product). The thermosetting resin molding material preferably contains reinforcing fibers. This composite has a structure in which the thermosetting resin covers all or part of the surface of the fluororesin particles, a particle structure in which both resins are combined microscopically, or a fluororesin on the surface of the thermosetting resin particles. Does not include a structure in which the particles are merely electrostatically assembled, including a structure in which the thermosetting resin is fused on the surface of the fluororesin particles.
 熱硬化性樹脂は、未硬化状態において常温で固体であって水に分散し得るものであり、好ましくはフェノール樹脂を始めとする親水性基を有するものである。一方、フッ素樹脂として、特に注油なしでも滑りを良好にすべく低摩擦性とすることに鑑みると、テトラフルオロエチレン重合体を用いることが好ましいが、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)、ビニリデンフルオライド及びビニルフルオロライドから選択されるモノマーの重合体あるいは共重合体、又はこれらモノマーとエチレンとの共重合体等を用いても良い。なお、熱硬化性樹脂は、熱硬化性樹脂成形材料の全質量に対し10あるいは20重量パーセント以上、60あるいは80重量パーセント以下とするのが好ましい。又、フッ素樹脂は、熱硬化性樹脂成形材料の全質量に対し1,3あるいは5重量パーセント以上、30あるいは40重量パーセント以下とするのが好ましい。更に、強化繊維として、ガラス繊維、炭素繊維、金属繊維、セラミック繊維、ポリアミド繊維、ポリエステル系繊維等を用いることができる。 The thermosetting resin is solid at room temperature in an uncured state and can be dispersed in water, and preferably has a hydrophilic group such as a phenol resin. On the other hand, it is preferable to use a tetrafluoroethylene polymer as the fluororesin, particularly in view of low friction to improve sliding without lubrication, but hexafluoropropylene, perfluoro (alkyl vinyl ether), vinylidene. A polymer or copolymer of monomers selected from fluoride and vinyl fluoride, or a copolymer of these monomers and ethylene may be used. The thermosetting resin is preferably 10 or 20 weight percent or more and 60 or 80 weight percent or less with respect to the total mass of the thermosetting resin molding material. The fluororesin is preferably 1, 3 or 5 weight percent or more and 30 or 40 weight percent or less based on the total mass of the thermosetting resin molding material. Furthermore, glass fiber, carbon fiber, metal fiber, ceramic fiber, polyamide fiber, polyester fiber, or the like can be used as the reinforcing fiber.
 熱硬化性樹脂成形材料は、好ましくは、熱硬化性樹脂及びフッ素樹脂から成る複合体(並びに強化繊維)を水に分散させて抄造することで作製され、これを公知の方法で成形することで外ギア62・中間ギア24・内ギア42が形成される。 The thermosetting resin molding material is preferably produced by dispersing and making a composite made of a thermosetting resin and a fluororesin (and reinforcing fibers) in water, and molding this by a known method. An outer gear 62, an intermediate gear 24, and an inner gear 42 are formed.
 又、筐体6の内側であって、先端側のコイルディスクローター41における先端側の面に対向する部分には、先端側マグネットディスクローター63が取り付けられている。先端側マグネットディスクローター63は、中央に孔の開いた円盤状の磁石であり、例えば希土類磁石(ネオジ磁石)である。先端側マグネットディスクローター63は、筐体6の回転軸に対し垂直に固定されている。 Further, a tip side magnet disk rotor 63 is attached to a portion inside the housing 6 and facing a tip side surface of the tip side coil disk rotor 41. The tip side magnet disk rotor 63 is a disc-shaped magnet having a hole in the center, and is, for example, a rare earth magnet (neodymium magnet). The tip side magnet disk rotor 63 is fixed perpendicularly to the rotation axis of the housing 6.
 更に、筐体6の内側であって、基端側のコイルディスクローター41における基端側の面に対向する部分には、先端側マグネットディスクローター63と同様に成る基端側マグネットディスクローター64が取り付けられている。 Further, a base end side magnet disk rotor 64 that is the same as the front end side magnet disk rotor 63 is provided on the inner side of the housing 6 and facing the base end side surface of the base end side coil disk rotor 41. It is attached.
 又、筐体6の内側であって、各コイルディスクローター41の間には、より肉厚であることを除き先端側マグネットディスクローター63と同様に成る中間マグネットディスクローター65が取り付けられている。中間マグネットディスクローター65は、輪状の内枠66を介して筐体6の内側に固定されており、内枠66によって、外方から各コイルディスクローター41の間に入るように設置され、各コイルディスクローター41の間に配置される。 Also, an intermediate magnet disk rotor 65 which is the same as the tip side magnet disk rotor 63 except for being thicker is attached between the coil disk rotors 41 inside the housing 6. The intermediate magnet disk rotor 65 is fixed to the inside of the housing 6 via a ring-shaped inner frame 66, and is installed by the inner frame 66 so as to enter between the coil disk rotors 41 from the outside. Arranged between the disk rotors 41.
 先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65にあっては、互いに磁極の向きが揃えられている。例えば、先端側マグネットディスクローター63の基端側がS極であると、中間マグネットディスクローター65の先端側がN極で基端側がS極であり、基端側マグネットディスクローター64の先端側がN極である。 In the tip side magnet disk rotor 63, the base end side magnet disk rotor 64, and the intermediate magnet disk rotor 65, the directions of the magnetic poles are aligned with each other. For example, if the proximal end side of the distal end side magnetic disk rotor 63 is an S pole, the distal end side of the intermediate magnet disk rotor 65 is an N pole and the proximal end side is an S pole, and the distal end side of the proximal end side magnet disk rotor 64 is an N pole. is there.
 更に、筐体6の先端部には、円筒状のカップリング67が固定されている。カップリング67には、回転駆動力を発生する図示しない回転シャフトが接続され、カップリング67により回転駆動力が受け付けられる。なお、回転シャフトの例としては、水平型あるいは垂直型の風車、水車に係るものを挙げることができる。 Furthermore, a cylindrical coupling 67 is fixed to the tip of the housing 6. A rotating shaft (not shown) that generates a rotational driving force is connected to the coupling 67, and the rotational driving force is received by the coupling 67. Examples of the rotating shaft include those relating to horizontal or vertical windmills and water turbines.
 他方、コイルシャフト4の基端部ないしその周囲には、導体バンド43と電極ホルダ27を含むスリップリング44が配置されている。即ち、コイルシャフト4の外面には、帯状で輪状の導体である導体バンド43が固定されており、メインシャフト2の外周には、導体バンド43に接触する分割電極26を有する電極ホルダ27が設置されている。電極ホルダ27は、メインシャフト2の周りで固定されたスカート28を介して設置されている。又、導体バンド43は、図示しないコイルシャフト4を通る導線によって、各コイルディスクローター41と電気的に接続されている。 On the other hand, a slip ring 44 including a conductor band 43 and an electrode holder 27 is disposed at the base end portion of the coil shaft 4 or around it. That is, a conductor band 43 that is a band-like and ring-shaped conductor is fixed to the outer surface of the coil shaft 4, and an electrode holder 27 having a divided electrode 26 that contacts the conductor band 43 is installed on the outer periphery of the main shaft 2. Has been. The electrode holder 27 is installed via a skirt 28 fixed around the main shaft 2. The conductor band 43 is electrically connected to each coil disk rotor 41 by a conducting wire passing through the coil shaft 4 (not shown).
 電極ホルダ27の分割電極26は、電極が複数設置された多極の電極であり、一塊の電極を分けて形成しても良いし、電極を複数配置して互いに電気的に接続して形成しても良い。分割電極26は、電力出力側に電気的に接続され、例えば整流装置やインバータを介して交流送電系統に接続される。なお、分割電極26の各電極は、電力出力側に対し並列に接続されている。又、分割電極26や電極ホルダ27は、複数(図1では上下に2個)配置されている。 The divided electrode 26 of the electrode holder 27 is a multipolar electrode in which a plurality of electrodes are provided, and may be formed by dividing a lump of electrodes, or by forming a plurality of electrodes and electrically connecting them to each other. May be. The split electrode 26 is electrically connected to the power output side, and is connected to the AC power transmission system via, for example, a rectifier or an inverter. Each electrode of the divided electrode 26 is connected in parallel to the power output side. A plurality of divided electrodes 26 and electrode holders 27 (two in the vertical direction in FIG. 1) are arranged.
 このような発電機1は、主に以下に説明するように動作する。 Such a generator 1 operates mainly as described below.
 即ち、カップリング67に回転駆動力が与えられると、第3ベアリング61の周りで筐体6が回転し、これと一体の先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65も回転する。 That is, when a rotational driving force is applied to the coupling 67, the housing 6 rotates around the third bearing 61, and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnetic disk integrated therewith. The rotor 65 also rotates.
 又、筐体6と一体の外ギア62も回転し、外ギア61と噛み合っている各中間ギア24が第2ベアリング23の周りで回転する。各中間ギア24は、噛み合っている内ギア42ないしこれと一体のコイルシャフト4を、第1ベアリング21の周りで、筐体6とは反対の回転方向において回転させる。コイルシャフト4は、これと一体の各コイルディスクローター41を、筐体6ないし先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65とは反対の方向に回転させる。 Further, the outer gear 62 integrated with the housing 6 also rotates, and each intermediate gear 24 meshed with the outer gear 61 rotates around the second bearing 23. Each intermediate gear 24 rotates the meshed inner gear 42 or the coil shaft 4 integrated therewith in the direction of rotation opposite to the housing 6 around the first bearing 21. The coil shaft 4 rotates each coil disk rotor 41 integral therewith in a direction opposite to the casing 6 or the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65.
 即ち、各中間ギア24は、筐体6ないし先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65における回転駆動力を反転させ、コイルシャフト4ないし各コイルディスクローター41に伝達する。 That is, each intermediate gear 24 reverses the rotational driving force in the casing 6 or the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65, thereby causing the coil shaft 4 or each coil disk rotor 41 to move. introduce.
 各コイルディスクローター41は、回転する先端側マグネットディスクローター63と中間マグネットディスクローター65の間、あるいは基端側マグネットディスクローター64と中間マグネットディスクローター65の間でこれらと逆方向に回転し、先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65に対して相対的に高速に(これらがメインシャフト2に固定されていると仮定した場合の速度の2倍の速度で)回転する。各コイルディスクローター41と、先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65とは、メインシャフト2の中心軸やコイルシャフト4・筐体6の回転軸に対し垂直であり、互いに平行であるため、回転時においても互いに接触することはない。なお、コイルディスクローター41を3段以上設けた場合、両端以外のコイルディスクローター4は、各中間マグネットディスクローター65の間を回転する。 Each coil disk rotor 41 rotates in the opposite direction between the rotating front end side magnetic disk rotor 63 and the intermediate magnet disk rotor 65 or between the proximal end side magnetic disk rotor 64 and the intermediate magnet disk rotor 65, Relatively fast with respect to the side magnet disk rotor 63, the base end side magnet disk rotor 64, and the intermediate magnet disk rotor 65 (at a speed twice as high as the speed when assuming that these are fixed to the main shaft 2) )Rotate. Each of the coil disk rotors 41, the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 are perpendicular to the central axis of the main shaft 2 and the rotation axis of the coil shaft 4 and the casing 6. Since they are parallel to each other, they do not contact each other even during rotation. When three or more coil disk rotors 41 are provided, the coil disk rotors 4 other than both ends rotate between the intermediate magnet disk rotors 65.
 このような各コイルディスクローター41及び先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65の回転により、先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65の形成する磁場内で各コイルディスクローター41が相対回転することとなる。そして、このような相対回転により、各コイルディスクローター41の導線のループ内において上記磁場が変化して、各コイルディスクローター41に起電力が発生する。当該起電力は、スリップリング44により取り出される。即ち、当該起電力は、コイルシャフト4と一体に回転する導体バンド43に伝達され、これに接触する固定された分割電極26により取り出される。 The rotation of each coil disk rotor 41 and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 causes the distal end side magnetic disk rotor 63, the proximal end side magnet disk rotor 64, and the intermediate magnet to rotate. Each coil disk rotor 41 rotates relative to the magnetic field formed by the disk rotor 65. Due to such relative rotation, the magnetic field changes within the loop of the conducting wire of each coil disk rotor 41, and an electromotive force is generated in each coil disk rotor 41. The electromotive force is taken out by the slip ring 44. That is, the electromotive force is transmitted to the conductor band 43 that rotates integrally with the coil shaft 4 and is taken out by the fixed divided electrode 26 in contact therewith.
 以上の発電機1は、コイルディスクローター41を含むコイルシャフト4と、コイルディスクローター41を挟むように配置した先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65を含む筐体6と、筐体6に加えられた回転駆動力を反転してコイルシャフト4に伝達する中間ギア24を備えている。 The above generator 1 includes a coil shaft 4 including a coil disk rotor 41, and a front end side magnetic disk rotor 63, a base end side magnetic disk rotor 64, and an intermediate magnet disk rotor 65 disposed so as to sandwich the coil disk rotor 41. A housing 6 and an intermediate gear 24 that reverses the rotational driving force applied to the housing 6 and transmits it to the coil shaft 4 are provided.
 発電機1において、筐体6に回転駆動力が付与されると、中間ギア24により、各コイルディスクローター41と先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65とが互いに反転されることとなる。このような反転により、各コイルディスクローター41は、先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65に対して相対的に高速に回転する。そして、このような相対的回転により、各コイルディスクローター41に電力が発生する。 In the generator 1, when a rotational driving force is applied to the casing 6, the coil gear rotor 41, the front end side magnetic disc rotor 63, the base end side magnetic disc rotor 64, and the intermediate magnet disc rotor 65 are moved by the intermediate gear 24. Are inverted from each other. By such reversal, each coil disk rotor 41 rotates at a relatively high speed with respect to the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65. Then, electric power is generated in each coil disk rotor 41 by such relative rotation.
 従って、風力発電等の自然力を利用するときのように、回転駆動力に係る回転速度が比較的に遅い場合であっても、各コイルディスクローター41を相対的に高速に回転させることができ、発電の効率を良好なものとすることができる。更に、回転駆動力に係る回転速度が低速であって、この回転速度のままコイルを磁石に対し回転させたのではコイルに十分な起電力が生じずに発電ができないようなときであっても、相対的高速回転を行う発電機1においては発電が実行可能である場合があり、このことにより超低速回転から発電可能として更に発電効率を良好にすることができる。又、このような相対回転を、中間ギア24による反転により実行しているため、相対的な高速回転をシンプルな構成により実現して長寿命とすることができるし、効率を良好としながら装置をコンパクトにして低コストとすることができて、設置が可能な場所を広げることができる。なお、このような相対回転を中間ギア24による反転により実行することで、回転駆動力を筐体6のみに入力するだけで発電可能となり、このことも構成のシンプル化やコンパクト化等に寄与する。 Therefore, even when the rotational speed related to the rotational driving force is relatively slow, such as when using natural force such as wind power generation, each coil disk rotor 41 can be rotated at a relatively high speed. The power generation efficiency can be improved. Furthermore, even when the rotational speed related to the rotational driving force is low and the coil is rotated with respect to the magnet at this rotational speed, sufficient electric power is not generated in the coil and power generation is not possible. In some cases, the generator 1 that performs relative high-speed rotation may be able to generate power, and this can further improve power generation efficiency by enabling generation from ultra-low-speed rotation. In addition, since such relative rotation is executed by reversal by the intermediate gear 24, relative high-speed rotation can be realized with a simple configuration and a long life can be achieved, and the apparatus can be operated while improving efficiency. It can be made compact and low cost, and the place where it can be installed can be expanded. By executing such relative rotation by reversal by the intermediate gear 24, it is possible to generate power only by inputting the rotational driving force only to the housing 6, which also contributes to the simplification and downsizing of the configuration. .
 又、中間ギア24(外ギア62・内ギア42)を、熱硬化性樹脂とフッ素樹脂とを含む複合体を主成分とする熱硬化性樹脂成形材料を成形することで形成しているため、中間ギア24につき、金属と同等の高い強度を有しながら、重量を軽くし、又低摩擦性を付与することができ、発電機1を軽量化して設置可能場所を広げることができるし、回転駆動力反転伝達機構の寿命を延ばすことができるし、注油をしなくとも円滑に回転駆動力反転伝達機構を作動させて、動作の信頼性ないし効率の向上や、保守コストの低減を図ることができる。更に、熱硬化性樹脂成形材料に強化繊維を含めると、中間ギア24(外ギア62・内ギア42)をより高強度とすることができる。 Further, since the intermediate gear 24 (the outer gear 62 and the inner gear 42) is formed by molding a thermosetting resin molding material mainly composed of a composite containing a thermosetting resin and a fluororesin, The intermediate gear 24 has a high strength equivalent to that of a metal, but can be reduced in weight and imparted with low friction, and the generator 1 can be reduced in weight to increase the place where it can be installed. The life of the drive force reversal transmission mechanism can be extended, and the rotational drive force reversal transmission mechanism can be operated smoothly without lubrication to improve operation reliability or efficiency and reduce maintenance costs. it can. Furthermore, when the reinforcing fiber is included in the thermosetting resin molding material, the intermediate gear 24 (the outer gear 62 and the inner gear 42) can have higher strength.
 更に、コイルシャフト4及び筐体6は、固定されたメインシャフト2の周りに設置されており、メインシャフト2と、コイルシャフト4及び筐体6とが、同軸とされているため、コイルシャフト4や筐体6につき動作を確実で円滑なものとしながらコンパクトに設置することができる。 Furthermore, the coil shaft 4 and the housing 6 are installed around the fixed main shaft 2, and the main shaft 2, the coil shaft 4 and the housing 6 are coaxial, so the coil shaft 4. The housing 6 can be installed compactly while ensuring reliable and smooth operation.
 加えて、各コイルディスクローター41が、コイルシャフト4の回転軸方向に沿って複数並べられており、先端側マグネットディスクローター63・基端側マグネットディスクローター64・中間マグネットディスクローター65が、コイルディスクローター41のそれぞれを挟むように配置されている(コイルや磁石の多段化)。よって、発電機1の1台当たりの発電量を増加させることができ、しかも発電量の増加に当たりコイルディスクローター41と中間マグネットディスクローター65を設置するだけで良くコンパクトにすることができ、又1個の中間マグネットディスクローター65によって前後のコイルディスクローター41に磁力を与えることが可能となって、磁石の使用量を低減することができる。磁石の使用個数(使用量)について、コイルの段数が増える程多く低減することができ、例えば、各コイルディスクローター41の両側にそれぞれ1組(24個)の磁石を設置する場合と比較して、本発明では2段(中央の2組の磁石を1組で共用)で25パーセント(%)程度低減し、3段で32%程度低減し、5段では40%程度低減することができる。 In addition, a plurality of coil disk rotors 41 are arranged along the rotational axis direction of the coil shaft 4, and the distal end side magnetic disk rotor 63, the proximal end side magnetic disk rotor 64, and the intermediate magnet disk rotor 65 are arranged as coil coils. It arrange | positions so that each of the rotor 41 may be pinched | interposed (multi-stage of a coil and a magnet). Therefore, the power generation amount per generator 1 can be increased, and in addition to the increase in the power generation amount, only the coil disk rotor 41 and the intermediate magnet disk rotor 65 can be installed to achieve a compact size. Magnetic power can be applied to the front and rear coil disk rotors 41 by the single intermediate magnet disk rotor 65, and the amount of magnets used can be reduced. The number of magnets used (amount used) can be reduced as the number of coils increases. For example, compared to the case where one set (24 pieces) of magnets is installed on each side of each coil disk rotor 41. In the present invention, it can be reduced by about 25 percent (%) in two stages (two sets of magnets in the center are shared by one set), reduced by about 32% in three stages, and reduced by about 40% in five stages.
 又、各コイルディスクローター41に発生した電力を取り出すスリップリング44を備えており、スリップリング44が、コイルシャフト4に設置された回転導体43と、回転導体43に接触する分割電極26とを備えている。よって、メインシャフト2に対してコイルシャフト4が僅かに傾いて、導体バンド43に対し分割電極26が傾いたとしても、分割電極26の内の少なくとも何れかの電極が導体バンド43に接触する状態を維持することができ、コイルシャフト4が回転していても確実に電力を取り出すことができるし、電極が導体バンド43から瞬間的に完全に離れて火花が発生し、電力が損失したり分割電極26や導体バンド43等が損傷したりする事態を防止することができる。更に、常態では分割電極26の複数の電極が導体バンド43に接触することとなり、電力の取り出しにおける抵抗値を低減して効率を良好なものとすることができる。又、導体バンド43に対する分割電極26の押さえを比較的に緩くしても確実に電力を取り出すことができ、分割電極26や導体バンド43の摩耗を防止してスリップリング44の寿命を延ばすことができる。更に、コイルシャフト4と筐体6を互いに反転させて相対速度が高まることで、回転駆動力が比較的に低速であっても十分に発電を行うことができることから、導体バンド43の回転速度が低速となり、スリップリング44の寿命が延びることとなる(例えば、従来の10~20倍程度の寿命が見込める)。 Further, a slip ring 44 for taking out the electric power generated in each coil disk rotor 41 is provided, and the slip ring 44 includes a rotating conductor 43 installed on the coil shaft 4 and a divided electrode 26 in contact with the rotating conductor 43. ing. Therefore, even when the coil shaft 4 is slightly inclined with respect to the main shaft 2 and the divided electrode 26 is inclined with respect to the conductor band 43, at least one of the divided electrodes 26 is in contact with the conductor band 43. The power can be reliably taken out even when the coil shaft 4 is rotating, the electrode is instantaneously completely separated from the conductor band 43, and a spark is generated, and the power is lost or divided. The situation where the electrode 26, the conductor band 43, etc. are damaged can be prevented. Further, in a normal state, the plurality of electrodes of the divided electrode 26 come into contact with the conductor band 43, and the resistance value in taking out the power can be reduced and the efficiency can be improved. Further, even if the pressing of the divided electrode 26 against the conductor band 43 is relatively loose, power can be reliably taken out, and the wear of the divided electrode 26 and the conductor band 43 can be prevented and the life of the slip ring 44 can be extended. it can. Furthermore, since the relative speed is increased by reversing the coil shaft 4 and the housing 6, sufficient power generation can be performed even when the rotational driving force is relatively low. The speed becomes low and the life of the slip ring 44 is extended (for example, the life of about 10 to 20 times that of the conventional one can be expected).
[変更例]
 なお、主に上記形態を変更して成る、本発明の他の形態を例示する。
[Example of change]
In addition, the other form of this invention which mainly consists of changing the said form is illustrated.
 回転駆動力をコイルシャフトに与える。あるいは、筐体にコイルディスクローターを固定し、メインシャフトと筐体の間のシャフトにマグネットディスクローターを配置する。第1ベアリングを1個あるいは3個以上としたり、第3ベアリングを全てメインシャフトに配置したりする等、各種ベアリングの数や位置等を変更する。 回 転 Apply rotational drive force to the coil shaft. Alternatively, the coil disk rotor is fixed to the housing, and the magnet disk rotor is disposed on the shaft between the main shaft and the housing. The number, position, etc. of various bearings are changed such that the number of first bearings is one or three or more, or all the third bearings are arranged on the main shaft.
 コイルディスクローターを1個とし、マグネットディスクを先端側マグネットディスク及び基端側マグネットディスクの2個としたり、コイルディスクローターを3個以上とし、マグネットディスクローターを先端側マグネットディスクローター及び基端側マグネットディスクローター並びにコイルディスクローターより1個少ない数の中間マグネットディスクローターとしたりする等、コイルの段数を変更する。コイルにつき、芯を設けたり、導線の巻き方を変えたりする。又、先端側マグネットディスクローター及び基端側マグネットディスクローターとして互いに異なる形状ないし性質の磁石を用いたり、各マグネットディスクローターとして同じ磁石を用いたり、複数のコイルディスクローターの内の一部に、他とは異なる形状ないし巻線方式等のコイルディスクローターを用いたりする。中間マグネットディスクローターの設置に関し、内枠を省略する。 One coil disk rotor and two magnetic disk disks, the front end side magnetic disk and the base end side magnetic disk, or three or more coil disk rotors, the magnetic disk rotor as the front end side magnetic disk rotor and the base end side magnet disk The number of coil stages is changed, for example, the number of intermediate magnet disk rotors is one less than that of the disk rotor and coil disk rotor. For the coil, provide a core or change the way the conductor is wound. In addition, magnets having different shapes or properties may be used as the distal end side magnetic disk rotor and the proximal end side magnetic disk rotor, the same magnet may be used as each magnetic disk rotor, or some of the plurality of coil disk rotors may be A coil disk rotor with a different shape or winding method is used. The inner frame is omitted for the installation of the intermediate magnetic disk rotor.
 コイルディスクローターや各種マグネットディスクローターとして中央に孔の開いた多角形の板を用いる等、各種部材の形状を変更する。中間ギアにつき、数を1個あるいは3個以上としたり、奇数個の歯車列あるいはこのような歯車列の複数組の配置等によって外ギアと内ギアをつなぐものとしたり、自転と共に公転を行うもの(遊星ギア)としたりする。筐体や各種シャフトやベアリングの少なくとも何れかを上記複合体成型品とする等、各種部材の材質を変更する。 The shape of various members is changed, such as using a polygonal plate with a hole in the center as a coil disk rotor or various magnetic disk rotors. The number of intermediate gears is one or more than three, or an odd number of gear trains or a plurality of such gear trains are arranged to connect the outer gear and the inner gear, or revolve with rotation. (Planetary gear). The material of various members is changed such that at least one of the housing, the various shafts, and the bearings is the composite molded product.
  1  発電機
  2  メインシャフト(固定シャフト)
  4  コイルシャフト(コイル側回転体)
  6  筐体(磁石側回転体)
 24  中間ギア(回転駆動力反転伝達機構)
 26  分割電極(多極電極)
 41  コイルディスクローター(コイル)
 42  内ギア
 43  回転導体
 44  スリップリング
 62  外ギア
 63  先端側マグネットディスクローター(磁石)
 64  基端側マグネットディスクローター(磁石)
 65  中間マグネットディスクローター(磁石)
1 Generator 2 Main shaft (fixed shaft)
4 Coil shaft (coil side rotating body)
6 Case (Magnet side rotating body)
24 intermediate gear (rotational driving force reversal transmission mechanism)
26 Divided electrode (multipolar electrode)
41 Coil disk rotor (coil)
42 Inner gear 43 Rotating conductor 44 Slip ring 62 Outer gear 63 Tip side magnet disk rotor (magnet)
64 Proximal magnet disk rotor (magnet)
65 Intermediate magnet disk rotor (magnet)

Claims (7)

  1.  コイルを含むコイル側回転体と、
     前記コイルを挟むように配置した複数の磁石を含む磁石側回転体と、
     前記コイル側回転体及び前記磁石側回転体の一方に付与された回転駆動力を反転して他方に伝達する回転駆動力反転伝達機構と
    を備えたことを特徴とする発電機。
    A coil side rotating body including a coil;
    A magnet-side rotating body including a plurality of magnets arranged so as to sandwich the coil;
    A generator comprising: a rotation driving force reversal transmission mechanism that reverses a rotation driving force applied to one of the coil side rotation body and the magnet side rotation body and transmits the rotation driving force to the other.
  2.  前記回転駆動力反転伝達機構は、歯車あるいは歯車群である
    ことを特徴とする請求項1に記載の発電機。
    The generator according to claim 1, wherein the rotational driving force reversal transmission mechanism is a gear or a gear group.
  3.  前記歯車、あるいは前記歯車群における少なくとも1つの歯車が、熱硬化性樹脂とフッ素樹脂とを含む複合体を主成分とする熱硬化性樹脂成形材料を成形することで形成されている
    ことを特徴とする請求項2に記載の発電機。
    The gear or at least one gear in the gear group is formed by molding a thermosetting resin molding material whose main component is a composite containing a thermosetting resin and a fluororesin. The generator according to claim 2.
  4.  前記熱硬化性樹脂成形材料は、強化繊維を含有する
    ことを特徴とする請求項3に記載の発電機。
    The generator according to claim 3, wherein the thermosetting resin molding material contains reinforcing fibers.
  5.  前記コイル側回転体及び/又は前記磁石側回転体は、固定シャフトの周りに設置されており、
     前記固定シャフトの中心軸と、前記コイル側回転体及び/又は前記磁石側回転体の回転軸とが、同軸とされている
    ことを特徴とする請求項1ないし請求項4の何れかに記載の発電機。
    The coil-side rotating body and / or the magnet-side rotating body is installed around a fixed shaft,
    The central axis of the fixed shaft and the rotation axis of the coil-side rotator and / or the magnet-side rotator are coaxial, respectively. Generator.
  6.  前記コイルが、前記コイル側回転体の回転軸方向に沿って複数並べられており、
     前記磁石が、当該複数のコイルのそれぞれを挟むように配置されている
    ことを特徴とする請求項1ないし請求項5の何れかに記載の発電機。
    A plurality of the coils are arranged along the rotation axis direction of the coil-side rotating body,
    The generator according to any one of claims 1 to 5, wherein the magnet is arranged so as to sandwich each of the plurality of coils.
  7.  更に、前記コイルに発生した電力を取り出すスリップリングを備えており、
     当該スリップリングは、
     前記コイル側回転体に設置された回転導体と、
     当該回転導体に接触する多極電極と
    を備えている
    ことを特徴とする請求項1ないし請求項6の何れかに記載の発電機。
    Furthermore, a slip ring for taking out the electric power generated in the coil is provided,
    The slip ring
    A rotating conductor installed on the coil-side rotating body;
    The generator according to any one of claims 1 to 6, further comprising a multipolar electrode in contact with the rotating conductor.
PCT/JP2010/054659 2009-03-19 2010-03-18 Electric generator WO2010107082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-068680 2009-03-19
JP2009068680A JP2010226799A (en) 2009-03-19 2009-03-19 Electric generator

Publications (1)

Publication Number Publication Date
WO2010107082A1 true WO2010107082A1 (en) 2010-09-23

Family

ID=42739741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054659 WO2010107082A1 (en) 2009-03-19 2010-03-18 Electric generator

Country Status (2)

Country Link
JP (1) JP2010226799A (en)
WO (1) WO2010107082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255416A (en) * 2011-07-22 2011-11-23 唐山市拓又达科技有限公司 Vertical shaft multi-section type wind power generator shell
ITBO20110673A1 (en) * 2011-11-24 2013-05-25 Samp Spa Con Unico Socio ELECTRIC GENERATOR FOR A WIND GENERATOR

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932933B2 (en) 2010-10-06 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ Relay station and relay method for relaying wireless communication
CN103730970B (en) * 2013-12-25 2016-03-09 佛山微海能源科技有限公司 Extreme condition apparatus for lower wind electricity generation system coil disk structure
CN107508444B (en) * 2017-10-23 2019-11-19 徐州惠博机电科技有限公司 Electric car magnetic-grid-type doubly salient permanent magnet motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160053A (en) * 1985-12-31 1987-07-16 Tanabe Masakazu Double reversal rotating generator
JPH0788976A (en) * 1993-07-30 1995-04-04 Ntn Corp Gear made of synthetic resin
JPH07174067A (en) * 1992-01-20 1995-07-11 Bitsugusu:Kk Double rotor wind power generator
JP2003065204A (en) * 2001-08-27 2003-03-05 Ebara Corp Generating set for wind power generation
JP2004322629A (en) * 2002-10-24 2004-11-18 Shin Kobe Electric Mach Co Ltd Fiber-reinforced resin molded article and its production method
JP2005160197A (en) * 2003-11-25 2005-06-16 Meiki Sangyo Kk Wind and hydraulic power utilization generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160053A (en) * 1985-12-31 1987-07-16 Tanabe Masakazu Double reversal rotating generator
JPH07174067A (en) * 1992-01-20 1995-07-11 Bitsugusu:Kk Double rotor wind power generator
JPH0788976A (en) * 1993-07-30 1995-04-04 Ntn Corp Gear made of synthetic resin
JP2003065204A (en) * 2001-08-27 2003-03-05 Ebara Corp Generating set for wind power generation
JP2004322629A (en) * 2002-10-24 2004-11-18 Shin Kobe Electric Mach Co Ltd Fiber-reinforced resin molded article and its production method
JP2005160197A (en) * 2003-11-25 2005-06-16 Meiki Sangyo Kk Wind and hydraulic power utilization generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255416A (en) * 2011-07-22 2011-11-23 唐山市拓又达科技有限公司 Vertical shaft multi-section type wind power generator shell
ITBO20110673A1 (en) * 2011-11-24 2013-05-25 Samp Spa Con Unico Socio ELECTRIC GENERATOR FOR A WIND GENERATOR

Also Published As

Publication number Publication date
JP2010226799A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2010107082A1 (en) Electric generator
JP2018035935A (en) Driving device and power tool comprising the same
EP1353436A2 (en) A compact electrical machine
KR101205674B1 (en) Low speed generator
CN102226463A (en) Novel speed reducer and speed reduction motor
TWI462437B (en) High performance power generation
US20070152522A1 (en) Rotating Electrical Machine with a Transmission and a Driving Apparatus Using the Same
CN202091437U (en) Novel planetary speed reducer and geared motor
JP2020072641A (en) Reduction gear and electrical facility
CN110556989A (en) Double-rotor disc type permanent magnet generator
JP2006094645A (en) Revolving-field type synchronous generator and wind power generation device using permanent magnet
JP2010207052A (en) Power generator and power generation system with the same
JP2007336783A (en) Generator, wind power generation method, and water power generation method
CN108631539B (en) A kind of electromagnetic power generation apparatus applied to electric car
JP2017025896A (en) Wind power generation device
CN109586433B (en) Modularized rotary linear flux switching permanent magnet motor
TWI559651B (en) DC motor inner and outer ring stator structure
JP2010207046A (en) Generator and power generation system with the same
JP2008508843A (en) Motor-related or generator-related configuration
CN103375351A (en) External rotation type power generation device having biased power generator
CN103296832B (en) A kind of permanent magnetism translational meshing motor
RU108239U1 (en) ELECTROMECHANICAL DRIVE
TWI474583B (en) A magnetic coupling integrated with an axial-flux brushless motor
EP3260701A1 (en) Oscillating pendulum-based power generation mechanism of a power generator
CN205638794U (en) It is reciprocal to bilateral permanent magnetism disk aerogenerator of birotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753573

Country of ref document: EP

Kind code of ref document: A1