WO2010107006A1 - Adhesive material - Google Patents

Adhesive material Download PDF

Info

Publication number
WO2010107006A1
WO2010107006A1 PCT/JP2010/054371 JP2010054371W WO2010107006A1 WO 2010107006 A1 WO2010107006 A1 WO 2010107006A1 JP 2010054371 W JP2010054371 W JP 2010054371W WO 2010107006 A1 WO2010107006 A1 WO 2010107006A1
Authority
WO
WIPO (PCT)
Prior art keywords
silyl group
group
pressure
sensitive adhesive
containing polymer
Prior art date
Application number
PCT/JP2010/054371
Other languages
French (fr)
Japanese (ja)
Inventor
輝彦 安田
仁 下間
寿 佐藤
豪明 荒井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2010107006A1 publication Critical patent/WO2010107006A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/20Macromolecular compounds having nitrogen in the main chain according to C08L75/00 - C08L79/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to a pressure-sensitive adhesive body, a silyl group-containing polymer used for the pressure-sensitive adhesive body, and a method for producing a pressure-sensitive adhesive sheet.
  • a pressure-sensitive adhesive is a solid that is tacky at room temperature and adheres to it by applying pressure to the adherend so that there is no adhesive residue from the adherend. Adhesive with removable removability. On the other hand, the adhesive other than the pressure-sensitive adhesive is required to be hard to peel off the adhesive (the adhesive after curing in the case of a curable adhesive) and the adherend.
  • an adhesive shall mean things other than an adhesive.
  • an adhesive may be abbreviated as PSA.
  • PSA As the pressure-sensitive adhesive, there is a type of pressure-sensitive adhesive that becomes a pressure-sensitive adhesive by curing the curable composition.
  • a layer of the curable composition is formed on the surface of the substrate, and then the curable composition is cured to form a layer of the adhesive on the surface of the substrate.
  • the base material and the pressure-sensitive adhesive layer are bonded to each other by the adhesive force at the time of curing the curable composition, and this adhesive force is higher than the pressure-sensitive adhesive force between the pressure-sensitive adhesive layer and the adherend.
  • the base material and the pressure-sensitive adhesive layer hardly peel off. That is, the pressure-sensitive adhesive formed from the curable composition is required to exhibit adhesiveness when the curable composition is cured and to be removable from the pressure-sensitive adhesive formed after curing.
  • the pressure-sensitive adhesive formed from the curable composition is required to have characteristics different from those of the curable adhesive.
  • the present invention relates to a pressure-sensitive adhesive formed from a curable composition.
  • this curable composition that is cured to become a pressure-sensitive adhesive is referred to as a “curable composition”, and curing of this curable composition.
  • the cured product having adhesiveness formed by the above is called “adhesive”.
  • the thickness of the pressure-sensitive adhesive layer may be reduced to suppress an increase in adhesive force.
  • the original function of the pressure-sensitive adhesive i.e., adhesion to the adherend with light pressure, tends to be impaired.
  • An object of the present invention is to provide a silyl group-containing polymer used for the pressure-sensitive adhesive body and a method for producing a pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive body of the present invention is composed of a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule and a structure derived from a dicarboxylic acid anhydride (b).
  • the silyl group-containing polymer (S) is At the molecular terminal of the polyester ether polyol (Z) obtained by ring-opening polymerization of the dicarboxylic anhydride (b) and the alkylene oxide (c) to the initiator (a) having two or more active hydrogen groups per molecule, Silyl group-containing polymer (S1) obtained by introducing a hydrolyzable silyl group, A polyester ether polyol (Z) is obtained by ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule, and the polyester ether polyol A polyol (A) containing (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), which is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the prepolymer (P).
  • a polyester ether polyol (Z) is obtained by ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule, and the polyester ether polyol A polyol (A) containing (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and a chain extender (C) is reacted with the prepolymer (P) to form a chain extended polyurethane.
  • a silyl group-containing polymer (S3) obtained by introducing a hydrolyzable silyl group into the molecular end of the chain-extended polyurethane; It is preferable that
  • the present invention is also derived from a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and an alkylene oxide (c). And a silyl group-containing polymer (S) having a hydrolyzable silyl group at the molecular end.
  • the present invention also forms an uncured layer comprising a curable composition containing the silyl group-containing polymer (S) of the present invention on a substrate, and then the opposite side of the uncured layer from the substrate.
  • a method for producing a pressure-sensitive adhesive sheet wherein the uncured layer is cured in a state where the surface is exposed or in a state where a release sheet is laminated on the surface.
  • the present invention it is possible to realize a pressure-sensitive adhesive body having removability, having good heat resistance and being less likely to be re-removable even when time passes at high temperatures, and having low adhesive strength. According to the present invention, it is possible to realize a pressure-sensitive adhesive sheet that has removability, has good heat resistance, and does not easily decrease removability even when time passes at high temperatures, and has low adhesive strength.
  • the silyl group containing polymer (S) of this invention is suitable as a hardening component of the curable composition used as the adhesive body of this invention after hardening.
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) in this specification are polystyrene-converted molecular weights obtained by measuring with gel permeation chromatography using a standard curve prepared using a standard polystyrene sample with a known molecular weight. It is.
  • the molecular weight distribution (Mw / Mn) is a value obtained by dividing the mass average molecular weight (Mw) by the number average molecular weight (Mn).
  • the average hydroxyl value (OHV) in the present specification is a measured value based on JIS-K-1557-6.4.
  • the polyester ether polyol is a polyol having an ester bond and an ether bond.
  • the adhesiveness may be classified according to the peeling adhesive strength (peeling strength from the adherend). Slight adhesion when peel adhesion exceeds 0 N / 25 mm and less than 1 N / 25 mm, low adhesion when peel adhesion exceeds 1 N / 25 mm and less than 8 N / 25 mm, peel adhesion exceeds 8 N / 25 mm and 15 N / 25 mm The following cases are referred to as medium adhesion, and the case where the peel adhesive strength exceeds 15 N / 25 mm and is 50 N / 25 mm or less is called strong adhesion.
  • the peel adhesive strength conforms to the 180-degree peeling method specified in JIS-Z-0237 (1999) -8.3.1 and follows the following test method. Specifically, in a 23 ° C. environment, a 1.5 mm thick bright annealed stainless steel plate (SUS304 (JIS)) was pasted with an adhesive sheet test piece (width: 25 mm) to be measured, and a rubber roll having a mass of 2 kg. Crimp. After 30 minutes, the peel strength (180 degree peel, tensile speed 300 mm / min) is measured using a tensile tester specified in JIS-B-7721. The value of the peel strength after 30 minutes of sticking obtained in this way is defined as “peel adhesive strength” in the present invention.
  • SUS304 Japanese Industrial Standard
  • the pressure-sensitive adhesive body of the present invention is a cured product obtained by curing a curable composition containing a silyl group-containing polymer (S).
  • a curable composition containing a silyl group-containing polymer (S).
  • the cured product adheres to the substrate, and the cured product (adhesive) exhibits adhesiveness to the adherend.
  • the silyl group-containing polymer (S) includes a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and an alkylene oxide.
  • the silyl group-containing polymer (S1) of the first embodiment is prepared by adding a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule. It is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the polyester ether polyol (Z) obtained by ring-opening polymerization.
  • the silyl group-containing polymer (S2) of the second embodiment is prepared by reacting the polyol (A) containing the polyester ether polyol (Z) with the polyisocyanate compound (B) to produce a prepolymer (P). And a hydrolyzable silyl group is introduced at the molecular end of the prepolymer.
  • the silyl group-containing polymer (S3) of the third embodiment is obtained by reacting the prepolymer (P) with a chain extender (C) to obtain a chain extended polyurethane, and a molecular end of the chain extended polyurethane. It is obtained by introducing a hydrolyzable silyl group.
  • the silyl group-containing polymer (S) in the present specification is a concept including the silyl group-containing polymers (S1) to (S3) of the first to third embodiments.
  • the initiator (a) is a compound having two or more active hydrogen groups per molecule, and examples thereof include polyether polyols and polyhydric alcohols.
  • the number of active hydrogen groups per molecule of the initiator (a) is preferably 2 to 4, more preferably 2 or 3. That is, as the initiator (a), polyhydric alcohols may be used as they are, and further, alkylene oxide may be added and used as a polyether polyol.
  • the active hydrogen group in the initiator (a) is particularly preferably a hydroxyl group.
  • the structural unit derived from the initiator (a) means the remaining group obtained by removing all active hydrogen groups from the initiator (a).
  • the polyether polyol is a compound having a molecular weight of 300 to 4000 per hydroxyl group obtained by adding an alkylene oxide to a polyhydric alcohol.
  • a polyether diol as the initiator (a).
  • the polyhydric alcohols include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, and glycerin.
  • the alkylene oxide is preferably an alkylene oxide having 2 to 4 carbon atoms, and examples thereof include propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and ethylene oxide. Alkylene oxide may use only 1 type, or may use 2 or more types together.
  • the alkylene oxide is preferably ethylene oxide or propylene oxide, and more preferably only propylene oxide.
  • the molecular weight of the initiator (a) is preferably 62 to 4000, more preferably 400 to 2000. If the molecular weight is 62 or more, good flexibility can be obtained in the resulting adhesive. Moreover, if the said molecular weight is 4000 or less, it is preferable when improving the cohesion force of the adhesive body obtained.
  • the constituent unit derived from the initiator (a) is preferably contained in an amount of 1 to 60% by mass, more preferably 10 to 60% by mass. If the content of the structural unit derived from the initiator (a) is 1% by mass or more, the polyester ether polyol (Z) is easily obtained efficiently. Moreover, if content of the structural unit derived from an initiator (a) is 60 mass% or less, since content of dicarboxylic acid anhydride (b) in polyester ether polyol (Z) can be increased, the adhesive which is obtained The cohesive strength of is improved.
  • dicarboxylic anhydride (b) examples include phthalic anhydride, maleic anhydride, and succinic anhydride.
  • aromatic dicarboxylic acid anhydrides are preferable in that they have a high cohesion and polarity, and thus contribute greatly to the adhesion to the substrate and the adhesion to the adherend.
  • phthalic anhydride is more preferable.
  • the structural unit derived from the dicarboxylic acid anhydride (b) is preferably contained in an amount of 10 to 50% by mass, and more preferably 15 to 40% by mass.
  • alkylene oxide (c) examples include the same alkylene oxides used for the synthesis of the polyether polyol as the initiator (a). Among these, it is more preferable to use propylene oxide or ethylene oxide.
  • the molar ratio of the alkylene oxide (c) to the dicarboxylic acid anhydride (b) is 50/50 or more, the alkylene oxide (c) becomes excessive with respect to the dicarboxylic acid anhydride (b), and the alkylene oxide is terminated at the terminal.
  • dicarboxylic acid anhydride (b) and alkylene oxide (c) are copolymerized
  • dicarboxylic acid anhydride (b) and alkylene oxide (c) alternate. Or an alkylene oxide (c) undergoes a block addition reaction.
  • dicarboxylic acid anhydride (b) and alkylene oxide (c) dicarboxylic acid anhydride (b) is more reactive and dicarboxylic acid anhydride (c) does not undergo an addition reaction continuously.
  • the number of alkylene oxides (c) constituting the block chain in the polymer chain is as short as several.
  • the entire structure of the polyester ether polyol (Z) can be designed by adjusting the molecular weight of the initiator (a) and the addition amount of the alkylene oxide (c) at the terminal portion.
  • the alkylene oxide (c) is used in excess of the dicarboxylic acid anhydride (b), and the dicarboxylic acid is used. It is preferable to reduce the remaining amount of the unreacted acid anhydride (b) from the viewpoint of improving the reactivity between the molecular terminal of the polyester ether polyol (Z) and the isocyanate group.
  • a catalyst In the production of the polyester ether polyol (Z), it is preferable to use a catalyst from the viewpoint of a high polymerization reaction rate.
  • a ring-opening addition polymerization catalyst is suitably used, and examples thereof include alkali catalysts such as potassium hydroxide and cesium hydroxide; double metal cyanide complex catalysts; phosphazene catalysts.
  • alkali catalysts such as potassium hydroxide and cesium hydroxide
  • double metal cyanide complex catalysts phosphazene catalysts.
  • a double metal cyanide complex catalyst is more preferable.
  • the double metal cyanide complex catalyst a zinc hexacyanocobaltate complex coordinated with an organic ligand is preferable.
  • the organic ligand ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, and alcohols such as tert-butyl alcohol are preferable.
  • the polyester ether polyol (Z) has a hydroxyl value-converted molecular weight per hydroxyl group of preferably 250 to 20,000, more preferably 1000 to 10,000, and still more preferably 1,000 to 5,000.
  • a hydroxyl value-converted molecular weight per hydroxyl group preferably 250 to 20,000, more preferably 1000 to 10,000, and still more preferably 1,000 to 5,000.
  • the molecular weight in terms of hydroxyl value is 250 or more, the flexibility of the obtained pressure-sensitive adhesive is improved. If the molecular weight in terms of hydroxyl value is 20,000 or less, the cohesive force of the resulting pressure-sensitive adhesive is improved, and the viscosity of the solution tends to be low when the silyl group-containing polymer (S) is dissolved in a solvent.
  • the molecular weight in terms of hydroxyl value of the polyester ether polyol (Z) can be easily adjusted by appropriately adjusting the number of moles of the dicarboxylic acid anhydride (b) and the alkylene oxide (c) copolymerized with the initiator (a).
  • the polyester ether polyol (Z) preferably has an average molecular weight (M ′) per copolymer chain of 100 to 3000, more preferably 200 to 2000.
  • the average molecular weight (M ′) per copolymer chain means the average molecular weight per copolymer chain formed by copolymerization of dicarboxylic anhydride (b) and alkylene oxide (c). This is a value obtained by removing the molecular weight of the initiator (a) from the molecular weight in terms of hydroxyl value and dividing the molecular weight by the number of functional groups (number of active hydrogen groups) of the initiator (a).
  • the average molecular weight (M ′) per copolymer chain is 100 or more, the flexibility of the obtained pressure-sensitive adhesive is easily improved. Further, when the average molecular weight (M ′) per copolymer chain is 3000 or less, the viscosity of the resulting polyester ether polyol (Z) does not become too high.
  • the average molecular weight (M ′) per copolymer chain is appropriately determined by the number of moles of the dicarboxylic acid anhydride (b) and alkylene oxide (c) copolymerized with the initiator (a) as in the case of the hydroxyl value converted molecular weight. It can be easily adjusted by adjusting.
  • the acid value of the polyester ether polyol (Z) is preferably 2.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and may be zero. If the acid value of the polyester ether polyol (Z) is 2.0 mgKOH / g or less, the reactivity between the molecular terminal of the polyester ether polyol (Z) and the isocyanate group is improved, and the storage stability of the resulting pressure-sensitive adhesive is improved. improves.
  • silyl group-containing polymer (S1) The silyl group-containing polymer (S1) of this embodiment is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the polyester ether polyol (Z) by the method described later.
  • a polyol (A) containing a polyester ether polyol (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and hydrolysis is performed at the molecular terminals of the prepolymer (P). A functional silyl group is introduced.
  • the polyester ether polyol (Z) is the same as that of the first embodiment including the preferred mode.
  • the ratio of the polyester ether polyol (Z) in the polyol (A) is preferably 10% by mass or more and more preferably 50% by mass or more in order to increase the flexibility of the pressure-sensitive adhesive and prevent the removability from being lowered.
  • all of the polyol (A) is most preferably a polyester ether polyol (Z).
  • the polyester ether polyol (Z) may be one type or a combination of two or more types.
  • any one of polyoxytetramethylene polyol, polyoxyalkylene polyol, polyester polyol, and polycarbonate polyol is used as the balance of the polyol (A) or Two or more kinds of polyols (other polyols) are preferably used.
  • Polyisocyanate compound (B) examples include naphthalene-1,5-diisocyanate, polyphenylene polymethylene polyisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate (hereinafter referred to as 2,4-TDI).
  • aromatic polyisocyanates such as 2,6-tolylene diisocyanate (hereinafter sometimes referred to as 2,6-TDI); aralkyl such as xylylene diisocyanate and tetramethylxylylene diisocyanate Polyisocyanate; aliphatic polyisocyanate such as hexamethylene diisocyanate (hereinafter referred to as HDI); isophorone diisocyanate (hereinafter referred to as IPDI) and 4,4′-methylenebis (cyclohexyl isocyanate) Alicyclic polyisocyanates over G) or the like; and urethane modified product obtained from the polyisocyanate, biuret modified compounds, allophanate modified body, carbodiimide modified body, and isocyanurate-modified products thereof.
  • 2,6-TDI aromatic polyisocyanates
  • aralkyl such as xylylene diisocyanate and tetramethylxylylene diiso
  • polyisocyanate compound (B) those having two isocyanate groups are preferable, and 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, or isophorone diisocyanate is particularly preferable.
  • a non-yellowing polyisocyanate as the polyisocyanate compound (B).
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, 2,4,4-trimethyl-hexamethylene diisocyanate; alicyclic rings such as isophorone diisocyanate and methylenebis (4-cyclohexylisocyanate) Formula polyisocyanate; non-yellowing aromatic diisocyanate such as xylylene diisocyanate.
  • the prepolymer (P) may be an isocyanate group-terminated prepolymer (PI) having an isocyanate group at the end of the molecular chain, or a hydroxyl group-terminated prepolymer (PH) having a hydroxyl group at the end of the molecular chain.
  • PI isocyanate group-terminated prepolymer
  • PH hydroxyl group-terminated prepolymer
  • the isocyanate group-terminated prepolymer (PI) is obtained by reacting the polyol (A) with the polyisocyanate compound (B) in an excess ratio of isocyanate groups (hereinafter, this reaction is referred to as prepolymer formation reaction).
  • a specific example of the prepolymer forming reaction is a reaction in which the polyol (A) and the polyisocyanate compound (B) are heated at 60 to 100 ° C. for 1 to 20 hours in a dry nitrogen stream.
  • a urethanization reaction catalyst can be used.
  • the urethanization reaction catalyst examples include organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, and tin 2-ethylhexanoate; iron compounds such as iron acetylacetonate and ferric chloride; And tertiary amine catalysts such as triethylamine and triethylenediamine.
  • organotin compounds are preferred.
  • the prepolymer formation reaction it may be diluted with a solvent.
  • the solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone (hereinafter referred to as MEK), and dimethylformamide. And cyclohexanone. These may be used alone or in combination of two or more.
  • the ratio of the polyol (A) and the polyisocyanate compound (B) in the prepolymer formation reaction is defined as a value 100 times the molar ratio of “isocyanate group of the polyisocyanate compound (B) / hydroxyl group of the polyol (A)”.
  • the isocyanate index is preferably more than 100 to 200, more preferably 105 to 170.
  • the isocyanate group-terminated prepolymer (PI) obtained by the prepolymer formation reaction has an isocyanate group content of 1.5 to 10.0 mass. % Is preferred.
  • the molecular weight of the isocyanate group-terminated prepolymer (PI) is preferably 2000 to 150,000, more preferably 3000 to 80,000 in terms of number average molecular weight (Mn).
  • the hydroxyl group-terminated prepolymer (PH) is obtained by reacting the polyol (A) with the polyisocyanate compound (B) at a ratio of excess hydroxyl group.
  • the reaction between the polyol (A) and the polyisocyanate compound (B) can be carried out in the same manner as the prepolymer formation reaction for obtaining the isocyanate group-terminated prepolymer (PI). That is, in the step of performing the prepolymer forming reaction, the ratio of the polyol (A) and the isocyanate compound (B) is preferably such that the isocyanate index is 50 to less than 100, more preferably 50 to 98.
  • a urethanization reaction catalyst similar to the prepolymer formation reaction for obtaining the isocyanate group-terminated prepolymer (PI) may be used. Moreover, you may dilute with the solvent similar to the prepolymer formation reaction for obtaining isocyanate group terminal prepolymer (PI).
  • the hydroxyl group content in the hydroxyl group-terminated prepolymer (PH) thus obtained is preferably 0.03 to 1.00% by mass.
  • the molecular weight of the hydroxyl-terminated prepolymer (PH) is preferably 2000 to 100,000, more preferably 3000 to 80,000 in terms of number average molecular weight (Mn).
  • silyl group-containing polymer (S2) The silyl group-containing polymer (S2) of this embodiment is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the isocyanate group-terminated prepolymer (PI) or the hydroxyl group-terminated prepolymer (PH) by the method described later. It is done.
  • the polyol (A) containing the polyester ether polyol (Z) and the polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and a chain extender is added to the isocyanate group-terminated prepolymer (P).
  • (C) is reacted to obtain a chain-extended polyurethane, and a hydrolyzable silyl group is introduced into the molecular end of the chain-extended polyurethane.
  • the polyester ether polyol (Z), polyol (A), polyisocyanate compound (B), and prepolymer (P) are the same as in the second embodiment, including preferred aspects.
  • Chain extender (C) When the isocyanate group-terminated prepolymer (PI) is used as the prepolymer (P), low-molecular diols or low-molecular diamines are preferable as the chain extender.
  • Preferred examples of the low molecular diols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, and the like.
  • Low molecular diamines include aliphatic diamines such as ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine and 2,2,4-trimethylhexamethylene diamine; piperazine, isophorone diamine, dicyclohexyl And alicyclic diamines such as methane-4,4′-diamine; and aromatic diamines such as tolylenediamine, phenylenediamine, and xylylenediamine.
  • aliphatic diamines such as ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine and 2,2,4-trimethylhexamethylene diamine
  • piperazine isophorone diamine
  • dicyclohexyl And alicyclic diamines such as methane-4,4′-diamine
  • aromatic diamines such as
  • a diisocyanate compound is preferred as the chain extender.
  • a preferred diisocyanate compound is the same as the polyisocyanate compound (B) having two isocyanate groups.
  • the chain extension polyurethane according to the present invention is obtained by subjecting the prepolymer (P) to a chain extension reaction.
  • the end of the chain extended polyurethane may be any of an isocyanate group, a hydroxyl group, or an amino group.
  • the method for introducing a hydrolyzable silyl group differs depending on the terminal group.
  • the method of chain extension reaction is not particularly limited.
  • the method 1) or 3) is preferable because it is easy to obtain a uniform chain-extended polyurethane.
  • the solvent the same solvents as those exemplified in the prepolymer formation reaction can be used.
  • the ratio of the prepolymer (PI) and the low molecular diamine is “NCO group / low molecule of the prepolymer (PI)”.
  • the isocyanate index defined by a value 100 times the molar ratio of “NH2 group of diamine” is preferably 50 to less than 100, more preferably 50 to 98. Within this range, an amino group-terminated chain-extended polyurethane can be obtained.
  • the isocyanate index defined by a value 100 times the molar ratio of “group / OH group of prepolymer (PH)” is preferably more than 100 to 200, more preferably 101 to 150.
  • the isocyanate index is preferably 50 to less than 100, more preferably 50 to 98.
  • the reaction temperature in the chain extension reaction is preferably 80 ° C. or lower. When the reaction temperature exceeds 80 ° C., the reaction rate becomes too fast and it becomes difficult to control the reaction, so that it tends to be difficult to obtain a chain-extended polyurethane having a desired molecular weight and a desired structure.
  • the reaction temperature is preferably set to be equal to or lower than the boiling point of the solvent. In particular, 40-60 ° C. is preferable in the presence of MEK and / or ethyl acetate.
  • the molecular weight of the chain extended polyurethane is preferably 4,000 to 500,000 in terms of number average molecular weight. More preferably, it is 8,000 to 250,000.
  • silyl group-containing polymer (S3) The silyl group-containing polymer (S3) of the present embodiment is obtained by introducing a hydrolyzable silyl group into the molecular end of the chain-extended polyurethane by the method described later.
  • the hydrolyzable silyl group is a silyl group having a hydrolyzable group.
  • a silyl group represented by —SiX a R 3 (3-a) is preferable.
  • a represents an integer of 1 to 3.
  • a is preferably 2 to 3, and 3 is most preferred.
  • R 3 is a monovalent organic group having 1 to 20 carbon atoms, preferably a monovalent organic group having 1 to 6 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group.
  • R 3 may have a substituent.
  • substituents examples include a methyl group and a phenyl group. If the hydrolyzable silyl group has a plurality of R 3, R 3 of the plurality of it may be the same or different from each other. That is, when a is 1, two R 3 bonded to one silicon atom (Si) are each independently a monovalent monovalent group having 1 to 20 carbon atoms that may have a substituent. An organic group is shown.
  • X represents a hydroxyl group (—OH) or a hydrolyzable group.
  • the hydrolyzable group include an —OR group (R is a hydrocarbon group having 4 or less carbon atoms).
  • R is a hydrocarbon group having 4 or less carbon atoms.
  • Such —OR group is preferably an alkoxy group or an alkenyloxy group, and particularly preferably an alkoxy group.
  • the alkoxy group or alkenyloxy group has 4 or less carbon atoms.
  • Specific examples include a methoxy group, an ethoxy group, a propoxy group, and a propenyloxy group.
  • a methoxy group or an ethoxy group is more preferable in that the curing rate of the curable composition can be further increased.
  • the plurality of X may be the same as or different from each other. That is, when a is 2 or 3, each X independently represents a hydroxyl group or a hydrolyzable group.
  • a trialkoxysilyl group is preferable, a trimethoxysilyl group or a triethoxysilyl group is more preferable, and a trimethoxysilyl group is particularly preferable. This is because the storage stability of the silyl group-containing polymer (S) is good and the curing rate of the curable composition is fast.
  • hydrolyzable silyl group introduction ratio As a method for introducing a hydrolyzable silyl group, a method using an isocyanate silane (Q1), a method using an aminosilane (Q2), a method using a mercaptosilane (Q3), a method using an epoxysilane (Q4), And a method (Q5) using hydrosilanes.
  • the ratio of introducing hydrolyzable silyl groups (hereinafter sometimes referred to as hydrolyzable silyl group introduction ratio) is 50 to 100 mol%, assuming that all the terminals capable of reacting theoretically are 100 mol%. It is preferably introduced, more preferably 80 to 100 mol%.
  • the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with the hydrolyzable silyl group is a group capable of reacting with an isocyanate group
  • the terminal functional group A hydrolyzable silyl group can be introduced by reacting silane with isocyanate silanes.
  • the group capable of reacting with an isocyanate group is, for example, a hydroxyl group or an amino group.
  • Isocyanate silanes include isocyanate methyltrimethoxysilane, 2-isocyanatoethyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane, 4-isocyanatobutyltrimethoxysilane, 5-isocyanatepentyltrimethoxysilane, isocyanatemethyltriethoxysilane, 2-isocyanatoethyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, 4-isocyanatobutyltriethoxysilane, 5-isocyanatepentyltriethoxysilane, isocyanatemethylmethyldimethoxysilane, 2-isocyanatoethylethyldimethoxysilane, 3-isocyanatepropyl Examples include trimethoxysilane or 3-isocyanatopropyltriethoxysilane. That. Among these, isocyanate
  • a catalyst may be used for this reaction.
  • a known urethanization reaction catalyst is used as the catalyst.
  • organic acid salts / organometallic compounds, tertiary amines and the like include organic acid salts / organometallic compounds, tertiary amines and the like.
  • Specific organic acid salts and organometallic compounds include tin catalysts such as dibutyltin dilaurate (DBTDL), bismuth catalysts such as bismuth 2-ethylhexanoate [bismuth tris (2-ethylhexanoate)], zinc naphthenate
  • zinc catalysts such as cobalt catalysts such as cobalt naphthenate and copper catalysts such as copper 2-ethylhexanoate.
  • Tertiary amines include triethylamine, triethylenediamine, N-methylmorpholine and the like.
  • Examples of the group capable of reacting with an amino group are an isocyanate group, an acryloyl group, and a methacryloyl group. If necessary, these groups may be introduced at the terminal before introducing the hydrolyzable silyl group.
  • the functional group at the end of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a hydroxyl group, by reacting the hydroxyl group with acrylic acid or methacrylic acid , An acryloyl group or a methacryloyl group can be introduced at the molecular end.
  • an acryloyl group or a methacryloyl group can be introduced at the molecular terminal by reacting with hydroxyalkyl acrylates or hydroxyalkyl methacrylates.
  • hydroxyalkyl acrylates include 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate.
  • hydroxyalkyl methacrylates include 2-hydroxyethyl methacrylate and 4-hydroxybutyl methacrylate.
  • aminosilanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriisopropoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3- ( 2-aminoethyl) aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane, N- (N- (2-aminoethyl) -2-aminoethyl) -3-a
  • the reaction between an amino group and an isocyanate group is a urea bond formation reaction.
  • the above-mentioned urethanization catalyst may be used.
  • the reaction between an amino group and an acryloyl group is a Michael addition reaction.
  • Examples of the group capable of reacting with a mercapto group are an isocyanate group, an acryloyl group, and an allyl group. If necessary, these groups may be introduced at the terminal before introducing the hydrolyzable silyl group.
  • the isocyanate group and acryloyl group are the same as in the method (Q2) using aminosilanes.
  • an allyl group is formed at the molecular end by reacting with allyl alcohol. Can be introduced.
  • Mercaptosilanes include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane Etc. Among these, 3-mercaptopropyltrimethoxysilane or 3-mercaptopropyltriethoxysilane is preferable.
  • the reaction between the mercapto group and the isocyanate group is the same as the urethanization reaction, and a urethanization reaction catalyst may be used.
  • the reaction between the mercapto group and the acryloyl group or allyl group is preferably performed using a radical initiator.
  • the radical initiator include azobisisobutyronitrile (AIBN).
  • Epoxysilanes include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and the like are preferable. Among these, 3-glycidoxypropyltrimethoxysilane or 3-glycidoxypropyltriethoxysilane is preferable.
  • amines and acid anhydrides are used as the catalyst in the reaction with the epoxy group.
  • examples include chain aliphatic polyamines, alicyclic polyamines, aromatic polyamines, modified aliphatic polyamines, imidazole compounds, and the like.
  • tertiary amines such as N, N-dimethylpiperazine, triethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30) and benzyldimethylamine (BDMA) are preferable.
  • the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a group capable of hydrosilylation reaction
  • the terminal functional group and the hydrosilane A hydrolyzable silyl group can be introduced by reacting with a group.
  • the group capable of hydrosilylation reaction is, for example, an acryloyl group or an allyl group, and these groups are introduced into the terminal of the polyol (Z), prepolymer (P) or chain-extended polyurethane.
  • the method for introducing an acryloyl group or an allyl group is the same as the method (Q3) using mercaptosilanes.
  • hydrosilanes examples include trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane, phenyldimethoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldi Examples thereof include siloxane. It is preferable to use a hydrosilylation catalyst for this reaction. Examples of the hydrosilylation catalyst include chloroplatinic acid.
  • the curable composition in this invention contains a silyl group containing polymer (S).
  • the curable composition contains at least one additive other than the silyl group-containing polymer (S), and the additive is preferably at least a curing catalyst.
  • the curing catalyst it is preferable to include water as a curing agent.
  • a preferred curable composition is a curable composition comprising a curing catalyst and at least two additives of water. The curable composition containing water can be cured in an atmosphere containing moisture.
  • the curable composition containing water is used. Since the curing reaction starts when the silyl group-containing polymer (S) is brought into contact with water, it is preferable to add water immediately before curing the curable composition.
  • this curable composition is exposed to the atmosphere containing a water
  • the curing rate can be adjusted by adjusting the amount of moisture, temperature, etc. in the atmosphere containing moisture.
  • the curable composition in this invention may contain the other polymer which has a hydrolysable silyl group other than a silyl group containing polymer (S). 30 mass% or less of the whole curable composition is preferable, and, as for the content rate of the other polymer which has a hydrolyzable silyl group, 10 mass% or less is more preferable.
  • the curable composition in the present invention may contain various additives.
  • the curable composition in this invention does not contain a plasticizer.
  • an ester plasticizer such as dioctyl phthalate.
  • the curable composition in the present invention is cured by contact with water. Therefore, it reacts with water in the atmosphere and is cured by moisture. Also, just prior to curing, water (H 2 O) may be added as a curing agent.
  • the amount of water added is 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers having hydrolyzable silyl groups.
  • 0.01 to 1 part by mass is more preferable, and 0.05 to 0.5 part by mass is particularly preferable. Curing can be effectively promoted by setting the content of the curing agent to 0.01 parts by mass or more, and the pot life during use can be ensured by setting the content of the curing agent to 5 parts by mass or less.
  • the curable composition in the present invention preferably contains a curing catalyst (curing accelerator) for accelerating the hydrolysis and / or crosslinking reaction of the hydrolyzable silyl group.
  • a curing catalyst a known catalyst can be appropriately used as a component for promoting the reaction of the hydrolyzable silyl group.
  • curing catalyst examples include divalent tin carboxylates such as tin 2-ethylhexanoate, tin n-octylate, tin naphthenate or tin stearate; octyl acid, oleic acid, naphthenic acid or stearin.
  • divalent tin carboxylates such as tin 2-ethylhexanoate, tin n-octylate, tin naphthenate or tin stearate; octyl acid, oleic acid, naphthenic acid or stearin.
  • Metal salts other than tin of organic carboxylic acid such as acid; bismuth carboxylate such as calcium carboxylate, zirconium carboxylate, iron carboxylate, vanadium carboxylate, bismuth tris-2-ethylhexanoate, lead carboxylate, carboxylic acid Titanium or nickel carboxylate; titanium alkoxides such as tetraisopropyl titanate, tetrabutyl titanate, tetramethyl titanate, tetra (2-ethylhexyl titanate); aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate Zirconium alkoxides such as zirconium-n-propylate and zirconium-n-butyrate; Titanium chelates such as titanium tetraacetylacetonate, titanium ethylacetoacetate, titanium octylene glycolate and titanium lactate; Aluminum tris Aluminum chelates such as acetylace
  • curing catalysts may be used alone or in combination of two or more.
  • the above-mentioned metal-containing compound such as a reaction product of the divalent tin carboxylate, organotin carboxylate or organotin oxide and an ester compound, an aliphatic monoamine or other amine compound It is preferable to combine these because excellent curability can be obtained.
  • the content of the curing catalyst is preferably 0.001 to 10 parts by mass, preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers. Is more preferable.
  • the curable composition in the present invention may be used after adding a solvent in order to improve the coating property and the like.
  • the solvent is not particularly limited.
  • the alcohol is preferably an alkyl alcohol having 1 to 10 carbon atoms, more preferably methanol, ethanol, isopropyl alcohol, isopentyl alcohol or hexyl alcohol, and further preferably methanol or ethanol.
  • the curing time of the curable composition can be increased by increasing the amount of addition. This is an effective technique for prolonging the so-called pot life of the curable composition until it reaches a predetermined viscosity after preparation.
  • the addition amount should be 500 mass parts or less with respect to 100 mass parts of total amounts of a silyl group containing polymer (S) and another polymer. The amount is preferably 1 to 100 parts by mass. When the addition amount exceeds 500 parts by mass, the cured product (adhesive) may shrink as the solvent volatilizes.
  • the curable composition in the present invention may contain a small amount of a dehydrating agent as long as the effects of the present invention are not impaired.
  • dehydrating agents include alkyl orthoformate such as methyl orthoformate and ethyl orthoformate; alkyl orthoacetate such as methyl orthoacetate and ethyl orthoacetate; methyltrimethoxysilane, vinyltrimethoxysilane, tetramethoxysilane or tetra Examples include hydrolyzable organic silicone compounds such as ethoxysilane; hydrolyzable organic titanium compounds and the like.
  • vinyltrimethoxysilane or tetraethoxysilane is preferable from the viewpoints of cost and dehydration ability.
  • the content thereof is 0.001 to 30 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers. Is more preferable, and 0.01 to 10 parts by mass is more preferable.
  • the curable composition may contain the following fillers, reinforcing agents, stabilizers, flame retardants, antistatic agents, mold release agents, antifungal agents, and the like.
  • the filler or reinforcing agent include carbon black, aluminum hydroxide, calcium carbonate, titanium oxide, silica, glass, bone powder, wood powder, and fiber flakes.
  • the stabilizer include an antioxidant, an ultraviolet absorber, and a light stabilizer.
  • the flame retardant include chloroalkyl phosphate, dimethyl methyl phosphonate, ammonium polyphosphate, or an organic bromine compound.
  • the mold release agent include wax, soaps, or silicone oil.
  • the antifungal agent examples include pentachlorophenol, pentachlorophenol laurate, bis (tri-n-butyltin) oxide, and the like.
  • the curable composition may contain an adhesion-imparting agent for the purpose of improving the adhesion to the substrate.
  • the pressure-sensitive adhesive body of the present invention is suitably used as a pressure-sensitive adhesive layer for pressure-sensitive adhesive sheets.
  • the pressure-sensitive adhesive sheet is provided with a pressure-sensitive adhesive layer on a base material, and the surface of the pressure-sensitive adhesive layer opposite to the base material is used as a pressure-sensitive adhesive surface having removability.
  • the peeling sheet is laminated
  • the base material consists of a peeling sheet, and the double-sided adhesive sheet by which the peeling sheet was laminated
  • the thickness of an adhesive sheet is not ask
  • the thickness of the pressure-sensitive adhesive layer is preferably 10 to 200 ⁇ m, more preferably 30 to 80 ⁇ m.
  • the thickness of the substrate is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, although it depends on the type of substrate.
  • an uncured layer comprising a curable composition containing a silyl group-containing polymer (S) is formed on a substrate, and the surface of the uncured layer on the opposite side of the substrate.
  • the curable composition containing the silyl group-containing polymer (S) has excellent curability, and when it comes into contact with moisture, it cures rapidly and firmly (moisture curing) to obtain a cured product.
  • the wet air curing hydrolyzable silyl group (-SiX a R 3 (3- a)) contributes. It can also be formed by cutting, die cutting or the like after curing of the curable composition.
  • the curing conditions for the curable composition are set as necessary.
  • a curable composition containing a silyl group-containing polymer (S) and a curing catalyst is prepared.
  • a predetermined amount of water is added to this as a curing agent and mixed well.
  • This is coated on a base material to form an uncured layer.
  • it can be cured by heating in an oven or the like and curing at room temperature with the surface of the uncured layer exposed or with a release sheet laminated on the surface. It is also effective to leave it in a humidified environment when curing at room temperature or after curing.
  • the heating by the oven or the like is appropriately set depending on the heat resistance temperature of the base material and the release sheet.
  • the uncured layer When the uncured layer is cured, good adhesion between the cured product (adhesive) and the substrate is obtained, and the exposed surface of the cured product layer or the surface that is in close contact with the release sheet is removable. It becomes the adhesive surface which has.
  • the material of the substrate is not particularly limited.
  • Preferred examples include polyesters such as polyethylene terephthalate (PET); polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymers (block copolymers and random copolymers); halogenated polyolefins such as polyvinyl chloride; Examples include paper such as cardboard; cloth such as woven fabric and nonwoven fabric; metal foil such as aluminum foil.
  • PET polyethylene terephthalate
  • polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymers (block copolymers and random copolymers); halogenated polyolefins such as polyvinyl chloride
  • Examples include paper such as cardboard; cloth such as woven fabric and nonwoven fabric; metal foil such as aluminum foil.
  • These base materials may be used in combination. For example, you may use the laminated body which laminated
  • the bonding surface with the pressure-sensitive adhesive layer of polyesters or papers is difficult to peel off due to the adhesive effect accompanying the curing of the curable composition without performing prior processing.
  • the surface which coats a curable composition when using polyolefin for a base material, it is preferable to process beforehand the surface which coats a curable composition. This is because the peel adhesive strength may be low for an untreated surface.
  • examples of the prior treatment for the surface of the substrate on which the curable composition of the substrate using polyolefins is applied include corona treatment (corona discharge treatment) and primer treatment.
  • the corona treatment is preferable because the treatment is simple and the process can be simplified.
  • ⁇ Peeling sheet> papers that have been surface-treated with a general release agent; the above-mentioned untreated polyolefins: such as those obtained by laminating polyolefins on a base material such as papers, etc., have weak adhesion to the pressure-sensitive adhesive layer. Anything is acceptable.
  • a release sheet is used as the substrate, a pressure-sensitive adhesive body having removability on both front and back surfaces is obtained.
  • the pressure-sensitive adhesive body of the present invention has a low peel strength after curing and good re-peelability as shown in the examples described later. Specifically, the peel adhesive strength is more than 0 N / 25 mm and not more than 8 N / 25 mm, preferably more than 0 N / 25 mm and not more than 1 N / 25 mm, more preferably 0.005 to 0.8 N / 25 mm. A pressure sensitive adhesive body is obtained. It is preferable that the curable composition in the present invention does not contain an additive that increases the tackiness.
  • tan ⁇ In the temperature characteristic of loss tangent (tan ⁇ ) expressed by the ratio of loss elastic modulus to storage elastic modulus (loss elastic modulus / storage elastic modulus), tan ⁇ is 0.1 or more in the temperature range of 0 to 40 ° C. , Have preferable physical properties as a damping material. Damping material converts vibration energy into thermal energy and absorbs vibration. The vibration absorbing capacity of the damping material is generally the ratio of loss elastic modulus to storage elastic modulus (loss elastic modulus / storage elastic modulus). The loss tangent (tan ⁇ ) expressed is an index. As tan ⁇ is larger, vibration energy is more easily converted into heat energy and consumed, and vibration damping by vibration absorption is more likely to be exhibited.
  • tan ⁇ When tan ⁇ is large in a wide temperature range as described above, good vibration damping properties are easily obtained stably even when the vibration damping material is used in various indoor or outdoor temperature conditions.
  • the value of loss tangent (tan ⁇ ) in this specification is obtained by cutting each cured film (thickness: 100 ⁇ m) into a rectangular shape having a length of 20 mm and a width of 10 mm to prepare an evaluation sample, and measuring dynamic viscoelasticity Tan ⁇ was measured in a tensile mode with an apparatus (manufactured by SII, product name: EXSTAR DMS6100). Tan ⁇ was measured at a frequency of 10 Hz in the range of ⁇ 100 to 150 ° C., and the temperature dependency was evaluated.
  • a hydrolyzable silyl group (—SiX a R 3 (3 -A) ), the structural unit derived from the dicarboxylic anhydride (b), the urethane bond, and the urea bond are considered to contribute.
  • the urethane bond is formed by the reaction of an isocyanate group and a hydroxyl group
  • the urea bond is formed by the reaction of an isocyanate group and an amino group.
  • the polyol (Z) has a structural unit derived from the dicarboxylic acid anhydride (b), and the prepolymer (P) and the chain extended polyurethane further have a urethane bond. Further, when a hydrolyzable silyl group is introduced into the polyol (Z), the prepolymer (P) or the chain extended polyurethane, a urethane bond or a urea bond can be introduced into the silyl group-containing polymer (S).
  • the ester bond, urethane bond, and urea bond of the structural unit derived from the dicarboxylic acid anhydride (b) are polar bonds, these are cohesive forces in the silyl group-containing polymer (S), It is considered to act in the direction of increasing the adhesiveness and the adhesion to the adherend.
  • the hydrolyzable silyl group is considered to act in the direction of lowering the adhesiveness of the adhesive to the adherend. And it is thought that slight adhesiveness or low adhesiveness is expressed by these interactions. Further, since the position at which the hydrolyzable silyl group is introduced is the molecular end, the cohesive force can be increased without hindering the molecular motion, and the adhesive force can be stably exhibited.
  • the ratio (MEU / MS molar ratio) of the total amount (MEU) of ester bond, urethane bond and urea bond (MEU) and the amount of hydrolyzable silyl group (MS) in the silyl group-containing polymer (S) is controlled.
  • the MEU / MS molar ratio is preferably in the range of 2/1 to 100/1, and is preferably 2/1 to 90/1. It is more preferable.
  • the MEU / MS molar ratio can be controlled, for example, by adjusting the molecular weight of the polyol (Z), prepolymer (P), or chain extended polyurethane.
  • the cured product (adhesive) obtained by curing the curable composition containing the silyl group-containing polymer (S) exhibits high tan ⁇ is not clear, but has a bent chain derived from dicarboxylic acid anhydride. It is considered that vibration absorption due to heat generation is expressed due to the influence of the substituent derived from the dicarboxylic acid compound.
  • the thickness of the pressure-sensitive adhesive body of the present invention is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and more preferably 30 ⁇ m or more for obtaining good vibration damping properties. Further, from the viewpoint of stability of adhesive strength and economical efficiency, it is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and further preferably 80 ⁇ m or less.
  • the pressure-sensitive adhesive body of the present invention has good heat resistance and removability, has good vibration damping properties, and provides impact resistance.
  • protective sheets for electronic materials such as electronic substrates and IC chips
  • protective sheets for optical members such as polarizing plates, light diffusing plates, light diffusing sheets, prism sheets
  • protective sheets for various displays protective sheets for automobiles
  • Surface protective film for plate material such as metal plate, coated steel plate, synthetic resin plate, decorative plywood, heat reflection glass.
  • the vibration damping property can be imparted to these protective sheet, protective tape, and surface protective material, impact resistance can be obtained.
  • Zinc hexacyanocobaltate (hereinafter referred to as TBA-DMC catalyst) having tert-butyl alcohol as an organic ligand was produced by the following method.
  • the polyol X in this example is a polyol having a number average molecular weight (Mn) of 1000 obtained by addition polymerization of propylene oxide to dipropylene glycol.
  • an aqueous solution consisting of 10.2 g of zinc chloride and 10 g of water was placed in a 500 ml flask, and while maintaining the aqueous solution at 40 ° C., stirring at 300 rpm (300 rpm), 4.2 g An aqueous solution composed of potassium hexacyanocobaltate (K 3 [Co (CN)] 6 ) and 75 g of water was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was further stirred for 30 minutes.
  • K 3 [Co (CN)] 6 potassium hexacyanocobaltate
  • EGMTBE ethylene glycol mono-tert-butyl ether
  • TBA tert-butyl alcohol
  • polyol X polyol X
  • Example 1 A silyl group-containing polymer (S3-1) of the third embodiment was prepared under the production conditions shown in Table 1.
  • the initiator (a1) is a polyoxypropylene having a hydroxyl value of 160.3 mgKOH / g and a molecular weight of 700 produced by reacting propylene glycol with propylene oxide (hereinafter sometimes referred to as PO) using a KOH catalyst. Diol was used.
  • a mixture having a molar ratio of propylene oxide and phthalic anhydride (PO / phthalic anhydride) of 75/25 as an initiator (a1) is subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1.
  • a polyester ether polyol (Z1) having a content of 36% by mass and a content of structural units derived from phthalic anhydride of 30% by mass was obtained.
  • polyester ether polyol (Z1) obtained above in a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, and 2,4 as the polyisocyanate (B).
  • TDI-100 tolylene diisocyanate
  • DBTDL dibutyltin dilaurate
  • polyester ether polyol (Z1) And TDI-100 were charged in an amount corresponding to 25 ppm.
  • the isocyanate index in the charged amount was 150. Subsequently, the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-1).
  • PI-1 the isocyanate group content
  • NCO% the isocyanate group content
  • the obtained curable composition was applied onto a PET film (base material) having a thickness of 100 ⁇ m so that the film thickness after drying was 5 ⁇ m, 15 ⁇ m, 25 ⁇ m, and 50 ⁇ m, respectively, and 100 ° C. in a circulation oven. For 3 minutes. And it cured for one week at 23 degreeC and 50% of relative humidity, and formed the adhesion body layer.
  • four types of pressure-sensitive adhesive sheets having different pressure-sensitive adhesive layer thicknesses were obtained.
  • Table 1 also shows the measurement results of peel strength when the thickness of the pressure-sensitive adhesive layer is 15 ⁇ m. The smaller this value, the lower the adhesive strength, the easier it is to peel off, and the better the removability.
  • the value of the peel strength after 30 minutes at room temperature corresponds to the “peel strength” in the present invention.
  • Table 2 also shows the ratio of the peel strength after 3 weeks at 60 ° C. (after 3 weeks / 30 minutes), based on the peel strength after 30 minutes. A larger value indicates a greater increase in adhesive strength with time.
  • Tan ⁇ was measured at a frequency of 10 Hz in the range of ⁇ 100 to 150 ° C., and the temperature dependency was evaluated. The result is shown in FIG.
  • the left vertical axis represents storage elastic modulus (E ′, unit: Pa) and loss elastic modulus (E ′′, unit: Pa)
  • the right vertical axis represents loss tangent (tan ⁇ )
  • the horizontal axis Represents the measured temperature (unit: ° C).
  • the pressure-sensitive adhesive obtained by curing the silyl group-containing polymer (S3-1) of Example 1 has a large tan ⁇ value around room temperature, and is good at around room temperature. It can be seen that it has excellent damping properties.
  • the peak temperature and peak value of tan ⁇ are shown in Table 1.
  • Example 2 In Example 1, the production conditions were changed as shown in Table 1 to synthesize a silyl group-containing polymer, and a curable composition and a pressure-sensitive adhesive were produced using the same (hereinafter the same). In this example, the silyl group-containing polymer (S2-1) of the second embodiment is used.
  • the other polyol used in combination with the polyester ether polyol (Z1) was produced by reacting propylene oxide with propylene glycol as an initiator and using a KOH catalyst, having a hydroxyl value of 56.2 mgKOH / g, a molecular weight of 2, 000 polyoxypropylene diol is used.
  • the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-2).
  • PI-2 isocyanate group-terminated prepolymer
  • the NCO% was 1.14% by mass.
  • Example 3 [Production of isocyanate group-terminated prepolymer (P2-2)]
  • the other polyol used in combination with the polyester ether polyol (Z1) was produced by reacting propylene oxide using propylene glycol as an initiator and a KOH catalyst, and having a hydroxyl value of 16.3 mgKOH / g and a molecular weight of 7000. Polyoxypropylene diol is used.
  • the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-2).
  • PI-2 isocyanate group-terminated prepolymer
  • the NCO% was 0.46% by mass.
  • Example 4 the silyl group-containing polymer (S1-1) of the first embodiment is used.
  • the initiator (a2) polyoxypropylene diol having a hydroxyl value of 112 mgKOH / g and a molecular weight of 1000, produced by reacting propylene glycol with PO using a KOH catalyst, was used.
  • a mixture having a molar ratio of propylene oxide and phthalic anhydride (PO / phthalic anhydride) of 79/21 as an initiator (a2) is subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1.
  • a mixture of propylene oxide and phthalic anhydride in a molar ratio (PO / phthalic anhydride) 91/9 was subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1, and a hydroxyl value of 17.3 mgKOH / G, (hydroxyl value converted molecular weight 6474), average molecular weight per copolymer chain (M ′) 2737, acid value 0.11 mg KOH / g, polyester ether polyol having a structural unit content of 20% by mass derived from phthalic anhydride ( Z2) was obtained.
  • a silyl group-containing polymer having no ester bond, urethane bond, or urea bond was used.
  • a mixture of 200 g of 5000 polyoxypropylene triol (hereinafter referred to as triol B) was used as an initiator, and in the presence of 1.2 g of zinc hexacyanocobaltate-glyme complex catalyst, 2480 g of PO was gradually added to the reaction vessel.
  • the polymerization reaction was carried out under the condition of 120 ° C., and after the total amount of PO was added, the reaction was continued until the internal pressure of the reaction vessel was not lowered.
  • the zinc hexacyanocobaltate-glyme complex catalyst can be produced using glyme in place of EGMTBE and TBA in Reference Production Example 1. Subsequently, 120 g of diol A and 200 g of triol B were charged into the reaction vessel, and after 1680 g of PO was added little by little in the same manner as described above, the reaction was continued until the internal pressure of the reaction vessel did not decrease.
  • the pressure-sensitive adhesive body of the present invention is useful for producing a pressure-sensitive adhesive sheet having a low pressure-sensitive adhesive force.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2009-0665106 filed on March 17, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Polyethers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is an adhesive material which has excellent removability and good heat resistance, and of which the removability is less likely to be reduced over time at higher temperatures. The adhesive material is characterized by being produced by curing a curable composition containing a silyl-group-containing polymer (S) which has a constituent unit derived from an initiator (a) that has at least two active hydrogen groups per molecule, a constituent unit derived from an anhydrous dicarboxylic acid (b), and a constituent unit derived from an alkylene oxide (c), and which also has a hydrolyzable silyl group at the terminal of the molecule thereof.

Description

粘着体Adhesive
 本発明は粘着体、該粘着体に用いられるシリル基含有重合体、および粘着シートの製造方法に関する。 The present invention relates to a pressure-sensitive adhesive body, a silyl group-containing polymer used for the pressure-sensitive adhesive body, and a method for producing a pressure-sensitive adhesive sheet.
 粘着剤(pressure-sensitive adhesive)とは、室温において粘着性(tack)を有する固体であり、被着体に接触させて圧力を加えることによって接着し、また被着体から糊残りが無いように剥離できる再剥離性(removable)を有する、接着剤(adhesive)である。一方、粘着剤以外の接着剤は、接着剤(硬化性接着剤においては硬化後の接着剤)と被着体とが剥離し難いことが要求される。以下、本明細書においては、粘着剤と接着剤を区別するために、接着剤は粘着剤以外のものをいうものとする。また、粘着剤をPSAと略称することもある。
 粘着剤としては、硬化性組成物の硬化により粘着剤となるタイプの粘着剤がある。例えば、粘着テープを製造する場合、基材表面上に硬化性組成物の層を形成し、次いで硬化性組成物を硬化させて基材表面に粘着剤の層を形成する。硬化性組成物の硬化の際の接着力により基材と粘着剤層が接着し、この接着力が粘着剤層による被着体との粘着力よりも高いことにより、粘着剤層と被着体との間の再剥離の際に基材と粘着剤層との剥離が生じ難い。すなわち、硬化性組成物から形成される粘着剤においては、硬化性組成物の硬化時の接着性発現と硬化後に形成された粘着剤の再剥離性とが要求される。このように、硬化性組成物から形成される粘着剤は、硬化性の接着剤とは異なる特性が要求される。
 本発明は硬化性組成物から形成される粘着剤にかかわる発明であり、以下、この硬化して粘着剤となる硬化性組成物を「硬化性組成物」といい、この硬化性組成物の硬化により形成された粘着性を有する硬化物を「粘着体」という。
A pressure-sensitive adhesive is a solid that is tacky at room temperature and adheres to it by applying pressure to the adherend so that there is no adhesive residue from the adherend. Adhesive with removable removability. On the other hand, the adhesive other than the pressure-sensitive adhesive is required to be hard to peel off the adhesive (the adhesive after curing in the case of a curable adhesive) and the adherend. Hereinafter, in this specification, in order to distinguish an adhesive and an adhesive, an adhesive shall mean things other than an adhesive. Moreover, an adhesive may be abbreviated as PSA.
As the pressure-sensitive adhesive, there is a type of pressure-sensitive adhesive that becomes a pressure-sensitive adhesive by curing the curable composition. For example, when producing an adhesive tape, a layer of the curable composition is formed on the surface of the substrate, and then the curable composition is cured to form a layer of the adhesive on the surface of the substrate. The base material and the pressure-sensitive adhesive layer are bonded to each other by the adhesive force at the time of curing the curable composition, and this adhesive force is higher than the pressure-sensitive adhesive force between the pressure-sensitive adhesive layer and the adherend. In the case of re-peeling between the base material and the pressure-sensitive adhesive layer, the base material and the pressure-sensitive adhesive layer hardly peel off. That is, the pressure-sensitive adhesive formed from the curable composition is required to exhibit adhesiveness when the curable composition is cured and to be removable from the pressure-sensitive adhesive formed after curing. Thus, the pressure-sensitive adhesive formed from the curable composition is required to have characteristics different from those of the curable adhesive.
The present invention relates to a pressure-sensitive adhesive formed from a curable composition. Hereinafter, this curable composition that is cured to become a pressure-sensitive adhesive is referred to as a “curable composition”, and curing of this curable composition. The cured product having adhesiveness formed by the above is called “adhesive”.
 近年、電気部品、電子材料などを製造する際、保護シートや保護テープが多用されている。これらの部品や材料を、保管、搬送などの工程において、傷やほこりから守るためである。特に電子部品、光学部材の製造においては、微小な塵が製造途中の製品に付着することを徹底的に排除する必要がある。塵は汚染の原因となり、製品不良を発生させるからである。この保護シートや保護テープとしては、低い粘着力を有する粘着体の層を有する粘着性シートや粘着性テープが採用される。
 従来の粘着剤としては、アクリル系PSA、ゴム系PSA、シリコーン系PSA、ウレタン系PSA(例えば特許文献1)、オキシアルキレン系PSA(例えば特許文献2、3)が知られている。
In recent years, when manufacturing electrical parts, electronic materials, etc., protective sheets and protective tapes are frequently used. This is to protect these parts and materials from scratches and dust in processes such as storage and transportation. Particularly in the manufacture of electronic parts and optical members, it is necessary to thoroughly eliminate the attachment of minute dust to products being manufactured. This is because dust causes contamination and causes product defects. As this protective sheet or protective tape, an adhesive sheet or adhesive tape having an adhesive layer having low adhesive strength is employed.
As conventional adhesives, acrylic PSA, rubber PSA, silicone PSA, urethane PSA (for example, Patent Document 1), and oxyalkylene-based PSA (for example, Patent Documents 2 and 3) are known.
特開2003-12751号公報JP 2003-12751 A 国際公開第2005/73333号パンフレットInternational Publication No. 2005/73333 Pamphlet 国際公開第2005/73334号パンフレットInternational Publication No. 2005/73334 Pamphlet
 アクリル系PSAなどの従来の粘着剤においては、粘着力が経時的に上昇して再剥離性が低下しやすい、という問題があった。特に高温下では粘着力が上昇しやすい。
 また、粘着力が低い粘着剤を製造しようとする場合、初期の粘着力が低くなるように粘着剤の組成を調整しても、貼着時間が長時間になれば粘着力が上昇するという問題があった。粘着力が上昇すると被着体が変形したり、破損する可能性が生じる。また逆に一定時間後に粘着力が低くなるよう粘着剤の組成を調整すると、そもそも初期に充分な粘着力が得られないという問題があった。充分な粘着力が得られないと被着体から意図せずに剥離してしまい、保護シートなどの所定の役割を果たせない。また粘着剤層の厚さを薄くして、粘着力の上昇を抑制することもある。しかしこの場合、被着体への軽い圧力での接着という、粘着剤が有する本来の機能が損なわれやすい。
Conventional pressure-sensitive adhesives such as acrylic PSA have a problem that the adhesive strength increases with time and the removability tends to decrease. In particular, the adhesive strength tends to increase at high temperatures.
Also, when trying to produce an adhesive with low adhesive strength, even if the composition of the adhesive is adjusted so that the initial adhesive strength is low, the adhesive strength increases if the sticking time is long. was there. If the adhesive force increases, the adherend may be deformed or damaged. Conversely, when the composition of the pressure-sensitive adhesive is adjusted so that the pressure-sensitive adhesive strength is lowered after a certain time, there has been a problem that sufficient pressure-sensitive adhesive strength cannot be obtained in the first place. If sufficient adhesive strength is not obtained, it peels off unintentionally from the adherend and cannot fulfill a predetermined role such as a protective sheet. In addition, the thickness of the pressure-sensitive adhesive layer may be reduced to suppress an increase in adhesive force. However, in this case, the original function of the pressure-sensitive adhesive, i.e., adhesion to the adherend with light pressure, tends to be impaired.
 本発明は、前記事情に鑑みてなされたもので、再剥離性を有し、耐熱性が良好で高温下において時間が経過しても再剥離性が低下しにくく、低い粘着力を有する粘着体、該粘着体に用いられるシリル基含有重合体、および粘着シートの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, has a removability, has good heat resistance, and does not easily deteriorate even after a long time at high temperatures, and has a low adhesive strength. An object of the present invention is to provide a silyl group-containing polymer used for the pressure-sensitive adhesive body and a method for producing a pressure-sensitive adhesive sheet.
 前記課題を解決するために、本発明の粘着体は、1分子あたり2個以上の活性水素基を有する開始剤(a)に由来する構成単位と、ジカルボン酸無水物(b)に由来する構成単位と、アルキレンオキシド(c)に由来する構成単位を有し、分子末端に加水分解性シリル基を有するシリル基含有重合体(S)を含む硬化性組成物を硬化させて得られる硬化物であることを特徴とする。 In order to solve the above-mentioned problems, the pressure-sensitive adhesive body of the present invention is composed of a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule and a structure derived from a dicarboxylic acid anhydride (b). A cured product obtained by curing a curable composition containing a unit and a silyl group-containing polymer (S) having a hydrolyzable silyl group at the molecular end, having a structural unit derived from alkylene oxide (c) It is characterized by being.
 前記シリル基含有重合体(S)が、
 1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させて得られるポリエステルエーテルポリオール(Z)の分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S1)、
 1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させてポリエステルエーテルポリオール(Z)を得、該ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマー(P)の分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S2)、
または、
 1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させてポリエステルエーテルポリオール(Z)を得、該ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマー(P)に鎖延長剤(C)を反応させて鎖延長ポリウレタンを得、該鎖延長ポリウレタンの分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S3)、
であることが好ましい。
The silyl group-containing polymer (S) is
At the molecular terminal of the polyester ether polyol (Z) obtained by ring-opening polymerization of the dicarboxylic anhydride (b) and the alkylene oxide (c) to the initiator (a) having two or more active hydrogen groups per molecule, Silyl group-containing polymer (S1) obtained by introducing a hydrolyzable silyl group,
A polyester ether polyol (Z) is obtained by ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule, and the polyester ether polyol A polyol (A) containing (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), which is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the prepolymer (P). Silyl group-containing polymer (S2),
Or
A polyester ether polyol (Z) is obtained by ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule, and the polyester ether polyol A polyol (A) containing (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and a chain extender (C) is reacted with the prepolymer (P) to form a chain extended polyurethane. A silyl group-containing polymer (S3) obtained by introducing a hydrolyzable silyl group into the molecular end of the chain-extended polyurethane;
It is preferable that
 本発明はまた、1分子あたり2個以上の活性水素基を有する開始剤(a)に由来する構成単位と、ジカルボン酸無水物(b)に由来する構成単位と、アルキレンオキシド(c)に由来する構成単位を有し、分子末端に加水分解性シリル基を有するシリル基含有重合体(S)を提供する。 The present invention is also derived from a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and an alkylene oxide (c). And a silyl group-containing polymer (S) having a hydrolyzable silyl group at the molecular end.
 本発明はまた、基材上に、本発明のシリル基含有重合体(S)を含む硬化性組成物からなる未硬化層を形成し、次いで、該未硬化層の前記基材と反対側の表面が露出されている状態、または該表面上に剥離シートが積層されている状態で該未硬化層を硬化させることを特徴とする粘着シートの製造方法を提供する。 The present invention also forms an uncured layer comprising a curable composition containing the silyl group-containing polymer (S) of the present invention on a substrate, and then the opposite side of the uncured layer from the substrate. Provided is a method for producing a pressure-sensitive adhesive sheet, wherein the uncured layer is cured in a state where the surface is exposed or in a state where a release sheet is laminated on the surface.
 本発明によれば、再剥離性を有し、しかも耐熱性が良好で高温下において時間が経過しても再剥離性が低下しにくく、低い粘着力を有する粘着体を実現できる。
 本発明によれば、再剥離性を有し、しかも耐熱性が良好で高温下において時間が経過しても再剥離性が低下しにくく、低い粘着力を有する粘着シートを実現できる。
 また、本発明のシリル基含有重合体(S)は、硬化後に本発明の粘着体となる硬化性組成物の、硬化成分として好適である。
According to the present invention, it is possible to realize a pressure-sensitive adhesive body having removability, having good heat resistance and being less likely to be re-removable even when time passes at high temperatures, and having low adhesive strength.
According to the present invention, it is possible to realize a pressure-sensitive adhesive sheet that has removability, has good heat resistance, and does not easily decrease removability even when time passes at high temperatures, and has low adhesive strength.
Moreover, the silyl group containing polymer (S) of this invention is suitable as a hardening component of the curable composition used as the adhesive body of this invention after hardening.
本発明の実施例で得られた粘着体の、振動吸収特性の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the vibrational absorption characteristic of the adhesive body obtained in the Example of this invention.
 本明細書における数平均分子量(Mn)および質量平均分子量(Mw)は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィーで測定することによって得られるポリスチレン換算分子量である。また分子量分布(Mw/Mn)は該質量平均分子量(Mw)を数平均分子量(Mn)で割った値をいう。
 本明細書における平均水酸基価(OHV)は、JIS-K-1557-6.4に基づいた測定値である。
 本明細書において、ポリエステルエーテルポリオールとは、エステル結合およびエーテル結合を有するポリオールである。
The number average molecular weight (Mn) and the mass average molecular weight (Mw) in this specification are polystyrene-converted molecular weights obtained by measuring with gel permeation chromatography using a standard curve prepared using a standard polystyrene sample with a known molecular weight. It is. The molecular weight distribution (Mw / Mn) is a value obtained by dividing the mass average molecular weight (Mw) by the number average molecular weight (Mn).
The average hydroxyl value (OHV) in the present specification is a measured value based on JIS-K-1557-6.4.
In this specification, the polyester ether polyol is a polyol having an ester bond and an ether bond.
 本明細書において、剥離粘着力(被着体からの剥離強度)により、粘着性を分類することがある。剥離粘着力が0N/25mmを超え1N/25mm以下の場合を微粘着、剥離粘着力が1N/25mmを超え8N/25mm以下の場合を低粘着、剥離粘着力が8N/25mmを超え15N/25mm以下の場合を中粘着、剥離粘着力が15N/25mmを超え50N/25mm以下の場合を強粘着という。
 なお特に断りがない場合には、剥離粘着力はJIS-Z-0237(1999)-8.3.1に規定される180度引きはがし法に準拠し、以下の試験方法に従う。
 すなわち、23℃の環境で、厚さ1.5mmのブライトアニール処理したステンレス鋼板(SUS304(JIS))に、測定する粘着シート試験片(幅:25mm)を貼着し、質量が2kgのゴムロールで圧着する。30分後、JIS-B-7721に規定する引張り試験機を用い、剥離強度(180度ピール、引張り速度300mm/分)を測定する。こうして得られる貼着30分後の剥離強度の値を本発明における「剥離粘着力」とする。
In the present specification, the adhesiveness may be classified according to the peeling adhesive strength (peeling strength from the adherend). Slight adhesion when peel adhesion exceeds 0 N / 25 mm and less than 1 N / 25 mm, low adhesion when peel adhesion exceeds 1 N / 25 mm and less than 8 N / 25 mm, peel adhesion exceeds 8 N / 25 mm and 15 N / 25 mm The following cases are referred to as medium adhesion, and the case where the peel adhesive strength exceeds 15 N / 25 mm and is 50 N / 25 mm or less is called strong adhesion.
Unless otherwise noted, the peel adhesive strength conforms to the 180-degree peeling method specified in JIS-Z-0237 (1999) -8.3.1 and follows the following test method.
Specifically, in a 23 ° C. environment, a 1.5 mm thick bright annealed stainless steel plate (SUS304 (JIS)) was pasted with an adhesive sheet test piece (width: 25 mm) to be measured, and a rubber roll having a mass of 2 kg. Crimp. After 30 minutes, the peel strength (180 degree peel, tensile speed 300 mm / min) is measured using a tensile tester specified in JIS-B-7721. The value of the peel strength after 30 minutes of sticking obtained in this way is defined as “peel adhesive strength” in the present invention.
 本発明の粘着体はシリル基含有重合体(S)を含む硬化性組成物を硬化させて得られる硬化物である。この硬化性組成物を基材と接触した状態で硬化させるとその硬化物が基材と接着し、また、その硬化物(粘着体)は被着体に対し粘着性を示す。
<シリル基含有重合体(S)>
 シリル基含有重合体(S)は、1分子あたり2個以上の活性水素基を有する開始剤(a)に由来する構成単位と、ジカルボン酸無水物(b)に由来する構成単位と、アルキレンオキシド(c)に由来する構成単位を有し、分子末端に加水分解性シリル基を有する。
 シリル基含有重合体(S)は水分と反応して硬化し、硬化体は再剥離性を有する。したがってシリル基含有重合体(S)は粘着体用途に好適である。
(1)第1の実施形態のシリル基含有重合体(S1)は、1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させて得られるポリエステルエーテルポリオール(Z)の分子末端に、加水分解性シリル基を導入して得られるものである。
(2)第2の実施形態態のシリル基含有重合体(S2)は、前記ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマーの分子末端に、加水分解性シリル基を導入して得られるものである。
(3)第3の実施形態態のシリル基含有重合体(S3)は、前記プレポリマー(P)に鎖延長剤(C)を反応させて鎖延長ポリウレタンを得、該鎖延長ポリウレタンの分子末端に、加水分解性シリル基を導入して得られるものである。
 本明細書におけるシリル基含有重合体(S)は、第1~3の実施形態のシリル基含有重合体(S1)~(S3)を含む概念である。
The pressure-sensitive adhesive body of the present invention is a cured product obtained by curing a curable composition containing a silyl group-containing polymer (S). When this curable composition is cured in contact with the substrate, the cured product adheres to the substrate, and the cured product (adhesive) exhibits adhesiveness to the adherend.
<Silyl group-containing polymer (S)>
The silyl group-containing polymer (S) includes a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and an alkylene oxide. It has a structural unit derived from (c) and has a hydrolyzable silyl group at the molecular end.
The silyl group-containing polymer (S) is cured by reacting with moisture, and the cured product has removability. Therefore, the silyl group-containing polymer (S) is suitable for use as an adhesive.
(1) The silyl group-containing polymer (S1) of the first embodiment is prepared by adding a dicarboxylic acid anhydride (b) and an alkylene oxide (c) to an initiator (a) having two or more active hydrogen groups per molecule. It is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the polyester ether polyol (Z) obtained by ring-opening polymerization.
(2) The silyl group-containing polymer (S2) of the second embodiment is prepared by reacting the polyol (A) containing the polyester ether polyol (Z) with the polyisocyanate compound (B) to produce a prepolymer (P). And a hydrolyzable silyl group is introduced at the molecular end of the prepolymer.
(3) The silyl group-containing polymer (S3) of the third embodiment is obtained by reacting the prepolymer (P) with a chain extender (C) to obtain a chain extended polyurethane, and a molecular end of the chain extended polyurethane. It is obtained by introducing a hydrolyzable silyl group.
The silyl group-containing polymer (S) in the present specification is a concept including the silyl group-containing polymers (S1) to (S3) of the first to third embodiments.
<第1の実施形態>
[開始剤(a)]
 開始剤(a)は、1分子あたり2個以上の活性水素基を有する化合物であり、例えばポリエーテルポリオール、多価アルコール類が挙げられる。開始剤(a)の1分子あたりの活性水素基の数は2個~4個が好ましく、2個または3個がより好ましい。すなわち開始剤(a)としては、多価アルコール類をそのまま用いてもよく、さらにアルキレンオキシドを付加させてポリエーテルポリオールとして用いてもよい。開始剤(a)における活性水素基としては水酸基が特に好ましい。
 本発明における、開始剤(a)に由来する構成単位とは、該開始剤(a)から全部の活性水素基を除いた残りの基を意味する。
<First Embodiment>
[Initiator (a)]
The initiator (a) is a compound having two or more active hydrogen groups per molecule, and examples thereof include polyether polyols and polyhydric alcohols. The number of active hydrogen groups per molecule of the initiator (a) is preferably 2 to 4, more preferably 2 or 3. That is, as the initiator (a), polyhydric alcohols may be used as they are, and further, alkylene oxide may be added and used as a polyether polyol. The active hydrogen group in the initiator (a) is particularly preferably a hydroxyl group.
In the present invention, the structural unit derived from the initiator (a) means the remaining group obtained by removing all active hydrogen groups from the initiator (a).
 ポリエーテルポリオールは、多価アルコール類にアルキレンオキシドを付加することにより得られる、水酸基1個あたりの分子量が300~4000の化合物である。後述するポリエステルエーテルポリオール(Z)の製造の際に、触媒として複合金属シアン化物錯体触媒を用いる場合は、開始剤(a)としてポリエーテルジオールを用いることが好ましい。
 多価アルコール類としては、たとえば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、グリセリンが挙げられる。
 アルキレンオキシドとしては、炭素数2~4のアルキレンオキシドが好ましく、たとえば、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、エチレンオキシドが挙げられる。アルキレンオキシドは1種のみを用いても、2種以上を併用してもよい。アルキレンオキシドは、エチレンオキシド、またはプロピレンオキシドを用いるのが好ましく、プロピレンオキシドのみを用いるのがより好ましい。
The polyether polyol is a compound having a molecular weight of 300 to 4000 per hydroxyl group obtained by adding an alkylene oxide to a polyhydric alcohol. When a double metal cyanide complex catalyst is used as a catalyst during the production of the polyester ether polyol (Z) described later, it is preferable to use a polyether diol as the initiator (a).
Examples of the polyhydric alcohols include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, and glycerin.
The alkylene oxide is preferably an alkylene oxide having 2 to 4 carbon atoms, and examples thereof include propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and ethylene oxide. Alkylene oxide may use only 1 type, or may use 2 or more types together. The alkylene oxide is preferably ethylene oxide or propylene oxide, and more preferably only propylene oxide.
 開始剤(a)の分子量は62~4000であるのが好ましく、400~2000であるのがより好ましい。前記分子量が62以上であれば、得られる粘着体において良好な柔軟性が得られる。また、前記分子量が4000以下であれば、得られる粘着体の凝集力を向上させるうえで好ましい。 The molecular weight of the initiator (a) is preferably 62 to 4000, more preferably 400 to 2000. If the molecular weight is 62 or more, good flexibility can be obtained in the resulting adhesive. Moreover, if the said molecular weight is 4000 or less, it is preferable when improving the cohesion force of the adhesive body obtained.
 ポリエステルエーテルポリオール(Z)中において、開始剤(a)に由来する構成単位は1~60質量%含有されるのが好ましく、10~60質量%含有されるのがより好ましい。開始剤(a)由来の構成単位の含有量が1質量%以上であれば、ポリエステルエーテルポリオール(Z)が効率良く得られやすい。また、開始剤(a)由来の構成単位の含有量が60質量%以下であれば、ポリエステルエーテルポリオール(Z)中のジカルボン酸無水物(b)の含有量を多くできるため、得られる粘着体の凝集力が向上する。 In the polyester ether polyol (Z), the constituent unit derived from the initiator (a) is preferably contained in an amount of 1 to 60% by mass, more preferably 10 to 60% by mass. If the content of the structural unit derived from the initiator (a) is 1% by mass or more, the polyester ether polyol (Z) is easily obtained efficiently. Moreover, if content of the structural unit derived from an initiator (a) is 60 mass% or less, since content of dicarboxylic acid anhydride (b) in polyester ether polyol (Z) can be increased, the adhesive which is obtained The cohesive strength of is improved.
[ジカルボン酸無水物(b)]
 ジカルボン酸無水物(b)としては、たとえば、無水フタル酸、無水マレイン酸、無水コハク酸が挙げられる。特に、芳香族のジカルボン酸無水物は凝集力や極性が高いため、基材との接着性および被着体への粘着性に対する寄与が大きい点で好ましい。具体的には無水フタル酸がより好ましい。
 ポリエステルエーテルポリオール(Z)中において、ジカルボン酸無水物(b)由来の構成単位は10~50質量%含有されることが好ましく、15~40質量%含有されるのがより好ましい。ジカルボン酸無水物(b)由来の構成単位の含有量が10質量%以上であれば、粘着性に優れた粘着体が得られる。また、ジカルボン酸無水物(b)由来の構成単位の含有量が50質量%以下であれば、柔軟性に優れた粘着体が得られる。
[Dicarboxylic anhydride (b)]
Examples of the dicarboxylic acid anhydride (b) include phthalic anhydride, maleic anhydride, and succinic anhydride. In particular, aromatic dicarboxylic acid anhydrides are preferable in that they have a high cohesion and polarity, and thus contribute greatly to the adhesion to the substrate and the adhesion to the adherend. Specifically, phthalic anhydride is more preferable.
In the polyester ether polyol (Z), the structural unit derived from the dicarboxylic acid anhydride (b) is preferably contained in an amount of 10 to 50% by mass, and more preferably 15 to 40% by mass. When the content of the structural unit derived from the dicarboxylic acid anhydride (b) is 10% by mass or more, an adhesive body excellent in adhesiveness is obtained. Moreover, if content of the structural unit derived from dicarboxylic acid anhydride (b) is 50 mass% or less, the adhesive body excellent in the softness | flexibility will be obtained.
[アルキレンオキシド(c)]
 アルキレンオキシド(c)は、上記開始剤(a)としてのポリエーテルポリオールの合成に用いられるアルキレンオキシドと同じものが挙げられる。中でもプロピレンオキシドまたはエチレンオキシドを用いるのがより好ましい。
[Alkylene oxide (c)]
Examples of the alkylene oxide (c) include the same alkylene oxides used for the synthesis of the polyether polyol as the initiator (a). Among these, it is more preferable to use propylene oxide or ethylene oxide.
 ポリエステルエーテルポリオール(Z)の合成に用いられるアルキレンオキシド(c)とジカルボン酸無水物(b)のモル比は、[アルキレンオキシド(c)の物質量(mol)]/[ジカルボン酸無水物(b)の物質量(mol)]=50/50~95/5であるのが好ましく、50/50~80/20であるのがより好ましい。該アルキレンオキシド(c)とジカルボン酸無水物(b)とのモル比が50/50以上であれば、アルキレンオキシド(c)がジカルボン酸無水物(b)に対して過剰となり、末端にアルキレンオキシド(c)がブロックで付加されるとともに、ポリエステルエーテルポリオール(Z)中における未反応のジカルボン酸無水物(b)の量が抑えられるため、ポリエステルエーテルポリオール(Z)の酸価を低くできる。また、該モル比が前記上限値以下であれば、得られる粘着体の凝集力が向上する。 The molar ratio of the alkylene oxide (c) and the dicarboxylic acid anhydride (b) used for the synthesis of the polyester ether polyol (Z) is [the amount of the alkylene oxide (c) (mol)] / [dicarboxylic acid anhydride (b). ) Of the substance (mol)] = 50/50 to 95/5, more preferably 50/50 to 80/20. When the molar ratio of the alkylene oxide (c) to the dicarboxylic acid anhydride (b) is 50/50 or more, the alkylene oxide (c) becomes excessive with respect to the dicarboxylic acid anhydride (b), and the alkylene oxide is terminated at the terminal. While (c) is added in blocks, the amount of unreacted dicarboxylic acid anhydride (b) in the polyester ether polyol (Z) can be suppressed, so that the acid value of the polyester ether polyol (Z) can be lowered. Moreover, if this molar ratio is below the said upper limit, the cohesion force of the adhesive body obtained will improve.
 ポリエステルエーテルポリオール(Z)の共重合鎖(ジカルボン酸無水物(b)とアルキレンオキシド(c)とが共重合する部分)中では、ジカルボン酸無水物(b)とアルキレンオキシド(c)とが交互に付加反応していたり、アルキレンオキシド(c)がブロック付加反応していたりする。しかし、ジカルボン酸無水物(b)とアルキレンオキシド(c)ではジカルボン酸無水物(b)の方が反応性に優れ、且つジカルボン酸無水物(c)は連続して付加反応しないため、該共重合鎖中においてブロック鎖を構成しているアルキレンオキシド(c)の数は数個程度と短い。そのため、開始剤(a)の分子量および末端部分のアルキレンオキシド(c)の付加量を調整することでポリエステルエーテルポリオール(Z)の全体の構造が設計できる。
 特に開始剤(a)として多価アルコール類を用いる場合には、ポリエステルエーテルポリオール(Z)を製造する際に、ジカルボン酸無水物(b)よりも過剰のアルキレンオキシド(c)を用いて、ジカルボン酸無水物(b)の未反応物の残存量を減らすことが、ポリエステルエーテルポリオール(Z)の分子末端とイソシアネート基との反応性が良好になる点で好ましい。
In the copolymer chain of polyester ether polyol (Z) (part where dicarboxylic acid anhydride (b) and alkylene oxide (c) are copolymerized), dicarboxylic acid anhydride (b) and alkylene oxide (c) alternate. Or an alkylene oxide (c) undergoes a block addition reaction. However, in dicarboxylic acid anhydride (b) and alkylene oxide (c), dicarboxylic acid anhydride (b) is more reactive and dicarboxylic acid anhydride (c) does not undergo an addition reaction continuously. The number of alkylene oxides (c) constituting the block chain in the polymer chain is as short as several. Therefore, the entire structure of the polyester ether polyol (Z) can be designed by adjusting the molecular weight of the initiator (a) and the addition amount of the alkylene oxide (c) at the terminal portion.
In particular, when polyhydric alcohols are used as the initiator (a), when the polyester ether polyol (Z) is produced, the alkylene oxide (c) is used in excess of the dicarboxylic acid anhydride (b), and the dicarboxylic acid is used. It is preferable to reduce the remaining amount of the unreacted acid anhydride (b) from the viewpoint of improving the reactivity between the molecular terminal of the polyester ether polyol (Z) and the isocyanate group.
[触媒]
 ポリエステルエーテルポリオール(Z)の製造には、重合反応の速度が高い点から、触媒を用いることが好ましい。
 該触媒としては、開環付加重合触媒が好適に用いられ、たとえば、水酸化カリウム、水酸化セシウム等のアルカリ触媒;複合金属シアン化物錯体触媒;ホスファゼン触媒が挙げられる。なかでも、Mw/Mnの値がより小さいポリエステルエーテルポリオール(Z)が得られることから、複合金属シアン化物錯体触媒がより好ましい。
 複合金属シアン化物錯体触媒としては、亜鉛ヘキサシアノコバルテート錯体に有機配位子が配位したものが好ましい。有機配位子としては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類や、tert-ブチルアルコールのようなアルコール類が好ましい。
[catalyst]
In the production of the polyester ether polyol (Z), it is preferable to use a catalyst from the viewpoint of a high polymerization reaction rate.
As the catalyst, a ring-opening addition polymerization catalyst is suitably used, and examples thereof include alkali catalysts such as potassium hydroxide and cesium hydroxide; double metal cyanide complex catalysts; phosphazene catalysts. Especially, since the polyester ether polyol (Z) with a smaller value of Mw / Mn is obtained, a double metal cyanide complex catalyst is more preferable.
As the double metal cyanide complex catalyst, a zinc hexacyanocobaltate complex coordinated with an organic ligand is preferable. As the organic ligand, ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether, and alcohols such as tert-butyl alcohol are preferable.
[ポリエステルエーテルポリオール(Z)]
 ポリエステルエーテルポリオール(Z)は、水酸基1個あたりの水酸基価換算分子量が250~20,000であるのが好ましく、1000~10000であるのがより好ましく、1000~5000であるのがさらに好ましい。該水酸基価換算分子量が250以上であれば、得られる粘着体の柔軟性が向上する。また該水酸基価換算分子量が20,000以下であれば、得られる粘着体の凝集力が向上するほか、シリル基含有重合体(S)を溶剤に溶解した場合に溶液の粘度が低くなりやすい。
 ポリエステルエーテルポリオール(Z)の水酸基価換算分子量は、開始剤(a)に共重合させるジカルボン酸無水物(b)およびアルキレンオキシド(c)のモル数を適宜調整することによって容易に調整できる。
[Polyester ether polyol (Z)]
The polyester ether polyol (Z) has a hydroxyl value-converted molecular weight per hydroxyl group of preferably 250 to 20,000, more preferably 1000 to 10,000, and still more preferably 1,000 to 5,000. When the molecular weight in terms of hydroxyl value is 250 or more, the flexibility of the obtained pressure-sensitive adhesive is improved. If the molecular weight in terms of hydroxyl value is 20,000 or less, the cohesive force of the resulting pressure-sensitive adhesive is improved, and the viscosity of the solution tends to be low when the silyl group-containing polymer (S) is dissolved in a solvent.
The molecular weight in terms of hydroxyl value of the polyester ether polyol (Z) can be easily adjusted by appropriately adjusting the number of moles of the dicarboxylic acid anhydride (b) and the alkylene oxide (c) copolymerized with the initiator (a).
 また、ポリエステルエーテルポリオール(Z)は、共重合鎖あたりの平均分子量(M’)が、100~3000であることが好ましく、200~2000であることがより好ましい。該共重合鎖あたりの平均分子量(M’)とは、ジカルボン酸無水物(b)およびアルキレンオキシド(c)の共重合によって形成される共重合鎖1つあたりの平均分子量を意味しており、水酸基価換算分子量から開始剤(a)の分子量を除き、該分子量を開始剤(a)の官能基数(活性水素基の数)で割った値である。
 共重合鎖あたりの平均分子量(M’)が100以上であると、得られる粘着体の柔軟性が向上しやすい。また、該共重合鎖あたりの平均分子量(M’)が3000以下であれば、得られるポリエステルエーテルポリオール(Z)の粘度が高くなり過ぎない。共重合鎖あたりの平均分子量(M’)は、水酸基価換算分子量と同様に、開始剤(a)に対して共重合させるジカルボン酸無水物(b)およびアルキレンオキシド(c)のモル数を適宜調整することによって容易に調整できる。
The polyester ether polyol (Z) preferably has an average molecular weight (M ′) per copolymer chain of 100 to 3000, more preferably 200 to 2000. The average molecular weight (M ′) per copolymer chain means the average molecular weight per copolymer chain formed by copolymerization of dicarboxylic anhydride (b) and alkylene oxide (c). This is a value obtained by removing the molecular weight of the initiator (a) from the molecular weight in terms of hydroxyl value and dividing the molecular weight by the number of functional groups (number of active hydrogen groups) of the initiator (a).
When the average molecular weight (M ′) per copolymer chain is 100 or more, the flexibility of the obtained pressure-sensitive adhesive is easily improved. Further, when the average molecular weight (M ′) per copolymer chain is 3000 or less, the viscosity of the resulting polyester ether polyol (Z) does not become too high. The average molecular weight (M ′) per copolymer chain is appropriately determined by the number of moles of the dicarboxylic acid anhydride (b) and alkylene oxide (c) copolymerized with the initiator (a) as in the case of the hydroxyl value converted molecular weight. It can be easily adjusted by adjusting.
 ポリエステルエーテルポリオール(Z)の酸価は2.0mgKOH/g以下が好ましく、1.0mgKOH/g以下がより好ましく、ゼロであってもよい。ポリエステルエーテルポリオール(Z)の酸価が2.0mgKOH/g以下であれば、ポリエステルエーテルポリオール(Z)の分子末端とイソシアネート基との反応性が良くなり、また得られる粘着体の貯蔵安定性が向上する。 The acid value of the polyester ether polyol (Z) is preferably 2.0 mgKOH / g or less, more preferably 1.0 mgKOH / g or less, and may be zero. If the acid value of the polyester ether polyol (Z) is 2.0 mgKOH / g or less, the reactivity between the molecular terminal of the polyester ether polyol (Z) and the isocyanate group is improved, and the storage stability of the resulting pressure-sensitive adhesive is improved. improves.
[シリル基含有重合体(S1)]
 本実施形態のシリル基含有重合体(S1)は、ポリエステルエーテルポリオール(Z)の分子末端に、後述の方法で、加水分解性シリル基を導入して得られる。
[Silyl group-containing polymer (S1)]
The silyl group-containing polymer (S1) of this embodiment is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the polyester ether polyol (Z) by the method described later.
<第2の実施形態>
 本実施形態では、ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマー(P)の分子末端に、加水分解性シリル基を導入する。
 ポリエステルエーテルポリオール(Z)は、好ましい態様も含めて第1の実施形態と同じである。
<Second Embodiment>
In this embodiment, a polyol (A) containing a polyester ether polyol (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and hydrolysis is performed at the molecular terminals of the prepolymer (P). A functional silyl group is introduced.
The polyester ether polyol (Z) is the same as that of the first embodiment including the preferred mode.
[ポリオール(A)]
 粘着体の柔軟性を高くし、かつ再剥離性の低下を防止するうえで、ポリオール(A)中、ポリエステルエーテルポリオール(Z)が占める割合は10質量%以上が好ましく、50質量%以上がより好ましく、ポリオール(A)の全部がポリエステルエーテルポリオール(Z)であることが最も好ましい。
 ポリエステルエーテルポリオール(Z)は1種でもよく、2種以上を併用してもよい。
[Polyol (A)]
The ratio of the polyester ether polyol (Z) in the polyol (A) is preferably 10% by mass or more and more preferably 50% by mass or more in order to increase the flexibility of the pressure-sensitive adhesive and prevent the removability from being lowered. Preferably, all of the polyol (A) is most preferably a polyester ether polyol (Z).
The polyester ether polyol (Z) may be one type or a combination of two or more types.
 ポリオール(A)の一部がポリエステルエーテルポリオール(Z)である場合には、ポリオール(A)の残部として、ポリオキシテトラメチレンポリオール、ポリオキシアルキレンポリオール、ポリエステルポリオール、ポリカーボネートポリオールのいずれか1種または2種以上のポリオール(他のポリオール)を用いることが好ましい。 When a part of the polyol (A) is a polyester ether polyol (Z), any one of polyoxytetramethylene polyol, polyoxyalkylene polyol, polyester polyol, and polycarbonate polyol is used as the balance of the polyol (A) or Two or more kinds of polyols (other polyols) are preferably used.
[ポリイソシアネート化合物(B)]
 ポリイソシアネート化合物(B)としては、たとえば、ナフタレン-1,5-ジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート(以下、2,4-TDIと表記することもある。)、および2,6-トリレンジイソシアネート(以下、2,6-TDIと表記することもある。)等の芳香族ポリイソシアネート;キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等のアラルキルポリイソシアネート;ヘキサメチレンジイソシアネート(以下、HDIと表記する。)等の脂肪族ポリイソシアネート;イソホロンジイソシアネート(以下、IPDIと表記する。)および4,4’-メチレンビス(シクロヘキシルイソシアネート)等の脂環族ポリイソシアネート;ならびに、前記ポリイソシアネートから得られるウレタン変性体、ビュレット変性体、アロファネート変性体、カルボジイミド変性体、およびイソシアヌレート変性体等が挙げられる。
 これらのうちで、ポリイソシアネート化合物(B)としてはイソシアネート基を2個有するものが好ましく、特に2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、またはイソホロンジイソシアネートが好ましい。
[Polyisocyanate compound (B)]
Examples of the polyisocyanate compound (B) include naphthalene-1,5-diisocyanate, polyphenylene polymethylene polyisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate (hereinafter referred to as 2,4-TDI). And aromatic polyisocyanates such as 2,6-tolylene diisocyanate (hereinafter sometimes referred to as 2,6-TDI); aralkyl such as xylylene diisocyanate and tetramethylxylylene diisocyanate Polyisocyanate; aliphatic polyisocyanate such as hexamethylene diisocyanate (hereinafter referred to as HDI); isophorone diisocyanate (hereinafter referred to as IPDI) and 4,4′-methylenebis (cyclohexyl isocyanate) Alicyclic polyisocyanates over G) or the like; and urethane modified product obtained from the polyisocyanate, biuret modified compounds, allophanate modified body, carbodiimide modified body, and isocyanurate-modified products thereof.
Among these, as the polyisocyanate compound (B), those having two isocyanate groups are preferable, and 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, or isophorone diisocyanate is particularly preferable.
 また本発明の粘着体を光学用途に用いる場合は、ポリイソシアネート化合物(B)として無黄変性のポリイソシアネートを用いることが好ましい。例えば、ヘキサメチレンジイソシアネート、2,2,4-トリメチル-ヘキサメチレンジイソシアネート、2,4,4-トリメチル-ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート;イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)等の脂環式ポリイソシアネート;キシリレンジイソシアネート等の無黄変性芳香族ジイソシアネートが挙げられる。 When the pressure-sensitive adhesive body of the present invention is used for optical applications, it is preferable to use a non-yellowing polyisocyanate as the polyisocyanate compound (B). For example, aliphatic polyisocyanates such as hexamethylene diisocyanate, 2,2,4-trimethyl-hexamethylene diisocyanate, 2,4,4-trimethyl-hexamethylene diisocyanate; alicyclic rings such as isophorone diisocyanate and methylenebis (4-cyclohexylisocyanate) Formula polyisocyanate; non-yellowing aromatic diisocyanate such as xylylene diisocyanate.
[プレポリマー(P)]
 本実施形態において、プレポリマー(P)は分子鎖の末端にイソシアネート基を有するイソシアネート基末端プレポリマー(PI)でもよく、分子鎖の末端に水酸基を有する水酸基末端プレポリマー(PH)でもよい。
[Prepolymer (P)]
In this embodiment, the prepolymer (P) may be an isocyanate group-terminated prepolymer (PI) having an isocyanate group at the end of the molecular chain, or a hydroxyl group-terminated prepolymer (PH) having a hydroxyl group at the end of the molecular chain.
[イソシアネート基末端プレポリマー(PI)]
 イソシアネート基末端プレポリマー(PI)は、ポリオール(A)とポリイソシアネート化合物(B)とをイソシアネート基過剰の割合で反応させて得られる(以下、この反応をプレポリマー形成反応という。)。
 プレポリマー形成反応の具体例としては、ポリオール(A)とポリイソシアネート化合物(B)とを乾燥窒素気流下、60~100℃で1~20時間加熱させる反応が挙げられる。プレポリマー形成反応の際には、ウレタン化反応触媒を用いることができる。
 ウレタン化反応触媒としては、たとえば、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジブチル錫ジオクトエート、および2-エチルヘキサン酸錫などの有機錫化合物;鉄アセチルアセトナートおよび塩化第二鉄などの鉄化合物;ならびに、トリエチルアミンおよびトリエチレンジアミンなどの三級アミン系触媒等が挙げられる。ウレタン化反応触媒のうちでも有機錫化合物が好ましい。
[Isocyanate group-terminated prepolymer (PI)]
The isocyanate group-terminated prepolymer (PI) is obtained by reacting the polyol (A) with the polyisocyanate compound (B) in an excess ratio of isocyanate groups (hereinafter, this reaction is referred to as prepolymer formation reaction).
A specific example of the prepolymer forming reaction is a reaction in which the polyol (A) and the polyisocyanate compound (B) are heated at 60 to 100 ° C. for 1 to 20 hours in a dry nitrogen stream. In the prepolymer forming reaction, a urethanization reaction catalyst can be used.
Examples of the urethanization reaction catalyst include organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, and tin 2-ethylhexanoate; iron compounds such as iron acetylacetonate and ferric chloride; And tertiary amine catalysts such as triethylamine and triethylenediamine. Of the urethanization reaction catalysts, organotin compounds are preferred.
 また、プレポリマー形成反応の際には、溶剤で希釈してもよい。溶剤としては、たとえば、トルエン、キシレン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素、酢酸エチル、酢酸ブチル等のエステル、メチルエチルケトン(以下、MEKと表記する。)等のケトン類、ジメチルホルムアミド、シクロヘキサノン等が挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。 Further, in the prepolymer formation reaction, it may be diluted with a solvent. Examples of the solvent include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane, esters such as ethyl acetate and butyl acetate, ketones such as methyl ethyl ketone (hereinafter referred to as MEK), and dimethylformamide. And cyclohexanone. These may be used alone or in combination of two or more.
 プレポリマー形成反応におけるポリオール(A)とポリイソシアネート化合物(B)との割合は、「ポリイソシアネート化合物(B)のイソシアネート基/ポリオール(A)の水酸基」のモル比の100倍の値で定義されるイソシアネート指数が100超~200であることが好ましく、105~170がより好ましい
 プレポリマー形成反応により得たイソシアネート基末端プレポリマー(PI)は、イソシアネート基含有量が1.5~10.0質量%であることが好ましい。
 またイソシアネート基末端プレポリマー(PI)の分子量は数平均分子量(Mn)で2000~15万が好ましく、3000~8万がより好ましい。
The ratio of the polyol (A) and the polyisocyanate compound (B) in the prepolymer formation reaction is defined as a value 100 times the molar ratio of “isocyanate group of the polyisocyanate compound (B) / hydroxyl group of the polyol (A)”. The isocyanate index is preferably more than 100 to 200, more preferably 105 to 170. The isocyanate group-terminated prepolymer (PI) obtained by the prepolymer formation reaction has an isocyanate group content of 1.5 to 10.0 mass. % Is preferred.
The molecular weight of the isocyanate group-terminated prepolymer (PI) is preferably 2000 to 150,000, more preferably 3000 to 80,000 in terms of number average molecular weight (Mn).
[水酸基末端プレポリマー(PH)]
 水酸基末端プレポリマー(PH)は、ポリオール(A)とポリイソシアネート化合物(B)とを水酸基過剰の割合で反応させて得られる。
 ポリオール(A)とポリイソシアネート化合物(B)との反応は、イソシアネート基末端プレポリマー(PI)を得るためのプレポリマー形成反応と同様にして行うことができる。
 すなわち、プレポリマー形成反応を行う工程において、ポリオール(A)とイソシアネート化合物(B)との割合は、前記イソシアネート指数が50~100未満が好ましく、50~98がより好ましい。
[Hydroxyl-terminated prepolymer (PH)]
The hydroxyl group-terminated prepolymer (PH) is obtained by reacting the polyol (A) with the polyisocyanate compound (B) at a ratio of excess hydroxyl group.
The reaction between the polyol (A) and the polyisocyanate compound (B) can be carried out in the same manner as the prepolymer formation reaction for obtaining the isocyanate group-terminated prepolymer (PI).
That is, in the step of performing the prepolymer forming reaction, the ratio of the polyol (A) and the isocyanate compound (B) is preferably such that the isocyanate index is 50 to less than 100, more preferably 50 to 98.
 水酸基末端プレポリマー(PH)を製造する工程において、イソシアネート基末端プレポリマー(PI)を得るためのプレポリマー形成反応と同様のウレタン化反応触媒を用いてもよい。またイソシアネート基末端プレポリマー(PI)を得るためのプレポリマー形成反応と同様の溶剤で希釈してもよい。
 こうして得られる水酸基末端プレポリマー(PH)における、水酸基含有量は0.03~1.00質量%であることが好ましい。
 また水酸基末端プレポリマー(PH)の分子量は数平均分子量(Mn)で2000~10万が好ましく、3000~8万がより好ましい。
In the step of producing the hydroxyl group-terminated prepolymer (PH), a urethanization reaction catalyst similar to the prepolymer formation reaction for obtaining the isocyanate group-terminated prepolymer (PI) may be used. Moreover, you may dilute with the solvent similar to the prepolymer formation reaction for obtaining isocyanate group terminal prepolymer (PI).
The hydroxyl group content in the hydroxyl group-terminated prepolymer (PH) thus obtained is preferably 0.03 to 1.00% by mass.
The molecular weight of the hydroxyl-terminated prepolymer (PH) is preferably 2000 to 100,000, more preferably 3000 to 80,000 in terms of number average molecular weight (Mn).
[シリル基含有重合体(S2)]
 本実施形態のシリル基含有重合体(S2)は、イソシアネート基末端プレポリマー(PI)または水酸基末端プレポリマー(PH)の分子末端に、後述の方法で、加水分解性シリル基を導入して得られる。
[Silyl group-containing polymer (S2)]
The silyl group-containing polymer (S2) of this embodiment is obtained by introducing a hydrolyzable silyl group into the molecular terminal of the isocyanate group-terminated prepolymer (PI) or the hydroxyl group-terminated prepolymer (PH) by the method described later. It is done.
<第3の実施形態>
 本実施形態では、ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該イソシアネート基末端プレポリマー(P)に鎖延長剤(C)を反応させて鎖延長ポリウレタンを得、該て鎖延長ポリウレタンの分子末端に、加水分解性シリル基を導入する。
 ポリエステルエーテルポリオール(Z)、ポリオール(A)、ポリイソシアネート化合物(B)、およびプレポリマー(P)は、好ましい態様も含めて第2の実施形態と同じである。
<Third Embodiment>
In this embodiment, the polyol (A) containing the polyester ether polyol (Z) and the polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and a chain extender is added to the isocyanate group-terminated prepolymer (P). (C) is reacted to obtain a chain-extended polyurethane, and a hydrolyzable silyl group is introduced into the molecular end of the chain-extended polyurethane.
The polyester ether polyol (Z), polyol (A), polyisocyanate compound (B), and prepolymer (P) are the same as in the second embodiment, including preferred aspects.
[鎖延長剤(C)]
 プレポリマー(P)としてイソシアネート基末端プレポリマー(PI)を用いる場合、鎖延長剤としては低分子ジオール類、または低分子ジアミン類が好ましい。
 低分子ジオール類としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールなどが好適に例示できる。
 低分子ジアミン類としては、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;ピペラジン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等の脂環式ジアミン;及びトリレンジアミン、フェニレンジアミン、キシリレンジアミン等の芳香族ジアミンが挙げられる。
[Chain extender (C)]
When the isocyanate group-terminated prepolymer (PI) is used as the prepolymer (P), low-molecular diols or low-molecular diamines are preferable as the chain extender.
Preferred examples of the low molecular diols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, and the like.
Low molecular diamines include aliphatic diamines such as ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine and 2,2,4-trimethylhexamethylene diamine; piperazine, isophorone diamine, dicyclohexyl And alicyclic diamines such as methane-4,4′-diamine; and aromatic diamines such as tolylenediamine, phenylenediamine, and xylylenediamine.
 プレポリマー(P)として水酸基末端プレポリマー(PH)を用いる場合は、鎖延長剤としてジイソシアネート化合物が好ましい。好ましいジイソシアネート化合物は前記ポリイソシアネート化合物(B)のうち、イソシアネート基を2個有するものと同様である。 When using a hydroxyl-terminated prepolymer (PH) as the prepolymer (P), a diisocyanate compound is preferred as the chain extender. A preferred diisocyanate compound is the same as the polyisocyanate compound (B) having two isocyanate groups.
[鎖延長反応]
 本発明にかかる鎖延長ポリウレタンは、前記プレポリマー(P)を鎖延長反応させて得られる。鎖延長ポリウレタンの末端はイソシアネート基、水酸基、またはアミノ基のいずれでもよい。該末端基によって加水分解性シリル基の導入方法が異なる。
[Chain extension reaction]
The chain extension polyurethane according to the present invention is obtained by subjecting the prepolymer (P) to a chain extension reaction. The end of the chain extended polyurethane may be any of an isocyanate group, a hydroxyl group, or an amino group. The method for introducing a hydrolyzable silyl group differs depending on the terminal group.
 鎖延長反応の方法は特に制限されず、たとえば、1)プレポリマー(P)溶液を反応容器に仕込み、その反応容器に鎖延長剤(C)を滴下して反応させる方法、2)鎖延長剤(C)を反応容器に仕込み、プレポリマー(P)溶液を滴下して反応させる方法、3)プレポリマー(P)溶液を溶剤で希釈した後、その反応容器に鎖延長剤(C)を所定量一括投入して反応させる方法が挙げられる。均一な鎖延長ポリウレタンを得やすい点で1)または3)の方法が好ましい。
 溶剤は、上記プレポリマー形成反応において例示した溶剤と同様の溶剤を用いることができる。
The method of chain extension reaction is not particularly limited. For example, 1) A method in which a prepolymer (P) solution is charged into a reaction vessel and a chain extender (C) is dropped into the reaction vessel to cause a reaction, and 2) a chain extender. A method in which (C) is charged into a reaction vessel and the prepolymer (P) solution is dropped and reacted. 3) After diluting the prepolymer (P) solution with a solvent, a chain extender (C) is placed in the reaction vessel. There is a method in which a fixed amount is added and reacted. The method 1) or 3) is preferable because it is easy to obtain a uniform chain-extended polyurethane.
As the solvent, the same solvents as those exemplified in the prepolymer formation reaction can be used.
 イソシアネート基末端プレポリマー(PI)に、低分子ジアミン類を鎖延長剤として反応させる場合、プレポリマー(PI)と低分子ジアミン類との割合は、「プレポリマー(PI)のNCO基/低分子ジアミン類のNH2基」のモル比の100倍の値で定義されるイソシアネート指数が50~100未満であることが好ましく、50~98がより好ましい。この範囲であるとアミノ基末端の鎖延長ポリウレタンが得られる。
 水酸基末端プレポリマー(PH)に、鎖延長剤としてジイソシアネート化合物を反応させて、イソシアネート基末端の鎖延長ポリウレタンを得る場合、プレポリマー(PH)とジイソシアネート化合物との割合は、「鎖延長剤のNCO基/プレポリマー(PH)のOH基」のモル比の100倍の値で定義されるイソシアネート指数が100超~200であることが好ましく、101~150がより好ましい。
 また水酸基末端プレポリマー(PH)に、ジイソシアネート化合物を反応させて、水酸基末端の鎖延長ポリウレタンを得る場合には、該イソシアネート指数が50~100未満であることが好ましく、50~98がより好ましい。
When the isocyanate group-terminated prepolymer (PI) is reacted with a low molecular diamine as a chain extender, the ratio of the prepolymer (PI) and the low molecular diamine is “NCO group / low molecule of the prepolymer (PI)”. The isocyanate index defined by a value 100 times the molar ratio of “NH2 group of diamine” is preferably 50 to less than 100, more preferably 50 to 98. Within this range, an amino group-terminated chain-extended polyurethane can be obtained.
When a hydroxyl group-terminated prepolymer (PH) is reacted with a diisocyanate compound as a chain extender to obtain an isocyanate group-terminated chain-extended polyurethane, the ratio of the prepolymer (PH) and the diisocyanate compound is expressed as “NCO of chain extender”. The isocyanate index defined by a value 100 times the molar ratio of “group / OH group of prepolymer (PH)” is preferably more than 100 to 200, more preferably 101 to 150.
When a hydroxyl group-terminated prepolymer (PH) is reacted with a diisocyanate compound to obtain a chain-extended polyurethane having a hydroxyl group, the isocyanate index is preferably 50 to less than 100, more preferably 50 to 98.
 鎖延長反応における反応温度は80℃以下が好ましい。反応温度が80℃を超えると反応速度が速くなりすぎて反応の制御が困難になるため、所望の分子量と所望の構造を有する鎖延長ポリウレタンを得るのが困難になる傾向にある。溶剤存在下で鎖延長反応を行う場合には、反応温度を溶剤の沸点以下とすることが好ましい。特にMEKおよび/または酢酸エチルの存在下では40~60℃が好ましい。
 鎖延長ポリウレタンの分子量は、数平均分子量で4,000~500,000が好ましい。より好ましくは8,000~250,000である。
The reaction temperature in the chain extension reaction is preferably 80 ° C. or lower. When the reaction temperature exceeds 80 ° C., the reaction rate becomes too fast and it becomes difficult to control the reaction, so that it tends to be difficult to obtain a chain-extended polyurethane having a desired molecular weight and a desired structure. When the chain extension reaction is performed in the presence of a solvent, the reaction temperature is preferably set to be equal to or lower than the boiling point of the solvent. In particular, 40-60 ° C. is preferable in the presence of MEK and / or ethyl acetate.
The molecular weight of the chain extended polyurethane is preferably 4,000 to 500,000 in terms of number average molecular weight. More preferably, it is 8,000 to 250,000.
[シリル基含有重合体(S3)]
 本実施形態のシリル基含有重合体(S3)は、鎖延長ポリウレタンの分子末端に、後述の方法で、加水分解性シリル基を導入して得られる。
[Silyl group-containing polymer (S3)]
The silyl group-containing polymer (S3) of the present embodiment is obtained by introducing a hydrolyzable silyl group into the molecular end of the chain-extended polyurethane by the method described later.
<加水分解性シリル基>
 本発明において加水分解性シリル基とは、加水分解性基を有するシリル基である。具体的には、-SiX (3-a)で表されるシリル基が好ましい。ここで、aは1~3の整数を示す。aは好ましくは2~3であり、3が最も好ましい。
 Rは炭素数1~20の1価の有機基であり、炭素数1~6の1価の有機基が好ましい。具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。Rは置換基を有していてもよい。該置換基の例としてはメチル基、フェニル基等が挙げられる。
 加水分解性シリル基がRを複数有する場合、該複数のRは互いに同一でも異なっていてもよい。すなわち、aが1である場合、1個のケイ素原子(Si)に結合している2個のRはそれぞれ独立に、置換基を有していてもよい炭素数1~20の1価の有機基を示す。
<Hydrolyzable silyl group>
In the present invention, the hydrolyzable silyl group is a silyl group having a hydrolyzable group. Specifically, a silyl group represented by —SiX a R 3 (3-a) is preferable. Here, a represents an integer of 1 to 3. a is preferably 2 to 3, and 3 is most preferred.
R 3 is a monovalent organic group having 1 to 20 carbon atoms, preferably a monovalent organic group having 1 to 6 carbon atoms. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. R 3 may have a substituent. Examples of the substituent include a methyl group and a phenyl group.
If the hydrolyzable silyl group has a plurality of R 3, R 3 of the plurality of it may be the same or different from each other. That is, when a is 1, two R 3 bonded to one silicon atom (Si) are each independently a monovalent monovalent group having 1 to 20 carbon atoms that may have a substituent. An organic group is shown.
 上記Xは水酸基(-OH)又は加水分解性基を示す。該加水分解性基としては、例えば-OR基(Rは炭素数4以下の炭化水素基)が挙げられる。かかる-OR基は、アルコキシ基又はアルケニルオキシ基であることが好ましく、アルコキシ基が特に好ましい。アルコキシ基又はアルケニルオキシ基の炭素数は4以下である。具体的には、メトキシ基、エトキシ基、プロポキシ基又はプロペニルオキシ基等が挙げられる。これらの中でもメトキシ基またはエトキシ基が、硬化性組成物の硬化速度をより高めることができる点でより好ましい。
 加水分解性シリル基中にXが複数個存在する場合、該複数のXは互いに同一でも異なってもよい。すなわち、aが2または3である場合、Xはそれぞれ独立に、水酸基又は加水分解性基を示す。
 加水分解性シリル基としては、トリアルコキシシリル基が好ましく、トリメトキシシリル基またはトリエトキシシリル基がより好ましく、トリメトキシシリル基が特に好ましい。シリル基含有重合体(S)の貯蔵安定性が良好であり、かつ、硬化性組成物の硬化速度が速いからである。
X represents a hydroxyl group (—OH) or a hydrolyzable group. Examples of the hydrolyzable group include an —OR group (R is a hydrocarbon group having 4 or less carbon atoms). Such —OR group is preferably an alkoxy group or an alkenyloxy group, and particularly preferably an alkoxy group. The alkoxy group or alkenyloxy group has 4 or less carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, and a propenyloxy group. Among these, a methoxy group or an ethoxy group is more preferable in that the curing rate of the curable composition can be further increased.
When a plurality of X are present in the hydrolyzable silyl group, the plurality of X may be the same as or different from each other. That is, when a is 2 or 3, each X independently represents a hydroxyl group or a hydrolyzable group.
As the hydrolyzable silyl group, a trialkoxysilyl group is preferable, a trimethoxysilyl group or a triethoxysilyl group is more preferable, and a trimethoxysilyl group is particularly preferable. This is because the storage stability of the silyl group-containing polymer (S) is good and the curing rate of the curable composition is fast.
<加水分解性シリル基の導入>
 加水分解性シリル基の導入方法としては、イソシアネートシラン類を用いる方法(Q1)、アミノシラン類を用いる方法(Q2)、メルカプトシラン類を用いる方法(Q3)、エポキシシラン類を用いる方法(Q4)、およびヒドロシラン類を用いる方法(Q5)が例示できる。
 加水分解性シリル基を導入する割合(以下、加水分解性シリル基導入割合ということもある。)は、理論的に反応しうる末端の全部を100モル%とした場合に、50~100モル%導入することが好ましく、80~100モル%導入することがより好ましい。
<Introduction of hydrolyzable silyl group>
As a method for introducing a hydrolyzable silyl group, a method using an isocyanate silane (Q1), a method using an aminosilane (Q2), a method using a mercaptosilane (Q3), a method using an epoxysilane (Q4), And a method (Q5) using hydrosilanes.
The ratio of introducing hydrolyzable silyl groups (hereinafter sometimes referred to as hydrolyzable silyl group introduction ratio) is 50 to 100 mol%, assuming that all the terminals capable of reacting theoretically are 100 mol%. It is preferably introduced, more preferably 80 to 100 mol%.
<イソシアネートシラン類を用いる方法(Q1)>
 加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基が、イソシアネート基と反応しうる基である場合には、該末端の官能基とイソシアネートシラン類とを反応させることにより加水分解性シリル基を導入することができる。
 イソシアネート基と反応しうる基は、例えば水酸基、アミノ基である。
<Method (Q1) using isocyanate silanes>
When the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with the hydrolyzable silyl group is a group capable of reacting with an isocyanate group, the terminal functional group A hydrolyzable silyl group can be introduced by reacting silane with isocyanate silanes.
The group capable of reacting with an isocyanate group is, for example, a hydroxyl group or an amino group.
 イソシアネートシラン類としては、イソシアネートメチルトリメトキシシラン、2-イソシアネートエチルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、4-イソシアネートブチルトリメトキシシラン、5-イソシアネートペンチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、2-イソシアネートエチルトリエトキシシラン、3イソシアネートプロピルトリエトキシシラン、4-イソシアネートブチルトリエトキシシラン、5-イソシアネートペンチルトリエトキシシラン、イソシアネートメチルメチルジメトキシシシラン、2-イソシアネートエチルエチルジメトキシシラン、3-イソシアネートプロピルトリメトキシシラン又は3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
 これらの中でも、イソシアネートメチルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、又は3-イソシアネートプロピルトリエトキシシランが好ましい。
Isocyanate silanes include isocyanate methyltrimethoxysilane, 2-isocyanatoethyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane, 4-isocyanatobutyltrimethoxysilane, 5-isocyanatepentyltrimethoxysilane, isocyanatemethyltriethoxysilane, 2-isocyanatoethyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, 4-isocyanatobutyltriethoxysilane, 5-isocyanatepentyltriethoxysilane, isocyanatemethylmethyldimethoxysilane, 2-isocyanatoethylethyldimethoxysilane, 3-isocyanatepropyl Examples include trimethoxysilane or 3-isocyanatopropyltriethoxysilane. That.
Among these, isocyanate methyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, or 3-isocyanatepropyltriethoxysilane is preferable.
 この反応には触媒を用いてもよい。触媒としては、公知のウレタン化反応触媒が用いられる。例えば、有機酸塩・有機金属化合物類、第三級アミン類等が挙げられる。具体的な有機酸塩・有機金属化合物類としては、ジブチルスズジラウレート(DBTDL)等のスズ触媒、2-エチルヘキサン酸ビスマス[ビスマストリス(2-エチルヘキサノエート)]等のビスマス触媒、ナフテン酸亜鉛等の亜鉛触媒、ナフテン酸コバルト等のコバルト触媒、2-エチルヘキサン酸銅等の銅触媒等が例示できる。第三級アミン類としては、トリエチルアミン、トリエチレンジアミン、N-メチルモルホリン等が挙げられる。 A catalyst may be used for this reaction. A known urethanization reaction catalyst is used as the catalyst. Examples thereof include organic acid salts / organometallic compounds, tertiary amines and the like. Specific organic acid salts and organometallic compounds include tin catalysts such as dibutyltin dilaurate (DBTDL), bismuth catalysts such as bismuth 2-ethylhexanoate [bismuth tris (2-ethylhexanoate)], zinc naphthenate Examples thereof include zinc catalysts such as cobalt catalysts such as cobalt naphthenate and copper catalysts such as copper 2-ethylhexanoate. Tertiary amines include triethylamine, triethylenediamine, N-methylmorpholine and the like.
<アミノシラン類を用いる方法(Q2)>
 加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基が、アミノ基と反応しうる基である場合には、該末端の官能基とアミノシラン類とを反応させることにより加水分解性シリル基を導入することができる。
<Method (Q2) using aminosilanes>
When the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a group capable of reacting with an amino group, the terminal functional group A hydrolyzable silyl group can be introduced by reacting silane with aminosilanes.
 アミノ基と反応しうる基は、例えばイソシアネート基、アクリロイル基、メタクリロイル基である。必要に応じて、加水分解性シリル基を導入する前に、これらの基を末端に導入してもよい。
 例えば加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基が水酸基である場合、該水酸基にアクリル酸類またはメタクリル酸類を反応させることによって、分子末端にアクリロイル基またはメタクリロイル基を導入できる。
 または、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基がイソシアネート基である場合、ヒドロキシアルキルアクリレート類またはヒドロキシアルキルメタクリレート類を反応させることによって、分子末端にアクリロイル基またはメタクリロイル基を導入できる。
 ヒドロキシアルキルアクリレート類としては、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート等が例示できる。ヒドロキシアルキルメタクリレート類としては、2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルメタクリレート等が例示できる。
Examples of the group capable of reacting with an amino group are an isocyanate group, an acryloyl group, and a methacryloyl group. If necessary, these groups may be introduced at the terminal before introducing the hydrolyzable silyl group.
For example, when the functional group at the end of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a hydroxyl group, by reacting the hydroxyl group with acrylic acid or methacrylic acid , An acryloyl group or a methacryloyl group can be introduced at the molecular end.
Alternatively, when the functional group at the terminal of the prepolymer (P) or the chain-extended polyurethane is an isocyanate group, an acryloyl group or a methacryloyl group can be introduced at the molecular terminal by reacting with hydroxyalkyl acrylates or hydroxyalkyl methacrylates.
Examples of hydroxyalkyl acrylates include 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate. Examples of hydroxyalkyl methacrylates include 2-hydroxyethyl methacrylate and 4-hydroxybutyl methacrylate.
 アミノシラン類としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリイソプロポキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(N-(2-アミノエチル)-2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(6-アミノヘキシル)-3-アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、N-(2-アミノエチル)アミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ビニルベンジル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等が挙げられる。
 これらの中でも、3-アミノプロピルトリメトキシシラン又は3-アミノプロピルトリエトキシシランが好ましい。
Examples of aminosilanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriisopropoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3- ( 2-aminoethyl) aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane, N- (N- (2-aminoethyl) -2-aminoethyl) -3 -Aminopropyltrimethoxysilane, N- (6-aminohexyl ) -3-Aminopropyltrimethoxysilane, 3- (N-ethylamino) -2-methylpropyltrimethoxysilane, N- (2-aminoethyl) aminomethyltrimethoxysilane, N-cyclohexylaminomethyltriethoxysilane N-cyclohexylaminomethyldiethoxymethylsilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane, N- Benzyl-3-aminopropyltrimethoxysilane, N-vinylbenzyl-3-aminopropyltriethoxysilane, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N-cyclohexylaminomethyldiethoxy Chirushiran, N, N'-bis [3- (trimethoxysilyl) propyl] ethylenediamine, and the like.
Among these, 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane is preferable.
 アミノ基とイソシアネート基との反応はウレア結合生成の反応である。この反応には上述のウレタン化反応触媒を用いてもよい。またアミノ基とアクリロイル基との反応はマイケル付加反応である。 The reaction between an amino group and an isocyanate group is a urea bond formation reaction. In this reaction, the above-mentioned urethanization catalyst may be used. The reaction between an amino group and an acryloyl group is a Michael addition reaction.
<メルカプトシラン類を用いる方法(Q3)>
 加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基が、メルカプト基と反応しうる基である場合には、該末端の官能基とメルカプトシラン類とを反応させることにより加水分解性シリル基を導入することができる。
<Method using mercaptosilanes (Q3)>
When the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a group capable of reacting with a mercapto group, the terminal functional group A hydrolyzable silyl group can be introduced by reacting mer with mercaptosilanes.
 メルカプト基と反応しうる基は、例えばイソシアネート基、アクリロイル基、アリル基である。必要に応じて、加水分解性シリル基を導入する前に、これらの基を末端に導入してもよい。
 イソシアネート基およびアクリロイル基の場合については、アミノシラン類を用いる方法(Q2)の場合と同様である。
 例えば加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基がイソシアネート基である場合、アリルアルコールと反応させることにより分子末端にアリル基を導入することができる。
Examples of the group capable of reacting with a mercapto group are an isocyanate group, an acryloyl group, and an allyl group. If necessary, these groups may be introduced at the terminal before introducing the hydrolyzable silyl group.
The isocyanate group and acryloyl group are the same as in the method (Q2) using aminosilanes.
For example, when the functional group at the end of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is an isocyanate group, an allyl group is formed at the molecular end by reacting with allyl alcohol. Can be introduced.
 メルカプトシラン類としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシランなどが挙げられる。これらの中でも、3-メルカプトプロピルトリメトキシシラン又は3-メルカプトプロピルトリエトキシシランが好ましい。 Mercaptosilanes include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane Etc. Among these, 3-mercaptopropyltrimethoxysilane or 3-mercaptopropyltriethoxysilane is preferable.
 メルカプト基とイソシアネート基との反応はウレタン化反応と同様であり、ウレタン化反応触媒を用いてもよい。メルカプト基とアクリロイル基またはアリル基との反応は、ラジカル開始剤を用いることが好ましい。ラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)等が例示できる。 The reaction between the mercapto group and the isocyanate group is the same as the urethanization reaction, and a urethanization reaction catalyst may be used. The reaction between the mercapto group and the acryloyl group or allyl group is preferably performed using a radical initiator. Examples of the radical initiator include azobisisobutyronitrile (AIBN).
<エポキシシラン類を用いる方法(Q4)>
 加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基が、エポキシ基と反応しうる基の場合である場合には、該末端の官能基とエポキシシラン類とを反応させることにより加水分解性シリル基を導入することができる。
 エポキシ基と反応しうる基は、例えば水酸基、アミノ基である。
<Method (Q4) using epoxy silanes>
When the functional group at the end of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with the hydrolyzable silyl group is a group capable of reacting with an epoxy group, A hydrolyzable silyl group can be introduced by reacting a functional group with epoxy silanes.
Examples of the group capable of reacting with an epoxy group are a hydroxyl group and an amino group.
 エポキシシラン類としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が好ましい。これらの中でも、3-グリシドキシプロピルトリメトキシシラン又は3-グリシドキシプロピルトリエトキシシランが好ましい。 Epoxysilanes include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and the like are preferable. Among these, 3-glycidoxypropyltrimethoxysilane or 3-glycidoxypropyltriethoxysilane is preferable.
 エポキシ基との反応における触媒としては、アミン類、酸無水物類など公知のものが使用される。例えば鎖状脂肪族系ポリアミン、脂環族ポリアミン、芳香族ポリアミン、変性脂肪族系ポリアミン、イミダゾール化合物等が挙げられる。特に、N,N-ジメチルピペラジン、トリエチレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール(DMP-30)、ベンジルジメチルアミン(BDMA)等の三級アミンが好ましい。 As the catalyst in the reaction with the epoxy group, known ones such as amines and acid anhydrides are used. Examples include chain aliphatic polyamines, alicyclic polyamines, aromatic polyamines, modified aliphatic polyamines, imidazole compounds, and the like. In particular, tertiary amines such as N, N-dimethylpiperazine, triethylenediamine, 2,4,6-tris (dimethylaminomethyl) phenol (DMP-30) and benzyldimethylamine (BDMA) are preferable.
<ヒドロシラン類を用いる方法(Q5)>
 加水分解性シリル基を導入しようとする、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端の官能基がヒドロシリル化反応しうる基である場合には、該末端の官能基とヒドロシラン類とを反応させることにより加水分解性シリル基を導入することができる。
 ヒドロシリル化反応しうる基は、例えばアクリロイル基、アリル基であり、ポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの末端に、これらの基を導入して用いる。アクリロイル基またはアリル基の導入方法は、メルカプトシラン類を用いる方法(Q3)と同様である。
<Method (Q5) using hydrosilanes>
When the terminal functional group of the polyol (Z), prepolymer (P) or chain-extended polyurethane to be introduced with a hydrolyzable silyl group is a group capable of hydrosilylation reaction, the terminal functional group and the hydrosilane A hydrolyzable silyl group can be introduced by reacting with a group.
The group capable of hydrosilylation reaction is, for example, an acryloyl group or an allyl group, and these groups are introduced into the terminal of the polyol (Z), prepolymer (P) or chain-extended polyurethane. The method for introducing an acryloyl group or an allyl group is the same as the method (Q3) using mercaptosilanes.
 ヒドロシラン類としては、トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン等が挙げられる。
 この反応にはヒドロシリル化触媒を用いることが好ましい。ヒドロシリル化触媒としては、塩化白金酸などが例示できる。
Examples of hydrosilanes include trimethoxysilane, triethoxysilane, methyldiethoxysilane, methyldimethoxysilane, phenyldimethoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldi Examples thereof include siloxane.
It is preferable to use a hydrosilylation catalyst for this reaction. Examples of the hydrosilylation catalyst include chloroplatinic acid.
<硬化性組成物>
 本発明における硬化性組成物はシリル基含有重合体(S)を含む。該硬化性組成物はシリル基含有重合体(S)以外に少なくとも1種の添加剤を含み、該添加剤としては少なくとも硬化触媒であることが好ましい。また、硬化触媒以外に硬化剤としての水を含むことが好ましい。しかし、水を含まない硬化性組成物を使用して、シリル基含有重合体(S)を雰囲気中(通常は大気中)の水分で硬化させることもできる。
 好ましい硬化性組成物は、硬化触媒と水の少なくとも2種の添加剤を含む硬化性組成物である。水を含む硬化性組成物は、水分を含む雰囲気中で硬化させることもできる。また、基材と剥離シートの間で硬化性組成物を硬化させる場合には、通常基材や剥離シートは水分を透過し難いことより、水を含む硬化性組成物が使用される。シリル基含有重合体(S)を水と接触させると硬化反応が始まることより、硬化性組成物を硬化させる直前に水を配合することが好ましい。
 水を含まない硬化性組成物を使用する場合は、該硬化性組成物を水分が含まれる雰囲気中に曝して雰囲気中の水分を硬化性組成物に接触させて硬化させる。水分が含まれる雰囲気中の水分量や温度等を調整して硬化速度を調整することができる。
 本発明における硬化性組成物は、シリル基含有重合体(S)以外の、加水分解性シリル基を有する他の重合体を含んでいてもよい。加水分解性シリル基を有する他の重合体の含有割合は、硬化性組成物全体の30質量%以下が好ましく、10質量%以下がより好ましい。
<Curable composition>
The curable composition in this invention contains a silyl group containing polymer (S). The curable composition contains at least one additive other than the silyl group-containing polymer (S), and the additive is preferably at least a curing catalyst. In addition to the curing catalyst, it is preferable to include water as a curing agent. However, it is also possible to cure the silyl group-containing polymer (S) with moisture in the atmosphere (usually in the atmosphere) using a curable composition that does not contain water.
A preferred curable composition is a curable composition comprising a curing catalyst and at least two additives of water. The curable composition containing water can be cured in an atmosphere containing moisture. Moreover, when hardening a curable composition between a base material and a peeling sheet, since the base material and a peeling sheet do not permeate | transmit moisture normally, the curable composition containing water is used. Since the curing reaction starts when the silyl group-containing polymer (S) is brought into contact with water, it is preferable to add water immediately before curing the curable composition.
When using the curable composition which does not contain water, this curable composition is exposed to the atmosphere containing a water | moisture content, the water | moisture content in an atmosphere is made to contact a curable composition, and is hardened. The curing rate can be adjusted by adjusting the amount of moisture, temperature, etc. in the atmosphere containing moisture.
The curable composition in this invention may contain the other polymer which has a hydrolysable silyl group other than a silyl group containing polymer (S). 30 mass% or less of the whole curable composition is preferable, and, as for the content rate of the other polymer which has a hydrolyzable silyl group, 10 mass% or less is more preferable.
<添加剤>
 本発明における硬化性組成物には、各種の添加剤を含有していてもよい。なお、本発明における硬化性組成物は、可塑剤を含有しないことが好ましい。特にフタル酸ジオクチル等のエステル系可塑剤は、含有しないことが好ましい。エステル系可塑剤を含有すると、粘着体(硬化物)と基材との接着力が低下し、被着体から粘着体を剥離させる際に被着体に糊残り(adhesive deposit)が発生する場合があるからである。
[硬化剤]
 本発明における硬化性組成物は水と接触することにより硬化する。したがって大気中の水と反応して湿気硬化する。また、硬化させる直前に、硬化剤として水(HO)を添加してもよい。この場合の水の添加量は、シリル基含有重合体(S)および他の加水分解性シリル基を有する重合体の合計量の100質量部に対して0.01~5質量部であることが好ましく、0.01~1質量部がより好ましく、0.05~0.5質量部が特に好ましい。硬化剤の含有量を0.01質量部以上とすることにより硬化を有効に促進でき、硬化剤の含有量を5質量部以下とすることにより使用時の可使時間を確保できる。
<Additives>
The curable composition in the present invention may contain various additives. In addition, it is preferable that the curable composition in this invention does not contain a plasticizer. In particular, it is preferable not to contain an ester plasticizer such as dioctyl phthalate. When an ester plasticizer is included, the adhesive strength between the adhesive (cured product) and the substrate decreases, and adhesive deposits are generated on the adherend when the adhesive is peeled off from the adherend. Because there is.
[Curing agent]
The curable composition in the present invention is cured by contact with water. Therefore, it reacts with water in the atmosphere and is cured by moisture. Also, just prior to curing, water (H 2 O) may be added as a curing agent. In this case, the amount of water added is 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers having hydrolyzable silyl groups. Preferably, 0.01 to 1 part by mass is more preferable, and 0.05 to 0.5 part by mass is particularly preferable. Curing can be effectively promoted by setting the content of the curing agent to 0.01 parts by mass or more, and the pot life during use can be ensured by setting the content of the curing agent to 5 parts by mass or less.
[硬化触媒]
 本発明における硬化性組成物は、加水分解性シリル基の加水分解及び/又は架橋反応を促進するための硬化触媒(硬化促進剤)を含有することが好ましい。
 かかる硬化触媒は加水分解性シリル基の反応を促進する成分として公知のものを適宜使用できる。具体例としては、ジブチルスズジアセテート、ジブチルスズジラウレート、ジオクチルスズジラウレート、(n-CSn(OCOCH=CHCOOCH、(n-CSn(OCOCH=CHCOO(n-C))、(n-C17Sn(OCOCH=CHCOOCH、(n-C17Sn(OCOCH=CHCOO(n-C))、(n-C17Sn(OCOCH=CHCOO(iso-C17等の有機スズカルボン酸塩;(n-CSn(SCHCOO)、(n-C17Sn(SCHCOO)、(n-C17Sn(SCHCHCOO)、(n-C17Sn(SCHCOOCHCHOCOCHS)、(n-CSn(SCHCOO(iso-C17、(n-C17Sn(SCHCOO(iso-C17、(n-C17Sn(SCHCOO(n-C17、(n-CSnS等の含硫黄有機スズ化合物;(n-CSnO、(n-C17SnO等の有機スズオキシド;エチルシリケート、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジオクチル、フタル酸ジメチル、フタル酸ジエチル及びフタル酸ジオクチルからなる群より選ばれるエステル化合物と、上記有機スズオキシドとの反応生成物;(n-CSn(acac)、(n-C17Sn(acac)、(n-CSn(OC17)(acac)、(n-CSn(OC(CH)CHCO、(n-C17Sn(OC(CH)CHCO、(n-CSn(OC17)(OC(CH)CHCO)、ビスアセチルアセトナートスズ等のキレートスズ化合物(ただし、上記acacはアセチルアセトナト配位子を意味し、OC(CH)CHCOはエチルアセトアセテート配位子を意味する。);テトラメトキシシラン、テトラエトキシシラン及びテトラプロポキシシランからなる群より選ばれるアルコキシシランと、上記キレートスズ化合物との反応生成物;(n-C(CHCOO)SnOSn(OCOCH)(n-C、(n-C(CHO)SnOSn(OCH)(n-C等の-SnOSn-結合含有有機スズ化合物等のスズ化合物が挙げられる。
[Curing catalyst]
The curable composition in the present invention preferably contains a curing catalyst (curing accelerator) for accelerating the hydrolysis and / or crosslinking reaction of the hydrolyzable silyl group.
As such a curing catalyst, a known catalyst can be appropriately used as a component for promoting the reaction of the hydrolyzable silyl group. Specific examples include dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, (n—C 4 H 9 ) 2 Sn (OCOCH═CHCOOCH 3 ) 2 , (n—C 4 H 9 ) 2 Sn (OCOCH═CHCOO (n -C 4 H 9 )) 2 , (n-C 8 H 17 ) 2 Sn (OCOCH = CHCOOCH 3 ) 2 , (n-C 8 H 17 ) 2 Sn (OCOCH = CHCOO (n-C 4 H 9 )) 2 , (nC 8 H 17 ) 2 Sn (OCOCH═CHCOO (iso-C 8 H 17 ) 2 and other organotin carboxylates; (nC 4 H 9 ) 2 Sn (SCH 2 COO), (n -C 8 H 17) 2 Sn ( SCH 2 COO), (n-C 8 H 17) 2 Sn (SCH 2 CH 2 COO), (n-C 8 H 17) 2 S (SCH 2 COOCH 2 CH 2 OCOCH 2 S), (n-C 4 H 9) 2 Sn (SCH 2 COO (iso-C 8 H 17) 2, (n-C 8 H 17) 2 Sn (SCH 2 COO Sulfur-containing organotin such as (iso-C 8 H 17 ) 2 , (n-C 8 H 17 ) 2 Sn (SCH 2 COO (n-C 8 H 17 ) 2 , (n-C 4 H 9 ) 2 SnS Compound; Organotin oxide such as (nC 4 H 9 ) 2 SnO, (nC 8 H 17 ) 2 SnO; ethyl silicate, dimethyl maleate, diethyl maleate, dioctyl maleate, dimethyl phthalate, diethyl phthalate and an ester compound selected from the group consisting of dioctyl phthalate, reaction products of the organic tin oxide; (n-C 4 H 9 ) 2 Sn (acac) 2, ( -C 8 H 17) 2 Sn ( acac) 2, (n-C 4 H 9) 2 Sn (OC 8 H 17) (acac), (n-C 4 H 9) 2 Sn (OC (CH 3) CHCO 2 C 2 H 5) 2, (n-C 8 H 17) 2 Sn (OC (CH 3) CHCO 2 C 2 H 5) 2, (n-C 4 H 9) 2 Sn (OC 8 H 17) ( OC (CH 3 ) CHCO 2 C 2 H 5 ), chelate tin compounds such as bisacetylacetonatotin (wherein acac means an acetylacetonato ligand, OC (CH 3 ) CHCO 2 C 2 H 5 is Means ethyl acetoacetate ligand. ); Reaction product of alkoxysilane selected from the group consisting of tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane and the above chelate tin compound; (nC 4 H 9 ) 2 (CH 3 COO) SnOSn (OCOCH 3 ); -SnOSn-bond-containing organotin compounds such as (n-C 4 H 9 ) 2 , (n-C 4 H 9 ) 2 (CH 3 O) SnOSn (OCH 3 ) (n-C 4 H 9 ) 2 Of the tin compound.
 また、硬化触媒の更なる具体例としては、2-エチルヘキサン酸スズ、n-オクチル酸スズ、ナフテン酸スズ又はステアリン酸スズ等の2価スズカルボン酸塩類;オクチル酸、オレイン酸、ナフテン酸又はステアリン酸等の有機カルボン酸の錫以外の金属塩類;カルボン酸カルシウム、カルボン酸ジルコニウム、カルボン酸鉄、カルボン酸バナジウム、ビスマストリス-2-エチルヘキサノエート等のカルボン酸ビスマス、カルボン酸鉛、カルボン酸チタニウム、又はカルボン酸ニッケル等;テトライソプロピルチタネート、テトラブチルチタネート、テトラメチルチタネート、テトラ(2-エチルへキシルチタネート)等のチタンアルコキシド類;アルミニウムイソプロピレート、モノ-sec-ブトキシアルミニウムジイソプロピレート等のアルミニウムアルコキシド類;ジルコニウム-n-プロピレート、ジルコニウム-n-ブチレート等のジルコニウムアルコキシド類;チタンテトラアセチルアセトナート、チタンエチルアセトアセテート、チタンオクチレングリコレート、チタンラクテート等のチタンキレート類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等のアルミニウムキレート類;ジルコニウムテトラアセチルアセトナート、ジルコニウムビスアセチルアセトナート、ジルコニウムアセチルアセトナートビスエチルアセトアセテート、ジルコニウムアセテート等のジルコニウム化合物類;リン酸、p-トルエンスルホン酸又はフタル酸等の酸性化合物類;ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ラウリルアミン等の脂肪族モノアミン類;エチレンジアミン、ヘキサンジアミン等の脂肪族ジアミン類;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族ポリアミン類;ピペリジン、ピペラジン、1,8-ジアザビシクロ(5.4.0)ウンデセン-7等の複素環式アミン類;メタフェニレンジアミン等の芳香族アミン類;モノエタノールアミン、ジエタノールアミン又はトリエタノールアミン等のアルカノールアミン類;トリエチルアミン等のトリアルキルアミン類;上記アミン類と肪族モノカルボン酸(蟻酸、酢酸、オクチル酸、2-エチルヘキサン酸など)、脂肪族ポリカルボン酸(蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸など)、芳香族モノカルボン酸(安息香酸、トルイル酸、エチル安息香酸など)、芳香族ポリカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、トリメリット酸など)、フェノール化合物(フェノール、レゾルシン等)、スルホン酸化合物(アルキルベンゼンスルホン酸、トルエンスルホン酸、ベンゼンスルホン酸など)、リン酸化合物等の有機酸、及び塩酸、臭素酸、硫酸等の無機酸等の酸からなる第1級~第3級のアンモニウム-酸塩類;トリエチルメチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、ヘキシルトリメチルアンモニウムヒドロキシド、オクチルトリメチルアンモニウムヒドロキシド、デシルトリメチルアンモニウムヒドロキシド、ドデシルトリメチルアンモニウムヒドロキシド、オクチルジメチルエチルアンモニウムヒドロキシド、デシルジメチルエチルアンモニウムヒドロキシド、ドデシルジメチルエチルアンモニウムヒドロキシド、ジヘキシルジメチルアンムニウムヒドロキシド、ジオクチルジメチルアンモニウムヒドロキシド、ジデシルジメチルアンモニウムヒドロキシド、ジドデシルジメチルアンモニウムヒドロキシド等のアンモニウム水酸基塩類;エポキシ樹脂の硬化剤として用いられる各種変性アミン等のアミン化合物類等が挙げられる。 Further examples of the curing catalyst include divalent tin carboxylates such as tin 2-ethylhexanoate, tin n-octylate, tin naphthenate or tin stearate; octyl acid, oleic acid, naphthenic acid or stearin. Metal salts other than tin of organic carboxylic acid such as acid; bismuth carboxylate such as calcium carboxylate, zirconium carboxylate, iron carboxylate, vanadium carboxylate, bismuth tris-2-ethylhexanoate, lead carboxylate, carboxylic acid Titanium or nickel carboxylate; titanium alkoxides such as tetraisopropyl titanate, tetrabutyl titanate, tetramethyl titanate, tetra (2-ethylhexyl titanate); aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate Zirconium alkoxides such as zirconium-n-propylate and zirconium-n-butyrate; Titanium chelates such as titanium tetraacetylacetonate, titanium ethylacetoacetate, titanium octylene glycolate and titanium lactate; Aluminum tris Aluminum chelates such as acetylacetonate, aluminum trisethylacetoacetate, diisopropoxyaluminum ethylacetoacetate; zirconium compounds such as zirconium tetraacetylacetonate, zirconium bisacetylacetonate, zirconium acetylacetonate bisethylacetoacetate, zirconium acetate Acid compounds such as phosphoric acid, p-toluenesulfonic acid or phthalic acid; Aliphatic monoamines such as ruamine, hexylamine, octylamine, decylamine and laurylamine; Aliphatic diamines such as ethylenediamine and hexanediamine; Aliphatic polyamines such as diethylenetriamine, triethylenetetramine and tetraethylenepentamine; Piperidine and piperazine Heterocyclic amines such as 1,8-diazabicyclo (5.4.0) undecene-7; aromatic amines such as metaphenylenediamine; alkanolamines such as monoethanolamine, diethanolamine or triethanolamine; triethylamine Trialkylamines such as the above-mentioned amines and aliphatic monocarboxylic acids (formic acid, acetic acid, octylic acid, 2-ethylhexanoic acid, etc.), aliphatic polycarboxylic acids (succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, etc.) Acid), aromatic monocarboxylic acids (benzoic acid, toluic acid, ethylbenzoic acid, etc.), aromatic polycarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid, nitrophthalic acid, trimellitic acid, etc.), phenolic compounds ( Phenol, resorcin, etc.), sulfonic acid compounds (alkylbenzenesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, etc.), organic acids such as phosphoric acid compounds, and acids such as inorganic acids such as hydrochloric acid, bromic acid, sulfuric acid, etc. Grades to tertiary ammonium-acid salts; triethylmethylammonium hydroxide, trimethylbenzylammonium hydroxide, hexyltrimethylammonium hydroxide, octyltrimethylammonium hydroxide, decyltrimethylammonium hydroxide, dodecyltrimethylammonium Hydroxide, Octyldimethylethylammonium hydroxide, Decyldimethylethylammonium hydroxide, Dodecyldimethylethylammonium hydroxide, Dihexyldimethylammonium hydroxide, Dioctyldimethylammonium hydroxide, Didecyldimethylammonium hydroxide, Didodecyldimethylammonium hydroxide And ammonium compounds such as various modified amines used as curing agents for epoxy resins.
 これらの硬化触媒は1種類のみを用いても、2種類以上を組合せて用いてもよい。2種類以上を組合せる場合は、たとえば、上記2価スズカルボン酸塩、有機スズカルボン酸塩又は有機スズオキシドと、エステル化合物との反応物等の上記金属含有化合物に、脂肪族モノアミン又はその他の上記アミン化合物を組合せることが、優れた硬化性が得られることから好ましい。
 硬化触媒の含有量は、シリル基含有重合体(S)および他の重合体の合計量の100質量部に対して0.001~10質量部であることが好ましく、0.01~5質量部がより好ましい。硬化触媒の含有量を0.001質量部以上とすることにより硬化速度を有効に促進でき、硬化触媒の含有量を10質量部以下とすることにより使用時の可使時間を確保できる。
These curing catalysts may be used alone or in combination of two or more. When two or more types are combined, for example, the above-mentioned metal-containing compound such as a reaction product of the divalent tin carboxylate, organotin carboxylate or organotin oxide and an ester compound, an aliphatic monoamine or other amine compound It is preferable to combine these because excellent curability can be obtained.
The content of the curing catalyst is preferably 0.001 to 10 parts by mass, preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers. Is more preferable. By setting the content of the curing catalyst to 0.001 part by mass or more, the curing rate can be effectively accelerated, and by setting the content of the curing catalyst to 10 parts by mass or less, the pot life during use can be ensured.
[溶剤]
 本発明における硬化性組成物は、塗布性等を向上させるために、溶剤を添加して使用してもよい。
 溶剤は特に限定されないが、例えば、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類、アルコール類、ケトン類、エステル類、エーテル類、エステルアルコール類、ケトンアルコール類、エーテルアルコール類、ケトンエーテル類、ケトンエステル類又はエステルエーテル類が挙げられる。
 これらの中でも、溶剤としてアルコール類を用いると、硬化性組成物の保存安定性を向上させることができるため好ましい。このアルコール類としては、炭素数1~10のアルキルアルコールであることが好ましく、メタノール、エタノール、イソプロピルアルコール、イソペンチルアルコール又はヘキシルアルコールであることがより好ましく、メタノール又はエタノールであることが更に好ましい。特にメタノールを用いた場合に、添加量を増やすと、硬化性組成物の硬化時間を長くすることができる。これは硬化性組成物を調製後の所定粘度まで達する時間、所謂ポットライフを長くするために有効な手法である。
 硬化性組成物に溶剤を添加して使用する場合、その添加量は、シリル基含有重合体(S)および他の重合体の合計量100質量部に対して、500質量部以下であることが好ましく、1~100質量部であることがより好ましい。添加量が500質量部を超えると、溶剤の揮発に伴って硬化物(粘着体)の収縮が生じる場合がある。
[solvent]
The curable composition in the present invention may be used after adding a solvent in order to improve the coating property and the like.
The solvent is not particularly limited. For example, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, alcohols, ketones, esters, ethers, ester alcohols, ketone alcohols, ether alcohols , Ketone ethers, ketone esters or ester ethers.
Among these, it is preferable to use alcohols as the solvent because the storage stability of the curable composition can be improved. The alcohol is preferably an alkyl alcohol having 1 to 10 carbon atoms, more preferably methanol, ethanol, isopropyl alcohol, isopentyl alcohol or hexyl alcohol, and further preferably methanol or ethanol. In particular, when methanol is used, the curing time of the curable composition can be increased by increasing the amount of addition. This is an effective technique for prolonging the so-called pot life of the curable composition until it reaches a predetermined viscosity after preparation.
When adding and using a solvent to a curable composition, the addition amount should be 500 mass parts or less with respect to 100 mass parts of total amounts of a silyl group containing polymer (S) and another polymer. The amount is preferably 1 to 100 parts by mass. When the addition amount exceeds 500 parts by mass, the cured product (adhesive) may shrink as the solvent volatilizes.
[脱水剤]
 本発明における硬化性組成物は、貯蔵安定性を改良するために、本発明の効果を損なわない範囲で少量の脱水剤を含有していてもよい。
 かかる脱水剤の具体例としては、オルトギ酸メチル、オルトギ酸エチル等のオルトギ酸アルキル;オルト酢酸メチル、オルト酢酸エチル等のオルト酢酸アルキル;メチルトリメトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン又はテトラエトキシシラン等の加水分解性有機シリコーン化合物;加水分解性有機チタン化合物等が挙げられる。これらの中でもビニルトリメトキシシラン又はテトラエトキシシランがコスト、脱水能力の点から好ましい。
 硬化性組成物が脱水剤を含有する場合、その含有量は、シリル基含有重合体(S)および他の重合体の合計量の100質量部に対して0.001~30質量部であることが好ましく、0.01~10質量部であることがより好ましい。
[Dehydrating agent]
In order to improve the storage stability, the curable composition in the present invention may contain a small amount of a dehydrating agent as long as the effects of the present invention are not impaired.
Specific examples of such dehydrating agents include alkyl orthoformate such as methyl orthoformate and ethyl orthoformate; alkyl orthoacetate such as methyl orthoacetate and ethyl orthoacetate; methyltrimethoxysilane, vinyltrimethoxysilane, tetramethoxysilane or tetra Examples include hydrolyzable organic silicone compounds such as ethoxysilane; hydrolyzable organic titanium compounds and the like. Among these, vinyltrimethoxysilane or tetraethoxysilane is preferable from the viewpoints of cost and dehydration ability.
When the curable composition contains a dehydrating agent, the content thereof is 0.001 to 30 parts by mass with respect to 100 parts by mass of the total amount of the silyl group-containing polymer (S) and other polymers. Is more preferable, and 0.01 to 10 parts by mass is more preferable.
[その他の添加剤]
 硬化性組成物は下記の充填剤、補強剤、安定剤、難燃剤、帯電防止剤、離型剤、又は防黴剤等を含有していてもよい。
 充填剤または補強剤としては、たとえば、カーボンブラック、水酸化アルミニウム、炭酸カルシウム、酸化チタン、シリカ、ガラス、骨粉、木粉、又は繊維フレークなどが挙げられる。
 安定剤としては、たとえば、酸化防止剤、紫外線吸収剤、または光安定剤などが挙げられる。
 難燃剤としては、たとえば、クロロアルキルホスフェート、ジメチルメチルホスホネート、アンモニウムポリホスフェート、又は有機臭素化合物等が挙げられる。
 離型剤としては、たとえば、ワックス、石鹸類、又はシリコーンオイル等が挙げられる。防黴剤としては、たとえば、ペンタクロロフェノール、ペンタクロロフェノールラウレート、又はビス(トリ-n-ブチル錫)オキシド等が挙げられる。
 また、硬化性組成物には、基材との接着性を向上させる目的で接着性付与剤が含有されていてもよい。
[Other additives]
The curable composition may contain the following fillers, reinforcing agents, stabilizers, flame retardants, antistatic agents, mold release agents, antifungal agents, and the like.
Examples of the filler or reinforcing agent include carbon black, aluminum hydroxide, calcium carbonate, titanium oxide, silica, glass, bone powder, wood powder, and fiber flakes.
Examples of the stabilizer include an antioxidant, an ultraviolet absorber, and a light stabilizer.
Examples of the flame retardant include chloroalkyl phosphate, dimethyl methyl phosphonate, ammonium polyphosphate, or an organic bromine compound.
Examples of the mold release agent include wax, soaps, or silicone oil. Examples of the antifungal agent include pentachlorophenol, pentachlorophenol laurate, bis (tri-n-butyltin) oxide, and the like.
In addition, the curable composition may contain an adhesion-imparting agent for the purpose of improving the adhesion to the substrate.
<粘着シートの製造方法>
 本発明の粘着体は、粘着シートの粘着層として好適に用いられる。粘着シートは、基材上に粘着体層が設けられており、該粘着体層の基材と反対側の表面が再剥離性を有する粘着面として用いられるものである。また該粘着体層の基材と反対側の表面上に剥離シートが積層されており、使用時に剥離シートを剥離して粘着面を露出させる構成であってもよい。または基材が剥離シートからなっており、粘着体層の表裏両面の一方または両方に剥離シートが積層された両面粘着シートであってもよい。両面粘着シートの使用時に剥離シートを剥離すると、表裏両面が再剥離性を有する粘着面となる。なお、本明細書において粘着シートの厚さは問わず、シートとフィルムとは区別しない。
 本発明の粘着体を用いた粘着シートにおいて、粘着体層の厚みは10~200μmが好ましく、30~80μmがより好ましい。また、基材の厚みは基材の種類にもよるが、1μm~500μmが好ましく、5μm~100μmがより好ましい。
<Method for producing adhesive sheet>
The pressure-sensitive adhesive body of the present invention is suitably used as a pressure-sensitive adhesive layer for pressure-sensitive adhesive sheets. The pressure-sensitive adhesive sheet is provided with a pressure-sensitive adhesive layer on a base material, and the surface of the pressure-sensitive adhesive layer opposite to the base material is used as a pressure-sensitive adhesive surface having removability. Moreover, the peeling sheet is laminated | stacked on the surface on the opposite side to the base material of this adhesive body layer, and the structure which peels a peeling sheet at the time of use and exposes an adhesive surface may be sufficient. Or the base material consists of a peeling sheet, and the double-sided adhesive sheet by which the peeling sheet was laminated | stacked on one or both of the front and back both surfaces of an adhesive body layer may be sufficient. If the release sheet is peeled off when the double-sided pressure-sensitive adhesive sheet is used, both front and back surfaces become pressure-sensitive adhesive surfaces having removability. In addition, in this specification, the thickness of an adhesive sheet is not ask | required, and a sheet | seat and a film are not distinguished.
In the pressure-sensitive adhesive sheet using the pressure-sensitive adhesive body of the present invention, the thickness of the pressure-sensitive adhesive layer is preferably 10 to 200 μm, more preferably 30 to 80 μm. The thickness of the substrate is preferably 1 μm to 500 μm, more preferably 5 μm to 100 μm, although it depends on the type of substrate.
 本発明の粘着シートの製造方法は、基材上に、シリル基含有重合体(S)を含む硬化性組成物からなる未硬化層を形成し、該未硬化層の基材の反対側の表面が露出されている状態、または該表面上に剥離シートが積層されている状態で該未硬化層を硬化させる方法である。
 シリル基含有重合体(S)を含む硬化性組成物は硬化性に優れ、水分と接触すると、迅速かつ強固に硬化(湿気硬化)して硬化体が得られる。該湿気硬化には加水分解性シリル基(-SiX (3-a))が寄与する。
 硬化性組成物の硬化後に切断、型抜き等によって成形することも可能である。
In the method for producing a pressure-sensitive adhesive sheet of the present invention, an uncured layer comprising a curable composition containing a silyl group-containing polymer (S) is formed on a substrate, and the surface of the uncured layer on the opposite side of the substrate. Is a method in which the uncured layer is cured in a state where is exposed or a release sheet is laminated on the surface.
The curable composition containing the silyl group-containing polymer (S) has excellent curability, and when it comes into contact with moisture, it cures rapidly and firmly (moisture curing) to obtain a cured product. The wet air curing hydrolyzable silyl group (-SiX a R 3 (3- a)) contributes.
It can also be formed by cutting, die cutting or the like after curing of the curable composition.
 硬化性組成物の硬化条件は、必要に応じて設定される。例えば硬化性組成物としてシリル基含有重合体(S)と硬化触媒を含むものを用意する。これに所定量の水を硬化剤として添加し充分に混合する。これを基材の上に塗工して未硬化層を形成する。この後、該未硬化層の表面が露出した状態で、または該表面上に剥離シートが積層されている状態で、オーブン等で加熱し、室温で養生することにより硬化させることができる。室温で養生する際または養生した後に加湿環境に放置することも有効である。オーブン等による加熱は基材および剥離シートの耐熱温度等により適宜設定される。例えば60~120℃の環境に1~30分程度放置することが好ましい。特に溶剤を用いた場合には、一定の乾燥時間を設定することが好ましい。ただし急激な乾燥は、発泡の原因になるため好ましくない。またオーブン内でまたはオーブンから取り出した後に、スチームを当ててもよい。 The curing conditions for the curable composition are set as necessary. For example, a curable composition containing a silyl group-containing polymer (S) and a curing catalyst is prepared. A predetermined amount of water is added to this as a curing agent and mixed well. This is coated on a base material to form an uncured layer. Then, it can be cured by heating in an oven or the like and curing at room temperature with the surface of the uncured layer exposed or with a release sheet laminated on the surface. It is also effective to leave it in a humidified environment when curing at room temperature or after curing. The heating by the oven or the like is appropriately set depending on the heat resistance temperature of the base material and the release sheet. For example, it is preferable to leave in an environment of 60 to 120 ° C. for about 1 to 30 minutes. In particular, when a solvent is used, it is preferable to set a certain drying time. However, rapid drying is not preferable because it causes foaming. Steam may also be applied in or after removal from the oven.
 未硬化層を硬化させると、硬化物(粘着体)と基材との良好な接着性が得られるとともに、硬化物層の露出された表面、または剥離シートと密着している面が再剥離性を有する粘着面となる。 When the uncured layer is cured, good adhesion between the cured product (adhesive) and the substrate is obtained, and the exposed surface of the cured product layer or the surface that is in close contact with the release sheet is removable. It becomes the adhesive surface which has.
<基材>
 基材の材質は特に限定されない。好ましい例としてはポリエチレンテレフタレート(PET)等のポリエステル類;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体(ブロック共重合体、ランダム共重合体)等のポリオレフィン類;ポリ塩化ビニル等のハロゲン化ポリオレフィン類;ボール紙等の紙類;織布、不織布等の布類;アルミニウム箔等の金属箔等が挙げられる。これらの基材は組み合わせて用いてもよい。例えばPET層、金属箔層、ポリエチレン層を積層した積層体を用いてもよい。
 基材の表面は事前の加工を行わなくてもよい。特にポリエステル類、紙類の粘着体層との接合面は事前の加工を行わなくても硬化性組成物の硬化に伴う接着効果により剥離しにくくなる。必要に応じてプライマー等を塗工しておいてもよい。
 一方ポリオレフィン類を基材に用いる場合には、硬化性組成物を塗工する面を事前に処理しておくことが好ましい。未処理の面に対しては剥離粘着力が低くなる場合があるためである。すなわちポリオレフィン類を用いた基材の硬化性組成物を塗工する面に対する事前の処理としては、コロナ処理(コロナ放電処理)、プライマー処理が例示できる。特に処理が簡単で工程が簡略化できるためにコロナ処理を行うことが好ましい。
<Base material>
The material of the substrate is not particularly limited. Preferred examples include polyesters such as polyethylene terephthalate (PET); polyolefins such as polyethylene, polypropylene and ethylene-propylene copolymers (block copolymers and random copolymers); halogenated polyolefins such as polyvinyl chloride; Examples include paper such as cardboard; cloth such as woven fabric and nonwoven fabric; metal foil such as aluminum foil. These base materials may be used in combination. For example, you may use the laminated body which laminated | stacked the PET layer, the metal foil layer, and the polyethylene layer.
The surface of the substrate may not be processed in advance. In particular, the bonding surface with the pressure-sensitive adhesive layer of polyesters or papers is difficult to peel off due to the adhesive effect accompanying the curing of the curable composition without performing prior processing. You may coat a primer etc. as needed.
On the other hand, when using polyolefin for a base material, it is preferable to process beforehand the surface which coats a curable composition. This is because the peel adhesive strength may be low for an untreated surface. That is, examples of the prior treatment for the surface of the substrate on which the curable composition of the substrate using polyolefins is applied include corona treatment (corona discharge treatment) and primer treatment. In particular, the corona treatment is preferable because the treatment is simple and the process can be simplified.
<剥離シート>
 剥離シートとしては、一般の剥離剤で表面処理を行った紙類;上述の未処理のポリオレフィン類:紙類等の基材にポリオレフィン類を積層したもの等、粘着体層との接着力が弱いものであればよい。
 基材として剥離シートを用いると、表裏両面が再剥離性を有する粘着体が得られる。
<Peeling sheet>
As the release sheet, papers that have been surface-treated with a general release agent; the above-mentioned untreated polyolefins: such as those obtained by laminating polyolefins on a base material such as papers, etc., have weak adhesion to the pressure-sensitive adhesive layer. Anything is acceptable.
When a release sheet is used as the substrate, a pressure-sensitive adhesive body having removability on both front and back surfaces is obtained.
<粘着体>
 本発明の粘着体は、後述の実施例に示されるように、硬化後の剥離強度が低く、良好な再剥離性を有する。
 具体的には、剥離粘着力が0N/25mmを超え8N/25mm以下、好ましくは0N/25mmを超え1N/25mm以下、より好ましく、0.005~0.8N/25mmの微粘着性または低粘着性を有する粘着体が得られる。本発明における硬化性組成物には、粘着性を増大させるような添加剤が含有されていないことが好ましい。
<Adhesive>
The pressure-sensitive adhesive body of the present invention has a low peel strength after curing and good re-peelability as shown in the examples described later.
Specifically, the peel adhesive strength is more than 0 N / 25 mm and not more than 8 N / 25 mm, preferably more than 0 N / 25 mm and not more than 1 N / 25 mm, more preferably 0.005 to 0.8 N / 25 mm. A pressure sensitive adhesive body is obtained. It is preferable that the curable composition in the present invention does not contain an additive that increases the tackiness.
 また損失弾性率と貯蔵弾性率の比(損失弾性率/貯蔵弾性率)で表される損失正接(tanδ)の温度特性において、0~40℃の温度範囲でtanδが0.1以上であるという、制振材として好ましい物性を有する。
 制振材は振動エネルギーを熱エネルギーに変換して振動吸収をおこなうものであり、制振材による振動吸収能は、一般に損失弾性率と貯蔵弾性率の比(損失弾性率/貯蔵弾性率)で表される損失正接(tanδ)が指標となる。このtanδが大きいほど、振動エネルギーが熱エネルギーに変換されて消費されやすく、振動吸収による制振性が発揮されやすい。
 上記のように広い温度範囲でtanδが大きいと、制振材を室内または室外の様々な温度条件下で使用する場合にも、良好な制振性が安定して得られやすい。
 なお、本明細書における損失正接(tanδ)の値は、硬化後の各フィルム(厚さ100μm)を長さ20mm、幅10mmの矩形状に切断して評価サンプルを作成し、動的粘弾性測定装置(SII社製、製品名:EXSTAR DMS6100)により、引張モードでtanδを測定した。tanδは10Hzの周波数で-100~150℃の範囲で測定し、温度依存性について評価した。
In the temperature characteristic of loss tangent (tan δ) expressed by the ratio of loss elastic modulus to storage elastic modulus (loss elastic modulus / storage elastic modulus), tan δ is 0.1 or more in the temperature range of 0 to 40 ° C. , Have preferable physical properties as a damping material.
Damping material converts vibration energy into thermal energy and absorbs vibration. The vibration absorbing capacity of the damping material is generally the ratio of loss elastic modulus to storage elastic modulus (loss elastic modulus / storage elastic modulus). The loss tangent (tan δ) expressed is an index. As tan δ is larger, vibration energy is more easily converted into heat energy and consumed, and vibration damping by vibration absorption is more likely to be exhibited.
When tan δ is large in a wide temperature range as described above, good vibration damping properties are easily obtained stably even when the vibration damping material is used in various indoor or outdoor temperature conditions.
The value of loss tangent (tan δ) in this specification is obtained by cutting each cured film (thickness: 100 μm) into a rectangular shape having a length of 20 mm and a width of 10 mm to prepare an evaluation sample, and measuring dynamic viscoelasticity Tan δ was measured in a tensile mode with an apparatus (manufactured by SII, product name: EXSTAR DMS6100). Tan δ was measured at a frequency of 10 Hz in the range of −100 to 150 ° C., and the temperature dependency was evaluated.
 シリル基含有重合体(S)を含む硬化性組成物を硬化させた硬化体が微粘着性または低粘着性を示す理由は明確ではないが、加水分解性シリル基(-SiX (3-a))、ジカルボン酸無水物(b)に由来する構成単位、ウレタン結合、およびウレア結合が寄与していると考えられる。
 ウレタン結合はイソシアネート基と水酸基との反応により形成され、ウレア結合はイソシアネート基とアミノ基との反応により形成される。
Although the reason why the cured product obtained by curing the curable composition containing the silyl group-containing polymer (S) exhibits slight tackiness or low tackiness is not clear, a hydrolyzable silyl group (—SiX a R 3 (3 -A) ), the structural unit derived from the dicarboxylic anhydride (b), the urethane bond, and the urea bond are considered to contribute.
The urethane bond is formed by the reaction of an isocyanate group and a hydroxyl group, and the urea bond is formed by the reaction of an isocyanate group and an amino group.
 すなわちポリオール(Z)はジカルボン酸無水物(b)に由来する構成単位を有し、プレポリマー(P)および鎖延長ポリウレタンはさらにウレタン結合を有する。またポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンに加水分解性シリル基を導入する際に、シリル基含有重合体(S)にウレタン結合またはウレア結合が導入され得る。
 ジカルボン酸無水物(b)に由来する構成単位のエステル結合、ウレタン結合、およびウレア結合は極性結合であるため、これらはシリル基含有重合体(S)における凝集力、粘着体の基材への接着性、および被着体への粘着性を高くする方向に作用すると考えられる。一方、加水分解性シリル基は粘着体の被着体への粘着性を低くする方向に作用すると考えられる。そしてこれらの相互作用により微粘着性または低粘着性が発現されると考えられる。また、加水分解性シリル基が導入される位置が分子末端であるため、分子運動を妨げずに凝集力を上げることができ、安定して粘着力を示すことができる。
 したがってシリル基含有重合体(S)における、エステル結合、ウレタン結合およびウレア結合の合計量(MEU)と加水分解性シリル基の量(MS)との割合(MEU/MSのモル比)を制御することにより、粘着体の粘着力を制御することが可能である。剥離粘着力が8N/25mm以下である粘着体を得るためには、該MEU/MSのモル比が2/1~100/1の範囲であることが好ましく、2/1~90/1であることがより好ましい。MEU/MSのモル比は、例えばポリオール(Z)、プレポリマー(P)または鎖延長ポリウレタンの分子量を調整することにより制御できる。
That is, the polyol (Z) has a structural unit derived from the dicarboxylic acid anhydride (b), and the prepolymer (P) and the chain extended polyurethane further have a urethane bond. Further, when a hydrolyzable silyl group is introduced into the polyol (Z), the prepolymer (P) or the chain extended polyurethane, a urethane bond or a urea bond can be introduced into the silyl group-containing polymer (S).
Since the ester bond, urethane bond, and urea bond of the structural unit derived from the dicarboxylic acid anhydride (b) are polar bonds, these are cohesive forces in the silyl group-containing polymer (S), It is considered to act in the direction of increasing the adhesiveness and the adhesion to the adherend. On the other hand, the hydrolyzable silyl group is considered to act in the direction of lowering the adhesiveness of the adhesive to the adherend. And it is thought that slight adhesiveness or low adhesiveness is expressed by these interactions. Further, since the position at which the hydrolyzable silyl group is introduced is the molecular end, the cohesive force can be increased without hindering the molecular motion, and the adhesive force can be stably exhibited.
Therefore, the ratio (MEU / MS molar ratio) of the total amount (MEU) of ester bond, urethane bond and urea bond (MEU) and the amount of hydrolyzable silyl group (MS) in the silyl group-containing polymer (S) is controlled. Thus, it is possible to control the adhesive force of the adhesive body. In order to obtain an adhesive having a peel adhesive strength of 8 N / 25 mm or less, the MEU / MS molar ratio is preferably in the range of 2/1 to 100/1, and is preferably 2/1 to 90/1. It is more preferable. The MEU / MS molar ratio can be controlled, for example, by adjusting the molecular weight of the polyol (Z), prepolymer (P), or chain extended polyurethane.
 また、シリル基含有重合体(S)を含む硬化性組成物を硬化させた硬化物(粘着体)が高いtanδを示す理由は明確ではないが、ジカルボン酸無水物に由来する屈曲鎖を有することと、ジカルボン酸化合物に由来する置換基の影響により、発熱による振動吸収性が発現していると考えられる。 The reason why the cured product (adhesive) obtained by curing the curable composition containing the silyl group-containing polymer (S) exhibits high tan δ is not clear, but has a bent chain derived from dicarboxylic acid anhydride. It is considered that vibration absorption due to heat generation is expressed due to the influence of the substituent derived from the dicarboxylic acid compound.
 本発明の粘着体の厚さは特に限定されないが、良好な制振性を得るうえで10μm以上が好ましく、20μm以上がさらに好ましく、30μm以上がより好ましい。また粘着力の安定性、経済性の点からは200μm以下が好ましく、100μm以下がより好ましく、80μm以下がさらに好ましい。 The thickness of the pressure-sensitive adhesive body of the present invention is not particularly limited, but is preferably 10 μm or more, more preferably 20 μm or more, and more preferably 30 μm or more for obtaining good vibration damping properties. Further, from the viewpoint of stability of adhesive strength and economical efficiency, it is preferably 200 μm or less, more preferably 100 μm or less, and further preferably 80 μm or less.
<粘着体の用途>
 本発明の粘着体は、良好な耐熱性と再剥離性を有するととともに、良好な制振性を有し、耐衝撃性が得られる。したがって、例えば、電子基板、ICチップ等の電子材料用保護シート;偏光板、光拡散板、光拡散シート、プリズムシート等の光学部材用保護シート;各種ディスプレイ用保護シート;自動車用保護シート;建築板材用表面保護フィルム;壁装用化粧シート;金属板、塗装鋼板、合成樹脂板、化粧合板、熱反射ガラスなどの製品の表面保護材等の粘着体層として好適に用いられる。
 本発明によれば、これらの保護シート、保護テープ、表面保護材に制振性を付与できるため耐衝撃性が得られる。
<Applications of adhesives>
The pressure-sensitive adhesive body of the present invention has good heat resistance and removability, has good vibration damping properties, and provides impact resistance. Thus, for example, protective sheets for electronic materials such as electronic substrates and IC chips; protective sheets for optical members such as polarizing plates, light diffusing plates, light diffusing sheets, prism sheets; protective sheets for various displays; protective sheets for automobiles; Surface protective film for plate material; decorative sheet for wall covering; suitably used as pressure-sensitive adhesive layer for surface protective material of products such as metal plate, coated steel plate, synthetic resin plate, decorative plywood, heat reflection glass.
According to the present invention, since the vibration damping property can be imparted to these protective sheet, protective tape, and surface protective material, impact resistance can be obtained.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(参考製造例1:複合金属シアン化物錯体触媒の製造)
 以下の方法で、有機配位子としてtert-ブチルアルコールを有する亜鉛ヘキサシアノコバルテート(以下、TBA-DMC触媒という。)を製造した。本例中のポリオールXは、ジプロピレングリコールにプロピレンオキシドを付加重合して得られた、数平均分子量(Mn)が1000のポリオールである。
 まず、500mlのフラスコに、塩化亜鉛の10.2gと水10gからなる水溶液を入れ、この水溶液を40℃に保温しつつ、毎分300回転(300rpm)で撹拌しながら、ここへ4.2gのカリウムヘキサシアノコバルテート(K[Co(CN)])と水75gからなる水溶液を30分間かけて滴下した。滴下終了後、さらに混合物を30分撹拌した。その後、エチレングリコールモノ-tert-ブチルエーテル(以下、EGMTBEと略す。)の40g、tert-ブチルアルコール(以下、TBAと略す。)の40g、水の80g、およびポリオールXの0.6gからなる混合物を前記混合物中に添加し、40℃で30分、さらに60℃で60分間撹拌した。得られた反応混合物を、直径125mmの円形ろ板と微粒子用の定量ろ紙(ADVANTEC社製のNo.5C)とを用いて加圧下(0.25MPa)で50分かけてろ過を行い、固体を分離した。
 次に、この複合金属シアン化物錯体を含むケーキに18gのEGMTBE、18gのTBA、および84gの水からなる混合物を添加して30分撹拌した後、加圧ろ過(ろ過時間:15分)を行った。ろ過により得られた複合金属シアン化物錯体を含むケーキに、さらに54gのEGMTBE、54gのTBA、および12gの水からなる混合物を添加して30分撹拌し、有機配位子を有する複合金属シアン化物錯体を含むEGMTBE/TBAのスラリーを得た。このスラリーをTBA-DMC触媒として用いた。
 このスラリーを5gほどフラスコに秤り取り、窒素気流で概ね乾かした後、80℃で4時間減圧乾燥した。得られた固体を秤量した結果、スラリー中に含まれる複合金属シアン化物錯体の濃度は4.70質量%であることがわかった。
(Reference Production Example 1: Production of double metal cyanide complex catalyst)
Zinc hexacyanocobaltate (hereinafter referred to as TBA-DMC catalyst) having tert-butyl alcohol as an organic ligand was produced by the following method. The polyol X in this example is a polyol having a number average molecular weight (Mn) of 1000 obtained by addition polymerization of propylene oxide to dipropylene glycol.
First, an aqueous solution consisting of 10.2 g of zinc chloride and 10 g of water was placed in a 500 ml flask, and while maintaining the aqueous solution at 40 ° C., stirring at 300 rpm (300 rpm), 4.2 g An aqueous solution composed of potassium hexacyanocobaltate (K 3 [Co (CN)] 6 ) and 75 g of water was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was further stirred for 30 minutes. Thereafter, a mixture of 40 g of ethylene glycol mono-tert-butyl ether (hereinafter abbreviated as EGMTBE), 40 g of tert-butyl alcohol (hereinafter abbreviated as TBA), 80 g of water, and 0.6 g of polyol X was obtained. The mixture was added to the mixture and stirred at 40 ° C. for 30 minutes and further at 60 ° C. for 60 minutes. The obtained reaction mixture was filtered for 50 minutes under pressure (0.25 MPa) using a 125 mm diameter circular filter plate and a quantitative filter paper for fine particles (No. 5C manufactured by ADVANTEC) to obtain a solid. separated.
Next, a mixture comprising 18 g of EGMTBE, 18 g of TBA, and 84 g of water was added to the cake containing the double metal cyanide complex and stirred for 30 minutes, followed by pressure filtration (filtration time: 15 minutes). It was. To the cake containing the double metal cyanide complex obtained by filtration, a mixture of 54 g EGMTBE, 54 g TBA, and 12 g water was added and stirred for 30 minutes, and the double metal cyanide having an organic ligand was stirred. A slurry of EGMTBE / TBA containing the complex was obtained. This slurry was used as a TBA-DMC catalyst.
About 5 g of this slurry was weighed into a flask, dried roughly with a nitrogen stream, and then dried under reduced pressure at 80 ° C. for 4 hours. As a result of weighing the obtained solid, it was found that the concentration of the double metal cyanide complex contained in the slurry was 4.70% by mass.
(実施例1)
 表1に示す製造条件で、第3の実施形態のシリル基含有重合体(S3-1)を調製した。
[イソシアネート基末端プレポリマー(PI-1)の製造]
 開始剤(a1)としては、プロピレングリコールに、KOH触媒を用いてプロピレンオキシド(以下、POということもある。)を反応させて製造した、水酸基価160.3mgKOH/g、分子量700のポリオキシプロピレンジオールを用いた。
 まず、開始剤(a1)に、プロピレンオキシドと無水フタル酸のモル比(PO/無水フタル酸)75/25の混合物を、参考製造例1で得たTBA-DMC触媒の存在下で開環重合させ、水酸基価57.9mgKOH/g(水酸基価換算分子量1937)、共重合鎖あたりの平均分子量(M’)618.5、酸価0.14mgKOH/g、開始剤(a1)由来の構成単位の含有量36質量%、無水フタル酸由来の構成単位の含有量30質量%のポリエステルエーテルポリオール(Z1)を得た。
Example 1
A silyl group-containing polymer (S3-1) of the third embodiment was prepared under the production conditions shown in Table 1.
[Production of isocyanate group-terminated prepolymer (PI-1)]
The initiator (a1) is a polyoxypropylene having a hydroxyl value of 160.3 mgKOH / g and a molecular weight of 700 produced by reacting propylene glycol with propylene oxide (hereinafter sometimes referred to as PO) using a KOH catalyst. Diol was used.
First, a mixture having a molar ratio of propylene oxide and phthalic anhydride (PO / phthalic anhydride) of 75/25 as an initiator (a1) is subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1. A hydroxyl value of 57.9 mg KOH / g (hydroxyl value converted molecular weight 1937), an average molecular weight per copolymer chain (M ′) 618.5, an acid value of 0.14 mg KOH / g, and a constituent unit derived from the initiator (a1). A polyester ether polyol (Z1) having a content of 36% by mass and a content of structural units derived from phthalic anhydride of 30% by mass was obtained.
 次に、撹拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに上記で得たポリエステルエーテルポリオール(Z1)の645.9g、ポリイソシアネート(B)として2,4-トリレンジイソシアネート(以下、TDI-100という。日本ポリウレタン工業社製、商品名:コロネートT-100)の87.1gとともに、ウレタン化触媒としてジブチル錫ジラウレート(DBTDL)を、ポリエステルエーテルポリオール(Z1)とTDI-100の合計量に対して25ppmに相当する量で仕込んだ。仕込み量におけるイソシアネート指数は150であった。
 ついで、85℃まで徐々に昇温し、プレポリマー生成反応を3時間行ってイソシアネート基末端プレポリマー(PI-1)を得た。得られたイソシアネート基末端プレポリマー(PI-1)において、イソシアネート基含有量(以下NCO%という。)は1.76質量%であった。
[鎖延長反応]
 その後、室温まで冷却し、酢酸エチルの157.1gおよびメチルエチルケトン(MEK)の157.1gを添加した後、鎖延長剤とし1,4-ブタンジオールを、イソシアネート基末端プレポリマー(PI-1)のイソシアネート基(NCO基)に対して、イソシアネート指数が130となるように添加し、60℃で反応させ、イソシアネート基末端の鎖延長ポリウレタンを得た。得られた鎖延長ポリウレタンのNCO%は0.28質量%であった。
Next, 645.9 g of the polyester ether polyol (Z1) obtained above in a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, and 2,4 as the polyisocyanate (B). Along with 87.1 g of tolylene diisocyanate (hereinafter referred to as TDI-100, trade name: Coronate T-100, manufactured by Nippon Polyurethane Industry Co., Ltd.), dibutyltin dilaurate (DBTDL) as a urethanization catalyst, polyester ether polyol (Z1) And TDI-100 were charged in an amount corresponding to 25 ppm. The isocyanate index in the charged amount was 150.
Subsequently, the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-1). In the obtained isocyanate group-terminated prepolymer (PI-1), the isocyanate group content (hereinafter referred to as NCO%) was 1.76% by mass.
[Chain extension reaction]
Then, after cooling to room temperature, 157.1 g of ethyl acetate and 157.1 g of methyl ethyl ketone (MEK) were added, and 1,4-butanediol as a chain extender was added to the isocyanate group-terminated prepolymer (PI-1). It added so that an isocyanate index might be set to 130 with respect to an isocyanate group (NCO group), and it was made to react at 60 degreeC, and the chain extension polyurethane of the isocyanate group terminal was obtained. NCO% of the obtained chain extension polyurethane was 0.28 mass%.
[加水分解性シリル基の導入]
 得られた鎖延長ポリウレタン樹脂のNCO基に対して1.05当量のアミノプロピルトリメトキシシランを添加して反応させ、トリメトキシシリル基を有するシリル基含有重合体(S3-1)を得た。加水分解性シリル基導入割合は100モル%であった。
 シリル基含有重合体(S3-1)のMwは81000、Mnは26000、Mw/Mnは3.1、MEU/MSのモル比は79であった。
 また、必要に応じて溶剤を加えることが出来る。本例では溶剤としてさらに酢酸エチルの209.4gおよびメチルエチルケトン(MEK)の209.4gを加え、シリル基含有重合体(S3-1)を含むの溶液を調製し、該溶液の粘度(液温25℃)をE型粘度計により測定し、粘度6500mPa・sの溶液を得た。
[Introduction of hydrolyzable silyl group]
1.05 equivalents of aminopropyltrimethoxysilane was added to the NCO group of the obtained chain-extended polyurethane resin and reacted to obtain a silyl group-containing polymer (S3-1) having a trimethoxysilyl group. The hydrolyzable silyl group introduction ratio was 100 mol%.
The Mw of the silyl group-containing polymer (S3-1) was 81000, Mn was 26000, Mw / Mn was 3.1, and the molar ratio of MEU / MS was 79.
Moreover, a solvent can be added as needed. In this example, 209.4 g of ethyl acetate and 209.4 g of methyl ethyl ketone (MEK) were further added as a solvent to prepare a solution containing the silyl group-containing polymer (S3-1), and the viscosity of the solution (liquid temperature 25 ° C.) was measured with an E-type viscometer to obtain a solution having a viscosity of 6500 mPa · s.
<評価>
 実施例1で得られたシリル基含有重合体(S3-1)の溶液(固形分濃度50質量%)200質量部に、硬化剤としての水(HO)0.03質量部、および硬化触媒としてのジブチルスズジラウレート1質量部を添加し、混合して硬化性組成物を得た。
 得られた硬化性組成物を、厚さ100μmのPETフィルム(基材)上に、乾燥後の膜厚が5μm、15μm、25μm、50μmになるようにそれぞれ塗工し、循環式オーブンにおいて100℃で3分乾燥した。そして、23℃かつ相対湿度50%で一週間養生して粘着体層を形成した。こうして粘着体層の厚さが異なる4種類の粘着シートを得た。
<Evaluation>
200 parts by mass of the silyl group-containing polymer (S3-1) obtained in Example 1 (solid content concentration: 50% by mass), 0.03 parts by mass of water (H 2 O) as a curing agent, and curing 1 part by weight of dibutyltin dilaurate as a catalyst was added and mixed to obtain a curable composition.
The obtained curable composition was applied onto a PET film (base material) having a thickness of 100 μm so that the film thickness after drying was 5 μm, 15 μm, 25 μm, and 50 μm, respectively, and 100 ° C. in a circulation oven. For 3 minutes. And it cured for one week at 23 degreeC and 50% of relative humidity, and formed the adhesion body layer. Thus, four types of pressure-sensitive adhesive sheets having different pressure-sensitive adhesive layer thicknesses were obtained.
[剥離強度]
 得られた粘着シート(幅25mm)を、室温下(23℃)で、厚さ1.5mmのブライトアニール処理したステンレス鋼板上に貼着し、2kgのゴムロールで圧着した。室温で30分、室温で24時間、60℃で1週間、60℃で2週間、60℃で3週間、および60℃で4週間経過後に、それぞれJIS B 7721に規定する引張り試験機(オリエンテック社製、RTE-1210)を用いて、剥離強度(180度ピール、引張り速度300mm/分)を測定した。結果を表2に示す。また粘着体層の厚さが15μmのときの剥離強度の測定結果は表1にも示す。
 この値が小さいほど粘着力が低くて剥がし易く、再剥離性に優れることを示す。室温で30分後の剥離強度の値が本発明における「剥離粘着力」に該当する。
 また30分後の剥離強度を基準とする、60℃で3週間経過後の剥離強度の比(3週間後/30分後)を表2に合わせて示す。この値が大きい程、粘着力の経時上昇が大きいことを示す。
[Peel strength]
The obtained pressure-sensitive adhesive sheet (width 25 mm) was stuck on a bright steel annealed stainless steel plate having a thickness of 1.5 mm at room temperature (23 ° C.) and pressure-bonded with a 2 kg rubber roll. After 30 minutes at room temperature, 24 hours at room temperature, 1 week at 60 ° C., 2 weeks at 60 ° C., 3 weeks at 60 ° C., and 4 weeks at 60 ° C., tensile testers (Orientec) specified in JIS B 7721, respectively. The peel strength (180 degree peel, tensile speed 300 mm / min) was measured using RTE-1210). The results are shown in Table 2. Table 1 also shows the measurement results of peel strength when the thickness of the pressure-sensitive adhesive layer is 15 μm.
The smaller this value, the lower the adhesive strength, the easier it is to peel off, and the better the removability. The value of the peel strength after 30 minutes at room temperature corresponds to the “peel strength” in the present invention.
Table 2 also shows the ratio of the peel strength after 3 weeks at 60 ° C. (after 3 weeks / 30 minutes), based on the peel strength after 30 minutes. A larger value indicates a greater increase in adhesive strength with time.
[制振性]
 上記剥離強度の測定に使用したのと同じ硬化性組成物を用いた。硬化性組成物をOPP(二軸延伸ポリプロピレン)フィルムに塗布(厚さ100μm)し、23℃、湿度50%の条件で1週間養生した。これを長さ20mm、幅10mmの矩形状に切断し、OPPフィルムから剥がして厚さ100μmの評価サンプルを作成した。動的粘弾性測定装置(SII社製、製品名:EXSTAR DMS6100)により、引張モードでtanδを測定した。tanδは10Hzの周波数で-100~150℃の範囲で測定し、温度依存性について評価した。その結果を図1に示す。図1のグラフにおいて、左縦軸は貯蔵弾性率(E’、単位:Pa)および損失弾性率(E”、単位:Pa)を表わし、右縦軸は損失正接(tanδ)を表わし、横軸は測定温度(単位:℃)を表わす。
 図1のグラフに示されるように、実施例1のシリル基含有重合体(S3-1)を硬化させて得られる粘着体は、常温付近においてtanδの値が大きくなっており、常温付近で良好な制振性を有することがわかる。tanδのピーク温度およびピーク値を表1に示す。
[Vibration control]
The same curable composition used for the measurement of the said peeling strength was used. The curable composition was applied to an OPP (biaxially oriented polypropylene) film (thickness: 100 μm) and cured for one week under conditions of 23 ° C. and humidity of 50%. This was cut into a rectangular shape having a length of 20 mm and a width of 10 mm, and peeled off from the OPP film to prepare an evaluation sample having a thickness of 100 μm. Tan δ was measured in a tensile mode using a dynamic viscoelasticity measuring apparatus (manufactured by SII, product name: EXSTAR DMS6100). Tan δ was measured at a frequency of 10 Hz in the range of −100 to 150 ° C., and the temperature dependency was evaluated. The result is shown in FIG. In the graph of FIG. 1, the left vertical axis represents storage elastic modulus (E ′, unit: Pa) and loss elastic modulus (E ″, unit: Pa), the right vertical axis represents loss tangent (tan δ), and the horizontal axis. Represents the measured temperature (unit: ° C).
As shown in the graph of FIG. 1, the pressure-sensitive adhesive obtained by curing the silyl group-containing polymer (S3-1) of Example 1 has a large tan δ value around room temperature, and is good at around room temperature. It can be seen that it has excellent damping properties. The peak temperature and peak value of tan δ are shown in Table 1.
(実施例2)
 実施例1において、表1に示すように製造条件を変更してシリル基含有重合体を合成し、これを用いて硬化性組成物および粘着体を製造した(以下、同様。)。本例では、第2の実施形態のシリル基含有重合体(S2-1)を用いる。
(Example 2)
In Example 1, the production conditions were changed as shown in Table 1 to synthesize a silyl group-containing polymer, and a curable composition and a pressure-sensitive adhesive were produced using the same (hereinafter the same). In this example, the silyl group-containing polymer (S2-1) of the second embodiment is used.
[イソシアネート基末端プレポリマー(PI-2)の製造]
 本例では、ポリエステルエーテルポリオール(Z1)と併用する他のポリオールとして、プロピレングリコールを開始剤とし、KOH触媒を用いてプロピレンオキシドを反応させて製造した、水酸基価56.2mgKOH/g、分子量2,000のポリオキシプロピレンジオールを用いる。
 すなわち撹拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに実施例1と同じポリエステルエーテルポリオール(Z1)の530.0g、他のポリオールとしての上記ポリオキシプロピレンジオールの537.5g、およびポリイソシアネート(B)としてTDI-100の121.9gとともに、ウレタン化触媒としてDBTDLを、ポリエステルエーテルポリオール(Z1)と他のポリオールとTDI-100の合計量に対して25ppmに相当する量で仕込んだ。仕込み量においてイソシアネート指数は133であった。
 ついで、85℃まで徐々に昇温し、プレポリマー生成反応を3時間行ってイソシアネート基末端プレポリマー(PI-2)を得た。得られたイソシアネート基末端プレポリマー(PI-2)において、NCO%は1.14質量%であった。
[Production of isocyanate group-terminated prepolymer (PI-2)]
In this example, the other polyol used in combination with the polyester ether polyol (Z1) was produced by reacting propylene oxide with propylene glycol as an initiator and using a KOH catalyst, having a hydroxyl value of 56.2 mgKOH / g, a molecular weight of 2, 000 polyoxypropylene diol is used.
That is, 530.0 g of the same polyester ether polyol (Z1) as in Example 1 in a four-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, a thermometer, and a dropping funnel, and the above polyoxypropylene diol as another polyol DBTDL as a urethanization catalyst to 25 ppm with respect to the total amount of polyester ether polyol (Z1), other polyols and TDI-100, together with 537.5 g of TDI-100 as polyisocyanate (B) Prepared in a corresponding amount. In the charged amount, the isocyanate index was 133.
Subsequently, the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-2). In the obtained isocyanate group-terminated prepolymer (PI-2), the NCO% was 1.14% by mass.
[加水分解性シリル基の導入]
 得られたイソシアネート基末端プレポリマー(PI-2)のNCO基に対して1.05当量のアミノプロピルトリメトキシシランを添加して反応を行い、トリメトキシシリル基を有するシリル基含有重合体(S2-1)を得た。加水分解性シリル基導入割合は100モル%であった。
 シリル基含有重合体(S2-1)のMw、Mn、Mw/Mn、MEU/MSのモル比、および溶液粘度を表1に示す。
[Introduction of hydrolyzable silyl group]
A silyl group-containing polymer (S2) having a trimethoxysilyl group is reacted by adding 1.05 equivalents of aminopropyltrimethoxysilane to the NCO group of the resulting isocyanate group-terminated prepolymer (PI-2). -1) was obtained. The hydrolyzable silyl group introduction ratio was 100 mol%.
Table 1 shows the Mw, Mn, Mw / Mn, MEU / MS molar ratio, and solution viscosity of the silyl group-containing polymer (S2-1).
(実施例3)
[イソシアネート基末端プレポリマー(P2-2)の製造]
 本例では、ポリエステルエーテルポリオール(Z1)と併用する他のポリオールとして、プロピレングリコールを開始剤とし、KOH触媒を用いてプロピレンオキシドを反応させて製造した、水酸基価16.3mgKOH/g、分子量7000のポリオキシプロピレンジオールを用いる。
 すなわち撹拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに実施例1と同じポリエステルエーテルポリオール(Z1)の121.3g、他のポリオールとしての上記ポリオキシプロピレンジオールの836.1g、およびポリイソシアネート(B)としてTDI-100の42.6gとともに、ウレタン化触媒としてDBTDLを、ポリエステルエーテルポリオール(Z1)と他のポリオールとTDI-100の合計量に対して25ppmに相当する量で仕込んだ。仕込み量においてイソシアネート指数は133であった。
 ついで、85℃まで徐々に昇温し、プレポリマー生成反応を3時間行ってイソシアネート基末端プレポリマー(PI-2)を得た。得られたイソシアネート基末端プレポリマー(P2-2)において、NCO%は0.46質量%であった。
(Example 3)
[Production of isocyanate group-terminated prepolymer (P2-2)]
In this example, the other polyol used in combination with the polyester ether polyol (Z1) was produced by reacting propylene oxide using propylene glycol as an initiator and a KOH catalyst, and having a hydroxyl value of 16.3 mgKOH / g and a molecular weight of 7000. Polyoxypropylene diol is used.
That is, 121.3 g of the same polyester ether polyol (Z1) as in Example 1 in a four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel, and the above polyoxypropylene diol as another polyol 836.1 g of TDI-100 as polyisocyanate (B) and DBTDL as a urethanization catalyst to 25 ppm based on the total amount of polyester ether polyol (Z1), other polyols and TDI-100 Prepared in a corresponding amount. In the charged amount, the isocyanate index was 133.
Subsequently, the temperature was gradually raised to 85 ° C., and a prepolymer formation reaction was performed for 3 hours to obtain an isocyanate group-terminated prepolymer (PI-2). In the obtained isocyanate group-terminated prepolymer (P2-2), the NCO% was 0.46% by mass.
[加水分解性シリル基の導入]
 得られたイソシアネート基末端プレポリマー(PI-2)のNCO基に対して1.05当量のアミノプロピルトリメトキシシランを添加して反応を行い、トリメトキシシリル基を有するシリル基含有重合体(S2-2)を得た。加水分解性シリル基導入割合は100モル%であった。
 シリル基含有重合体(S2-2)のMw、Mn、Mw/Mn、MEU/MSのモル比、および溶液粘度を表1に示す。
[Introduction of hydrolyzable silyl group]
A silyl group-containing polymer (S2) having a trimethoxysilyl group is reacted by adding 1.05 equivalents of aminopropyltrimethoxysilane to the NCO group of the resulting isocyanate group-terminated prepolymer (PI-2). -2) was obtained. The hydrolyzable silyl group introduction ratio was 100 mol%.
Table 1 shows the Mw, Mn, Mw / Mn, MEU / MS molar ratio, and solution viscosity of the silyl group-containing polymer (S2-2).
(実施例4)
 本例では、第1の実施形態のシリル基含有重合体(S1-1)を用いる。
 開始剤(a2)としては、プロピレングリコールに、KOH触媒を用いてPOを反応させて製造した、水酸基価112mgKOH/g、分子量1000のポリオキシプロピレンジオールを用いた。
 まず、開始剤(a2)に、プロピレンオキシドと無水フタル酸のモル比(PO/無水フタル酸)79/21の混合物を、参考製造例1で得たTBA-DMC触媒の存在下で開環重合させ、水酸基価58.3mgKOH/g、(水酸基価換算分子量1930)、共重合鎖あたりの平均分子量(M’)464、酸価0.11mgKOH/g、無水フタル酸由来の構成単位の含有量20質量%のポリエステルエーテルポリオール(開始剤:a3)を得た。a3にプロピレンオキシドと無水フタル酸のモル比(PO/無水フタル酸)91/9の混合物を、参考製造例1で得たTBA-DMC触媒の存在下で開環重合させ、水酸基価17.3mgKOH/g、(水酸基価換算分子量6474)、共重合鎖あたりの平均分子量(M’)2737、酸価0.11mgKOH/g、無水フタル酸由来の構成単位の含有量20質量%のポリエステルエーテルポリオール(Z2)を得た。
[加水分解性シリル基の導入]
 得られたポリエステルエーテルポリオール(Z2)の水酸基に対して0.97当量のイソシアネートメチルトリメトキシシランを添加して反応を行い、トリメトキシシリル基を有するシリル基含有重合体(S1-1)を得た。加水分解性シリル基導入割合は97モル%であった。
 シリル基含有重合体(S1-1)のMw、Mn、Mw/Mn、MEU/MSのモル比および溶液粘度を表1に示す。
Example 4
In this example, the silyl group-containing polymer (S1-1) of the first embodiment is used.
As the initiator (a2), polyoxypropylene diol having a hydroxyl value of 112 mgKOH / g and a molecular weight of 1000, produced by reacting propylene glycol with PO using a KOH catalyst, was used.
First, a mixture having a molar ratio of propylene oxide and phthalic anhydride (PO / phthalic anhydride) of 79/21 as an initiator (a2) is subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1. Hydroxyl value 58.3 mgKOH / g, (hydroxyl value conversion molecular weight 1930), average molecular weight per copolymer chain (M ′) 464, acid value 0.11 mgKOH / g, content of structural unit derived from phthalic anhydride 20 A mass% polyester ether polyol (initiator: a3) was obtained. A mixture of propylene oxide and phthalic anhydride in a molar ratio (PO / phthalic anhydride) 91/9 was subjected to ring-opening polymerization in the presence of the TBA-DMC catalyst obtained in Reference Production Example 1, and a hydroxyl value of 17.3 mgKOH / G, (hydroxyl value converted molecular weight 6474), average molecular weight per copolymer chain (M ′) 2737, acid value 0.11 mg KOH / g, polyester ether polyol having a structural unit content of 20% by mass derived from phthalic anhydride ( Z2) was obtained.
[Introduction of hydrolyzable silyl group]
The reaction is carried out by adding 0.97 equivalents of isocyanatemethyltrimethoxysilane to the hydroxyl group of the obtained polyester ether polyol (Z2) to obtain a silyl group-containing polymer (S1-1) having a trimethoxysilyl group. It was. The hydrolyzable silyl group introduction ratio was 97 mol%.
Table 1 shows the Mw, Mn, Mw / Mn, MEU / MS molar ratio and solution viscosity of the silyl group-containing polymer (S1-1).
<評価>
 実施例2~4で得られたシリル基含有重合体について、実施例1と同様にして硬化性組成物を調製し粘着シートを作製した。ただし、粘着体層の厚さは15μmとした。
 得られた粘着シートの剥離強度を実施例1と同様にして測定した。その結果を表1に示す。
 また実施例1と同様にして、損失正接(tanδ)を求めた。tanδのピーク温度およびピーク値を表1に示す。
<Evaluation>
For the silyl group-containing polymers obtained in Examples 2 to 4, a curable composition was prepared in the same manner as in Example 1 to prepare an adhesive sheet. However, the thickness of the pressure-sensitive adhesive layer was 15 μm.
The peel strength of the obtained pressure-sensitive adhesive sheet was measured in the same manner as in Example 1. The results are shown in Table 1.
Further, the loss tangent (tan δ) was determined in the same manner as in Example 1. The peak temperature and peak value of tan δ are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2の結果に示されるように、実施例1~4のシリル基含有重合体を硬化させて得られる粘着体はいずれも、30分後の剥離強度が小さく、良好な再剥離性を有する。また耐熱性も良好であり、60℃の高温下でも4週間経過後まで良好な微粘着性~中粘着性を示すとともに、常温でのtanδの値が高く、良好な制振性を有する。
 また表2の結果より、30分後の剥離強度を基準とする、60℃で3週間経過後の剥離強度の比(3週間後/30分後)は、粘着体の厚さが厚いほど小さいことがわかる。
As shown in the results of Tables 1 and 2, all of the pressure-sensitive adhesives obtained by curing the silyl group-containing polymers of Examples 1 to 4 have small peel strength after 30 minutes and good removability. Have. Also, the heat resistance is good, and even at a high temperature of 60 ° C., it exhibits good slight-to-medium tackiness after 4 weeks and has a high tan δ value at room temperature and good vibration damping properties.
From the results in Table 2, the ratio of peel strength after 3 weeks at 60 ° C. (after 3 weeks / after 30 minutes) based on the peel strength after 30 minutes is smaller as the thickness of the pressure-sensitive adhesive is thicker. I understand that.
(比較例1)
 本例では、エステル結合、ウレタン結合、およびウレア結合のいずれも有しないシリル基含有重合体を用いた。
 ジプロピレングリコールにプロピレンオキシド(PO)を開環重合させて得られたMn=3000のポリオキシプロピレンジオール(以下、ジオールAという)120g、およびグリセリンにPOを開環重合させて得られたMn=5000のポリオキシプロピレントリオール(以下、トリオールBという)200gの混合物を開始剤として用い、1.2gの亜鉛ヘキサシアノコバルテート-グライム錯体触媒存在下、2480gのPOを反応容器内に少しずつ添加しながら120℃の条件下で重合反応を行い、POの全量を添加したのち反応容器内圧が下がらなくなるまで反応させた。なお亜鉛ヘキサシアノコバルテート-グライム錯体触媒は、参考製造例1において、EGMTBEとTBAの代わりにグライムを用いて製造できる。
 続いて、120gのジオールAおよび200gのトリオールBを反応容器内に投入し、上記同様にして1680gのPOを少しずつ加えたのち反応容器内圧が下がらなくなるまで反応させた。さらに、120gのジオールAおよび200gのトリオールBを反応容器内に投入し、上記同様にして1280gのPOを少しずつ加えたのち反応容器内圧が下がらなくなるまで反応させた。さらに、80gのジオールAおよび130gのトリオールBを反応容器内に投入し、さらに上記同様にして590gのPOを少しずつ加え、反応容器内圧が下がらなくなるまで反応させた。
 さらに60gのジオールAおよび100gのトリオールBを添加し、さらに上記同様にして240gのPOを少しずつ加えたのち反応容器内圧が下がらなくなるまで反応させた。
 最後に75gのジオールAおよび125gのトリオールBを添加し、上記同様にして200gのPOを少しずつ加えたのち反応容器内圧が下がらなくなるまで反応させた。
 この操作により、Mnが17,000、Mw/Mnが1.76のポリオキシプロピレンポリオールFを得た。
(Comparative Example 1)
In this example, a silyl group-containing polymer having no ester bond, urethane bond, or urea bond was used.
120 g of polyoxypropylene diol (hereinafter referred to as diol A) of Mn = 3000 obtained by ring-opening polymerization of propylene oxide (PO) with dipropylene glycol, and Mn = obtained by ring-opening polymerization of PO with glycerin A mixture of 200 g of 5000 polyoxypropylene triol (hereinafter referred to as triol B) was used as an initiator, and in the presence of 1.2 g of zinc hexacyanocobaltate-glyme complex catalyst, 2480 g of PO was gradually added to the reaction vessel. The polymerization reaction was carried out under the condition of 120 ° C., and after the total amount of PO was added, the reaction was continued until the internal pressure of the reaction vessel was not lowered. The zinc hexacyanocobaltate-glyme complex catalyst can be produced using glyme in place of EGMTBE and TBA in Reference Production Example 1.
Subsequently, 120 g of diol A and 200 g of triol B were charged into the reaction vessel, and after 1680 g of PO was added little by little in the same manner as described above, the reaction was continued until the internal pressure of the reaction vessel did not decrease. Further, 120 g of diol A and 200 g of triol B were put into the reaction vessel, and after 1280 g of PO was added little by little in the same manner as described above, the reaction was continued until the internal pressure of the reaction vessel was not lowered. Further, 80 g of diol A and 130 g of triol B were put into the reaction vessel, and 590 g of PO was added little by little in the same manner as described above, and the reaction was continued until the internal pressure of the reaction vessel could not be lowered.
Further, 60 g of diol A and 100 g of triol B were added, and after 240 g of PO was added little by little in the same manner as described above, the reaction was continued until the internal pressure of the reaction vessel was not lowered.
Finally, 75 g of diol A and 125 g of triol B were added, 200 g of PO was added little by little in the same manner as described above, and the reaction was continued until the internal pressure of the reaction vessel was not lowered.
By this operation, polyoxypropylene polyol F having Mn of 17,000 and Mw / Mn of 1.76 was obtained.
 得られたポリオキシプロピレンポリオールFに対し、その水酸基の1.05当量のナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下でメタノールを留去してポリオキシプロピレンポリオールの末端水酸基をナトリウムアルコキシドに変換した。次にこれに塩化アリルを反応させてから、未反応の塩化アリルを除去し、さらに副生した塩を精製して除去し、末端アリル基を有するポリオキシプロピレンを得た。さらにこれに対して、メチルジメトキシシランを白金触媒の存在下で反応させて、末端にメチルジメトキシシリル基を有するオキシプロピレン重合体を得た。
 得られた重合体のMnは20,000であり、Mw/Mnは1.35、粘度(固形分濃度100質量%)は19,500mPa・s/25℃であった。
To the obtained polyoxypropylene polyol F, a methanol solution of 1.05 equivalents of sodium methoxide of the hydroxyl group was added, and methanol was distilled off under reduced pressure by heating to convert the terminal hydroxyl group of the polyoxypropylene polyol to sodium alkoxide. Converted. Next, this was reacted with allyl chloride, then unreacted allyl chloride was removed, and further, the salt formed as a by-product was purified and removed to obtain polyoxypropylene having a terminal allyl group. In contrast, methyldimethoxysilane was reacted in the presence of a platinum catalyst to obtain an oxypropylene polymer having a methyldimethoxysilyl group at the terminal.
Mn of the obtained polymer was 20,000, Mw / Mn was 1.35, and the viscosity (solid content concentration 100% by mass) was 19,500 mPa · s / 25 ° C.
[評価]
 比較例1で得られたオキシプロピレン重合体を、厚さ100μmのPETフィルム(基材)上に、乾燥後の膜厚が50μmになるように塗工し、循環式オーブンにおいて100℃で5分乾燥した。そして、23℃かつ相対湿度65%で一週間養生して粘着層を形成し、粘着シートを得た。
 該粘着シートの30分後の剥離強度は0.23N/25mmであったが、常温下に放置すると1週間でウキの発生がみられた。「ウキの発生」とは、粘着シートの粘着体層が基材と密着しておらず、投錨破壊した状態となっていることを意味する。
[Evaluation]
The oxypropylene polymer obtained in Comparative Example 1 was applied on a PET film (base material) having a thickness of 100 μm so that the film thickness after drying was 50 μm, and the resultant was circulated in an oven at 100 ° C. for 5 minutes. Dried. And it cured at 23 degreeC and relative humidity 65% for one week, the adhesion layer was formed, and the adhesive sheet was obtained.
The peel strength after 30 minutes of the pressure-sensitive adhesive sheet was 0.23 N / 25 mm. “Generating” means that the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is not in close contact with the base material and is in a state of being thrown and destroyed.
 本発明の粘着体は、低い粘着力を有する粘着シートの製造に有用である。
 なお、2009年3月17日に出願された日本特許出願2009-065106号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The pressure-sensitive adhesive body of the present invention is useful for producing a pressure-sensitive adhesive sheet having a low pressure-sensitive adhesive force.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2009-0665106 filed on March 17, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (14)

  1.  1分子あたり2個以上の活性水素基を有する開始剤(a)に由来する構成単位と、ジカルボン酸無水物(b)に由来する構成単位と、アルキレンオキシド(c)に由来する構成単位を有し、分子末端に加水分解性シリル基を有するシリル基含有重合体(S)を含む硬化性組成物を硬化させて得られた硬化物であることを特徴とする粘着体。 It has a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and a structural unit derived from an alkylene oxide (c). And a cured product obtained by curing a curable composition containing a silyl group-containing polymer (S) having a hydrolyzable silyl group at the molecular end.
  2.  前記シリル基含有重合体(S)が、1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させて得られるポリエステルエーテルポリオール(Z)の分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S1)である、請求項1記載の粘着体。 The silyl group-containing polymer (S) is obtained by subjecting an initiator (a) having two or more active hydrogen groups per molecule to ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c). The pressure-sensitive adhesive according to claim 1, which is a silyl group-containing polymer (S1) obtained by introducing a hydrolyzable silyl group into a molecular terminal of the polyester ether polyol (Z).
  3.  前記シリル基含有重合体(S)が、1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させてポリエステルエーテルポリオール(Z)を得、該ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマー(P)の分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S2)である、請求項1記載の粘着体。 The silyl group-containing polymer (S) is obtained by subjecting an initiator (a) having two or more active hydrogen groups per molecule to ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c). A polyol (Z) is obtained, and a polyol (A) containing the polyester ether polyol (Z) is reacted with a polyisocyanate compound (B) to obtain a prepolymer (P). The pressure-sensitive adhesive according to claim 1, which is a silyl group-containing polymer (S2) obtained by introducing a hydrolyzable silyl group.
  4.  前記シリル基含有重合体(S)が、1分子あたり2個以上の活性水素基を有する開始剤(a)にジカルボン酸無水物(b)とアルキレンオキシド(c)を開環重合させてポリエステルエーテルポリオール(Z)を得、該ポリエステルエーテルポリオール(Z)を含むポリオール(A)と、ポリイソシアネート化合物(B)を反応させてプレポリマー(P)を得、該プレポリマー(P)に鎖延長剤(C)を反応させて鎖延長ポリウレタンを得、該鎖延長ポリウレタンの分子末端に、加水分解性シリル基を導入して得られるシリル基含有重合体(S3)である、請求項1記載の粘着体。 The silyl group-containing polymer (S) is obtained by subjecting an initiator (a) having two or more active hydrogen groups per molecule to ring-opening polymerization of a dicarboxylic acid anhydride (b) and an alkylene oxide (c). A polyol (Z) is obtained, and a polyol (A) containing the polyester ether polyol (Z) and a polyisocyanate compound (B) are reacted to obtain a prepolymer (P), and a chain extender is added to the prepolymer (P). The pressure-sensitive adhesive according to claim 1, which is a silyl group-containing polymer (S3) obtained by reacting (C) to obtain a chain-extended polyurethane and introducing a hydrolyzable silyl group into the molecular terminal of the chain-extended polyurethane. body.
  5.  前記硬化性組成物が硬化触媒を含み、該硬化性組成物を水分が含まれる雰囲気中で硬化させる、請求項1~4のいずれか1項に記載の粘着体。 The pressure-sensitive adhesive according to any one of claims 1 to 4, wherein the curable composition contains a curing catalyst and the curable composition is cured in an atmosphere containing moisture.
  6.  前記硬化性組成物が水と硬化触媒を含む、請求項1~4のいずれか1項に記載の粘着体。 The pressure-sensitive adhesive body according to any one of claims 1 to 4, wherein the curable composition contains water and a curing catalyst.
  7.  前記シリル基含有重合体(S)における、エステル結合、ウレタン結合及びウレア結合の合計量(MEU)と加水分解性シリル基の量(MS)との割合(MEU/MSのモル比)が2/1~90/1である、請求項1~6のいずれかに記載の粘着体。 In the silyl group-containing polymer (S), the ratio (MEU / MS molar ratio) of the total amount (MEU) of ester bonds, urethane bonds and urea bonds to the amount of hydrolyzable silyl groups (MS) is 2 /. The pressure-sensitive adhesive body according to any one of claims 1 to 6, which is 1 to 90/1.
  8.  剥離粘着力が0N/25mmを超え1N/25mm以下である、請求項1~7のいずれかに記載の粘着体。 The pressure-sensitive adhesive body according to any one of claims 1 to 7, which has a peel adhesive strength of more than 0 N / 25 mm and 1 N / 25 mm or less.
  9.  0~40℃の温度範囲でtanδが0.1以上である、請求項1~8のいずれかに記載の粘着体。 The pressure-sensitive adhesive according to any one of claims 1 to 8, wherein tan δ is 0.1 or more in a temperature range of 0 to 40 ° C.
  10.  1分子あたり2個以上の活性水素基を有する開始剤(a)に由来する構成単位と、ジカルボン酸無水物(b)に由来する構成単位と、アルキレンオキシド(c)に由来する構成単位を有し、分子末端に加水分解性シリル基を有することを特徴とするシリル基含有重合体(S)。 It has a structural unit derived from an initiator (a) having two or more active hydrogen groups per molecule, a structural unit derived from a dicarboxylic acid anhydride (b), and a structural unit derived from an alkylene oxide (c). And a silyl group-containing polymer (S) having a hydrolyzable silyl group at the molecular end.
  11.  基材上に請求項1~9のいずれかに記載の粘着体の層が設けられた粘着シート。 10. A pressure-sensitive adhesive sheet, wherein the pressure-sensitive adhesive layer according to claim 1 is provided on a substrate.
  12.  基材上に、請求項10に記載のシリル基含有重合体(S)を含む硬化性組成物の未硬化層を形成し、次いで、
     該未硬化層の前記基材と反対側の表面が露出されている状態、または該表面上に剥離シートが積層されている状態で、該未硬化層を硬化させることを特徴とする粘着シートの製造方法。
    An uncured layer of a curable composition containing the silyl group-containing polymer (S) according to claim 10 is formed on a substrate,
    An adhesive sheet, wherein the uncured layer is cured in a state where the surface of the uncured layer opposite to the substrate is exposed or a release sheet is laminated on the surface. Production method.
  13.  硬化性組成物がシリル基含有重合体(S)と硬化触媒を含む硬化性組成物であり、前記未硬化層の前記基材と反対側の表面が露出されている状態で、水分が含まれる雰囲気中で硬化させる、請求項12に記載の粘着シートの製造方法。 The curable composition is a curable composition containing a silyl group-containing polymer (S) and a curing catalyst, and moisture is contained in a state where the surface of the uncured layer opposite to the substrate is exposed. The manufacturing method of the adhesive sheet of Claim 12 hardened in atmosphere.
  14.  硬化性組成物がシリル基含有重合体(S)と水と硬化触媒を含む硬化性組成物であり、前記未硬化層の前記基材と反対側の表面上に剥離シートを積層し、次いで、該剥離シートが積層されている状態で前記未硬化層を硬化させる、請求項12に記載の粘着シートの製造方法。 The curable composition is a curable composition containing a silyl group-containing polymer (S), water and a curing catalyst, and a release sheet is laminated on the surface of the uncured layer opposite to the substrate, The method for producing a pressure-sensitive adhesive sheet according to claim 12, wherein the uncured layer is cured in a state where the release sheet is laminated.
PCT/JP2010/054371 2009-03-17 2010-03-15 Adhesive material WO2010107006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-065106 2009-03-17
JP2009065106A JP2012111786A (en) 2009-03-17 2009-03-17 Adhesive material

Publications (1)

Publication Number Publication Date
WO2010107006A1 true WO2010107006A1 (en) 2010-09-23

Family

ID=42739666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054371 WO2010107006A1 (en) 2009-03-17 2010-03-15 Adhesive material

Country Status (2)

Country Link
JP (1) JP2012111786A (en)
WO (1) WO2010107006A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242070A (en) * 2009-03-17 2010-10-28 Asahi Glass Co Ltd Curable composition
JP2016203533A (en) * 2015-04-24 2016-12-08 マツダ株式会社 Resin member and vehicle body structure
CN111684034A (en) * 2018-02-07 2020-09-18 3M创新有限公司 Thermally stretchable decorative film for light projection and article bonded therewith

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442964B1 (en) * 2016-08-09 2022-09-14 코베스트로 도이칠란트 아게 Silane-functional polymeric polyurethane

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139695A (en) * 1977-05-12 1978-12-06 Kanegafuchi Chem Ind Co Ltd Production of cold curable silicon-containing polymer
JPS546096A (en) * 1977-06-15 1979-01-17 Kanegafuchi Chem Ind Co Ltd Preparation of silyl-terminated polymer
JPS54156099A (en) * 1978-05-31 1979-12-08 Kanegafuchi Chem Ind Co Ltd New curable polyester oligomer and its preparation
JP2000169759A (en) * 1998-12-11 2000-06-20 Kanegafuchi Chem Ind Co Ltd Novel resin composition for polyester-based powder coating
WO2007040232A1 (en) * 2005-10-05 2007-04-12 Asahi Glass Company, Limited Silyl group-containing polymer and method for producing same
JP2008143994A (en) * 2006-12-08 2008-06-26 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
JP2008143995A (en) * 2006-12-08 2008-06-26 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
WO2008102576A1 (en) * 2007-02-22 2008-08-28 Mitsui Chemicals, Inc. Alkoxysilane-containing resin, modified alkoxysilane-containing resin, their production methods, hot melt adhesive, and resin cured product
JP2008202015A (en) * 2007-02-23 2008-09-04 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
JP2008202014A (en) * 2007-02-23 2008-09-04 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
WO2010013653A1 (en) * 2008-07-28 2010-02-04 旭硝子株式会社 Adhesive material, pressure-sensitive adhesive sheet, and use thereof
WO2010026995A1 (en) * 2008-09-05 2010-03-11 旭硝子株式会社 Adhesive material, adhesive sheet and use of same
WO2010041667A1 (en) * 2008-10-08 2010-04-15 旭硝子株式会社 Adhesive laminate
JP2010100836A (en) * 2008-09-26 2010-05-06 Asahi Glass Co Ltd Adherence substance and adhesive sheet
JP2010100835A (en) * 2008-09-26 2010-05-06 Asahi Glass Co Ltd Adherence substance and adhesive sheet

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139695A (en) * 1977-05-12 1978-12-06 Kanegafuchi Chem Ind Co Ltd Production of cold curable silicon-containing polymer
JPS546096A (en) * 1977-06-15 1979-01-17 Kanegafuchi Chem Ind Co Ltd Preparation of silyl-terminated polymer
JPS54156099A (en) * 1978-05-31 1979-12-08 Kanegafuchi Chem Ind Co Ltd New curable polyester oligomer and its preparation
JP2000169759A (en) * 1998-12-11 2000-06-20 Kanegafuchi Chem Ind Co Ltd Novel resin composition for polyester-based powder coating
WO2007040232A1 (en) * 2005-10-05 2007-04-12 Asahi Glass Company, Limited Silyl group-containing polymer and method for producing same
JP2008143995A (en) * 2006-12-08 2008-06-26 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
JP2008143994A (en) * 2006-12-08 2008-06-26 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
WO2008102576A1 (en) * 2007-02-22 2008-08-28 Mitsui Chemicals, Inc. Alkoxysilane-containing resin, modified alkoxysilane-containing resin, their production methods, hot melt adhesive, and resin cured product
JP2008202015A (en) * 2007-02-23 2008-09-04 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
JP2008202014A (en) * 2007-02-23 2008-09-04 Toyo Ink Mfg Co Ltd Pressure-sensitive adhesive composition
WO2010013653A1 (en) * 2008-07-28 2010-02-04 旭硝子株式会社 Adhesive material, pressure-sensitive adhesive sheet, and use thereof
WO2010026995A1 (en) * 2008-09-05 2010-03-11 旭硝子株式会社 Adhesive material, adhesive sheet and use of same
JP2010100836A (en) * 2008-09-26 2010-05-06 Asahi Glass Co Ltd Adherence substance and adhesive sheet
JP2010100835A (en) * 2008-09-26 2010-05-06 Asahi Glass Co Ltd Adherence substance and adhesive sheet
WO2010041667A1 (en) * 2008-10-08 2010-04-15 旭硝子株式会社 Adhesive laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242070A (en) * 2009-03-17 2010-10-28 Asahi Glass Co Ltd Curable composition
JP2016203533A (en) * 2015-04-24 2016-12-08 マツダ株式会社 Resin member and vehicle body structure
CN111684034A (en) * 2018-02-07 2020-09-18 3M创新有限公司 Thermally stretchable decorative film for light projection and article bonded therewith
CN111684034B (en) * 2018-02-07 2022-06-14 3M创新有限公司 Thermally stretchable decorative film for light projection and article bonded therewith

Also Published As

Publication number Publication date
JP2012111786A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5561166B2 (en) Adhesive body, adhesive sheet and use thereof
JP5594142B2 (en) Adhesive laminate
JP5040995B2 (en) Adhesive body, adhesive sheet and use thereof
JP5700040B2 (en) Adhesive laminate and surface protective sheet
WO2011016422A1 (en) Touch panel
WO2010013653A1 (en) Adhesive material, pressure-sensitive adhesive sheet, and use thereof
JP2010111862A (en) Self-adhesive laminate
JP2010100835A (en) Adherence substance and adhesive sheet
WO2010107006A1 (en) Adhesive material
JP5447284B2 (en) Curable composition, pressure-sensitive adhesive body, pressure-sensitive adhesive laminate and method for producing pressure-sensitive adhesive body
JP5560795B2 (en) Curable composition
JP2010100836A (en) Adherence substance and adhesive sheet
JP2010111861A (en) Heat-resistant self-adhesive laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP