WO2010106722A1 - Method for producing polyglycolic acid having lowered melt viscosity - Google Patents

Method for producing polyglycolic acid having lowered melt viscosity Download PDF

Info

Publication number
WO2010106722A1
WO2010106722A1 PCT/JP2010/000062 JP2010000062W WO2010106722A1 WO 2010106722 A1 WO2010106722 A1 WO 2010106722A1 JP 2010000062 W JP2010000062 W JP 2010000062W WO 2010106722 A1 WO2010106722 A1 WO 2010106722A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyglycolic acid
melt viscosity
temperature
water
low melt
Prior art date
Application number
PCT/JP2010/000062
Other languages
French (fr)
Japanese (ja)
Inventor
林直樹
引地悟
山根和行
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2010106722A1 publication Critical patent/WO2010106722A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids

Definitions

  • the present invention relates to an efficient method for producing a low melt viscosity polyglycolic acid.
  • low melt viscosity polyglycolic acid can be obtained in a solid form such as pellets at room temperature. For this reason, low melt viscosity polyglycolic acid has good handleability and meterability, hardly generates gas components during melt molding, and has melt fluidity, melt stability, moldability, and adhesion to other materials. Etc.
  • Polyglycolic acid is a kind of biodegradable aliphatic polyester resin and is synthesized by ring-opening polymerization of glycolide or polycondensation of glycolic acid. According to the ring-opening polymerization of glycolide, a polyglycolic acid having a high molecular weight and a high melt viscosity can be obtained. Polyglycolic acid has a melting point of a homopolymer in the range of 215 to 225 ° C. and is excellent in heat resistance. In addition, polyglycolic acid is excellent in gas barrier properties.
  • Polyglycolic acid has a high melt viscosity, which may hinder new application development.
  • polyglycolic acid is injection molded in the presence of another synthetic resin molded product placed in a mold, and the composite resin molded product and the polyglycolic acid layer are integrated.
  • the polyglycolic acid has a high melt viscosity, it must be injection-molded at a high temperature and high pressure. Therefore, other synthetic resin molded products placed in the mold are produced by the flow of the molten polyglycolic acid during injection molding. Easy to deform.
  • circuit board molded by injection molding As a method for molding a circuit board by injection molding, a technique for forming a circuit pattern on the surface of a synthetic resin molded product by a two-time molding method (also referred to as “two-shot method”) has been developed.
  • a primary molded product is molded using a first synthetic resin (easy plating resin) containing a plating catalyst. The primary molding is moved to another mold or another cavity of the same mold.
  • a second synthetic resin (hard-plating-resistant resin) that does not contain a plating catalyst is injected in a pattern to form a circuit other than the part that forms the circuit.
  • the surface of the primary molded product is covered.
  • a conductor circuit layer is formed by electroless plating on the surface of the primary molded product exposed without being covered with the second synthetic resin. Since the electroless plating layer is generally thin, it is grown to a thickness suitable for a conductor circuit by subsequent electroplating.
  • the coating layer of the second synthetic resin can be left in an integrated state, but may be removed. Since the second synthetic resin is a hard-to-plate resin, the coating layer serves as a mask or resist for plating.
  • a thin plating layer is formed on the second shot.
  • a synthetic resin is injected and integrated into a pattern, and a second synthetic resin coating layer is formed on the surface of the electroless plating layer other than the portion where the circuit is formed.
  • the thickness of the electroless plating layer portion of the primary molded product exposed without being covered with the second synthetic resin is increased by electroplating.
  • the coating layer of the second synthetic resin is removed together with the thin electroless plating layer below it. As a result, a circuit pattern-like plating layer remains on the surface of the primary molded product of the first synthetic resin.
  • a typical circuit board obtained by the two-time molding method is a three-dimensional injection molded circuit component called MID (Molded Interconnect Device) in which a conductor circuit is three-dimensionally formed on the surface of an injection molded product.
  • MID is a three-dimensional wiring board that integrates injection moldings of synthetic resin and wiring components, contributing to rationalization of wiring, downsizing of electronic device parts, improvement of assembly, rationalization of equipment, space saving, etc. can do.
  • MID is applied to semiconductor packages such as light emitting diodes, three-dimensional printed wiring boards, mobile phone antenna components, and the like.
  • Examples of the first synthetic resin used for the circuit board by injection molding include super engineering plastics such as liquid crystal polymer and polyphenylene sulfide; thermoplastic aromatic polyester resins such as polybutylene terephthalate and polyethylene terephthalate; polyamide resins; cyclic olefin resins Etc. are used.
  • Circuit boards such as MID obtained by the two-time molding method are difficult to make thinner, smaller, and lighter if the coating layer of difficult-to-plat resin is left on the product. It is necessary to use a resin material excellent in heat resistance, insulation, strength, chemical resistance, durability and the like. If a high-performance resin such as engineering plastic is used as a difficult-to-platable resin, it is necessary to perform injection molding at high temperature and high pressure. It is necessary to widen the width of the part. For this reason, it is desired that the hard-to-platable resin coating layer can be removed after the plating step.
  • the difficult-plating resin itself is required to have various performances. Since difficult-to-plat resin is used as a mask or resist for plating, it can form a coating layer with a precise pattern shape by injection molding, and has excellent adhesion to the surface of other synthetic resin molded products or electroless plating layers There is a demand for resistance to plating solutions used for electroless plating and electroplating, and easy peeling and removal after the plating step.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2002-344116 (Patent Document 1) and Japanese Laid-Open Patent Publication No. 2004-247354 (Patent Document 2) propose using an aliphatic polyester resin such as polylactic acid as a hard-to-platable resin.
  • the aliphatic polyester resin has good adhesion to other materials, and the coating layer can be removed with an alkaline aqueous solution in a post-treatment process.
  • the aliphatic polyester resin has a relatively high melting point and a high melt viscosity, it must be injected at a high temperature and a high pressure during injection molding. For this reason, the aliphatic polyester resin easily deforms a primary molded product for forming a circuit board that is previously arranged in a mold during injection molding.
  • polyglycolic acid with excellent melt fluidity during injection molding is expected. If the melting point of polyglycolic acid is lowered, the melt fluidity at the molding temperature of ordinary polyglycolic acid can be improved.
  • the melting point of polyglycolic acid can be lowered by a method of copolymerizing with other monomers. However, if the copolymerization ratio of other monomers is increased in order to significantly lower the melting point of polyglycolic acid, it becomes difficult to maintain the excellent characteristics of polyglycolic acid itself.
  • Patent Document 3 JP 2003-20344 discloses a method of obtaining a low melt viscosity polyglycolic acid by adjusting the degree of polymerization during the synthesis of polyglycolic acid. Since low melt viscosity polyglycolic acid has high melt fluidity at the molding temperature of ordinary polyglycolic acid, injection molding at low pressure is possible.
  • the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis has a high content of low molecular weight substances and is heated to the melt molding temperature as seen in the extremely low 3% thermal weight loss temperature. Then, the low molecular weight material contained therein is easily gasified and volatilized.
  • the low melt viscosity polyglycolic acid is likely to generate a gas component at a high temperature, when it is injection-molded on the surface of the primary molded product as a hard-plating resin, the generated gas component causes Adhesiveness of the polyglycolic acid coating layer is lowered, or the circuit board is contaminated.
  • melt viscosity polyglycolic acid suitable for difficult-to-platable resins is difficult to pelletize.
  • the melt-extruded strand is pelletized by a method such as a cold cut that is cut after cooling, a hot cut that is cut at the die outlet, and an underwater cut that is cut in water.
  • the low melt viscosity polyglycolic acid Since the low melt viscosity polyglycolic acid has extremely high melt fluidity, it is difficult to form a strand having a uniform diameter even if it is melt-extruded in a strand form from an extruder. Polyglycolic acid with a particularly low melt viscosity is melted using an extruder and the strands droop even when continuously extruded from a die having holes into a strand shape. Impossible. Thus, pelletization is difficult for low melt viscosity polyglycolic acid.
  • Low melt viscosity polyglycolic acid that has not been pelletized is inferior in meterability and moldability, so when injection molding is performed as a difficult-to-plate resin, it is difficult to form a coating layer having a precise pattern on the surface of the primary molded product. is there.
  • the object of the present invention is excellent in melt fluidity, hardly generating a gas component at the time of melt molding, meterability, adhesion to other materials, precision moldability of fine patterns, plating resistance, solubility in alkaline aqueous solution, etc.
  • Another object of the present invention is to provide a method for efficiently producing a low melt viscosity polyglycolic acid excellent in water.
  • a further object of the present invention is to provide a method for stably producing a low melt viscosity polyglycolic acid having the above-mentioned properties with good reproducibility.
  • Another object of the present invention is to provide a new production method capable of arbitrarily controlling the melt viscosity of the low melt viscosity polyglycolic acid.
  • the inventors of the present invention have intensively studied on a method for obtaining a low melt viscosity polyglycolic acid that has excellent melt fluidity and hardly generates a gas component during melt molding. In the course of their research, they came up with a method that fundamentally changed the conventional idea of producing polyglycolic acid having a low melt viscosity during synthesis.
  • the present inventors synthesized a high melt viscosity polyglycolic acid capable of being pelletized, formed a pellet from the resulting polyglycolic acid, and then absorbed the pellet, followed by heat drying treatment, It was found that polyglycolic acid having a significantly reduced melt viscosity can be obtained in the form of pellets, and a patent application was filed first (PCT / JP2008 / 0666162). According to this method, low melt viscosity polyglycolic acid having a solid shape such as pellets can be obtained.
  • the low melt viscosity polyglycolic acid obtained by this method has a low content of low molecular weight components to be gasified and gas at the melt processing temperature as seen in the decrease in the 3% thermogravimetric decrease temperature. Generation of ingredients is suppressed.
  • Low melt viscosity polyglycolic acid is excellent in meterability and moldability because the shape of the pellet is maintained.
  • the polyglycolic acid pellets are kept in a constant temperature and humidity chamber for a long time of 48 to 72 hours, or immersed in a warm water of 55 ° C. or less for a long time of 24 to 36 hours. Therefore, it was necessary to perform a moisture absorption treatment. Therefore, the production method has insufficient production efficiency.
  • the present inventors implement a moisture absorption step of high melt viscosity polyglycolic acid in a predetermined solid form such as pellets or particles by immersion in hot water.
  • a moisture absorption step of high melt viscosity polyglycolic acid in a predetermined solid form such as pellets or particles by immersion in hot water.
  • the polyglycolic acid with sufficiently low melt viscosity was substantially retained in its original solid form even if the moisture absorption time was greatly reduced. It was found that it can be obtained as it is.
  • the present inventors improved the stirring conditions of the solid-form polyglycolic acid in warm water, resulting in homogeneous hydrolysis by subsequent heating and drying, and thereby the melt viscosity value in the same lot. It has been found that a low melt viscosity polyglycolic acid in which variation is remarkably suppressed can be obtained. Furthermore, prior to the heat drying treatment, the present inventors added moisture to the solid hygroscopic polyglycolic acid to adjust the total water content including the adhered water, thereby reducing the low melt viscosity polyglycolic acid. It has been found that the melt viscosity can be precisely controlled. The present invention has been completed based on these findings.
  • a polyglycolic acid having a melt viscosity exceeding 100 Pa ⁇ s measured at a temperature 50 ° C higher than the melting point Tm of the polyglycolic acid (Tm + 50 ° C) and a shear rate of 122 sec -1 is 60-100 ° C in a predetermined solid form.
  • the moisture-absorbing polyglycolic acid is heated and dried at a temperature in the range from 60 ° C. to 5 ° C.
  • melt viscosity measured at a temperature 10 ° C. higher than the melting point of glycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec ⁇ 1 is 150 Pa ⁇ s or less, the 3% thermal weight loss temperature is 280 ° C. or more, and the water content is 500 ppm.
  • Heat drying treatment step 2 for obtaining the following low melt viscosity polyglycolic acid;
  • a process for producing a low melt viscosity polyglycolic acid comprising
  • the production method of the present invention has excellent melt fluidity, hardly generates a gas component at the time of melt molding, meterability, adhesion to other materials, precision moldability of fine patterns, plating resistance, and against an alkaline aqueous solution.
  • Low melt viscosity polyglycolic acid excellent in solubility and the like can be efficiently produced in a solid form such as pellets.
  • the melt viscosity of the resulting low melt viscosity polyglycolic acid can be more precisely controlled by adjusting the total water content of the hygroscopic polyglycolic acid prior to the heat drying treatment step. it can.
  • the low melt viscosity polyglycolic acid obtained by the production method of the present invention is used as a hard-to-plate resin (mask resin) for a circuit board by a two-time molding method, it is possible to form and coat a fine pattern. Further, it is possible to prevent the circuit board from being contaminated due to the deformation of the primary molded product constituting the circuit board and the vaporization of the gas component during the injection molding.
  • the coating layer of the low melt viscosity polyglycolic acid is excellent in resistance to the electrolytic plating solution and the electroless plating solution, is difficult to deposit metal plating particles, and can be removed with an alkaline aqueous solution after the plating step.
  • the polyglycolic acid is a homopolymer or copolymer containing a repeating unit represented by the formula — [— O—CH 2 —CO —] —.
  • the content of the repeating unit represented by the above formula in the polyglycolic acid is usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and the upper limit is 100% by weight.
  • the content ratio of the repeating unit represented by the above formula is too low, characteristics such as crystallinity, gas barrier properties, heat resistance, and chemical resistance inherent in polyglycolic acid are deteriorated.
  • Polyglycolic acid can be synthesized by dehydration polycondensation of glycolic acid, dealcohol polycondensation of glycolic acid alkyl ester, ring-opening polymerization of glycolide, and the like.
  • a polyglycolic acid also referred to as “polyglycolide”
  • glycolide is brought to a temperature in the range of about 120 ° C. to about 250 ° C.
  • the ring-opening polymerization is performed by heating.
  • the ring-opening polymerization is preferably performed by bulk polymerization or solution polymerization.
  • a polyglycolic acid copolymer for example, ethylene oxalate, lactide, lactones (for example, ⁇ -propiolactone, ⁇ -butyrolactone, pivalolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ Cyclic monomers such as -methyl- ⁇ -valerolactone, ⁇ -caprolactone, trimethylene carbonate, and 1,3-dioxane; lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6 A hydroxycarboxylic acid such as hydroxycaproic acid or an alkyl ester thereof; substantially an aliphatic diol such as ethylene glycol or 1,4-butanediol and an aliphatic dicarboxylic acid such as succinic acid or adipic acid or an alkyl ester thereof.
  • lactones for example, ⁇ -propiolactone, ⁇ -buty
  • cyclic monomer is preferable. These cyclic monomers can be subjected to ring-opening copolymerization under the glycolide ring-opening polymerization conditions.
  • the comonomer is usually used in a proportion of 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less, based on the total amount of charged monomers.
  • lactide, caprolactone, trimethylene carbonate, p-dioxanone, 5,5-dimethyl-1,3-dioxane-2- are easy to copolymerize and easily obtain a copolymer having excellent physical properties.
  • Polyglycolic acid polymerization equipment includes: extruder type, vertical type with paddle blades, vertical type with helical ribbon blades, horizontal type of extruder type and kneader type, ampoule type, tubular type, flat plate type (square, It can be appropriately selected from various devices such as a rectangle.
  • the polymerization temperature can be set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature.
  • the polymerization temperature is preferably 130 to 250 ° C, more preferably 140 to 220 ° C, and particularly preferably 150 to 200 ° C. If the polymerization temperature is too high, the produced polyglycolic acid is susceptible to thermal decomposition.
  • the polymerization time is usually in the range of 2 minutes to 50 hours, preferably 3 minutes to 30 hours, more preferably 5 minutes to 18 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently, and if it is too long, the resulting polyglycolic acid is likely to be colored.
  • the melt viscosity of the polyglycolic acid used as a raw material in the present invention is usually more than 100 Pa ⁇ s, preferably 100 Pa when measured at a temperature 50 ° C. higher than the melting point Tm of polyglycolic acid (Tm + 50 ° C.) and a shear rate of 122 sec ⁇ 1.
  • Tm melting point
  • Tm + 50 ° C. melting point
  • the weight average molecular weight (Mw) of the polyglycolic acid is usually in the range of 50,000 to 800,000, preferably 100,000 to 500,000, more preferably 150,000 to 300,000.
  • the weight average molecular weight is a value obtained as a standard polymethylmethacrylate conversion value in gel permeation chromatography (GPC) measurement using hexafluoroisopropanol. If the melt viscosity or weight average molecular weight of polyglycolic acid is too low, pelletization becomes difficult. If the melt viscosity or the weight average molecular weight of polyglycolic acid is too high, it takes a long time to lower the melt viscosity, which is not efficient.
  • the raw material polyglycolic acid includes other thermoplastic resins, fillers, heat stabilizers, light stabilizers, waterproofing agents, water repellents, lubricants, mold release agents, coupling agents, pigments, dyes, etc.
  • Various additives can be contained. These various additives are used in effective amounts according to their intended purpose.
  • a compound capable of exerting a heat stabilizing effect can be added to the raw material polyglycolic acid as a heat stabilizer.
  • the polyglycolic acid contains a heat stabilizer, the polyglycolic acid is hardly thermally decomposed, and the melt stability of the low melt viscosity polyglycolic acid is improved.
  • heat stabilizers include heavy metal deactivators such as hydrazine compounds having —CO—NHNH—CO— units; phosphate esters having a pentaerythritol skeleton structure; at least one hydroxyl group and at least one long-chain alkyl ester group And at least one compound selected from the group consisting of a triazole compound, a hindered phenol compound, and a metal carbonate.
  • Examples of heavy metal deactivators include 2-hydroxy-N-1H-1,2,4-triazol-3-yl-benzamide and bis [2- (2-hydroxybenzoyl) hydrazine] dodecanedioic acid. It is done.
  • Examples of the phosphate ester having a pentaerythritol skeleton structure include cyclic neopentanetetraylbis (2,6-di-tert-butyl-4-methylphenyl) phosphite and cyclic neopentanetetraylbis (2 , 4-di-tert-butylphenyl) phosphite.
  • Examples of the phosphorus compound having at least one hydroxyl group and at least one long-chain alkyl ester group include mono- or di-stearyl acid phosphate.
  • Examples of the metal carbonate include calcium carbonate and strontium carbonate.
  • the blending ratio of the heat stabilizer is usually 0.001 to 5 parts by weight, preferably 0.003 to 3 parts by weight, and more preferably 0.005 to 1 part by weight with respect to 100 parts by weight of polyglycolic acid.
  • the blending ratio of the heat stabilizer is too small, it is difficult to obtain a heat stabilizing effect, and when it is too large, the effect is saturated or various properties are deteriorated.
  • Polyglycolic acid with high melt viscosity has a temperature when the weight loss rate when heated reaches 3% (referred to as “3% thermal weight loss temperature”) around 350 ° C., and tends to generate gas components during melt processing Is relatively low.
  • the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis increases the content of the low molecular weight component, so that it depends on the degree of melt viscosity, but the 3% thermal weight loss temperature May drop to around 250 ° C.
  • polyglycolic acid has a tendency to easily generate a gas component during melt processing when the melt viscosity becomes low.
  • the low melt viscosity polyglycolic acid obtained by the production method of the present invention has a characteristic that the 3% thermal weight loss temperature is maintained at a relatively high level.
  • a thermal stabilizer it is preferable to add a thermal stabilizer to the high melt viscosity polyglycolic acid used as a raw material. Since the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis is difficult to pelletize, it is difficult to pelletize by adding a heat stabilizer to the low melt viscosity polyglycolic acid. .
  • the high melt viscosity polyglycolic acid used as a raw material in the present invention has a high melt viscosity and melting point, it is in a solid state at room temperature (20 ⁇ 15 ° C.) and maintains a solid state even at a relatively high temperature below the melting point. , In a predetermined solid form such as pellets or particles.
  • pellet-shaped polyglycolic acid it is preferable to use pellet-shaped polyglycolic acid as the high melt viscosity polyglycolic acid of the raw material.
  • the pellet shape is maintained in the warm water immersion treatment step and the heat drying treatment step, so that a low melt viscosity polyglycolic acid can be obtained in a pellet shape.
  • the pellets were prepared by supplying polyglycolic acid alone or polyglycolic acid and an additive component such as a heat stabilizer to the extruder, and changing the cylinder temperature to a temperature within the range of 260 ° C. from the melting point (Tm) of the polyglycolic acid.
  • Tm melting point
  • a method of melt-kneading, extruding into a strand from a die, cooling, and cutting can be employed.
  • the size and the length of the pellet are usually in the range of 1 to 10 mm, preferably 1.5 to 8 mm, more preferably 2 to 6 mm, but are not limited thereto, and if necessary, A larger shape may be used.
  • the polyglycolic acid particles are preferably granules having an average particle diameter measured by a sieve separation method using a standard sieve, preferably 100 ⁇ m or more, more preferably 500 ⁇ m or more, and particularly preferably 1,000 ⁇ m or more.
  • the method for producing the low melt viscosity polyglycolic acid of the present invention includes the following steps 1 and 2.
  • a polyglycolic acid having a melt viscosity exceeding 100 Pa ⁇ s measured at a temperature 50 ° C higher than the melting point Tm of the polyglycolic acid (Tm + 50 ° C) and a shear rate of 122 sec -1 is 60-100 ° C in a predetermined solid form.
  • the moisture-absorbing polyglycolic acid is heated and dried at a temperature in the range from 60 ° C. to 5 ° C.
  • melt viscosity measured at a temperature 10 ° C. higher than the melting point of glycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec ⁇ 1 is 150 Pa ⁇ s or less
  • the 3% thermal weight loss temperature is 280 ° C. or more
  • the water content is 500 ppm.
  • Heat drying treatment step 2 for obtaining the following low melt viscosity polyglycolic acid.
  • polyglycolic acid (“high melt viscosity”) having a melt viscosity exceeding 100 Pa ⁇ s measured at a temperature 50 ° C. higher than the melting point Tm of polyglycolic acid (Tm + 50 ° C.) and a shear rate of 122 sec ⁇ 1.
  • the shape of the high melt viscosity polyglycolic acid may be a particle, but from the viewpoint of meterability, moldability, handleability, transportability, etc. of the resulting low melt viscosity polyglycolic acid, it is preferably a pellet. .
  • the mixing ratio of the high melt viscosity polyglycolic acid and water (warm water) is usually 1:10 to 10: 5, preferably 3:10 to 10: 7, more preferably 5:10 to 10: 8, by weight. Is within the range.
  • the amount ratio of water is too small, it becomes difficult to uniformly immerse the solid-form high melt viscosity polyglycolic acid in warm water and absorb moisture uniformly.
  • the amount ratio of water is too large, the thermal efficiency and the stirring efficiency are lowered.
  • the stirring tank is not particularly limited as long as it has a shape such as an autoclave or a cylindrical tank and has heat resistance.
  • the internal volume of the stirring tank is preferably 5 to 500 liters, more preferably 8 to 100 liters, and particularly preferably 10 to 50 liters from the viewpoint of processing efficiency and production scale.
  • the stirrer is not particularly limited, however, for example, a stirrer including stirrer blades such as a flat plate paddle, an inclined paddle, a bull margin blade and its deformed blade, a full zone blade, and a wall wetter blade is preferable.
  • the stirring blades may be one set or two or more sets may be arranged along the stirring shaft of the stirrer. According to technical common sense, the stirring blade has strength and length that can uniformly stir and mix the contents in the stirring tank according to the scale of the stirring tank.
  • the hot water may be preheated to a predetermined temperature, or may be warmed by heating in a stirring tank using low or normal temperature water at the time of preparation.
  • water having a temperature equal to or lower than room temperature is charged into a stirring tank, heated to a temperature within a predetermined range by heating with a heating unit, and maintained at a predetermined temperature during the hot water immersion treatment process.
  • a heating medium can be passed through a jacket provided on the bottom or side wall of the stirring tank, or a heater can be used.
  • the temperature of hot water is controlled within the range of 60-100 ° C.
  • the hot water immersion treatment (moisture absorption treatment) step can be carried out efficiently in a short time.
  • the temperature of the hot water is Is preferably controlled within the range of 60 to 95 ° C, more preferably 60 to 90 ° C, and particularly preferably 65 to 85 ° C.
  • the temperature of the hot water can be varied within the above range, but in order to stably obtain a low melt viscosity polyglycolic acid having a predetermined melt viscosity with good reproducibility, During this time, it is desirable to maintain a predetermined temperature.
  • the temperature of the hot water is too low, it takes a long time to absorb the polyglycolic acid by the hot water immersion treatment, and the production efficiency decreases. If the temperature of the hot water is too high, a partial hydrolysis reaction proceeds on the surface of the solid such as pellets in the hot water immersion treatment process, the degree of dispersion of the resulting hygroscopic polyglycolic acid becomes broad, and the proportion of low molecular weight components Increase. As a result, the low melt viscosity polyglycolic acid finally obtained has a high content of low molecular weight substances, and easily vaporizes gas components during melt processing. The increase in the content of the low molecular weight substance can be confirmed by a significant decrease in the 3% thermal weight loss temperature of the low melt viscosity polyglycolic acid.
  • the degree of dispersion (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 2.15 by adjusting the temperature and treatment time of the warm water.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the lower limit of the degree of dispersion is usually 1.30, and in many cases 1.50.
  • Polyglycolic acid has a specific gravity of about 1.60 g / cm 3 and is likely to settle in warm water. For this reason, even if a mixture of a solid form high melt viscosity polyglycolic acid and warm water is stirred in the warm water immersion treatment step, it is difficult to uniformly contact the fixed shape high melt viscosity polyglycolic acid with warm water. is there.
  • the rotation speed of the stirring blade of the stirrer within the range of 100 to 500 rpm, preferably 150 to 300 rpm, more preferably 180 to 250 rpm, the high melt viscosity of the solid form in the hot water immersion treatment step It has been found that the polyglycolic acid can be uniformly contacted with warm water, thereby making it possible to absorb moisture uniformly. For this reason, in the subsequent heating and drying step, it is possible to obtain a low melt viscosity polyglycolic acid in which variation in melt viscosity value is sufficiently suppressed within the same lot.
  • the treatment time in the warm water immersion treatment step is usually in the range of 1 to 15 hours, preferably 1.5 to 10 hours, and in many cases 2 to 8 hours.
  • the treatment time can be appropriately selected according to the temperature of the hot water and the target moisture content. If the treatment time is too long, in addition to a decrease in production efficiency, undesired alteration and non-uniform hydrolysis may occur.
  • the stirring time can be lengthened as the temperature of the hot water is lowered, and the stirring time can be shortened as the temperature of the hot water is raised.
  • the temperature of the hot water in the hot water immersion treatment step is set to a low temperature of, for example, 55 ° C. or less, a long time of usually 30 hours or more is required to sufficiently absorb the solid form high melt viscosity polyglycolic acid.
  • a long time of usually 30 hours or more is required to sufficiently absorb the solid form high melt viscosity polyglycolic acid.
  • a hygroscopic polyglycolic acid having a water content of polyglycolic acid of 1,000 ppm or more, preferably 3,000 ppm or more, more preferably 5,000 ppm or more is obtained while maintaining the original solid form.
  • the upper limit of the moisture content is usually 50,000 ppm, preferably 30,000 ppm, more preferably 20,000 ppm. If the water content is too low, it is difficult to achieve a uniform and sufficient low melt viscosity in the heat drying process, and if it is too high, it is difficult to maintain a solid shape such as pellets or the content of low molecular weight components is low. It increases, and a long time is required for the heat drying process.
  • the solid water polyglycolic acid such as pellets is subjected to warm water immersion treatment while substantially maintaining the original solid shape.
  • the water is usually removed by filtration or tilting with a filter.
  • adhering water remains on the surface of the collected solid hygroscopic polyglycolic acid.
  • water remains in the gaps between the solid-state polyglycolic acids such as the deposited pellets. Since these residual waters are difficult to distinguish accurately, they are collectively referred to as adhering water.
  • the moisture content means the amount of moisture contained in solid-state hygroscopic polyglycolic acid such as pellets.
  • the amount of water which is the sum of the amount of water contained in solid moisture-absorbing polyglycolic acid such as pellets and the amount of adhering water, is referred to as the total amount of water.
  • the total water content is usually 15% by weight or less, often in the range of 2 to 10% by weight.
  • the hygroscopic polyglycolic acid obtained in the step 1 is maintained at 60 ° C. to 5 ° C. lower than the melting point of the polyglycolic acid (Tm ⁇ 5 ° C.) while maintaining the solid form.
  • Tm ⁇ 5 ° C. melting point of the polyglycolic acid
  • Tm + 10 ° C. melting point of the polyglycolic acid
  • the melt viscosity measured at a shear rate of 1,200 sec ⁇ 1 is 150 Pa ⁇ s or less
  • 3% thermal weight reduction A low melt viscosity polyglycolic acid having a temperature of 280 ° C. or more and a water content of 500 ppm or less is recovered.
  • the low melt viscosity polyglycolic acid naturally maintains a solid shape such as pellets at room temperature.
  • the heating and drying temperature is a temperature within a range from 60 ° C. to a temperature 5 ° C. lower than the melting point of polyglycolic acid (Tm ⁇ 5 ° C.).
  • the heat drying treatment temperature is preferably 70 to 200 ° C, more preferably 80 to 190 ° C, and further preferably 90 to 180 ° C. If the heat drying treatment temperature is too low, it takes a very long time to lower the melt viscosity of the hygroscopic polyglycolic acid to a desired level. On the other hand, if the heat drying treatment temperature is too high, it becomes difficult to maintain the solid state of the hygroscopic polyglycolic acid.
  • the heating and drying treatment time is performed until the melt viscosity of the hygroscopic polyglycolic acid is lowered to a desired level.
  • the heat drying time is preferably 1 to 200 hours, more preferably 2 to 150 hours, and particularly preferably 3 to 100 hours.
  • the treatment time can be shortened to a range of preferably 3 to 15 hours, more preferably 4 to 10 hours.
  • the time for the heat-drying treatment until the desired melt viscosity level is reached also varies depending on the heat-drying treatment temperature. In general, the higher the heat drying temperature, the higher the desired melt viscosity level can be reached in a relatively short time.
  • high-quality low melt viscosity polyglycolic acid can be obtained efficiently by adopting a method of drying simultaneously with heating.
  • a dry inert gas or air atmosphere As the dry inert gas, for example, it is desirable to use dry nitrogen having a dew point of usually ⁇ 60 ° C. to ⁇ 10 ° C., preferably ⁇ 50 ° C. to ⁇ 30 ° C., and in many cases ⁇ 40 ° C.
  • the dry air is preferably air that has been dehumidified by removing dust through a filter.
  • the heat drying treatment can be carried out by placing the solid-form hygroscopic polyglycolic acid in a high-temperature treatment machine under dry heat conditions such as an oven. It is desirable to carry out while flowing an inert gas or air. Dry nitrogen and dry air can also be supplied as hot air heated to a predetermined heat treatment temperature.
  • the flow rates of the inert gas and air depend on the amount of hygroscopic polyglycolic acid and the total amount of water, but are usually 0.1 to 30,000 liters / minute, preferably 1 to 10,000 liters / minute, more preferably Is in the range of 5 to 5,000 liters / minute, particularly preferably 10 to 1,000 liters / minute.
  • a low melt viscosity polyglycolic acid having a melt viscosity of 150 Pa ⁇ s or less measured at a temperature 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec ⁇ 1 is obtained.
  • Tm + 10 ° C. melting point of polyglycolic acid
  • a shear rate of 1,200 sec ⁇ 1 is obtained.
  • the measurement temperature is 230 ° C.
  • the lower limit of the melt viscosity of the low melt viscosity polyglycolic acid is usually 1 Pa ⁇ s.
  • the temperature is 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and the shear rate is 1,200 sec. Even when the melt viscosity measured under the condition of -1 is so low that the melt viscosity cannot be measured, it is evaluated that the melt viscosity is 150 Pa ⁇ s or less.
  • low melt viscosity polyglycolic acid When using low melt viscosity polyglycolic acid as a hard-to-platable resin (mask resin) for circuit boards by a two-time molding method, melt it to avoid deformation of the primary molded product during the second shot of injection molding. It is desirable to reduce the viscosity to 130 Pa ⁇ s or less, further 100 Pa ⁇ s or less, and in many cases 80 Pa ⁇ s or less.
  • the low melt viscosity polyglycolic acid has a better melt fluidity at the time of injection molding as its melt viscosity is lower, and can reduce the pressure at the time of injection.
  • the melt viscosity of the polyglycolic acid used as the mask resin is as low as possible.
  • the low melt viscosity polyglycolic acid cannot maintain a solid state such as pellets, handleability, meterability, moldability and the like are lowered.
  • melt viscosity of polyglycolic acid is lowered by the production method of the present invention is presumed to be because the hydrolysis reaction proceeds in the solid-state polyglycolic acid that has absorbed moisture in the heat drying treatment step.
  • a homogeneous and moderate hydrolysis reaction can be caused while maintaining the solid state like pellets, and low molecular weight components High-quality, low melt viscosity polyglycolic acid can be obtained in a solid state while suppressing the formation of.
  • the 3% thermogravimetric reduction temperature of the low melt viscosity polyglycolic acid obtained by the production method of the present invention is 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, particularly preferably 320 ° C. or higher. .
  • the upper limit of the 3% thermal weight loss temperature is usually 355 ° C.
  • the 3% thermogravimetric temperature reduction temperature of the low melt viscosity polyglycolic acid of the present invention is preferably improved by containing a small amount of the specific heat stabilizer, but the use of a heat stabilizer is not always necessary.
  • the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization during synthesis has a high content of low molecular weight components, and its 3% thermal weight loss temperature is usually 260 ° C. or less, in many cases It becomes around 250 ° C.
  • the low 3% thermal weight loss temperature of polyglycolic acid means that low molecular weight components are easily gasified during melt processing such as injection molding.
  • the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis has a large content of low molecular weight components, so even if it contains the specific heat stabilizer, its 3% thermal weight loss temperature is greatly increased. It is difficult to improve.
  • the low melt viscosity polyglycolic acid is a dry polymer having a water content of 500 ppm or less, preferably 300 ppm or less, more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
  • the lower limit of the moisture content is about 2 ppm.
  • the melt viscosity of the low melt viscosity polyglycolic acid can be controlled by controlling the treatment conditions of the hot water immersion treatment process.
  • water is added to the hygroscopic polyglycolic acid, and the total water content including the amount of water contained in the solid such as the pellets and the amount of adhering water.
  • the hot water immersion treatment step 1 water is removed by filtration with a filter or tilting. Since the wet hygroscopic polyglycolic acid is in a solid form such as pellets, it contains adhering water such as residual water adhering to the surface in addition to the water contained therein. By adjusting the total water content, the melt viscosity of the resulting low melt viscosity polyglycolic acid can be controlled.
  • water is added to moisture-absorbing polyglycolic acid in a wet state taken out by filtration or tilting to adjust the total water content, and then heat drying treatment is performed.
  • the low melt viscosity polyglycolic acid of the present invention is in a solid form at room temperature (20 ⁇ 15 ° C.), and preferably in a pellet form. This solid form is substantially the same as the solid form of the high melt viscosity polyglycolic acid used as a raw material.
  • the low melt viscosity polyglycolic acid of the present invention has an ester bond in the main chain, and further, there are carboxyl groups formed at the time of synthesis and hydrolysis at both ends. Excellent adhesion to product surface and electroless plating layer surface.
  • Low melt viscosity polyglycolic acid is a polymer with excellent melt fluidity and adhesion to other materials, and is a polymer with suppressed generation of gas components. Therefore, it is a primary molded product formed from other synthetic resins by injection molding.
  • a thin coating layer containing a fine pattern can be precisely formed on the surface of the substrate.
  • the fine pattern is formed as a fine groove shape.
  • the low melt viscosity polyglycolic acid has crystallinity, when the cross section of the groove is observed, the wall of the groove is formed vertically. Therefore, a conductor circuit with a precise pattern can be formed by plating. Since the low melt viscosity polyglycolic acid has a short solidification time by crystallization, the injection molding cycle can be improved.
  • the low melt viscosity polyglycolic acid coating layer is not dissolved by the electroless plating solution or the electrolytic plating solution during the plating process.
  • the coating layer is hard to be plated and is difficult to deposit plated metal particles. Since the low melt viscosity polyglycolic acid is decomposable with respect to an alkaline aqueous solution, the coating layer can be removed by treating with an alkaline aqueous solution. There is no need to use an organic solvent to remove the coating layer, and no mechanical peeling work is required. For this reason, in removing the coating layer, the conductor circuit formed by the plating process is not damaged.
  • the low melt viscosity polyglycolic acid obtained by the production method of the present invention is suitable as a hard-to-plate resin (mask resin) for circuit boards by a two-time molding method.
  • the primary molded product used in the twice-molding method include, but are not limited to, liquid crystal polymers, thermoplastic polyester resins, polyphenylene sulfide resins, and cyclic olefin resins.
  • Low melt viscosity polyglycolic acid is injected into a mold with other synthetic resin moldings and used to produce composite moldings in which the synthetic resin molding and polyglycolic acid layer are integrated. It is suitable as a resin material. Low melt viscosity polyglycolic acid has excellent melt flowability and melt stability, so it can be co-extruded with other synthetic resins or by extrusion coating on other synthetic resin films or paper substrates. The present invention can also be used for molding various composite materials.
  • the measuring method of physical properties and characteristics in the present invention is as follows.
  • Method of measuring water content a) Method of measuring total water content A solid polymer sample immersed in water was filtered through a filter, and the weight A of the wet polymer sample remaining on the filter was measured. The wet polymer sample was dried to prepare a dry polymer sample, and the weight B of the dry polymer sample was measured. The total water content was measured by the formula [(AB) / B] ⁇ 100.
  • the moisture content of the polymer was measured using a Karl Fischer moisture meter with a vaporizer [CA-100 manufactured by Mitsubishi Chemical; attached vaporizer VA-100]. Specifically, after wiping off moisture adhering to the surface of the wet polymer, about 2 g of a polymer sample accurately weighed was placed in a vaporizer heated to a temperature of 220 ° C. Dry nitrogen gas was allowed to flow from the vaporizer to the Karl Fischer moisture meter. After the polymer sample was put into the vaporizer, the water vaporized from the polymer sample was introduced into the Karl Fischer liquid in the Karl Fischer moisture measuring device in association with the dry nitrogen gas. The end point was the time when the electric conductivity of the Karl Fischer liquid decreased to +0.1 ⁇ g / S from the background by the coulometric titration method.
  • Adhering water The value obtained by subtracting the moisture content from the total water content is called adhering water.
  • the melting point Tm of the polymer was measured using a differential scanning calorimeter TC10A manufactured by METTLER. Measurement was performed in a nitrogen atmosphere while flowing dry nitrogen gas at a rate of 50 ml / min. About 10 mg of a polymer sample was put in an aluminum pan and heated at a temperature increase rate of 50 ° C. to 10 ° C./min, and the melting point Tm was measured.
  • the melt viscosity of a polymer was measured using a Toyo Seiki Capillograph 1-C equipped with a capillary (0.5 mm ⁇ ⁇ 10 mmL) as a melt viscosity measurement device. More specifically, about 20 g of the polymer sample is introduced into a measuring apparatus heated to a temperature 10 ° C. higher than the melting point of the polymer sample (Tm + 10 ° C.), and the polymer sample is held at the temperature for 5 minutes. The melt viscosity was measured at 200 sec ⁇ 1 . The melt viscosity of the starting polyglycolic acid was measured at a temperature (Tm + 50 ° C.) and a shear rate of 122 sec ⁇ 1 .
  • thermogravimetric decrease temperature The 3% thermogravimetric decrease temperature of the polymer was measured using a thermogravimetric analyzer TC11 manufactured by METTLER. Specifically, a 20 mg polymer sample is placed in a platinum pan, heated in a dry nitrogen atmosphere of 10 ml / min from 50 ° C. to 400 ° C. at a rate of temperature increase of 10 ° C./min, and the weight loss rate during that time is measured. did. The temperature at which the temperature decreased by 3% from the weight of the polymer sample at the start of measurement was defined as a 3% thermogravimetric decrease temperature.
  • Examples 1 to 5 The operation was performed in substantially the same manner as in Comparative Example 1 except that the hot water immersion treatment conditions and the heat drying treatment conditions were changed as shown in Table 1.
  • dry air (AI) was used instead of dry nitrogen (N 2 ). The results are shown in Table 1.
  • the processing time in the hot water immersion treatment process can be significantly shortened (Examples 1 to 5). It can be seen that when the rotation speed of the stirring blade is increased to 100 rpm or more, preferably 150 rpm or more, the dispersion of the melt viscosity within the same lot of the low melt viscosity polyglycolic acid is reduced (Examples 1 to 5).
  • Examples 1 to 5 a low melt viscosity polyglycolic acid which has a 3% thermal weight loss temperature maintained at a high level and has a low moisture content and is sufficiently dried is obtained. Can be obtained efficiently.
  • Example 6 Using the same pellets prepared in Comparative Example 1, the temperature of the hot water was 100 ° C. (Example 6), 80 ° C. (Example 7), 70 ° C. (Example 8), and 55 as shown in Table 2. The temperature was changed to 0 ° C. (Comparative Example 2), the number of revolutions of the stirring blade was set to 200 rpm, and hot water immersion treatment was performed. Table 2 shows the measurement results of treatment time, weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn).
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • Mn dispersity
  • the polyglycolic acid having a low melt viscosity obtained by the method for producing a polyglycolic acid having a low polymerization degree at the time of synthesis has a 3% thermal weight loss temperature of 252 ° C., and has a high content of low molecular weight substances. A large amount of gas components are easily volatilized (Comparative Example 3).
  • Example 9 Using the polyglycolic acid pellets prepared in Comparative Example 1, the hot water temperature was set to 70 ° C., the rotation speed of the stirring blade was set to 200 rpm, and the treatment time was set to 5 hours, and the hot water immersion treatment step was performed. Thereby, moisture-absorbing polyglycolic acid pellets in a wet state with a water content of 8,910 ppm and a total water content of 4.12% by weight were recovered. The moisture-absorbing polyglycolic acid pellets were put in a drier and heat-dried for 6 hours while flowing dry air heated to 150 ° C. at a flow rate of 300 liters / minute. As a result, a low melt viscosity polyglycolic acid having a water content of 46.5% by weight and a melt viscosity of 24 Pa ⁇ s was obtained. The results are shown in Table 4.
  • Example 10 water was added to wet hygroscopic polyglycolic acid pellets to adjust the total water content. Then, the heat drying process was performed by the same operation as Example 9. The results are shown in Table 4.
  • melt viscosity is further increased after the heat drying treatment step by adding water to the wet hygroscopic polyglycolic acid pellets to adjust the total water content. It can be seen that reduced low melt viscosity polyglycolic acid pellets are obtained. The degree of decrease in melt viscosity is approximately proportional to the total water content. Therefore, if the relationship between the total water content and the melt viscosity value is examined in advance, the melt viscosity value of the low melt viscosity polyglycolic acid can be precisely determined by simply adding water and adjusting the total water content of the pellets. Can be controlled.
  • the low melt viscosity polyglycolic acid of the present invention can precisely mold a thin film with a fine pattern on the surface of another synthetic resin molded product by injection molding, has excellent plating resistance, and is an alkaline aqueous solution. Since it is soluble, it can be used as, for example, a mask resin for MID (three-dimensional injection molded circuit components).
  • the low melt viscosity polyglycolic acid of the present invention can be used in a wide range of technical fields that are required to be excellent in melt flowability during molding, precision moldability, adhesion to other materials, gas barrier properties, and the like. .

Abstract

A method for producing a polyglycolic acid having a lowered melt viscosity which comprises: a hot water-immersion step of immersing a high-melt-viscosity polyglycolic acid in a solid form in hot water at 60-100oC and allowing the polyglycolic acid to absorb moisture while maintaining the solid form thereof to give a moisture absorption polyglycolic acid having a water content greater than or equal to 1,000 ppm; and a heat drying step of drying the moisture absorption polyglycolic acid by heating while maintaining the solid form thereof to give a polyglycolic acid having a lowered melt viscosity.

Description

低溶融粘度化ポリグリコール酸の製造方法Process for producing low melt viscosity polyglycolic acid
 本発明は、低溶融粘度化ポリグリコール酸の効率的な製造方法に関する。本発明の製造方法によれば、低溶融粘度化ポリグリコール酸を常温でペレットなどの固体形状で得ることができる。このため、低溶融粘度化ポリグリコール酸は、取扱性や計量性が良好で、溶融成形時にガス成分を発生し難く、かつ、溶融流動性、溶融安定性、成形性、他材への密着性などに優れている。 The present invention relates to an efficient method for producing a low melt viscosity polyglycolic acid. According to the production method of the present invention, low melt viscosity polyglycolic acid can be obtained in a solid form such as pellets at room temperature. For this reason, low melt viscosity polyglycolic acid has good handleability and meterability, hardly generates gas components during melt molding, and has melt fluidity, melt stability, moldability, and adhesion to other materials. Etc.
 ポリグリコール酸は、生分解性脂肪族ポリエステル樹脂の一種であり、グリコリドの開環重合またはグリコール酸の縮重合により合成されている。グリコリドの開環重合によれば、高分子量で高溶融粘度のポリグリコール酸を得ることができる。ポリグリコール酸は、単独重合体の融点が215~225℃の範囲内にあり、耐熱性に優れている。その上、ポリグリコール酸は、ガスバリア性に優れている。 Polyglycolic acid is a kind of biodegradable aliphatic polyester resin and is synthesized by ring-opening polymerization of glycolide or polycondensation of glycolic acid. According to the ring-opening polymerization of glycolide, a polyglycolic acid having a high molecular weight and a high melt viscosity can be obtained. Polyglycolic acid has a melting point of a homopolymer in the range of 215 to 225 ° C. and is excellent in heat resistance. In addition, polyglycolic acid is excellent in gas barrier properties.
 ポリグリコール酸は、その溶融粘度が高いことが、新たな用途展開の妨げになる場合がある。新たな用途として、例えば、ポリグリコール酸を、金型内に配置した他の合成樹脂成形品の存在下に射出成形して、該合成樹脂成形品とポリグリコール酸層とが一体化した複合成形品を製造する用途がある。ポリグリコール酸は、その溶融粘度が高いと、高温・高圧で射出成形する必要があるため、射出成形時の溶融したポリグリコール酸の流れによって、金型内に配置した他の合成樹脂成形品が変形し易い。 Polyglycolic acid has a high melt viscosity, which may hinder new application development. As a new application, for example, polyglycolic acid is injection molded in the presence of another synthetic resin molded product placed in a mold, and the composite resin molded product and the polyglycolic acid layer are integrated. There are uses to manufacture products. If the polyglycolic acid has a high melt viscosity, it must be injection-molded at a high temperature and high pressure. Therefore, other synthetic resin molded products placed in the mold are produced by the flow of the molten polyglycolic acid during injection molding. Easy to deform.
 特殊な射出成形品として、射出成形によって成形された回路基板がある。射出成形による回路基板の成形方法として、2回成形法(「2ショット法」ともいう)により、合成樹脂成形品の表面に回路パターンを形成する技術が開発されている。射出成形の1ショット目に、めっき触媒を含有する第一の合成樹脂(易めっき性樹脂)を用いて一次成形品を成形する。該一次成形品を、別の金型または同じ金型の別のキャビティに移動する。2ショット目に、金型内に配置した一次成形品の存在下に、めっき触媒を含有しない第二の合成樹脂(難めっき性樹脂)をパターン状に射出して、回路を形成する部分以外の一次成形品の表面を被覆する。第二の合成樹脂によって被覆されずに露出した一次成形品の表面に、無電解めっきにより導体回路層を形成する。無電解めっき層は、一般に薄いため、それに続く電気めっきにより、導体回路に適した厚みに成長させる。めっき工程後、第二の合成樹脂の被覆層は、一体化した状態で残しておくことができるが、除去してもよい。第二の合成樹脂は、難めっき性樹脂であるため、その被覆層は、めっきに対するマスクまたはレジストとしての役割を果たす。 There is a circuit board molded by injection molding as a special injection molded product. As a method for molding a circuit board by injection molding, a technique for forming a circuit pattern on the surface of a synthetic resin molded product by a two-time molding method (also referred to as “two-shot method”) has been developed. In the first shot of injection molding, a primary molded product is molded using a first synthetic resin (easy plating resin) containing a plating catalyst. The primary molding is moved to another mold or another cavity of the same mold. In the second shot, in the presence of the primary molded product placed in the mold, a second synthetic resin (hard-plating-resistant resin) that does not contain a plating catalyst is injected in a pattern to form a circuit other than the part that forms the circuit. The surface of the primary molded product is covered. A conductor circuit layer is formed by electroless plating on the surface of the primary molded product exposed without being covered with the second synthetic resin. Since the electroless plating layer is generally thin, it is grown to a thickness suitable for a conductor circuit by subsequent electroplating. After the plating step, the coating layer of the second synthetic resin can be left in an integrated state, but may be removed. Since the second synthetic resin is a hard-to-plate resin, the coating layer serves as a mask or resist for plating.
 他の方法として、1ショット目の射出成形で得られた第一の合成樹脂からなる一次成形品の全面に、無電解めっきを施して薄いめっき層を形成した後、2ショット目に第二の合成樹脂をパターン状に射出して一体化し、回路を形成する部分以外の無電解めっき層表面に第二の合成樹脂の被覆層を形成する方法がある。第二の合成樹脂によって被覆されずに露出した一次成形品の無電解めっき層部分の厚みを、電気めっきにより厚くする。電気めっき工程後、第二の合成樹脂の被覆層を、その下の薄い無電解めっき層と共に除去する。その結果、第一の合成樹脂の一次成形品の表面に、回路パターン状のめっき層が残る。 As another method, after the electroless plating is performed on the entire surface of the primary molded product made of the first synthetic resin obtained by the first shot injection molding, a thin plating layer is formed on the second shot, There is a method in which a synthetic resin is injected and integrated into a pattern, and a second synthetic resin coating layer is formed on the surface of the electroless plating layer other than the portion where the circuit is formed. The thickness of the electroless plating layer portion of the primary molded product exposed without being covered with the second synthetic resin is increased by electroplating. After the electroplating step, the coating layer of the second synthetic resin is removed together with the thin electroless plating layer below it. As a result, a circuit pattern-like plating layer remains on the surface of the primary molded product of the first synthetic resin.
 2回成形法によって得られる回路基板としては、射出成形品の表面に立体的に導体回路を形成したMID(Molded Interconnect Device)と呼ばれる三次元射出成形回路部品が代表的なものである。MIDは、合成樹脂の射出成形品と配線部品とを一体化した立体配線基板であり、配線の合理化、電子デバイス部品の小型化、組立性の向上、機器内の合理化、省スペース化などに寄与することができる。MIDは、発光ダイオード等の半導体パッケージ、三次元プリント配線板、携帯電話のアンテナ部品などに応用されている。 A typical circuit board obtained by the two-time molding method is a three-dimensional injection molded circuit component called MID (Molded Interconnect Device) in which a conductor circuit is three-dimensionally formed on the surface of an injection molded product. MID is a three-dimensional wiring board that integrates injection moldings of synthetic resin and wiring components, contributing to rationalization of wiring, downsizing of electronic device parts, improvement of assembly, rationalization of equipment, space saving, etc. can do. MID is applied to semiconductor packages such as light emitting diodes, three-dimensional printed wiring boards, mobile phone antenna components, and the like.
 射出成形による回路基板に用いられる第一の合成樹脂としては、例えば、液晶ポリマー、ポリフェニレンスルフィドなどのスーパーエンジニアリングプラスチック;ポリブチレンテレフタレート、ポリエチレンテレフタレートなどの熱可塑性芳香族ポリエステル樹脂;ポリアミド樹脂;環状オレフィン樹脂などが用いられている。 Examples of the first synthetic resin used for the circuit board by injection molding include super engineering plastics such as liquid crystal polymer and polyphenylene sulfide; thermoplastic aromatic polyester resins such as polybutylene terephthalate and polyethylene terephthalate; polyamide resins; cyclic olefin resins Etc. are used.
 2回成形法により得られたMIDなどの回路基板は、難めっき性樹脂の被覆層が製品にそのまま残ると、更なる薄型化、小型化、軽量化が困難となる上、難めっき性樹脂として、耐熱性、絶縁性、強度、耐薬品性、耐久性などに優れた樹脂材料を用いる必要がある。難めっき性樹脂として、エンジニアリングプラスチックなどの高性能樹脂を用いると、高温・高圧で射出成形する必要があるため、一次成形品が変形しないように、その回路部の高さを高くしたり、回路部の幅を広くしたりする必要がある。このため、難めっき性樹脂被覆層は、めっき工程後に除去できるものであることが望まれている。 Circuit boards such as MID obtained by the two-time molding method are difficult to make thinner, smaller, and lighter if the coating layer of difficult-to-plat resin is left on the product. It is necessary to use a resin material excellent in heat resistance, insulation, strength, chemical resistance, durability and the like. If a high-performance resin such as engineering plastic is used as a difficult-to-platable resin, it is necessary to perform injection molding at high temperature and high pressure. It is necessary to widen the width of the part. For this reason, it is desired that the hard-to-platable resin coating layer can be removed after the plating step.
 難めっき性樹脂自体にも、様々な性能を有することが求められる。難めっき性樹脂は、めっきに対するマスクまたはレジストとして用いられることから、射出成形により精密なパターン形状の被覆層を成形できること、他の合成樹脂成形品の表面または無電解めっき層に対する密着性に優れること、無電解めっきと電気めっきに用いられるめっき液に対する耐性を有すること、めっき工程後に容易に剥離除去できることなどが求められている。 The difficult-plating resin itself is required to have various performances. Since difficult-to-plat resin is used as a mask or resist for plating, it can form a coating layer with a precise pattern shape by injection molding, and has excellent adhesion to the surface of other synthetic resin molded products or electroless plating layers There is a demand for resistance to plating solutions used for electroless plating and electroplating, and easy peeling and removal after the plating step.
 特開2002-344116号公報(特許文献1)及び特開2004-247354号公報(特許文献2)には、難めっき性樹脂として、ポリ乳酸などの脂肪族ポリエステル樹脂を用いることが提案されている。脂肪族ポリエステル樹脂は、他の材料に対する密着性が良好であり、後処理工程で被覆層をアルカリ水溶液により除去することができる。しかし、脂肪族ポリエステル樹脂は、融点が比較的高いことに加えて、溶融粘度が高いため、射出成形時に高温・高圧で射出する必要がある。このため、脂肪族ポリエステル樹脂は、射出成形時に、予め金型内に配置した回路基板形成用の一次成形品を変形させ易い。 Japanese Laid-Open Patent Publication No. 2002-344116 (Patent Document 1) and Japanese Laid-Open Patent Publication No. 2004-247354 (Patent Document 2) propose using an aliphatic polyester resin such as polylactic acid as a hard-to-platable resin. . The aliphatic polyester resin has good adhesion to other materials, and the coating layer can be removed with an alkaline aqueous solution in a post-treatment process. However, since the aliphatic polyester resin has a relatively high melting point and a high melt viscosity, it must be injected at a high temperature and a high pressure during injection molding. For this reason, the aliphatic polyester resin easily deforms a primary molded product for forming a circuit board that is previously arranged in a mold during injection molding.
 このような技術水準の下で、射出成形時の溶融流動性に優れたポリグリコール酸の開発が期待されている。ポリグリコール酸の融点を低下させれば、通常のポリグリコール酸の成形温度での溶融流動性を向上させることができる。ポリグリコール酸の融点は、他のモノマーと共重合させる方法により低下させることができる。しかし、ポリグリコール酸の融点を大幅に低下させるために、他のモノマーの共重合割合を大きくすると、ポリグリコール酸自体の優れた特性を保持することが困難となる。 Under such technical standards, development of polyglycolic acid with excellent melt fluidity during injection molding is expected. If the melting point of polyglycolic acid is lowered, the melt fluidity at the molding temperature of ordinary polyglycolic acid can be improved. The melting point of polyglycolic acid can be lowered by a method of copolymerizing with other monomers. However, if the copolymerization ratio of other monomers is increased in order to significantly lower the melting point of polyglycolic acid, it becomes difficult to maintain the excellent characteristics of polyglycolic acid itself.
 特開2003-20344号公報(特許文献3)には、ポリグリコール酸の合成時に、重合度を調節して、低溶融粘度ポリグリコール酸を得る方法が開示されている。低溶融粘度ポリグリコール酸は、通常のポリグリコール酸の成形温度での溶融流動性が高いため、低圧での射出成形が可能である。 JP 2003-20344 (Patent Document 3) discloses a method of obtaining a low melt viscosity polyglycolic acid by adjusting the degree of polymerization during the synthesis of polyglycolic acid. Since low melt viscosity polyglycolic acid has high melt fluidity at the molding temperature of ordinary polyglycolic acid, injection molding at low pressure is possible.
 しかし、合成時に重合度の調節により得られた低溶融粘度ポリグリコール酸は、3%熱重量減少温度が著しく低いことに見られるように、低分子量物の含有量が多く、溶融成形温度に加熱すると、その中に含まれる低分子量物がガス化して揮散し易い。低溶融粘度ポリグリコール酸が高温でガス成分を発生し易いものであると、これを難めっき性樹脂として一次成形品の表面に射出成形したときに、発生したガス成分によって、一次成形品表面に対するポリグリコール酸被覆層の密着性が低下したり、回路基板が汚染されたりする。 However, the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis has a high content of low molecular weight substances and is heated to the melt molding temperature as seen in the extremely low 3% thermal weight loss temperature. Then, the low molecular weight material contained therein is easily gasified and volatilized. When the low melt viscosity polyglycolic acid is likely to generate a gas component at a high temperature, when it is injection-molded on the surface of the primary molded product as a hard-plating resin, the generated gas component causes Adhesiveness of the polyglycolic acid coating layer is lowered, or the circuit board is contaminated.
 さらに、難めっき性樹脂に適した低溶融粘度ポリグリコール酸は、ペレット化が困難である。ペレットを作製するには、押出機を用いて合成樹脂を溶融して、溶融物をストランド状に押出す必要がある。溶融押出したストランドは、冷却後に切断するコールドカット、ダイの出口で切断するホットカット、水中で切断するアンダウォーターカットなどの方式によりペレット化される。合成樹脂をペレット化することにより、計量性や成形性、取扱性、搬送性などを向上させることができる。 Furthermore, low melt viscosity polyglycolic acid suitable for difficult-to-platable resins is difficult to pelletize. In order to produce pellets, it is necessary to melt the synthetic resin using an extruder and to extrude the melt into strands. The melt-extruded strand is pelletized by a method such as a cold cut that is cut after cooling, a hot cut that is cut at the die outlet, and an underwater cut that is cut in water. By pelletizing the synthetic resin, meterability, moldability, handleability, transportability, and the like can be improved.
 低溶融粘度ポリグリコール酸は、溶融流動性が著しく高いため、押出機からストランド状に溶融押出しても、均一な径のストランドに成形することが困難である。溶融粘度が特に低いポリグリコール酸は、押出機を用いて溶融して、孔を有するダイスから連続的にストランド状に押出成形しても、ストランドが垂れてしまうため、ペレットの製造が実質的に不可能である。このように、低溶融粘度ポリグリコール酸は、ペレット化が困難である。ペレット化していない低溶融粘度ポリグリコール酸は、計量性や成形性に劣るため、難めっき性樹脂として射出成形すると、一次成形品の表面に精密なパターンを有する被覆層を形成することが困難である。 Since the low melt viscosity polyglycolic acid has extremely high melt fluidity, it is difficult to form a strand having a uniform diameter even if it is melt-extruded in a strand form from an extruder. Polyglycolic acid with a particularly low melt viscosity is melted using an extruder and the strands droop even when continuously extruded from a die having holes into a strand shape. Impossible. Thus, pelletization is difficult for low melt viscosity polyglycolic acid. Low melt viscosity polyglycolic acid that has not been pelletized is inferior in meterability and moldability, so when injection molding is performed as a difficult-to-plate resin, it is difficult to form a coating layer having a precise pattern on the surface of the primary molded product. is there.
特開2002-344116号公報JP 2002-344116 A 特開2004-247354号公報JP 2004-247354 A 特開2003-20344号公報JP 2003-20344 A
 本発明の課題は、溶融流動性に優れ、溶融成形時にガス成分を発生し難く、計量性、他材への密着性、微細なパターンの精密成形性、耐めっき性、アルカリ水溶液に対する溶解性などに優れた低溶融粘度化ポリグリコール酸を、効率的に製造する方法を提供することにある。 The object of the present invention is excellent in melt fluidity, hardly generating a gas component at the time of melt molding, meterability, adhesion to other materials, precision moldability of fine patterns, plating resistance, solubility in alkaline aqueous solution, etc. Another object of the present invention is to provide a method for efficiently producing a low melt viscosity polyglycolic acid excellent in water.
 本発明の更なる課題は、前記諸特性を有する低溶融粘度化ポリグリコール酸を、再現性良く安定的に製造する方法を提供することにある。本発明の他の課題は、低溶融粘度化ポリグリコール酸の溶融粘度を任意に制御することができる新たな製造方法を提供することにある。 A further object of the present invention is to provide a method for stably producing a low melt viscosity polyglycolic acid having the above-mentioned properties with good reproducibility. Another object of the present invention is to provide a new production method capable of arbitrarily controlling the melt viscosity of the low melt viscosity polyglycolic acid.
 本発明者らは、溶融流動性に優れ、かつ、溶融成形時にガス成分を発生し難い低溶融粘度ポリグリコール酸を得る方法について鋭意研究を行った。その研究過程において、合成時に溶融粘度が低いポリグリコール酸を製造するという従来の発想を根本的に転換した方法に想到した。本発明者らは、ペレット化が可能な高溶融粘度のポリグリコール酸を合成し、得られたポリグリコール酸からペレットを成形し、次いで、該ペレットを吸湿させてから加熱乾燥処理する方法により、溶融粘度が大幅に低減したポリグリコール酸をペレットの形状で得られることを見出し、先に、特許出願を行った(PCT/JP2008/066162)。この方法によれば、ペレットなどの固体形状を有する低溶融粘度化ポリグリコール酸を得ることができる。 The inventors of the present invention have intensively studied on a method for obtaining a low melt viscosity polyglycolic acid that has excellent melt fluidity and hardly generates a gas component during melt molding. In the course of their research, they came up with a method that fundamentally changed the conventional idea of producing polyglycolic acid having a low melt viscosity during synthesis. The present inventors synthesized a high melt viscosity polyglycolic acid capable of being pelletized, formed a pellet from the resulting polyglycolic acid, and then absorbed the pellet, followed by heat drying treatment, It was found that polyglycolic acid having a significantly reduced melt viscosity can be obtained in the form of pellets, and a patent application was filed first (PCT / JP2008 / 0666162). According to this method, low melt viscosity polyglycolic acid having a solid shape such as pellets can be obtained.
 ポリグリコール酸をペレットなどの固体状態で吸湿処理した後、加熱乾燥処理を行うと、固体状態のポリグリコール酸の内部で加水分解が進行し、溶融粘度が大きく低下する。この方法により得られた低溶融粘度化ポリグリコール酸は、3%熱重量減少温度の低下が少ないことに見られるように、ガス化する低分子量成分の含有量が少なく、溶融加工温度でのガス成分の発生が抑制されている。低溶融粘度化ポリグリコール酸は、ペレットの形状が保持されているため、計量性や成形性などに優れている。 When the polyglycolic acid is moisture-absorbed in a solid state such as pellets and then heat-dried, hydrolysis proceeds inside the solid-state polyglycolic acid and the melt viscosity is greatly reduced. The low melt viscosity polyglycolic acid obtained by this method has a low content of low molecular weight components to be gasified and gas at the melt processing temperature as seen in the decrease in the 3% thermogravimetric decrease temperature. Generation of ingredients is suppressed. Low melt viscosity polyglycolic acid is excellent in meterability and moldability because the shape of the pellet is maintained.
 しかし、前記製造方法によれば、ポリグリコール酸のペレットを恒温恒湿機内に48~72時間という長時間にわたって保持するか、55℃以下の温水中に24~36時間という長時間にわたって浸漬することにより、吸湿処理を行う必要があった。そのため、前記製造方法は、生産効率が不十分であった。 However, according to the above production method, the polyglycolic acid pellets are kept in a constant temperature and humidity chamber for a long time of 48 to 72 hours, or immersed in a warm water of 55 ° C. or less for a long time of 24 to 36 hours. Therefore, it was necessary to perform a moisture absorption treatment. Therefore, the production method has insufficient production efficiency.
 さらに、前記製造方法において、実質的に同じ条件で吸湿処理工程と加熱乾燥処理工程を行っても、同一ロット内で得られる低溶融粘度化ポリグリコール酸の溶融粘度に大きなバラツキの生じることが判明した。2回成形法によるMIDなどの回路基板の成形には、難めっき性樹脂として、所定の溶融粘度値を有するポリグリコール酸が強く要求されている。低溶融粘度化ポリグリコール酸の溶融粘度値にバラツキがあると、射出成形により精密なパターン状に被覆することが困難となる。 Furthermore, in the manufacturing method, it has been found that even when the moisture absorption treatment step and the heat drying treatment step are performed under substantially the same conditions, there is a large variation in the melt viscosity of the low melt viscosity polyglycolic acid obtained in the same lot. did. For molding circuit boards such as MID by the two-time molding method, polyglycolic acid having a predetermined melt viscosity value is strongly required as a hard-to-platable resin. If the melt viscosity value of the low melt viscosity polyglycolic acid varies, it becomes difficult to coat it in a precise pattern by injection molding.
 そこで、本発明者らは、前記課題を解決すべく研究を行った結果、ペレットまたは粒子などの所定の固体形状での高溶融粘度ポリグリコール酸の吸湿工程を、温水への浸漬処理によって実施すると共に、該温水の温度を特定の範囲内で高めることによって、吸湿処理時間を大幅に短縮しても、十分に低溶融粘度化されたポリグリコール酸を、当初の固体形状を実質的に保持したままで得られることを見出した。 Therefore, as a result of researches to solve the above-mentioned problems, the present inventors implement a moisture absorption step of high melt viscosity polyglycolic acid in a predetermined solid form such as pellets or particles by immersion in hot water. At the same time, by increasing the temperature of the hot water within a specific range, the polyglycolic acid with sufficiently low melt viscosity was substantially retained in its original solid form even if the moisture absorption time was greatly reduced. It was found that it can be obtained as it is.
 また、本発明者らは、温水中での固体形状のポリグリコール酸の撹拌条件を改善することにより、その後の加熱乾燥により均質な加水分解が生じ、それによって、同一ロット内で溶融粘度値のバラツキが顕著に抑制された低溶融粘度化ポリグリコール酸の得られることを見出した。さらに、本発明者らは、加熱乾燥処理に先立って、固体形状の吸湿ポリグリコール酸に水分を添加して、付着水を含む全水分量を調節することにより、低溶融粘度化ポリグリコール酸の溶融粘度を精密に制御できることを見出した。本発明は、これらの知見に基づいて完成するに至ったものである。 In addition, the present inventors improved the stirring conditions of the solid-form polyglycolic acid in warm water, resulting in homogeneous hydrolysis by subsequent heating and drying, and thereby the melt viscosity value in the same lot. It has been found that a low melt viscosity polyglycolic acid in which variation is remarkably suppressed can be obtained. Furthermore, prior to the heat drying treatment, the present inventors added moisture to the solid hygroscopic polyglycolic acid to adjust the total water content including the adhered water, thereby reducing the low melt viscosity polyglycolic acid. It has been found that the melt viscosity can be precisely controlled. The present invention has been completed based on these findings.
 本発明によれば、下記工程1及び2
(1)ポリグリコール酸の融点Tmより50℃高い温度(Tm+50℃)及び剪断速度122sec-1で測定した溶融粘度が100Pa・s超過のポリグリコール酸を、所定の固体形状で60~100℃の温水中に浸漬して、その固体形状を保持させながら吸湿させることにより、含水率が1,000ppm以上の吸湿ポリグリコール酸を得る温水浸漬処理工程1;並びに、
(2)該吸湿ポリグリコール酸を、その固体形状を保持させながら、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度で加熱乾燥して、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が150Pa・s以下で、3%熱重量減少温度が280℃以上、かつ、含水率が500ppm以下の低溶融粘度化ポリグリコール酸を得る加熱乾燥処理工程2;
を含む低溶融粘度化ポリグリコール酸の製造方法が提供される。
According to the present invention, the following steps 1 and 2
(1) A polyglycolic acid having a melt viscosity exceeding 100 Pa · s measured at a temperature 50 ° C higher than the melting point Tm of the polyglycolic acid (Tm + 50 ° C) and a shear rate of 122 sec -1 is 60-100 ° C in a predetermined solid form. Hot water immersion treatment step 1 for obtaining moisture-absorbing polyglycolic acid having a water content of 1,000 ppm or more by immersing in warm water and absorbing moisture while maintaining its solid form;
(2) The moisture-absorbing polyglycolic acid is heated and dried at a temperature in the range from 60 ° C. to 5 ° C. lower than the melting point of the polyglycolic acid (Tm−5 ° C.) while maintaining its solid form. The melt viscosity measured at a temperature 10 ° C. higher than the melting point of glycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1 is 150 Pa · s or less, the 3% thermal weight loss temperature is 280 ° C. or more, and the water content is 500 ppm. Heat drying treatment step 2 for obtaining the following low melt viscosity polyglycolic acid;
A process for producing a low melt viscosity polyglycolic acid comprising
 本発明の製造方法によれば、溶融流動性に優れ、溶融成形時にガス成分を発生し難く、計量性、他材への密着性、微細なパターンの精密成形性、耐めっき性、アルカリ水溶液に対する溶解性などに優れた低溶融粘度化ポリグリコール酸を、ペレットなどの固体形状で、効率的に製造することができる。 According to the production method of the present invention, it has excellent melt fluidity, hardly generates a gas component at the time of melt molding, meterability, adhesion to other materials, precision moldability of fine patterns, plating resistance, and against an alkaline aqueous solution. Low melt viscosity polyglycolic acid excellent in solubility and the like can be efficiently produced in a solid form such as pellets.
 本発明によれば、前記諸特性を有する低溶融粘度化ポリグリコール酸を、再現性良く安定的に製造する方法を提供することができる。さらに、本発明によれば、加熱乾燥処理工程に先立って、吸湿ポリグリコール酸の全水分量を調節することにより、得られる低溶融粘度化ポリグリコール酸の溶融粘度を更に精密に制御することができる。 According to the present invention, it is possible to provide a method for stably producing a low melt viscosity polyglycolic acid having the above-mentioned properties with good reproducibility. Furthermore, according to the present invention, the melt viscosity of the resulting low melt viscosity polyglycolic acid can be more precisely controlled by adjusting the total water content of the hygroscopic polyglycolic acid prior to the heat drying treatment step. it can.
 本発明の製造方法により得られた低溶融粘度化ポリグリコール酸は、2回成形法による回路基板の難めっき性樹脂(マスク用樹脂)として使用すると、微細なパターンの被覆成形が可能である上、その射出成形時に回路基板を構成する一次成形品の変形やガス成分の揮散による回路基板の汚染を防ぐことができる。低溶融粘度化ポリグリコール酸の被覆層は、電解めっき液や無電解めっき液に対する耐性に優れ、金属めっき粒子が析出し難く、かつ、めっき工程後にアルカリ水溶液によって除去することができる。 When the low melt viscosity polyglycolic acid obtained by the production method of the present invention is used as a hard-to-plate resin (mask resin) for a circuit board by a two-time molding method, it is possible to form and coat a fine pattern. Further, it is possible to prevent the circuit board from being contaminated due to the deformation of the primary molded product constituting the circuit board and the vaporization of the gas component during the injection molding. The coating layer of the low melt viscosity polyglycolic acid is excellent in resistance to the electrolytic plating solution and the electroless plating solution, is difficult to deposit metal plating particles, and can be removed with an alkaline aqueous solution after the plating step.
 ポリグリコール酸は、式-[-O-CH-CO-]-で表わされる繰り返し単位を含有する単独重合体または共重合体である。ポリグリコール酸中の上記式で表わされる繰り返し単位の含有割合は、通常60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上であり、その上限は、100重量%である。上記式で表わされる繰り返し単位の含有割合が低すぎると、ポリグリコール酸が本来有する結晶性、ガスバリア性、耐熱性、耐薬品性などの特性が低下する。 The polyglycolic acid is a homopolymer or copolymer containing a repeating unit represented by the formula — [— O—CH 2 —CO —] —. The content of the repeating unit represented by the above formula in the polyglycolic acid is usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, and the upper limit is 100% by weight. When the content ratio of the repeating unit represented by the above formula is too low, characteristics such as crystallinity, gas barrier properties, heat resistance, and chemical resistance inherent in polyglycolic acid are deteriorated.
 ポリグリコール酸は、グリコール酸の脱水重縮合、グリコール酸アルキルエステルの脱アルコール重縮合、グリコリドの開環重合などにより合成することができる。これらの中でも、グリコリドの開環重合法によれば、高分子量かつ高溶融粘度のポリグリコール酸(「ポリグリコリド」ともいう)を容易に製造することができる。開環重合法では、グリコリドを、少量の触媒(例えば、有機カルボン酸錫、ハロゲン化錫、ハロゲン化アンチモン等のカチオン触媒)の存在下に、約120℃から約250℃の範囲内の温度に加熱して、開環重合を行う。開環重合は、塊状重合または溶液重合により行うことが好ましい。 Polyglycolic acid can be synthesized by dehydration polycondensation of glycolic acid, dealcohol polycondensation of glycolic acid alkyl ester, ring-opening polymerization of glycolide, and the like. Among these, according to the ring-opening polymerization method of glycolide, a polyglycolic acid (also referred to as “polyglycolide”) having a high molecular weight and a high melt viscosity can be easily produced. In the ring-opening polymerization method, glycolide is brought to a temperature in the range of about 120 ° C. to about 250 ° C. in the presence of a small amount of catalyst (eg, a cationic catalyst such as tin organic carboxylate, tin halide, antimony halide, etc.). The ring-opening polymerization is performed by heating. The ring-opening polymerization is preferably performed by bulk polymerization or solution polymerization.
 ポリグリコール酸共重合体を合成するには、コモノマーとして、例えば、シュウ酸エチレン、ラクチド、ラクトン類(例えば、β-プロピオラクトン、β-ブチロラクトン、ピバロラクトン、γ-ブチロラクトン、δ-バレロラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなど)、トリメチレンカーボネート、及び1,3-ジオキサンなどの環状モノマー;乳酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、4-ヒドロキシブタン酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸またはそのアルキルエステル;エチレングリコール、1,4-ブタンジオール等の脂肪族ジオールと、こはく酸、アジピン酸等の脂肪族ジカルボン酸またはそのアルキルエステルとの実質的に等モルの混合物;またはこれらの2種以上を用いて、共重合すればよい。これらのコモノマーの中でも、前記環状モノマーが好ましい。これらの環状モノマーは、グリコリドの開環重合条件下に開環共重合させることができる。 To synthesize a polyglycolic acid copolymer, for example, ethylene oxalate, lactide, lactones (for example, β-propiolactone, β-butyrolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β Cyclic monomers such as -methyl-δ-valerolactone, ε-caprolactone, trimethylene carbonate, and 1,3-dioxane; lactic acid, 3-hydroxypropanoic acid, 3-hydroxybutanoic acid, 4-hydroxybutanoic acid, 6 A hydroxycarboxylic acid such as hydroxycaproic acid or an alkyl ester thereof; substantially an aliphatic diol such as ethylene glycol or 1,4-butanediol and an aliphatic dicarboxylic acid such as succinic acid or adipic acid or an alkyl ester thereof. Equimolar mixtures; or these Using two or more may be copolymerized. Among these comonomers, the cyclic monomer is preferable. These cyclic monomers can be subjected to ring-opening copolymerization under the glycolide ring-opening polymerization conditions.
 コモノマーは、全仕込みモノマー量を基準として、通常40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下の割合で使用する。これらのコモノマー中でも、共重合させ易く、物性に優れた共重合体が得られやすい点で、ラクチド、カプロラクトン、トリメチレンカーボネート、p-ジオキサノン、5,5-ジメチル-1,3-ジオキサン-2-オンなどの環状モノマー;及び乳酸などのヒドロキシカルボン酸が好ましい。 The comonomer is usually used in a proportion of 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less, based on the total amount of charged monomers. Among these comonomers, lactide, caprolactone, trimethylene carbonate, p-dioxanone, 5,5-dimethyl-1,3-dioxane-2-, are easy to copolymerize and easily obtain a copolymer having excellent physical properties. Preferred are cyclic monomers such as ON; and hydroxycarboxylic acids such as lactic acid.
 ポリグリコール酸の重合装置としては、押出機型、パドル翼を持った縦型、ヘリカルリボン翼を持った縦型、押出機型やニーダー型の横型、アンプル型、管状型、平板型(四角形、特に長方形)など様々な装置の中から、適宜選択することができる。 Polyglycolic acid polymerization equipment includes: extruder type, vertical type with paddle blades, vertical type with helical ribbon blades, horizontal type of extruder type and kneader type, ampoule type, tubular type, flat plate type (square, It can be appropriately selected from various devices such as a rectangle.
 重合温度は、実質的な重合開始温度である120℃から300℃までの範囲内で目的に応じて設定することができる。重合温度は、好ましくは130~250℃、より好ましくは140~220℃、特に好ましくは150~200℃である。重合温度が高くなりすぎると、生成したポリグリコール酸が熱分解を受け易くなる。重合時間は、通常2分間から50時間、好ましくは3分間から30時間、より好ましくは5分間から18時間の範囲内である。重合時間が短すぎると、重合が十分に進行し難く、長すぎると、生成ポリグリコール酸が着色しやすくなる。 The polymerization temperature can be set according to the purpose within a range from 120 ° C. to 300 ° C. which is a substantial polymerization start temperature. The polymerization temperature is preferably 130 to 250 ° C, more preferably 140 to 220 ° C, and particularly preferably 150 to 200 ° C. If the polymerization temperature is too high, the produced polyglycolic acid is susceptible to thermal decomposition. The polymerization time is usually in the range of 2 minutes to 50 hours, preferably 3 minutes to 30 hours, more preferably 5 minutes to 18 hours. If the polymerization time is too short, the polymerization does not proceed sufficiently, and if it is too long, the resulting polyglycolic acid is likely to be colored.
 本発明で原料として使用するポリグリコール酸の溶融粘度は、ポリグリコール酸の融点Tmより50℃高い温度(Tm+50℃)及び剪断速度122sec-1で測定したとき、通常100Pa・s超過、好ましくは100Pa・s超過3,000Pa・s以下、より好ましくは200~2,000Pa・s以上、特に好ましくは300~1,500Pa・sの範囲内である。ポリグリコール酸単独重合体の融点が220℃である場合、Tm+50℃は、270℃になる。 The melt viscosity of the polyglycolic acid used as a raw material in the present invention is usually more than 100 Pa · s, preferably 100 Pa when measured at a temperature 50 ° C. higher than the melting point Tm of polyglycolic acid (Tm + 50 ° C.) and a shear rate of 122 sec −1. · Exceeding s 3,000 Pa · s or less, more preferably 200 to 2,000 Pa · s or more, and particularly preferably 300 to 1,500 Pa · s. When the melting point of the polyglycolic acid homopolymer is 220 ° C., Tm + 50 ° C. becomes 270 ° C.
 ポリグリコール酸の重量平均分子量(Mw)は、通常50,000~800,000、好ましくは100,000~500,000、より好ましくは150,000~300,000の範囲内である。重量平均分子量は、ヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィ(GPC)測定において、標準ポリメチルメタクリレート換算値として得られる値である。ポリグリコール酸の溶融粘度または重量平均分子量が低すぎると、ペレット化が困難となる。ポリグリコール酸の溶融粘度または重量平均分子量が高すぎると、低溶融粘度化に長時間を必要とし、効率的ではない。 The weight average molecular weight (Mw) of the polyglycolic acid is usually in the range of 50,000 to 800,000, preferably 100,000 to 500,000, more preferably 150,000 to 300,000. The weight average molecular weight is a value obtained as a standard polymethylmethacrylate conversion value in gel permeation chromatography (GPC) measurement using hexafluoroisopropanol. If the melt viscosity or weight average molecular weight of polyglycolic acid is too low, pelletization becomes difficult. If the melt viscosity or the weight average molecular weight of polyglycolic acid is too high, it takes a long time to lower the melt viscosity, which is not efficient.
 原料のポリグリコール酸には、所望により、他の熱可塑性樹脂、充填剤、熱安定剤、光安定剤、防水剤、撥水剤、滑剤、離型剤、カップリング剤、顔料、染料などの各種添加剤を含有させることができる。これら各種添加剤は、それぞれの使用目的に応じて有効量が使用される。 If desired, the raw material polyglycolic acid includes other thermoplastic resins, fillers, heat stabilizers, light stabilizers, waterproofing agents, water repellents, lubricants, mold release agents, coupling agents, pigments, dyes, etc. Various additives can be contained. These various additives are used in effective amounts according to their intended purpose.
 原料のポリグリコール酸には、熱安定化効果を発揮し得る化合物を熱安定剤として添加することができる。ポリグリコール酸に熱安定剤を含有させると、ポリグリコール酸の熱分解が生じ難くなり、また、低溶融粘度化ポリグリコール酸の溶融安定性が向上する。熱安定剤としては、-CO-NHNH-CO-単位を有するヒドラジン系化合物などの重金属不活性化剤;ペンタエリスリトール骨格構造を有するリン酸エステル;少なくとも1つの水酸基と少なくとも1つの長鎖アルキルエステル基とを持つリン化合物;トリアゾール化合物;ヒンダードフェノール化合物;及び炭酸金属塩からなる群より選ばれる少なくとも1種の化合物を挙げることができる。 A compound capable of exerting a heat stabilizing effect can be added to the raw material polyglycolic acid as a heat stabilizer. When the polyglycolic acid contains a heat stabilizer, the polyglycolic acid is hardly thermally decomposed, and the melt stability of the low melt viscosity polyglycolic acid is improved. Examples of heat stabilizers include heavy metal deactivators such as hydrazine compounds having —CO—NHNH—CO— units; phosphate esters having a pentaerythritol skeleton structure; at least one hydroxyl group and at least one long-chain alkyl ester group And at least one compound selected from the group consisting of a triazole compound, a hindered phenol compound, and a metal carbonate.
 重金属不活性化剤としては、例えば、2-ヒドロキシ-N-1H-1,2,4-トリアゾール-3-イル-ベンズアミド、及びビス〔2-(2-ヒドロキシベンゾイル)ヒドラジン〕ドデカン二酸が挙げられる。ペンタエリスリトール骨格構造を有するリン酸エステルとしては、例えば、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、及びサイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイトが挙げられる。少なくとも1つの水酸基と少なくとも1つの長鎖アルキルエステル基とを持つリン化合物としては、例えば、モノまたはジ-ステアリルアシッドホスフェートが挙げられる。炭酸金属塩としては、例えば、炭酸カルシウム、及び炭酸ストロンチウムが挙げられる。 Examples of heavy metal deactivators include 2-hydroxy-N-1H-1,2,4-triazol-3-yl-benzamide and bis [2- (2-hydroxybenzoyl) hydrazine] dodecanedioic acid. It is done. Examples of the phosphate ester having a pentaerythritol skeleton structure include cyclic neopentanetetraylbis (2,6-di-tert-butyl-4-methylphenyl) phosphite and cyclic neopentanetetraylbis (2 , 4-di-tert-butylphenyl) phosphite. Examples of the phosphorus compound having at least one hydroxyl group and at least one long-chain alkyl ester group include mono- or di-stearyl acid phosphate. Examples of the metal carbonate include calcium carbonate and strontium carbonate.
 熱安定剤の配合割合は、ポリグリコール酸100重量部に対して、通常0.001~5重量部、好ましくは0.003~3重量部、より好ましくは0.005~1重量部である。熱安定剤の配合割合が小さすぎると、熱安定化効果が得られ難くなり、大きくなりすぎると、効果が飽和したり、諸特性が低下したりする。 The blending ratio of the heat stabilizer is usually 0.001 to 5 parts by weight, preferably 0.003 to 3 parts by weight, and more preferably 0.005 to 1 part by weight with respect to 100 parts by weight of polyglycolic acid. When the blending ratio of the heat stabilizer is too small, it is difficult to obtain a heat stabilizing effect, and when it is too large, the effect is saturated or various properties are deteriorated.
 溶融粘度が高いポリグリコール酸は、加熱時の重量減少率が3%に達するときの温度(「3%熱重量減少温度」という)が350℃前後であり、溶融加工時にガス成分を発生する傾向が比較的低い。これに対して、合成時に重合度を調節して得られた低溶融粘度ポリグリコール酸は、低分子量成分の含有量が増大するため、溶融粘度の程度にもよるが、3%熱重量減少温度が250℃前後にまで低下することがある。このように、ポリグリコール酸は、溶融粘度が低くなると、溶融加工時にガス成分を発生し易い傾向を有している。 Polyglycolic acid with high melt viscosity has a temperature when the weight loss rate when heated reaches 3% (referred to as “3% thermal weight loss temperature”) around 350 ° C., and tends to generate gas components during melt processing Is relatively low. On the other hand, the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis increases the content of the low molecular weight component, so that it depends on the degree of melt viscosity, but the 3% thermal weight loss temperature May drop to around 250 ° C. Thus, polyglycolic acid has a tendency to easily generate a gas component during melt processing when the melt viscosity becomes low.
 本発明の製造方法により得られた低溶融粘度化ポリグリコール酸は、3%熱重量減少温度が比較的高水準に保持されているという特徴を有している。熱安定性をさらに向上させるには、原料として使用する高溶融粘度ポリグリコール酸に熱安定剤を添加しておくことが好ましい。合成時に重合度を調節して得られた低溶融粘度ポリグリコール酸は、ペレット化が困難であるため、該低溶融粘度ポリグリコール酸に熱安定剤を添加してペレット化することも困難である。 The low melt viscosity polyglycolic acid obtained by the production method of the present invention has a characteristic that the 3% thermal weight loss temperature is maintained at a relatively high level. In order to further improve the thermal stability, it is preferable to add a thermal stabilizer to the high melt viscosity polyglycolic acid used as a raw material. Since the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis is difficult to pelletize, it is difficult to pelletize by adding a heat stabilizer to the low melt viscosity polyglycolic acid. .
 本発明で原料として使用する高溶融粘度ポリグリコール酸は、溶融粘度と融点が高いため、常温(20±15℃)で固体状態であり、融点未満の比較的高温下でも固体状態を保持するため、ペレットまたは粒子などの所定の固体形状とすることができる。目的物の低溶融粘度化ポリグリコール酸の計量性や成形性などを向上させるには、原料の高溶融粘度ポリグリコール酸として、ペレット形状のポリグリコール酸を使用することが好ましい。原料としてペレット形状を有する高溶融粘度ポリグリコール酸を用いると、温水浸漬処理工程及び加熱乾燥処理工程でペレット形状が維持されるため、低溶融粘度化ポリグリコール酸をペレット形状で得ることができる。 Since the high melt viscosity polyglycolic acid used as a raw material in the present invention has a high melt viscosity and melting point, it is in a solid state at room temperature (20 ± 15 ° C.) and maintains a solid state even at a relatively high temperature below the melting point. , In a predetermined solid form such as pellets or particles. In order to improve the meterability and moldability of the low melt viscosity polyglycolic acid as the target product, it is preferable to use pellet-shaped polyglycolic acid as the high melt viscosity polyglycolic acid of the raw material. When a high melt viscosity polyglycolic acid having a pellet shape is used as a raw material, the pellet shape is maintained in the warm water immersion treatment step and the heat drying treatment step, so that a low melt viscosity polyglycolic acid can be obtained in a pellet shape.
 ペレットの作製は、ポリグリコール酸単独またはポリグリコール酸と熱安定剤などの添加剤成分とを押出機に供給し、シリンダー温度をポリグリコール酸の融点(Tm)から260℃の範囲内の温度で溶融混練し、ダイからストランド状に押出し、冷却、カットする方法を採用して行うことができる。ペレットの大きさは、その径及び長さ共に、通常1~10mm、好ましくは1.5~8mm、より好ましくは2~6mmの範囲内であるが、これらに限定されず、必要に応じて、それより大きな形状であってもよい。 The pellets were prepared by supplying polyglycolic acid alone or polyglycolic acid and an additive component such as a heat stabilizer to the extruder, and changing the cylinder temperature to a temperature within the range of 260 ° C. from the melting point (Tm) of the polyglycolic acid. A method of melt-kneading, extruding into a strand from a die, cooling, and cutting can be employed. The size and the length of the pellet are usually in the range of 1 to 10 mm, preferably 1.5 to 8 mm, more preferably 2 to 6 mm, but are not limited thereto, and if necessary, A larger shape may be used.
 ポリグリコール酸の粒子としては、標準フルイを用いたフルイ分け法により測定した平均粒径が好ましくは100μm以上、より好ましくは500μm以上、特に好ましくは1,000μm以上の顆粒であることが好ましい。 The polyglycolic acid particles are preferably granules having an average particle diameter measured by a sieve separation method using a standard sieve, preferably 100 μm or more, more preferably 500 μm or more, and particularly preferably 1,000 μm or more.
 本発明の低溶融粘度化ポリグリコール酸の製造方法は、下記工程1及び2を含んでいる。 The method for producing the low melt viscosity polyglycolic acid of the present invention includes the following steps 1 and 2.
(1)ポリグリコール酸の融点Tmより50℃高い温度(Tm+50℃)及び剪断速度122sec-1で測定した溶融粘度が100Pa・s超過のポリグリコール酸を、所定の固体形状で60~100℃の温水中に浸漬して、その固体形状を保持させながら吸湿させることにより、含水率が1,000ppm以上の吸湿ポリグリコール酸を得る温水浸漬処理工程1;並びに、
(2)該吸湿ポリグリコール酸を、その固体形状を保持させながら、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度で加熱乾燥して、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が150Pa・s以下で、3%熱重量減少温度が280℃以上、かつ、含水率が500ppm以下の低溶融粘度化ポリグリコール酸を得る加熱乾燥処理工程2。
(1) A polyglycolic acid having a melt viscosity exceeding 100 Pa · s measured at a temperature 50 ° C higher than the melting point Tm of the polyglycolic acid (Tm + 50 ° C) and a shear rate of 122 sec -1 is 60-100 ° C in a predetermined solid form. Hot water immersion treatment step 1 for obtaining moisture-absorbing polyglycolic acid having a water content of 1,000 ppm or more by immersing in warm water and absorbing moisture while maintaining its solid form;
(2) The moisture-absorbing polyglycolic acid is heated and dried at a temperature in the range from 60 ° C. to 5 ° C. lower than the melting point of the polyglycolic acid (Tm−5 ° C.) while maintaining its solid form. The melt viscosity measured at a temperature 10 ° C. higher than the melting point of glycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1 is 150 Pa · s or less, the 3% thermal weight loss temperature is 280 ° C. or more, and the water content is 500 ppm. Heat drying treatment step 2 for obtaining the following low melt viscosity polyglycolic acid.
 本発明の温水浸漬処理工程1では、ポリグリコール酸の融点Tmより50℃高い温度(Tm+50℃)及び剪断速度122sec-1で測定した溶融粘度が100Pa・s超過のポリグリコール酸(「高溶融粘度ポリグリコール酸」という)を使用する。高溶融粘度ポリグリコール酸の形状は、粒子であってもよいが、得られる低溶融粘度化ポリグリコール酸の計量性や成形性、取扱性、搬送性などの観点から、ペレットであることが好ましい。 In the hot water immersion treatment step 1 of the present invention, polyglycolic acid (“high melt viscosity”) having a melt viscosity exceeding 100 Pa · s measured at a temperature 50 ° C. higher than the melting point Tm of polyglycolic acid (Tm + 50 ° C.) and a shear rate of 122 sec −1. Polyglycolic acid ”). The shape of the high melt viscosity polyglycolic acid may be a particle, but from the viewpoint of meterability, moldability, handleability, transportability, etc. of the resulting low melt viscosity polyglycolic acid, it is preferably a pellet. .
 高溶融粘度ポリグリコール酸と水(温水)との混合比率は、重量比で、通常1:10~10:5、好ましくは3:10~10:7、より好ましくは5:10~10:8の範囲内である。水の量比が小さすぎると、固体形状の高溶融粘度ポリグリコール酸を温水中に均等に浸漬して、均質に吸湿させることが困難となる。水の量比が大きすぎると、熱効率や撹拌効率が低下する。 The mixing ratio of the high melt viscosity polyglycolic acid and water (warm water) is usually 1:10 to 10: 5, preferably 3:10 to 10: 7, more preferably 5:10 to 10: 8, by weight. Is within the range. When the amount ratio of water is too small, it becomes difficult to uniformly immerse the solid-form high melt viscosity polyglycolic acid in warm water and absorb moisture uniformly. When the amount ratio of water is too large, the thermal efficiency and the stirring efficiency are lowered.
 本発明では、温水浸漬処理工程を撹拌槽内で行うことが好ましい。撹拌槽としては、オートクレーブ、円筒型タンクなどの形状を有し、耐熱性のある容器であればよく、特に限定されない。撹拌槽の内容積は、処理効率や生産規模の観点から、好ましくは5~500リットル、より好ましくは8~100リットル、特に好ましくは10~50リットルである。撹拌機としては、特に限定されないが、例えば、平板パドル、傾斜パドル、ブルマージン翼とその変形翼、フルゾーン翼、ウォールウエッター翼などの撹拌翼を備えた撹拌機が好ましい。撹拌翼は、一組であっても、あるいは撹拌機の撹拌軸に沿って二組以上配置されていてもよい。撹拌翼は、技術常識に従って、撹拌槽の規模に応じて、撹拌槽内の内容物を均一に撹拌混合し得る強度と長さを有するものとする。 In the present invention, it is preferable to perform the hot water immersion treatment step in a stirring tank. The stirring tank is not particularly limited as long as it has a shape such as an autoclave or a cylindrical tank and has heat resistance. The internal volume of the stirring tank is preferably 5 to 500 liters, more preferably 8 to 100 liters, and particularly preferably 10 to 50 liters from the viewpoint of processing efficiency and production scale. The stirrer is not particularly limited, however, for example, a stirrer including stirrer blades such as a flat plate paddle, an inclined paddle, a bull margin blade and its deformed blade, a full zone blade, and a wall wetter blade is preferable. The stirring blades may be one set or two or more sets may be arranged along the stirring shaft of the stirrer. According to technical common sense, the stirring blade has strength and length that can uniformly stir and mix the contents in the stirring tank according to the scale of the stirring tank.
 温水は、予め所定温度に加熱したものであっても、あるいは、仕込み時に低温または常温の水を用いて、撹拌槽内で加熱することによって温水にしたものであってもよい。通常は、常温以下の温度の水を撹拌槽内に仕込み、加熱手段によって加熱することにより所定の範囲内の温度に上昇させ、かつ、温水浸漬処理工程の間、所定温度に保持する。加熱手段としては、撹拌槽の底部や側壁部に設けたジャケットに熱媒を流したり、ヒーターを用いたりすることができる。 The hot water may be preheated to a predetermined temperature, or may be warmed by heating in a stirring tank using low or normal temperature water at the time of preparation. Usually, water having a temperature equal to or lower than room temperature is charged into a stirring tank, heated to a temperature within a predetermined range by heating with a heating unit, and maintained at a predetermined temperature during the hot water immersion treatment process. As the heating means, a heating medium can be passed through a jacket provided on the bottom or side wall of the stirring tank, or a heater can be used.
 温水の温度は、60~100℃の範囲内に制御する。温水の温度を、この所定の範囲内に制御することによって、温水浸漬処理(吸湿処理)工程を短時間で効率的に実施することができる。温水浸漬処理工程を短時間で効率的に実施することができ、かつ、最終的に得られる低溶融粘度化ポリグリコール酸に含まれる低分子量物の含有量を抑制する観点からは、温水の温度を、好ましくは60~95℃、より好ましくは60~90℃、特に好ましくは65~85℃の範囲内に制御することが望ましい。温水浸漬処理中、温水の温度は、上記範囲内で変動させることができるが、所定の溶融粘度を有する低溶融粘度化ポリグリコール酸を再現性良く安定的に得るには、温水浸漬処理工程の間、所定の温度に維持することが望ましい。 The temperature of hot water is controlled within the range of 60-100 ° C. By controlling the temperature of the hot water within this predetermined range, the hot water immersion treatment (moisture absorption treatment) step can be carried out efficiently in a short time. From the viewpoint of enabling the hot water immersion treatment step to be efficiently performed in a short time and suppressing the content of low molecular weight substances contained in the finally obtained low melt viscosity polyglycolic acid, the temperature of the hot water is Is preferably controlled within the range of 60 to 95 ° C, more preferably 60 to 90 ° C, and particularly preferably 65 to 85 ° C. During the hot water immersion treatment, the temperature of the hot water can be varied within the above range, but in order to stably obtain a low melt viscosity polyglycolic acid having a predetermined melt viscosity with good reproducibility, During this time, it is desirable to maintain a predetermined temperature.
 温水の温度が低すぎると、温水浸漬処理によるポリグリコール酸の吸湿に長時間を要し、生産効率が低下する。温水の温度が高すぎると、温水浸漬処理工程でペレットなどの固体の表面で部分的な加水分解反応が進行して、得られる吸湿ポリグリコール酸の分散度がブロードとなり、低分子量成分の割合が増大する。その結果、最終的に得られる低溶融粘度化ポリグリコール酸は、低分子量物の含有量が大きなものとなり、溶融加工時にガス成分を揮散し易くなる。低分子量物の含有量が大きくなることは、低溶融粘度化ポリグリコール酸の3%熱重量減少温度が大幅に低下することによって確認することができる。 If the temperature of the hot water is too low, it takes a long time to absorb the polyglycolic acid by the hot water immersion treatment, and the production efficiency decreases. If the temperature of the hot water is too high, a partial hydrolysis reaction proceeds on the surface of the solid such as pellets in the hot water immersion treatment process, the degree of dispersion of the resulting hygroscopic polyglycolic acid becomes broad, and the proportion of low molecular weight components Increase. As a result, the low melt viscosity polyglycolic acid finally obtained has a high content of low molecular weight substances, and easily vaporizes gas components during melt processing. The increase in the content of the low molecular weight substance can be confirmed by a significant decrease in the 3% thermal weight loss temperature of the low melt viscosity polyglycolic acid.
 温水浸漬処理工程において、温水の温度と処理時間を調節することにより、重量平均分子量(Mw)と数平均分子量(Mn)との比で表わされる分散度(Mw/Mn)が好ましくは2.15以下、より好ましくは2.10以下の吸湿ポリグリコール酸を得ることが、低分子量物の含有量が少ない低溶融粘度化ポリグリコール酸を得る上で好ましい。分散度の下限は、通常1.30、多くの場合1.50である。 In the warm water immersion treatment step, the degree of dispersion (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 2.15 by adjusting the temperature and treatment time of the warm water. Hereinafter, it is more preferable to obtain a hygroscopic polyglycolic acid of 2.10 or less in order to obtain a low melt viscosity polyglycolic acid having a low content of low molecular weight substances. The lower limit of the degree of dispersion is usually 1.30, and in many cases 1.50.
 ポリグリコール酸は、その比重が約1.60g/cmであり、温水中で沈降し易い。このため、温水浸漬処理工程で、固体形状の高溶融粘度ポリグリコール酸と温水との混合物を撹拌しても、該固定形状の高溶融粘度ポリグリコール酸を温水と均一に接触させることが困難である。これに対して、撹拌機の撹拌翼の回転数を100~500rpm、好ましくは150~300rpm、より好ましくは180~250rpmの範囲内に制御することにより、温水浸漬処理工程において固体形状の高溶融粘度ポリグリコール酸を温水と均一に接触させることができ、それによって、均質に吸湿させることができることが判明した。このため、その後の加熱乾燥工程において、同一ロット内で溶融粘度値のバラツキが十分に抑制された低溶融粘度化ポリグリコール酸を得ることができる。 Polyglycolic acid has a specific gravity of about 1.60 g / cm 3 and is likely to settle in warm water. For this reason, even if a mixture of a solid form high melt viscosity polyglycolic acid and warm water is stirred in the warm water immersion treatment step, it is difficult to uniformly contact the fixed shape high melt viscosity polyglycolic acid with warm water. is there. On the other hand, by controlling the rotation speed of the stirring blade of the stirrer within the range of 100 to 500 rpm, preferably 150 to 300 rpm, more preferably 180 to 250 rpm, the high melt viscosity of the solid form in the hot water immersion treatment step It has been found that the polyglycolic acid can be uniformly contacted with warm water, thereby making it possible to absorb moisture uniformly. For this reason, in the subsequent heating and drying step, it is possible to obtain a low melt viscosity polyglycolic acid in which variation in melt viscosity value is sufficiently suppressed within the same lot.
 温水浸漬処理工程で、前記混合物の撹拌を行わない場合や、撹拌翼の回転数が少ない場合には、低溶融粘度化ポリグリコール酸の同一ロット内での溶融粘度値のバラツキが大きくなる傾向を示す。温水浸漬処理工程での処理時間を長くしても、同一ロット内での溶融粘度値のバラツキを解消することが困難である。同一ロット内での溶融粘度値のバラツキが大きいと、低溶融粘度化ポリグリコール酸の品質管理が煩雑になる上、安定的な加工を行うことが困難になるなど、所定の溶融粘度値を有するポリグリコール酸が強く要求されている技術分野での要求に十分に応えることができなくなる。 When the mixture is not stirred in the warm water immersion treatment process or when the number of rotations of the stirring blade is small, the dispersion of the melt viscosity value in the same lot of the low melt viscosity polyglycolic acid tends to increase. Show. Even if the treatment time in the warm water immersion treatment process is increased, it is difficult to eliminate the variation in the melt viscosity value in the same lot. If the dispersion of melt viscosity values in the same lot is large, the quality control of the low melt viscosity polyglycolic acid becomes complicated and stable processing becomes difficult. It becomes impossible to sufficiently meet the demand in the technical field where polyglycolic acid is strongly demanded.
 撹拌翼の回転数が少なくなるに従って、同一ロット内での溶融粘度値のバラツキが大きくなり、所望の溶融粘度値を有する低溶融粘度化ポリグリコール酸を再現性良く得ることが困難となる。撹拌翼の回転数を上げるに従って、同一ロット内での溶融粘度のバラツキが小さくなる傾向を示す。しかし、撹拌翼の回転数を多くしすぎても、同一ロット内での溶融粘度値のバラツキ抑制効果が飽和するため、効率的ではない。その上、撹拌翼の回転数を多くしすぎると、ペレットなどの所定の固体形状が損壊される虞が生じる。 As the number of revolutions of the stirring blade decreases, the dispersion of the melt viscosity value in the same lot increases, and it becomes difficult to obtain a low melt viscosity polyglycolic acid having a desired melt viscosity value with good reproducibility. As the rotational speed of the stirring blade is increased, the variation in melt viscosity within the same lot tends to be reduced. However, even if the number of rotations of the stirring blade is increased too much, the effect of suppressing the dispersion of the melt viscosity value in the same lot is saturated, which is not efficient. In addition, if the number of rotations of the stirring blade is increased too much, a predetermined solid shape such as pellets may be damaged.
 温水浸漬処理工程での処理時間は、通常1~15時間、好ましくは1.5~10時間、多くの場合2~8時間の範囲内である。該処理時間は、温水の温度や目的とする含水率に応じて、適宜選択することができる。該処理時間が長すぎると、生産効率が低下することに加えて、好ましくない変質や不均一な加水分解を生じるおそれがある。一般に、温水の温度を低くするに従って撹拌時間を長くし、温水の温度を高くするに従って撹拌時間を短くすることができる。 The treatment time in the warm water immersion treatment step is usually in the range of 1 to 15 hours, preferably 1.5 to 10 hours, and in many cases 2 to 8 hours. The treatment time can be appropriately selected according to the temperature of the hot water and the target moisture content. If the treatment time is too long, in addition to a decrease in production efficiency, undesired alteration and non-uniform hydrolysis may occur. Generally, the stirring time can be lengthened as the temperature of the hot water is lowered, and the stirring time can be shortened as the temperature of the hot water is raised.
 温水浸漬処理工程での温水の温度を、例えば55℃以下の低い温度に設定すると、固体形状の高溶融粘度ポリグリコール酸を十分に吸湿させるのに通常30時間以上の長時間を必要とする。撹拌翼の回転数を100~300rpmの範囲内に設定し、かつ、温水の温度を60~90℃の範囲内に設定することにより、効率的に同一ロット内での溶融粘度のバラツキを防ぐことができるので、特に好ましい。 If the temperature of the hot water in the hot water immersion treatment step is set to a low temperature of, for example, 55 ° C. or less, a long time of usually 30 hours or more is required to sufficiently absorb the solid form high melt viscosity polyglycolic acid. By setting the number of revolutions of the stirring blade within the range of 100 to 300 rpm and the temperature of the hot water within the range of 60 to 90 ° C, it is possible to efficiently prevent the melt viscosity variation within the same lot. Is particularly preferable.
 温水浸漬処理工程において、ポリグリコール酸の含水率が1,000ppm以上、好ましくは3,000ppm以上、より好ましくは5,000ppm以上の吸湿ポリグリコール酸を、当初の固体形状を保持したままで取得する。含水率の上限値は、通常50,000ppm、好ましくは30,000ppm、より好ましくは20,000ppmである。含水率が低すぎると、加熱乾燥処理工程で均質かつ十分な低溶融粘度化が困難となり、高すぎると、ペレットなどの固体形状を保持することが困難となったり、低分子量成分の含有量が増大したり、加熱乾燥処理に長時間を要したりする。 In the warm water immersion treatment step, a hygroscopic polyglycolic acid having a water content of polyglycolic acid of 1,000 ppm or more, preferably 3,000 ppm or more, more preferably 5,000 ppm or more is obtained while maintaining the original solid form. . The upper limit of the moisture content is usually 50,000 ppm, preferably 30,000 ppm, more preferably 20,000 ppm. If the water content is too low, it is difficult to achieve a uniform and sufficient low melt viscosity in the heat drying process, and if it is too high, it is difficult to maintain a solid shape such as pellets or the content of low molecular weight components is low. It increases, and a long time is required for the heat drying process.
 温水浸漬処理工程では、ペレットなどの固体形状のポリグリコール酸を、当初の固体形状を実質的に保持させながら温水浸漬処理を行う。温水浸漬処理工程後、通常、フィルターによる濾過または傾斜によって、水を除去する。この際、回収した固体形状の吸湿ポリグリコール酸の表面には、付着した水が残留する。また、堆積したペレットなどの固体形状のポリグリコール酸相互間の隙間に水が残留する。これらの残留水は、正確に区別することが困難なため、一括して付着水と呼ぶこととする。本発明において、含水率とは、ペレットなどの固体形状の吸湿ポリグリコール酸の内部に含有される水分の量を意味するものとする。本発明において、ペレットなどの固体形状の吸湿ポリグリコール酸の内部に含有されている水分量と付着水の量とを合わせた水の量を全水分量と呼ぶこととする。全水分量は、通常15重量%以下、多くの場合2~10重量%の範囲内である。 In the warm water immersion treatment step, the solid water polyglycolic acid such as pellets is subjected to warm water immersion treatment while substantially maintaining the original solid shape. After the warm water immersion treatment step, the water is usually removed by filtration or tilting with a filter. At this time, adhering water remains on the surface of the collected solid hygroscopic polyglycolic acid. Further, water remains in the gaps between the solid-state polyglycolic acids such as the deposited pellets. Since these residual waters are difficult to distinguish accurately, they are collectively referred to as adhering water. In the present invention, the moisture content means the amount of moisture contained in solid-state hygroscopic polyglycolic acid such as pellets. In the present invention, the amount of water, which is the sum of the amount of water contained in solid moisture-absorbing polyglycolic acid such as pellets and the amount of adhering water, is referred to as the total amount of water. The total water content is usually 15% by weight or less, often in the range of 2 to 10% by weight.
 本発明の加熱乾燥処理工程2では、前記工程1で得られた吸湿ポリグリコール酸を、その固体形状を維持させながら、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度で加熱乾燥して、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が150Pa・s以下、3%熱重量減少温度が280℃以上、かつ、含水率が500ppm以下の低溶融粘度化ポリグリコール酸を回収する。低溶融粘度化ポリグリコール酸は、当然のことながら、常温でペレットなどの固体形状を維持している。 In the heat drying treatment step 2 of the present invention, the hygroscopic polyglycolic acid obtained in the step 1 is maintained at 60 ° C. to 5 ° C. lower than the melting point of the polyglycolic acid (Tm−5 ° C.) while maintaining the solid form. Until the melting point of the polyglycolic acid is 10 ° C. higher than the melting point (Tm + 10 ° C.), and the melt viscosity measured at a shear rate of 1,200 sec −1 is 150 Pa · s or less, 3% thermal weight reduction A low melt viscosity polyglycolic acid having a temperature of 280 ° C. or more and a water content of 500 ppm or less is recovered. The low melt viscosity polyglycolic acid naturally maintains a solid shape such as pellets at room temperature.
 加熱乾燥処理温度は、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度とする。加熱乾燥処理温度は、好ましくは70~200℃、より好ましくは80~190℃、さらに好ましくは90~180℃である。加熱乾燥処理温度が低すぎると、吸湿ポリグリコール酸の溶融粘度を所望の水準にまで低下させるのに非常な長時間を要することになる。他方、加熱乾燥処理温度が高すぎると、吸湿ポリグリコール酸の固体状態を維持させることが困難になる。 The heating and drying temperature is a temperature within a range from 60 ° C. to a temperature 5 ° C. lower than the melting point of polyglycolic acid (Tm−5 ° C.). The heat drying treatment temperature is preferably 70 to 200 ° C, more preferably 80 to 190 ° C, and further preferably 90 to 180 ° C. If the heat drying treatment temperature is too low, it takes a very long time to lower the melt viscosity of the hygroscopic polyglycolic acid to a desired level. On the other hand, if the heat drying treatment temperature is too high, it becomes difficult to maintain the solid state of the hygroscopic polyglycolic acid.
 加熱乾燥処理時間は、吸湿ポリグリコール酸の溶融粘度が、所望の水準にまで低下するまで行う。加熱乾燥処理時間は、好ましくは1~200時間、より好ましくは2~150時間、特に好ましくは3~100時間である。加熱した窒素や空気などの熱風を流しながら加熱乾燥処理を行う方法を採用すると、処理時間を好ましくは3~15時間、より好ましくは4~10時間の範囲内にまで短縮することができる。所望の溶融粘度の水準になるまで加熱乾燥処理する時間は、加熱乾燥処理温度によっても変動する。一般に、加熱乾燥処理温度が高いほど、比較的短時間で所望の溶融粘度の水準に到達することができる。 The heating and drying treatment time is performed until the melt viscosity of the hygroscopic polyglycolic acid is lowered to a desired level. The heat drying time is preferably 1 to 200 hours, more preferably 2 to 150 hours, and particularly preferably 3 to 100 hours. When a method of performing heat drying treatment while flowing hot air such as heated nitrogen or air is employed, the treatment time can be shortened to a range of preferably 3 to 15 hours, more preferably 4 to 10 hours. The time for the heat-drying treatment until the desired melt viscosity level is reached also varies depending on the heat-drying treatment temperature. In general, the higher the heat drying temperature, the higher the desired melt viscosity level can be reached in a relatively short time.
 本発明の製造方法では、加熱と同時に乾燥する方法を採用することにより、効率良く高品質の低溶融粘度化ポリグリコール酸を得ることができる。加熱乾燥処理を行うには、乾燥した不活性ガスや空気の雰囲気中で加熱することが望ましい。乾燥した不活性ガスとしては、例えば、露点が通常-60℃から-10℃、好ましくは-50℃から-30℃、多くの場合-40℃の乾燥窒素を使用することが望ましい。乾燥した空気は、フィルターを通して塵埃を除去し、除湿して乾燥した空気が好ましい。加熱乾燥処理は、オーブンなどの乾熱条件下での高温処理機中に、固体形状の吸湿ポリグリコール酸を入れて実施することができるが、効率的に加熱しながら乾燥するには、乾燥した不活性ガスまたは空気を流しながら実施することが望ましい。乾燥窒素や乾燥空気は、所定の加熱処理温度に加熱した熱風として供給することもできる。 In the production method of the present invention, high-quality low melt viscosity polyglycolic acid can be obtained efficiently by adopting a method of drying simultaneously with heating. In order to perform the heat drying treatment, it is desirable to heat in a dry inert gas or air atmosphere. As the dry inert gas, for example, it is desirable to use dry nitrogen having a dew point of usually −60 ° C. to −10 ° C., preferably −50 ° C. to −30 ° C., and in many cases −40 ° C. The dry air is preferably air that has been dehumidified by removing dust through a filter. The heat drying treatment can be carried out by placing the solid-form hygroscopic polyglycolic acid in a high-temperature treatment machine under dry heat conditions such as an oven. It is desirable to carry out while flowing an inert gas or air. Dry nitrogen and dry air can also be supplied as hot air heated to a predetermined heat treatment temperature.
 不活性ガス及び空気の流量は、吸湿ポリグリコール酸の量や全水分量などにもよるが、通常0.1~30,000リットル/分、好ましくは1~10,000リットル/分、より好ましくは5~5,000リットル/分、特に好ましくは10~1,000リットル/分の範囲内である。 The flow rates of the inert gas and air depend on the amount of hygroscopic polyglycolic acid and the total amount of water, but are usually 0.1 to 30,000 liters / minute, preferably 1 to 10,000 liters / minute, more preferably Is in the range of 5 to 5,000 liters / minute, particularly preferably 10 to 1,000 liters / minute.
 本発明の製造方法によれば、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が150Pa・s以下の低溶融粘度化ポリグリコール酸を得ることができる。低溶融粘度化ポリグリコール酸は、溶融粘度が低いため、その溶融粘度をポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定する。 According to the production method of the present invention, a low melt viscosity polyglycolic acid having a melt viscosity of 150 Pa · s or less measured at a temperature 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1 is obtained. Obtainable. Since low melt viscosity polyglycolic acid has a low melt viscosity, its melt viscosity is measured at a temperature 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1 .
 ポリグリコール酸の融点が220℃の場合、測定温度を230℃とする。低溶融粘度ポリグリコール酸の溶融粘度の下限値は、通常1Pa・sである。ただし、本発明において、常温(20±15℃)でポリグリコール酸がペレットなどの固体形状を保持している限り、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1の条件で測定した溶融粘度が測定できないほどの低溶融粘度化されたものである場合も、その溶融粘度が150Pa・s以下であると評価する。 When the melting point of polyglycolic acid is 220 ° C, the measurement temperature is 230 ° C. The lower limit of the melt viscosity of the low melt viscosity polyglycolic acid is usually 1 Pa · s. However, in the present invention, as long as the polyglycolic acid maintains a solid shape such as pellets at room temperature (20 ± 15 ° C.), the temperature is 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and the shear rate is 1,200 sec. Even when the melt viscosity measured under the condition of -1 is so low that the melt viscosity cannot be measured, it is evaluated that the melt viscosity is 150 Pa · s or less.
 低溶融粘度化ポリグリコール酸を2回成形法による回路基板の難めっき性樹脂(マスク用樹脂)として使用する場合、2ショット目の射出成形時における一次成形品の変形を避けるために、その溶融粘度を130Pa・s以下、さらには100Pa・s以下、多くの場合80Pa・s以下にまで低減させることが望ましい。低溶融粘度化ポリグリコール酸は、その溶融粘度が低いほど、射出成形時の溶融流動性が良好となり、射出時の圧力を低下させることができる。一次成形品を、耐熱性が十分に高くない合成樹脂を用いて成形した場合、マスク用樹脂として使用するポリグリコール酸の溶融粘度をできるだけ低くすることが好ましい。他方、低溶融粘度化ポリグリコール酸がペレットなどの固体状態を維持できない場合には、取扱性、計量性、成形性などが低下する。 When using low melt viscosity polyglycolic acid as a hard-to-platable resin (mask resin) for circuit boards by a two-time molding method, melt it to avoid deformation of the primary molded product during the second shot of injection molding. It is desirable to reduce the viscosity to 130 Pa · s or less, further 100 Pa · s or less, and in many cases 80 Pa · s or less. The low melt viscosity polyglycolic acid has a better melt fluidity at the time of injection molding as its melt viscosity is lower, and can reduce the pressure at the time of injection. When the primary molded product is molded using a synthetic resin that is not sufficiently high in heat resistance, it is preferable that the melt viscosity of the polyglycolic acid used as the mask resin is as low as possible. On the other hand, when the low melt viscosity polyglycolic acid cannot maintain a solid state such as pellets, handleability, meterability, moldability and the like are lowered.
 本発明の製造方法により、ポリグリコール酸の溶融粘度が低下する理由は、加熱乾燥処理工程において、吸湿した固体状態のポリグリコール酸の内部で加水分解反応が進行するためであると推定される。温水浸漬処理条件及び固体状態での加熱乾燥処理条件を前記の如く制御することによって、ペレットのような固体状態を維持したまま、均質かつ適度な加水分解反応を生じさせることができ、低分子量成分の生成を抑制しながら、高品質の低溶融粘度化ポリグリコール酸を固体状態で得ることができる。 The reason why the melt viscosity of polyglycolic acid is lowered by the production method of the present invention is presumed to be because the hydrolysis reaction proceeds in the solid-state polyglycolic acid that has absorbed moisture in the heat drying treatment step. By controlling the hot water immersion treatment conditions and the heat drying treatment conditions in the solid state as described above, a homogeneous and moderate hydrolysis reaction can be caused while maintaining the solid state like pellets, and low molecular weight components High-quality, low melt viscosity polyglycolic acid can be obtained in a solid state while suppressing the formation of.
 本発明の製造方法により得られた低溶融粘度化ポリグリコール酸の3%熱重量減少温度は、280℃以上、好ましくは290℃以上、より好ましくは300℃以上、特に好ましくは320℃以上である。3%熱重量減少温度の上限値は、通常355℃である。本発明の低溶融粘度化ポリグリコール酸の3%熱重量減少温度は、前記特定の熱安定剤を少量含有させることにより、向上させることが好ましいが、熱安定剤の使用は必ずしも必要ではない。 The 3% thermogravimetric reduction temperature of the low melt viscosity polyglycolic acid obtained by the production method of the present invention is 280 ° C. or higher, preferably 290 ° C. or higher, more preferably 300 ° C. or higher, particularly preferably 320 ° C. or higher. . The upper limit of the 3% thermal weight loss temperature is usually 355 ° C. The 3% thermogravimetric temperature reduction temperature of the low melt viscosity polyglycolic acid of the present invention is preferably improved by containing a small amount of the specific heat stabilizer, but the use of a heat stabilizer is not always necessary.
 これに対して、合成時に重合度を調節して得られた低溶融粘度ポリグリコール酸は、低分子量成分の含有率が高く、その3%熱重量減少温度は、通常260℃以下、多くの場合250℃前後になる。ポリグリコール酸の3%熱重量減少温度が低いことは、射出成形などの溶融加工時に低分子量成分がガス化し易いことを意味している。合成時に重合度を調節して得られた低溶融粘度ポリグリコール酸は、低分子量成分の含有量が多いため、前記特定の熱安定剤を含有させても、その3%熱重量減少温度を大幅に向上させることは困難である。 In contrast, the low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization during synthesis has a high content of low molecular weight components, and its 3% thermal weight loss temperature is usually 260 ° C. or less, in many cases It becomes around 250 ° C. The low 3% thermal weight loss temperature of polyglycolic acid means that low molecular weight components are easily gasified during melt processing such as injection molding. The low melt viscosity polyglycolic acid obtained by adjusting the degree of polymerization at the time of synthesis has a large content of low molecular weight components, so even if it contains the specific heat stabilizer, its 3% thermal weight loss temperature is greatly increased. It is difficult to improve.
 低溶融粘度化ポリグリコール酸は、含水率が500ppm以下、好ましくは300ppm以下、より好ましくは200ppm以下、特に好ましくは100ppm以下の乾燥ポリマーである。含水率の下限値は、2ppm程度である。低溶融粘度化ポリグリコール酸の含水率が高すぎると、保存安定性が低下したり、成形時に水分がガス化したりし易くなる。含水率が低い低溶融粘度化ポリグリコール酸は、加熱処理を乾燥条件下に実施することにより得ることができる。 The low melt viscosity polyglycolic acid is a dry polymer having a water content of 500 ppm or less, preferably 300 ppm or less, more preferably 200 ppm or less, and particularly preferably 100 ppm or less. The lower limit of the moisture content is about 2 ppm. When the water content of the low melt viscosity polyglycolic acid is too high, the storage stability is lowered, and moisture is easily gasified during molding. A low melt viscosity polyglycolic acid having a low water content can be obtained by carrying out heat treatment under dry conditions.
 本発明の製造方法によれば、温水浸漬処理工程の処理条件を制御することにより、低溶融粘度化ポリグリコール酸の溶融粘度を制御することができる。これに加えて、本発明の製造方法の加熱乾燥処理工程2において、吸湿ポリグリコール酸に水を加えて、そのペレットなどの固体の内部に含まれる水分量と付着水の量とを含む全水分量を調節してから加熱乾燥する方法によって、低溶融粘度化ポリグリコール酸の溶融粘度の精密な制御を行うことができる。 According to the production method of the present invention, the melt viscosity of the low melt viscosity polyglycolic acid can be controlled by controlling the treatment conditions of the hot water immersion treatment process. In addition to this, in the heat drying treatment step 2 of the production method of the present invention, water is added to the hygroscopic polyglycolic acid, and the total water content including the amount of water contained in the solid such as the pellets and the amount of adhering water By controlling the amount and then drying by heating, the melt viscosity of the low melt viscosity polyglycolic acid can be precisely controlled.
 具体的には、温水浸漬処理工程1の後、フィルターによる濾過または傾斜によって水を除去する。湿潤状態の吸湿ポリグリコール酸は、ペレットなどの固体形状であるため、そ内部に含まれる水分に加えて、表面に付着する残留水などの付着水を含んでいる。これらの全水分量を調節すると、得られる低溶融粘度化ポリグリコール酸の溶融粘度を制御することができる。 Specifically, after the hot water immersion treatment step 1, water is removed by filtration with a filter or tilting. Since the wet hygroscopic polyglycolic acid is in a solid form such as pellets, it contains adhering water such as residual water adhering to the surface in addition to the water contained therein. By adjusting the total water content, the melt viscosity of the resulting low melt viscosity polyglycolic acid can be controlled.
 より具体的には、濾過または傾斜によって取り出した湿潤状態にある吸湿ポリグリコール酸に、水を加えて全水分量を調節し、しかる後、加熱乾燥処理を行う。全水分量と溶融粘度値との間には、一定の比例関係が存在する。全水分量と加熱乾燥処理後の溶融粘度との関係を予め調べておけば、所望の溶融粘度値を有する低溶融粘度化ポリグリコール酸を得るための追加の水分量を正確に調節することができる。加熱乾燥処理工程での処理効率を上げるには、全水分量を20重量%以下、好ましくは15重量%以下の範囲内で調節することが望ましい。この場合の全水分量の下限値は、3重量%程度である。 More specifically, water is added to moisture-absorbing polyglycolic acid in a wet state taken out by filtration or tilting to adjust the total water content, and then heat drying treatment is performed. There is a certain proportional relationship between the total water content and the melt viscosity value. If the relationship between the total water content and the melt viscosity after heat drying treatment is examined in advance, it is possible to accurately adjust the additional water content to obtain a low melt viscosity polyglycolic acid having a desired melt viscosity value. it can. In order to increase the treatment efficiency in the heat drying treatment step, it is desirable to adjust the total water content within a range of 20% by weight or less, preferably 15% by weight or less. In this case, the lower limit of the total water content is about 3% by weight.
 本発明の低溶融粘度化ポリグリコール酸は、常温(20±15℃)で固体形状であり、好ましくはペレット形状である。この固体形状は、原料として使用する高溶融粘度ポリグリコール酸の固体形状と実質的に同じである。本発明の低溶融粘度化ポリグリコール酸は、主鎖中にエステル結合を有し、さらに、両末端には、合成時及び加水分解時に形成されたカルボキシル基が存在するため、他の合成樹脂成形品の表面や無電解めっき層の表面に対する密着性に優れている。 The low melt viscosity polyglycolic acid of the present invention is in a solid form at room temperature (20 ± 15 ° C.), and preferably in a pellet form. This solid form is substantially the same as the solid form of the high melt viscosity polyglycolic acid used as a raw material. The low melt viscosity polyglycolic acid of the present invention has an ester bond in the main chain, and further, there are carboxyl groups formed at the time of synthesis and hydrolysis at both ends. Excellent adhesion to product surface and electroless plating layer surface.
 低溶融粘度化ポリグリコール酸は、溶融流動性と他材に対する密着性に優れる上、ガス成分の発生が抑制されたポリマーであるため、射出成形により、他の合成樹脂から形成された一次成形品の表面に、微細なパターンを含む薄い被覆層を精密成形することができる。微細なパターンは、微細な溝の形状として形成されるが、低溶融粘度化ポリグリコール酸は、結晶性を有するため、該溝の断面を観察すると、溝の壁が垂直に形成されている。そのため、めっき処理によって、精密なパターンの導体回路を形成することができる。低溶融粘度化ポリグリコール酸は、結晶化による固化時間が短いため、射出成形サイクルを向上させることができる。 Low melt viscosity polyglycolic acid is a polymer with excellent melt fluidity and adhesion to other materials, and is a polymer with suppressed generation of gas components. Therefore, it is a primary molded product formed from other synthetic resins by injection molding. A thin coating layer containing a fine pattern can be precisely formed on the surface of the substrate. The fine pattern is formed as a fine groove shape. However, since the low melt viscosity polyglycolic acid has crystallinity, when the cross section of the groove is observed, the wall of the groove is formed vertically. Therefore, a conductor circuit with a precise pattern can be formed by plating. Since the low melt viscosity polyglycolic acid has a short solidification time by crystallization, the injection molding cycle can be improved.
 低溶融粘度化ポリグリコール酸の被覆層は、めっき処理時に、無電解めっき液や電解めっき液によって溶解することがない。該被覆層は、難めっき性であり、めっき金属粒子が堆積し難い。低溶融粘度化ポリグリコール酸は、アルカリ水溶液に対して分解性を示すため、その被覆層は、アルカリ水溶液で処理することによって除去することができる。該被覆層の除去に有機溶剤を使用する必要がなく、機械的な剥離作業も必要としない。このため、該被覆層の除去に際し、めっき処理により形成した導体回路を損傷することがない。 The low melt viscosity polyglycolic acid coating layer is not dissolved by the electroless plating solution or the electrolytic plating solution during the plating process. The coating layer is hard to be plated and is difficult to deposit plated metal particles. Since the low melt viscosity polyglycolic acid is decomposable with respect to an alkaline aqueous solution, the coating layer can be removed by treating with an alkaline aqueous solution. There is no need to use an organic solvent to remove the coating layer, and no mechanical peeling work is required. For this reason, in removing the coating layer, the conductor circuit formed by the plating process is not damaged.
 本発明の製造方法により得られた低溶融粘度化ポリグリコール酸は、2回成形法による回路基板の難めっき性樹脂(マスク用樹脂)として好適である。2回成形法において使用する一次成形品は、液晶ポリマー、熱可塑性ポリエステル樹脂、ポリフェニレンスルフィド樹脂、環状オレフィン樹脂などを例示することができるが、これらに限定されない。 The low melt viscosity polyglycolic acid obtained by the production method of the present invention is suitable as a hard-to-plate resin (mask resin) for circuit boards by a two-time molding method. Examples of the primary molded product used in the twice-molding method include, but are not limited to, liquid crystal polymers, thermoplastic polyester resins, polyphenylene sulfide resins, and cyclic olefin resins.
 低溶融粘度化ポリグリコール酸は、他の合成樹脂成形品を配置した金型内に射出して、該合成樹脂成形品とポリグリコール酸層とが一体化した複合成形品を製造するために使用する樹脂材料として好適である。低溶融粘度化ポリグリコール酸は、溶融流動性及び溶融安定性に優れるため、他の合成樹脂と共押出したり、他の合成樹脂製フィルムや紙などの基材上に押出コーティングしたりすることによって、各種複合材料を成形する用途にも利用することができる。 Low melt viscosity polyglycolic acid is injected into a mold with other synthetic resin moldings and used to produce composite moldings in which the synthetic resin molding and polyglycolic acid layer are integrated. It is suitable as a resin material. Low melt viscosity polyglycolic acid has excellent melt flowability and melt stability, so it can be co-extruded with other synthetic resins or by extrusion coating on other synthetic resin films or paper substrates. The present invention can also be used for molding various composite materials.
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。本発明における物性及び特性の測定方法は、以下に示すとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. The measuring method of physical properties and characteristics in the present invention is as follows.
(1)水分量の測定法
a)全水分量の測定法
 水中に浸漬した固体状態のポリマー試料をフィルターで濾過し、フィルター上に残った湿潤ポリマー試料の重量Aを測定した。湿潤ポリマー試料を乾燥して、乾燥ポリマー試料を調製し、該乾燥ポリマー試料の重量Bを測定した。式〔(A-B)/B〕×100により全水分量を測定した。
(1) Method of measuring water content a) Method of measuring total water content A solid polymer sample immersed in water was filtered through a filter, and the weight A of the wet polymer sample remaining on the filter was measured. The wet polymer sample was dried to prepare a dry polymer sample, and the weight B of the dry polymer sample was measured. The total water content was measured by the formula [(AB) / B] × 100.
b)含水率の測定法
 気化装置付きカールフィッシャー水分測定器〔三菱化学社製CA-100;付属の気化装置VA-100〕を用いて、ポリマーの含水率の測定を行った。具体的には、湿潤ポリマーの表面に付着した水分を拭き取った後、精密に秤量した約2gのポリマー試料を、220℃の温度に加熱した気化装置に入れた。気化装置からカールフィッシャー水分測定器に乾燥窒素ガスを流した。該ポリマー試料を気化装置に入れた後、該ポリマー試料から気化した水分を、乾燥窒素ガスに随伴させてカールフィッシャー水分測定器内のカールフィッシャー液に導入した。電量滴定法により、カールフィッシャー液の電気伝導度がバックグランドより+0.1μg/Sまで下がった時点を終点とした。
b) Measuring method of moisture content The moisture content of the polymer was measured using a Karl Fischer moisture meter with a vaporizer [CA-100 manufactured by Mitsubishi Chemical; attached vaporizer VA-100]. Specifically, after wiping off moisture adhering to the surface of the wet polymer, about 2 g of a polymer sample accurately weighed was placed in a vaporizer heated to a temperature of 220 ° C. Dry nitrogen gas was allowed to flow from the vaporizer to the Karl Fischer moisture meter. After the polymer sample was put into the vaporizer, the water vaporized from the polymer sample was introduced into the Karl Fischer liquid in the Karl Fischer moisture measuring device in association with the dry nitrogen gas. The end point was the time when the electric conductivity of the Karl Fischer liquid decreased to +0.1 μg / S from the background by the coulometric titration method.
c)付着水
 全水分量から含水率を差し引いた値を、付着水という。
c) Adhering water The value obtained by subtracting the moisture content from the total water content is called adhering water.
(2)融点の測定法
 メトラー社製示差走査熱量計TC10Aを用いて、ポリマーの融点Tmを測定した。乾燥窒素ガスを50ml/分の速度で流しながら、窒素雰囲気中で測定を行った。約10mgのポリマー試料をアルミニウムパンに入れ、50℃から10℃/分の昇温速度で加熱して、融点Tmを測定した。
(2) Melting point measurement method The melting point Tm of the polymer was measured using a differential scanning calorimeter TC10A manufactured by METTLER. Measurement was performed in a nitrogen atmosphere while flowing dry nitrogen gas at a rate of 50 ml / min. About 10 mg of a polymer sample was put in an aluminum pan and heated at a temperature increase rate of 50 ° C. to 10 ° C./min, and the melting point Tm was measured.
(3)平均分子量及び分散度の測定法
 重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)は、ゲルパーミーションクロマトグラフィ(GPC)により測定した。GPC測定装置として昭和電工株式会社製「SHODEX-104」(登録商標)、カラムとして昭和電工株式会社製「HFIP606M」を2本、溶離液として5mMトリフルオロ酢酸ナトリウム塩ヘキサフルオロイソプロパノール溶液、及び検出計として示差屈折率(RI)検出計を使用した。分子量の校正は、ポリメタクリル酸標準分子量試料を用いて行った。
(3) Measuring method of average molecular weight and degree of dispersion Weight average molecular weight (Mw), number average molecular weight (Mn) and degree of dispersion (Mw / Mn) were measured by gel permeation chromatography (GPC). Showa Denko Co., Ltd. “SHODEX-104” (registered trademark) as a GPC measuring device, Showa Denko Co., Ltd. “HFIP606M” as two columns, 5 mM sodium trifluoroacetate hexafluoroisopropanol solution as eluent, and detector A differential refractive index (RI) detector was used. The calibration of the molecular weight was performed using a polymethacrylic acid standard molecular weight sample.
(4)溶融粘度測定法
 溶融粘度の測定装置として、キャピラリー(0.5mmφ×10mmL)を装着した東洋精機製キャピログラフ1-Cを用いて、ポリマーの溶融粘度を測定した。より具体的に、ポリマー試料の融点より10℃高い温度(Tm+10℃)に加熱した測定装置に、約20gのポリマー試料を導入し、該ポリマー試料を該温度で5分間保持した後、剪断速度1,200sec-1で溶融粘度を測定した。出発原料のポリグリコール酸の溶融粘度は、温度(Tm+50℃)と剪断速度122sec-1で測定した。
(4) Melt Viscosity Measurement Method The melt viscosity of a polymer was measured using a Toyo Seiki Capillograph 1-C equipped with a capillary (0.5 mmφ × 10 mmL) as a melt viscosity measurement device. More specifically, about 20 g of the polymer sample is introduced into a measuring apparatus heated to a temperature 10 ° C. higher than the melting point of the polymer sample (Tm + 10 ° C.), and the polymer sample is held at the temperature for 5 minutes. The melt viscosity was measured at 200 sec −1 . The melt viscosity of the starting polyglycolic acid was measured at a temperature (Tm + 50 ° C.) and a shear rate of 122 sec −1 .
(5)3%熱重量減少温度の測定法
 メトラー社製の熱重量分析器TC11を用いて、ポリマーの3%熱重量減少温度を測定した。具体的には、20mgのポリマー試料を白金パンに入れ、乾燥窒素10ml/分の雰囲気中、50℃から400℃まで10℃/分の昇温速度で昇温し、その間の重量減少率を測定した。測定開始時のポリマー試料の重量から3%減少したときの温度を、3%熱重量減少温度とした。
(5) Measurement method of 3% thermogravimetric decrease temperature The 3% thermogravimetric decrease temperature of the polymer was measured using a thermogravimetric analyzer TC11 manufactured by METTLER. Specifically, a 20 mg polymer sample is placed in a platinum pan, heated in a dry nitrogen atmosphere of 10 ml / min from 50 ° C. to 400 ° C. at a rate of temperature increase of 10 ° C./min, and the weight loss rate during that time is measured. did. The temperature at which the temperature decreased by 3% from the weight of the polymer sample at the start of measurement was defined as a 3% thermogravimetric decrease temperature.
[比較例1]
 出発原料として、融点(Tm)が220℃、270℃(Tm+50℃=270℃)及び剪断速度122sec-1で測定した溶融粘度が506Pa・s、重量平均分子量(Mw)が19.2万、含水率が30ppmのポリグリコール酸を用いた。該ポリグリコール酸を押出機からストランド状に溶融押出し、水中で冷却して切断する方法により、平均径が2.8mm、平均長さが2.7mmの均一な形状を有するペレットを作製した。このペレットを用いて測定したポリグリコール酸の3%熱重量減少温度は、352℃であった。
[Comparative Example 1]
As starting materials, a melting point (Tm) of 220 ° C., 270 ° C. (Tm + 50 ° C. = 270 ° C.), a melt viscosity of 506 Pa · s measured at a shear rate of 122 sec −1 , a weight average molecular weight (Mw) of 192,000, water content Polyglycolic acid with a rate of 30 ppm was used. The polyglycolic acid was melt-extruded in a strand form from an extruder, cooled in water and cut to produce pellets having a uniform shape with an average diameter of 2.8 mm and an average length of 2.7 mm. The 3% thermal weight loss temperature of polyglycolic acid measured using this pellet was 352 ° C.
 内容積25リットルの撹拌機付きオートクレーブに、該ペレット10kg及びイオン交換水10リットルを投入した。オートクレーブを加熱して温水の温度を55℃に保持しながら、撹拌機の撹拌翼の回転数を50rpmに維持して、36時間撹拌することにより、温水浸漬処理を行った。 10 kg of the pellets and 10 liters of ion-exchanged water were put into an autoclave equipped with a stirrer with an internal volume of 25 liters. While maintaining the temperature of the hot water at 55 ° C. by heating the autoclave, the number of stirring blades of the stirrer was maintained at 50 rpm and stirred for 36 hours to perform the hot water immersion treatment.
 温水浸漬処理工程後、濾過して、全水分量5.8重量%、含水率7,726ppmの湿潤状態にある吸湿ポリグリコール酸のペレットを回収した。このペレットを乾燥機内に入れて、150℃に加熱した乾燥窒素を流量300リットル/分で流しながら、6時間かけて加熱乾燥処理を行った。得られたペレットについて、溶融粘度の測定を合計3回(n=3)実施した。結果を表1に示す。 After the warm water immersion treatment step, filtration was performed to collect wet hygroscopic polyglycolic acid pellets in a wet state with a total water content of 5.8 wt% and a moisture content of 7,726 ppm. The pellets were put in a drier and subjected to heat drying treatment for 6 hours while flowing dry nitrogen heated to 150 ° C. at a flow rate of 300 liters / minute. About the obtained pellet, the measurement of melt viscosity was implemented a total of 3 times (n = 3). The results are shown in Table 1.
[実施例1~5]
 温水浸漬処理条件及び加熱乾燥処理条件を表1に示すように変更したこと以外は、比較例1と実質的に同様に操作した。ただし、実施例1~4では、原料ポリグリコール酸として、融点(Tm)が220℃、270℃(Tm+50℃=270℃)及び剪断速度122sec-1で測定した溶融粘度が465Pa・s、重量平均分子量(Mw)が18.7万、含水率が30ppmのポリグリコール酸を用いた。また、実施例1~5では、乾燥窒素(N)に代えて、乾燥空気(AI)を用いた。結果を表1に示す。
[Examples 1 to 5]
The operation was performed in substantially the same manner as in Comparative Example 1 except that the hot water immersion treatment conditions and the heat drying treatment conditions were changed as shown in Table 1. However, in Examples 1 to 4, the raw material polyglycolic acid had a melting point (Tm) of 220 ° C., 270 ° C. (Tm + 50 ° C. = 270 ° C.), a melt viscosity measured at a shear rate of 122 sec −1 465 Pa · s, and a weight average Polyglycolic acid having a molecular weight (Mw) of 187,000 and a water content of 30 ppm was used. In Examples 1 to 5, dry air (AI) was used instead of dry nitrogen (N 2 ). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(脚注)
(1)PGA:ポリグリコール酸
(2)Mw:重量平均分子量
(3)N:乾燥窒素
(4)AI:乾燥空気
(footnote)
(1) PGA: polyglycolic acid (2) Mw: weight average molecular weight (3) N 2 : dry nitrogen (4) AI: dry air
<考察>
 表1の結果から明らかなように、温水の温度が55℃の場合(比較例1)には、温水浸漬処理工程を36時間にわたって行う必要がある。また、撹拌翼の回転数が50rpmと少ない場合(比較例1)には、低溶融粘度化ポリグリコール酸の同一ロット内での溶融粘度のバラツキが大きくなり、その最大値と最小値との差が大きくなる。
<Discussion>
As is apparent from the results in Table 1, when the temperature of hot water is 55 ° C. (Comparative Example 1), it is necessary to perform the hot water immersion treatment process over 36 hours. Further, when the rotational speed of the stirring blade is as small as 50 rpm (Comparative Example 1), the dispersion of the melt viscosity within the same lot of the low melt viscosity polyglycolic acid becomes large, and the difference between the maximum value and the minimum value is large. Becomes larger.
 これに対して、温水の温度を60℃以上、さらには70℃以上とすることにより、温水浸漬処理工程での処理時間を大幅に短縮できることが分かる(実施例1~5)。撹拌翼の回転数を100rpm以上、好ましくは150rpm以上に増加させると、低溶融粘度化ポリグリコール酸の同一ロット内での溶融粘度のバラツキが小さくなることが分かる(実施例1~5)。さらに、本発明の製造方法(実施例1~5)によれば、3%熱重量減少温度が高水準に保持され、かつ、含水率が低く、十分に乾燥した低溶融粘度化ポリグリコール酸を効率的に得ることができる。 On the other hand, it can be seen that by setting the temperature of the hot water to 60 ° C. or higher, and further to 70 ° C. or higher, the processing time in the hot water immersion treatment process can be significantly shortened (Examples 1 to 5). It can be seen that when the rotation speed of the stirring blade is increased to 100 rpm or more, preferably 150 rpm or more, the dispersion of the melt viscosity within the same lot of the low melt viscosity polyglycolic acid is reduced (Examples 1 to 5). Furthermore, according to the production method of the present invention (Examples 1 to 5), a low melt viscosity polyglycolic acid which has a 3% thermal weight loss temperature maintained at a high level and has a low moisture content and is sufficiently dried is obtained. Can be obtained efficiently.
[実施例6~8、及び比較例2]
 比較例1で調製したのと同じペレットを用いて、温水の温度を表2に示すように100℃(実施例6)、80℃(実施例7)、70℃(実施例8)、及び55℃(比較例2)と変化させ、撹拌翼の回転数を200rpmに設定して、温水浸漬処理を行った。処理時間と重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)の測定結果を表2に示す。
[Examples 6 to 8 and Comparative Example 2]
Using the same pellets prepared in Comparative Example 1, the temperature of the hot water was 100 ° C. (Example 6), 80 ° C. (Example 7), 70 ° C. (Example 8), and 55 as shown in Table 2. The temperature was changed to 0 ° C. (Comparative Example 2), the number of revolutions of the stirring blade was set to 200 rpm, and hot water immersion treatment was performed. Table 2 shows the measurement results of treatment time, weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw / Mn).
 温水浸漬処理工程後、濾過して、湿潤状態にある吸湿ポリグリコール酸のペレットを回収した。これらのペレットを各々乾燥機内に入れて、150℃に加熱した乾燥空気を流量300リットル/分で流しながら、6時間かけて加熱乾燥処理を行った。結果を表3に示す。 After the hot water immersion treatment step, filtration was performed to collect wet hygroscopic polyglycolic acid pellets. Each of these pellets was put in a drier and heat-dried for 6 hours while flowing dry air heated to 150 ° C. at a flow rate of 300 l / min. The results are shown in Table 3.
[比較例3]
 オートクレーブに、グリコール酸〔和光純薬(株)〕500gを仕込み、常圧で撹拌しながら170℃から200℃まで2時間かけて昇温加熱し、生成水を溜出させながら重縮合反応させた。次いで、缶内圧力を5.0kPaに減圧し、210℃で4時間加熱して、未反応原料等の低沸点成分を溜去した。縮重合生成物を、冷却により結晶固化させてオートクレーブから取り出し、粉砕して、粉末状のポリグリコール酸を得た。このポリグリコール酸の融点Tmは、218℃であった。該ポリグリコール酸を用いて、温度(Tm+10℃=228℃)及び剪断速度1,200sec-1でのポリグリコール酸の溶融粘度を測定したところ、10Pa・sであった。該ポリグリコール酸の3%熱重量減少温度を測定したところ、252℃であった。結果を表3に示す。
[Comparative Example 3]
An autoclave was charged with 500 g of glycolic acid [Wako Pure Chemical Industries, Ltd.], heated at 170 ° C. to 200 ° C. over 2 hours with stirring at normal pressure, and subjected to a polycondensation reaction while distilling the produced water. . Next, the internal pressure of the can was reduced to 5.0 kPa and heated at 210 ° C. for 4 hours to distill off low-boiling components such as unreacted raw materials. The polycondensation product was crystallized by cooling, taken out from the autoclave, and pulverized to obtain powdered polyglycolic acid. The melting point Tm of this polyglycolic acid was 218 ° C. Using the polyglycolic acid, the melt viscosity of the polyglycolic acid at a temperature (Tm + 10 ° C. = 228 ° C.) and a shear rate of 1,200 sec −1 was measured and found to be 10 Pa · s. It was 252 degreeC when the 3% thermogravimetric reduction temperature of this polyglycolic acid was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<考察>
 表2の結果から明らかなように、温水の温度を100℃に設定した場合(実施例6)には、温水浸漬処理工程でペレットの表面から加水分解反応が進行するためと推定されるが、ポリグリコール酸の重量平均分子量(Mw)が著しく低下すると共に、その分散度(Mw/Mn)がブロードになる傾向を示す。これに対して、温水の温度を80℃(実施例7)、70℃(実施例8)、及び55℃(比較例2)に設定すると、温水浸漬処理工程での加水分解の程度が小さく、かつ、分散度がシャープな吸湿ポリグリコール酸のペレットを得ることができる。ただし、温水の温度を55℃に設定した場合(比較例2)には、ペレット内部を十分に吸湿させるのに長時間を必要とするため、効率的ではない。
<Discussion>
As is clear from the results in Table 2, when the temperature of the hot water is set to 100 ° C. (Example 6), it is estimated that the hydrolysis reaction proceeds from the surface of the pellets in the hot water immersion treatment process. While the weight average molecular weight (Mw) of polyglycolic acid falls remarkably, the dispersion degree (Mw / Mn) tends to become broad. On the other hand, when the temperature of warm water is set to 80 ° C. (Example 7), 70 ° C. (Example 8), and 55 ° C. (Comparative Example 2), the degree of hydrolysis in the warm water immersion treatment step is small. In addition, moisture-absorbing polyglycolic acid pellets with a sharp degree of dispersion can be obtained. However, when the temperature of the hot water is set to 55 ° C. (Comparative Example 2), a long time is required to sufficiently absorb the inside of the pellet, which is not efficient.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<考察>
 表3の結果から明らかなように、100℃の温水中で浸漬処理した吸湿ポリグリコール酸は、表面部分での加水分解反応の進行が急速に進むため、分散度が大きくなり、それを加熱乾燥処理して得られた低溶融粘度化ポリグリコール酸の3%熱重量減少温度が低下することが分かる(実施例6)。
<Discussion>
As is apparent from the results in Table 3, the moisture-absorbing polyglycolic acid soaked in warm water at 100 ° C. has a high degree of dispersion because the hydrolysis reaction proceeds rapidly at the surface portion, which is heated and dried. It can be seen that the 3% thermal weight loss temperature of the low melt viscosity polyglycolic acid obtained by the treatment decreases (Example 6).
 合成時に低重合度のポリグリコール酸を製造する方法により得られた低溶融粘度のポリグリコール酸は、3%熱重量減少温度が252℃であり、低分子量物の含有量が多く、溶融加工時に多量のガス成分を揮散し易いものである(比較例3)。 The polyglycolic acid having a low melt viscosity obtained by the method for producing a polyglycolic acid having a low polymerization degree at the time of synthesis has a 3% thermal weight loss temperature of 252 ° C., and has a high content of low molecular weight substances. A large amount of gas components are easily volatilized (Comparative Example 3).
 これに対して、温水の温度を55~80℃に設定した場合(実施例7~8、及び比較例2)には、3%熱重量減少温度が高水準で保持されている低溶融粘度化ポリグリコール酸を得ることができる。ただし、比較例2は、前述の通り温水浸漬処理に長時間を要するため、効率的ではない。 On the other hand, when the temperature of the hot water is set to 55 to 80 ° C. (Examples 7 to 8 and Comparative Example 2), the 3% thermal weight loss temperature is maintained at a high level and the melt viscosity is lowered. Polyglycolic acid can be obtained. However, since the comparative example 2 requires a long time for the hot water immersion treatment as described above, it is not efficient.
[実施例9]
 比較例1で調製したポリグリコール酸のペレットを用いて、温水の温度を70℃、撹拌翼の回転数を200rpm、処理時間を5時間に設定して、温水浸漬処理工程を行った。これにより、含水率が8,910ppmで、全水分量が4.12重量%の湿潤状態にある吸湿ポリグリコール酸ペレットを回収した。この吸湿ポリグリコール酸ペレットを、乾燥機内に入れ、150℃に加熱した乾燥空気を300リットル/分の流量で流しながら、6時間かけて加熱乾燥処理を行った。その結果、含水率が46.5重量%で、溶融粘度が24Pa・sの低溶融粘度化ポリグリコール酸が得られた。結果を表4に示す。
[Example 9]
Using the polyglycolic acid pellets prepared in Comparative Example 1, the hot water temperature was set to 70 ° C., the rotation speed of the stirring blade was set to 200 rpm, and the treatment time was set to 5 hours, and the hot water immersion treatment step was performed. Thereby, moisture-absorbing polyglycolic acid pellets in a wet state with a water content of 8,910 ppm and a total water content of 4.12% by weight were recovered. The moisture-absorbing polyglycolic acid pellets were put in a drier and heat-dried for 6 hours while flowing dry air heated to 150 ° C. at a flow rate of 300 liters / minute. As a result, a low melt viscosity polyglycolic acid having a water content of 46.5% by weight and a melt viscosity of 24 Pa · s was obtained. The results are shown in Table 4.
[実施例10及び11]
 実施例9において、湿潤状態にある吸湿ポリグリコール酸のペレットに水を添加して、全水分量を調節した。その後、実施例9と同じ操作で加熱乾燥処理を行った。結果を表4に示す。
[Examples 10 and 11]
In Example 9, water was added to wet hygroscopic polyglycolic acid pellets to adjust the total water content. Then, the heat drying process was performed by the same operation as Example 9. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(*1)実施例9の温水浸漬処理工程の後、湿潤状態のペレットに水を添加して、全水分量を調節した。 (* 1) After the warm water immersion treatment step of Example 9, water was added to the wet pellets to adjust the total water content.
<考察>
 表4の結果から明らかなように、温水浸漬処理工程後、湿潤状態にある吸湿ポリグリコール酸のペレットに水を添加して全水分量を調節することにより、加熱乾燥処理工程後に溶融粘度が更に低下した低溶融粘度化ポリグリコール酸ペレットの得られることが分かる。溶融粘度の低下の度合いは、全水分量にほぼ比例している。そのため、予め全水分量と溶融粘度値との関係を調べておけば、単に水を添加してペレットの全水分量を調節することにより、低溶融粘度化ポリグリコール酸の溶融粘度値を精密に制御することができる。
<Discussion>
As apparent from the results in Table 4, after the hot water immersion treatment step, the melt viscosity is further increased after the heat drying treatment step by adding water to the wet hygroscopic polyglycolic acid pellets to adjust the total water content. It can be seen that reduced low melt viscosity polyglycolic acid pellets are obtained. The degree of decrease in melt viscosity is approximately proportional to the total water content. Therefore, if the relationship between the total water content and the melt viscosity value is examined in advance, the melt viscosity value of the low melt viscosity polyglycolic acid can be precisely determined by simply adding water and adjusting the total water content of the pellets. Can be controlled.
 本発明の低溶融粘度化ポリグリコール酸は、他の合成樹脂成形品の表面に、射出成形により微細なパターン状の薄膜を精密成形することが可能であり、耐めっき性に優れ、アルカリ水溶液に可溶性であるため、例えば、MID(三次元射出成形回路部品)のマスク用樹脂として利用することができる。本発明の低溶融粘度化ポリグリコール酸は、成形時の溶融流動性、精密成形性、他材との密着性、ガスバリア性などに優れることが要求される広範な技術分野で利用することができる。 The low melt viscosity polyglycolic acid of the present invention can precisely mold a thin film with a fine pattern on the surface of another synthetic resin molded product by injection molding, has excellent plating resistance, and is an alkaline aqueous solution. Since it is soluble, it can be used as, for example, a mask resin for MID (three-dimensional injection molded circuit components). The low melt viscosity polyglycolic acid of the present invention can be used in a wide range of technical fields that are required to be excellent in melt flowability during molding, precision moldability, adhesion to other materials, gas barrier properties, and the like. .

Claims (15)

  1.  下記工程1及び2
    (1)ポリグリコール酸の融点Tmより50℃高い温度(Tm+50℃)及び剪断速度122sec-1で測定した溶融粘度が100Pa・s超過のポリグリコール酸を、所定の固体形状で60~100℃の温水中に浸漬して、その固体形状を保持させながら吸湿させることにより、含水率が1,000ppm以上の吸湿ポリグリコール酸を得る温水浸漬処理工程1;並びに、
    (2)該吸湿ポリグリコール酸を、その固体形状を保持させながら、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度で加熱乾燥して、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が150Pa・s以下で、3%熱重量減少温度が280℃以上、かつ、含水率が500ppm以下の低溶融粘度化ポリグリコール酸を得る加熱乾燥処理工程2;
    を含む低溶融粘度化ポリグリコール酸の製造方法。
    Steps 1 and 2 below
    (1) A polyglycolic acid having a melt viscosity exceeding 100 Pa · s measured at a temperature 50 ° C higher than the melting point Tm of the polyglycolic acid (Tm + 50 ° C) and a shear rate of 122 sec -1 is 60-100 ° C in a predetermined solid form. Hot water immersion treatment step 1 for obtaining moisture-absorbing polyglycolic acid having a water content of 1,000 ppm or more by immersing in warm water and absorbing moisture while maintaining its solid form;
    (2) The moisture-absorbing polyglycolic acid is heated and dried at a temperature in the range from 60 ° C. to 5 ° C. lower than the melting point of the polyglycolic acid (Tm−5 ° C.) while maintaining its solid form. The melt viscosity measured at a temperature 10 ° C. higher than the melting point of glycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1 is 150 Pa · s or less, the 3% thermal weight loss temperature is 280 ° C. or more, and the water content is 500 ppm. Heat drying treatment step 2 for obtaining the following low melt viscosity polyglycolic acid;
    A process for producing a low melt viscosity polyglycolic acid comprising:
  2.  該ポリグリコール酸の溶融粘度が、100Pa・s超過3,000Pa・s以下の範囲内である請求項1記載の製造方法。 The process according to claim 1, wherein the polyglycolic acid has a melt viscosity in the range of more than 100 Pa · s and 3,000 Pa · s or less.
  3.  前記所定の固体形状が、ペレットまたは粒子の形状である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the predetermined solid shape is a shape of a pellet or a particle.
  4.  該工程1において、所定形状の高溶融粘度ポリグリコール酸と温水との混合比率を重量比で1:10~10:5の範囲内とする請求項1記載の製造方法。 The production method according to claim 1, wherein in the step 1, the mixing ratio of the high melt viscosity polyglycolic acid having a predetermined shape and warm water is within a range of 1:10 to 10: 5 by weight.
  5.  該工程1において、該ポリグリコール酸を、所定の固体形状で60~90℃の温水中に浸漬して、その固体形状を保持させながら吸湿させる請求項1記載の製造方法。 The method according to claim 1, wherein in the step 1, the polyglycolic acid is immersed in warm water of 60 to 90 ° C in a predetermined solid form to absorb moisture while maintaining the solid form.
  6.  該工程1において、重量平均分子量(Mw)と数平均分子量(Mn)との比で表わされる分散度(Mw/Mn)が2.15以下の吸湿ポリグリコール酸を得る請求項1記載の製造方法。 2. The production method according to claim 1, wherein in step 1, a hygroscopic polyglycolic acid having a dispersity (Mw / Mn) of 2.15 or less expressed by a ratio of a weight average molecular weight (Mw) to a number average molecular weight (Mn) is obtained. .
  7.  温水浸漬処理工程において、ポリグリコール酸の含水率が5,000以上の吸湿ポリグリコール酸を得る請求項1記載の製造方法。 The manufacturing method of Claim 1 which obtains the moisture absorption polyglycolic acid whose water content of polyglycolic acid is 5,000 or more in a warm water immersion treatment process.
  8.  該工程1において、該ポリグリコール酸を、ペレット形状で温水中に浸漬して、そのペレット形状を保持させながら吸湿させることにより、吸湿ポリグリコール酸を得、次いで、該工程2において、該吸湿ポリグリコール酸を、そのペレット形状を保持させながら加熱乾燥して、低溶融粘度化ポリグリコール酸を得る請求項1記載の製造方法。 In the step 1, the polyglycolic acid is immersed in warm water in the form of pellets to absorb moisture while maintaining the pellet shape, thereby obtaining a hygroscopic polyglycolic acid. Next, in the step 2, the hygroscopic polyglycolic acid is obtained. The manufacturing method of Claim 1 which heat-drys glycolic acid, maintaining the pellet shape, and obtains low melt viscosity polyglycolic acid.
  9.  該工程1において、該ポリグリコール酸を、ペレット形状で、撹拌機を配置した撹拌槽内に投入すると共に、温水中に浸漬して、該撹拌機の撹拌翼の回転数100~500rpmで1~15時間撹拌し、そのペレット形状を保持させながら吸湿させることにより、吸湿ポリグリコール酸を得、次いで、該工程2において、該吸湿ポリグリコール酸を、そのペレット形状を保持させながら加熱乾燥して、低溶融粘度化ポリグリコール酸を得る請求項1記載の製造方法。 In the step 1, the polyglycolic acid is charged in a pellet form into a stirring tank provided with a stirrer and immersed in warm water, and the stirrer blade speed of the stirrer is 1 to 500 rpm. By stirring for 15 hours and absorbing moisture while maintaining the pellet shape, a hygroscopic polyglycolic acid is obtained, and then in step 2, the hygroscopic polyglycolic acid is heated and dried while maintaining the pellet shape, The process according to claim 1, wherein low melt viscosity polyglycolic acid is obtained.
  10.  該工程2において、該吸湿ポリグリコール酸に水を加えて、固体形状のポリグリコール酸の内部に含まれる水分量と表面に付着する水分量とを含む全水分量を調節してから加熱乾燥し、それによって、低溶融粘度化ポリグリコール酸の溶融粘度の制御を行う請求項1記載の製造方法。 In the step 2, water is added to the hygroscopic polyglycolic acid to adjust the total water content including the amount of water contained in the solid polyglycolic acid and the amount of water adhering to the surface, followed by drying by heating. The process according to claim 1, wherein the melt viscosity of the low melt viscosity polyglycolic acid is controlled.
  11.  該工程2において、該吸湿ポリグリコール酸に水を加えて、全水分量を3~20重量%の範囲内に調節してから加熱乾燥を行う請求項10記載の製造方法。 11. The production method according to claim 10, wherein in the step 2, water is added to the hygroscopic polyglycolic acid to adjust the total water content within a range of 3 to 20% by weight, followed by heat drying.
  12.  該工程2において、該吸湿ポリグリコール酸を、60℃からポリグリコール酸の融点より5℃低い温度(Tm-5℃)までの範囲内の温度に加熱した不活性ガスまたは空気を流す方法により加熱乾燥する請求項1記載の製造方法。 In step 2, the hygroscopic polyglycolic acid is heated by a method of flowing an inert gas or air heated to a temperature in the range from 60 ° C. to a temperature 5 ° C. lower than the melting point of the polyglycolic acid (Tm−5 ° C.). The manufacturing method of Claim 1 which dries.
  13.  加熱した不活性ガスまたは空気を0.1~30,000リットル/分の流量で流す請求項12記載の製造方法。 13. The production method according to claim 12, wherein heated inert gas or air is allowed to flow at a flow rate of 0.1 to 30,000 liters / minute.
  14.  該工程2において、1~200時間の範囲内で加熱乾燥処理を行う請求項1記載の製造方法。 The production method according to claim 1, wherein in the step 2, the heat drying treatment is performed within a range of 1 to 200 hours.
  15.  該工程2において、ポリグリコール酸の融点より10℃高い温度(Tm+10℃)及び剪断速度1,200sec-1で測定した溶融粘度が1~150Pa・sの範囲内で、3%熱重量減少温度が280~355℃の範囲内で、かつ、含水率が2~500ppmの範囲内である低溶融粘度化ポリグリコール酸を得る請求項1記載の製造方法。 In Step 2, a 3% thermogravimetric decrease temperature is within a range of 1 to 150 Pa · s at a melt viscosity measured at a temperature 10 ° C. higher than the melting point of polyglycolic acid (Tm + 10 ° C.) and a shear rate of 1,200 sec −1. The production method according to claim 1, wherein a low melt viscosity polyglycolic acid having a water content in the range of 280 to 355 ° C and a water content of 2 to 500 ppm is obtained.
PCT/JP2010/000062 2009-03-17 2010-01-07 Method for producing polyglycolic acid having lowered melt viscosity WO2010106722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009064106A JP5362400B2 (en) 2009-03-17 2009-03-17 Process for producing low melt viscosity polyglycolic acid
JP2009-064106 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010106722A1 true WO2010106722A1 (en) 2010-09-23

Family

ID=42739388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000062 WO2010106722A1 (en) 2009-03-17 2010-01-07 Method for producing polyglycolic acid having lowered melt viscosity

Country Status (3)

Country Link
JP (1) JP5362400B2 (en)
TW (1) TW201041931A (en)
WO (1) WO2010106722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144511A1 (en) * 2011-04-22 2012-10-26 株式会社クレハ Biodegradable aliphatic polyester particles, and process for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018448025A1 (en) * 2018-10-29 2021-05-27 Pujing Chemical Industry Co., Ltd Integrated preparation process for producing polyglycolic acid products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076531A (en) * 1983-08-26 1985-05-01 サンド・アクチエンゲゼルシヤフト Novel ester, manufacture and use
JP2004307534A (en) * 2003-04-02 2004-11-04 Mitsui Chemicals Inc Method of purifying polyhydroxy carboxylic acid
JP2005126490A (en) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp Aliphatic polyhydroxy carboxylic acid granular crystallized product and its manufacturing process
WO2005090438A1 (en) * 2004-03-18 2005-09-29 Kureha Corporation Process for producing aliphatic polyester reduced in residual cyclic ester content
WO2009119825A1 (en) * 2008-03-28 2009-10-01 株式会社ジェイ・エム・エス Method for purifying polymer and process for producing polymer using the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076531A (en) * 1983-08-26 1985-05-01 サンド・アクチエンゲゼルシヤフト Novel ester, manufacture and use
JP2004307534A (en) * 2003-04-02 2004-11-04 Mitsui Chemicals Inc Method of purifying polyhydroxy carboxylic acid
JP2005126490A (en) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp Aliphatic polyhydroxy carboxylic acid granular crystallized product and its manufacturing process
WO2005090438A1 (en) * 2004-03-18 2005-09-29 Kureha Corporation Process for producing aliphatic polyester reduced in residual cyclic ester content
WO2009119825A1 (en) * 2008-03-28 2009-10-01 株式会社ジェイ・エム・エス Method for purifying polymer and process for producing polymer using the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144511A1 (en) * 2011-04-22 2012-10-26 株式会社クレハ Biodegradable aliphatic polyester particles, and process for producing same

Also Published As

Publication number Publication date
JP5362400B2 (en) 2013-12-11
TW201041931A (en) 2010-12-01
JP2010215782A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JPWO2009034942A1 (en) Low melt viscosity polyglycolic acid and process for producing the same, and use of the low melt viscosity polyglycolic acid
JP5234585B2 (en) Method for producing polyglycolic acid resin composition
JP5224815B2 (en) Polyglycolic acid resin granular composition and method for producing the same
JP5064672B2 (en) Powders with improved recycling properties, methods for their production and use of powders in methods for producing three-dimensional articles
KR102605004B1 (en) Liquid crystalline polyester liquid composition, method for producing liquid crystalline polyester film, and liquid crystalline polyester film
TWI276660B (en) Aromatic liquid crystal polyester and film thereof
KR101606606B1 (en) Polyamide resin
US9650474B2 (en) Polyamide resin composition
JP2004137465A (en) Sintering powder for selective laser-sintering, method for producing the same, method for producing formed product and formed product
JP5651026B2 (en) Polyglycolic acid composition, resin molded product and molded product containing polyglycolic acid, and polyglycolic acid decomposition method
TW201141996A (en) Liquid crystalline polyester composition, method for producing the same, and connector
CA2624911C (en) Polylactide composition
CN114851528B (en) Polyhydroxyalkanoate forming body and preparation method thereof
WO2004007614A1 (en) Polyamide composition
TW201512303A (en) Method of producing polyimide resin
JP5362400B2 (en) Process for producing low melt viscosity polyglycolic acid
JP6921078B2 (en) Improved polymer preparation
CN112203829B (en) Material for three-dimensional printer
JP2020164738A (en) Liquid crystal polyester molding and connector
KR20150044876A (en) Moisture-absorbing/releasing material
KR100718219B1 (en) Polytrimethylene terephthalate composition and process for producing the same
JP2008056841A (en) Polyamide composition and polyamide molded product composed of the same
TWI835254B (en) Copper foil laminated boards and electronic circuit substrates
JP2010229240A (en) Process for producing polyester
RU2637962C1 (en) Powder polymer composition and method of its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753219

Country of ref document: EP

Kind code of ref document: A1