WO2010106615A1 - Engine cooling device - Google Patents

Engine cooling device Download PDF

Info

Publication number
WO2010106615A1
WO2010106615A1 PCT/JP2009/055018 JP2009055018W WO2010106615A1 WO 2010106615 A1 WO2010106615 A1 WO 2010106615A1 JP 2009055018 W JP2009055018 W JP 2009055018W WO 2010106615 A1 WO2010106615 A1 WO 2010106615A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling water
engine
water
refrigerant
Prior art date
Application number
PCT/JP2009/055018
Other languages
French (fr)
Japanese (ja)
Inventor
星幸一
篠田祥尚
池田晃浩
新谷治
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011504629A priority Critical patent/JP5267654B2/en
Priority to CN2009801581184A priority patent/CN102356220A/en
Priority to PCT/JP2009/055018 priority patent/WO2010106615A1/en
Priority to US13/142,430 priority patent/US20110265740A1/en
Publication of WO2010106615A1 publication Critical patent/WO2010106615A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • F01N3/043Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
    • F01N3/046Exhaust manifolds with cooling jacket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine cooling device, and more particularly to an engine cooling device provided with an exhaust system cooling means for cooling an engine exhaust system with a refrigerant common to the refrigerant circulating in the engine body.
  • Patent Literature 1 discloses a technology considered to be related to the present invention.
  • Patent Document 1 discloses an exhaust manifold device including a water jacket formed around an exhaust manifold and water injection means for injecting water into the water jacket in a spray form.
  • Patent Document 2 discloses a cooling control device for an internal combustion engine provided with a flow rate control valve that can change the supply ratio of the cooling medium to a plurality of cooling units. ing.
  • Patent Document 2 discloses a cooling control device for an internal combustion engine in which a flow rate control valve is provided in each cooling water passage that guides cooling water to a plurality of cooling units such as exhaust ports.
  • the exhaust system is used for the purpose of suitably balancing exhaust emissions in the light and medium load operating range where the catalyst is warmed up early and further reducing exhaust emissions during high load operation. It is considered that the exhaust gas is cooled with a refrigerant to lower the exhaust temperature. In this way, it is possible to suppress overheating of the catalyst. Therefore, in this way, the catalyst can be arranged close to the engine, so that the exhaust emission in the light and medium load operation region where the catalyst is warmed up early and the exhaust emission during the high load operation are updated. It is also possible to achieve both reductions that are suitable.
  • the refrigerant flowing through the engine body is generally cooled by a cooler (for example, a radiator). Whether or not the refrigerant flows through the cooler is generally determined based on the temperature of the refrigerant flowing through the refrigerant circulation path including the engine body.
  • the exhaust system cooling means is usually smaller in size than the engine body, so the exhaust system cooling means is more suitable.
  • the heat capacity is smaller than the engine body.
  • the degree of the influence received by the transfer of heat is larger in the exhaust system cooling means than in the engine body, including the circulating refrigerant. Therefore, in this case, when it is determined whether or not to circulate the refrigerant through the cooler as described above, the refrigerant exceeds the appropriate temperature in the exhaust system cooling means having a small heat capacity before the refrigerant is actually circulated through the cooler.
  • a boiling situation may occur, and as a result, there is a problem in that the engine may be damaged.
  • an object of the present invention is to provide an engine cooling device that can prevent or suppress boiling and damage to the engine.
  • an engine cooling device includes a refrigerant pressure feeding device that pumps a common refrigerant to a plurality of refrigerant circulation paths, and an engine in at least one refrigerant circulation path among the plurality of refrigerant circulation paths.
  • An engine incorporating a main body, and an exhaust gas that is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths, has a smaller heat capacity than the engine main body, and cools the engine exhaust system with a circulating refrigerant.
  • a system cooling means a cooler that is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths and cools the circulating refrigerant, and the cooler is incorporated among the plurality of refrigerant circulation paths.
  • a flow control device that determines whether or not to circulate the refrigerant through at least one refrigerant circulation path based on a predetermined determination value and controls the flow of the refrigerant; For example, the predetermined determination value, the refrigerant in the exhaust system cooling means is a cooling device for an engine was determined value according to the heat amount received from the exhaust.
  • the present invention is incorporated in at least one refrigerant circulation path in which the exhaust system cooling means is incorporated among the plurality of refrigerant circulation paths, and the pressure of the refrigerant flowing through the exhaust system cooling means is the plurality of refrigerants. It is preferable to further include a flow rate adjusting means for adjusting the flow rate of the refrigerant discharged from the exhaust system cooling means so as to be higher than the system pressure of the circulation path.
  • the exhaust system cooling means for cooling the exhaust system of the engine with the refrigerant common to the refrigerant flowing through the engine body is provided, the refrigerant is overheated or boiled by the exhaust system cooling means, and the engine is damaged. Can be prevented or suppressed.
  • FIG. 1 is a diagram schematically illustrating an engine cooling device (hereinafter simply referred to as a cooling device) 100 according to an embodiment.
  • a cooling device an engine cooling device
  • FIG. 1 piping and the like constituting the cooling water circulation path during cold when the thermostat 60 is closed are indicated by broken lines, and piping and the like constituting the cooling water circulation path during warming when the thermostat 60 is opened are indicated by solid lines. While showing each, the flow direction of the cooling water W is shown with the arrow with respect to these. This also applies to FIGS. 3 to 8.
  • 1 is a diagram schematically showing a water-cooled exhaust manifold (hereinafter simply referred to as a water-cooled exhaust manifold) 30.
  • FIG. It is a figure which shows the 1st cooling water circulation path
  • FIG. It is a figure which shows the 2nd cooling water circulation path. It is a figure which shows the 3rd cooling water circulation path
  • FIG. It is a figure which shows the 4th cooling water circulation path. It is a figure which shows the 5th cooling water circulation path. It is a figure which shows the 6th cooling water circulation path 86.
  • FIG. It is a figure which shows typically the specific structure of ECU1. It is a figure which shows a mode that the cooling water temperature THW rises with the rotation speed NE and the change of the vehicle speed SPD.
  • FIG. 4 is a diagram showing the flow rate of cooling water W flowing through the water-cooled exhaust manifold 30 according to the open / close state of the thermostat 60. It is a figure which shows operation
  • the flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 during warming is indicated by a solid line for the cooling device 100, and a broken line for the cooling device 100Y that is substantially the same as the cooling device 100Y except that the orifice 70 is not provided. It is a figure shown by. It is a figure which shows the mode of the change of the inlet pressure P1 and the outlet pressure P2 of the water-cooled exhaust manifold 30 at the time of a high temperature test with the change of vehicle speed SPD, water temperature THW, and rotation speed NE.
  • the cooling device 100 will be described with reference to FIGS.
  • the cooling device 100 includes an ECU (Electronic Control Unit) 1, a water pump 10, an engine 20, a water-cooled exhaust manifold 30, a heater core 40, a radiator 50, a thermostat 60, and an orifice 70.
  • the water pump 10 is assembled to the engine 20.
  • the water pump 10 is a mechanical pump that is driven by the output of the engine 20 and pumps the cooling water W that is a refrigerant.
  • the engine 20 has an engine body 21.
  • the engine main body 21 includes a cylinder head and a cylinder block (not shown).
  • a water jacket 22, a bypass passage 23, and a communication passage 24 are formed in the engine body 21.
  • the cooling water W flows through the water jacket 22, and the cooling water W flowing through the water pump 22 cools the engine body 21.
  • the bypass passage 23 circulates the cooling water W from the water jacket 22 to the thermostat 60.
  • the bypass passage 23 specifically communicates the outlet side portion of the water jacket 22 with the outside.
  • the communication passage 24 communicates the inlet side portion of the bypass passage 23 and the outside.
  • the engine main body 21 is provided with a water temperature sensor 91 that detects a cooling water temperature THW that is the temperature of the cooling water W, and an engine speed sensor 92 that is used to detect the speed NE of the engine 20.
  • the water temperature sensor 91 is provided so as to detect the cooling water temperature THW at the outlet side of the water jacket 22.
  • the water-cooled exhaust manifold 30 is assembled to the engine body 21.
  • the water-cooled exhaust manifold 30 joins the exhaust discharged from each cylinder of the engine 20.
  • the water-cooled exhaust manifold 30 includes an outer wall portion 302 that entirely encloses a plurality of exhaust pipes 301.
  • the outer wall portion 302 forms a cooling water flow path between the plurality of exhaust pipes 301.
  • the cooling water W is supplied from the cooling water introduction port 303 to the cooling water passage, and the cooling water W is discharged from the cooling water passage through the cooling water discharge port 304.
  • the water-cooled exhaust manifold 30 is an exhaust system cooling means.
  • the heater core 40 exchanges heat between the cooling water W and air.
  • the heater core 40 is used in an air conditioner (not shown).
  • the air conditioner functions as a heating device by blowing air heated by the heater core 40 into the vehicle interior of the vehicle.
  • the radiator 50 promotes heat radiation from the cooling water W that is circulated by running wind or air blown by an electric fan (not shown), and cools the cooling water W.
  • the radiator 50 is a cooler.
  • the thermostat 60 is operated to control the flow of the cooling water W by closing when it is cold and opening when it is warm. Further, the thermostat 60 determines whether or not the cooling water W is allowed to flow through the radiator 50 together with the ECU 1 based on a predetermined determination value, and controls the flow of the cooling water W.
  • This predetermined determination value is a determination value related to a cooling loss Qw described later.
  • the thermostat 60 specifically allows the circulation of the cooling water W through the radiator 50 when the cooling loss Qw is equal to or greater than a predetermined determination value under the control of the ECU 1. To control.
  • the thermostat 60 is more specifically controlled under the control of the ECU 1 so that the valve 50 is forcibly opened when the cooling loss Qw is equal to or greater than a predetermined determination value.
  • the orifice 70 adjusts the flow rate of the cooling water W.
  • the orifice 70 is a fixed flow rate type, and reduces the flow rate of the circulating cooling water W by a predetermined amount.
  • the cooling device 100 has first to sixth cooling water circulation paths 81 to 86 corresponding to a plurality of refrigerant circulation paths.
  • the first, second, and third cooling water circulation paths 81, 82, and 83 are circulation paths that permit the circulation of the cooling water W when the thermostat 60 is closed.
  • the fourth, fifth, and sixth cooling water circulation paths 84, 85, 86 are circulation paths that permit the circulation of the cooling water W when the thermostat 60 is opened.
  • the water pump 10 pumps the common cooling water W to these cooling water circulation paths 81 to 86.
  • the water pump 10 is a refrigerant pressure feeding device.
  • any of the water pump 10, the engine 20, the water-cooled exhaust manifold 30, the heater core 40, the radiator 50, the thermostat 60, and the orifice 70 is appropriately incorporated in the plurality of cooling water circulation paths 81 to 86.
  • these components are connected to each other directly or via piping.
  • the plurality of cooling water circulation paths 81 to 86 will be specifically described with reference to FIGS.
  • the first cooling water circulation path 81 is a circulation path in which the water pump 10, the engine body 21, the heater core 40, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
  • the second cooling water circulation path 82 is a circulation path in which the water pump 10, the engine main body 21, and the thermostat 60 are incorporated, and the cooling water W circulates in this order. Further, when the engine body 21 is circulated, the cooling water W specifically circulates through the water jacket 22 and the bypass passage 23 in this order.
  • the third cooling water circulation path 83 is a circulation path in which the water pump 10, the water cooling exhaust manifold 30, the engine main body 21, and the thermostat 60 are incorporated, and the cooling water W circulates in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the communication path 24 and the bypass path 23 in this order.
  • the first to third cooling water flow paths 81 to 83 are circulation paths that do not include the radiator 50.
  • the fourth cooling water circulation path 84 is a circulation path in which the water pump 10, the engine body 21, the heater core 40, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
  • the fifth cooling water circulation path 85 is a circulation path in which the water pump 10, the engine body 21, the radiator 50, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
  • the sixth cooling water circulation path 86 includes a water pump 10, a water cooling exhaust manifold 30, an orifice 70, a radiator 50, and a thermostat 60, and a circulation path through which the cooling water W flows in this order. It has become.
  • the cooling water W does not circulate in the water cooling exhaust manifold 30 when the thermostat 60 is opened and closed (in other words, the radiator 50 is not circulated). The cooling water W is circulated in both cases.
  • the orifice 70 is a portion downstream of the water-cooled exhaust manifold 30 and a portion before the radiator 50 in the sixth coolant circulation path 86 in which the water-cooled exhaust manifold 30 is incorporated. Is provided. More specifically, the orifice 70 is provided at a portion downstream of the water-cooled exhaust manifold 30 and at a portion before the junction with the fifth cooling water circulation path 85 which is another cooling water circulation path.
  • the orifice 70 specifically reduces the flow rate of the circulating cooling water W by a predetermined amount, whereby the pressure of the cooling water W flowing through the water-cooled exhaust manifold 30 is changed to the system pressure from the plurality of cooling water circulation paths 81 to 86.
  • the flow rate of the cooling water W discharged from the water-cooled exhaust manifold 30 is adjusted so as to be higher.
  • This system pressure is specifically the radiator cap pressure of the radiator 50.
  • the orifice 70 is a flow rate adjusting means.
  • the ECU 1 includes a microcomputer composed of a CPU 2, a ROM 3, a RAM 4, and the like, and input / output circuits 5 and 6.
  • the CPU 2, ROM 3, RAM 4, and input / output circuits 5 and 6 are connected to each other via a bus 7.
  • the ECU 1 is mainly configured to control the engine 20.
  • the ECU 1 is configured to control, for example, a fuel injection valve (not shown).
  • the ECU 1 is configured to control the thermostat 60. These objects to be controlled are electrically connected to the ECU 1.
  • the ECU 1 is electrically connected to various sensors such as a water temperature sensor 91, an engine speed sensor 92, and an air flow meter 93 (more specifically, an intake air amount sensor 93a and an intake air temperature sensor 93b).
  • the cooling water temperature THW is based on the output of the water temperature sensor 91
  • the rotational speed NE is based on the output of the engine rotational speed sensor 92
  • the intake air amount GA and the intake air temperature THA of the engine 20 are based on the output of the air flow meter 93.
  • the ROM 3 is configured to store programs, map data, and the like in which various processes executed by the CPU 2 are described. When the CPU 2 executes processing while using the temporary storage area of the RAM 4 as necessary based on the program stored in the ROM 3, the ECU 1 has various control means, determination means, detection means, calculation means, and the like. To be realized.
  • the ECU 1 is based on detection means for detecting a plurality of estimation factors including the intake air amount GA of the engine 20 and the amount of heat received by the refrigerant from the exhaust gas in the water-cooled exhaust manifold 30 based on the plurality of estimation factors detected by the detection means.
  • An estimation means for estimating a certain cooling loss Qw is functionally realized.
  • the cooling loss Qw can be used to detect whether or not the operating state of the engine 20 is in a high load operating state.
  • the plurality of estimation factors described above include the intake air amount GA because the intake air amount GA has a high linear correlation with the cooling loss Qw.
  • the plurality of estimation factors described above preferably further include at least one of the coolant temperature THW, the intake air temperature THA, or the rotational speed NE, which is the refrigerant temperature. This is because these four factors have a great influence on the cooling loss Qw.
  • the cooling loss Qw is also different.
  • the coolant temperature THW and the intake air temperature THA can represent the operating environment conditions of the engine 20.
  • the rotational speed NE can represent the magnitude of the friction of the engine 20. For this reason, in estimating the cooling loss Qw with higher accuracy, it is preferable to further include at least one of the cooling water temperature THW, the intake air temperature THA, and the rotational speed NE.
  • the plurality of estimation factors described above are most preferably estimated based on the following formula (1) in which the cooling loss Qw includes all these four factors.
  • Qw (THW + THA) ⁇ NE ⁇ GA (1) That is, the cooling loss Qw is most preferably estimated based on a value calculated by the product of the sum of the coolant temperature THW and the intake air temperature THA, the rotational speed NE, and the intake air amount GA. This is because, when the cooling loss Qw is estimated based on the equation (1) by experiment, the highest linear correlation is recognized with the actual cooling loss Qw. Therefore, the ECU 1 specifically estimates the cooling loss Qw based on the equation (1).
  • the ECU 1 functionally realizes a control means for determining whether or not the cooling water W is allowed to flow through the radiator 50 based on a predetermined determination value related to the cooling loss Qw.
  • the control means functions to control the thermostat 60 so as to permit the flow of the cooling water W through the radiator 50 when the estimated cooling loss Qw, which is the received heat amount, is equal to or greater than a predetermined determination value. Is realized.
  • the control means is functionally realized so as to perform control to forcibly open the thermostat 60 when the cooling loss Qw is equal to or greater than a predetermined determination value.
  • control means is functionally realized so as to determine whether or not the cooling water W is circulated through the fifth and sixth cooling water circulation paths 85 and 86 in which the radiator 50 is incorporated.
  • the thermostat 60 and the ECU 1 are the flow control device.
  • the thermostat 60 is closed when it is cold (for example, when the coolant temperature THW is 75 ° C. or lower). For this reason, in the cooling device 100, the cooling water W flows through the first to third cooling water circulation paths 81, 82, and 83 when cold. Each of the first to third cooling water circulation paths 81, 82, and 83 is a circulation path that does not include the radiator 50. Therefore, in the cooling device 100, the cooling water W flowing through the engine main body 21 during the cold state is basically not cooled by the radiator 50. For this reason, in the cooling device 100, the warm-up property of the engine 20 is thereby improved.
  • the cooling water W flowing through the third cooling water circulation path 83 flows through the communication passage 24 and the bypass passage 23 formed in the engine body 21 after flowing through the water-cooled exhaust manifold 30. . Therefore, in the cooling device 100, the heat received by the cooling water W from the exhaust gas by the water-cooled exhaust manifold 30 at the time of cold can be used for warming up the engine 20, thereby further improving the warm-up performance of the engine 20. . As a result, the cooling device 100 can improve the warm-up performance of the engine 20 as compared with the cooling device 100X as shown in FIG.
  • the thermostat 60 opens when it is warm. For this reason, in the cooling device 100, the cooling water W flows through the fourth to sixth cooling water circulation paths 84, 85, 86 when it is warm.
  • Each of the fifth and sixth cooling water circulation paths 85 and 86 is a circulation path including the radiator 50. Therefore, in the cooling device 100, the cooling water W cooled by the radiator 50 during warming is pumped by the water pump 10. For this reason, in the cooling device 100, the water-cooled exhaust manifold 30 included in the sixth cooling water circulation path 86 can thereby be cooled, thereby preventing or suppressing the occurrence of overheating or boiling of the cooling water W in the water-cooled exhaust manifold 30. . That is, according to the cooling device 100, it is possible to improve both the warm-up performance of the engine 20 and to prevent or suppress the occurrence of overheating or boiling of the cooling water W in the water-cooled exhaust manifold 30.
  • the water-cooled exhaust manifold 30 has a smaller heat capacity than the engine body 21. Therefore, in the cooling device 100, the degree of influence received by the transfer of heat is larger in the water-cooled exhaust manifold 30 than in the engine body 21, including the circulating cooling water W.
  • the flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 varies according to the open / close state of the thermostat 60 as shown in FIG. 11. Specifically, the flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 is smaller in the cold state when the thermostat 60 is closed than in the warm state when the thermostat 60 is opened.
  • the cooling device 100 for example, when a high load operation such as full-open acceleration is performed on the engine 20 immediately after the engine cold start, the heat capacity is small and the flow rate of the circulating cooling water W is small. First, the amount of heat received by the water-cooled exhaust manifold 30 increases rapidly, so that the cooling water W may overheat or boil in the water-cooled exhaust manifold 30 before the engine body 21.
  • the ECU 1 performs an operation based on the flowchart shown in FIG. This flowchart is repeatedly executed at very short time intervals while the engine 20 is operating.
  • the ECU 1 determines whether or not the thermostat 60 is closed (step S1). If the determination is negative, no particular processing is required, and thus this flowchart is temporarily terminated. On the other hand, if an affirmative determination is made in step S1, ECU 1 determines whether or not cooling loss Qw is equal to or greater than a predetermined determination value (step S2).
  • step S3 the control which forcibly opens the thermostat 60 is performed. And even if it is a case where the amount of heat receiving in the water-cooled exhaust manifold 30 increases rapidly at the time of cold, the overheating of the cooling water W in the water-cooled exhaust manifold 30 can be prevented or suppressed.
  • the cooling device 100 is compared with a case where a sensor that directly detects the temperature of the cooling water W flowing through the water-cooled exhaust manifold 30 and the temperature of the exhaust is newly provided. This is advantageous in terms of cost. Further, when the use environment state of the water-cooled exhaust manifold 30 is grasped by using a sensor that directly detects as described above, the thermostat 60 is forced after the fact that the amount of heat received is actually detected. Will be opened. For this reason, in this case, there is a possibility that the responsiveness may be insufficient particularly for a rapid increase in the amount of heat received. On the other hand, the cooling device 100 is superior in terms of responsiveness as compared with such a case.
  • the cooling device 100 further includes the orifice 70 as described above in the portion of the sixth cooling water circulation path 86 downstream of the water-cooled exhaust manifold 30 and the fifth cooling. It is provided in a portion in front of the junction with the water circulation path 85. Therefore, in the cooling device 100, as shown in FIG. 14, the flow rate of the cooling water W decreases in the water-cooled exhaust manifold 30 located on the upstream side of the orifice 70, and the pressure of the cooling water W increases by an amount corresponding to the reduced flow rate. .
  • the pressure of the cooling water W rises as the cooling water temperature THW rises.
  • the outlet pressure P2 of the cooling water W at the cooling water outlet 304 of the water-cooled exhaust manifold 30 is more cooled. It becomes about 50 kPa higher than the inlet pressure P1 of the cooling water W at the water inlet 303. For this reason, in the cooling device 100, the boiling point of the cooling water W in the water-cooled exhaust manifold 30 can be increased, and thus the boiling of the cooling water W in the water-cooled exhaust manifold 30 can be prevented or suppressed when warm.
  • the cooling device 100 can prevent or suppress the cooling water W from being overheated or boiled by the water-cooled exhaust manifold 30 and resulting in damage to the engine 20.
  • the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
  • the case where the water-cooled exhaust manifold 30 serving as the exhaust system cooling means has a specific structure as shown in FIG. 2 has been described.
  • the present invention is not necessarily limited to this, and the exhaust system cooling means may include other appropriate structures capable of cooling all or part of the exhaust manifold with the refrigerant.
  • the cooling exhaust manifold 30 is an exhaust system cooling means. This is because the exhaust gas flowing into the catalyst can be cooled while the catalyst for purifying the exhaust gas is disposed close to the engine 20.
  • the present invention is not necessarily limited to this, and the exhaust system cooling means is another appropriate configuration capable of cooling the exhaust that has been discharged from the engine and before flowing into the catalyst with a refrigerant, for example. May be.
  • thermostat 60 and the ECU 1 are distribution control devices.
  • a thermostat 60 that can switch whether or not to distribute the cooling water W to the radiator 50 according to the open / close state. This is because it is advantageous from the above.
  • the present invention is not necessarily limited to this.
  • an additional pipe for communicating the radiator 50 and the water pump 10 is provided, and switching means that can permit or block the flow of the cooling water W through the pipe is, for example, electromagnetic.
  • a valve may be further provided.
  • the thermostat 60 is bypassed by opening the said electromagnetic valve in a valve closing state instead of opening the thermostat 60 forcibly.
  • the cooling water W can be circulated through the radiator 50.
  • the solenoid valve and the ECU 1 serve as a flow control device.
  • the plurality of cooling water circulation paths 81 to 86 are a plurality of refrigerant circulation paths.
  • the present invention is not necessarily limited to this, and the plurality of refrigerant circulation paths may be appropriately configured with other appropriate quantities.
  • whether or not the cooling water W is circulated through the fifth and sixth cooling water circulation paths 85 and 86 in which the radiator 50 is incorporated is determined based on a predetermined determination value.
  • the case of controlling distribution has been described. This is because the thermostat 60 and the ECU 1 are used as the flow control device, and in this way, a larger flow rate can be cooled. As a result, the amount of heat received by the water-cooled exhaust manifold 30 increases rapidly. This is because the effect of suppressing overheating or boiling can be enhanced.
  • the present invention is not necessarily limited to this.
  • the cooling water W is circulated only through the sixth cooling water circulation path 86 including the water-cooled exhaust manifold 30 among the fifth and sixth cooling water circulation pipes 85 and 86.
  • the circulation of the cooling water W may be controlled, and further, for example, the circulation of the cooling water W may be controlled so that the cooling water W is circulated through the fifth cooling water circulation path 85 thereafter.
  • the fifth cooling water circulation path 85 is further provided with a junction with the sixth cooling water circulation path 86 and a bypass pipe that bypasses the radiator 50, and the distribution destination of the cooling water W is bypassed.
  • an electromagnetic valve can be further provided as switching means capable of switching between the piping or the radiator 50.
  • the solenoid valve is controlled by the ECU 1 together with the thermostat 60, and the solenoid valve is controlled so that the distribution destination when the thermostat 60 is forcibly opened is a bypass pipe.
  • circulation of the cooling water W can be controlled so that the cooling water W is circulated only in the sixth cooling water circulation path 86 among the fifth and sixth cooling water circulation paths 85 and 86.
  • the cooling water W can be circulated through the fifth cooling water circulation path 85 by controlling the electromagnetic valve so that the distribution destination is the radiator 50.
  • a plurality of determination values including a first determination value and a second determination value having a value larger than the first determination value can be used as the predetermined determination value.
  • the thermostat 60, the electromagnetic valve, and the ECU 1 serve as a flow control device.
  • the case where the orifice 70 is incorporated in the sixth cooling water circulation path 86 has been described. This is because the cooling water W can be prevented or suppressed from boiling when warm.
  • the present invention is not necessarily limited to this.
  • the orifice 70 can be provided in a portion of the third cooling water circulation path 83 on the downstream side of the water-cooled exhaust manifold 30 and on the front side of the engine body 21. In this case, it is possible to prevent or suppress the boiling of the cooling water W as a result of a rapid increase in the amount of heat received by the water-cooled exhaust manifold 30 during cold weather.
  • the orifice 70 is a flow rate adjusting means has been described.
  • the present invention is not necessarily limited to this, and the flow rate adjusting means may be, for example, an electronic flow rate adjusting valve.
  • the ECU 1 appropriately controls the flow rate adjusting valve to increase the pressure of the cooling water W in the water-cooled exhaust manifold 30 according to a necessary situation, or the pressure of the cooling water W in the cooling exhaust manifold 30 according to a necessary degree. It is also possible to adjust the size. In controlling the flow rate control valve in this way, the flow rate control valve can be controlled based on, for example, the size of the cooling loss Qw or according to the size of the cooling loss Qw.
  • the ECU 1 that mainly controls the engine 20, but other electronic controls, for example, may be used. It may be realized by hardware such as a device or a dedicated electronic circuit, or a combination thereof.
  • the distribution control device according to the present invention can be realized as a module product including a combination of, for example, a thermostat 60 and a dedicated electronic circuit having a function as a control means.

Abstract

An engine cooling device (100) is provided with a water pump (10) for pumping cooling water (W) used in common in cooling water circulation passages (81-86), an engine (20) equipped with an engine body (21), a water-cooled exhaust manifold (30) having a smaller heat capacity than the engine body (21) and cooling an exhaust system of the engine (20) by the flowing cooling water (W), a radiator (50) for cooling the flowing cooling water (W), and an ECU (1) and a thermostat (60) which control flow of the cooling water (W) by determining, based on a predetermined judgment value, whether or not the cooling water (W) is to be caused to flow to the fifth and sixth cooling water circulation passages (85, 86), in which a radiator (50) is mounted, among the cooling water circulation passages (81-86). The predetermined judgment value is a value relating to the amount of heat which the cooling water (W) receives in the water-cooled exhaust manifold (30) from exhaust gas.

Description

エンジンの冷却装置Engine cooling system
 本発明はエンジンの冷却装置に関し、特にエンジン本体を流通する冷媒と共通の冷媒によりエンジンの排気系を冷却する排気系冷却手段を備えたエンジンの冷却装置に関する。 The present invention relates to an engine cooling device, and more particularly to an engine cooling device provided with an exhaust system cooling means for cooling an engine exhaust system with a refrigerant common to the refrigerant circulating in the engine body.
 従来、エンジンの排気系(具体的には例えば排気マニホルド)を水などの冷媒により冷却する技術が知られている。かかる技術に関し、本発明と関連性があると考えられる技術が例えば特許文献1で開示されている。特許文献1では排気マニホルドの周囲に形成したウォータジャケットと、該ウォータジャケットに水を噴霧状に噴射する水噴射手段とを備えた排気マニホルド装置が開示されている。このほか本発明と関連性があると考えられる技術として、例えば特許文献2では複数の冷却部に対する冷却媒体の供給割合をそれぞれ変更し得る流量制御弁を備えた内燃機関の冷却制御装置が開示されている。具体的には特許文献2では、排気ポート等の複数の冷却部に冷却水を導く冷却水通路それぞれに流量制御弁を設けた内燃機関の冷却制御装置が開示されている。 Conventionally, a technique for cooling an engine exhaust system (specifically, for example, an exhaust manifold) with a coolant such as water is known. With regard to such technology, for example, Patent Literature 1 discloses a technology considered to be related to the present invention. Patent Document 1 discloses an exhaust manifold device including a water jacket formed around an exhaust manifold and water injection means for injecting water into the water jacket in a spray form. In addition, as a technique considered to be related to the present invention, for example, Patent Document 2 discloses a cooling control device for an internal combustion engine provided with a flow rate control valve that can change the supply ratio of the cooling medium to a plurality of cooling units. ing. Specifically, Patent Document 2 discloses a cooling control device for an internal combustion engine in which a flow rate control valve is provided in each cooling water passage that guides cooling water to a plurality of cooling units such as exhaust ports.
特開昭63-208607号公報JP-A-63-208607 特開2007-132313号公報JP 2007-132313 A
 ところで、エンジンにおいては環境問題に対する取組みとして排気エミッションを低減することが求められている。この点、主に軽中負荷運転時の排気エミッションを低減するにあたっては、三元触媒をエンジンに近接した配置とし、早期に三元触媒を暖機させる手法がある。 By the way, in an engine, it is required to reduce exhaust emission as an approach to environmental problems. In this regard, in order to reduce exhaust emissions mainly during light and medium load operation, there is a method in which the three-way catalyst is arranged close to the engine and the three-way catalyst is warmed up early.
 一方、上記手法を用いた状態で高負荷運転時の排気エミッション低減を行うには、理論空燃比または理論空燃比近傍でエンジンを運転することが望まれる。しかしながら、この場合にはエンジンに近接して触媒を配置したことに起因して、触媒が過熱し、結果劣化の過大な進行や、劣化の過大な進行による排気エミッションの悪化が懸念される。よって、高負荷運転域の排気エミッション低減を考慮すると、三元触媒をエンジンから遠ざけて配置する必要がある。しかし、これでは早期に触媒を暖機させる軽中負荷運転域での排気エミッション低減が不十分になる虞があるため、触媒の浄化を促進させる貴金属の量を多くする必要がある。しかしながら、これら貴金属は希少なものであるため、この場合はコストの増大が懸念される。 On the other hand, in order to reduce exhaust emissions during high load operation using the above method, it is desirable to operate the engine at or near the stoichiometric air / fuel ratio. However, in this case, the catalyst is overheated due to the arrangement of the catalyst in the vicinity of the engine, and as a result, there is a concern about excessive progress of deterioration and deterioration of exhaust emission due to excessive progress of deterioration. Therefore, considering the reduction of exhaust emission in the high load operation region, it is necessary to dispose the three-way catalyst away from the engine. However, this may result in insufficient exhaust emission reduction in a light and medium load operation region where the catalyst is warmed up early, and thus it is necessary to increase the amount of noble metal that promotes purification of the catalyst. However, since these noble metals are rare, in this case, there is a concern about an increase in cost.
 これに対してかかる事情のもと、早期に触媒を暖機させる軽中負荷運転域での排気エミッションと高負荷運転時の排気エミッションの更なる低減を好適に両立させることを目的として、排気系を冷媒で冷却し、排気温度を低下させることが考えられている。このようにすれば、触媒の過熱を抑制することも可能になる。このためこのようにすれば、触媒をエンジンに近接して配置することができ、以って早期に触媒を暖機させる軽中負荷運転域での排気エミッションと高負荷運転時の排気エミッションの更なる低減を好適に両立させることも可能になる。 Under these circumstances, the exhaust system is used for the purpose of suitably balancing exhaust emissions in the light and medium load operating range where the catalyst is warmed up early and further reducing exhaust emissions during high load operation. It is considered that the exhaust gas is cooled with a refrigerant to lower the exhaust temperature. In this way, it is possible to suppress overheating of the catalyst. Therefore, in this way, the catalyst can be arranged close to the engine, so that the exhaust emission in the light and medium load operation region where the catalyst is warmed up early and the exhaust emission during the high load operation are updated. It is also possible to achieve both reductions that are suitable.
 一方、冷媒により排気系を冷却する場合には、エンジン本体を流通する冷媒(例えばエンジンの冷却水であるロングライフクーラント)と共通の冷媒を用いることがコスト面などから、合理的であると考えられる。この点、エンジン本体を流通する冷媒に対しては、一般に冷却器(例えばラジエータ)による冷却が行われる。そして、冷媒を冷却器に流通させるか否かは、一般にエンジン本体を含む冷媒循環経路を流通する冷媒の温度に基づき決定されている。 On the other hand, when cooling the exhaust system with a refrigerant, it is reasonable to use a common refrigerant with the refrigerant circulating in the engine body (for example, long-life coolant that is engine cooling water) from the viewpoint of cost. It is done. In this regard, the refrigerant flowing through the engine body is generally cooled by a cooler (for example, a radiator). Whether or not the refrigerant flows through the cooler is generally determined based on the temperature of the refrigerant flowing through the refrigerant circulation path including the engine body.
 ところが、冷媒循環経路を流通する冷媒の温度には部分的なばらつきが存在する。このため、冷媒を冷却器に流通させるか否かは、さらに具体的には一般にエンジン本体の出口側の部分や、エンジン本体を流通した直後の流通経路における冷媒の温度がどの程度であるかによって決定されている。そしてこのようにして決定すれば、冷媒のオーバーヒートなどによりエンジンにダメージが及ぶことを防止或いは抑制できる。 However, there is a partial variation in the temperature of the refrigerant flowing through the refrigerant circulation path. Therefore, more specifically, whether or not the refrigerant is circulated through the cooler is more generally determined by the temperature of the refrigerant in the part on the outlet side of the engine body or in the distribution path immediately after flowing through the engine body. It has been decided. And if it determines in this way, it can prevent or suppress that an engine is damaged by the overheating of a refrigerant | coolant.
 しかしながら、エンジン本体を流通する冷媒と共通の冷媒により排気系を冷却する排気系冷却手段を備えた場合、通常は排気系冷却手段のほうがエンジン本体よりもサイズが小さいため、排気系冷却手段のほうがエンジン本体よりも熱容量が小さくなる。このため、かかる排気系冷却手段を備えた場合、熱の授受によって受ける影響の度合いは、流通する冷媒を含め、排気系冷却手段のほうがエンジン本体よりも大きくなる。したがってこの場合には、上述したように冷却器に冷媒を流通させるか否かを決定すると、冷媒を実際に冷却器に流通させる前に熱容量の小さい排気系冷却手段において冷媒が適温を超え、オーバーヒート或いは沸騰する事態が生じる可能性があり、この結果、エンジンにダメージが及ぶ虞がある点で問題があった。 However, when an exhaust system cooling means for cooling the exhaust system with a refrigerant common to the refrigerant flowing through the engine body is provided, the exhaust system cooling means is usually smaller in size than the engine body, so the exhaust system cooling means is more suitable. The heat capacity is smaller than the engine body. For this reason, when such an exhaust system cooling means is provided, the degree of the influence received by the transfer of heat is larger in the exhaust system cooling means than in the engine body, including the circulating refrigerant. Therefore, in this case, when it is determined whether or not to circulate the refrigerant through the cooler as described above, the refrigerant exceeds the appropriate temperature in the exhaust system cooling means having a small heat capacity before the refrigerant is actually circulated through the cooler. Alternatively, there is a possibility that a boiling situation may occur, and as a result, there is a problem in that the engine may be damaged.
 そこで本発明は上記課題に鑑みてなされたものであり、エンジン本体を流通する冷媒と共通の冷媒によりエンジンの排気系を冷却する排気系冷却手段を備える場合に、排気系冷却手段で冷媒がオーバーヒート或いは沸騰し、エンジンにダメージが及ぶことを防止或いは抑制可能なエンジンの冷却装置を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and when the exhaust system cooling means for cooling the exhaust system of the engine with the refrigerant common to the refrigerant circulating in the engine body is provided, the refrigerant is overheated by the exhaust system cooling means. Alternatively, an object of the present invention is to provide an engine cooling device that can prevent or suppress boiling and damage to the engine.
 上記課題を解決するための本発明のエンジンの冷却装置は、複数の冷媒循環経路に共通の冷媒を圧送する冷媒圧送装置と、前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路にエンジン本体が組み込まれたエンジンと、前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路に組み込まれ、前記エンジン本体よりも熱容量が小さく、且つ流通する冷媒で前記エンジンの排気系を冷却する排気系冷却手段と、前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路に組み込まれ、流通する冷媒を冷却する冷却器と、前記複数の冷媒循環経路のうち、前記冷却器が組み込まれた少なくとも1つの冷媒循環経路に冷媒を流通させるか否かを、所定の判定値に基づき決定し、冷媒の流通を制御する流通制御装置と、を備え、前記所定の判定値を、前記排気系冷却手段で冷媒が排気から受ける受熱量に係る判定値としたエンジンの冷却装置である。 In order to solve the above problems, an engine cooling device according to the present invention includes a refrigerant pressure feeding device that pumps a common refrigerant to a plurality of refrigerant circulation paths, and an engine in at least one refrigerant circulation path among the plurality of refrigerant circulation paths. An engine incorporating a main body, and an exhaust gas that is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths, has a smaller heat capacity than the engine main body, and cools the engine exhaust system with a circulating refrigerant. A system cooling means, a cooler that is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths and cools the circulating refrigerant, and the cooler is incorporated among the plurality of refrigerant circulation paths. A flow control device that determines whether or not to circulate the refrigerant through at least one refrigerant circulation path based on a predetermined determination value and controls the flow of the refrigerant; For example, the predetermined determination value, the refrigerant in the exhaust system cooling means is a cooling device for an engine was determined value according to the heat amount received from the exhaust.
 また本発明は前記複数の冷媒循環経路のうち、前記排気系冷却手段が組み込まれた少なくとも1つの冷媒循環経路に組み込まれるとともに、前記排気系冷却手段を流通する冷媒の圧力が、前記複数の冷媒循環経路の系統圧よりも高くなるように、前記排気系冷却手段から排出された冷媒の流量を調整する流量調整手段をさらに備えた構成であることが好ましい。 Further, the present invention is incorporated in at least one refrigerant circulation path in which the exhaust system cooling means is incorporated among the plurality of refrigerant circulation paths, and the pressure of the refrigerant flowing through the exhaust system cooling means is the plurality of refrigerants. It is preferable to further include a flow rate adjusting means for adjusting the flow rate of the refrigerant discharged from the exhaust system cooling means so as to be higher than the system pressure of the circulation path.
 本発明によればエンジン本体を流通する冷媒と共通の冷媒によりエンジンの排気系を冷却する排気系冷却手段を備える場合に、排気系冷却手段で冷媒がオーバーヒート或いは沸騰し、エンジンにダメージが及ぶことを防止或いは抑制できる。 According to the present invention, when the exhaust system cooling means for cooling the exhaust system of the engine with the refrigerant common to the refrigerant flowing through the engine body is provided, the refrigerant is overheated or boiled by the exhaust system cooling means, and the engine is damaged. Can be prevented or suppressed.
実施例に係るエンジンの冷却装置(以下、単に冷却装置と称す)100を模式的に示す図である。図1ではサーモスタット60の閉弁時である冷間時の冷却水循環経路を構成する配管等を破線で、サーモスタット60の開弁時である温間時の冷却水循環経路を構成する配管等を実線でそれぞれ示すとともに、これらに対して冷却水Wの流通方向を矢印で示している。なお、このことは図3から図8までについても同様である。1 is a diagram schematically illustrating an engine cooling device (hereinafter simply referred to as a cooling device) 100 according to an embodiment. In FIG. 1, piping and the like constituting the cooling water circulation path during cold when the thermostat 60 is closed are indicated by broken lines, and piping and the like constituting the cooling water circulation path during warming when the thermostat 60 is opened are indicated by solid lines. While showing each, the flow direction of the cooling water W is shown with the arrow with respect to these. This also applies to FIGS. 3 to 8. 水冷式排気マニホルド(以下、単に水冷エキマニと称す)30を模式的に示す図である。1 is a diagram schematically showing a water-cooled exhaust manifold (hereinafter simply referred to as a water-cooled exhaust manifold) 30. FIG. 第1の冷却水循環経路81を示す図である。It is a figure which shows the 1st cooling water circulation path | route 81. FIG. 第2の冷却水循環経路82を示す図である。It is a figure which shows the 2nd cooling water circulation path. 第3の冷却水循環経路83を示す図である。It is a figure which shows the 3rd cooling water circulation path | route 83. FIG. 第4の冷却水循環経路84を示す図である。It is a figure which shows the 4th cooling water circulation path. 第5の冷却水循環経路85を示す図である。It is a figure which shows the 5th cooling water circulation path. 第6の冷却水循環経路86を示す図である。It is a figure which shows the 6th cooling water circulation path 86. FIG. ECU1の具体的な構成を模式的に示す図である。It is a figure which shows typically the specific structure of ECU1. 冷却水温THWが上昇する様子を回転数NEおよび車速SPDの変化とともに示す図である。なお、図10では冷却水温THWにつき、冷却装置100の場合を実線で示すとともに、水冷エキマニ30を有しない点以外、冷却装置100と実質的に同一である冷却装置100Xの場合を破線で示している。It is a figure which shows a mode that the cooling water temperature THW rises with the rotation speed NE and the change of the vehicle speed SPD. In addition, in FIG. 10, the case of the cooling device 100 is indicated by a solid line with respect to the cooling water temperature THW, and the case of the cooling device 100X that is substantially the same as the cooling device 100 is indicated by a broken line except that the water cooling exhaust manifold 30 is not provided. Yes. 水冷エキマニ30を流通する冷却水Wの流量をサーモスタット60の開閉状態に応じて示す図である。FIG. 4 is a diagram showing the flow rate of cooling water W flowing through the water-cooled exhaust manifold 30 according to the open / close state of the thermostat 60. ECU1の動作をフローチャートで示す図である。It is a figure which shows operation | movement of ECU1 with a flowchart. サーモスタット60を強制的に開弁する制御を模式的に説明する図である。It is a figure which illustrates typically the control which forcibly opens the thermostat. 温間時に水冷エキマニ30を流通する冷却水Wの流量を冷却装置100の場合について実線で示すとともに、オリフィス70がない点以外、冷却装置100Yと実質的に同一である冷却装置100Yの場合について破線で示す図である。The flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 during warming is indicated by a solid line for the cooling device 100, and a broken line for the cooling device 100Y that is substantially the same as the cooling device 100Y except that the orifice 70 is not provided. It is a figure shown by. 高温試験時の水冷エキマニ30の入口圧力P1および出口圧力P2の変化の様子を車速SPD、水温THWおよび回転数NEの変化とともに示す図である。It is a figure which shows the mode of the change of the inlet pressure P1 and the outlet pressure P2 of the water-cooled exhaust manifold 30 at the time of a high temperature test with the change of vehicle speed SPD, water temperature THW, and rotation speed NE.
 以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
 冷却装置100について図1から図9を用いて説明する。冷却装置100はECU(Electronic Control Unit:電子制御装置)1と、ウォータポンプ10と、エンジン20と、水冷エキマニ30と、ヒータコア40と、ラジエータ50と、サーモスタット60と、オリフィス70とを備えている。ウォータポンプ10はエンジン20に組み付けられている。ウォータポンプ10はエンジン20の出力で駆動する機械式のポンプであり、冷媒である冷却水Wを圧送する。 The cooling device 100 will be described with reference to FIGS. The cooling device 100 includes an ECU (Electronic Control Unit) 1, a water pump 10, an engine 20, a water-cooled exhaust manifold 30, a heater core 40, a radiator 50, a thermostat 60, and an orifice 70. . The water pump 10 is assembled to the engine 20. The water pump 10 is a mechanical pump that is driven by the output of the engine 20 and pumps the cooling water W that is a refrigerant.
 エンジン20はエンジン本体21を有している。エンジン本体21は、図示しないシリンダヘッドおよびシリンダブロックで構成されている。エンジン本体21には、ウォータジャケット22とバイパス通路23と連通路24とが形成されている。ウォータジャケット22には冷却水Wが流通し、ウォータポンプ22を流通する冷却水Wは、エンジン本体21を冷却する。バイパス通路23はウォータジャケット22からサーモスタット60に冷却水Wを流通させる。この点、バイパス通路23は具体的にはウォータジャケット22のうち、出口側の部分と外部とを連通している。連通路24はバイパス通路23の入口側の部分と外部とを連通している。エンジン本体21には冷却水Wの温度である冷却水温THWを検知する水温センサ91と、エンジン20の回転数NEを検出するために用いられるエンジン回転数センサ92とが設けられている。水温センサ91はウォータジャケット22の出口側の部分で冷却水温THWを検知するように設けられている。 The engine 20 has an engine body 21. The engine main body 21 includes a cylinder head and a cylinder block (not shown). In the engine body 21, a water jacket 22, a bypass passage 23, and a communication passage 24 are formed. The cooling water W flows through the water jacket 22, and the cooling water W flowing through the water pump 22 cools the engine body 21. The bypass passage 23 circulates the cooling water W from the water jacket 22 to the thermostat 60. In this regard, the bypass passage 23 specifically communicates the outlet side portion of the water jacket 22 with the outside. The communication passage 24 communicates the inlet side portion of the bypass passage 23 and the outside. The engine main body 21 is provided with a water temperature sensor 91 that detects a cooling water temperature THW that is the temperature of the cooling water W, and an engine speed sensor 92 that is used to detect the speed NE of the engine 20. The water temperature sensor 91 is provided so as to detect the cooling water temperature THW at the outlet side of the water jacket 22.
 水冷エキマニ30は、エンジン本体21に組み付けられている。水冷エキマニ30はエンジン20の各気筒から排出された排気を合流させる。図2に示すように、水冷エキマニ30は複数の排気管301を全体的に包む外壁部302を備えている。外壁部302は、複数の排気管301と間に冷却水流路を形成している。水冷エキマニ30では、冷却水導入口303から冷却水流路に冷却水Wが供給されるとともに、冷却水流路から冷却水排出口304を介して冷却水Wが排出される。本実施例では水冷エキマニ30が排気系冷却手段となっている。 The water-cooled exhaust manifold 30 is assembled to the engine body 21. The water-cooled exhaust manifold 30 joins the exhaust discharged from each cylinder of the engine 20. As shown in FIG. 2, the water-cooled exhaust manifold 30 includes an outer wall portion 302 that entirely encloses a plurality of exhaust pipes 301. The outer wall portion 302 forms a cooling water flow path between the plurality of exhaust pipes 301. In the water-cooled exhaust manifold 30, the cooling water W is supplied from the cooling water introduction port 303 to the cooling water passage, and the cooling water W is discharged from the cooling water passage through the cooling water discharge port 304. In this embodiment, the water-cooled exhaust manifold 30 is an exhaust system cooling means.
 図1に戻り、ヒータコア40は冷却水Wと空気との間で熱交換を行う。ヒータコア40は図示しない空調装置で用いられている。空調装置はヒータコア40で暖められた空気を車両の車室内に送風することで暖房装置として機能する。ラジエータ50は、走行風或いは図示しない電動ファンの送風によって流通する冷却水Wからの放熱を促進し、冷却水Wを冷却する。本実施例ではラジエータ50が冷却器となっている。 Referring back to FIG. 1, the heater core 40 exchanges heat between the cooling water W and air. The heater core 40 is used in an air conditioner (not shown). The air conditioner functions as a heating device by blowing air heated by the heater core 40 into the vehicle interior of the vehicle. The radiator 50 promotes heat radiation from the cooling water W that is circulated by running wind or air blown by an electric fan (not shown), and cools the cooling water W. In the present embodiment, the radiator 50 is a cooler.
 サーモスタット60は冷間時に閉弁し、温間時に開弁することで冷却水Wの流通を制御するように作動する。またサーモスタット60はECU1とともにラジエータ50に冷却水Wを流通させるか否かを所定の判定値に基づき決定し、冷却水Wの流通を制御する。この所定の判定値は後述する冷却損失Qwに係る判定値となっている。そして、サーモスタット60は具体的にはECU1の制御のもと、冷却損失Qwが所定の判定値以上である場合にラジエータ50を介した冷却水Wの流通を許可することで、冷却水Wの流通を制御する。この点、サーモスタット60は本実施例ではさらに具体的にはECU1の制御のもと、冷却損失Qwが所定の判定値以上である場合に強制的に開弁制御されることで、ラジエータ50を介した流通を許可する。
 オリフィス70は冷却水Wの流量を調整する。オリフィス70は流量固定式となっており、流通する冷却水Wの流量を所定量だけ低下させる。
The thermostat 60 is operated to control the flow of the cooling water W by closing when it is cold and opening when it is warm. Further, the thermostat 60 determines whether or not the cooling water W is allowed to flow through the radiator 50 together with the ECU 1 based on a predetermined determination value, and controls the flow of the cooling water W. This predetermined determination value is a determination value related to a cooling loss Qw described later. The thermostat 60 specifically allows the circulation of the cooling water W through the radiator 50 when the cooling loss Qw is equal to or greater than a predetermined determination value under the control of the ECU 1. To control. In this respect, in this embodiment, the thermostat 60 is more specifically controlled under the control of the ECU 1 so that the valve 50 is forcibly opened when the cooling loss Qw is equal to or greater than a predetermined determination value. Authorized distribution.
The orifice 70 adjusts the flow rate of the cooling water W. The orifice 70 is a fixed flow rate type, and reduces the flow rate of the circulating cooling water W by a predetermined amount.
 冷却装置100は、複数の冷媒循環経路に相当する第1から第6までの複数の冷却水循環経路81から86までを有している。第1、第2および第3の冷却水循環経路81、82、83は、サーモスタット60の閉弁時に冷却水Wの流通が許可される循環経路となっている。また、第4、第5および第6の冷却水循環経路84、85、86は、サーモスタット60の開弁時に冷却水Wの流通が許可される循環経路となっている。ウォータポンプ10は具体的にはこれら冷却水循環経路81から86までに共通の冷却水Wを圧送する。本実施例ではウォータポンプ10が冷媒圧送装置となっている。 The cooling device 100 has first to sixth cooling water circulation paths 81 to 86 corresponding to a plurality of refrigerant circulation paths. The first, second, and third cooling water circulation paths 81, 82, and 83 are circulation paths that permit the circulation of the cooling water W when the thermostat 60 is closed. The fourth, fifth, and sixth cooling water circulation paths 84, 85, 86 are circulation paths that permit the circulation of the cooling water W when the thermostat 60 is opened. Specifically, the water pump 10 pumps the common cooling water W to these cooling water circulation paths 81 to 86. In this embodiment, the water pump 10 is a refrigerant pressure feeding device.
 複数の冷却水循環経路81から86までにはウォータポンプ10、エンジン20、水冷エキマニ30、ヒータコア40、ラジエータ50、サーモスタット60、またはオリフィス70のうちのいずれかの構成が適宜組み込まれている。そして、複数の冷却水循環経路81から86までにおいて、これらの各構成は直接或いは配管を介して互いに接続されている。次に複数の冷却水循環経路81から86までについて図3から図8までを用いて具体的に説明する。 Any of the water pump 10, the engine 20, the water-cooled exhaust manifold 30, the heater core 40, the radiator 50, the thermostat 60, and the orifice 70 is appropriately incorporated in the plurality of cooling water circulation paths 81 to 86. In each of the cooling water circulation paths 81 to 86, these components are connected to each other directly or via piping. Next, the plurality of cooling water circulation paths 81 to 86 will be specifically described with reference to FIGS.
 第1の冷却水循環経路81は具体的には、ウォータポンプ10と、エンジン本体21と、ヒータコア40と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。またエンジン本体21を流通する際、冷却水Wは具体的にはウォータジャケット22を流通する。
 第2の冷却水循環経路82は具体的には、ウォータポンプ10と、エンジン本体21と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。またエンジン本体21を流通する際、冷却水Wは具体的にはウォータジャケット22とバイパス通路23とをこの順に流通する。
 第3の冷却水循環経路83は具体的にはウォータポンプ10と、水冷エキマニ30と、エンジン本体21と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。またエンジン本体21を流通する際、冷却水Wは具体的には連通路24とバイパス通路23とをこの順に流通する。
 第1から第3までの冷却水流通経路81から83までは、ラジエータ50を含まない循環経路となっている。
Specifically, the first cooling water circulation path 81 is a circulation path in which the water pump 10, the engine body 21, the heater core 40, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
Specifically, the second cooling water circulation path 82 is a circulation path in which the water pump 10, the engine main body 21, and the thermostat 60 are incorporated, and the cooling water W circulates in this order. Further, when the engine body 21 is circulated, the cooling water W specifically circulates through the water jacket 22 and the bypass passage 23 in this order.
Specifically, the third cooling water circulation path 83 is a circulation path in which the water pump 10, the water cooling exhaust manifold 30, the engine main body 21, and the thermostat 60 are incorporated, and the cooling water W circulates in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the communication path 24 and the bypass path 23 in this order.
The first to third cooling water flow paths 81 to 83 are circulation paths that do not include the radiator 50.
 第4の冷却水循環経路84は具体的には、ウォータポンプ10と、エンジン本体21と、ヒータコア40と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。またエンジン本体21を流通する際、冷却水Wは具体的にはウォータジャケット22を流通する。
 第5の冷却水循環経路85は具体的には、ウォータポンプ10と、エンジン本体21と、ラジエータ50と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。またエンジン本体21を流通する際、冷却水Wは具体的にはウォータジャケット22を流通する。
 第6の冷却水循環経路86は具体的には、ウォータポンプ10と、水冷エキマニ30と、オリフィス70と、ラジエータ50と、サーモスタット60とが組み込まれるとともに、この順に冷却水Wが流通する循環経路となっている。
 そして、このように構成された複数の冷却水循環経路81から86までにおいて、水冷エキマニ30には、サーモスタット60の開弁時と閉弁時とで(換言すればラジエータ50に冷却水Wが流通しない場合と流通する場合とで)、ともに冷却水Wが流通するようになっている。
Specifically, the fourth cooling water circulation path 84 is a circulation path in which the water pump 10, the engine body 21, the heater core 40, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
Specifically, the fifth cooling water circulation path 85 is a circulation path in which the water pump 10, the engine body 21, the radiator 50, and the thermostat 60 are incorporated, and the cooling water W flows in this order. Further, when the engine main body 21 is circulated, the cooling water W specifically circulates through the water jacket 22.
Specifically, the sixth cooling water circulation path 86 includes a water pump 10, a water cooling exhaust manifold 30, an orifice 70, a radiator 50, and a thermostat 60, and a circulation path through which the cooling water W flows in this order. It has become.
In the plurality of cooling water circulation paths 81 to 86 configured as described above, the cooling water W does not circulate in the water cooling exhaust manifold 30 when the thermostat 60 is opened and closed (in other words, the radiator 50 is not circulated). The cooling water W is circulated in both cases.
 図8に示すように、オリフィス70は具体的には、水冷エキマニ30が組み込まれた第6の冷却水循環経路86のうち、水冷エキマニ30よりも下流側の部分、且つラジエータ50よりも手前の部分に設けられている。また、さらに具体的にはオリフィス70は水冷エキマニ30よりも下流側の部分、且つ他の冷却水循環経路である第5の冷却水循環経路85との合流地点よりも手前の部分に設けられている。そして、オリフィス70は具体的には流通する冷却水Wの流量を所定量だけ低下させることで、水冷エキマニ30を流通する冷却水Wの圧力が、複数の冷却水循環経路81から86までの系統圧よりも高くなるように、水冷エキマニ30から排出された冷却水Wの流量を調整する。この系統圧は具体的にはラジエータ50のラジエータキャップ圧となっている。そして本実施例ではオリフィス70が流量調整手段となっている。 As shown in FIG. 8, specifically, the orifice 70 is a portion downstream of the water-cooled exhaust manifold 30 and a portion before the radiator 50 in the sixth coolant circulation path 86 in which the water-cooled exhaust manifold 30 is incorporated. Is provided. More specifically, the orifice 70 is provided at a portion downstream of the water-cooled exhaust manifold 30 and at a portion before the junction with the fifth cooling water circulation path 85 which is another cooling water circulation path. The orifice 70 specifically reduces the flow rate of the circulating cooling water W by a predetermined amount, whereby the pressure of the cooling water W flowing through the water-cooled exhaust manifold 30 is changed to the system pressure from the plurality of cooling water circulation paths 81 to 86. The flow rate of the cooling water W discharged from the water-cooled exhaust manifold 30 is adjusted so as to be higher. This system pressure is specifically the radiator cap pressure of the radiator 50. In this embodiment, the orifice 70 is a flow rate adjusting means.
 図9に示すように、ECU1はCPU2、ROM3、RAM4等からなるマイクロコンピュータと入出力回路5、6とを備えている。これらCPU2、ROM3、RAM4、および入出力回路5、6は互いにバス7で接続されている。ECU1は主にエンジン20を制御するように構成されている。ECU1は具体的には例えば図示しない燃料噴射弁を制御するように構成されている。またECU1はこのほかサーモスタット60を制御するように構成されている。これらの制御対象はECU1に電気的に接続されている。 As shown in FIG. 9, the ECU 1 includes a microcomputer composed of a CPU 2, a ROM 3, a RAM 4, and the like, and input / output circuits 5 and 6. The CPU 2, ROM 3, RAM 4, and input / output circuits 5 and 6 are connected to each other via a bus 7. The ECU 1 is mainly configured to control the engine 20. Specifically, the ECU 1 is configured to control, for example, a fuel injection valve (not shown). In addition, the ECU 1 is configured to control the thermostat 60. These objects to be controlled are electrically connected to the ECU 1.
 またECU1には水温センサ91や、エンジン回転数センサ92や、エアフロメータ93(さらに具体的には吸入空気量センサ93aおよび吸気温度センサ93b)などの各種のセンサが電気的に接続されている。そして、冷却水温THWは水温センサ91の出力に基づき、回転数NEはエンジン回転数センサ92の出力に基づき、エンジン20の吸入空気量GAおよび吸気温度THAはエアフロメータ93の出力に基づき、ECU1でそれぞれ検出される。
 ROM3はCPU2が実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成である。CPU2がROM3に格納されたプログラムに基づき、必要に応じてRAM4の一時記憶領域を利用しつつ処理を実行することで、ECU1では各種の制御手段や判定手段や検出手段や算出手段などが機能的に実現される。
The ECU 1 is electrically connected to various sensors such as a water temperature sensor 91, an engine speed sensor 92, and an air flow meter 93 (more specifically, an intake air amount sensor 93a and an intake air temperature sensor 93b). The cooling water temperature THW is based on the output of the water temperature sensor 91, the rotational speed NE is based on the output of the engine rotational speed sensor 92, and the intake air amount GA and the intake air temperature THA of the engine 20 are based on the output of the air flow meter 93. Each is detected.
The ROM 3 is configured to store programs, map data, and the like in which various processes executed by the CPU 2 are described. When the CPU 2 executes processing while using the temporary storage area of the RAM 4 as necessary based on the program stored in the ROM 3, the ECU 1 has various control means, determination means, detection means, calculation means, and the like. To be realized.
 この点、ECU1ではエンジン20の吸入空気量GAを含む複数の推定因子を検出する検出手段と、検出手段により検出された複数の推定因子に基づき、水冷エキマニ30で冷媒が排気から受ける受熱量である冷却損失Qwを推定する推定手段とが機能的に実現される。冷却損失Qwはエンジン20の運転状態が高負荷運転状態になっているか否かを検出するために用いることができる。
 上述の複数の推定因子が吸入空気量GAを含むこととしているのは、吸入空気量GAが冷却損失Qwと高い線形的な相関関係を有しているためである。
 そして上述の複数の推定因子は、冷媒温度である冷却水温THW、吸気温度THA、または回転数NEのうち、少なくともいずれか1つをさらに含むことが好ましい。これは、これら4因子が冷却損失Qwに対して大きな影響力を持つ因子であることによる。
In this regard, the ECU 1 is based on detection means for detecting a plurality of estimation factors including the intake air amount GA of the engine 20 and the amount of heat received by the refrigerant from the exhaust gas in the water-cooled exhaust manifold 30 based on the plurality of estimation factors detected by the detection means. An estimation means for estimating a certain cooling loss Qw is functionally realized. The cooling loss Qw can be used to detect whether or not the operating state of the engine 20 is in a high load operating state.
The plurality of estimation factors described above include the intake air amount GA because the intake air amount GA has a high linear correlation with the cooling loss Qw.
The plurality of estimation factors described above preferably further include at least one of the coolant temperature THW, the intake air temperature THA, or the rotational speed NE, which is the refrigerant temperature. This is because these four factors have a great influence on the cooling loss Qw.
 具体的には例えば初期状態などエンジン20の運転環境条件が異なれば、冷却損失Qwも異なってくる。これに対して、冷却水温THWと吸気温度THAとはエンジン20の運転環境条件を表すことができる。また、エンジン20のフリクションが増大すれば、エンジン20から発生する熱量が増大することから、冷却損失Qwも増大する傾向にある。これに対して、回転数NEはエンジン20のフリクションの大きさを表すことができる。このため、冷却損失Qwをより高い精度で推定するにあたっては、冷却水温THW、吸気温度THA、または回転数NEのうち、少なくともいずれか1つをさらに含むことが好ましい。 Specifically, for example, if the operating environment conditions of the engine 20 such as the initial state are different, the cooling loss Qw is also different. On the other hand, the coolant temperature THW and the intake air temperature THA can represent the operating environment conditions of the engine 20. Further, if the friction of the engine 20 increases, the amount of heat generated from the engine 20 increases, so that the cooling loss Qw also tends to increase. On the other hand, the rotational speed NE can represent the magnitude of the friction of the engine 20. For this reason, in estimating the cooling loss Qw with higher accuracy, it is preferable to further include at least one of the cooling water temperature THW, the intake air temperature THA, and the rotational speed NE.
 さらに上述の複数の推定因子は、冷却損失Qwはこれら4因子をすべて含んだ次の式(1)に基づき推定することが最も好ましい。
 Qw=(THW+THA)×NE×GA・・・式(1)
 すなわち冷却損失Qwは、冷却水温THWと吸気温度THAとの和と、回転数NEと、吸入空気量GAとの積により算出した値に基づき推定することが最も好ましい。これは、実験により式(1)に基づき冷却損失Qwを推定した場合に、実際の冷却損失Qwとの間に最も高い線形的な相関関係が認められたことによる。このためECU1では、具体的には式(1)に基づき冷却損失Qwを推定するようにしている。
Further, the plurality of estimation factors described above are most preferably estimated based on the following formula (1) in which the cooling loss Qw includes all these four factors.
Qw = (THW + THA) × NE × GA (1)
That is, the cooling loss Qw is most preferably estimated based on a value calculated by the product of the sum of the coolant temperature THW and the intake air temperature THA, the rotational speed NE, and the intake air amount GA. This is because, when the cooling loss Qw is estimated based on the equation (1) by experiment, the highest linear correlation is recognized with the actual cooling loss Qw. Therefore, the ECU 1 specifically estimates the cooling loss Qw based on the equation (1).
 またECU1では、ラジエータ50に冷却水Wを流通させるか否かを冷却損失Qwに係る所定の判定値に基づき決定する制御手段が機能的に実現される。制御手段は具体的には、推定された受熱量である冷却損失Qwが所定の判定値以上である場合にラジエータ50を介した冷却水Wの流通を許可するようにサーモスタット60を制御するよう機能的に実現される。この点、制御手段は本実施例ではさらに具体的には、冷却損失Qwが所定の判定値以上である場合にサーモスタット60を強制的に開弁する制御を行うように機能的に実現される。これにより、制御手段は、ラジエータ50が組み込まれた第5および第6の冷却水循環経路85、86に冷却水Wを流通させるか否かを決定するように機能的に実現される。本実施例ではサーモスタット60およびECU1が流通制御装置となっている。 Further, the ECU 1 functionally realizes a control means for determining whether or not the cooling water W is allowed to flow through the radiator 50 based on a predetermined determination value related to the cooling loss Qw. Specifically, the control means functions to control the thermostat 60 so as to permit the flow of the cooling water W through the radiator 50 when the estimated cooling loss Qw, which is the received heat amount, is equal to or greater than a predetermined determination value. Is realized. In this respect, in this embodiment, more specifically, the control means is functionally realized so as to perform control to forcibly open the thermostat 60 when the cooling loss Qw is equal to or greater than a predetermined determination value. Thereby, the control means is functionally realized so as to determine whether or not the cooling water W is circulated through the fifth and sixth cooling water circulation paths 85 and 86 in which the radiator 50 is incorporated. In this embodiment, the thermostat 60 and the ECU 1 are the flow control device.
 次に冷却装置100の作用効果について説明する。冷却装置100では、冷間時(例えば冷却水温THWが75℃以下の場合)にサーモスタット60が閉弁している。このため冷却装置100では、冷間時に冷却水Wが第1から第3までの冷却水循環経路81、82、83を流通する。そして、第1から第3までの冷却水循環経路81、82、83それぞれはラジエータ50を含まない循環経路となっている。したがって冷却装置100では、冷間時にエンジン本体21を流通する冷却水Wが基本的にラジエータ50で冷却されないようになっている。このため冷却装置100では、これによりエンジン20の暖機性が高められる。 Next, the function and effect of the cooling device 100 will be described. In the cooling device 100, the thermostat 60 is closed when it is cold (for example, when the coolant temperature THW is 75 ° C. or lower). For this reason, in the cooling device 100, the cooling water W flows through the first to third cooling water circulation paths 81, 82, and 83 when cold. Each of the first to third cooling water circulation paths 81, 82, and 83 is a circulation path that does not include the radiator 50. Therefore, in the cooling device 100, the cooling water W flowing through the engine main body 21 during the cold state is basically not cooled by the radiator 50. For this reason, in the cooling device 100, the warm-up property of the engine 20 is thereby improved.
 また冷却装置100では、第3の冷却水循環経路83を流通する冷却水Wが、水冷エキマニ30を流通した後にエンジン本体21に形成された連通路24およびバイパス通路23を流通するようになっている。このため冷却装置100では、冷間時に水冷エキマニ30で冷却水Wが排気から受熱した熱をエンジン20の暖機に利用することができ、これによりエンジン20の暖機性をさらに高めることができる。そしてこの結果、冷却装置100では図10に示すように冷却装置100Xの場合と比較して、エンジン20の暖機性を向上させることができる。 In the cooling device 100, the cooling water W flowing through the third cooling water circulation path 83 flows through the communication passage 24 and the bypass passage 23 formed in the engine body 21 after flowing through the water-cooled exhaust manifold 30. . Therefore, in the cooling device 100, the heat received by the cooling water W from the exhaust gas by the water-cooled exhaust manifold 30 at the time of cold can be used for warming up the engine 20, thereby further improving the warm-up performance of the engine 20. . As a result, the cooling device 100 can improve the warm-up performance of the engine 20 as compared with the cooling device 100X as shown in FIG.
 一方、冷却装置100では、温間時になるとサーモスタット60が開弁する。このため冷却装置100では、温間時になると冷却水Wが第4から第6までの冷却水循環経路84、85、86を流通する。そして、第5および第6の冷却水循環経路85、86それぞれはラジエータ50を含む循環経路となっている。したがって冷却装置100では、温間時にラジエータ50で冷却された冷却水Wがウォータポンプ10によって圧送される。このため冷却装置100では、これにより第6の冷却水循環経路86に含まれる水冷エキマニ30を冷却することができ、以って水冷エキマニ30における冷却水Wのオーバーヒート或いは沸騰の発生を防止或いは抑制できる。すなわち冷却装置100によれば、エンジン20の暖機性を向上させることと、水冷エキマニ30における冷却水Wのオーバーヒート或いは沸騰の発生を防止或いは抑制することとを両立させることができる。 On the other hand, in the cooling device 100, the thermostat 60 opens when it is warm. For this reason, in the cooling device 100, the cooling water W flows through the fourth to sixth cooling water circulation paths 84, 85, 86 when it is warm. Each of the fifth and sixth cooling water circulation paths 85 and 86 is a circulation path including the radiator 50. Therefore, in the cooling device 100, the cooling water W cooled by the radiator 50 during warming is pumped by the water pump 10. For this reason, in the cooling device 100, the water-cooled exhaust manifold 30 included in the sixth cooling water circulation path 86 can thereby be cooled, thereby preventing or suppressing the occurrence of overheating or boiling of the cooling water W in the water-cooled exhaust manifold 30. . That is, according to the cooling device 100, it is possible to improve both the warm-up performance of the engine 20 and to prevent or suppress the occurrence of overheating or boiling of the cooling water W in the water-cooled exhaust manifold 30.
 一方、冷却装置100では、水冷エキマニ30のほうがエンジン本体21よりも熱容量が小さくなっている。したがって冷却装置100では、熱の授受によって受ける影響の度合いは、流通する冷却水Wを含め、水冷エキマニ30のほうがエンジン本体21よりも大きくなっている。
 また冷却装置100では、図11に示すように水冷エキマニ30を流通する冷却水Wの流量がサーモスタット60の開閉状態に応じて変化する。具体的には水冷エキマニ30を流通する冷却水Wの流量は、サーモスタット60の閉弁時である冷間時のほうがサーモスタット60の開弁時である温間時よりも小さくなる。これは、水冷エキマニ30を流通する冷却水Wはサーモスタット60の閉弁時には第3の冷却水循環経路83を流通するところ、第3の冷却水循環経路83に含まれるバイパス通路23を流通する際の冷却水Wの圧力損失が大きいためである。
On the other hand, in the cooling device 100, the water-cooled exhaust manifold 30 has a smaller heat capacity than the engine body 21. Therefore, in the cooling device 100, the degree of influence received by the transfer of heat is larger in the water-cooled exhaust manifold 30 than in the engine body 21, including the circulating cooling water W.
In the cooling device 100, the flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 varies according to the open / close state of the thermostat 60 as shown in FIG. 11. Specifically, the flow rate of the cooling water W flowing through the water-cooled exhaust manifold 30 is smaller in the cold state when the thermostat 60 is closed than in the warm state when the thermostat 60 is opened. This is because the cooling water W flowing through the water-cooled exhaust manifold 30 flows through the third cooling water circulation path 83 when the thermostat 60 is closed, and cooling when flowing through the bypass passage 23 included in the third cooling water circulation path 83. This is because the pressure loss of the water W is large.
 このため冷却装置100では、例えば機関冷間始動直後に全開加速などの高負荷運転がエンジン20に対して行われた場合に、熱容量が小さく、且つ流通する冷却水Wの流量が小さいにも関わらず、水冷エキマニ30の受熱量が急激に増大することで、エンジン本体21よりも先に水冷エキマニ30において冷却水Wがオーバーヒート或いは沸騰する虞がある。 Therefore, in the cooling device 100, for example, when a high load operation such as full-open acceleration is performed on the engine 20 immediately after the engine cold start, the heat capacity is small and the flow rate of the circulating cooling water W is small. First, the amount of heat received by the water-cooled exhaust manifold 30 increases rapidly, so that the cooling water W may overheat or boil in the water-cooled exhaust manifold 30 before the engine body 21.
 この点、これに対して冷却装置100ではECU1が図12に示すフローチャートに基づく動作を行うようになっている。なお、本フローチャートはエンジン20運転中にごく短い時間間隔で繰り返し実行される。ECU1は、サーモスタット60が閉じているか否かを判定する(ステップS1)。否定判定であれば特段の処理を要しないため、本フローチャートを一旦終了する。一方、ステップS1で肯定判定であれば、ECU1は冷却損失Qwが所定の判定値以上であるか否かを判定する(ステップS2)。 In contrast, in the cooling device 100, the ECU 1 performs an operation based on the flowchart shown in FIG. This flowchart is repeatedly executed at very short time intervals while the engine 20 is operating. The ECU 1 determines whether or not the thermostat 60 is closed (step S1). If the determination is negative, no particular processing is required, and thus this flowchart is temporarily terminated. On the other hand, if an affirmative determination is made in step S1, ECU 1 determines whether or not cooling loss Qw is equal to or greater than a predetermined determination value (step S2).
 そして、冷却損失Qwが所定の判定値以上である場合には、水冷エキマニ30において冷却水Wがオーバーヒート或いは沸騰する虞があると判断される。したがってステップS2で否定判定であれば、本フローチャートを一旦終了する一方、ステップS2で肯定判定であれば、ECU1はサーモスタット60を強制的に開弁する制御を行う(ステップS3)。これにより、図13に示すようにサーモスタット60を強制的に開弁する制御が行われる。そしてこれにより、冷間時に水冷エキマニ30において受熱量が急激に増大した場合であっても、水冷エキマニ30における冷却水Wのオーバーヒートを防止或いは抑制できる。 When the cooling loss Qw is equal to or greater than a predetermined determination value, it is determined that the cooling water W may overheat or boil in the water-cooled exhaust manifold 30. Therefore, if a negative determination is made in step S2, the present flowchart is temporarily terminated, whereas if an affirmative determination is made in step S2, the ECU 1 performs control to forcibly open the thermostat 60 (step S3). Thereby, as shown in FIG. 13, the control which forcibly opens the thermostat 60 is performed. And even if it is a case where the amount of heat receiving in the water-cooled exhaust manifold 30 increases rapidly at the time of cold, the overheating of the cooling water W in the water-cooled exhaust manifold 30 can be prevented or suppressed.
 またECU1で冷却損失Qwを推定するにあたり、冷却水温THW、吸気温度THA、回転数NEおよび吸入空気量GAは一般に既設のセンサを用いて検出できる。このため水冷エキマニ30の使用環境状態を把握するにあたり、冷却装置100は、例えば水冷エキマニ30を流通する冷却水Wの温度や排気の温度を直接的に検知するセンサを新たに備える場合と比較してコスト面で有利である。
 また、上述のように直接的に検知するセンサを利用して水冷エキマニ30の使用環境状態を把握する場合には、実際に受熱量が増大したことを検知してから事後的にサーモスタット60を強制的に開弁することになる。このためこの場合には、特に受熱量の急激な増大に対して応答性が不十分となる虞がある。これに対して冷却装置100では、かかる場合と比較して応答性の面でも優れている。
When the ECU 1 estimates the cooling loss Qw, the cooling water temperature THW, the intake air temperature THA, the rotational speed NE, and the intake air amount GA can generally be detected using existing sensors. For this reason, in grasping the use environment state of the water-cooled exhaust manifold 30, for example, the cooling device 100 is compared with a case where a sensor that directly detects the temperature of the cooling water W flowing through the water-cooled exhaust manifold 30 and the temperature of the exhaust is newly provided. This is advantageous in terms of cost.
Further, when the use environment state of the water-cooled exhaust manifold 30 is grasped by using a sensor that directly detects as described above, the thermostat 60 is forced after the fact that the amount of heat received is actually detected. Will be opened. For this reason, in this case, there is a possibility that the responsiveness may be insufficient particularly for a rapid increase in the amount of heat received. On the other hand, the cooling device 100 is superior in terms of responsiveness as compared with such a case.
 一方、水冷エキマニ30の熱容量が小さいことに対し、冷却装置100ではさらにオリフィス70が前述の通り、第6の冷却水循環経路86のうち、水冷エキマニ30よりも下流側の部分、且つ第5の冷却水循環経路85との合流地点よりも手前の部分に設けられている。このため冷却装置100では、図14に示すようにオリフィス70の上流側に位置する水冷エキマニ30において冷却水Wの流量が低下するとともに、低下した流量に応じた分だけ冷却水Wの圧力が高まる。 On the other hand, in contrast to the small heat capacity of the water-cooled exhaust manifold 30, the cooling device 100 further includes the orifice 70 as described above in the portion of the sixth cooling water circulation path 86 downstream of the water-cooled exhaust manifold 30 and the fifth cooling. It is provided in a portion in front of the junction with the water circulation path 85. Therefore, in the cooling device 100, as shown in FIG. 14, the flow rate of the cooling water W decreases in the water-cooled exhaust manifold 30 located on the upstream side of the orifice 70, and the pressure of the cooling water W increases by an amount corresponding to the reduced flow rate. .
 そして、冷却水Wの圧力は冷却水温THWの上昇とともに上昇するところ、冷却装置100では図15に示すように、水冷エキマニ30の冷却水排出口304における冷却水Wの出口圧力P2のほうが、冷却水導入口303における冷却水Wの入口圧力P1よりも50kPa程度高くなる。このため冷却装置100では、水冷エキマニ30における冷却水Wの沸点を高めることができ、以って温間時に水冷エキマニ30において冷却水Wが沸騰することも防止或いは抑制できる。またオリフィス70を設けるだけなので、例えば冷却対象であるエンジン本体21と水冷エキマニ30とに対して電子式の流量調節弁をそれぞれ設けるとともに、冷却対象それぞれを流通する冷却水Wの流量を制御する場合と比較して、複雑になることも回避できる。
 このように、冷却装置100は水冷エキマニ30で冷却水Wがオーバーヒート或いは沸騰し、この結果、エンジン20にダメージが及ぶことを防止或いは抑制することなどができる。
Then, the pressure of the cooling water W rises as the cooling water temperature THW rises. In the cooling device 100, as shown in FIG. 15, the outlet pressure P2 of the cooling water W at the cooling water outlet 304 of the water-cooled exhaust manifold 30 is more cooled. It becomes about 50 kPa higher than the inlet pressure P1 of the cooling water W at the water inlet 303. For this reason, in the cooling device 100, the boiling point of the cooling water W in the water-cooled exhaust manifold 30 can be increased, and thus the boiling of the cooling water W in the water-cooled exhaust manifold 30 can be prevented or suppressed when warm. In addition, since only the orifice 70 is provided, for example, an electronic flow control valve is provided for each of the engine main body 21 and the water-cooled exhaust manifold 30 that are to be cooled, and the flow rate of the cooling water W that flows through each cooling target is controlled Compared with, it can also be avoided.
As described above, the cooling device 100 can prevent or suppress the cooling water W from being overheated or boiled by the water-cooled exhaust manifold 30 and resulting in damage to the engine 20.
 上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
 例えば上述した実施例では、排気系冷却手段である水冷エキマニ30が図2に示すような具体的な構造を備えている場合について説明した。しかしながら本発明においては必ずしもこれに限られず、排気系冷却手段は冷媒によって排気マニホルドの全部または一部を冷却することが可能なその他の適宜の構造を備えていてもよい。
The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
For example, in the above-described embodiment, the case where the water-cooled exhaust manifold 30 serving as the exhaust system cooling means has a specific structure as shown in FIG. 2 has been described. However, the present invention is not necessarily limited to this, and the exhaust system cooling means may include other appropriate structures capable of cooling all or part of the exhaust manifold with the refrigerant.
 また例えば上述した実施例では冷却エキマニ30が排気系冷却手段である場合について説明した。これは、排気を浄化する触媒をエンジン20に近接して配置しつつ、触媒に流入する排気を冷却できるためである。しかしながら本発明においては必ずしもこれに限られず、排気系冷却手段は例えばエンジンから排出された後、触媒に流入する前の状態にある排気を冷媒により冷却することが可能なその他の適宜の構成であってもよい。 For example, in the above-described embodiment, the case where the cooling exhaust manifold 30 is an exhaust system cooling means has been described. This is because the exhaust gas flowing into the catalyst can be cooled while the catalyst for purifying the exhaust gas is disposed close to the engine 20. However, the present invention is not necessarily limited to this, and the exhaust system cooling means is another appropriate configuration capable of cooling the exhaust that has been discharged from the engine and before flowing into the catalyst with a refrigerant, for example. May be.
 また例えば上述した実施例では、サーモスタット60とECU1とが流通制御装置である場合について説明した。これは、冷却水Wの流通を制御するにあたり、開閉状態に応じてラジエータ50に冷却水Wを流通させるか否かを切り替えることが可能なサーモスタット60を利用することが便宜であり、またコスト面などからも有利であるためである。
 しかしながら本発明においては必ずしもこれに限られず、例えばラジエータ50とウォータポンプ10とを連通する配管をさらに設けるとともに、当該配管に冷却水Wの流通を許可、遮断することが可能な切替手段として例えば電磁弁をさらに設けてもよい。そして、当該電磁弁をサーモスタット60の代わりにECU1の制御対象とするとともに、サーモスタット60を強制的に開弁する代わりに閉弁状態にある当該電磁弁を開弁することで、サーモスタット60をバイパスさせる形で、ラジエータ50に冷却水Wを流通させることができる。この場合には当該電磁弁とECU1とが流通制御装置となる。
Further, for example, in the above-described embodiment, the case where the thermostat 60 and the ECU 1 are distribution control devices has been described. In order to control the circulation of the cooling water W, it is convenient to use a thermostat 60 that can switch whether or not to distribute the cooling water W to the radiator 50 according to the open / close state. This is because it is advantageous from the above.
However, the present invention is not necessarily limited to this. For example, an additional pipe for communicating the radiator 50 and the water pump 10 is provided, and switching means that can permit or block the flow of the cooling water W through the pipe is, for example, electromagnetic. A valve may be further provided. And while making the said electromagnetic valve the control object of ECU1 instead of the thermostat 60, the thermostat 60 is bypassed by opening the said electromagnetic valve in a valve closing state instead of opening the thermostat 60 forcibly. In the form, the cooling water W can be circulated through the radiator 50. In this case, the solenoid valve and the ECU 1 serve as a flow control device.
 また例えば上述した実施例では、複数の冷却水循環経路81から86までが、複数の冷媒循環経路である場合について説明した。しかしながら本発明おいては必ずしもこれに限られず、複数の冷媒循環経路はその他の適宜の数量で適宜構成されてもよい。 For example, in the above-described embodiment, the case where the plurality of cooling water circulation paths 81 to 86 are a plurality of refrigerant circulation paths has been described. However, the present invention is not necessarily limited to this, and the plurality of refrigerant circulation paths may be appropriately configured with other appropriate quantities.
 また例えば上述した実施例では、ラジエータ50が組み込まれた第5および第6の冷却水循環経路85、86に冷却水Wを流通させるか否かを所定の判定値に基づき決定し、冷却水Wの流通を制御する場合について説明した。これは、サーモスタット60とECU1とを流通制御装置としたことによるものであり、またこのようにすればより多くの流量を冷却でき、この結果、水冷エキマニ30の受熱量が急激に増大した場合のオーバーヒート或いは沸騰の抑制効果を高めることができるためである。
 しかしながら本発明においては必ずしもこれに限られず、例えば第5および第6の冷却水流通配管85、86のうち、水冷エキマニ30を含む第6の冷却水循環経路86にのみ冷却水Wを流通させるように冷却水Wの流通を制御してもよく、またさらに例えばその後第5の冷却水循環経路85にも冷却水Wを流通させるように冷却水Wの流通を制御することもできる。
 この場合には、必要の度合いに応じて段階的に冷却水Wを冷却することが可能となり、これによりエンジン20の暖機性との両立を図りつつ、冷却水Wを冷却することもできる。
Further, for example, in the above-described embodiment, whether or not the cooling water W is circulated through the fifth and sixth cooling water circulation paths 85 and 86 in which the radiator 50 is incorporated is determined based on a predetermined determination value. The case of controlling distribution has been described. This is because the thermostat 60 and the ECU 1 are used as the flow control device, and in this way, a larger flow rate can be cooled. As a result, the amount of heat received by the water-cooled exhaust manifold 30 increases rapidly. This is because the effect of suppressing overheating or boiling can be enhanced.
However, the present invention is not necessarily limited to this. For example, the cooling water W is circulated only through the sixth cooling water circulation path 86 including the water-cooled exhaust manifold 30 among the fifth and sixth cooling water circulation pipes 85 and 86. The circulation of the cooling water W may be controlled, and further, for example, the circulation of the cooling water W may be controlled so that the cooling water W is circulated through the fifth cooling water circulation path 85 thereafter.
In this case, it becomes possible to cool the cooling water W step by step according to the degree of necessity, and thus the cooling water W can be cooled while achieving compatibility with the warm-up performance of the engine 20.
 具体的には例えば第5の冷却水循環経路85に対して、第6の冷却水循環経路86との合流点、およびラジエータ50をバイパスするバイパス配管をさらに設けるとともに、冷却水Wの流通先を当該バイパス配管またはラジエータ50との間で切り替えることが可能な切替手段として例えば電磁弁をさらに設けることができる。そして、当該電磁弁をサーモスタット60とともにECU1の制御対象とし、またサーモスタット60を強制的に開弁した場合の流通先がバイパス配管となるように電磁弁を制御する。これにより、第5および第6の冷却水循環経路85、86のうち、第6の冷却水循環経路86のみに冷却水Wを流通させるように冷却水Wの流通を制御することができる。
 またさらにその後、流通先がラジエータ50となるように当該電磁弁を制御することで、第5の冷却水循環経路85にも冷却水Wを流通させることができる。このような場合には、例えば第1の判定値と、当該第1の判定値よりも値の大きな第2の判定値とを含む複数の判定値を所定の判定値として用いることができる。また、この場合にはサーモスタット60と当該電磁弁とECU1とが流通制御装置となる。
Specifically, for example, the fifth cooling water circulation path 85 is further provided with a junction with the sixth cooling water circulation path 86 and a bypass pipe that bypasses the radiator 50, and the distribution destination of the cooling water W is bypassed. For example, an electromagnetic valve can be further provided as switching means capable of switching between the piping or the radiator 50. Then, the solenoid valve is controlled by the ECU 1 together with the thermostat 60, and the solenoid valve is controlled so that the distribution destination when the thermostat 60 is forcibly opened is a bypass pipe. Thereby, circulation of the cooling water W can be controlled so that the cooling water W is circulated only in the sixth cooling water circulation path 86 among the fifth and sixth cooling water circulation paths 85 and 86.
Further, thereafter, the cooling water W can be circulated through the fifth cooling water circulation path 85 by controlling the electromagnetic valve so that the distribution destination is the radiator 50. In such a case, for example, a plurality of determination values including a first determination value and a second determination value having a value larger than the first determination value can be used as the predetermined determination value. In this case, the thermostat 60, the electromagnetic valve, and the ECU 1 serve as a flow control device.
 また上述した実施例では、オリフィス70を第6の冷却水循環経路86に組み込んだ場合について説明した。これは、温間時に冷却水Wが沸騰することを防止或いは抑制できるためである。しかしながら本発明においては必ずしもこれに限られず、例えばオリフィス70は第3の冷却水循環経路83のうち、水冷エキマニ30よりも下流側の部分、且つエンジン本体21よりも手前の部分に設けることもできる。この場合には、冷間時に水冷エキマニ30の受熱量が急増した結果、冷却水Wが沸騰することを防止或いは抑制できる。
 また上述した実施例では、オリフィス70が流量調整手段である場合について説明した。しかしながら本発明においては必ずしもこれに限られず、流量調整手段は例えば電子式の流量調節弁であってもよい。そして例えばECU1で当該流量調節弁を適宜制御することで、必要な状況に応じて水冷エキマニ30における冷却水Wの圧力を高めたり、必要の度合いに応じて冷却エキマニ30における冷却水Wの圧力の大きさを調節したりすることも可能となる。またこのように当該流量調節弁を制御するにあたっては、例えば冷却損失Qwの大きさに基づき、或いは冷却損失Qwの大きさに応じて当該流量調節弁を制御することができる。
In the above-described embodiment, the case where the orifice 70 is incorporated in the sixth cooling water circulation path 86 has been described. This is because the cooling water W can be prevented or suppressed from boiling when warm. However, the present invention is not necessarily limited to this. For example, the orifice 70 can be provided in a portion of the third cooling water circulation path 83 on the downstream side of the water-cooled exhaust manifold 30 and on the front side of the engine body 21. In this case, it is possible to prevent or suppress the boiling of the cooling water W as a result of a rapid increase in the amount of heat received by the water-cooled exhaust manifold 30 during cold weather.
In the above-described embodiment, the case where the orifice 70 is a flow rate adjusting means has been described. However, the present invention is not necessarily limited to this, and the flow rate adjusting means may be, for example, an electronic flow rate adjusting valve. For example, the ECU 1 appropriately controls the flow rate adjusting valve to increase the pressure of the cooling water W in the water-cooled exhaust manifold 30 according to a necessary situation, or the pressure of the cooling water W in the cooling exhaust manifold 30 according to a necessary degree. It is also possible to adjust the size. In controlling the flow rate control valve in this way, the flow rate control valve can be controlled based on, for example, the size of the cooling loss Qw or according to the size of the cooling loss Qw.
 また、本発明を適用する場合に用いられる検出手段や推定手段や制御手段などの各種の手段は、主にエンジン20を制御するECU1で実現することが合理的であるが、例えばその他の電子制御装置や専用の電子回路などのハードウェアやこれらの組み合わせによって実現されてもよい。この点、本発明における流通制御装置は例えばサーモスタット60と、制御手段としての機能を有する専用の電子回路との組み合わせからなるモジュール品として実現することもできる。 Various means such as a detection means, an estimation means, and a control means used when applying the present invention are rationally realized by the ECU 1 that mainly controls the engine 20, but other electronic controls, for example, may be used. It may be realized by hardware such as a device or a dedicated electronic circuit, or a combination thereof. In this regard, the distribution control device according to the present invention can be realized as a module product including a combination of, for example, a thermostat 60 and a dedicated electronic circuit having a function as a control means.

Claims (2)

  1. 複数の冷媒循環経路に共通の冷媒を圧送する冷媒圧送装置と、
     前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路にエンジン本体が組み込まれたエンジンと、
     前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路に組み込まれ、前記エンジン本体よりも熱容量が小さく、且つ流通する冷媒で前記エンジンの排気系を冷却する排気系冷却手段と、
     前記複数の冷媒循環経路のうち、少なくとも1つの冷媒循環経路に組み込まれ、流通する冷媒を冷却する冷却器と、
     前記複数の冷媒循環経路のうち、前記冷却器が組み込まれた少なくとも1つの冷媒循環経路に冷媒を流通させるか否かを、所定の判定値に基づき決定し、冷媒の流通を制御する流通制御装置と、を備え、
     前記所定の判定値を、前記排気系冷却手段で冷媒が排気から受ける受熱量に係る判定値としたエンジンの冷却装置。
    A refrigerant pumping device for pumping a common refrigerant to a plurality of refrigerant circulation paths;
    An engine in which an engine body is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths;
    An exhaust system cooling means that is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths, has a heat capacity smaller than that of the engine body, and cools the engine exhaust system with a circulating refrigerant;
    A cooler which is incorporated in at least one refrigerant circulation path among the plurality of refrigerant circulation paths and cools the circulating refrigerant;
    A flow control device that determines whether or not to circulate refrigerant through at least one refrigerant circulation path in which the cooler is incorporated among the plurality of refrigerant circulation paths, based on a predetermined determination value, and controls circulation of the refrigerant. And comprising
    The engine cooling apparatus, wherein the predetermined determination value is a determination value related to the amount of heat received by the refrigerant from the exhaust by the exhaust system cooling means.
  2. 請求項1記載のエンジンの冷却装置であって、
     前記複数の冷媒循環経路のうち、前記排気系冷却手段が組み込まれた少なくとも1つの冷媒循環経路に組み込まれるとともに、
     前記排気系冷却手段を流通する冷媒の圧力が、前記複数の冷媒循環経路の系統圧よりも高くなるように、前記排気系冷却手段から排出された冷媒の流量を調整する流量調整手段をさらに備えたエンジンの冷却装置。

     
     
    The engine cooling device according to claim 1,
    Among the plurality of refrigerant circulation paths, it is incorporated into at least one refrigerant circulation path in which the exhaust system cooling means is incorporated,
    The apparatus further comprises a flow rate adjusting means for adjusting the flow rate of the refrigerant discharged from the exhaust system cooling means so that the pressure of the refrigerant flowing through the exhaust system cooling means is higher than the system pressure of the plurality of refrigerant circulation paths. Engine cooling system.


PCT/JP2009/055018 2009-03-16 2009-03-16 Engine cooling device WO2010106615A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011504629A JP5267654B2 (en) 2009-03-16 2009-03-16 Engine cooling system
CN2009801581184A CN102356220A (en) 2009-03-16 2009-03-16 Engine cooling device
PCT/JP2009/055018 WO2010106615A1 (en) 2009-03-16 2009-03-16 Engine cooling device
US13/142,430 US20110265740A1 (en) 2009-03-16 2009-03-16 Engine cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055018 WO2010106615A1 (en) 2009-03-16 2009-03-16 Engine cooling device

Publications (1)

Publication Number Publication Date
WO2010106615A1 true WO2010106615A1 (en) 2010-09-23

Family

ID=42739286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055018 WO2010106615A1 (en) 2009-03-16 2009-03-16 Engine cooling device

Country Status (4)

Country Link
US (1) US20110265740A1 (en)
JP (1) JP5267654B2 (en)
CN (1) CN102356220A (en)
WO (1) WO2010106615A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620516B2 (en) * 2011-02-17 2013-12-31 GM Global Technology Operations LLC System and method for performing engine material temperature sensor diagnostics
CN104775888B (en) * 2015-04-08 2017-02-01 玉柴联合动力股份有限公司 Water-jacket type exhaust manifold and engine provided with same
FR3043719B1 (en) * 2015-11-13 2019-07-05 Novares France COOLING CIRCUIT FOR A MOTOR VEHICLE
AT521447B1 (en) * 2018-06-20 2022-07-15 Avl List Gmbh EXTERNAL EXHAUST MANIFOLD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162579A (en) * 1997-08-21 1999-03-05 Toyota Motor Corp Cooling device for internal combustion engine
JP2003262122A (en) * 2002-03-06 2003-09-19 Yanmar Co Ltd Heat exchanger for engine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625560B2 (en) * 1985-06-17 1994-04-06 日本電装株式会社 Engine controller
JPS63208603A (en) * 1987-02-25 1988-08-30 Honda Motor Co Ltd Engine cam holder
JPS63208607A (en) * 1987-02-26 1988-08-30 Toyota Motor Corp Cooling device for exhaust manifold
US5584185A (en) * 1992-05-14 1996-12-17 Mishport Pty Ltd Engine powered energy providing assemblies
US5622053A (en) * 1994-09-30 1997-04-22 Cooper Cameron Corporation Turbocharged natural gas engine control system
JP3669407B2 (en) * 1998-01-09 2005-07-06 三菱ふそうトラック・バス株式会社 Exhaust gas recirculation device
JP3871196B2 (en) * 2001-10-26 2007-01-24 三菱自動車工業株式会社 Cooling device for internal combustion engine
KR100521913B1 (en) * 2002-02-09 2005-10-13 현대자동차주식회사 CONTROL METHOD OF Adjustable Electronic Thermostat
JP4023176B2 (en) * 2002-02-13 2007-12-19 トヨタ自動車株式会社 Cooling device for internal combustion engine
US7156056B2 (en) * 2004-06-10 2007-01-02 Achates Power, Llc Two-cycle, opposed-piston internal combustion engine
JP2006112234A (en) * 2004-10-12 2006-04-27 Aisan Ind Co Ltd Engine cooling device
US7013646B1 (en) * 2004-11-18 2006-03-21 The Gates Corporation Auxiliary power system for a motor vehicle
JP2006258007A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Control device of internal combustion engine
JP4802811B2 (en) * 2006-03-29 2011-10-26 いすゞ自動車株式会社 Engine coolant circuit
JP4924083B2 (en) * 2007-02-20 2012-04-25 トヨタ自動車株式会社 Exhaust heat recovery device for internal combustion engine
US20080264036A1 (en) * 2007-04-24 2008-10-30 Bellovary Nicholas J Advanced engine control
US8141357B2 (en) * 2007-10-12 2012-03-27 Mazda Motor Corporation Supercharger for an engine
JP2009174362A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Exhaust gas recirculation gas cooling device of hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162579A (en) * 1997-08-21 1999-03-05 Toyota Motor Corp Cooling device for internal combustion engine
JP2003262122A (en) * 2002-03-06 2003-09-19 Yanmar Co Ltd Heat exchanger for engine

Also Published As

Publication number Publication date
CN102356220A (en) 2012-02-15
US20110265740A1 (en) 2011-11-03
JP5267654B2 (en) 2013-08-21
JPWO2010106615A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US9470138B2 (en) Coolant circulation system for engine
CN108699945B (en) Cooling device and control method for internal combustion engine for vehicle
JP6264443B2 (en) COOLING SYSTEM CONTROL DEVICE AND COOLING SYSTEM CONTROL METHOD
US20130167784A1 (en) Method for operating a coolant circuit
JP6096492B2 (en) Engine cooling system
JP6090138B2 (en) Engine cooling system
JP6306529B2 (en) Cooling device and control method for vehicle internal combustion engine
JP5623474B2 (en) Cooling water control device
JP5825184B2 (en) Engine cooling system
US20090229649A1 (en) Thermal management for improved engine operation
JP4529709B2 (en) Engine cooling system
JP2014009617A (en) Cooling device of internal combustion engine
JP5267654B2 (en) Engine cooling system
JP6627826B2 (en) Control unit for heat exchange system
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
JP2008095694A (en) Cooling device for engine
JP5196014B2 (en) Engine cooling system
JP6604540B2 (en) Engine cooling system
GB2581479A (en) Engine cooling circuit and method of cooling an engine
JP5304573B2 (en) Engine warm-up promotion system
JP5088337B2 (en) Exhaust cooling structure for internal combustion engine and control device for exhaust cooling structure for internal combustion engine
EP4071339A1 (en) A conditioning apparatus for an engine and control methods thereof
JP2014005759A (en) Heating device for vehicle
JP2008175104A (en) Cooling device for vehicular internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158118.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011504629

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13142430

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841821

Country of ref document: EP

Kind code of ref document: A1