WO2010106111A1 - Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues - Google Patents

Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues Download PDF

Info

Publication number
WO2010106111A1
WO2010106111A1 PCT/EP2010/053478 EP2010053478W WO2010106111A1 WO 2010106111 A1 WO2010106111 A1 WO 2010106111A1 EP 2010053478 W EP2010053478 W EP 2010053478W WO 2010106111 A1 WO2010106111 A1 WO 2010106111A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
organic polymer
weight
quicklime
cationic
Prior art date
Application number
PCT/EP2010/053478
Other languages
English (en)
Inventor
Laurent Biotteau
Gaétan BLANDIN
Original Assignee
S.A. Lhoist Recherche Et Développement
S.N.F. Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.A. Lhoist Recherche Et Développement, S.N.F. Sas filed Critical S.A. Lhoist Recherche Et Développement
Priority to PL10709016T priority Critical patent/PL2408718T3/pl
Priority to BRPI1009305-2A priority patent/BRPI1009305B1/pt
Priority to RU2011141847/05A priority patent/RU2549393C2/ru
Priority to ES10709016.9T priority patent/ES2548569T3/es
Priority to EP10709016.9A priority patent/EP2408718B1/fr
Priority to DK10709016.9T priority patent/DK2408718T3/en
Priority to CA2754942A priority patent/CA2754942A1/fr
Priority to CN2010800120732A priority patent/CN102356047A/zh
Priority to US12/826,066 priority patent/US8771633B2/en
Publication of WO2010106111A1 publication Critical patent/WO2010106111A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/148Combined use of inorganic and organic substances, being added in the same treatment step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium

Definitions

  • the present invention relates to a lime-based composition
  • a lime-based composition comprising at least solid phase slaked lime and at least one organic polymer.
  • the term "slaked lime” means a lime consisting of a set of solid particles, mainly calcium dihydroxide Ca (OH) 2 which is the result of the reaction of particles of quicklime with water, a reaction called hydration or extinction.
  • the hydrated lime is also called hydrated lime.
  • the calcium dihydroxide will be named simply calcium hydroxide or Ca (OH) 2 .
  • the slaked lime obtained can obviously contain impurities, mainly from quicklime.
  • the slaked lime can be in pulverulent form or in the form of an aqueous suspension, called lime milk.
  • Slaked lime is used in the treatment of water or sludge.
  • US 4711727 discusses the treatment of water with slaked lime and an organic flocculant contained in a suspension.
  • sludge Treatment of drinking water purification, wastewater or industrial generate residues called sludge. These sludges are first separated from the purified water and then treated in order to stabilize and concentrate them.
  • the term "sludge” means a residue having a solids content of at least 0.5%, often greater than or equal to 1% ;
  • the sludge can be mineral or organic or oily.
  • An incorporation of a calcium compound, usually lime, is often associated with the aforementioned treatment, in order to condition but also to sanitize and / or stabilize the sludge for their long term storage (holding in piles, etc.) or still to improve durably their properties of use (pelleting, spreading, etc.) or in order to increase their agronomic value.
  • the calcium compound can be added to the sludge before (pre-liming) and / or after (post-liming) the above-mentioned dehydration step.
  • Sludge conditioning is therefore in fact a treatment in which the characteristics of the sludge are modified to facilitate the separation of the solid phase and the liquid phase.
  • So-called organic packaging use of organic polymer as sole flocculant (dosage-type 2 at 20 kg per tonne of dry matter). Only long-chain synthetic polyelectrolytes (high molecular weight, especially based on polyacrylamide) are effective; they form voluminous flocs.
  • So-called mineral packaging joint use of an iron or aluminum salt, such as ferric chloride (typical dosage: 3 to 10% by weight relative to the treated dry matter) and lime (standard dosage: 10 to 40% by weight relative to the treated solids).
  • ferric chloride typically dosage: 3 to 10% by weight relative to the treated dry matter
  • lime standard dosage: 10 to 40% by weight relative to the treated solids
  • Organic packaging is not best suited to some dewatering systems such as filter presses; the other mentioned packages are especially iron salts, which it is preferable to reduce the use because of the aforementioned problems, or are limited, especially in the choice of lime.
  • a mineral agent which in particular provides structure and strength, by limiting the aforementioned drawbacks of iron salts or the like.
  • a calcium compound also confers the properties mentioned above.
  • a composition comprising in particular an inorganic agent based on slaked lime and at least one organic polymer, capable of conditioning sludge alone, in a simple, safe and effective manner, preferably in a number limited steps.
  • the aforementioned composition is a solid, easy to manufacture and handle, preferably stable over time and easy to incorporate into the sludge to be treated.
  • the polymer, minority is well distributed with respect to the mineral agent.
  • it is useful for the aforementioned mineral agent to be added only once during the sludge treatment, and therefore to have an effectiveness also after dehydration (post-treatment).
  • the invention therefore aims to overcome the shortcomings of the state of the art in these respects and to provide a solution to these expectations, without, however, altering the physical properties of each of the two agents (the mineral and the polymer).
  • composition wherein said organic polymer is incorporated in said solid phase of slaked lime.
  • the invention relates to a composition based on lime in which a contact There is an intimate relationship between the organic polymer and at least a portion of the inorganic agent, in particular slaked lime, which provides a good distribution of the polymer in the mineral agent.
  • the organic polymer is incorporated in the solid phase of mineral agent, in particular slaked lime, the organic polymer which is a minor component is in fact well distributed on the surface and / or within the solid phase of the mineral agent in contrast to a simple mixture of components.
  • the organic polymer incorporated in the solid phase retains its physical properties, especially for conditioning prior to the dewatering of the sludge.
  • the composition according to the invention further comprises a quantity of water sufficient to form an aqueous suspension, which will be suitable for example when lime milks are desired.
  • the composition is, in principle, in the form of a solid, generally pulverulent, but of course, in an alternative form of the invention, the composition may be in the form of a suspension.
  • said mineral agent further comprises quicklime.
  • the inorganic agent of the composition according to the invention consists essentially of quicklime and slaked lime.
  • Quicklime means a solid mineral compound whose chemical composition is mainly calcium oxide CaO.
  • Quicklime is commonly obtained by calcareous firing, mainly consisting of CaCO 3 , of which there may be a few percent in lime.
  • Quicklime contains impurities, namely, compounds such as magnesium oxide MgO, silica SiO 2 or Al 2 O 3 alumina, etc., up to a few percent. It is understood that these impurities are expressed in the aforementioned forms but may actually appear in different phases.
  • the composition according to the invention is essentially like residual quicklime particles, coated, possibly partially, with a solid phase layer having a mixed composition Ca (OH) 2 / organic polymer, in which the organic polymer is distributed intimately. and homogeneously.
  • the present invention also covers compositions comprising residual quicklime particles coated, at least partially, with a aforementioned mixed composition layer as well as uncoated quicklime particles.
  • the slaked lime is present in an amount ranging from 0.5 to 99.8% by weight relative to the weight of the composition, preferably from 1 to 99% by weight. more preferably from 10 to 70% by weight relative to the total weight of the composition.
  • said organic polymer is present in an amount ranging from 0.2 to 10% by weight, preferably from 0.5 to 8% by weight and more preferably from 1 to 6.5 % by weight relative to the total weight of the composition.
  • said quicklime is present in an amount ranging from 0.1% to 99.3%, preferably from 20 to 80% by weight relative to the total weight of the composition.
  • the mineral agent of the composition according to the invention consists essentially of quicklime and slaked lime.
  • the slaked lime is between 5 g and 1000 g per 1000 g of lime, the rest of the lime being in the form of quicklime.
  • the slaked lime is between 10 g and 990 g per 1000 g of lime, in particular between 20 g and 900 g, advantageously between 50 g and 800 g, in particular between 100 g and 700 g. g per 1000 g of lime.
  • compositions according to the invention advantageously comprise between 2 g and 100 g of organic polymer (expressed as active ingredient MA) per 1 kg of lime (expressed as the equivalent of slaked lime Ca (OH) 2 ), preferably between 5 g and 80 g. g of the abovementioned organic polymer per 1 kg of lime, particularly preferably between 10 g and 65 g of the abovementioned organic polymer per 1 kg of lime.
  • said organic polymer is a hydrophilic polymer of nonionic, anionic, cationic or amphoteric, linear, branched and / or crosslinked nature.
  • said organic polymer has an affinity with water and can be suspended or dissolved in an aqueous phase, which can be used later for the extinction, at least partially, of the quicklime in to form the composition according to the invention containing a predetermined amount of slaked lime.
  • the invention relates to the technical sector of organic hydrophilic polymers.
  • the polymers used are soluble in water and may be of a nonionic, anionic, cationic or amphoteric nature.
  • the polymer used can be obtained from one or more of the monomers chosen from: a) anionic monomers having a carboxylic function (eg acrylic acid, methacrylic acid, and their salts). .) or having a sulphonic acid function (ex: 2-acrylamido-2-methylpropanesulphonic acid (ATBS) and their salts ).
  • a) anionic monomers having a carboxylic function eg acrylic acid, methacrylic acid, and their salts.
  • a sulphonic acid function ex: 2-acrylamido-2-methylpropanesulphonic acid (ATBS) and their salts .
  • nonionic monomers acrylamide, methacrylamide, N-vinylpyrrolidone, vinylacetate, vinyl alcohol, acrylate esters, allyl alcohol, N-vinylacetamide, N-vinylformamide, c) and / or cationic monomers: in particular and in a nonlimiting manner, quaternized or salified dimethylaminoethyl acrylate (ADAME) and / or dimethylaminoethyl methacrylate (MADAME), dimethyldiallylammonium chloride (DADMAC), acrylamido propyltrimethylammonium chloride (APTAC) and / or or methacrylamido propyltrimethylammonium chloride (MAPTAC), optionally in combination with one or more hydrophobic monomer (s) preferably chosen from the group comprising alkyl, arylalkyl and / or ethoxylated (meth) acrylic acid esters.
  • hydrophobic monomer preferably chosen from the group
  • alkyl (arylalkyl or dialkyl) chain (meth) acrylamide derivatives, cationic allylic derivatives, (meth) acryloyl anionic or cationic hydrophobic or anionic and / or cationic monomers derived from (meth) acrylamide bearing a hydrophobic chain.
  • This type of polymer does not require the development of a particular polymerization process. It can be obtained by any of the polymerization techniques well known to those skilled in the art: gel polymerization, precipitation polymerization, emulsion polymerization (aqueous or inverse) followed or not by a distillation step, suspension polymerization, solution.
  • said organic polymer is a chemically modified organic polymer, i.e., a post-modified reaction polymer.
  • post-modification polymers having undergone a modification of their chemical structure by reaction of one or more reagents after polymerization. Examples that may be mentioned include hydrolysis and neutralization reactions, function or chain grafting, or chemical function modification reactions (Mannich reaction, glyoxalation, hydroxamate function grafting, hydrophobic or hydrophilic side chains). , Hofmann degradation ...), pH adjustments (acidification, basification, buffering).
  • the polymer can also be branched or crosslinked.
  • a branched polymer is a polymer which has branches, groups or branches on the main chain.
  • a crosslinked polymer is, for its part, a polymer whose some of its chains are connected to each other by covalent chemical bridges thus forming a network.
  • the branching or the crosslinking may be carried out preferably during (or possibly after) the polymerization, in the presence of a branching / crosslinking agent and optionally of a transfer agent.
  • branching agents methylene bisacrylamide (MBA), ethylene glycol di-acrylate, polyethylene glycol dimethacrylate, diacrylamide, cyanomethylacrylate, vinyloxyethylacrylate or methacrylate, thallylamine, formaldehyde, glyoxal, glycidyl ether compounds such as ethylene glycol diglycidyl ether, or epoxy or any other means well known to those skilled in the art for branching.
  • MBA methylene bisacrylamide
  • ethylene glycol di-acrylate polyethylene glycol dimethacrylate
  • diacrylamide diacrylamide
  • cyanomethylacrylate vinyloxyethylacrylate or methacrylate
  • thallylamine formaldehyde
  • glyoxal formaldehyde
  • glyoxal glycidyl ether compounds
  • ethylene glycol diglycidyl ether or epoxy or any other means well known to those skilled in the art for branching.
  • the composition comprises a polymer consisting of a polyamine resin based on epichlorohydrin, dicyandiamide type, melamine formaldehyde type, polyalkyleneimine type and the like.
  • said polymer used can be obtained by a polycondensation reaction.
  • polycondensate is meant here water-soluble polymers obtained by polycondensation, that is to say by a process of polymerization by repeated condensations with elimination of simple molecules or not (in this case we will speak rather of polyadditions).
  • the growth of the polymer chains is generated by the consumption of reactive groups whereas in the radical reactions the reactive groups are generated continuously during the growth of the chains.
  • polycondensates mention may be made, for example, polyamines based on epichlorohydrin, dicyandiamide resins, melamine formaldehyde resins, polyalkyleneimines, etc.
  • said organic polymer is a nonionic, anionic, cationic or amphoteric flocculant having a weight average molecular weight of between 5.10 6 g / mol and 40.10 6 g / mol.
  • said organic polymer is a cationic or amphoteric coagulant and having a weight average molecular weight of between 20,000 and 5 ⁇ 10 6 g / mol.
  • the weight average molecular weight is greater than or equal to 50,000 g / mol, in particular greater than or equal to 200,000 g / mol and preferably greater than or equal to 500,000 g / mol.
  • the weight average molecular weight is advantageously less than or equal to 3.10 6 g / mol.
  • said cationic or amphoteric coagulant is based on diallyldialkyl ammonium salt.
  • compositions according to the invention are advantageously stable, so as to be prepared several days or even weeks before their use.
  • the pulverulent compositions according to the invention have the advantage of the ease of use of a powder, without the necessity of resorting to the intermediary of polymers in the solid form, which are sometimes difficult and more expensive to obtain than solutions or emulsions. .
  • Other embodiments of the compositions according to the invention are indicated in the appended claims.
  • the subject of the present invention is also a process for the preparation of a lime-based composition according to the invention comprising bringing into contact with a mineral agent and an aqueous solution, dispersion or inverse emulsion comprising at least one organic polymer and some water.
  • a method is for example known from US 4711727 which discloses the preparation of a slurry of hydrated lime (Hydralime) and calcium carbonate (Snowcal) to which will then be mixed an organic polymer to treat wastewater.
  • Hydralime hydrated lime
  • Snowcal calcium carbonate
  • the invention therefore provides, to solve this problem, a process characterized in that said mineral agent is based on quicklime in that the process comprises the steps comprising: at least partial reaction of the quicklime with all or part of said water containing said organic polymer, and formation of solid phase slaked lime to which said organic polymer is incorporated.
  • the particle size of the mineral agent based on quicklime is not critical; some may in particular reach several millimeters. In some embodiments of the invention, the particle size will be mainly less than 2 mm, preferably 1 mm, advantageously 500 ⁇ m, particularly preferably 200 ⁇ m. In addition, 90% of the particles present have a particle size greater than 0.5 ⁇ m, or even 1 ⁇ m.
  • the water of the solution, dispersion or inverse emulsion containing the polymer will react with the quicklime and / or evaporate under the exothermic action of the reaction, making it possible to obtain a solid dry powder (containing no or very little free water), easy to handle, in all cases where the amount of water introduced is not in excess relative to the amount of calcium oxide present.
  • This pulverulent composition can thus be obtained without having to resort to any separation of water and solids by filtration and / or drying or any other solid / liquid separation means.
  • the composition is then essentially in the form of residual quicklime, at least partially coated with slaked lime, in which the organic polymer is regularly and intimately distributed.
  • the composition is presented as an aqueous suspension of slaked lime, in which the organic polymer is regularly and intimately distributed.
  • the composition is in the form of a powdery solid slaked lime in which the organic polymer is regularly and intimately distributed.
  • the water used may come directly from the commercial form of the polymer (solution, emulsion or aqueous dispersion), it may also, in whole or in part, result from a dissolution, suspension or implementation. prior dispersion of the polymer in an aqueous phase.
  • organic polymer those mentioned above are used, in particular a cationic or amphoteric coagulant, based on diallyldialkyl ammonium salts.
  • the process comprises a separate addition of organic polymer, before or after said bringing into contact with a mineral agent based on quicklime and with a solution, dispersion or inverted aqueous emulsion.
  • the method according to the invention may comprise a separate addition of water before or after said bringing into contact with a mineral agent based on quicklime and with a solution, dispersion or aqueous inverse emulsion.
  • the method according to the invention does not require more infrastructure than the hardware in which a current channel extinction is performed (hydrator).
  • the process can be performed batchwise (batchwise) or continuously.
  • the presence of the quicklime and the aqueous solution or emulsion does not require an extinguishing infrastructure.
  • the interfering can in particular be carried out by sprinkling the quicklime with the solution or the aqueous emulsion, for example, during a drop of quicklime or when it is transferred to a conveyor belt or auger. or in a grinder or a mixer.
  • the process according to the invention allows an intimate contact between the lime-based inorganic agent and the organic polymer, by reaction of the quicklime and the solution, dispersion or aqueous emulsion containing the organic polymer to give the slaked lime containing the polymer.
  • the latter minority component is well distributed on the surface and / or within the solid phase of the mineral agent, in contrast to a simple mixture of the components.
  • reaction conditions which are very aggressive (highly exothermic reaction and very caustic medium)
  • the polymer thus implemented surprisingly retains its physical properties.
  • the invention also relates to a use of a composition as described above for its implementation in the treatment of water and sludge, in particular for the packaging of sludge before dewatering.
  • composition according to the invention for the treatment of sludge makes it possible to limit the number of agents, in particular of conditioning and allows a treatment in a limited number of steps, or even a single-stage conditioning. .
  • compositions according to the invention for the treatment of sludge have the advantage of presenting on the surface and therefore immediately available organic polymer and lime in the form of Ca (OH) 2 , which intervene for the conditioning of water and sludge .
  • quicklime remains, it remains partially available for an effect after the solid / liquid separation (in post-treatment).
  • the composition according to the invention is used as sole sludge conditioning agent, this conditioning taking place in particular in a single step.
  • the aforementioned modes of use are simplified compared to current practices that often require several conditioning agents, introduced sequentially.
  • the use of the compositions according to the invention no longer makes it necessary to use the iron salts for the sludge packaging, while being effective, in particular by obtaining resistant flocs, in particular compatible with the use of filter presses. .
  • Sludge packaging is therefore also made more reliable, efficient and easy to implement, without the disadvantages of the use of iron or aluminum salts.
  • composition according to the invention for the treatment of sludge allows energy savings and / or conditioning agents (coagulant, lime).
  • compositions according to the invention are prepared starting from the aforementioned reagents in the proportions by weight presented in Table 1.
  • poly-DADMAC is added in the form of a 20% concentrated liquid solution, 250 g thus comprises 50 g of active material and 200 g of water (formulation 1).
  • Table 2 The three formulations shown in Table 2 are mixed lime compositions comprising quicklime and slaked lime as well as poly-DADMAC coagulant incorporated into solid phase slaked lime.
  • Formulations 2 and 3 include mostly quicklime while the formulation 1 mainly comprises slaked lime.
  • Table 3 shows the composition of the different formulations.
  • the sludge is packaged and then filtered, in a packaging similar to that used on the industrial site from which it comes, in order to have a reference.
  • the cationic flocculant used is Zetag 8160, available from CIBA.
  • the compositions according to the invention prepared in the same manner as in Example 1, are used.
  • the dosage of conditioning agents is expressed in relation to the dry matter (DM) of the sludge.
  • DM dry matter
  • a digested sludge is subjected to the four types of packaging which are presented in Table 4 below.
  • This conditioned sludge (200 g) is then filtered via a Faure filtration / compression cell, which simulates an industrial filtration on filter press. Filtration proceeds for 30 minutes, observing a gradual rise in pressure to 5 bars in 2 minutes and then maintaining this pressure for the rest of the time.
  • the dry matter is then measured on the cakes formed after 24 hours in an oven at 105 ° C.
  • tests 2 and 3 show an improvement in filtration when using the formulations of Example 1.
  • An improvement in the dryness of the cake formed and its better disruption and a decrease in the quantities of sludge produced.
  • We will try to estimate the amount of sludge produced. We therefore define the following ratio:
  • EXAMPLE 3 Comparison of the performances of the compositions according to the invention with respect to a composition containing lime in the form of milk of lime and iron chloride
  • a biological sludge is subjected to the three compositions according to the invention used in Example 2.
  • the sludge is packaged and then filtered, in a packaging similar to that used on the industrial site from which it comes, in order to have a reference.
  • a mineral package involving 40% lime in the form of milk of lime and 10% of ferric chloride is used, relative to the DM of the sludge.
  • the composition 1 which was the subject of the test 2 provides a good dehydration of the biological sludge. It allows to obtain a good clearance and a reduction of sludge produced, compared to the reference conditioning on the industrial site.
  • the composition 3, in combination with ferric chloride, in a smaller amount, also allows satisfactory dehydration and easy removal.
  • the other formulations do not make it possible to obtain satisfactory results, probably due to a lack of coagulant in the composition.
  • compositions according to the invention Stability of the Composition
  • comparative sludge conditioning tests are carried out using freshly formulated compositions according to the invention and formulations previously stored for 2 weeks. After 2 weeks, there is no visible difference. The tests are carried out on three different sludges, a digested sludge and two undigested biological slurries. For each slurry, the composition according to the invention is used which makes it possible to obtain the best conditioning performance, as can be seen from the reading of Examples 1 to 3.
  • Biological sludge is subjected to two types of conditioning prior to centrifuge dewatering.
  • the first packaging comprises an addition of a cationic flocculant and a thin quicklime ( ⁇ 90 ⁇ m), partially extinguished as disclosed in patent EP 1 154 958, which is added in pulverulent form while the second conditioning comprises an addition of the same cationic flocculant and of the composition 3 according to the invention.
  • the tests are carried out on a centrifuge desiccating sludge from a biological treatment and thickened.
  • the flocculant used is a highly cationic flocculant branched in emulsion.
  • the composition or lime is injected into the sludge before injection of the flocculant. For each conditioning the optimal dose of flocculant is used.
  • the composition according to the invention makes it possible to reduce the dose of flocculant to be used while maintaining the final dryness of the dewatered sludge for the same lime dosage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Composition à base de chaux comprenant au moins un agent minéral composé de chaux éteinte en phase solide et un polymère organique incorporé dans ladite phase solide, procédé de fabrication et utilisation pour sa mise en oeuvre dans le traitement des eaux et boues, en particulier pour le conditionnement de boues avant déshydratation.

Description

"COMPOSITIONS À BASE DE CHAUX, LEUR PROCÉDÉ DE FABRICATION ET LEUR UTILISATION EN TRAITEMENT DES EAUX
ET BOUES"
La présente invention se rapporte à une composition à base de chaux comprenant au moins de la chaux éteinte en phase solide et au moins un polymère organique.
Au sens de l'invention, par le terme « chaux éteinte », on entend une chaux constituée d'un ensemble de particules solides, principalement de dihydroxyde de calcium Ca(OH)2 qui est le résultat de la réaction de particules de chaux vive avec de l'eau, réaction appelée hydratation ou extinction. La chaux éteinte s'appelle également chaux hydratée. Par la suite, le dihydroxyde de calcium sera nommé simplement hydroxyde de calcium ou Ca(OH)2.
De façon générale, la chaux éteinte obtenue peut évidemment contenir les impuretés, principalement issues de la chaux vive. La chaux éteinte peut se présenter sous forme pulvérulente ou sous forme de suspension aqueuse, appelée lait de chaux.
La chaux éteinte est notamment utilisée dans le traitement des eaux ou des boues. Par exemple, le document US 4711727 évoque le traitement des eaux par de la chaux éteinte et par un agent floculant organique contenus dans une suspension.
Les traitements de purification des eaux potables, usées ou industrielles engendrent des résidus appelés boues. Ces boues sont d'abord séparées de l'eau purifiée puis traitées afin de les stabiliser et de les concentrer. Le traitement des boues, en particuliers urbaines et industrielles, comprend notamment une étape de conditionnement et de séparation solide/liquide, aussi appelée déshydratation, notamment sur filtre à bandes-presseuses, centrifugeuse ou filtre presse chambré et /ou à membranes.
La notion de conditionnement, en particulier de conditionnement chimique, doit être comprise dans la présente invention comme défini par Degrémont dans « Mémento Technique de l'eau,
Edition du Cinquantenaire 1989, 9ème édition » au chapitre 19, en particulier au pages 949 à 959.
Par les termes « boues » au sens de l'invention, on entend un résidu présentant un taux de matière sèche d'au moins 0,5%, souvent supérieur ou égal à 1 %; Les boues peuvent être minérales ou organiques ou huileuses. Une incorporation d'un composé calcique, généralement de la chaux, est souvent associée au traitement précité, afin de conditionner mais aussi d'hygiéniser et/ou de stabiliser les boues pour leur stockage à long terme (tenue en tas, etc.) ou encore d'améliorer durablement leurs propriétés d'usage (pelletabilité, épandabilité, etc.) ou en vue d'augmenter leur valeur agronomique. Le composé calcique peut être ajouté à la boue avant (pré-chaulage) et/ou après (post-chaulage) l'étape de déshydratation précitée.
Le conditionnement des boues est donc en réalité un traitement dans lequel les caractéristiques des boues sont modifiées pour faciliter la séparation de la phase solide et de la phase liquide.
Parmi les différents conditionnements connus visant à préparer la boue, on distingue notamment le conditionnement organique et le conditionnement minéral.
Le conditionnement dit organique : utilisation de polymère organique comme seul floculant (dosage-type 2 à 20 kg par tonne de matières sèches). Seuls les polyélectrolytes de synthèse à longues chaînes (masses moléculaires élevées, notamment à base de polyacrylamide) sont efficaces ; ils forment des flocs volumineux.
Le conditionnement dit minéral : utilisation conjointe d'un sel de fer ou d'aluminium, comme le chlorure ferrique (dosage-type : 3 à 10 % en poids par rapport à la matière sèche traitée) et de la chaux (dosage-type : 10 à 40 % en poids par rapport à la matière sèche traitée). Ce mode de conditionnement produit un floc fin mais très robuste aux contraintes. Néanmoins, l'utilisation de sels de fer n'est pas sans poser de problème d'exploitation tels que : corrosion des canalisations et des filtres en acier ou fonte, risque de brûlures pour le personnel...
Il existe également des conditionnements mixtes (minéral et organique) afin d'optimiser les performances de déshydratation. Une autre possibilité de conditionnement mixte est divulguée dans le document EP 1 154 958 (WO 00/47527). Le procédé divulgué enseigne une addition de chaux comme agent minéral à des boues industrielles, chaux choisie pour éviter que le pH de la boue à laquelle la chaux a été ajoutée ne s'élève trop rapidement. Dans le document WO2008/058973, un procédé de traitement de boues par de la chaux est décrit dans lequel, puisque les polymères cationiques se dégradent en général rapidement à partir d'un pH valant 9 ou 10, un floculant organique anionique est ajouté à la boue. Puisque le floculant anionique présente un optimum d'activité aux pH au- delà de 10 à 12, il est donc préférable d'effectuer une montée de pH rapide ce que permet parfaitement l'addition de chaux à la boue.
Comme on le voit, toutes les méthodes de conditionnement ci-dessus présentent des inconvénients. Le conditionnement organique n'est pas le mieux adapté à certains systèmes de déshydratation comme les filtres-presses; les autres conditionnements évoqués font notamment appel aux sels de fer, dont il est préférable de réduire l'usage en raison des problèmes précités, ou encore sont limités, notamment dans le choix de la chaux.
Il est donc utile de pouvoir combiner les avantages des polymères organiques, notamment pour leurs performances à faible dose, et d'un agent minéral, qui apporte notamment structure et résistance, en limitant les inconvénients précités des sels de fer ou analogues. Comme agent minéral, un composé calcique confère en outre les propriétés citées plus haut. II existe donc un besoin de disposer d'une composition comprenant notamment un agent minéral à base de chaux éteinte et au moins un polymère organique, capable de conditionner des boues à elle seule, de façon simple, sure et efficace, de préférence en un nombre d'étapes limité. En particulier, il est avantageux que la composition précitée soit un solide, facile à fabriquer et à manipuler, de préférence stable au cours du temps et aisé à incorporer aux boues à traiter. Il convient également que le polymère, minoritaire, soit bien réparti par rapport à l'agent minéral. Avantageusement, il est utile que l'agent minéral précité ne soit ajouté qu'une seule fois lors du traitement des boues, et donc qu'il ait une efficacité également après la déshydratation (post-traitement).
L'invention a donc pour but de pallier les insuffisances de l'état de la technique à ces égards et d'apporter une solution à ces attentes, sans toutefois altérer les propriétés physiques de chacun des deux agents (le minéral et le polymère).
Suivant l'invention, on prévoit une composition dans laquelle ledit polymère organique est incorporé dans ladite phase solide de la chaux éteinte.
Dès lors, comme on peut le constater, l'invention est relative à une composition à base de chaux dans laquelle un contact intime existe entre le polymère organique et au moins une partie de l'agent minéral, en particulier la chaux éteinte, ce qui confère une bonne répartition du polymère dans l'agent minéral. Par le fait que ledit polymère organique soit incorporé dans la phase solide d'agent minéral, en particulier de chaux éteinte, le polymère organique qui est un composant minoritaire est en réalité bien réparti à la surface et/ou au sein de la phase solide de l'agent minéral contrairement à un simple mélange des composants.
En outre, il a été observé de manière très surprenante que le polymère organique incorporé dans la phase solide conserve ses propriétés physiques notamment pour le conditionnement préalable à la déshydratation des boues.
Dans une forme de réalisation alternative, la composition selon l'invention comprend en outre une quantité d'eau suffisante pour former une suspension aqueuse, qui sera par exemple appropriée lorsque des laits de chaux sont souhaités. Dans les modes de réalisation précités, la composition se présente à priori sous la forme d'un solide, en général pulvérulent mais bien entendu, dans une forme alternative de l'invention la composition peut se présenter sous la forme d'une suspension.
Dans une forme de réalisation avantageuse, ledit agent minéral comprend en outre de la chaux vive. Comme on peut le constater, dans cette forme de réalisation particulière, l'agent minéral de la composition selon l'invention est essentiellement constitué de chaux vive et de chaux éteinte.
On entend par chaux vive, un composé solide minéral, dont la composition chimique est principalement de l'oxyde de calcium CaO. La chaux vive est communément obtenue par cuisson de calcaire, principalement constitué de CaCO3, dont il peut subsister quelques pour cents dans la chaux. La chaux vive contient des impuretés, à savoir, des composés tels de l'oxyde de magnésium MgO, de la silice SiO2 ou encore de l'alumine AI2O3, etc., à hauteur de quelques pourcents. Il est entendu que ces impuretés sont exprimées sous les formes précitées mais peuvent en réalité apparaître sous des phases différentes. La composition selon l'invention se présente essentiellement comme des particules de chaux vive résiduaires, enrobées, éventuellement partiellement, d'une couche de phase solide présentant une composition mixte Ca(OH)2/polymère organique, dans laquelle le polymère organique est réparti intimement et de façon homogène.
Bien entendu, la présente invention couvre également des compositions comprenant des particules de chaux vive résiduaires enrobées, du moins partiellement, d'une couche de composition mixte susdite ainsi que des particules de chaux vive non enrobées. Dans une forme de réalisation avantageuse de la composition selon l'invention, la chaux éteinte est présente en une quantité allant de 0,5 à 99,8 % en poids par rapport au poids de la composition, de préférence de 1 à 99 % et de manière plus préférentielle de 10 à 70 % en poids par rapport au poids total de la composition. En outre, et de manière avantageuse, ledit polymère organique est présent en une quantité allant de 0,2 à 10 % en poids, de préférence de 0,5 à 8 % en poids et de manière plus préférentielle, de 1 à 6,5 % en poids par rapport au poids total de la composition.
De plus, dans une variante selon l'invention, ladite chaux vive est présente en une quantité allant de 0,1 % à 99,3 %, de préférence de 20 à 80 % en poids par rapport au poids total de la composition.
En particulier, l'agent minéral de la composition selon l'invention est essentiellement constitué de chaux vive et de chaux éteinte. La chaux éteinte est comprise entre 5 g et 1000 g par 1000 g de chaux, le reste de la chaux étant sous la forme de chaux vive. Dans une forme de réalisation de l'invention, la chaux éteinte est comprise entre 10 g et 990 g par 1000 g de chaux, notamment entre 20 g et 900 g, avantageusement entre 50 g et 800 g, en particulier entre 100 g et 700 g par 1000 g de chaux.
Les compositions selon l'invention comprennent avantageusement entre 2 g et 100 g de polymère organique (exprimé en matière active MA) pour 1 kg de chaux (exprimés en équivalent de chaux éteinte Ca(OH)2), de préférence entre 5 g et 80 g de polymère organique précité pour 1 kg de chaux, de façon particulièrement préférentielle entre 10 g et 65 g de polymère organique précité pour 1 kg de chaux.
Dans une forme particulière de l'invention, ledit polymère organique est un polymère hydrophile de nature non-ionique, anionique, cationique ou amphotère, linéaire, ramifié et/ou réticulé. De par sa nature hydrophile, ledit polymère organique présente une affinité avec l'eau et peut donc être mis en suspension ou en solution dans une phase aqueuse, laquelle pourra être utilisée ultérieurement pour l'extinction, au moins partielle, de la chaux vive en vue de former la composition selon l'invention contenant une quantité prédéterminée de chaux éteinte. L'invention concerne le secteur technique des polymères hydrophiles organiques. Selon l'invention, les polymères utilisés sont solubles dans l'eau et peuvent être de nature non ionique, anionique, cationique ou amphotère.
En pratique, dans une forme de réalisation, le polymère utilisé peut être obtenu à partir d'un ou plusieurs des monomères choisis parmi: a) les monomères anioniques possédant une fonction carboxylique (ex : acide acrylique, acide méthacrylique, et leurs sels...) ou possédant une fonction acide sulfonique (ex : acide 2-acrylamido-2-nnéthylpropane sulfonique (ATBS) et leurs sels...). b) les monomères non ioniques : acrylamide, méthacrylamide, N- vinyl pyrrolidone, vinylacétate, alcool vinylique, esters acrylate, alcool allylique, le N-vinyl acétamide, la N-vinylformamide, c) et/ou les monomères cationiques : on citera, en particulier et de façon non limitative, l'acrylate de diméthylaminoéthyle (ADAME) et/ou le méthacrylate de diméthylaminoéthyle (MADAME) quaternisés ou salifiés, le chlorure de diméthyldiallylammonium (DADMAC), le chlorure d'acrylamido propyltriméthyl ammonium (APTAC) et/ou le chlorure de méthacrylamido propyltriméthyl ammonium (MAPTAC), éventuellement en association avec un ou plusieurs monomère(s) hydrophobe(s) choisi préférentiellement dans le groupe comprenant les esters d'acide (méth)acrylique à chaîne alkyle, arylalkyle et/ou éthoxylée, les dérivés de (méth)acrylamide à chaîne alkyle, arylalkyle ou dialkyle, les dérivés allyliques cationiques, les dérivés de (méth)acryloyle hydrophobes anioniques ou cationiques, ou les monomères anioniques et/ou cationiques dérivés de (méth)acrylamide portant une chaîne hydrophobe.
Ce type de polymère ne nécessite pas le développement de procédé de polymérisation particulier. Il peut être obtenu par toutes les techniques de polymérisation bien connues par l'homme de métier : polymérisation en gel, polymérisation par précipitation, polymérisation en émulsion (aqueuse ou inverse) suivie ou non d'une étape distillation, polymérisation en suspension, polymérisation en solution.
Ledit polymère organique est, dans une forme de réalisation avantageuse, un polymère organique modifié chimiquement, c'est-à-dire un polymère ayant subi une réaction de post-modification. Par « post modification » on désigne ici des polymères ayant subi une modification de leur structure chimique par réaction d'un ou plusieurs réactifs après polymérisation. On citera par exemple les réactions d'hydrolyse et de neutralisation, de greffage de fonctions ou de chaînes, ou encore les réactions de modification de fonctions chimiques (réaction de Mannich, glyoxalation, greffage d'une fonction hydroxamate, de chaînes latérales hydrophobes ou hydrophiles, dégradation d'Hofmann...), d'ajustements de pH (acidification, basification, tamponnage)... De plus, de manière connue, le polymère peut également être ramifié ou réticulé. Comme on le sait, un polymère ramifié est un polymère qui présente sur la chaîne principale des branches, des groupements ou des ramifications. Un polymère réticulé est, quant à lui, un polymère dont certaines de ses chaînes sont reliées entre elles par des ponts chimiques covalents formant ainsi un réseau. On pourra effectuer la ramification ou la réticulation de préférence durant (ou éventuellement après) la polymérisation, en présence d'un agent ramifiant/réticulant et éventuellement d'un agent de transfert. On trouvera ci dessous une liste non limitative des ramifiants : méthylène bisacrylamide (MBA), l'éthylène glycol di-acrylate, le polyéthylène glycol diméthacrylate, le diacrylamide, le cyanométhylacrylate, le vinyloxyéthylacrylate ou méthacrylate, la thallylamine, le formaldéhyde, le glyoxal, les composés de type glycidyléther comme l'éthylèneglycol diglycidyléther, ou des époxy ou tout autre moyen bien connu de l'homme de métier permettant la ramification.
Dans une variante, la composition comprend un polymère constitué d'une résine de type polyamine à base d'épichlorhydrine, de type dicyandiamide, de type mélamine formaldéhyde, de type polyalkylèneimine et analogue. En effet, ledit polymère utilisé peut être obtenu par une réaction de polycondensation. Par « polycondensat » on désigne ici des polymères hydrosolubles obtenus par polycondensation, c'est à dire par un processus de polymérisation par condensations répétées avec élimination de molécules simples ou non (dans ce cas on parlera plutôt de polyadditions). La croissance des chaînes de polymère est engendrée par la consommation de groupements réactifs alors que dans les réactions radicalaires les groupements réactifs sont générés continuellement lors de la croissance des chaînes. Comme polycondensats, on citera, par exemple, les polyamines à base d'épichlorhydrine, les résines dicyandiamide, les résines mélamine formaldéhyde, les polyalkylèneimines,...
Dans une forme particulière de l'invention, ledit polymère organique est un floculant non ionique, anionique, cationique ou amphotère présentant un poids moléculaire moyen pondéral compris entre 5.106 g/mol et 40.106 g/mol.
Dans une variante avantageuse selon l'invention, ledit polymère organique est un coagulant cationique ou amphotère et présentant un poids moléculaire moyen pondéral compris entre 20 000 et 5.106 g/mol. Avantageusement, le poids moléculaire moyen pondéral est supérieur ou égal à 50.000 g/mol, en particulier supérieure ou égal à 200.000 g/mol et de préférence supérieur ou égal à 500.000 g/mol. En outre, le poids moléculaire moyen pondéral est avantageusement inférieur ou égal à 3.106 g/mol. Dans une forme de réalisation avantageuse, ledit coagulant cationique ou amphotère est à base de sel de diallyldialkyl ammonium.
Les compositions selon l'invention sont avantageusement stables, de façon à être préparées plusieurs jours, voire plusieurs semaines avant leur utilisation. Les compositions pulvérulentes selon l'invention présentent l'avantage de la facilité d'usage d'une poudre, sans nécessité de recourir à l'intermédiaire de polymères sous la forme solide, parfois difficiles et plus coûteux à obtenir par rapport aux solutions ou émulsions. D'autres formes de réalisation des compositions suivant l'invention sont indiquées dans les revendications annexées.
La présente invention a également pour objet un procédé de préparation d'une composition à base de chaux selon l'inventioncomprenant une mise en présence d'un agent minéral et d'une solution, dispersion ou émulsion inverse aqueuse comprenant au moins un polymère organique et de l'eau. Un tel procédé est par exemple connu du document US 4711727 qui divulgue la préparation d'une suspension de chaux éteinte (Hydralime) et de carbonate de calcium (Snowcal) à laquelle sera ensuite mélangé un polymère organique pour traiter les eaux usées. Malheureusement un tel procédé ne permet pas d'obtenir une composition prête à l'emploi, stable, dans laquelle un contact intime existe entre le polymère organique et au moins une partie de l'agent minéral.
L'invention procure donc, pour résoudre ce problème un procédé caractérisé en ce que ledit agent minéral est à base de chaux vive en ce que le procédé comprend les étapes comprenant une : réaction au moins partielle de la chaux vive avec tout ou partie de ladite eau contenant ledit polymère organique, et formation de chaux éteinte en phase solide à laquelle ledit polymère organique est incorporé.
La taille des particules de l'agent minéral à base de chaux vive précité n'est pas critique ; certaines peuvent notamment atteindre plusieurs millimètres. Dans certains modes de réalisation de l'invention, la taille des particules sera majoritairement inférieure à 2 mm, de préférence à 1 mm, avantageusement à 500 μm, tout particulièrement à 200 μm. De plus, 90 % des particules présentes ont une taille de particules supérieure à 0,5 μm, voire à 1 μm.
Dans le procédé selon l'invention, l'eau de la solution, dispersion ou émulsion inverse contenant le polymère va réagir avec la chaux vive et/ou s'évaporer sous l'action exothermique de la réaction, permettant l'obtention d'un solide pulvérulent sec (ne contenant pas ou très peu d'eau libre), facile à manipuler, dans tous les cas où la quantité d'eau introduite n'est pas en excès par rapport à la quantité d'oxyde de calcium présent. Cette composition pulvérulente peut donc être obtenue sans devoir recourir à une quelconque séparation de l'eau et des solides par filtration et/ou séchage ou tout autre moyen de séparation solide/liquide. La composition se présente alors essentiellement sous la forme de chaux vive résiduelle, enrobée, du moins partiellement, de chaux éteinte, dans laquelle le polymère organique est régulièrement et intimement réparti.
Si la quantité d'eau introduite est largement en excès de la quantité de CaO présent, la composition se présente comme une suspension aqueuse de chaux éteinte, dans laquelle le polymère organique est régulièrement et intimement réparti. Dans un cas intermédiaire, la composition se présente comme une chaux éteinte solide pulvérulente, dans laquelle le polymère organique est régulièrement et intimement réparti.
Selon l'invention, l'eau mise en œuvre peut provenir directement de la forme commerciale du polymère (solution, émulsion ou dispersion aqueuse), elle peut également, en tout ou partie, résulter d'une dissolution, mise en suspension ou mise en dispersion préalable du polymère dans une phase aqueuse.
Comme polymère organique, on utilise ceux cités plus haut, en particulier un coagulant cationique ou amphotère, à base de sels de diallyldialkyl ammonium. Dans une variante du procédé selon l'invention, le procédé comprend une addition séparée de polymère organique, avant ou après ladite mise en présence d'un agent minéral à base de chaux vive et d'une solution, dispersion ou émulsion inversée aqueuse. En outre, le procédé selon l'invention peut comprendre une addition séparée d'eau avant ou après ladite mise en présence d'un agent minéral à base de chaux vive et d'une solution, dispersion ou émulsion inverse aqueuse.
Comme on peut le constater, le procédé suivant l'invention ne demande pas plus d'infrastructure que le matériel dans lequel une extinction par voie courante est effectuée (hydrateur). Le procédé peut être réalisé en discontinu (par batchs) ou de façon continue. Dans certains modes de réalisation du procédé, la mise en présence de la chaux vive et de la solution ou de l'émulsion aqueuse ne nécessite pas d'infrastructure d'extinction. La mise en présence peut notamment s'effectuer par aspersion de la chaux vive au moyen de la solution ou de l'émulsion aqueuse, par exemple, lors d'une chute de chaux vive ou lors de son transfert sur une bande ou une vis transporteuse ou encore dans un broyeur ou bien un mélangeur.
On constate que le procédé selon l'invention permet un contact intime entre l'agent minéral à base de chaux et le polymère organique, par réaction de la chaux vive et de la solution, dispersion ou émulsion aqueuse contenant le polymère organique pour donner de la chaux éteinte contenant le polymère. De ce fait, ce dernier composant minoritaire, est bien réparti à la surface et/ou au sein de la phase solide de l'agent minéral contrairement à un simple mélange des composants. De plus, malgré des conditions réactionnelles qui lui sont très agressives (réaction fortement exothermique et milieu très caustique), le polymère ainsi mise en œuvre conserve de façon surprenante ses propriétés physiques. D'autres formes de réalisation du procédé suivant l'invention sont indiquées dans les revendications annexées.
L'invention concerne également une utilisation d'une composition telle que décrite ci-dessus pour sa mise en œuvre dans le traitement des eaux et boues, en particulier pour le conditionnement de boues avant leur déshydratation.
L'utilisation d'une composition selon l'invention pour le traitement des boues permet de limiter le nombre d'agents, notamment de conditionnement et permet un traitement en un nombre d'étape d'étapes limité, voire un conditionnement en une seule étape.
Les compositions selon l'invention pour le traitement des boues présentent l'avantage de présenter en surface et donc de façon immédiatement disponible le polymère organique et la chaux sous la forme de Ca(OH)2, qui interviennent pour le conditionnement des eaux et boues. Dans les formes de réalisation des compositions selon l'invention, dans lesquelles subsiste de la chaux vive, celle-ci reste partiellement disponible pour un effet après la séparation solide/liquide (en post-traitement).
De façon préférentielle, la composition selon l'invention est utilisée comme unique agent de conditionnement des boues, ce conditionnement s'effectuant en particulier en une seule étape. Les modes d'utilisation précités sont simplifiés par rapport aux pratiques courantes qui nécessitent souvent plusieurs agents de conditionnement, introduits de façon séquentielle. L'utilisation des compositions selon l'invention ne rend plus nécessaire le recours aux sels de fer pour le conditionnement de boues, tout en étant efficace, notamment par l'obtention de flocs résistants, en particulier compatibles avec l'usage de filtres-presses. Le conditionnement de boues est dès lors également rendu plus fiable, performant et aisé à mettre en œuvre, sans les inconvénients du recours à des sels de fer ou aluminium.
L'utilisation d'une composition selon l'invention pour le traitement des boues permet des économies énergétiques et/ou sur les agents de conditionnement (coagulant, chaux).
D'autres utilisations selon l'invention sont mentionnées dans les revendications annexées.
D'autres caractéristiques, détails et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif et en faisant référence aux exemples et aux figures.
L'invention va maintenant être décrite plus en détail au moyen d'exemples non limitatifs.
Exemple 1 Formulation de composition selon l'invention
On utilise une chaux vive industrielle de granulométrie majoritairement inférieure à 90 micromètres et comme polymère organique, un coagulant comprenant des sels de diallyldialkyl ammonium (polyDADMAC-FL4820 sous la forme d'un liquide comprenant 20 % de matière active).
On réalise trois compositions selon l'invention au départ des réactifs précités dans les proportions pondérales présentées au Tableau 1.
Tableau 1
Figure imgf000016_0001
Dans un malaxeur asynchrone, on introduit 1000 g de chaux vive. Le coagulant est ensuite ajouté dans les proportions illustrées au Tableau 1 , sous agitation, de façon à assurer une bonne répartition et l'agitation est maintenue pendant 30 minutes. La température est mesurée régulièrement et la température maximale est enregistrée.
Les résultats de l'Exemple 1 sont illustrés au Tableau 2. Tableau 2
Figure imgf000017_0001
(1 ) Puisque le poly-DADMAC est ajouté sous la forme d'une solution liquide concentrée à 20 %, 250 g comprennent donc 50 g de matière active et 200 g d'eau (formulation 1 ).
Comme on peut le constater, on observe une élévation de température importante pendant la formulation due à la réaction d'hydratation. Plus la quantité de poly-DADMAC ajoutée est importante, plus la température maximale enregistrée est élevée. En ce qui concerne les formulations 1 et 2, une évaporation importante de l'eau est observée. Toute l'eau ne réagit pas avec la chaux, une partie s'évapore en raison de l'augmentation de température observée.
Les trois formulations présentées au Tableau 2 sont des compositions de chaux mixtes comprenant de la chaux vive et de la chaux éteinte ainsi que du coagulant poly-DADMAC incorporé dans la chaux éteinte en phase solide. Les formulations 2 et 3 comprennent majoritairement de la chaux vive tandis que la formulation 1 comprend majoritairement de la chaux éteinte.
Le Tableau 3 montre la composition des différentes formulations.
Tableau 3
Figure imgf000018_0001
Exemple 2
Comparaison des performances des compositions selon l'invention par rapport à une composition contenant un floculant cationique
Pour le premier essai, la boue est conditionnée et puis filtrée, suivant un conditionnement analogue à celui utilisé sur le site industriel dont elle provient, afin d'avoir une référence. Le floculant cationique utilisé est le Zetag 8160, disponible auprès de la société CIBA. Pour les trois autres essais, on utilise les compositions selon l'invention, préparées de la même manière que dans l'Exemple 1 . Les dosage d'agents de conditionnement s'expriment par rapport à la matière sèche (MS) de la boue. On soumet donc une boue digérée aux quatre types de conditionnements qui sont présentés au Tableau 4 ci-dessous. Cette boue conditionnée (200 g) est ensuite filtrée via une cellule de filtration/compression Faure, qui simule une filtration industrielle sur filtre-presse. La filtration se déroule pendant 30 minutes, en observant une montée progressive de la pression jusqu'à 5 bars en 2 minutes puis un maintien de cette pression pendant le reste du temps. On mesure ensuite la matière sèche sur les gâteaux formés après 24 heures à l'étuve à 105°C.
Tableau 4
Figure imgf000019_0001
Comme on peut le constater, les essais 2 et 3 (compositions 1 et 2) montrent une amélioration de la filtration lors de l'utilisation des formulations de l'Exemple 1. On observe ainsi une amélioration de la siccité du gâteau formé ainsi que son meilleur débâtissage et une diminution des quantités de boues produites. En effet, pour comparer les performances de différents conditionnements, outre la siccité, on cherchera à estimer la quantité de boues produites. On définit donc le rapport suivant:
Q= Quantité de boue déshydratée/quantité de matière sèche initialement présente dans la boue à traiter
Le dernier essai montre un moins bon comportement lié à une dose de coagulant trop faible dans la composition chaux/polymère selon l'invention. Par contre, la combinaison de cette composition 3 avec un floculant organique en faible quantité offre un avantage illustré à l'exemple 5.
Exemple 3 Comparaison des performances des compositions selon l'invention par rapport à une composition contenant de la chaux sous forme de lait de chaux et du chlorure de fer On soumet une boue biologique aux trois compositions suivant l'invention utilisées à l'Exemple 2. Pour le premier essai, la boue est conditionnée et ensuite filtrée, suivant un conditionnement analogue à celui utilisé sur le site industriel dont elle provient, afin d'avoir une référence. On utilise un conditionnement minéral mettant en jeu 40 % de chaux sous forme de lait de chaux et 10 % de chlorure ferrique, par rapport à la MS de la boue.
Les résultats des conditionnements de boues biologiques obtenus sont présentés au Tableau 5.
Tableau 5
Figure imgf000021_0001
Comme on peut le constater, la composition 1 ayant fait l'objet de l'essai 2 permet d'obtenir une bonne déshydratation de la boue biologique. Elle permet d'obtenir un bon débâtissage et une diminution des boues produites, par rapport au conditionnement de référence sur le site industriel. Par ailleurs à l'essai 5, la composition 3, en combinaison avec du chlorure ferrique, en plus faible quantité, permet également une déshydratation satisfaisante et un débâtissage aisé. Les autres formulations ne permettent pas d'obtenir des résultats satisfaisants probablement par manque de coagulant dans la composition.
Exemple 4
Stabilité de la composition Afin de déterminer la stabilité des diverses compositions suivant l'invention, on effectue des tests comparatifs de conditionnement de boues en utilisant des compositions suivant l'invention fraîchement formulées et des formulations stockées préalablement pendant 2 semaines. Après 2 semaines, on n'observe pas de différence visible. Les essais sont effectués sur trois boues différentes, une boue digérée et deux boues biologiques non digérées. Pour chaque boue on utilise la composition selon l'invention qui permet d'obtenir les meilleures performances de conditionnement comme on a pu le constater à la lecture des Exemples 1 à 3.
Les résultats du test de stabilité selon l'invention sont présentés au Tableau 6.
Tableau 6
K) κ>
Figure imgf000023_0001
Comme on peut le constater, dans tous les cas, on a pu obtenir de bonnes performances de filtration, y compris après 2 semaines de stockage des compositions suivant l'invention.
On observe également une légère amélioration de la siccité des gâteaux pour les compositions ayant été stockées pendant 2 semaines.
Exemple 5
Intérêt sur centrifugeuse
On soumet une boue biologique à deux types de conditionnement avant déshydratation sur centrifugeuse. Le premier conditionnement comprend une addition d'un floculant cationique et d'une chaux vive fine (<90 μm), partiellement éteinte telle que divulguée dans le brevet EP 1 154 958, que l'on ajoute sous forme pulvérulente tandis que le second conditionnement comprend une addition du même floculant cationique et de la composition 3 selon l'invention.
Les tests sont réalisés sur un centrifugeuse déshydratant des boues issues d'un traitement biologique et épaissies.
Le floculant utilisé est un floculant fortement cationique ramifié en émulsion. La composition ou la chaux est injectée dans la boue avant injection du floculant. Pour chaque conditionnement la dose optimale de floculant est utilisée.
Tableau 7
Figure imgf000024_0001
Comme on peut le constater, en association avec un floculant, la composition selon l'invention permet de diminuer la dose de floculant à mettre en œuvre tout en conservant la siccité finale des boues déshydratées et ce pour un même dosage de chaux.
Il est bien entendu que la présente invention n'est en aucune façon limitée aux formes de réalisation décrites ci-dessus et que bien des modifications peuvent y être apportées sans sortir du cadre des revendications annexées.

Claims

REVENDICATIONS
1. Composition à base de chaux comprenant au moins un agent minéral comprenant au moins de la chaux éteinte en phase solide et au moins un polymère organique caractérisé en ce que ledit au moins un polymère organique est incorporé dans ladite phase solide de la chaux éteinte.
2. Composition à base de chaux selon la revendication 1 , comprenant en outre une quantité d'eau suffisante pour former une suspension aqueuse.
3. Composition selon la revendication 1 , dans laquelle ledit agent minéral comprend en outre de la chaux vive.
4. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle la chaux éteinte est présente en une quantité allant de 0,5 à 99,8 % en poids de préférence de 1 à 99 % en poids et de manière plus préférentielle de 10 à 70 % en poids par rapport au poids de la composition.
5. Composition selon l'une quelconque des revendications 1 à 4, dans laquelle ledit polymère organique est présent en une quantité allant de 0,2 à 10 % en poids, de préférence de 0,5 à 8 % en poids et de manière plus préférentielle de 1 à 6,5 % en poids par rapport au poids de la composition.
6. Composition selon l'une quelconque des revendications 3 à 5, dans laquelle ladite chaux vive est présente en une quantité allant de 0,1 % à 99,3 %, de préférence de 20 à 80 % en poids par rapport au poids de la composition.
7. Composition selon l'une quelconque des revendications précédentes dans laquelle ledit polymère organique est un polymère hydrophile de nature non ionique, anionique, cationique ou amphotère, linéaire, ramifié ou réticulé.
8. Composition selon la revendication 7, dans laquelle ledit polymère organique est choisi dans le groupe des polymères organiques et des copolymères organiques et comprend un ou plusieurs monomères choisis dans le groupe constitué des monomères anioniques possédant une fonction carboxylique ou sulfonique, en particulier de l'acide acrylique, de l'acide méthacrylique, de l'acide 2-acrylamido-2- méthylpropane sulfonique (ATBS), et leurs sels, des monomères non ioniques comme l'acrylamide, le méthacrylamide, la N-vinyl pyrolidone, le vinylacétate, l'alcool vinylique, les esters acrylate, l'alcool allylique, le N-vinyl acétamide et la N-vinyl formamide, des monomères cationiques comme l'acrylate de diméthyl aminométhyl (ADAME), le méthacrylate de diméthyl aminométhyl (MADAME) quaternités ou salifiés, le chlorure de diméthyldiallylammonium (DADMAC), le chlorure d'acrylamido propyltriméthyl ammonium (APTAC) et le chlorure de méthacrylamido propyltriméthyl ammonium (MAPTAC), éventuellement en association avec un ou plusieurs monomère(s) hydrophobe(s), de préférence choisis dans le groupe constitué des esters d'acide (méth)acrylique à chaine alkyle, arylalkyle et/ou éthoxylée, les dérivés de (méth)acrylamide à chaîne alkyle, arylalkyle ou dialkyle, les dérivés allyliques cationiques, les dérivés de (méth)acryloyle hydrophobes anioniques ou cationiques ou en association avec un ou plusieurs monomère(s) anionique(s) et/ou cationique(s) dérivé(s) de (méth)acrylamide portant une chaîne hydrophobe.
9. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit polymère organique est un polymère organique modifié chimiquement.
10. Composition selon l'une quelconque des revendications 1 à 7, dans laquelle ledit polymère est constitué d'une résine de type polyamine à base d'épichlorhydrine, de type dicyandiamide, de type mélamine formaldéhyde, de type polyalkylèneimine et analogue.
11. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit polymère organique est un floculant non ionique, anionique, cationique ou amphotère présentant un poids moléculaire moyen pondéral compris entre 5.106 g/mol et 40.106 g/mol
12. Composition selon l'une quelconque des revendications précédentes, dans laquelle ledit polymère organique est un coagulant, cationique ou amphotère, présentant un poids moléculaire moyen pondéral compris entre 20.000 et 5.106 g/mol.
13. Composition selon la revendication 12, dans laquelle ledit coagulant cationique ou amphotère est à base de sels de diallyldialkylammonium.
14. Procédé de préparation d'une composition selon l'une quelconque des revendications précédentes comprenant :
- une mise en présence d'un agent minéral et d'une solution dispersion ou émulsion inverse, aqueuse, comprenant au moins un polymère organique et de l'eau caractérisé en ce que ledit agent minéral est à base de chaux vive et en ce que le procédé comprend
- une réaction au moins partielle de la chaux vive avec tout ou partie de ladite eau contenant ledit polymère organique, et - une formation de chaux éteinte en phase solide à laquelle ledit polymère organique est incorporé.
15. Procédé selon la revendication 14, comprenant en outre :
- une addition séparée de polymère organique, avant ou après ladite mise en présence d'un agent minéral à base de chaux vive et d'une solution, dispersion ou émulsion inverse aqueuse.
16. Procédé selon la revendication 14 ou la revendication 15, comprenant en outre une addition séparée d'eau, avant ou après ladite mise en présence d'un agent minéral à base de chaux vive et d'une solution, dispersion ou émulsion inverse aqueuse.
17. Utilisation de la composition suivant l'une quelconque des revendications 1 à 13, pour sa mise en œuvre dans le traitement des eaux et boues, en particulier pour le conditionnement de boues avant déshydratation.
PCT/EP2010/053478 2009-03-17 2010-03-17 Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues WO2010106111A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL10709016T PL2408718T3 (pl) 2009-03-17 2010-03-17 Kompozycja na bazie wapna, sposób jej otrzymywania i jej zastosowanie do oczyszczania wody i osadów ściekowych
BRPI1009305-2A BRPI1009305B1 (pt) 2009-03-17 2010-03-17 Composição à base de cal, o respectivo processo de fabricação e a respectiva utilização em tratamento de águas e lamas
RU2011141847/05A RU2549393C2 (ru) 2009-03-17 2010-03-17 Композиции на основе извести, способ их приготовления и их применение для обработки вод и шламов
ES10709016.9T ES2548569T3 (es) 2009-03-17 2010-03-17 Composiciones a base de cal, su procedimiento de fabricación y su utilización en tratamiento de aguas y lodos
EP10709016.9A EP2408718B1 (fr) 2009-03-17 2010-03-17 Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues
DK10709016.9T DK2408718T3 (en) 2009-03-17 2010-03-17 Composition based on calcium, process for the preparation thereof and use of same for the treatment of water and sewage
CA2754942A CA2754942A1 (fr) 2009-03-17 2010-03-17 Compositions a base de chaux, leur procede de fabrication et leur utilisation en traitement des eaux et boues
CN2010800120732A CN102356047A (zh) 2009-03-17 2010-03-17 基于石灰的组合物,其生产方法及其在处理污泥和水时的用途
US12/826,066 US8771633B2 (en) 2009-03-17 2010-06-29 Lime-based compositions, method for making them and their use in treating water and sludge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2009/0162 2009-03-17
BE2009/0162A BE1019037A3 (fr) 2009-03-17 2009-03-17 Compositions a base de chaux, leur procede de fabrication et leur utilisation en traitement des eaux et boues.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/826,066 Continuation US8771633B2 (en) 2009-03-17 2010-06-29 Lime-based compositions, method for making them and their use in treating water and sludge

Publications (1)

Publication Number Publication Date
WO2010106111A1 true WO2010106111A1 (fr) 2010-09-23

Family

ID=41014672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053478 WO2010106111A1 (fr) 2009-03-17 2010-03-17 Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues

Country Status (12)

Country Link
US (1) US8771633B2 (fr)
EP (1) EP2408718B1 (fr)
CN (2) CN104045137A (fr)
BE (1) BE1019037A3 (fr)
BR (1) BRPI1009305B1 (fr)
DK (1) DK2408718T3 (fr)
ES (1) ES2548569T3 (fr)
FR (1) FR2943334B1 (fr)
PL (1) PL2408718T3 (fr)
PT (1) PT2408718E (fr)
RU (1) RU2549393C2 (fr)
WO (1) WO2010106111A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076437A1 (fr) 2012-11-19 2014-05-22 Coatex Utilisation d'un copolymere hydrosoluble pour preparer une suspension aqueuse de chaux
WO2014076436A1 (fr) 2012-11-19 2014-05-22 Coatex Suspension aqueuse de chaux, procede de preparation et utilisations
FR3029195A1 (fr) * 2014-11-27 2016-06-03 Stephane Delheur Nouvelle composition pour faciliter le transport des boues
US10501634B2 (en) 2015-02-27 2019-12-10 Omya International Ag High solids precipitated calcium carbonate with cationic additive

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9656914B2 (en) * 2013-05-01 2017-05-23 Ecolab Usa Inc. Rheology modifying agents for slurries
US9410288B2 (en) 2013-08-08 2016-08-09 Ecolab Usa Inc. Use of nanocrystaline cellulose and polymer grafted nanocrystaline cellulose for increasing retention in papermaking process
CN105621851A (zh) * 2014-11-27 2016-06-01 李根生 一种污泥脱水改性剂
CN104944737A (zh) * 2015-06-23 2015-09-30 杜普利 污泥脱水剂及其脱水方法
CA3001717A1 (fr) 2015-10-15 2017-04-20 Ecolab Usa Inc. Cellulose nanocristalline et cellulose nanocristalline greffee avec un polymere comme agents de modification de la rheologie pour suspensions d'oxyde de magnesium et de chaux
CN107021813A (zh) * 2017-04-14 2017-08-08 高青山 一种晚稻种植用中药发酵有机缓释肥及其制备方法
EP3655373A1 (fr) 2017-07-17 2020-05-27 Ecolab USA, Inc. Agents de modification de rhéologie pour bouillies
CN107686151A (zh) * 2017-07-25 2018-02-13 上海颢羟环保科技有限公司 一种水处理用混凝剂的制备方法
CN107459249B (zh) * 2017-08-28 2021-02-12 西安理工大学 一种河流淤泥的固化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675114A (en) * 1984-03-07 1987-06-23 "Licencia" Talalmanyokat Ertekesito Es Innovacios Kulkereskedelmi Vallalat Process for dewatering municipal and other sewage sludges
US4711727A (en) 1982-09-24 1987-12-08 Blue Circle Industries, Plc Compositions comprising mineral particles in suspension and method of treating aqueous systems therewith
US5128046A (en) * 1990-04-16 1992-07-07 Nalco Chemical Company Water clarification through chelation
WO2000047527A1 (fr) 1999-02-08 2000-08-17 's.A. Lhoist Recherche Et Developpement' Procede de conditionnement de boues
WO2006030102A2 (fr) * 2004-09-15 2006-03-23 Sicab-Carmeuse France Utilisation de chaux partiellement pre-hydratee dans la separation d'un melange matieres solides/liquide, procede de traitement des boues et boues purifiees obtenues selon ce procede
WO2008058973A1 (fr) 2006-11-14 2008-05-22 S.A. Lhoist Recherche Et Developpement Procédé de traitement de boues

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010135A (en) * 1975-09-03 1977-03-01 Chemed Corporation Composition and method for dispersing high molecular weight flocculant polymers in water
CA1181653A (fr) * 1981-03-24 1985-01-29 Alban Timmons Methode et agent de conditionnement des systemes aqueux
BE1015602A3 (fr) * 2003-07-11 2005-06-07 Lhoist Rech & Dev Sa Procede de deshydratation de boues et boues ainsi deshydratees.
CN1621371A (zh) * 2003-11-24 2005-06-01 曾智勇 污泥高效脱水调理剂
KR100583731B1 (ko) * 2004-08-03 2006-05-26 삼성전자주식회사 노어형 플래시 메모리 소자 및 그 제조방법
JP2006247630A (ja) * 2005-03-09 2006-09-21 Kazuishi Satou 汚濁水処理用疎水化固液分離剤
CN101229378A (zh) * 2005-05-05 2008-07-30 国家淀粉及化学投资控股公司 用于送递活性剂的组合物
CN1821114A (zh) * 2006-02-23 2006-08-23 南平市绿叶环保科技开发有限公司 硫酸铝、熟石灰等复合絮凝剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711727A (en) 1982-09-24 1987-12-08 Blue Circle Industries, Plc Compositions comprising mineral particles in suspension and method of treating aqueous systems therewith
US4675114A (en) * 1984-03-07 1987-06-23 "Licencia" Talalmanyokat Ertekesito Es Innovacios Kulkereskedelmi Vallalat Process for dewatering municipal and other sewage sludges
US5128046A (en) * 1990-04-16 1992-07-07 Nalco Chemical Company Water clarification through chelation
WO2000047527A1 (fr) 1999-02-08 2000-08-17 's.A. Lhoist Recherche Et Developpement' Procede de conditionnement de boues
EP1154958A1 (fr) 1999-02-08 2001-11-21 S.A. Lhoist Recherche Et Developpement Procede de conditionnement de boues
WO2006030102A2 (fr) * 2004-09-15 2006-03-23 Sicab-Carmeuse France Utilisation de chaux partiellement pre-hydratee dans la separation d'un melange matieres solides/liquide, procede de traitement des boues et boues purifiees obtenues selon ce procede
WO2008058973A1 (fr) 2006-11-14 2008-05-22 S.A. Lhoist Recherche Et Developpement Procédé de traitement de boues

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076437A1 (fr) 2012-11-19 2014-05-22 Coatex Utilisation d'un copolymere hydrosoluble pour preparer une suspension aqueuse de chaux
WO2014076436A1 (fr) 2012-11-19 2014-05-22 Coatex Suspension aqueuse de chaux, procede de preparation et utilisations
FR3029195A1 (fr) * 2014-11-27 2016-06-03 Stephane Delheur Nouvelle composition pour faciliter le transport des boues
US10501634B2 (en) 2015-02-27 2019-12-10 Omya International Ag High solids precipitated calcium carbonate with cationic additive

Also Published As

Publication number Publication date
RU2011141847A (ru) 2013-04-27
PT2408718E (pt) 2015-10-21
FR2943334A1 (fr) 2010-09-24
FR2943334B1 (fr) 2013-07-05
US20130055777A9 (en) 2013-03-07
RU2549393C2 (ru) 2015-04-27
CN104045137A (zh) 2014-09-17
EP2408718A1 (fr) 2012-01-25
BE1019037A3 (fr) 2012-02-07
BRPI1009305A2 (pt) 2016-03-08
PL2408718T3 (pl) 2016-03-31
BRPI1009305B1 (pt) 2019-10-15
US8771633B2 (en) 2014-07-08
DK2408718T3 (en) 2015-10-05
ES2548569T3 (es) 2015-10-19
US20100313619A1 (en) 2010-12-16
EP2408718B1 (fr) 2015-07-01
CN102356047A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
EP2408718B1 (fr) Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues
EP1171487B1 (fr) Procede de synthese d&#39;agents floculants et coagulants de type polyvinylamine (pva) en poudres
EP2094613B1 (fr) Procédé de traitement de boues
EP2408719B1 (fr) Compositions pour le conditionnement de boues
FR2870229A1 (fr) Composition stabilisee de coagulants et floculants, methode d&#39;obtention et applications
FR2938842A1 (fr) Nouveau procede de preparation de copolymeres d&#39;acrylamide par reaction de degradation d&#39;hofmann
FR2739110A1 (fr) Procede de fabrication du papier
FR3029195B1 (fr) Nouvelle composition pour faciliter le transport des boues
JP5117228B2 (ja) 下水汚泥の処理方法
JP5279024B2 (ja) 汚泥の脱水方法
JP2009039653A (ja) 汚泥脱水方法
CA2754942A1 (fr) Compositions a base de chaux, leur procede de fabrication et leur utilisation en traitement des eaux et boues
JP5501122B2 (ja) 粉末状カチオン系水溶性高分子化合物の製造方法、汚泥脱水剤及び汚泥の脱水処理方法
JP2010195915A (ja) 粉末状水溶性高分子
JP2010215867A (ja) 水溶性高分子組成物
EP1373149A1 (fr) Composition utilisable pour le conditionnement de boues
FR2798652A1 (fr) Composition utile pour le conditionnement des boues issues du traitement de milieux acqueux et ses applications
CA2754951A1 (fr) Compositions pour le conditionnement de boues
FR2679546A1 (fr) Procede de traitement des eaux.
FR3114980A1 (fr) Composition asséchante pour faciliter le transport des boues salées
JP2001329003A (ja) 増強された凝集効果を有するカチオン性高分子複合体
FR2600322A2 (fr) Procede de preparation d&#39;un chlorosulfate d&#39;aluminium basique
JP2012101192A (ja) 汚泥用脱水剤及びその製造方法
JP2000218298A (ja) 汚泥脱水剤
FR2735154A1 (fr) Amelioration de l&#39;efficacite de polymeres de l&#39;acide (meth)acrylique en presence d&#39;ions de metaux alcalino-terreux

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012073.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10709016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010709016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2754942

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 6584/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011141847

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009305

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009305

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110916