WO2010104097A1 - Filtration membrane, membrane module, and water treatment device - Google Patents

Filtration membrane, membrane module, and water treatment device Download PDF

Info

Publication number
WO2010104097A1
WO2010104097A1 PCT/JP2010/053948 JP2010053948W WO2010104097A1 WO 2010104097 A1 WO2010104097 A1 WO 2010104097A1 JP 2010053948 W JP2010053948 W JP 2010053948W WO 2010104097 A1 WO2010104097 A1 WO 2010104097A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
raw water
particle layer
membrane module
Prior art date
Application number
PCT/JP2010/053948
Other languages
French (fr)
Japanese (ja)
Inventor
千尋 井
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010104097A1 publication Critical patent/WO2010104097A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • B01D63/0241Hollow fibre modules with a single potted end being U-shaped
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2623Ion-Exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/12Adsorbents being present on the surface of the membranes or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing

Definitions

  • the present invention relates to a filtration membrane, a membrane module, and a water treatment apparatus that remove impurities contained in raw water such as tap water.
  • An object of the present invention is to provide a filtration membrane, a membrane module, and a water treatment apparatus capable of improving the accuracy of removing impurities.
  • a membrane body having a plurality of pores for filtering raw water, and a particle layer for adhering and laminating on the surface of the membrane body and removing impurities in the raw water.
  • the gist is that it is a filtration membrane.
  • a filtration membrane comprising: a membrane main body provided with a plurality of pores; and a particle layer for removing impurities in raw water by attaching to a surface of the membrane main body in advance and laminating the same.
  • a particle layer for removing impurities in raw water by attaching to a surface of the membrane main body in advance and laminating the same.
  • the particle layer may include a first particle layer laminated on the surface of the film main body, and a second particle layer laminated on the surface of the first particle layer.
  • the particle layer includes the first particle layer laminated on the surface of the membrane body and the second particle layer laminated on the surface of the first particle layer, By making the particle layer different depending on the type, a multifunctional film capable of removing various types of impurities contained in the raw water can be obtained.
  • the first particle layer may be made of carbon particles, and the second particle layer may be made of ion exchange resin.
  • the first particle layer is composed of carbon particles
  • the second particle layer is composed of ion exchange resin, so that heavy metal ions contained in the raw water can be reliably removed.
  • a second aspect of the present invention is a container having an inlet and an outlet, and a filtration membrane integrally housed inside the container, the membrane body having a plurality of pores for filtering raw water;
  • a gist of the present invention is a filtration module including: a particle layer for removing impurities in raw water deposited and stacked on the surface of the film body.
  • the second aspect it is possible to obtain a membrane module that exhibits the above-described effects. Further, modularization makes it possible to easily inspect and replace the filtration membrane.
  • a container having an inlet and an outlet, and a membrane body integrally accommodated in the container and having a plurality of pores for filtering raw water, and a surface of the membrane body.
  • a membrane module comprising a filtration membrane including a particle layer for removing impurities in raw water deposited and stacked, and a water treatment apparatus for obtaining purified water purified by introducing raw water into the membrane module As the abstract.
  • the water treatment apparatus is connected to a first water channel for guiding introduced raw water from the upstream side of the membrane module to the membrane module, and the first water path, and the introduced raw water is downstream of the membrane module
  • a second water channel for guiding water to the membrane module, and a water channel switching part which is provided at a branch point between the first water channel and the second water channel and feeds raw water to either the first water channel or the second water channel; May further be provided.
  • the water treatment apparatus of the structure which backwashes a membrane module can be obtained easily.
  • the filtration membrane to which the impurities are attached can be reused, and the life of the membrane module can be prolonged.
  • the filtration membrane of the membrane module is You may further provide the particle collection
  • the particles attached to the filtration membrane of the membrane module can be recovered by the particle recovery unit, the particles can be reused to reduce the cost of the water treatment apparatus such as the running cost.
  • the membrane module may also include an electrode for energizing the particle layer.
  • the membrane module is provided with an electrode capable of energizing the particle layer, particularly when using the ion exchange resin charged in the particle layer, the ion exchange resin is used to adsorb impurities. Since the lost charge can be compensated, the accuracy of removing impurities and the performance of the membrane module can be improved.
  • FIG. 1 is a view showing a water treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a membrane module according to a first embodiment of the present invention.
  • FIGS. 3 (a) to 3 (c) are schematic views showing a filtration membrane according to a first embodiment of the present invention.
  • FIG. 3A shows a state in which the particle layer is laminated on the surface of the membrane main body.
  • FIG.3 (b) shows the normal time which filters raw water with a filter membrane.
  • FIG.3 (c) shows the time of the backwashing which backs up water from the downstream side of a membrane module, and wash
  • FIG. 4 is a view showing a water treatment apparatus according to a second embodiment of the present invention.
  • the water treatment apparatus 100 of the present embodiment includes a raw water tank 21, a raw water pump 22, a membrane module 20, and a treated water tank 23.
  • the raw water tank 21 temporarily stores raw water led by a water conveyance pump (not shown).
  • the raw water pump 22 supplies the raw water in the raw water tank 21 to the membrane module 20.
  • the membrane module 20 filters the raw water led by the raw water pump 22.
  • the treated water tank 23 stores treated water filtered by the membrane module 20.
  • a raw water tank 21, a raw water pump 22, a membrane module 20, and a treated water tank 23 are connected by a water channel 25.
  • V1 to V4 in the figure are valves provided in each water channel 25 and are connected to a control unit (not shown).
  • the water channel 25 includes a first water channel 25a and a second water channel 25b.
  • the first water channel 25a can conduct water from the upstream side of the membrane module 20 to the membrane module 20 via the raw water pump 22 from the raw water tank 21 at a normal time when the raw water in the raw water tank 21 is filtered by the membrane module 20.
  • the second water channel 25b is provided to be connected to the first water channel 25a, and can feed raw water to the membrane module 20 from the downstream side of the membrane module 20 via the raw water pump 22.
  • the side of the first water passage 25 a of the valve V 2 provided at the branch point between the first water passage 25 a and the second water passage 25 b is opened normally.
  • Raw water is introduced into the suction port 12 of the membrane module 20 via the valve V3.
  • the raw water is filtered by the filtration membrane 10 of the membrane module 20, and the filtered treated water is sent from the discharge port 13 of the membrane module 20 to the treated water tank 23 through the valve V4.
  • the raw water is made to flow backward from the downstream side of the membrane module 20 according to a preset cycle or the like to wash the filtration membrane 10 (reverse washing).
  • the second water passage 25b side of the valve V2 provided at the branch point between the first water passage 25a and the second water passage 25b is opened, and the raw water pump 22 presses the raw water through the valve V4. It is introduced into the discharge port 13 of the membrane module 20. Then, the filtration membrane 10 of the membrane module 20 is washed with the raw water, and the washed waste water is discharged from the suction port 12 of the membrane module 20 through the valve V3.
  • valve V2 provided at the branch point between the first water passage 25a and the second water passage 25b functions as a water passage switching unit, and receives signals from a control unit (not shown) to filter raw water
  • the water channel 25 is switched between the first water channel 25a and the second water channel 25b at the time of backwashing for washing the filtration membrane 10.
  • a particle recovery unit 30 for recovering the particles stacked on the filtration membrane 10 which will be described in detail later. Waste water from the backwashing of the filtration membrane 10 by switching the valve V2 is sent to the particle collection unit 30.
  • the particle recovery unit 30 separates the particles stacked on the filtration membrane 10 from the impurities contained in the waste water, recovers the particles, and sends the recovered particles to the valve V1 via the third water channel 25c. It is made to be able to make it re-laminate on 20 filtration membranes 10, and to utilize.
  • the particle collection unit 30 As a method for collecting particles by the particle collection unit 30, for example, separation by a filter suitable for the particle diameter, separation by specific gravity difference, electrical separation, collection by an electromagnet, etc. are appropriately adopted depending on the type and water quality of particles to be stacked. And it is possible to change. Also, particles that have deteriorated in accordance with the number of times the filter membrane 10 is reversely washed, a preset cycle, or the like may be collected without drainage and drained, and new particles may be stacked.
  • the water treatment apparatus 100 includes the first water channel 25a capable of supplying raw water from the upstream side of the membrane module 20, the second water channel 25b capable of transmitting water from the downstream side of the membrane module 20, and
  • the membrane module 20 is provided with a valve V2 as a water channel switching unit which is provided at a branch point between the first water channel 25a and the second water channel 25b and feeds raw water to either the first water channel 25a or the second water channel 25b. It is possible to easily obtain the water treatment apparatus 100 configured to backwash.
  • the particles that have been attached to the filtration membrane 10 of the membrane module 20 can be recovered by the particle recovery unit 30, the particles are reused to reduce the cost of the water treatment apparatus 100 such as running cost. It can be done.
  • the reverse cleaning of the filtration membrane 10 is performed using the raw water, but the reverse cleaning may be performed using, for example, treated water stored in the treated water tank 23 or purified water for cleaning. .
  • the membrane module 20 includes a filtration membrane 10 for filtering raw water, and a cylindrical casing (container) 18 having an inlet 12 and an outlet 13 and having the filtration membrane 10 housed therein.
  • the filtration membrane 10 comprises a membrane body provided with a plurality of pores 3 for filtering raw water.
  • a thin straw-like hollow fiber membrane 1 is used as the membrane main body, and a large number of hollow fiber membranes 1 are bundled and accommodated in the casing 18 in a substantially U-shape.
  • Raw water that passes through the fine holes 3 of the hollow fiber membrane 1 from the suction port 12 of the casing 18 and permeates into the membrane flows out into the water collecting portion 15 through the membrane, and is processed from the discharge port 13 via the valve V4. It is sent to the water tank 23.
  • the impurities contained in the raw water are filtered.
  • the filtration membrane 10 is configured by adhering and laminating in advance the particle layer 6 for removing the impurities in the raw water on the outer surface (surface) 8 of the membrane wall 7 of the hollow fiber membrane 1 doing.
  • the particle layer 6 of the filtration membrane 10 is formed by laminating carbon particles having a particle diameter larger than that of the pores 3 on the outer surface 8 of the hollow fiber membrane 1
  • An ion exchange resin layer 5 formed by laminating particles of a cation exchange resin having an alkali metal type exchange group such as Na on the surface of the carbon particle layer 4 (first particle layer) and the carbon particle layer 4 concerned. And (second particle layer).
  • a hollow fiber 1 as a membrane main body provided with a plurality of pores 3 is supplied with a solution containing carbon particles having a larger particle size than the pores 3 to allow the carbon particles to be hollow fibers.
  • the carbon particle layer 4 is formed by laminating on the membrane 1 to form a carbon particle layer 4 and then passing a solution in which particles of cation exchange resin having a particle diameter smaller than that of the carbon particles are mixed.
  • the ion exchange resin layer 5 is formed by laminating on the layer 4.
  • a filtration membrane 10 is formed.
  • the pore diameter of the filtration membrane 10 can be appropriately set by changing the particle size to be laminated or the thickness to be laminated.
  • the carbon particles and the particles of the cation exchange resin can be sent to the valve V1 and can be laminated again on the hollow fiber membrane 1 of the membrane module 20 for use. At this time, the particles of the cation exchange resin may be regenerated by passing the solution through a salt solution such as a saline solution so as to be reusable as a cation exchange resin.
  • a salt solution such as a saline solution
  • the hollow fiber membrane (membrane main body) 1 provided with a plurality of pores 3 for filtering raw water and the outer surface 8 of the hollow fiber membrane 1 are attached in advance.
  • the membrane module 20 is configured using the filtration membrane 10 provided with the particle layer 6 for removing the impurities in the raw water by stacking the layers. Therefore, the particle layer 6 stacked on the hollow fiber membrane 1 can adsorb the impurities in the raw water, and the hollow fiber membrane 1 can also filter the impurities, so the impurity removal accuracy is improved. be able to.
  • the particle layer 6 is laminated on the outer surface 8 of the hollow fiber membrane 1, it is possible to easily obtain the filtration membrane 10 capable of improving the removal accuracy of the impurities.
  • the particle layer 6 of the filtration membrane 10 comprises a first particle layer 4 laminated on the outer surface 8 of the hollow fiber membrane 1 and a second particle layer 5 laminated on the surface of the first particle layer 4. Therefore, by changing the particle layer according to the type of impurity to be removed, a multifunctional film capable of removing various types of impurities contained in the raw water can be obtained.
  • the first particle layer 4 is made of carbon particles
  • the second particle layer 5 is made of ion exchange resin. Therefore, the heavy metal ions 11 contained in the raw water are reliably removed. can do.
  • the membrane module 20 is configured by storing and integrating such a filtration membrane 10 inside the casing (container) 18, inspection and replacement of the filtration membrane 10 can be facilitated. While being able to carry out, the particle layer 6 can be easily laminated on the filtration membrane 10.
  • the thin straw-like hollow fiber membrane 1 is used as the membrane body of the filtration membrane 10, but is not limited thereto.
  • a spiral membrane, a tubular membrane, or a flat membrane may be used.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • NF membrane NF membrane
  • FIG. 4 is a view showing a water treatment apparatus according to the present embodiment.
  • the water treatment apparatus 100A according to the present embodiment differs from the water treatment apparatus 100 according to the first embodiment in the membrane module 40.
  • an ionizable resin formed by negatively charging an ion exchange resin is laminated on the surface of the carbon particle layer 4 to form ions.
  • the electrodes 17 and 18 are provided on the upstream side and the downstream side of the filtration membrane 10 so that the ionic resin layer is continuously or intermittently energized by the power supply device 50.
  • the removal ability of heavy metal ions 11 by the ionic resin gradually decreases as water is filtered, but in the present embodiment, the ionic resin layer is energized by the power supply device 50, and the ionic resin layer It is possible to charge the ionic resin layer negatively and make it reusable by supplying electric charge to the
  • the ionic resin layer can be energized in a state in which the plus and minus of the electrodes 17 and 18 are inverted, and for example, when the filtration membrane 10 is physically clogged, the ionic resin layer is positively charged. In this case, it is possible to peel off the heavy metal ions 11 and the ionic resin by the repulsive force between the positively charged ones.
  • the water channel switching portion (valve V2) is provided as in the first embodiment, when the filtration membrane 10 is reversely washed, the positive and negative of the electrodes 17 and 18 are reversed. If the ionic resin layer is energized in the state where it has been allowed to pass, in addition to physical washing by reverse washing, washing by electric repulsion can also be performed, and washing of the filtration membrane 10 can be carried out more effectively. .
  • a particle collection unit 30 for collecting particles stacked on the filtration membrane 10 is also provided, and the waste water after reverse washing is sent to the particle collection unit 30 and included in the particles and drainage that are stacked on the filtration membrane 10
  • the impurities can be separated to recover the particles, and the recovered particles can be stacked on the filtration membrane 10 for use.
  • the cation exchange resin which removes heavy metal ion was illustrated as a particle layer in the said embodiment, this particle layer can be suitably changed according to the substance which it is going to remove.
  • an anion exchange resin may be laminated to remove an anionic substance such as ammonium ion, or a silica particle may be laminated to remove silica colloid.
  • the particles are laminated on the hollow fiber membrane (membrane main body) by passing the solution mixed with the particles, but the lamination may be performed using gravity or pressure, or electrochemically. It may be laminated.

Abstract

A filtration membrane (10) comprises a membrane body (1) having multiple pores (3) for filtering raw water, and a particle layer (6) for removal of impurities contained in raw water that adhere to and accumulate on a surface (8) of the membrane body (1). Moreover, membrane modules (20) and (40) optionally comprise a vessel (18) having an intake port (12) and a discharge port (13), and the filtration membrane (10) housed inside the vessel (18) as a single unit therewith. In addition, water treatment devices (100) and (100A) optionally comprise the membrane modules (20) and (40) and have a configuration whereby raw water is introduced to the membrane modules (20) and (40) and purified to obtain purified water.

Description

濾過膜、膜モジュールおよび水処理装置Filtration membrane, membrane module and water treatment apparatus
 本発明は、水道水等の原水中に含まれた不純物を除去する濾過膜、膜モジュールおよび水処理装置に関する。 TECHNICAL FIELD The present invention relates to a filtration membrane, a membrane module, and a water treatment apparatus that remove impurities contained in raw water such as tap water.
 従来の浄水構造として、比重の異なる活性炭を層状に充填して濾床を形成し、この濾床に原水を透過させることで、当該原水中に含まれる不純物を除去するようにしたものが知られている(例えば、特許文献1)。 As a conventional water purification structure, there is known one in which activated carbons having different specific gravities are packed in layers to form a filter bed, and raw water is allowed to permeate the filter bed to remove impurities contained in the raw water. (E.g., Patent Document 1).
特開昭60-071081号公報Japanese Patent Application Laid-Open No. 60-071081
 しかしながら、上記従来技術のように、単に比重の異なる活性炭を層状に積層させる構成では、不純物の種類によっては活性炭に吸着されないものもあるため、不純物を除去する精度が低いという問題があった。 However, in the configuration in which activated carbons having different specific gravities are simply stacked in layers as in the above-described prior art, there are some types of impurities that are not adsorbed by activated carbon.
 本発明は、不純物の除去精度を向上させることのできる濾過膜、膜モジュールおよび水処理装置を提供することを目的とする。 An object of the present invention is to provide a filtration membrane, a membrane module, and a water treatment apparatus capable of improving the accuracy of removing impurities.
 本発明の第1のアスペクトは、原水を濾過する複数の細孔を有する膜本体と、前記膜本体の表面に付着させて積層させた、原水中の不純物を除去する粒子層と、を備えた濾過膜であることを要旨とする。 According to a first aspect of the present invention, there is provided a membrane body having a plurality of pores for filtering raw water, and a particle layer for adhering and laminating on the surface of the membrane body and removing impurities in the raw water. The gist is that it is a filtration membrane.
 前記第1のアスペクトによれば、複数の細孔が設けられた膜本体と、前記膜本体の表面に予め付着させて積層させることにより原水中の不純物を除去する粒子層とを備えた濾過膜を用いることで、粒子層で不純物を吸着することができるうえ、膜本体でも不純物を濾過することができるため、不純物の除去精度を向上させることができる。 According to the first aspect, there is provided a filtration membrane comprising: a membrane main body provided with a plurality of pores; and a particle layer for removing impurities in raw water by attaching to a surface of the membrane main body in advance and laminating the same. In addition to being able to adsorb the impurities in the particle layer and using the film body, it is possible to filter out the impurities, so that the removal accuracy of the impurities can be improved.
 また、前記粒子層は、前記膜本体の表面に積層した第1の粒子層と、前記第1の粒子層の表面に積層した第2の粒子層と、を備えてもよい。 Further, the particle layer may include a first particle layer laminated on the surface of the film main body, and a second particle layer laminated on the surface of the first particle layer.
 前記構成によれば、粒子層は膜本体の表面に積層される第1の粒子層と当該第1の粒子層の表面に積層される第2の粒子層とを備えるため、除去対象の不純物の種類に応じて粒子層を異ならせることで原水中に含まれる様々な種類の不純物を除去することが可能な多機能膜とすることができる。 According to the above configuration, since the particle layer includes the first particle layer laminated on the surface of the membrane body and the second particle layer laminated on the surface of the first particle layer, By making the particle layer different depending on the type, a multifunctional film capable of removing various types of impurities contained in the raw water can be obtained.
 また、前記第1の粒子層は、カーボン粒子で構成され、前記第2の粒子層は、イオン交換樹脂で構成されていてもよい。 The first particle layer may be made of carbon particles, and the second particle layer may be made of ion exchange resin.
 前記構成によれば、第1の粒子層はカーボン粒子で構成されるとともに、第2の粒子層はイオン交換樹脂で構成されるため、原水中に含まれる重金属イオンを確実に除去することができる。 According to the above configuration, the first particle layer is composed of carbon particles, and the second particle layer is composed of ion exchange resin, so that heavy metal ions contained in the raw water can be reliably removed. .
 本発明の第2のアスペクトは、吸入口および吐出口を有する容器、及び、前記容器の内部に一体に収納された濾過膜であって、原水を濾過する複数の細孔を有する膜本体と、前記膜本体の表面に付着させて積層させた原水中の不純物を除去する粒子層と、を含む濾過膜、を備えた膜モジュールであることを要旨とする。 A second aspect of the present invention is a container having an inlet and an outlet, and a filtration membrane integrally housed inside the container, the membrane body having a plurality of pores for filtering raw water; A gist of the present invention is a filtration module including: a particle layer for removing impurities in raw water deposited and stacked on the surface of the film body.
 前記第2のアスペクトによれば、上記作用効果を奏する膜モジュールを得ることができる。また、モジュール化することで濾過膜の点検や交換を容易に行うことができる。 According to the second aspect, it is possible to obtain a membrane module that exhibits the above-described effects. Further, modularization makes it possible to easily inspect and replace the filtration membrane.
 本発明の第3のアスペクトは、吸入口および吐出口を有する容器、及び、前記容器の内部に一体に収納され、原水を濾過する複数の細孔を有する膜本体と、前記膜本体の表面に付着させて積層させた原水中の不純物を除去する粒子層と、を含む濾過膜、を備えた膜モジュールを備え、前記膜モジュールに原水を導入して浄化した浄水を得る水処理装置であることを要旨とする。 According to a third aspect of the present invention, there is provided a container having an inlet and an outlet, and a membrane body integrally accommodated in the container and having a plurality of pores for filtering raw water, and a surface of the membrane body. A membrane module comprising a filtration membrane including a particle layer for removing impurities in raw water deposited and stacked, and a water treatment apparatus for obtaining purified water purified by introducing raw water into the membrane module As the abstract.
 前記第3のアスペクトによれば、上記作用効果を奏する膜モジュールを用いた水処理装置を得ることができる。 According to the third aspect, it is possible to obtain a water treatment apparatus using a membrane module having the above-described effects.
 また、前記水処理装置は、導入された原水を前記膜モジュールの上流側から前記膜モジュールに導水する第1水路と、前記第1水路に接続され、導入された原水を前記膜モジュールの下流側から前記膜モジュールに導水する第2水路と、前記第1水路と前記第2水路との分岐点に設けられ、前記第1水路および第2水路のいずれかに原水を導水させる水路切替部と、をさらに備えてもよい。 Further, the water treatment apparatus is connected to a first water channel for guiding introduced raw water from the upstream side of the membrane module to the membrane module, and the first water path, and the introduced raw water is downstream of the membrane module A second water channel for guiding water to the membrane module, and a water channel switching part which is provided at a branch point between the first water channel and the second water channel and feeds raw water to either the first water channel or the second water channel; May further be provided.
 前記構成によれば、膜モジュールを逆洗浄する構成の水処理装置を容易に得ることができる。また、膜モジュールを逆洗浄することで不純物が付着した濾過膜を再使用することができ、膜モジュールの長寿命化を図ることができる。 According to the said structure, the water treatment apparatus of the structure which backwashes a membrane module can be obtained easily. In addition, by backwashing the membrane module, the filtration membrane to which the impurities are attached can be reused, and the life of the membrane module can be prolonged.
 また、前記水処理装置は、前記膜モジュールの上流側に、前記水路切替部により前記第2水路に原水が導水されて前記膜モジュールが逆洗浄される際に、前記膜モジュールの前記濾過膜に付着していた粒子を回収する粒子回収部をさらに備えてもよい。 In the water treatment apparatus, when the raw water is introduced to the second water channel by the water channel switching unit on the upstream side of the membrane module and the membrane module is backwashed, the filtration membrane of the membrane module is You may further provide the particle collection | recovery part which collect | recovers the particle | grains which had adhered.
 前記構成によれば、粒子回収部により膜モジュールの濾過膜に付着した粒子を回収できるため、当該粒子を再利用してランニングコスト等の水処理装置に係るコストを低減させることができる。 According to the above configuration, since the particles attached to the filtration membrane of the membrane module can be recovered by the particle recovery unit, the particles can be reused to reduce the cost of the water treatment apparatus such as the running cost.
 また、前記膜モジュールは、前記粒子層を通電する電極を含んでもよい。 The membrane module may also include an electrode for energizing the particle layer.
 前記構成によれば、膜モジュールには粒子層を通電可能な電極が設けられているため、特に粒子層に帯電させたイオン交換樹脂を用いた場合には、当該イオン交換樹脂が不純物の吸着に伴い失った電荷を補うことができるため、不純物の除去精度ならびに膜モジュールの性能を向上させることができる。 According to the above configuration, since the membrane module is provided with an electrode capable of energizing the particle layer, particularly when using the ion exchange resin charged in the particle layer, the ion exchange resin is used to adsorb impurities. Since the lost charge can be compensated, the accuracy of removing impurities and the performance of the membrane module can be improved.
 本発明によれば、不純物の除去精度の向上した濾過膜、膜モジュールおよび水処理装置を提供することができる。 According to the present invention, it is possible to provide a filtration membrane, a membrane module, and a water treatment device with an improved accuracy of removing impurities.
図1は、本発明の第1実施形態に係る水処理装置を示す図である。FIG. 1 is a view showing a water treatment apparatus according to a first embodiment of the present invention. 図2は、本発明の第1実施形態に係る膜モジュールを示す図である。FIG. 2 is a view showing a membrane module according to a first embodiment of the present invention. 図3(a)~(c)は、本発明の第1実施形態に係る濾過膜を示す模式図である。図3(a)は、膜本体の表面に粒子層を積層させた状態を示す。図3(b)は、原水を濾過膜で濾過する通常時を示す。図3(c)は、膜モジュールの下流側から水を逆流させて濾過膜の洗浄を行う逆洗浄時を示す。FIGS. 3 (a) to 3 (c) are schematic views showing a filtration membrane according to a first embodiment of the present invention. FIG. 3A shows a state in which the particle layer is laminated on the surface of the membrane main body. FIG.3 (b) shows the normal time which filters raw water with a filter membrane. FIG.3 (c) shows the time of the backwashing which backs up water from the downstream side of a membrane module, and wash | cleans a filtration membrane. 図4は、本発明の第2実施形態に係る水処置装置を示す図である。FIG. 4 is a view showing a water treatment apparatus according to a second embodiment of the present invention.
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、以下の複数の実施形態には、同様の構成要素が含まれている。以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same component is contained in several following embodiments. In the following, those similar components are given the same reference numerals, and duplicate explanations are omitted.
[第1実施形態]
 図1を参照して本実施形態に係る水処理装置の概略構成について説明する。
First Embodiment
The schematic configuration of the water treatment apparatus according to the present embodiment will be described with reference to FIG.
 本実施形態の水処理装置100は、原水槽21、原水ポンプ22、膜モジュール20、処理水槽23を備える。原水槽21は、図示しない導水ポンプによって導かれた原水を一時貯水する。原水ポンプ22は、原水槽21内の原水を膜モジュール20に供給する。膜モジュール20は、原水ポンプ22によって導かれた原水を濾過する。処理水槽23は、膜モジュール20で濾過した処理水を貯水する。原水槽21、原水ポンプ22、膜モジュール20、処理水槽23が水路25によって接続されている。図中V1~V4は各水路25に設けられたバルブであり、図示しない制御部に接続されている。 The water treatment apparatus 100 of the present embodiment includes a raw water tank 21, a raw water pump 22, a membrane module 20, and a treated water tank 23. The raw water tank 21 temporarily stores raw water led by a water conveyance pump (not shown). The raw water pump 22 supplies the raw water in the raw water tank 21 to the membrane module 20. The membrane module 20 filters the raw water led by the raw water pump 22. The treated water tank 23 stores treated water filtered by the membrane module 20. A raw water tank 21, a raw water pump 22, a membrane module 20, and a treated water tank 23 are connected by a water channel 25. V1 to V4 in the figure are valves provided in each water channel 25 and are connected to a control unit (not shown).
 水路25は、第1水路25aと第2水路25bとを備える。第1水路25aは、原水槽21内の原水を膜モジュール20で濾過する通常時に、原水槽21から原水ポンプ22を介して膜モジュール20の上流側から当該膜モジュール20に導水可能である。第2水路25bは、第1水路25aに接続して設けられるとともに、原水を原水ポンプ22を介して膜モジュール20の下流側から膜モジュール20に導水可能である。 The water channel 25 includes a first water channel 25a and a second water channel 25b. The first water channel 25a can conduct water from the upstream side of the membrane module 20 to the membrane module 20 via the raw water pump 22 from the raw water tank 21 at a normal time when the raw water in the raw water tank 21 is filtered by the membrane module 20. The second water channel 25b is provided to be connected to the first water channel 25a, and can feed raw water to the membrane module 20 from the downstream side of the membrane module 20 via the raw water pump 22.
 かかる構成の本実施形態の水処理装置100では、通常時には第1水路25aと第2水路25bとの分岐点に設けられたバルブV2の第1水路25a側を開け、原水ポンプ22の加圧によって原水がバルブV3を介して膜モジュール20の吸入口12に導入される。そして、膜モジュール20の濾過膜10で原水が濾過され、濾過された処理水が膜モジュール20の吐出口13からバルブV4を介して処理水槽23に送られる。 In the water treatment apparatus 100 of this embodiment having such a configuration, the side of the first water passage 25 a of the valve V 2 provided at the branch point between the first water passage 25 a and the second water passage 25 b is opened normally. Raw water is introduced into the suction port 12 of the membrane module 20 via the valve V3. Then, the raw water is filtered by the filtration membrane 10 of the membrane module 20, and the filtered treated water is sent from the discharge port 13 of the membrane module 20 to the treated water tank 23 through the valve V4.
 そして、予め設定された周期などによって、原水を膜モジュール20の下流側から逆流させて濾過膜10の洗浄を行う(逆洗浄)。 Then, the raw water is made to flow backward from the downstream side of the membrane module 20 according to a preset cycle or the like to wash the filtration membrane 10 (reverse washing).
 濾過膜10の逆洗浄時には、第1水路25aと第2水路25bとの分岐点に設けられたバルブV2の第2水路25b側を開け、原水ポンプ22の加圧によって原水がバルブV4を介して膜モジュール20の吐出口13に導入される。そして、膜モジュール20の濾過膜10が原水で洗浄され、洗浄後の排水が膜モジュール20の吸入口12からバルブV3を介して排出される。 When the filtration membrane 10 is reversely washed, the second water passage 25b side of the valve V2 provided at the branch point between the first water passage 25a and the second water passage 25b is opened, and the raw water pump 22 presses the raw water through the valve V4. It is introduced into the discharge port 13 of the membrane module 20. Then, the filtration membrane 10 of the membrane module 20 is washed with the raw water, and the washed waste water is discharged from the suction port 12 of the membrane module 20 through the valve V3.
 すなわち、本実施形態では、第1水路25aと第2水路25bとの分岐点に設けられたバルブV2が水路切替部として機能し、図示しない制御部からの信号を受けて原水を濾過する通常時と濾過膜10を洗浄する逆洗浄時とで、第1水路25aと第2水路25bに対する水路25の切替を行う。 That is, in the present embodiment, the valve V2 provided at the branch point between the first water passage 25a and the second water passage 25b functions as a water passage switching unit, and receives signals from a control unit (not shown) to filter raw water The water channel 25 is switched between the first water channel 25a and the second water channel 25b at the time of backwashing for washing the filtration membrane 10.
 また、本実施形態では、膜モジュール20の上流側には、詳細を後述する濾過膜10に積層された粒子を回収する粒子回収部30が設けられている。バルブV2の切り替えによる濾過膜10の逆洗浄の排水は、粒子回収部30に送られる。粒子回収部30は、濾過膜10に積層されていた粒子と排水に含まれる不純物とを分離して粒子を回収し、当該回収した粒子を第3水路25cを介してバルブV1に送り、膜モジュール20の濾過膜10に再度積層させて利用することができるようになっている。 Further, in the present embodiment, on the upstream side of the membrane module 20, there is provided a particle recovery unit 30 for recovering the particles stacked on the filtration membrane 10 which will be described in detail later. Waste water from the backwashing of the filtration membrane 10 by switching the valve V2 is sent to the particle collection unit 30. The particle recovery unit 30 separates the particles stacked on the filtration membrane 10 from the impurities contained in the waste water, recovers the particles, and sends the recovered particles to the valve V1 via the third water channel 25c. It is made to be able to make it re-laminate on 20 filtration membranes 10, and to utilize.
 粒子回収部30による粒子の回収方法としては、積層される粒子の種類や水質に応じて、例えば粒子径に適したフィルターによる分離、比重差による分離、電気的分離、電磁石による回収など適宜に採用及び変更することが可能である。また、濾過膜10を逆洗浄する回数や予め設定された周期などに応じて劣化した粒子は回収せず排水して、新しい粒子を積層させるようにしてもよい。 As a method for collecting particles by the particle collection unit 30, for example, separation by a filter suitable for the particle diameter, separation by specific gravity difference, electrical separation, collection by an electromagnet, etc. are appropriately adopted depending on the type and water quality of particles to be stacked. And it is possible to change. Also, particles that have deteriorated in accordance with the number of times the filter membrane 10 is reversely washed, a preset cycle, or the like may be collected without drainage and drained, and new particles may be stacked.
 以上のように、本実施形態の水処理装置100は、原水を膜モジュール20の上流側から導水可能な第1水路25aと、膜モジュール20の下流側から導水可能な第2水路25bと、第1水路25aと第2水路25bとの分岐点に設けられて、当該第1水路25aおよび第2水路25bのいずれかに原水を導水させる水路切替部としてのバルブV2とを備えるため、膜モジュール20を逆洗浄する構成の水処理装置100を容易に得ることができる。 As described above, the water treatment apparatus 100 according to the present embodiment includes the first water channel 25a capable of supplying raw water from the upstream side of the membrane module 20, the second water channel 25b capable of transmitting water from the downstream side of the membrane module 20, and The membrane module 20 is provided with a valve V2 as a water channel switching unit which is provided at a branch point between the first water channel 25a and the second water channel 25b and feeds raw water to either the first water channel 25a or the second water channel 25b. It is possible to easily obtain the water treatment apparatus 100 configured to backwash.
 また、本実施形態では、粒子回収部30により膜モジュール20の濾過膜10に付着させていた粒子を回収できるため、当該粒子を再利用してランニングコスト等の水処理装置100に係るコストを低減させることができる。 Further, in the present embodiment, since the particles that have been attached to the filtration membrane 10 of the membrane module 20 can be recovered by the particle recovery unit 30, the particles are reused to reduce the cost of the water treatment apparatus 100 such as running cost. It can be done.
 本実施形態では、原水を用いて濾過膜10の逆洗浄を行う構成としたが、例えば処理水槽23に貯留された処理水や、洗浄用の浄化水を用いて逆洗浄を行う構成としてもよい。 In the present embodiment, the reverse cleaning of the filtration membrane 10 is performed using the raw water, but the reverse cleaning may be performed using, for example, treated water stored in the treated water tank 23 or purified water for cleaning. .
 次に、図2、図3(a)~図3(c)を参照して本実施形態に係る膜モジュール20について詳しく説明する。 Next, the membrane module 20 according to the present embodiment will be described in detail with reference to FIGS. 2 and 3A to 3C.
 本実施形態の膜モジュール20は、原水を濾過する濾過膜10と、吸入口12および吐出口13を有し濾過膜10を内部に収容した円筒状のケーシング(容器)18とを備える。 The membrane module 20 according to the present embodiment includes a filtration membrane 10 for filtering raw water, and a cylindrical casing (container) 18 having an inlet 12 and an outlet 13 and having the filtration membrane 10 housed therein.
 濾過膜10は、原水を濾過する複数の細孔3が設けられた膜本体を備える。本実施形態では、この膜本体として細いストロー状の中空糸膜1を用いており、中空糸膜1が多数束ねられて略U字状に湾曲させた状態でケーシング18に収容されている。ケーシング18の吸入口12から中空糸膜1の細孔3を通過して膜内に透過した原水は、膜内を通って集水部15に流出し、吐出口13からバルブV4を介して処理水槽23に送られる。原水が中空糸膜1を通過する際に、原水に含まれる不純物が濾過される。 The filtration membrane 10 comprises a membrane body provided with a plurality of pores 3 for filtering raw water. In the present embodiment, a thin straw-like hollow fiber membrane 1 is used as the membrane main body, and a large number of hollow fiber membranes 1 are bundled and accommodated in the casing 18 in a substantially U-shape. Raw water that passes through the fine holes 3 of the hollow fiber membrane 1 from the suction port 12 of the casing 18 and permeates into the membrane flows out into the water collecting portion 15 through the membrane, and is processed from the discharge port 13 via the valve V4. It is sent to the water tank 23. When the raw water passes through the hollow fiber membrane 1, the impurities contained in the raw water are filtered.
 ここで、本実施形態では、この中空糸膜1の膜壁7の外表面(表面)8に、原水中の不純物を除去する粒子層6を予め付着させて積層させることにより濾過膜10を構成している。 Here, in the present embodiment, the filtration membrane 10 is configured by adhering and laminating in advance the particle layer 6 for removing the impurities in the raw water on the outer surface (surface) 8 of the membrane wall 7 of the hollow fiber membrane 1 doing.
 具体的には、図3(a)に示すように、濾過膜10の粒子層6は、中空糸膜1の外表面8に細孔3よりも粒径の大きなカーボン粒子を積層して形成したカーボン粒子層4(第1の粒子層)と、当該カーボン粒子層4の表面に、例えばNa等のアルカリ金属形交換基を有する陽イオン交換樹脂の粒子を積層して形成したイオン交換樹脂層5(第2の粒子層)とを備えている。 Specifically, as shown in FIG. 3A, the particle layer 6 of the filtration membrane 10 is formed by laminating carbon particles having a particle diameter larger than that of the pores 3 on the outer surface 8 of the hollow fiber membrane 1 An ion exchange resin layer 5 formed by laminating particles of a cation exchange resin having an alkali metal type exchange group such as Na on the surface of the carbon particle layer 4 (first particle layer) and the carbon particle layer 4 concerned. And (second particle layer).
 本実施形態では、複数の細孔3が設けられた膜本体としての中空糸膜1に当該細孔3よりも粒径の大きいカーボン粒子が入った溶液を通水することでカーボン粒子を中空糸膜1上に積層してカーボン粒子層4を形成し、その後、カーボン粒子よりも粒径の小さい陽イオン交換樹脂の粒子を混合した溶液を通水することで陽イオン交換樹脂の粒子をカーボン粒子層4上に積層してイオン交換樹脂層5を形成している。 In the present embodiment, a hollow fiber 1 as a membrane main body provided with a plurality of pores 3 is supplied with a solution containing carbon particles having a larger particle size than the pores 3 to allow the carbon particles to be hollow fibers. The carbon particle layer 4 is formed by laminating on the membrane 1 to form a carbon particle layer 4 and then passing a solution in which particles of cation exchange resin having a particle diameter smaller than that of the carbon particles are mixed. The ion exchange resin layer 5 is formed by laminating on the layer 4.
 このように、中空糸膜1上にカーボン粒子を積層するとともに、カーボン粒子層4上に陽イオン交換樹脂の粒子を積層することで、中空糸膜1の細孔3よりも小さい細孔を有する濾過膜10を形成している。この濾過膜10の細孔径は、積層する粒子サイズや、積層する厚みを変更することにより適宜に設定することが可能である。 As described above, by laminating carbon particles on the hollow fiber membrane 1 and laminating particles of cation exchange resin on the carbon particle layer 4, it has pores smaller than the pores 3 of the hollow fiber membrane 1. A filtration membrane 10 is formed. The pore diameter of the filtration membrane 10 can be appropriately set by changing the particle size to be laminated or the thickness to be laminated.
 かかる構成の濾過膜10を用いて原水を濾過すると、図3(b)に示すように、原水中に存在する藻類やコロイダルに集合した性状をした有機物9を濾過できるだけでなく、通常の中空糸膜1では濾過することのできない中空糸膜1の細孔3よりも小さい汚れも濾過できるようになる。さらに、活性炭に吸着されない鉛などの溶解性の重金属イオン11は、原水がイオン交換樹脂層5を通過する際に原水とイオン交換樹脂層5との間でイオン交換が行われ、ナトリウムイオンが重金属イオン11に置き換えられることで捕捉される。すなわち、イオン交換樹脂層5を形成することで原水中に溶解している重金属イオン11を除去することができる。 When raw water is filtered using the filtration membrane 10 having such a configuration, as shown in FIG. 3 (b), not only can filtration of the algae 9 present in the raw water and the organic matter 9 having a property gathered in the colloid is possible. Soils smaller than the pores 3 of the hollow fiber membrane 1 which can not be filtered by the membrane 1 can also be filtered. Furthermore, when the raw water passes through the ion exchange resin layer 5, ion exchange is carried out between the raw water and the ion exchange resin layer 5 when the raw water passes through the ion exchange resin layer 5, and sodium ions are heavy metal ions 11. It is captured by being replaced by the ion 11. That is, by forming the ion exchange resin layer 5, the heavy metal ions 11 dissolved in the raw water can be removed.
 そして、上述したように、予め設定された周期などによって、膜モジュール20の下流側から原水を逆流させて濾過膜10の洗浄を行うと、図3(c)に示すように、濾過膜10に積層されていたカーボン粒子および陽イオン交換樹脂の粒子が濾過膜10から剥離するとともに、濾過膜10によって捕捉していた不純物がカーボン粒子および陽イオン交換樹脂の粒子から分離する。そして、粒子回収部30(図1参照)によってカーボン粒子および陽イオン交換樹脂の粒子と排水に含まれる不純物とを分離して、カーボン粒子および陽イオン交換樹脂膜の粒子を回収し、当該回収したカーボン粒子および陽イオン交換樹脂の粒子をバルブV1に送り、膜モジュール20の中空糸膜1に再度積層させて利用することができるようになっている。このとき、陽イオン交換樹脂の粒子を食塩水等の塩溶液に通水させて再生し、陽イオン交換樹脂として再利用できるようにしてもよい。 Then, as described above, when the raw water is reversely flowed from the downstream side of the membrane module 20 and the filtration membrane 10 is washed according to a preset cycle or the like, as shown in FIG. As the carbon particles and the particles of the cation exchange resin that have been stacked separate from the filtration membrane 10, the impurities captured by the filtration membrane 10 separate from the carbon particles and the particles of the cation exchange resin. Then, the particles of carbon particles and cation exchange resin were separated from the impurities contained in the waste water by the particle recovery unit 30 (see FIG. 1), and the particles of carbon particles and cation exchange resin membrane were recovered and recovered. The carbon particles and the particles of the cation exchange resin can be sent to the valve V1 and can be laminated again on the hollow fiber membrane 1 of the membrane module 20 for use. At this time, the particles of the cation exchange resin may be regenerated by passing the solution through a salt solution such as a saline solution so as to be reusable as a cation exchange resin.
 以上、詳細に説明したように、本実施形態では、原水を濾過するための複数の細孔3が設けられた中空糸膜(膜本体)1と、中空糸膜1の外表面8に予め付着させて積層させることにより、原水中の不純物を除去する粒子層6とを備えた濾過膜10を用いて膜モジュール20を構成している。そのため、中空糸膜1に積層された粒子層6で原水中の不純物を吸着することができるうえ、中空糸膜1でも不純物を濾過することができるようになるため、不純物の除去精度を向上させることができる。 As described above in detail, in the present embodiment, the hollow fiber membrane (membrane main body) 1 provided with a plurality of pores 3 for filtering raw water and the outer surface 8 of the hollow fiber membrane 1 are attached in advance. The membrane module 20 is configured using the filtration membrane 10 provided with the particle layer 6 for removing the impurities in the raw water by stacking the layers. Therefore, the particle layer 6 stacked on the hollow fiber membrane 1 can adsorb the impurities in the raw water, and the hollow fiber membrane 1 can also filter the impurities, so the impurity removal accuracy is improved. be able to.
 また、粒子層6を中空糸膜1の外表面8に積層させるだけなので、不純物の除去精度を向上させることのできる濾過膜10を容易に得ることができる。 Further, since only the particle layer 6 is laminated on the outer surface 8 of the hollow fiber membrane 1, it is possible to easily obtain the filtration membrane 10 capable of improving the removal accuracy of the impurities.
 また、濾過膜10の粒子層6は、中空糸膜1の外表面8に積層される第1の粒子層4と当該第1の粒子層4の表面に積層される第2の粒子層5とを備えるため、除去する不純物の種類に応じて粒子層を異ならせることで原水中に含まれる様々な種類の不純物を除去することが可能な多機能膜とすることができる。本実施形態では、第1の粒子層4はカーボン粒子で構成されるとともに、第2の粒子層5はイオン交換樹脂で構成されているため、原水中に含まれた重金属イオン11を確実に除去することができる。 Further, the particle layer 6 of the filtration membrane 10 comprises a first particle layer 4 laminated on the outer surface 8 of the hollow fiber membrane 1 and a second particle layer 5 laminated on the surface of the first particle layer 4. Therefore, by changing the particle layer according to the type of impurity to be removed, a multifunctional film capable of removing various types of impurities contained in the raw water can be obtained. In the present embodiment, the first particle layer 4 is made of carbon particles, and the second particle layer 5 is made of ion exchange resin. Therefore, the heavy metal ions 11 contained in the raw water are reliably removed. can do.
 また、本実施形態では、このような濾過膜10をケーシング(容器)18の内部に収納して一体化することで膜モジュール20を構成しているため、濾過膜10の点検や交換を容易に行うことができるとともに、濾過膜10に粒子層6を容易に積層させることができる。 Further, in the present embodiment, since the membrane module 20 is configured by storing and integrating such a filtration membrane 10 inside the casing (container) 18, inspection and replacement of the filtration membrane 10 can be facilitated. While being able to carry out, the particle layer 6 can be easily laminated on the filtration membrane 10.
 本実施形態では、濾過膜10の膜本体として細いストロー状の中空糸膜1を用いたが、これに限定されず、例えばスパイラル膜やチューブラー膜、平膜を用いてもよい。そして、これらの膜の種類としては、MF膜(精密濾過膜)やUF膜(限外濾過膜)、NF膜を用いることも可能である。 In the present embodiment, the thin straw-like hollow fiber membrane 1 is used as the membrane body of the filtration membrane 10, but is not limited thereto. For example, a spiral membrane, a tubular membrane, or a flat membrane may be used. And as a kind of these membranes, it is also possible to use MF membrane (microfiltration membrane), UF membrane (ultrafiltration membrane), and NF membrane.
[第2実施形態]
 次に、本発明の第2実施形態について図面を参照して説明する。図4は本実施形態に係る水処置装置を示した図である。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a view showing a water treatment apparatus according to the present embodiment.
 本実施形態に係る水処理装置100Aは、上記第1実施形態に係る水処理装置100に対して、膜モジュール40が異なっている。 The water treatment apparatus 100A according to the present embodiment differs from the water treatment apparatus 100 according to the first embodiment in the membrane module 40.
 具体的には、本実施形態では、濾過膜10を構成するイオン交換樹脂層の代わりに、イオン交換樹脂をマイナスに帯電させて形成したイオン性樹脂をカーボン粒子層4の表面に積層させてイオン性樹脂層とするとともに、濾過膜10の上流側と下流側に電極17、18を設け、電源装置50によってイオン性樹脂層が連続または断続的に通電されるようにしている。 Specifically, in the present embodiment, in place of the ion exchange resin layer constituting the filtration membrane 10, an ionizable resin formed by negatively charging an ion exchange resin is laminated on the surface of the carbon particle layer 4 to form ions. As the conductive resin layer, the electrodes 17 and 18 are provided on the upstream side and the downstream side of the filtration membrane 10 so that the ionic resin layer is continuously or intermittently energized by the power supply device 50.
 水中の汚れや水中に溶解している重金属イオン11は、基本的にプラスに帯電しているため、この濾過膜10を用いた場合、これらの汚れや重金属イオン11がマイナスに帯電しているイオン性樹脂に引きつけられ、このイオン性樹脂に吸着されることで除去される。ただし、汚れや重金属イオン11の吸着が進むと、重金属イオン11とイオン性樹脂との間で電荷の移動が行われてイオン性樹脂層の総電荷量が減少していき、やがて、飽和状態となって電荷を帯びていない状態になってしまう。このように、イオン性樹脂による重金属イオン11の除去能力は水を濾過するにつれて徐々に低下していくが、本実施形態では、電源装置50によってイオン性樹脂層を通電し、当該イオン性樹脂層に電荷を供給できるようにすることで、再びイオン性樹脂層をマイナスに帯電させて再利用できるようにしている。 Since dirt in water and heavy metal ions dissolved in water are basically positively charged, when this filtration membrane 10 is used, these dirt and ions in which heavy metal ions 11 are negatively charged The resin is attracted and removed by being absorbed by the ionic resin. However, when the adsorption of heavy metal ions 11 proceeds, the charge transfer is performed between the heavy metal ions 11 and the ionic resin, and the total charge amount of the ionic resin layer decreases, and eventually, the saturated state occurs. As a result, it becomes uncharged. As described above, the removal ability of heavy metal ions 11 by the ionic resin gradually decreases as water is filtered, but in the present embodiment, the ionic resin layer is energized by the power supply device 50, and the ionic resin layer It is possible to charge the ionic resin layer negatively and make it reusable by supplying electric charge to the
 したがって、本実施形態では、濾過膜10が物理的に閉塞してしまうまで、水中の重金属イオン11の除去が可能となる。 Therefore, in the present embodiment, it is possible to remove heavy metal ions 11 in water until the filtration membrane 10 is physically blocked.
 また、電極17、18のプラスとマイナスを反転させた状態でイオン性樹脂層を通電できるようにし、例えば、濾過膜10が物理的に閉塞した場合に、イオン性樹脂層をプラスに帯電させるようにすれば、プラスに帯電したもの同士の反発力によって重金属イオン11とイオン性樹脂とを剥離させることができるようになる。 Further, the ionic resin layer can be energized in a state in which the plus and minus of the electrodes 17 and 18 are inverted, and for example, when the filtration membrane 10 is physically clogged, the ionic resin layer is positively charged. In this case, it is possible to peel off the heavy metal ions 11 and the ionic resin by the repulsive force between the positively charged ones.
 さらに、本実施形態においても、上記第1実施形態と同様に水路切替部(バルブV2)を設けているため、濾過膜10の逆洗浄を行う際に、電極17、18のプラスとマイナスを反転させた状態でイオン性樹脂層を通電させれば、逆洗浄による物理的な洗浄に加えて電気反発力による洗浄も行うことができ、より効果的に、濾過膜10の洗浄を行うことができる。 Furthermore, also in the present embodiment, since the water channel switching portion (valve V2) is provided as in the first embodiment, when the filtration membrane 10 is reversely washed, the positive and negative of the electrodes 17 and 18 are reversed. If the ionic resin layer is energized in the state where it has been allowed to pass, in addition to physical washing by reverse washing, washing by electric repulsion can also be performed, and washing of the filtration membrane 10 can be carried out more effectively. .
 また、濾過膜10に積層された粒子を回収する粒子回収部30も設けられており、逆洗浄後の排水を粒子回収部30に送り、濾過膜10に積層されていた粒子と排水に含まれる不純物とを分離して粒子を回収し、当該回収した粒子を濾過膜10に再度積層させて利用することができる。 In addition, a particle collection unit 30 for collecting particles stacked on the filtration membrane 10 is also provided, and the waste water after reverse washing is sent to the particle collection unit 30 and included in the particles and drainage that are stacked on the filtration membrane 10 The impurities can be separated to recover the particles, and the recovered particles can be stacked on the filtration membrane 10 for use.
 したがって、本実施形態の濾過膜10によっても、上記第1実施形態と同様の作用効果を奏することができる。 Therefore, also by the filtration membrane 10 of the present embodiment, the same effects as those of the first embodiment can be exhibited.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。例えば、上記実施形態では、粒子層として、重金属イオンを除去する陽イオン交換樹脂を例示したが、この粒子層は、除去しようとする物質に応じて適宜変更することが可能である。例えば、陰イオン交換樹脂を積層することで、アンモニウムイオン等、陰イオン性の物質を除去するようにしてもよいし、シリカ粒子を積層することで、シリカコロイドを除去するようにしてもよい。また、上記実施形態では、粒子を混合した溶液を通水させることで当該粒子を中空糸膜(膜本体)に積層させているが、重力や圧力を利用して積層させたり、電気化学的に積層させたりしてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, although the cation exchange resin which removes heavy metal ion was illustrated as a particle layer in the said embodiment, this particle layer can be suitably changed according to the substance which it is going to remove. For example, an anion exchange resin may be laminated to remove an anionic substance such as ammonium ion, or a silica particle may be laminated to remove silica colloid. Further, in the above embodiment, the particles are laminated on the hollow fiber membrane (membrane main body) by passing the solution mixed with the particles, but the lamination may be performed using gravity or pressure, or electrochemically. It may be laminated.
 不純物の除去精度の向上した濾過膜、膜モジュールおよび水処理装置を提供することができる。 It is possible to provide a filtration membrane, a membrane module and a water treatment device with an improved accuracy of removing impurities.

Claims (8)

  1.  原水を濾過する複数の細孔を有する膜本体と、
     前記膜本体の表面に付着させて積層させた、原水中の不純物を除去する粒子層と、を備えた
    濾過膜。
    A membrane body having a plurality of pores for filtering raw water;
    A particulate layer attached to and laminated on the surface of the membrane body to remove impurities in the raw water.
  2.  前記粒子層は、
      前記膜本体の表面に積層した第1の粒子層と、
      前記第1の粒子層の表面に積層した第2の粒子層と、
    を備える
    請求項1に記載の濾過膜。
    The particle layer is
    A first particle layer laminated on the surface of the film body;
    A second particle layer laminated on the surface of the first particle layer,
    The filtration membrane according to claim 1, comprising:
  3.  前記第1の粒子層は、カーボン粒子で構成され、
     前記第2の粒子層は、イオン交換樹脂で構成されている
    請求項2に記載の濾過膜。
    The first particle layer is composed of carbon particles,
    The filtration membrane according to claim 2, wherein the second particle layer is composed of an ion exchange resin.
  4.  吸入口および吐出口を有する容器と、
     前記容器の内部に一体に収納された濾過膜であって、原水を濾過する複数の細孔を有する膜本体と、前記膜本体の表面に付着させて積層させた原水中の不純物を除去する粒子層と、を含む濾過膜と、を備えた
    膜モジュール。
    A container having an inlet and an outlet;
    A filter membrane integrally contained in the interior of the container, the membrane body having a plurality of pores for filtering raw water, and particles for removing impurities in the raw water deposited on the surface of the membrane body A membrane module comprising: a bed;
  5.  吸入口および吐出口を有する容器、及び、前記容器の内部に一体に収納され、原水を濾過する複数の細孔を有する膜本体と、前記膜本体の表面に付着させて積層させた原水中の不純物を除去する粒子層と、を含む濾過膜、を備えた膜モジュールを備え、
     前記膜モジュールに原水を導入して浄化した浄水を得る
    水処理装置。
    A container having an inlet and an outlet, and a membrane body integrally accommodated inside the container and having a plurality of pores for filtering raw water, and attached to the surface of the membrane body and laminated And d) a filter module including a particle layer for removing impurities.
    A water treatment apparatus for obtaining purified water purified by introducing raw water into the membrane module.
  6.  導入された原水を前記膜モジュールの上流側から前記膜モジュールに導水する第1水路と、
     前記第1水路に接続され、導入された原水を前記膜モジュールの下流側から前記膜モジュールに導水する第2水路と、
     前記第1水路と前記第2水路との分岐点に設けられ、前記第1水路および第2水路のいずれかに原水を導水させる水路切替部と、をさらに備える
    請求項5に記載の水処理装置。
    A first water channel for conveying introduced raw water from the upstream side of the membrane module to the membrane module;
    A second water channel which is connected to the first water channel and transfers the introduced raw water from the downstream side of the film module to the film module;
    The water treatment device according to claim 5, further comprising: a water channel switching unit provided at a branch point between the first water channel and the second water channel, for guiding raw water to any of the first water channel and the second water channel. .
  7.  前記膜モジュールの上流側に、前記水路切替部により前記第2水路に原水が導水されて前記膜モジュールが逆洗浄される際に、前記膜モジュールの前記濾過膜に付着していた粒子を回収する粒子回収部をさらに備えた
    請求項6に記載の水処理装置。
    When raw water is conducted to the second water channel by the water channel switching unit on the upstream side of the membrane module and the membrane module is reversely washed, particles adhering to the filtration membrane of the membrane module are recovered The water treatment apparatus according to claim 6, further comprising a particle recovery unit.
  8.  前記膜モジュールは、前記粒子層を通電する電極を含む
    請求項5に記載の水処理装置。
    The water treatment apparatus according to claim 5, wherein the membrane module includes an electrode for energizing the particle layer.
PCT/JP2010/053948 2009-03-13 2010-03-10 Filtration membrane, membrane module, and water treatment device WO2010104097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060999 2009-03-13
JP2009060999A JP2010214235A (en) 2009-03-13 2009-03-13 Filtration membrane, membrane module, and water treatment apparatus

Publications (1)

Publication Number Publication Date
WO2010104097A1 true WO2010104097A1 (en) 2010-09-16

Family

ID=42728386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053948 WO2010104097A1 (en) 2009-03-13 2010-03-10 Filtration membrane, membrane module, and water treatment device

Country Status (3)

Country Link
JP (1) JP2010214235A (en)
TW (1) TW201043578A (en)
WO (1) WO2010104097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812035A4 (en) * 2018-06-12 2022-03-09 Kolon Industries, Inc. Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996963B2 (en) * 2012-08-09 2016-09-21 ダイセン・メンブレン・システムズ株式会社 Filtration method of metal nanoparticles
CN104923084B (en) * 2015-06-24 2017-03-22 上海鑫霖环境科技有限公司 Internal-external pressure pre-coating type dynamic membrane support and dynamic membrane system
JP7172674B2 (en) * 2019-02-04 2022-11-16 株式会社島津製作所 FIELD FLOW FRACTIONATION DEVICE AND WASHING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103384A (en) * 1976-02-27 1977-08-30 Bayer Ag Reverse osmosis method
JPH0248024A (en) * 1988-08-10 1990-02-16 Nok Corp Hollow fiber with adsorbent and production thereof and water cleaning device
JPH0283020A (en) * 1988-09-19 1990-03-23 Japan Organo Co Ltd Condensate filtration using hollow fiber membrane
WO2002044091A2 (en) * 2000-12-01 2002-06-06 Kiwa N.V. A method for the purification of water by means of filtration using a micro or ultra filtration membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103384A (en) * 1976-02-27 1977-08-30 Bayer Ag Reverse osmosis method
JPH0248024A (en) * 1988-08-10 1990-02-16 Nok Corp Hollow fiber with adsorbent and production thereof and water cleaning device
JPH0283020A (en) * 1988-09-19 1990-03-23 Japan Organo Co Ltd Condensate filtration using hollow fiber membrane
WO2002044091A2 (en) * 2000-12-01 2002-06-06 Kiwa N.V. A method for the purification of water by means of filtration using a micro or ultra filtration membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3812035A4 (en) * 2018-06-12 2022-03-09 Kolon Industries, Inc. Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier
US11876259B2 (en) 2018-06-12 2024-01-16 Kolon Industries, Inc. Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier

Also Published As

Publication number Publication date
JP2010214235A (en) 2010-09-30
TW201043578A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP1814826A2 (en) Edi concentrate recycle loop with filtration module
WO2011158559A1 (en) Method for cleaning membrane modules
WO2010104097A1 (en) Filtration membrane, membrane module, and water treatment device
WO1997047375A1 (en) Membrane filter system and pressure vessel suitable for membrane filtration
KR20140100601A (en) Water treatment apparatus
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
KR20050033547A (en) Separation membrane module and method of operating separation membrane module
CN202400913U (en) Water purification filtering core and water purifier
JP2012239946A (en) Filter
CN210796016U (en) Electrode foil corrosion wastewater treatment system
CN111992056B (en) Functional magnetic-based dynamic membrane system and implementation method thereof
CN212954669U (en) Multi-stage filtration water purification system and water purifier
JP2008183513A (en) Water purifying apparatus
CN209771840U (en) Reverse osmosis water purification system with washing function
WO1997003024A1 (en) Method and system for removing ionic species from water
CN210796018U (en) Phosphorus-containing cleaning wastewater treatment system for electrode foil
KR102102561B1 (en) Hipure wasted water treatment device use tubular membrane
CN202912774U (en) Water-purifying filter element and water purifier
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
CN110862167A (en) Electrode foil corrosion wastewater treatment system and treatment process thereof
KR101636701B1 (en) NF/RO water purification system using capacitive deionization
JP2014188469A (en) Filtration method, and filtration apparatus and water treatment system using the same
CN105776654A (en) Water purifying device and control method thereof
CN220223731U (en) Reclaimed water supply and utilization system
CN212050877U (en) Antibacterial ultrafiltration membrane filtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750850

Country of ref document: EP

Kind code of ref document: A1