WO2010104079A1 - Composition for reducing bone fracture risk and/or preventing bone fracture - Google Patents

Composition for reducing bone fracture risk and/or preventing bone fracture Download PDF

Info

Publication number
WO2010104079A1
WO2010104079A1 PCT/JP2010/053907 JP2010053907W WO2010104079A1 WO 2010104079 A1 WO2010104079 A1 WO 2010104079A1 JP 2010053907 W JP2010053907 W JP 2010053907W WO 2010104079 A1 WO2010104079 A1 WO 2010104079A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
male
bone
fracture
risk
Prior art date
Application number
PCT/JP2010/053907
Other languages
French (fr)
Japanese (ja)
Inventor
長田昌士
原博
Original Assignee
明治乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明治乳業株式会社 filed Critical 明治乳業株式会社
Priority to JP2011503829A priority Critical patent/JP5967936B2/en
Publication of WO2010104079A1 publication Critical patent/WO2010104079A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis

Definitions

  • the present invention relates to a composition for reducing fracture risk and / or preventing fracture. More specifically, the present invention relates to a pharmaceutical composition or a food composition (oral ingestion agent) that can be taken orally effective in reducing fracture risk and / or preventing fracture.
  • a pharmaceutical composition or a food composition oral ingestion agent
  • a fracture is a fracture or a crack in the bone.
  • the main determinants of bone strength include (1) bone mass and density, and (2) bone quality.
  • the characteristics indicating bone quality include structural characteristics and material characteristics. Structural characteristics include macroscopic bone structure and size, microcancellous trabecular structure and cortical bone (compact bone) morphology and porosity.
  • the material characteristics include mineralization degree, crystal size, collagen, and micro damage (Non-Patent Document 1).
  • Osteoporosis is divided into several modes, for example, (1) secondary osteoporosis caused by a specific disease or drug, and (2) primary osteoporosis that is thought to occur due to various causes overlapping. Can do.
  • the main ones of primary osteoporosis can include osteoporosis and senile osteoporosis in postmenopausal women.
  • Osteoporosis in postmenopausal women is caused by a decrease in estrogen.
  • Estrogen is a major regulator of bone metabolism, and it is supposed that osteoporosis is caused by a decrease in bone mass due to a decrease in estrogen.
  • the cause of senile osteoporosis in men and postmenopausal women after the menopause is considered to be caused by a combination of factors, such as decreased sex hormones, changes in systemic hormones and cytokine actions.
  • factors such as decreased sex hormones, changes in systemic hormones and cytokine actions.
  • the proliferative ability and function of osteoblast progenitor cells and mature osteoblasts decrease at the cellular level as a result of aging.
  • bone resorption increases with aging and bone formation declines.
  • the endocrine system changes due to aging, and the concentration of growth hormone and IGF-I decreases, which reduces bone formation. It is said that the decrease in sex hormones causes bone loss even in men.
  • Non-patent Document 2 Active vitamin D, bisphosphate, magnesium, calcium, casein phosphopeptide, and the like are also used for the treatment of osteoporosis.
  • Patent Document 1 the use of vitamin K 2, vitamin K 2 and the combination of zinc is known as an improvement agent or preventive agent for osteoporosis.
  • Patent Document 2 the use of vitamin K 2, vitamin K 2 and the combination of zinc is known as an improvement agent or preventive agent for osteoporosis.
  • Creine and vitamin D As a composition with the effect of increasing bone mass and muscle mass, which helps prevent falls and fractures in the elderly, creatine and vitamin D, glucosamines, glycosaminoglycans are active ingredients, bone and muscle strengthening Food compositions have been developed (Patent Document 2).
  • a pharmaceutical composition or (health) food composition effective for reducing fracture risk and / or preventing fracture, particularly for improving or preventing adult male, elderly male, and male adult osteoporosis and senile osteoporosis Development is the first issue.
  • the risk of fracture of a male male and / or prevention of fracture is reduced.
  • the male of a grown mammal, the male of an old mammal, and the male grown male osteoporosis and old osteoporosis Development of a pharmaceutical composition or feed composition effective for improving or preventing the above is a second problem.
  • Development of a pharmaceutical composition or a (health) food composition or a feed composition is a third problem.
  • a fourth problem is to develop a pharmaceutical composition or a food composition that can reduce the risk of fracture, which has been confirmed or verified to actually improve bone strength.
  • the inventor of the present application can administer an effective amount of zinc to a woman or a mother of a mammal by giving it an effective amount of zinc to a woman or a mammal mother during the period before pregnancy and during pregnancy and breastfeeding, or at least during pregnancy.
  • the present invention was completed by finding that the risk of fracture when a boy or male offspring born from an animal mother reached adulthood was significantly reduced.
  • the male when zinc is administered to a woman, a boy born from the woman reaches adulthood (hereinafter also referred to as “adult”, “adult”, “after growth”, etc.) or old age
  • adulthood hereinafter also referred to as “adult”, “adult”, “after growth”, etc.
  • old age the male has a particularly excellent effect of reducing fracture risk and / or preventing fracture.
  • the present invention provides a method for administering a fracture to a male when a male offspring born from the mother grows (hereinafter also referred to as an “adult”) or reaches an old age by administering zinc to a mammalian mother. It has a particularly excellent effect of enabling risk reduction and / or prevention of fractures.
  • Cortical bone thickness (cm) of the pup mouse by X-ray CT imaging * p ⁇ 0.05 mm there is a significant difference Cortical bone area ratio (%), which is the ratio of cortical bone area to total bone area * p ⁇ 0.05 mm, there is a significant difference Minimum moment of inertia (mg ⁇ cm) showing the bone strength against bending * p ⁇ 0.05mm, there is a significant difference Cross-sectional second-order moment (mg ⁇ cm) showing bone strength against torsion * p ⁇ 0.05 mm, significant difference Maximum bending energy (mJ) from the three-point fracture test of the right femur Tissue volume of cancellous bone (mm 3 ) * p ⁇ 0.05, significant difference Total bone mass of cortical bone (mg) * p ⁇ 0.05 mm with significant difference 25 (OH) vitamin D3 concentration in blood (nmol / L) * p ⁇ 0.05, there is a significant difference
  • Osteoporosis has conventionally been regarded as a disease involving a fracture caused by a decrease in bone mass, but is now regarded as a disease with an increased risk of fracture. And it has been widely recognized that therapeutic agents for osteoporosis require preventive treatment of fractures.
  • Zinc is said to play catalytic, structural and regulatory functions in vivo.
  • RNA polymerase and alkaline phatase.
  • proteins in the living body whose structure is maintained by zinc bonding such as Zinc-finger protein.
  • Zinc-finger protein proteins in the human body.
  • zinc deficiency includes growth disorder, hypogonadism, taste / olfactory disturbance, hair loss, immune decline, and the like.
  • the recommended amount of zinc consumed by Japanese is 3 mg per day for pregnant women, compared to the recommended amount of 7 mg per day at the age of pregnancy. In the period, the recommended amount per day is 10 mg.
  • the 2005 National Health and Nutrition Survey about 90% of pregnant women do not meet the daily required intake of zinc, which includes additional amounts.
  • Bone strength is an integration of bone density and bone quality.
  • particular attention has been directed to bone mass and bone density as an assessment of fracture risk.
  • the burden on the patient is small and clinically excellent, but there are various problems in evaluating the risk of fracture.
  • treatment with fluorine has little effect on preventing fractures despite an increase in bone mass.
  • raloxifene treatment it is said that the incidence of fracture is lower when the bone mass decreases than when the bone mass increases in the control group.
  • Characteristics that represent bone quality include macroscopic bone structure and bone dimensions, microscopic trabecular bone trabecular structure and bone dimensions, microscopic trabecular bone trabecular structure and cortical bone morphology and porosity, etc. And “material properties” such as mineralization degree, crystal size, and micro damage.
  • a macroscopic bone structure evaluation method a method using dual-Xray-absorptiometry (eg, femoral neck length), a method using cross-sectional CT (eg, long bone), or a method using micro CT (A trabecular bone trabecular structure, fine bone).
  • Bone material evaluation methods include quantitative backscattered electron imaging (quantative backscattered imaging qBEI), scanning electron microscope, and synchrotron radiation CT (Clinical). Calcium IV Vol.14, No.12, pages 27-32).
  • the present invention is a composition containing zinc as an active ingredient, and is administered to a pregnant woman or a mammal mother to reduce the risk of fracture of a male or male offspring that the pregnant woman or mammal mother gave birth.
  • the present invention relates to a composition containing zinc as an active ingredient, which is administered to a pregnant woman or a mother of a mammal so that the pregnant woman or the mother of the mammal gives birth to a male or mammalian male adult osteoporosis And compositions effective for improving or preventing senile osteoporosis.
  • the above composition may be any of a pharmaceutical (for) composition, a food (for) composition, or a feed (for) composition.
  • Mammals include humans, but also include livestock, pets, and laboratory animals.
  • the effect of taking zinc during pregnancy and breastfeeding from the time when the mother can become pregnant is the effect of reducing the risk of fracture and improving the prevention of fracture in boys born from that mother. As it appeared prominently. In other words, when the mother ingested and did not ingest the zinc experimentally, the mother was born with a significant difference in the effectiveness in reducing fracture risk and preventing fracture. When zinc was ingested, it was excellent.
  • the effect of taking zinc during pregnancy and breastfeeding from the time when the mother can become pregnant is not only for boys but also for girls, as it reduces the risk of fracture and improves the effectiveness of fracture prevention. It can be expected.
  • compositions a pharmaceutical composition containing zinc as an active ingredient, and a male or a male born from a pregnant woman or a mother of a mammal has become an adult by administering to the mother of the pregnant woman or a mammal. And a pharmaceutical composition that is effective in reducing fracture risk and improving or preventing adult osteoporosis and senile osteoporosis.
  • the pharmaceutical composition of the present invention may be any zinc composition including zinc-containing compounds and compositions, such as zinc sulfate, zinc chloride, inorganic zinc, zinc gluconate, chelate zinc, and picolinic acid. Zinc etc. are mentioned, Furthermore, zinc binding protein, a zinc binding peptide, etc. are mentioned.
  • the pharmaceutical composition of the present invention can be made into appropriate dosage forms such as powders, granules, tablets, capsules, and liquids.
  • adjuvants commonly used for formulation such as excipients, binders, disintegrants, and lubricants, can be added.
  • excipients include starch, lactose, sucrose, methylcellulose, carboxymethylcellulose, sodium alginate, calcium hydrogen phosphate, synthetic aluminum silicate, microcrystalline cellulose, polyvinylpyrrolidone (PVP), and hydroxypropyl starch (HPS).
  • Binders include aqueous solutions of starch, microcrystalline cellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (PVP), gum arabic powder, gelatin, glucose, sucrose, or water / ethanol solutions thereof.
  • Disintegrants include starch, carboxymethylcellulose, carboxymethylcellulose calcium, microcrystalline cellulose, hydroxypropyl starch, calcium phosphate and the like.
  • lubricants carnauba wax, light anhydrous silicic acid, synthetic aluminum silicate, natural aluminum silicate, synthetic magnesium silicate, hardened oil, hardened vegetable oil derivative (Sterotex HM), sesame oil, white beeswax, titanium oxide, dry hydroxide
  • lubricants carnauba wax, light anhydrous silicic acid, synthetic aluminum silicate, natural aluminum silicate, synthetic magnesium silicate, hardened oil, hardened vegetable oil derivative (Sterotex HM), sesame oil, white beeswax, titanium oxide, dry hydroxide
  • Aluminum gel stearic acid, calcium stearate, magnesium stearate, talc, calcium hydrogen phosphate, and sodium lauryl sulfate for lubricants, carnauba wax, light anhydrous silicic acid, synthetic aluminum silicate, natural aluminum silicate, synthetic magnesium silicate, hardened oil, hardened vegetable oil derivative (Sterotex HM), sesame oil, white beeswax, titanium oxide, dry hydro
  • the pharmaceutical composition of the present invention can take various forms of administration depending on the form of zinc, but can preferably be in the form of oral administration.
  • the pharmaceutical composition of the present invention contains an effective amount of zinc capable of reducing the risk of fractures during adulthood and old age, or reducing the risk of suffering from osteoporosis when a boy born from an administered mother is an adult. More specifically, it can be administered so that the intake amount is 7 to 40 mg per day in terms of zinc. Taking into account the intake of zinc by a method such as a meal, administration can be made so that the intake is 7 to 40 mg per day in terms of zinc. More specifically, it can be administered at an intake of 1 to 40 mg, preferably 4 to 30 mg, more preferably 6 to 30 mg, more preferably more than 10 mg and less than 30 mg per day in terms of zinc.
  • the pharmaceutical composition of the present invention can be administered during a period from the time when pregnancy is possible until pregnancy and breastfeeding. In addition, it is desirable to administer during the above-mentioned period, but administration during pregnancy is considered to be necessary at a minimum.
  • the pharmaceutical composition of the present invention is also referred to as a fracture risk reducing agent, an adult osteoporosis and senile osteoporosis improving agent or preventing agent.
  • the present invention includes a food composition effective for reducing the risk of fracture when a male or male born from the pregnant woman or the mother of a mammal becomes an adult and for improving or preventing adult osteoporosis and senile osteoporosis.
  • the food composition of the present invention may be any zinc composition including zinc-containing compounds and compositions, such as zinc sulfate, zinc chloride, inorganic zinc, zinc gluconate, chelate zinc, and picolinic acid.
  • Zinc etc. are mentioned, and also zinc binding protein, zinc binding peptide etc. are mentioned, and these zinc or a compound or composition containing zinc can be added to food in a required amount.
  • the food composition of the present invention can be prepared by adding a food containing a large amount of zinc, such as cheese, yeast, liver, meat, and natto, as it is or after processing it to other foods or food materials.
  • a food containing a large amount of zinc such as cheese, yeast, liver, meat, and natto
  • Examples of the treatment include treatment that is easy to add to other food ingredients such as drying, pulverization, and cutting.
  • the other foods or food materials may be any foods including processed foods, beverages, edible materials, and drinking materials.
  • the food composition of the present invention contains an effective amount of zinc capable of reducing the risk of fractures during adulthood and old age, or reducing the risk of suffering from osteoporosis when a boy born from an administered mother is an adult. More specifically, zinc is contained so that the intake amount is 7 to 40 mg per day in terms of zinc. In consideration of the amount of zinc intake by a method such as a meal, zinc is contained so as to be 7 to 40 mg per day in terms of zinc. More specifically, it can be contained in an amount of 1 to 40 mg, preferably 4 to 30 mg, more preferably 6 to 30 mg, more preferably more than 10 mg and less than 30 mg per day in terms of zinc.
  • the food composition of the present invention can be ingested during a period from the time when pregnancy is possible until pregnancy and breastfeeding. In addition, it is desirable to take it during the aforementioned period, but it is considered necessary to take it during pregnancy.
  • the amount of zinc ingested by meals can be calculated using, for example, the 5th edition supplemented Japanese food standard ingredient table and the food composition table, or using the 5th edition Japanese food standard component table analysis manual. It is obtained by actually measuring the amount.
  • the food composition of the present invention can be a health food, a food for specified health use, a special use food for pregnant women, or a dietary supplement.
  • the food composition may be solid (powder, granule, etc.), paste, liquid or suspension.
  • sweetener, acidulant, vitamin Other additives that are commonly used in the manufacture of drinks can also be added.
  • special-purpose foods for pregnant women or dietary supplements powders, granules, tablets, capsules It is also possible to use supplements in appropriate dosage forms such as agents and liquids.
  • the food composition of the present invention is also described as a fracture risk reducing agent, an adult osteoporosis and senile osteoporosis improving agent or preventive agent.
  • the present invention can also be used as a food additive for preparing health foods, foods for specified health use, special-purpose foods for pregnant women or dietary supplements containing zinc as an active ingredient.
  • an age-related osteoporosis model SAM (Senescence-Accelerated Mouse) P6 was used. It has been reported that SAMP6 (mouse) is about 16 weeks of age and significantly decreases bone mass compared to the control SAMR1. SAMP6 (mouse) is about 20 weeks old and can sufficiently evaluate osteoporosis in the elderly. Further, in this example, a zinc level of 7 ppm was set as an intermediate zinc deficiency state in the case of rodents with zinc deficiency. In the past, a number of experiments with extremely low zinc levels such as 1 ppm have been reported as zinc-deficient conditions, but if you continue to consume such extremely low zinc levels, your intake will be significantly reduced, Daily fluctuations in food intake increase. In the experiment with intake of extremely low zinc levels, we simply observed (confirmed) the phenomenon (effect) due to a decrease in calorie intake and abnormal eating, and it was completely a test to confirm the effect of pure zinc deficiency. Is inappropriate.
  • SAMP6 female (8 weeks old) containing 7 ppm zinc (medium low zinc level feed, hereinafter also referred to as “low level group”) or 35 ppm feed (appropriate zinc level feed, below) (Also called “appropriate level group”). Two weeks after ingestion of these zinc diets, the female mice were mated with syngeneic male mice to become pregnant.
  • the female mice were fed the same feed as before mating during pregnancy.
  • the female mice (mother mice) were fed a diet with an appropriate zinc level after giving birth, and the pups were fed a diet with an appropriate zinc level after weaning.
  • X-ray CT imaging was performed on Lacita LCT-100A (Aloka) at 4, 8 and 12 weeks of age of the pups, and bone-related parameters were measured.
  • male pups male pups
  • DNA methylation and histone acetylation DNA methylation and histone acetylation.
  • other epigenetic phenomena may occur before or during pregnancy. More specifically, due to the low zinc state of the female (mother) before and during pregnancy, it is unique to male pups (male pups) as epigenetic phenomena such as active vitamin D and bone metabolism Is expected to have an impact.
  • Zinc is taken in unconsciously on a daily basis because there are very few foods that can be consumed in large doses, and the use of cereals, vegetables, beans, etc. that are often consumed in daily diets decreases. That itself is difficult. According to the 2005 National Health and Nutrition Survey, about 90% of pregnant women do not meet the daily intake of zinc, which includes additional amounts. In addition, about 80% of pregnant women in the world are not satisfied with zinc (Caulfield et al. (1998) Am J Clin Nutr 68 (Suppl): 499S-508S).
  • the present invention relates to the field of pharmaceutical manufacturing for reducing or preventing osteoporosis in male male mammals, including humans, as well as food production for reducing or preventing male male fracture risk. It can be used in the field of industry or beverage manufacturing industry or the field of feed manufacturing industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed is a medicinal composition, a food composition or a feed composition which is efficacious for reducing bone fracture risk or preventing bone fractures in adult and geriatric human males or male mammals. The aforesaid compositions were developed based on the finding that, due to the administration of an effective amount of zinc to a human female or female mammal during the periods when the female is fertile, pregnant or lactating, the risk of bone fractures in a human male or male mammal born to the human female or female mammal can be significantly reduced when the human male or male mammal reaches adulthood or later.

Description

骨折リスクの低減及び/又は骨折の予防のための組成物Composition for reducing fracture risk and / or preventing fracture
 本願発明は、骨折リスクの低減及び/又は骨折の予防のための組成物に関する。より具体的には、本願発明は、骨折リスクの低減及び/又は骨折の予防に有効な経口で摂取できる医薬組成物又は食品組成物(経口摂取剤)に関する。 The present invention relates to a composition for reducing fracture risk and / or preventing fracture. More specifically, the present invention relates to a pharmaceutical composition or a food composition (oral ingestion agent) that can be taken orally effective in reducing fracture risk and / or preventing fracture.
 近年では人口の高齢化が進むにつれ、骨折は高齢者の自立的生活、健康な生活を脅かすものとして注目を集めている。高齢者が寝たきりとなる最大の原因の一つが骨折である。また、骨折を増加させる原因の1つとして骨粗鬆症が挙げられる。健康な老人生活を送るためにも、骨折リスクを低減したり、骨折を予防したりすることは、今後にも老化が進む先進国では極めて重要となっている。 In recent years, with the aging of the population, fractures are attracting attention as a threat to the elderly's independent life and healthy life. One of the biggest causes of elderly people becoming bedridden is a fracture. Moreover, osteoporosis is mentioned as one of the causes which increase a fracture. In order to lead a healthy elderly life, reducing fracture risk and preventing fractures will be extremely important in advanced countries where aging continues.
 骨折とは骨が折れたり、骨にヒビが入るなどすることであり、骨強度を上げることで、骨折リスクを低下させて、骨折を予防することができる。骨強度の主な決定因子には、(1)骨量・骨密度、(2)骨質がある。そして、骨質を示す特性には、構造特性と材料特性がある。構造特性には、マクロ的な骨構造や骨寸法、ミクロ的な海綿骨の骨梁構造と皮質骨(緻密骨)の形態・多孔化が含まれる。材料特性には、ミネラル化度や結晶サイズ、コラーゲン、マイクロダメージが含まれる(非特許文献1)。 骨 A fracture is a fracture or a crack in the bone. Increasing the bone strength can reduce the risk of fracture and prevent a fracture. The main determinants of bone strength include (1) bone mass and density, and (2) bone quality. The characteristics indicating bone quality include structural characteristics and material characteristics. Structural characteristics include macroscopic bone structure and size, microcancellous trabecular structure and cortical bone (compact bone) morphology and porosity. The material characteristics include mineralization degree, crystal size, collagen, and micro damage (Non-Patent Document 1).
 骨粗鬆症は幾つかの態様に分けられ、例えば、(1)特定の病気や薬品により生じる続発性の骨粗鬆症と、(2)様々な原因が重なって起こると考えられている原発性の骨粗鬆症に分けることができる。原発性の骨粗鬆症の主要なものでは、閉経後の女性がかかる骨粗鬆症と老人性骨粗鬆症を挙げることができる。 Osteoporosis is divided into several modes, for example, (1) secondary osteoporosis caused by a specific disease or drug, and (2) primary osteoporosis that is thought to occur due to various causes overlapping. Can do. The main ones of primary osteoporosis can include osteoporosis and senile osteoporosis in postmenopausal women.
 閉経後の女性がかかる骨粗鬆症はエストロゲンの低下により引き起こされる。エストロゲンは主要な骨代謝調節因子であり、エストロゲンの低下により骨量が低下して、骨粗鬆症を発症するものとされている。 Osteoporosis in postmenopausal women is caused by a decrease in estrogen. Estrogen is a major regulator of bone metabolism, and it is supposed that osteoporosis is caused by a decrease in bone mass due to a decrease in estrogen.
 他方、男性や閉経後の急性期後の女性がかかる老人性の骨粗鬆症では、その原因は複合的なものとされ、性ホルモンの低下、全身性ホルモンやサイトカイン作用の変化により起こるものと考えられている。加齢により細胞レベルでも、骨芽細胞前駆細胞や成熟骨芽細胞の増殖能と機能が低下する。また、加齢により骨吸収が増進し、骨形成が衰えるといわれている。さらに、老化により内分泌系が変化して、成長ホルモンやIGF-Iの濃度が低下し、このため骨形成が低下する、性ホルモンの低下により男性でも骨量の減少を起こすといわれている。 On the other hand, the cause of senile osteoporosis in men and postmenopausal women after the menopause is considered to be caused by a combination of factors, such as decreased sex hormones, changes in systemic hormones and cytokine actions. Yes. The proliferative ability and function of osteoblast progenitor cells and mature osteoblasts decrease at the cellular level as a result of aging. In addition, it is said that bone resorption increases with aging and bone formation declines. Furthermore, the endocrine system changes due to aging, and the concentration of growth hormone and IGF-I decreases, which reduces bone formation. It is said that the decrease in sex hormones causes bone loss even in men.
 以前から、閉経後の女性の骨粗鬆症では、エストロゲンが投与されるなどしている。しかしながら、エストロゲンは子宮出血、乳房の膨張などの副作用があること、子宮内膜癌、乳癌を誘発させる可能性があることなどの問題点を有している(非特許文献2)。また、活性型ビタミンDやビスフォスフェート、マグネシウム、カルシウム、カゼインホスホペプチドなども骨粗鬆症の治療に利用されている。 For some time, estrogen has been given to osteoporosis in postmenopausal women. However, estrogen has problems such as that it has side effects such as uterine bleeding and breast swelling, and that it may induce endometrial cancer and breast cancer (Non-patent Document 2). Active vitamin D, bisphosphate, magnesium, calcium, casein phosphopeptide, and the like are also used for the treatment of osteoporosis.
 さらに、最近では、ビタミンKの利用と、ビタミンK2と亜鉛の併用が骨粗鬆症の改善剤や予防剤として知られている(特許文献1)。また、高齢者の転倒・骨折防止に役立つ、骨量・筋肉量の増加効果を持つ組成物として、クレアチン類とビタミンD類、グルコサミン類、グリコサミノグリカン類を有効成分する、骨・筋肉増強用食品組成物が開発されている(特許文献2)。 Moreover, recently, the use of vitamin K 2, vitamin K 2 and the combination of zinc is known as an improvement agent or preventive agent for osteoporosis (Patent Document 1). In addition, as a composition with the effect of increasing bone mass and muscle mass, which helps prevent falls and fractures in the elderly, creatine and vitamin D, glucosamines, glycosaminoglycans are active ingredients, bone and muscle strengthening Food compositions have been developed (Patent Document 2).
特開平10-036256号JP 10-036256 特開2008-237070号JP 2008-237070
 本願発明では、男性の骨折リスクの低減及び/又は骨折の予防、特に成人男性、老人男性、さらに男性の成人骨粗鬆症及び老人性骨粗鬆症の改善又は予防に有効な医薬組成物若しくは(健康)食品組成物の開発を第1の課題とする。 In the present invention, a pharmaceutical composition or (health) food composition effective for reducing fracture risk and / or preventing fracture, particularly for improving or preventing adult male, elderly male, and male adult osteoporosis and senile osteoporosis Development is the first issue.
 また、本願発明では、哺乳動物の雄の骨折リスクの低減及び/又は骨折の予防、特に成長した哺乳動物の雄、老いた哺乳動物の雄、さらに哺乳動物の成長した雄の骨粗鬆症及び老齢の骨粗鬆症の改善又は予防に有効な医薬組成物若しくは飼料組成物の開発を第2の課題とする。 Further, in the present invention, the risk of fracture of a male male and / or prevention of fracture is reduced. In particular, the male of a grown mammal, the male of an old mammal, and the male grown male osteoporosis and old osteoporosis Development of a pharmaceutical composition or feed composition effective for improving or preventing the above is a second problem.
 さらに、本願発明では、妊娠可能時期から妊娠中、或いは妊娠可能時期から妊娠中及び授乳時期に母親に投与することにより生まれた男性又は哺乳動物の雄の骨折リスクの低減及び/又は骨折の予防するための医薬組成物又は(健康)食品組成物若しくは飼料組成物の開発を第3の課題とする。 Furthermore, in the present invention, the risk of fracture and / or prevention of fractures in male or mammalian males born by administration to mothers from the time of pregnancy to pregnancy or from pregnancy to pregnancy and breastfeeding. Development of a pharmaceutical composition or a (health) food composition or a feed composition is a third problem.
 また、以前からの骨折防止剤又は、骨粗鬆症予防剤若しくは治療剤は、骨量や骨密度を指標にして開発されており、実際に骨強度が改善しているか否かの確認や実証が十分ではなかった。そこで、本願発明では、実際に骨強度を改善していることを確認や実証した、骨折リスクを低減できる医薬組成物又は食品組成物の開発を第4の課題とする。 In addition, conventional anti-fracture agents or preventive or therapeutic agents for osteoporosis have been developed using bone mass and bone density as indicators, and it is not sufficient to confirm and demonstrate whether bone strength has actually improved. There wasn't. Therefore, in the present invention, a fourth problem is to develop a pharmaceutical composition or a food composition that can reduce the risk of fracture, which has been confirmed or verified to actually improve bone strength.
 本願発明者等は、妊娠前で妊娠可能な時期及び妊娠中並びに授乳中までの期間、又は少なくとも妊娠中の期間に、有効量の亜鉛を女性又は哺乳動物の母親に投与することにより、その女性又は動物の母親から生まれた男児又は雄性の仔が成人期に達したときの骨折リスクを有意に低減できることを見出して、本願発明を完成させた。 The inventor of the present application can administer an effective amount of zinc to a woman or a mother of a mammal by giving it an effective amount of zinc to a woman or a mammal mother during the period before pregnancy and during pregnancy and breastfeeding, or at least during pregnancy. Alternatively, the present invention was completed by finding that the risk of fracture when a boy or male offspring born from an animal mother reached adulthood was significantly reduced.
 本明細書は本願の優先権の基礎である日本国特許出願2009-061838号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2009-061838, which is the basis of the priority of the present application.
 本願発明は、女性に亜鉛を投与することで、その女性から生まれた男児が成人期(以下「成人したとき」、「成人」、「成長後」などともいう。)又は老齢期に達したときに、その男性の骨折リスクの低減及び/又は骨折の予防を可能とするという格別に優れた効果を奏するものである。 In the present invention, when zinc is administered to a woman, a boy born from the woman reaches adulthood (hereinafter also referred to as “adult”, “adult”, “after growth”, etc.) or old age In addition, the male has a particularly excellent effect of reducing fracture risk and / or preventing fracture.
 さらに、本願発明は、哺乳動物の母親に亜鉛と投与することで、その母親から生まれた雄性の仔が成長したとき(以下「成人」ともいう)又は老齢期に達したときに、雄の骨折リスクの低減及び/又は骨折の予防を可能とするという格別に優れた効果を奏するものである。 Furthermore, the present invention provides a method for administering a fracture to a male when a male offspring born from the mother grows (hereinafter also referred to as an “adult”) or reaches an old age by administering zinc to a mammalian mother. It has a particularly excellent effect of enabling risk reduction and / or prevention of fractures.
X線CT撮影による当該仔マウスの皮質骨厚(cm) *p<0.05 で有意差ありCortical bone thickness (cm) of the pup mouse by X-ray CT imaging * p <0.05 mm, there is a significant difference 全骨面積に対する皮質骨の面積の比率にあたる皮質骨面積比率(%) *p<0.05 で有意差ありCortical bone area ratio (%), which is the ratio of cortical bone area to total bone area * p <0.05 mm, there is a significant difference 曲げに対する骨強度を示す最小断面2次モーメント(mg・cm) *p<0.05 で有意差ありMinimum moment of inertia (mg · cm) showing the bone strength against bending * p <0.05mm, there is a significant difference ねじれに対する骨強度を示す断面2次極モーメント(mg・cm) *p<0.05 で有意差ありCross-sectional second-order moment (mg · cm) showing bone strength against torsion * p <0.05 mm, significant difference 右大腿骨の3点折れ試験による最大曲げエネルギー(mJ) *p<0.05 で有意差ありMaximum bending energy (mJ) from the three-point fracture test of the right femur 海綿骨の組織体積(mm3) *p<0.05 で有意差ありTissue volume of cancellous bone (mm 3 ) * p <0.05, significant difference 皮質骨の全骨量(mg) *p<0.05 で有意差ありTotal bone mass of cortical bone (mg) * p <0.05 mm with significant difference 血中の25(OH)ビタミンD3濃度(nmol/L) *p<0.05 で有意差あり25 (OH) vitamin D3 concentration in blood (nmol / L) * p <0.05, there is a significant difference
1.はじめに
 骨粗鬆症は従来、骨量の減少を原因とする骨折を含む病気を指すものとされてきたが、現在では骨折リスクの増加した疾患とされてきている。そして、骨粗鬆症の治療薬には、骨折の予防的治療が必要であることが広く認識されるようになってきている。
1. 1. Introduction Osteoporosis has conventionally been regarded as a disease involving a fracture caused by a decrease in bone mass, but is now regarded as a disease with an increased risk of fracture. And it has been widely recognized that therapeutic agents for osteoporosis require preventive treatment of fractures.
 閉経後のエストロゲンの減少に伴う骨粗鬆症では、その原因が解明されて治療方法が確立されつつあるが、男性の骨強度の低下に伴う骨折では、その原因が複合的要因によるものとされ、未だに根本的な治療方法や予防方法は開発されていない。 In osteoporosis associated with postmenopausal estrogen reduction, the cause is elucidated and treatment methods are being established, but in fractures associated with decreased bone strength in men, the cause is considered to be due to multiple factors and is still fundamental. No practical treatment or prevention method has been developed.
 ところで、近年では妊娠中の栄養と生まれた子の健康状態に相関性のあることが知られるようになってきている。例えば、妊娠中の葉酸の摂取と、脳や脊髄などの神経管に起きる先天異常である神経管閉鎖障害に相関性のあることが見出されている。妊婦が葉酸を摂取することにより、生まれてくる子に神経管閉鎖障害が起きる危険性を低減させることができるといわれており、胎児の神経管が作られるのが妊娠初期の頃であることから、受胎前後に充分に葉酸を摂取することが推奨されている。 By the way, in recent years, it has become known that there is a correlation between nutrition during pregnancy and the health of the born child. For example, it has been found that there is a correlation between folic acid intake during pregnancy and neural tube closure disorder, which is a congenital anomaly that occurs in neural tubes such as the brain and spinal cord. Pregnant women are said to be able to reduce the risk of neural tube closure problems in their babies by ingesting folic acid, because the fetal neural tube is created in the early stages of pregnancy. Adequate folic acid intake before and after conception is recommended.
 このような観点なども含めて、妊娠期の栄養と出生児のその後の成長及び健康状態との関係について研究されている。 Including this viewpoint, research is being conducted on the relationship between nutrition during pregnancy and the subsequent growth and health of the baby.
2.微量元素の亜鉛の摂取とその役割
 亜鉛は生体内で触媒的機能、構造的機能及び調節的機能を果たしているといわれている。亜鉛依存的酵素には300~500種もあり、代表的なものだけでも、RNAポリメラーゼ、アルカリファターゼなどが挙げられる。また、Zinc-finger proteinを代表とした、亜鉛結合により構造が維持されるタンパク質が生体内には多数で存在する。具体的には、ヒトの生体内には、亜鉛結合性のタンパク質だけでも2800種もあると見積もられている。
2. Intake of trace element zinc and its role Zinc is said to play catalytic, structural and regulatory functions in vivo. There are 300 to 500 types of zinc-dependent enzymes, and only typical ones include RNA polymerase and alkaline phatase. In addition, there are a large number of proteins in the living body whose structure is maintained by zinc bonding, such as Zinc-finger protein. Specifically, it is estimated that there are as many as 2800 types of zinc-binding proteins in the human body.
 さらに、亜鉛の調節機能も多岐に亘るが、亜鉛はアポトーシスにも関与するほか、細胞内のシグナル伝達物質でも働いていることが分かりつつある。 Furthermore, although there are a wide variety of regulatory functions of zinc, it is becoming clear that zinc is also involved in apoptosis and also works in intracellular signal transduction substances.
 このように、亜鉛の体内における多様な役割から、亜鉛欠乏症には、成長障害、性腺機能低下、味覚・嗅覚障害、脱毛、免疫低下などが知られている。 Thus, due to the various roles of zinc in the body, it is known that zinc deficiency includes growth disorder, hypogonadism, taste / olfactory disturbance, hair loss, immune decline, and the like.
 日本人の推奨亜鉛摂取量は「2005年度版 日本人の食事摂取基準」によれば、妊娠可能年齢における1日当たりの推奨量の7mgに対して、妊婦の1日当たりの付加量は3mgとなり、妊娠期では1日当たりの推奨量は10mgとされている。しかしながら、平成17年度の国民健康・栄養調査によれば、妊婦の実に9割程度が付加量を含む亜鉛の1日の必要な摂取量を充足していない。 According to the “2005 dietary standard for Japanese dietary intake”, the recommended amount of zinc consumed by Japanese is 3 mg per day for pregnant women, compared to the recommended amount of 7 mg per day at the age of pregnancy. In the period, the recommended amount per day is 10 mg. However, according to the 2005 National Health and Nutrition Survey, about 90% of pregnant women do not meet the daily required intake of zinc, which includes additional amounts.
 また、「2005年度版 日本人の食事摂取基準」によれば、妊娠可能年齢における1日当たりの亜鉛の摂取量は30mgを上限とされているが、亜鉛の経口毒性は非常に低く、余程に大量で摂取しなければ、過剰症は起きないとされている。 In addition, according to the “2005 Japanese Dietary Intake Standard”, the daily intake of zinc at the age of pregnancy is limited to 30 mg, but the oral toxicity of zinc is very low, too much It is said that hypertension will not occur if not consumed in large quantities.
 一方、アメリカの公的な栄養指針である「Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc」(Food and Nutrition Board, Institute of Medicine, 2000)によれば、妊娠可能な年齢における1日当たりの推奨量の8mgに対して、妊婦における1日当たりの推奨量は11~12mgであり、成人女性における1日当たりの亜鉛の摂取量は40mgを上限とされている。 On the other hand, “Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vandium, and Zinc” According to Nutrition Board, Institute of Medicine, 2000), the recommended daily dose for pregnant women is 11-12 mg compared to the recommended daily dose of 8 mg at the age of pregnancy, and the daily dose for adult women The upper limit of intake is 40 mg.
3.骨折リスクと骨強度
 現在では骨粗鬆症は骨強度の低下を特徴とし、骨折リスクを増加させる骨疾患であると定義されており、骨強度は骨密度と骨質を統合したものである。従来では骨折リスクの評価として骨量や骨密度に特に関心が向けられてきた。骨量測定では、患者の負担が少なく、臨床的に優れているが、骨折リスクの評価として様々な問題がある。例えば、フッ素による治療では、骨量は増加するにもかかわらず、骨折防止効果はほとんどない。また、ラロキシフェンによる治療でも、対照群で骨量が増加した場合より、骨量が減少した場合に、骨折発生率が低いといわれている。つまり、骨量の増加と骨折の抑制効果の関係は、必ずしも一致しない(Clinical Calcium 第14巻 12号 11-26ページ)。このように、骨量測定では、骨折又は骨粗鬆症の治療効果の指標には限界の生ずることが明らかとなり、最近では骨強度と骨質の評価の重要性が認識されてきている。
3. Fracture risk and bone strength Osteoporosis is now characterized as a loss of bone strength and is defined as a bone disease that increases fracture risk. Bone strength is an integration of bone density and bone quality. In the past, particular attention has been directed to bone mass and bone density as an assessment of fracture risk. In bone mass measurement, the burden on the patient is small and clinically excellent, but there are various problems in evaluating the risk of fracture. For example, treatment with fluorine has little effect on preventing fractures despite an increase in bone mass. In addition, even with raloxifene treatment, it is said that the incidence of fracture is lower when the bone mass decreases than when the bone mass increases in the control group. In other words, the relationship between the increase in bone mass and the effect of inhibiting fractures does not necessarily match (Clinical Calcium Vol. 14, No. 12, pages 11-26). Thus, in bone mass measurement, it has become clear that there is a limit to the index of the therapeutic effect of fractures or osteoporosis, and the importance of evaluating bone strength and bone quality has recently been recognized.
 骨質を表す特性には、マクロ的な骨構造や骨寸法、ミクロ的な海面骨の骨梁構造や骨寸法、ミクロ的な海面骨の骨梁構造と皮質骨の形態・多孔化などの「構造特性」と、ミネラル化度、結晶サイズ、マイクロダメージなどの「材料特性」がある。例えば、マクロ的な骨構造の評価方法には、dual-Xray-absorptiometryを用いる方法(例えば、大腿骨頚部長など)、断面CTを用いる方法(例えば、長管骨など)、マイクロCTを用いる方法(海面骨の骨梁構造、微細骨)を挙げられる。骨材料の評価方法には、骨ミネラル度の定量的な後方散乱電子イメージング(quantative backscattered electron imaging qBEI)や走査型電子顕微鏡を用いた方法、シンクロトロン放射光CTを用いる方法などを挙げられる(Clinical Calcium 第14巻 第12号 27-32ページ)。 Characteristics that represent bone quality include macroscopic bone structure and bone dimensions, microscopic trabecular bone trabecular structure and bone dimensions, microscopic trabecular bone trabecular structure and cortical bone morphology and porosity, etc. And “material properties” such as mineralization degree, crystal size, and micro damage. For example, as a macroscopic bone structure evaluation method, a method using dual-Xray-absorptiometry (eg, femoral neck length), a method using cross-sectional CT (eg, long bone), or a method using micro CT (A trabecular bone trabecular structure, fine bone). Bone material evaluation methods include quantitative backscattered electron imaging (quantative backscattered imaging qBEI), scanning electron microscope, and synchrotron radiation CT (Clinical). Calcium IV Vol.14, No.12, pages 27-32).
4.男性の骨折リスク又は老人性骨粗鬆症と妊婦の亜鉛の摂取/哺乳動物の雄の骨折リスク又は老人性骨粗鬆症と哺乳動物の母親の亜鉛の摂取
 本願発明者等は、少なくとも妊娠中、妊娠可能な時期から妊娠中、又は妊娠可能な時期から妊娠中更には授乳期間中において、ヒトを含む哺乳動物の母親に十分量の亜鉛を与えることにより、その母親から生まれた男性又は哺乳動物の雄性の仔で、骨折リスクを低下できること、さらに、成人期及び老人性の骨折リスクを有意に低下できることを見出した。従来の骨粗鬆症薬は全て、骨粗鬆症患者又は骨粗鬆症にかかる恐れのある場合に対して投与するものであるが、本願発明は、母親の妊娠前から妊娠中に亜鉛を投与することで、その男児又は哺乳動物の雄性の仔の成人後又は老人期に骨折リスクを低下させるという、画期的な発明である。
4). Male fracture risk or senile osteoporosis and intake of zinc in pregnant women / mammalian male fracture risk or senile osteoporosis and intake of mammalian mother's zinc By giving a sufficient amount of zinc to a mammalian mother, including humans, during pregnancy, from the time when she can conceive, and during breastfeeding, a male born from that mother or a male male offspring, The present inventors have found that the risk of fracture can be reduced, and that the risk of fracture in adulthood and senile can be significantly reduced. All conventional osteoporosis drugs are administered to osteoporosis patients or cases where there is a risk of suffering from osteoporosis. This is an epoch-making invention that reduces the risk of fractures in adult male pups after adulthood or in old age.
 本願発明は、亜鉛を有効成分として含有する組成物であって、妊婦又は哺乳動物の母親に投与することにより、その妊婦又は哺乳動物の母親が出産した男性又は雄性の仔の骨折リスクの低下に有効な組成物を包含する。 The present invention is a composition containing zinc as an active ingredient, and is administered to a pregnant woman or a mammal mother to reduce the risk of fracture of a male or male offspring that the pregnant woman or mammal mother gave birth. Includes effective compositions.
 さらに、本願発明は、亜鉛を有効成分として含有する組成物であって、妊婦又は哺乳動物の母親に投与することにより、その妊婦又は哺乳動物の母親が出産した男性又は哺乳動物の雄の成人骨粗鬆症及び老人性骨粗鬆症の改善又は予防に有効な組成物を包含する。 Furthermore, the present invention relates to a composition containing zinc as an active ingredient, which is administered to a pregnant woman or a mother of a mammal so that the pregnant woman or the mother of the mammal gives birth to a male or mammalian male adult osteoporosis And compositions effective for improving or preventing senile osteoporosis.
 なお、上記の組成物は、医薬(用)組成物、食品(用)組成物、又は飼料(用)組成物の、いずれであっても良い。そして、哺乳動物とは、ヒトも含むが、家畜やペット及び実験動物なども含む。 The above composition may be any of a pharmaceutical (for) composition, a food (for) composition, or a feed (for) composition. Mammals include humans, but also include livestock, pets, and laboratory animals.
 ところで、後述した実施例では、母親が妊娠可能な時期から妊娠中と授乳中に亜鉛を摂取した効果は、その母親から生まれた男児において、骨折リスクの低減と骨折の予防への有効性の向上として顕著に現れていた。つまり、母親が亜鉛を摂取した場合と摂取しない場合を実験的に比べたところ、その母親から生まれた男児において、骨折リスクの低減と骨折の予防への有効性で、明らかな有意差をもって、母親が亜鉛を摂取した場合が優れていた。 By the way, in the examples described later, the effect of taking zinc during pregnancy and breastfeeding from the time when the mother can become pregnant is the effect of reducing the risk of fracture and improving the prevention of fracture in boys born from that mother. As it appeared prominently. In other words, when the mother ingested and did not ingest the zinc experimentally, the mother was born with a significant difference in the effectiveness in reducing fracture risk and preventing fracture. When zinc was ingested, it was excellent.
 一方、後述した実施例では、母親が妊娠可能な時期から妊娠中と授乳中に亜鉛を摂取した効果は、その母親から生まれた女児においても、骨折リスクの低減と骨折の予防への有効性の向上として現れていることもあった。つまり、母親が亜鉛を摂取した場合と摂取しない場合を実験的に比べたところ、その母親から生まれた女児において、骨折リスクの低減と骨折の予防への有効性で、有意差は見られなかったものの、母親が亜鉛を摂取した場合が優れている傾向も見られた。 On the other hand, in the examples described later, the effect of taking zinc during pregnancy and breastfeeding from the time when the mother can become pregnant is effective in reducing fracture risk and preventing fracture even in girls born from the mother. There was also an improvement. In other words, when the mother took and did not take zinc experimentally, there was no significant difference in the effectiveness of reducing fracture risk and preventing fracture among girls born to the mother. However, there was also a tendency for mothers to take zinc.
 すなわち、母親が妊娠可能な時期から妊娠中と授乳中に亜鉛を摂取する効果は、男児に対してのみではなく女児に対しても、骨折リスクの低減と骨折の予防への有効性の向上として期待できるものである。 In other words, the effect of taking zinc during pregnancy and breastfeeding from the time when the mother can become pregnant is not only for boys but also for girls, as it reduces the risk of fracture and improves the effectiveness of fracture prevention. It can be expected.
 なお、改めて述べるまでもなく、出産に際して男性や女性の産み分けが可能な特殊な場合を除き、妊娠中の超音波診断などを通じて出生児の性別が判明されない限り、出生児の性別は不明であるが、いかなる妊娠可能な女性はもとより、いかなる妊娠中の女性でも、亜鉛の投与による有効性を事実上で損なうものではない。そして、家畜やペット及び実験動物などでも、前記と同様の亜鉛の投与による有効性を事実上で損なうものではないことも明らかである。 Needless to say once again, the sex of the baby is unknown unless the gender of the baby is clarified through ultrasonography during pregnancy, except in special cases where males and females can be born. However, any pregnant woman, as well as any pregnant woman, does not substantially impair the effectiveness of zinc administration. It is also apparent that livestock, pets, laboratory animals and the like do not substantially impair the effectiveness of zinc administration as described above.
4-1.医薬用組成物
 本願発明では、亜鉛を有効成分として含有する医薬組成物であって、妊婦又は哺乳動物の母親に投与することにより、当該妊婦又は哺乳動物の母親から生まれた男性又は雄が成人したときの骨折リスクの低下並びに成人骨粗鬆症及び老人性骨粗鬆症の改善又は予防に有効な医薬組成物を包含する。
4-1. Pharmaceutical composition In the present invention, a pharmaceutical composition containing zinc as an active ingredient, and a male or a male born from a pregnant woman or a mother of a mammal has become an adult by administering to the mother of the pregnant woman or a mammal. And a pharmaceutical composition that is effective in reducing fracture risk and improving or preventing adult osteoporosis and senile osteoporosis.
 本願発明の医薬組成物は、亜鉛として、亜鉛を含む化合物や組成物なども含めて、いずれのものでも良いが、例えば、硫酸亜鉛、塩化亜鉛、無機亜鉛、グルコン酸亜鉛、キレート亜鉛、ピコリン酸亜鉛などを挙げられ、さらに、亜鉛結合タンパク質、亜鉛結合ペプチドなども挙げられる。 The pharmaceutical composition of the present invention may be any zinc composition including zinc-containing compounds and compositions, such as zinc sulfate, zinc chloride, inorganic zinc, zinc gluconate, chelate zinc, and picolinic acid. Zinc etc. are mentioned, Furthermore, zinc binding protein, a zinc binding peptide, etc. are mentioned.
 本願発明の医薬組成物は、散剤、顆粒剤、錠剤、カプセル剤、液剤など、適宜の剤形とすることができる。製剤化には、賦形剤、結合剤、崩壊剤、及び滑沢剤など、製剤化のために常用される補助剤を添加することができる。賦形剤では、例えば、デンプン、乳糖、白糖、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム、リン酸水素カルシウム、合成ケイ酸アルミニウム、微結晶セルロース、ポリビニルピロリドン(PVP)、ハイドロキシプロピルスターチ(HPS)などがある。 また、結合剤では、デンプン、微結晶セルロース、カルボキシメチルセルロースナトリウム、ポリビニルピロリドン(PVP)、アラビアゴム末、ゼラチン、ブドウ糖、白糖などの水溶液、又はそれらの水・エタノール溶液などがある。崩壊剤では、デンプン、カルボキシルメチルセルロース、カルボキシルメチルセルロースカルシウム、微結晶セルロース、ハイドロキシプロピルスターチ、リン酸カルシウムなどがある。滑沢剤では、カルナバロウ、軽質無水ケイ酸、合成ケイ酸アルミニウム、天然ケイ酸アルミニウム、合成ケイ酸マグネシウム、硬化油、硬化植物油誘導体(ステロテックスHM)、ゴマ油、サラシミツロウ、酸化チタン、乾燥水酸化アルミニウム・ゲルステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウム、タルク、リン酸水素カルシウム、及びラウリル硫酸ナトリウムなどがある。 The pharmaceutical composition of the present invention can be made into appropriate dosage forms such as powders, granules, tablets, capsules, and liquids. For formulation, adjuvants commonly used for formulation, such as excipients, binders, disintegrants, and lubricants, can be added. Examples of excipients include starch, lactose, sucrose, methylcellulose, carboxymethylcellulose, sodium alginate, calcium hydrogen phosphate, synthetic aluminum silicate, microcrystalline cellulose, polyvinylpyrrolidone (PVP), and hydroxypropyl starch (HPS). .結合 Binders include aqueous solutions of starch, microcrystalline cellulose, sodium carboxymethylcellulose, polyvinylpyrrolidone (PVP), gum arabic powder, gelatin, glucose, sucrose, or water / ethanol solutions thereof. Disintegrants include starch, carboxymethylcellulose, carboxymethylcellulose calcium, microcrystalline cellulose, hydroxypropyl starch, calcium phosphate and the like. For lubricants, carnauba wax, light anhydrous silicic acid, synthetic aluminum silicate, natural aluminum silicate, synthetic magnesium silicate, hardened oil, hardened vegetable oil derivative (Sterotex HM), sesame oil, white beeswax, titanium oxide, dry hydroxide Aluminum gel stearic acid, calcium stearate, magnesium stearate, talc, calcium hydrogen phosphate, and sodium lauryl sulfate.
 本願発明の医薬組成物は、亜鉛の形態に応じ、種々の投与の形態を採ることができるが、好適には、経口投与の形態とすることができる。 The pharmaceutical composition of the present invention can take various forms of administration depending on the form of zinc, but can preferably be in the form of oral administration.
 本願発明の医薬組成物は、投与した母親から生まれた男子が成人し、成人期・老年期に骨折リスクを低下できる、或いは骨粗鬆症に罹患するリスクを低減できる有効量の亜鉛を含有する。より具体的には、亜鉛換算で1日当たり、7~40mgの摂取量となるように投与することができる。食事等の方法による亜鉛の摂取量を考慮して、亜鉛換算で1日当たり7~40mgの摂取量となるように投与することができる。さらに具体的には、亜鉛換算で1日当たり、1~40mg、望ましくは4~30mg、より望ましくは6~30mg、さらに望ましくは10mgよりも多く30mgよりも少ない摂取量で投与することができる。 The pharmaceutical composition of the present invention contains an effective amount of zinc capable of reducing the risk of fractures during adulthood and old age, or reducing the risk of suffering from osteoporosis when a boy born from an administered mother is an adult. More specifically, it can be administered so that the intake amount is 7 to 40 mg per day in terms of zinc. Taking into account the intake of zinc by a method such as a meal, administration can be made so that the intake is 7 to 40 mg per day in terms of zinc. More specifically, it can be administered at an intake of 1 to 40 mg, preferably 4 to 30 mg, more preferably 6 to 30 mg, more preferably more than 10 mg and less than 30 mg per day in terms of zinc.
 また、本願発明の医薬組成物は、妊娠可能な時期から妊娠中及び授乳中までの期間に投与することができる。また、前述の期間に投与することが望ましいが、妊娠中に投与することは最低限で必要だと考えられる。 In addition, the pharmaceutical composition of the present invention can be administered during a period from the time when pregnancy is possible until pregnancy and breastfeeding. In addition, it is desirable to administer during the above-mentioned period, but administration during pregnancy is considered to be necessary at a minimum.
 なお、本願発明の医薬組成物は、骨折リスクの低下剤、成人骨粗鬆症及び老人性骨粗鬆症の改善剤又は予防剤とも表記される。 The pharmaceutical composition of the present invention is also referred to as a fracture risk reducing agent, an adult osteoporosis and senile osteoporosis improving agent or preventing agent.
4-2.食品組成物 : 健康食品、特定保健用食品、妊婦用の特別用途食品又は栄養補助食品
 本願発明では、亜鉛を有効成分として含有する食品組成物であって、妊婦又は哺乳動物の母親に投与することにより、当該妊婦又は哺乳動物の母親から生まれた男性又は雄が成人したときの骨折リスクの低下並びに成人骨粗鬆症及び老人性骨粗鬆症の改善又は予防に有効な食品組成物を包含する。
4-2. Food composition: health food, food for specified health use, food for special use for pregnant woman or dietary supplement In the present invention, a food composition containing zinc as an active ingredient, which is administered to a pregnant woman or a mother of a mammal Thus, the present invention includes a food composition effective for reducing the risk of fracture when a male or male born from the pregnant woman or the mother of a mammal becomes an adult and for improving or preventing adult osteoporosis and senile osteoporosis.
 本願発明の食品組成物は、亜鉛として、亜鉛を含む化合物や組成物なども含めて、いずれのものでも良いが、例えば、硫酸亜鉛、塩化亜鉛、無機亜鉛、グルコン酸亜鉛、キレート亜鉛、ピコリン酸亜鉛などを挙げられ、さらに、亜鉛結合タンパク質、亜鉛結合ペプチドなども挙げられ、これら亜鉛又は亜鉛を含む化合物若しくは組成物を食品に所要量で添加することができる。 The food composition of the present invention may be any zinc composition including zinc-containing compounds and compositions, such as zinc sulfate, zinc chloride, inorganic zinc, zinc gluconate, chelate zinc, and picolinic acid. Zinc etc. are mentioned, and also zinc binding protein, zinc binding peptide etc. are mentioned, and these zinc or a compound or composition containing zinc can be added to food in a required amount.
 本願発明の食品組成物は、チーズ、酵母、レバー、肉、及び納豆など、亜鉛を多量に含む食品をそのまま、或いは処理して、他の食品又は食品原料に添加して調製することができる。前記の処理には、乾燥、粉砕、裁断など、他の食品原料に添加しやすい処理を挙げられる。他の食品又は食品原料とは、加工食品を含む食品、及び飲料、並びに食用原料、及び飲用原料など、いずれでも良い。 The food composition of the present invention can be prepared by adding a food containing a large amount of zinc, such as cheese, yeast, liver, meat, and natto, as it is or after processing it to other foods or food materials. Examples of the treatment include treatment that is easy to add to other food ingredients such as drying, pulverization, and cutting. The other foods or food materials may be any foods including processed foods, beverages, edible materials, and drinking materials.
 本願発明の食品組成物は、投与した母親から生まれた男子が成人し、成人期・老年期に骨折リスクを低下できる、或いは、骨粗鬆症に罹患するリスクを低減できる有効量の亜鉛を含有する。より具体的には、亜鉛換算で1日当たり、7~40mgの摂取量となるように亜鉛を含有する。食事等の方法による亜鉛の摂取量を考慮して、亜鉛換算で1日当たり、7~40mgとなるように亜鉛を含有する。さらに具体的には、亜鉛換算で1日当たり、1~40mg、望ましくは4~30mg、より望ましくは6~30mg、さらに望ましくは10mgよりも多く30mgよりも少なくなるように含有することができる。 The food composition of the present invention contains an effective amount of zinc capable of reducing the risk of fractures during adulthood and old age, or reducing the risk of suffering from osteoporosis when a boy born from an administered mother is an adult. More specifically, zinc is contained so that the intake amount is 7 to 40 mg per day in terms of zinc. In consideration of the amount of zinc intake by a method such as a meal, zinc is contained so as to be 7 to 40 mg per day in terms of zinc. More specifically, it can be contained in an amount of 1 to 40 mg, preferably 4 to 30 mg, more preferably 6 to 30 mg, more preferably more than 10 mg and less than 30 mg per day in terms of zinc.
 また、本願発明の食品組成物は、妊娠可能な時期から妊娠中及び授乳中までの期間に摂取することができる。また、前述の期間に摂取することが望ましいが、妊娠中に摂取することは最低限で必要だと考えられる。 In addition, the food composition of the present invention can be ingested during a period from the time when pregnancy is possible until pregnancy and breastfeeding. In addition, it is desirable to take it during the aforementioned period, but it is considered necessary to take it during pregnancy.
 食事などの方法による亜鉛の摂取量は、例えば、五訂増補 日本食品標準成分表 食品成分表を用いて算出したり、五訂 日本食品標準成分表 分析マニュアルを用いるなどして、食品中の亜鉛量を実際に測定したりすることで求められる。 For example, the amount of zinc ingested by meals can be calculated using, for example, the 5th edition supplemented Japanese food standard ingredient table and the food composition table, or using the 5th edition Japanese food standard component table analysis manual. It is obtained by actually measuring the amount.
 本願発明の食品組成物は、健康食品、特定保健用食品、妊婦用の特別用途食品又は栄養補助食品とすることができる。前記の食品組成物は、固体状(粉末、顆粒状など)、ペースト状、液状ないし懸濁状などの、いずれでも良く、例えば、ドリンク剤とする場合には、甘味料、酸味料、ビタミン剤、その他ドリンク剤の製造に常用される添加物を加えることもでき、健康食品、特定保健用食品、妊婦用の特別用途食品又は栄養補助食品とする場合には、散剤、顆粒剤、錠剤、カプセル剤、液剤など、適宜の剤形のサプリメントとすることもできる。 The food composition of the present invention can be a health food, a food for specified health use, a special use food for pregnant women, or a dietary supplement. The food composition may be solid (powder, granule, etc.), paste, liquid or suspension. For example, in the case of a drink, sweetener, acidulant, vitamin Other additives that are commonly used in the manufacture of drinks can also be added. In the case of health foods, foods for specified health use, special-purpose foods for pregnant women or dietary supplements, powders, granules, tablets, capsules It is also possible to use supplements in appropriate dosage forms such as agents and liquids.
 なお、本願発明の食品組成物は、骨折リスクの低下剤、成人骨粗鬆症及び老人性骨粗鬆症の改善剤又は予防剤とも表記される。 It should be noted that the food composition of the present invention is also described as a fracture risk reducing agent, an adult osteoporosis and senile osteoporosis improving agent or preventive agent.
 さらに、本願発明は、亜鉛を有効成分として含有する健康食品、特定保健用食品、妊婦用の特別用途食品又は栄養補助食品を調製するための食品添加剤とすることもできる。 Furthermore, the present invention can also be used as a food additive for preparing health foods, foods for specified health use, special-purpose foods for pregnant women or dietary supplements containing zinc as an active ingredient.
[実施例] [Example]
 本実施例では、加齢性骨粗鬆症モデルのSAM(Senescence-Accelerated Mouse)P6を使用した。SAMP6(マウス)は16週齢程度で、対照のSAMR1に対して、有意に骨量の減少を伴うことが報告されている。SAMP6(マウス)は20週齢程度で、高齢期の骨粗鬆症を十分に評価できる。また、亜鉛欠乏を伴う齧歯類の事例に、本実施例では、中間的な亜鉛欠乏状態として7ppmの亜鉛レベルを設定した。過去には亜鉛欠乏状態として1ppmなどの極めて低い亜鉛レベルを設定した実験が多数で報告されているものの、そのような極めて低い亜鉛レベルの飼料を摂取し続けると、摂食量が著しく減少したり、摂食量の日間変動が大きくなったりする。極めて低い亜鉛レベルの飼料の摂取による実験では、単に摂取カロリーの低下や摂食異常による現象(影響)を観察(確認)しているのであって、純粋に亜鉛欠乏による影響を確認する試験として全くの不適である。 In this example, an age-related osteoporosis model SAM (Senescence-Accelerated Mouse) P6 was used. It has been reported that SAMP6 (mouse) is about 16 weeks of age and significantly decreases bone mass compared to the control SAMR1. SAMP6 (mouse) is about 20 weeks old and can sufficiently evaluate osteoporosis in the elderly. Further, in this example, a zinc level of 7 ppm was set as an intermediate zinc deficiency state in the case of rodents with zinc deficiency. In the past, a number of experiments with extremely low zinc levels such as 1 ppm have been reported as zinc-deficient conditions, but if you continue to consume such extremely low zinc levels, your intake will be significantly reduced, Daily fluctuations in food intake increase. In the experiment with intake of extremely low zinc levels, we simply observed (confirmed) the phenomenon (effect) due to a decrease in calorie intake and abnormal eating, and it was completely a test to confirm the effect of pure zinc deficiency. Is inappropriate.
 SAMP6のメス(8週齢)に、亜鉛を7ppmで含む飼料(中程度の低い亜鉛レベルの飼料、以下「低レベル群」ともいう)、或いは35ppmで含む飼料(適切な亜鉛レベルの飼料、以下「適切レベル群」ともいう)を摂取させた。これら亜鉛飼料の摂取から2週間後に、当該メスマウスを同系のオスマウスと交配させて妊娠させた。 SAMP6 female (8 weeks old) containing 7 ppm zinc (medium low zinc level feed, hereinafter also referred to as “low level group”) or 35 ppm feed (appropriate zinc level feed, below) (Also called “appropriate level group”). Two weeks after ingestion of these zinc diets, the female mice were mated with syngeneic male mice to become pregnant.
 当該メスマウスには妊娠中にも、交配前と同じ飼料を摂取させた。当該メスマウス(母マウス)には出産後に、適切な亜鉛レベルの飼料を摂取させ、仔マウスには離乳後に、同じく適切な亜鉛レベルの飼料を摂取させた。 The female mice were fed the same feed as before mating during pregnancy. The female mice (mother mice) were fed a diet with an appropriate zinc level after giving birth, and the pups were fed a diet with an appropriate zinc level after weaning.
 なお、本実施例では、以下の項目を測した。 In this example, the following items were measured.
(1)当該仔マウスの4、8、12週齢に、ラシータLCT-100A(アロカ社)により、X線CT撮影を施し、骨関連パラメーターを測定した。 (1) X-ray CT imaging was performed on Lacita LCT-100A (Aloka) at 4, 8 and 12 weeks of age of the pups, and bone-related parameters were measured.
(2)当該仔マウスの20週齢を解剖し、左右の大腿骨及び血液を採取した。 (2) The 20-week-old mouse was dissected and the left and right femurs and blood were collected.
(2-1)右大腿骨では、骨硬度試験機のModel TK-252C(室町機械社)を用いて、3点折れ試験法により骨強度を測定した。 (2-1) For the right femur, bone strength was measured by a three-point bending test method using a model hardness tester ModelCTK-252C (Muromachi Kikai Co., Ltd.).
(2-2)左大腿骨では、TDM1000(ヤマト科学社)を用いて、マイクロCT撮影を施し、成長板の付近にある皮質骨及び海綿骨の詳細な形態学的パラメーターを画像解析ソフトのTRI/3D-BON(ラトックシステムエンジニアリング社)により解析した。 (2-2) For the left femur, micro-CT imaging was performed using TDM1000 (Yamato Scientific Co., Ltd.), and detailed morphological parameters of cortical bone and cancellous bone in the vicinity of the growth plate were calculated using the image analysis software TRI. Analyzed by / 3D-BON (Ratok System Engineering).
(2-3)血液では、血清中の25-ヒドロキシエルゴカルシフェロール(以下「25(OH)ビタミンD3」ともいう)について、市販のキットの25-Hydroxy Vitamin D EIA(Immunodiagnostic systems Ltd社)を用いて測定した。 (2-3) For blood, about 25-hydroxy ergocalciferol (hereinafter also referred to as “25 (OH) vitamin D 3 ”) in serum, commercially available kit 25-Hydroxy Vitamin D EIA (Immunodiagnostic Systems Ltd) And measured.
 骨代謝が性別によって異なる挙動を示すことは周知の事実であることから、それぞれの測定値には、性別毎にスチューデントt-testにより統計解析を施し、p<0.05を統計的に有意と見なした。なお、統計解析には、市販のソフトのStatView Ver5.0(SAS Institute Inc.社)を用いた。 Since it is a well-known fact that bone metabolism behaves differently depending on gender, each measurement value is statistically analyzed by student t-test for each gender, and p <0.05 is considered statistically significant. did. For statistical analysis, commercially available software StatView Ver5.0 (SAS Institute Inc.) was used.
(結果)
(1)仔マウスの4、8、12週齢における、X線CT撮影及び骨関連パラメーターの測定結果(図1~図4)
 解剖前のX線CT撮影による皮質骨厚(図1)では、当該仔マウスの4週齢で、オスに対して特異的に、亜鉛レベルに応じた統計的な有意差が認められ、低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して有意に低下した。また、全骨面積に対する皮質骨の面積の比率に当たる皮質骨面積比率(図2)でも同様に、低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して、有意に低下した。当該仔マウスの8週齢では、仔マウス(出生児)の形態学的パラメーターに何らの有意差も認めされなかった。
(result)
(1) X-ray CT scan and bone-related parameter measurement results at 4, 8 and 12 weeks of age for pups (Figs. 1-4)
Cortical bone thickness by X-ray CT before dissection (Fig. 1) shows a statistically significant difference according to zinc level, specifically for males at 4 weeks of age, with low levels. There was a significant decrease in male mice in the group compared to male mice in the appropriate level group. Similarly, the cortical bone area ratio corresponding to the ratio of the cortical bone area to the total bone area (FIG. 2) was also significantly lower in the low level group male mice than in the appropriate level group male mice. . At 8 weeks of age, no significant difference was observed in the morphological parameters of the pup mice (born children).
 その後に、当該仔マウスの12週齢では、オスに対して特異的に、亜鉛レベルに応じた統計的な有意差が再び認められた。具体的には、皮質骨厚では、低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して有意に低下した。また、曲げに対する骨強度を示す最小断面2次モーメント(図3)と、 捻れに対する骨強度を示す断面2次極モーメント(図4)では、いずれも低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して有意に低下した。一方、メス仔マウスでは、4、8、12週齢で同様に測定しても、両群間に統計的な有意差を認められなかった。 Subsequently, at 12 weeks of age, the statistically significant difference according to the zinc level was recognized again specifically for males. Specifically, the cortical bone thickness was significantly decreased in the male mice in the low level group compared to the male mice in the appropriate level group. In addition, both the minimum cross-section secondary moment (Fig. 3) indicating bone strength against bending and the cross-section secondary polar moment (Fig. 4) indicating bone strength against torsion are low-level male pups and appropriate level groups. This was significantly lower than that of male mice. On the other hand, no statistically significant difference was observed between the two groups of female pups even when measured similarly at 4, 8, and 12 weeks of age.
 上記のように、妊娠前及び妊娠中に、低亜鉛状態を施した母マウスから出生した仔マウスでは離乳後に、オスに対して特異的に、骨成長の抑制が認められるものの、途中では同程度に成長が追い付き、その後に、成獣期以降では再度、皮質骨厚の低下が認められ、骨強度の低下が認められた。母マウスと仔マウスでは授乳期と離乳後以降にも、亜鉛を充足した適切な亜鉛レベルの飼料を摂取させていることから、この現象は、亜鉛の充足により、一旦は回復の認められた骨状態が成長後に再度、悪化することを示している。 As described above, pups born from low-zinc mother mice before and during pregnancy, after weaning, specifically, suppression of bone growth is observed for males, but in the middle After that, the cortical bone thickness decreased again and the bone strength decreased again after the adult period. Since mother mice and pups were fed a diet with an adequate zinc level filled with zinc even after the lactation period and after weaning, this phenomenon was observed once bone had recovered due to the zinc filling. It shows that the condition worsens again after growth.
(2-1)仔マウスの20週齢における、右大腿骨の3点折れ試験による骨強度測定(図5)
 解剖後に摘出した右大腿骨の強度のうち、折れに至る最大曲げエネルギーは、オスに対して特異的に、亜鉛レベルに応じた統計的な有意差が認められ、低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して有意に低下した(図5)。一方、メス仔マウスでは、当該パラメーターにおいて両群間に統計的な有意差は認められなかった。折れに至る最大曲げエネルギーは、骨の脆性を示すデータであることから、それの低下が認められた低レベル群のオス仔マウスでは、実際に骨折リスクが高まっていることが示唆されたこととなる。
(2-1) Bone strength measurement by a 3-point bending test of the right femur at 20 weeks of age in pups (Fig. 5)
Among the strength of the right femur extracted after dissection, the maximum bending energy leading to the bending was statistically significant depending on the zinc level, specifically for males. This was significantly lower than that of male mice in the appropriate level group (FIG. 5). On the other hand, in the female pup mice, no statistically significant difference was observed between the two groups in the parameter. The maximum bending energy leading to the fracture is data showing the brittleness of the bone, suggesting that the risk of fracture was actually increased in the male mice of the low level group in which the decrease was observed. Become.
(2-2)仔マウスの20週齢における、左大腿骨のマイクロCT撮影による、成長板の付近の骨塩量及び形態学的パラメーターの測定結果(図6、図7)
 左大腿骨の微細骨の形態学的パラメーターのうち、海綿骨の組織体積(以下「TV」ともいう)(図6)と、皮質骨の全骨量(以下「BMC」ともいう)(図7)では、低レベル群のオス仔マウスで、適切レベル群のオス仔マウスに比較して有意に低下した。一方、メス仔マウスでは、いずれのパラメーターにおいても両群間に統計的な有意差は認められなかった。これらのことから、20週齢の時点で、低レベル群の仔(子)の大腿骨は、オスに対して特異的に、皮質骨と海面骨の、いずれでも骨量が減少し、皮質骨の骨塩量が減少することにより、脆弱になったものと考えられた。
(2-2) Results of measurement of bone mineral density and morphological parameters in the vicinity of the growth plate by micro-CT imaging of the left femur at 20 weeks of age in pups (FIGS. 6 and 7)
Among the morphological parameters of the fine bone of the left femur, cancellous bone tissue volume (hereinafter also referred to as “TV”) (FIG. 6) and total bone mass of cortical bone (hereinafter also referred to as “BMC”) (FIG. 7). ), The level of male mice in the low level group was significantly lower than that of male mice in the appropriate level group. On the other hand, in female pups, no statistically significant difference was observed between the two groups in any parameter. From these facts, at the age of 20 weeks, the femurs of the low-level pups (children) decreased specifically in both cortical and sea surface bones, and cortical bones. It was thought that it became fragile by the decrease in bone mineral content.
(2-3)仔マウスの20週齢における、血清中の25(OH)ビタミンD3濃度の測定結果(図8)
 血中の25(OH)ビタミンD3濃度の測定(図8)では、低レベル群のオスマウスで、適切レベル群のオス仔マウスに比較して統計的に有意に低下した。一方、メス仔マウスでは、両群間に統計的な有意差が認められなかった。25(OH)ビタミンD3は、活性型ビタミンD3といわれる1,25-ジヒドロキシエルゴカルシフェロール(以下「1,25(OH)2ビタミンD3」ともいう)の前駆体である。そして、1,25(OH)2ビタミンD3は、骨芽細胞の核内に存在するvitamin D responsive elementを介した転写制御に影響し、骨形成に重要な役割を果たしている。このことから、低レベル群のオス仔マウスにおける血中の25(OH)ビタミンD3の低下は、マイクロCT画像で得られた解析結果を反映するように、骨形成の低下に寄与しているものと考えられた。
(2-3) Measurement results of serum 25 (OH) vitamin D 3 concentration at 20 weeks of age of pups (FIG. 8)
In the measurement of blood 25 (OH) vitamin D 3 concentration (FIG. 8), male mice in the low level group were statistically significantly lower than male mice in the appropriate level group. On the other hand, there was no statistically significant difference between the two groups in the female pups. 25 (OH) vitamin D 3 is a precursor of 1,25-dihydroxyergocalciferol (hereinafter also referred to as “1,25 (OH) 2 vitamin D 3 ”), which is called active vitamin D 3 . 1,25 (OH) 2 vitamin D 3 plays an important role in bone formation by affecting transcriptional control via vitamin D responsive elements present in the nucleus of osteoblasts. From this, the reduction of 25 (OH) vitamin D 3 in the blood in male mice of the low level group contributes to the reduction of bone formation, reflecting the analysis results obtained by micro CT images It was considered a thing.
(考察)
 以上より、オス仔マウスは、その母親の妊娠前及び妊娠中の亜鉛の摂取量に依存して成長後の骨への影響を受けることが示唆された。妊娠前及び妊娠中の栄養が仔(子)の骨の長期的予後に与える影響では、妊娠中の摂取タンパク質量を低下させたラットモデルで長期的予後に骨の脆弱性を示唆することが報告されている(Lanhamら(2008) Osteoporosis Int 19: 147-156及び157-167)。また、疫学的には、胎児期及び乳幼児期における低成長と、成人期における骨折リスクの上昇との関連性が指摘されている(Cooperら(1995) J Bone Miner Res 10: 940-947, Cooperら(1997) Ann Rheum Dis 56: 17-21, Cooperら(2002) Calcif Tissue Int 70: 391-394, Fallら(1998) J Clin Endocrinol Metab 83: 135-139)。しかしながら、妊娠前及び妊娠中の亜鉛が仔(子)の成長後の骨に与える長期的影響は、これまで報告されておらず、本実施例は新規な知見である。
(Discussion)
From the above, it was suggested that male offspring mice are affected by bone after growth depending on their mother's intake of zinc before and during pregnancy. Reported that the effects of pre-pregnancy and pregnancy nutrition on the long-term prognosis of the bones of the offspring suggest long-term prognostic bone weakness in a rat model with reduced protein intake during pregnancy (Lanham et al. (2008) Osteoporosis Int 19: 147-156 and 157-167). Also, epidemiologically, it has been pointed out that there is an association between low growth in fetal and infancy and increased risk of fracture in adulthood (Cooper et al. (1995) J Bone Miner Res 10: 940-947, Cooper (1997) Ann Rheum Dis 56: 17-21, Cooper et al. (2002) Calcif Tissue Int 70: 391-394, Fall et al. (1998) J Clin Endocrinol Metab 83: 135-139). However, the long-term effect of zinc before and during pregnancy on the bone after growth of the offspring (child) has not been reported so far, and this example is a novel finding.
 本実施例にあるオスの仔(男性の子)に対する特異的な影響は、世代間を超えた現象であり、従来の遺伝的な影響だけでは説明できず、DNAのメチル化やヒストンのアセチル化或いは、その他のエピジェネティックな現象が妊娠前や妊娠中に起こっている可能性が考えられる。より具体的には、メス(母親)の妊娠前や妊娠中の低亜鉛状態により、活性型ビタミンDや骨代謝系などのエピジェネティックな現象として、オスの仔(男性の子)に対して特異的に影響していることが予想される。 The specific effect on male pups (male pups) in this example is a phenomenon that transcends generations, and cannot be explained only by conventional genetic effects, but DNA methylation and histone acetylation. Or other epigenetic phenomena may occur before or during pregnancy. More specifically, due to the low zinc state of the female (mother) before and during pregnancy, it is unique to male pups (male pups) as epigenetic phenomena such as active vitamin D and bone metabolism Is expected to have an impact.
 亜鉛では、その用量を多く摂取できる食品が極めて乏しいことや、日常の食事で多く摂取される穀類、野菜、豆類などにより、その利用性が低下することなどから、日常で無自覚に亜鉛を摂取すること自体が難しい。平成17年度の国民健康・栄養調査によれば、妊婦の実に9割程度が付加量を含む亜鉛の1日当たりの摂取量を充足していない。また、世界の約8割の妊婦が亜鉛を充足していないという実態もある(Caulfieldら(1998) Am J Clin Nutr 68 (Suppl): 499S-508S)。 Zinc is taken in unconsciously on a daily basis because there are very few foods that can be consumed in large doses, and the use of cereals, vegetables, beans, etc. that are often consumed in daily diets decreases. That itself is difficult. According to the 2005 National Health and Nutrition Survey, about 90% of pregnant women do not meet the daily intake of zinc, which includes additional amounts. In addition, about 80% of pregnant women in the world are not satisfied with zinc (Caulfield et al. (1998) Am J Clin Nutr 68 (Suppl): 499S-508S).
 定性的な解釈として、実験動物における亜鉛欠乏状態の現象を、ヒトへ外挿することに議論の余地はなく、男児の成人期における骨への影響の観点から、母親の妊娠期における亜鉛の摂取が大変に重要であることが実証された。 As a qualitative interpretation, there is no debate about extrapolating the phenomenon of zinc deficiency in laboratory animals to humans, and in terms of effects on bones in male adulthood, zinc intake during maternal pregnancy Proved to be very important.
 本実施例では、メスマウスが妊娠前や妊娠中に、適切な亜鉛レベルの飼料を摂取することで、オス仔マウスの骨粗鬆症を予防して、骨折リスクを緩和できることを確認した。本実施例では、妊娠前や妊娠中に適切な亜鉛レベルの食事を摂取すると、亜鉛の摂取不足に起因した成人期・高齢期における骨折リスクを、出生男性に対して特異的に回避できる可能性を新規に見出した。 In this example, it was confirmed that female mice can prevent osteoporosis in male offspring mice and reduce the risk of fractures by ingesting a diet with an appropriate zinc level before and during pregnancy. In this example, taking a diet with an appropriate zinc level before and during pregnancy may specifically avoid the risk of fractures in adults and older adults due to insufficient zinc intake for birth males. Was newly found.
 本願発明は、ヒトを含む哺乳動物の雄の骨折リスクの低下若しくは骨粗鬆症の予防又は改善のための医薬品製造業の分野、並びに哺乳動物の雄の骨折リスクの低下又は骨折の予防のための食品製造業若しくは飲料製造業の分野又は飼料製造業の分野で利用することができる。 The present invention relates to the field of pharmaceutical manufacturing for reducing or preventing osteoporosis in male male mammals, including humans, as well as food production for reducing or preventing male male fracture risk. It can be used in the field of industry or beverage manufacturing industry or the field of feed manufacturing industry.
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into the present specification as they are.

Claims (10)

  1.  亜鉛を有効成分とする男性の骨折リスクの低減及び/又は骨折の予防に有効な医薬組成物。 ● A pharmaceutical composition containing zinc as an active ingredient and effective in reducing fracture risk and / or prevention of fracture.
  2.  該男性の母親に該男性の妊娠可能な時期から妊娠中及び授乳中に投与することを特徴とする、請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the pharmaceutical composition is administered to the male mother during pregnancy and breastfeeding from the time when the male can become pregnant.
  3.  成人及び/又は老人の男性の骨折リスクの低減及び/又は骨折の予防に有効な請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, which is effective in reducing fracture risk and / or preventing fracture in adult and / or elderly men.
  4.  亜鉛を有効成分とする哺乳動物の雄性の骨折リスクの低減及び/又は骨折の予防に有効な医薬組成物。 A pharmaceutical composition containing zinc as an active ingredient and effective for reducing the risk of male fracture and / or preventing fracture.
  5.  該雄性哺乳動物の母親に投与することを特徴とする、請求項4記載の医薬組成物。 The pharmaceutical composition according to claim 4, which is administered to a mother of the male mammal.
  6.  該雄性哺乳動物の母親に該雄性哺乳動物の妊娠可能な時期から妊娠中及び授乳期間中に投与することを特徴とする、請求項4記載の医薬組成物。 The pharmaceutical composition according to claim 4, wherein the pharmaceutical composition is administered to a mother of the male mammal during pregnancy and lactation from the time when the male mammal can become pregnant.
  7.  亜鉛換算で1日当たり7~40mgの摂取量となるよう亜鉛を含有する請求項1~6のいずれか1項記載の医薬組成物。 7. The pharmaceutical composition according to any one of claims 1 to 6, which contains zinc so that the intake amount is 7 to 40 mg per day in terms of zinc.
  8.  亜鉛を有効成分とする男性の骨折リスクの低減剤及び/又は骨折の予防剤。 ¡A male fracture risk reducing agent and / or fracture prevention agent containing zinc as an active ingredient.
  9.  該男性の母親に妊娠前及び妊娠中に投与する、請求項8記載の剤。 The agent according to claim 8, which is administered to the male mother before and during pregnancy.
  10.  亜鉛換算で1日当たり7~40mgの摂取量となるよう亜鉛を含有する請求項8又は9記載の剤。 The agent according to claim 8 or 9, which contains zinc so that the intake amount is 7 to 40 mg per day in terms of zinc.
PCT/JP2010/053907 2009-03-13 2010-03-09 Composition for reducing bone fracture risk and/or preventing bone fracture WO2010104079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011503829A JP5967936B2 (en) 2009-03-13 2010-03-09 Composition for reducing fracture risk and / or preventing fracture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-061838 2009-03-13
JP2009061838 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010104079A1 true WO2010104079A1 (en) 2010-09-16

Family

ID=42728368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053907 WO2010104079A1 (en) 2009-03-13 2010-03-09 Composition for reducing bone fracture risk and/or preventing bone fracture

Country Status (2)

Country Link
JP (1) JP5967936B2 (en)
WO (1) WO2010104079A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459932B2 (en) * 1996-07-23 2003-10-27 株式会社ホーネンコーポレーション Anti-osteoporosis composition
JPH1180107A (en) * 1997-09-01 1999-03-26 Japan Tobacco Inc Osteogenic promoter and amide compound
ID28460A (en) * 1998-07-08 2001-05-24 Lipogenics Inc COMPOSITION AND METHODS FOR TREATMENT AND PREVENTION OF BONE DISEASE USING TOCOTRIENOL

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GONZALEZ-REIMERS,E. ET AL.: "Effect of zinc supplementation on ethanol-mediated bone alterations", FOOD CHEM TOXICOL, vol. 43, no. 10, 2005, pages 1497 - 1505 *
KIM,J.T. ET AL.: "Zinc-deficient diet decreases fetal long bone growth through decreased bone matrix formation in mice", J MED FOOD, vol. 12, no. 1, 2009, pages 118 - 123 *
MA,Z. ET AL.: "Alternation in bone components with increasing age of newborn rats: Role of zinc in bone growth", JOURNAL OF BONE AND MINERAL METABOLISM, vol. 18, no. 5, 2000, pages 264 - 270 *
MERIALDI,M. ET AL.: "Randomized controlled trial of prenatal zinc supplementation and fetal bone growth", AM J CLIN NUTR, vol. 79, no. 5, 2004, pages 826 - 830 *
SASAHARA,H. ET AL.: "Effects of maternal caffeine with zinc intake during gestation and lactation on bone development in newborn rats", ARCH ORAL BIOL, vol. 35, no. 6, 1990, pages 425 - 430 *
YAMAGUCHI,M. ET AL.: "Preventive effect of zinc acexamate administration in streptozotocin- diabetic rats: Restoration of bone loss", INT J MOL MED, vol. 12, no. 5, 2003, pages 755 - 761 *

Also Published As

Publication number Publication date
JPWO2010104079A1 (en) 2012-09-13
JP5967936B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
Zimmer et al. Polish Society of Gynecologists and Obstetricians recommendations on supplementation during pregnancy
AU2011336145C1 (en) Galenic composition suitable for administration to a non-human animal, uses thereof, and associated methods
EP2257300B1 (en) Formulas comprising calcium, magnesium, zinc, and vitamin d3 for the prevention and amelioration of osteoporosis
JP4908769B2 (en) Preventive or ameliorating agent for senile osteoporosis
Cavdar et al. Effect of zinc supplementation in a Turkish woman with two previous anencephalic infants
JP2008247883A (en) Composition for amelioration of irregular menstruation
Johnson et al. Reproductive and developmental toxicities of zinc supplemented rats
EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific opinion on re‐evaluation of calcium carbonate (E 170) as a food additive
JP6265335B2 (en) Bone density increasing agent, osteoclast activity inhibitor, and bone remodeling improving agent
Baig et al. Studies on Zn, Cu, Mg, Ca and phosphorus in maternal and cord blood
JP5967936B2 (en) Composition for reducing fracture risk and / or preventing fracture
JP3604710B2 (en) Osteoporosis prevention and treatment agent
RU2450825C2 (en) Using leptin for preventing overweight and compositions containing leptin
JP2016185985A (en) Prenatal milk-derived composition for preventing risk of low birthweight of newborns
JPH06192104A (en) Composition for curing and preventing infantile dysbolism
ES2551828B1 (en) Food compositions comprising tungsten salts (VI)
JP5300186B2 (en) Milk-derived composition for pregnant women that suppresses increase in homocysteine concentration in blood
Meltzer et al. Oral intake of selenium has no effect on the serum concentrations of growth hormone, insulin-like growth factor-1, insulin-like growth factor-binding proteins 1 and 3 in healthy women
JP7542798B2 (en) Improves the health of mothers and children during pregnancy
Mahomed et al. Failure to taste zinc sulphate solution does not predict zinc deficiency in pregnancy
AU2021105686A4 (en) A calcium hard capsule and preparation method thereof
JPWO2008136173A1 (en) Adipocyte differentiation inhibitor comprising a stilbene derivative as an active ingredient
EP3091988B1 (en) Maternal vitamin b12 administration for the prevention of increased adiposity, overweight or obesity in the offspring especially offspring of overweight and/or obese mothers
Desai et al. Pernicious anemia and thyrotoxicosis in an Indian subject
Jordan et al. Nutritional supplements in pregnancy: iron and folic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011503829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750832

Country of ref document: EP

Kind code of ref document: A1