WO2010103974A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2010103974A1
WO2010103974A1 PCT/JP2010/053437 JP2010053437W WO2010103974A1 WO 2010103974 A1 WO2010103974 A1 WO 2010103974A1 JP 2010053437 W JP2010053437 W JP 2010053437W WO 2010103974 A1 WO2010103974 A1 WO 2010103974A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
edge
unit
light
intensity
Prior art date
Application number
PCT/JP2010/053437
Other languages
French (fr)
Japanese (ja)
Inventor
榊原眞浩
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010103974A1 publication Critical patent/WO2010103974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an image display device. More specifically, a drive control unit that generates a drive signal based on image information, a light source unit that emits laser light having an intensity corresponding to the drive signal output from the drive control unit, and a laser beam emitted from the light source unit And an image display device that displays an image by laser light scanned by the scanning unit.
  • image display devices such as a retinal scanning image display device and a screen scanning image display device are known.
  • the retinal scanning image display device displays an image by scanning and projecting laser light generated based on image information onto at least one retina of a user.
  • the screen scanning type image display device displays an image by scanning a laser beam generated based on image information on a screen.
  • This image display device has a light source unit that emits laser light having an intensity corresponding to a drive signal, and a scanning unit that scans the laser light emitted from the light source unit in a two-dimensional direction.
  • the light source unit that emits laser light may not be able to maintain normal brightness of the displayed image because the output characteristics of the laser light change due to changes in ambient temperature.
  • the present inventor emits intensity detection laser light from the light source unit when the scanning position is outside the image forming range (effective display range) of the scanning range by the optical scanning unit, and the intensity detection laser
  • An image display apparatus has been proposed in which the light source unit is adjusted in accordance with the intensity of light to keep the luminance of the image normal (see Patent Document 1).
  • the intensity detection laser beam is used to prevent the intensity detection laser beam from being projected onto the screen or the user's retina as light outside the effective display area.
  • a shielding member for shielding the emission of the light is provided. Therefore, the material cost is high. In addition, the installation of the shielding member may be difficult to adjust, and the manufacturing cost may increase.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an image display apparatus that can maintain the brightness of an image normally without providing a shielding member.
  • an image display apparatus includes a light source unit, a scanning unit, a light intensity detection unit, and a drive control unit.
  • the light source unit emits laser light having an intensity corresponding to a drive signal.
  • the scanning unit scans the laser beam emitted from the light source unit in a two-dimensional direction.
  • the light intensity detection unit detects the intensity of laser light emitted from the light source unit.
  • the drive control unit generates the drive signal according to image information, and corrects the drive signal based on the intensity of the laser light detected by the light intensity detection unit.
  • the drive control unit is configured in advance for an edge of the effective display region where the laser beam is scanned by the scanning unit to form an image when the scanning unit has a scanning position at the edge.
  • a predetermined edge driving signal is output, and laser light having a predetermined intensity is emitted from the light source unit.
  • the light intensity detection unit detects the intensity of the laser light emitted from the light source unit by the edge drive signal.
  • the image display device emits the intensity detection laser beam when the scanning position of the scanning unit is at the edge of the effective display area where the image is formed.
  • the intensity of the laser beam emitted from the light source unit is adjusted by detecting the intensity of the laser beam for intensity detection while allowing the user to recognize the intensity detection laser beam as the design of the edge of the display image. .
  • the brightness of the image can be kept normal.
  • the light source unit may include a plurality of light sources that respectively emit laser beams corresponding to the three primary colors.
  • the drive control unit inputs the edge drive signal to the plurality of light sources when the scanning position of the scanning unit is at the edge of the effective display area, and outputs laser light with a predetermined intensity to the plurality of light sources. The light is emitted from a plurality of light sources.
  • the image display device By configuring the image display device in this way, it is possible to adjust the intensity of each light source while allowing the user to recognize laser light of a predetermined intensity as the design of the edge of the display image.
  • the drive control unit may simultaneously output the edge driving signal to the plurality of light sources to simultaneously emit the laser light having the predetermined intensity from the plurality of light sources.
  • the light intensity detection unit can simultaneously detect the intensity detection laser light emitted from the light source, and the drive control unit can quickly adjust the drive signal. Can be done.
  • the drive control unit outputs the edge drive signal at a timing that does not overlap between the plurality of light sources, and emits the laser beam having the predetermined intensity at a timing that does not overlap between the light sources. You may make it make it.
  • the image display device By configuring the image display device in this way, it is possible to reduce the power consumption necessary to form the edge image. Further, the brightness of the edge portion is reduced, the edge portion can be made to be visually recognized by the user softer, and it is possible to suppress the obstruction of the visibility of the original image by the edge portion.
  • the image display device may include an image processing unit that reduces the original image to be displayed and generates the image information using a peripheral edge of the original image as an image having a predetermined luminance.
  • the image display device By configuring the image display device in this way, it is possible to provide an edge even when there is no margin in the scanning range of the scanning unit.
  • the drive control unit may intermittently output the edge drive signal in units of one or more image frames.
  • the image display device By configuring the image display device in this way, it is possible to reduce the power consumption necessary to form the edge image. Further, the brightness of the edge portion is reduced, the edge portion can be made to be visually recognized by the user softer, and it is possible to suppress the obstruction of the visibility of the original image by the edge portion.
  • the image display device may further include a luminance determination unit that determines whether or not the average luminance of the original image included in the image information is within a specified range.
  • the drive control unit outputs the edge drive signal in the image frame of the original image in which the average luminance is determined to be within the specified range by the luminance determination unit.
  • the image display device By configuring the image display device in this way, for example, it is possible to prevent the luminance of the edge portion from being too high with respect to the original image and making it difficult to visually recognize the original image.
  • edge luminance changing means for changing the predetermined intensity of the laser light emitted from the light source unit by changing the signal level of the edge drive signal may be provided.
  • the image display device By configuring the image display device in this manner, for example, even when the brightness of the edge is high and it is difficult for some users to visually recognize the original image, the brightness of the edge is changed by the user's selection. And can be easily recognized.
  • edge width changing means for changing the edge width of the edge that emits the laser beam having the predetermined intensity may be provided.
  • the image display device By configuring the image display device in this way, for example, even when the width of the edge is large and it is difficult for some users to visually recognize the original image, the width of the edge is changed by the user's selection. This makes it easy to visually recognize the original image.
  • the intensity detection laser beam is emitted when the scanning position of the scanning unit is at the edge of the effective display area where the image is formed. This allows the user to recognize the intensity detection laser beam as the design of the edge of the display image, while adjusting the intensity of the laser beam emitted from the light source unit by detecting the intensity of the intensity detection laser beam.
  • the image brightness can be kept normal.
  • FIG. 1 is a diagram illustrating a schematic configuration of an image display device according to an embodiment of the present invention. It is a figure which shows the display image of the image display apparatus shown in FIG. It is a figure which shows the specific structure of the image display apparatus which concerns on one Embodiment of this invention. It is operation
  • a retinal scanning image display device scans a laser beam corresponding to a drive signal based on image information with a scanning unit, projects an image on at least one retina of a user, and displays the image.
  • the present invention is not limited to the retinal scanning image display device.
  • the present invention can be applied to other image display devices that display an image by scanning laser light, such as a screen scanning image display device. The image is projected and displayed on the screen by scanning the laser beam with the intensity corresponding to the drive signal based on the image information on the screen scanning type image display device.
  • the image display device 1 of the present embodiment includes a drive control unit 10, a light source unit 20, a scanning unit 30, a lens 95b that is an eyepiece, and an operation unit 40. It works as follows.
  • the drive control unit 10 generates a drive signal according to the image information F.
  • This image information F is information input from the outside and includes image data in a predetermined format (for example, bitmap data Bit Map Data), component video signal (Component Video Signal), and the like. Further, drive signals are generated and output corresponding to the three primary colors (R, G, B) in units of pixels of the image information F.
  • the drive signal for each pixel output from the drive control unit 10 is sequentially input to the light source unit 20, and the light source unit 20 sequentially emits laser light having an intensity corresponding to the input drive signal.
  • Laser light sequentially emitted from the light source unit 20 in units of pixels is scanned by the scanning unit 30 in a two-dimensional direction (XY direction).
  • the laser beam thus scanned enters the pupil 101a of the user's eye 101 through the lens 95b.
  • the exit pupil position is set at the position of the pupil 101 a, and thereby an image is projected onto the retina 101 b of the user's eye 101.
  • the output characteristics of the laser light change due to changes in ambient temperature and the like. Therefore, even when a drive signal having the same signal level is input from the drive control unit 10, the intensity of the laser light output from the light source unit 20 changes.
  • the image display device 1 includes a light intensity detection unit 20 a that detects the intensity of the laser light emitted from the light source unit 20.
  • the drive controller 10 corrects the drive signal based on the intensity of the laser beam detected by the light intensity detector 20a.
  • the drive control unit 10 inputs an intensity detection drive signal for emitting intensity detection laser light to the light source unit 20 and causes the light source unit 20 to emit intensity detection laser light.
  • the light source unit 20 is provided with a light intensity detection unit 20a for detecting the intensity of the intensity detection laser beam.
  • Information indicating the intensity of the intensity detection laser beam is output from the light intensity detection unit 20 a to the drive control unit 10.
  • the drive control unit 10 determines the output characteristic of the light source unit 20 based on the information input from the light intensity detection unit 20a, and adjusts the drive signal according to the output characteristic.
  • an intensity detection drive signal is output from the drive control unit 10 in order to emit the laser beam having the maximum intensity from the light source unit 20.
  • the drive control unit 10 determines that correction to increase the level of the drive signal is necessary, and Make adjustments. Thereby, the brightness
  • the intensity detection laser beam emitted from the light source unit 20 in accordance with the intensity detection drive signal is used for internal calibration, the background processing is performed without emitting it to the outside using a shielding member. You can also. However, the material cost of a shielding member, the attachment man-hour, etc. start.
  • the intensity detection laser beam is emitted to the effective display area where the image is displayed.
  • a region having a constant luminance is formed at the edge D2 of the display image in the effective display region E by the intensity detection laser beam.
  • the image display device 1 sets the intensity detection laser light to a constant intensity, and uses the intensity detection laser light as the edge image formation laser.
  • Light is emitted from the light source unit 20 as light. That is, when the scanning position of the scanning unit 30 is at the edge of the effective display area where an image is formed by scanning the laser beam by the scanning unit 30, the drive control unit 10 is predetermined for the edge.
  • a drive signal (hereinafter also referred to as “edge drive signal”) is output. Thereby, the intensity detection laser beam is emitted from the light source unit 20 as the edge image forming laser beam.
  • the intensity of the intensity detection laser light emitted from the light source unit 20 is detected by the edge drive signal by the light intensity detection unit 20 a, and the drive signal is adjusted by the drive control unit 10. I have to.
  • the image display device 1 is provided with an operation unit 40.
  • the user can change the brightness and width of the edge D2 by operating the operation unit 40. That is, when the drive control unit 10 receives an instruction to change the luminance of the edge D2 from the operation unit 40, the drive control unit 10 generates an edge drive signal so that the luminance according to the instruction is obtained as an edge luminance change unit. Output. Similarly, when the drive control unit 10 receives an instruction to change the width of the edge D2 from the operation unit 40, the drive control unit 10 generates and outputs an edge drive signal so that the width corresponds to the instruction.
  • the drive control unit 10 includes image processing means 10a.
  • the image processing means 10a reduces the original image D1 according to the image information F, generates image information in which the periphery of the original image is an image having a predetermined luminance (edge D2), and is driven according to the image information. Output a signal.
  • the image display device 1 emits the intensity detection laser beam when the scanning position of the scanning unit 30 is at the edge D2 of the effective display area where the image is formed.
  • the intensity of the intensity detection laser beam is detected and the laser beam emitted from the light source unit 20 is adjusted to obtain an image.
  • the brightness is kept normal.
  • the image display apparatus 1 includes a drive control unit 10, a light source unit 20, a scanning unit 30, an operation unit 40, an optical fiber cable 50, and a half mirror 31. .
  • the drive control unit 10 includes a control unit 11 that generates and outputs an image signal S corresponding to the image information F, and a drive signal supply circuit 18 that generates a signal that is an element for combining images.
  • control unit 11 executes predetermined processing to be described later according to a control program stored therein, and also displays an image display. It functions as a control means for controlling the entire apparatus 1 and a brightness determination means described later.
  • the control unit 11 includes a CPU (Central Processing Unit) 12, a flash memory (Flash Memory) 13, which is a nonvolatile memory, a RAM (Random Access Memory) 14, a VRAM (Video Random Access Memory) 15, and an input interface ( I / F) 16. These are respectively connected to a bus for data communication, and various information is transmitted / received via the bus for data communication.
  • a CPU Central Processing Unit
  • flash memory Flash Memory 13
  • RAM Random Access Memory
  • VRAM Video Random Access Memory
  • I / F input interface
  • the CPU 12 executes a control program stored in the flash memory 13 to operate each unit constituting the image display device 1 as a control unit or the like, thereby executing various functions provided in the image display device 1. It is.
  • the CPU 12 converts the image information F or the like input via the input I / F 16 into a predetermined image format and stores it in the flash memory 13. Further, the CPU 12 acquires information input from the operation unit 40 and performs processing according to the information.
  • the CPU 12 generates image information by adding the edge D2 to the original image D1 corresponding to the image information F, and outputs the image information to the drive signal supply circuit 18 as an image signal S.
  • the drive signal supply circuit 18 generates each signal, which is an element for forming an image, on a pixel basis based on the image signal S. That is, the drive signal supply circuit 18 generates and outputs an R (red) drive signal 60r, a G (green) drive signal 60g, and a B (blue) drive signal 60b.
  • the drive signal supply circuit 18 outputs a horizontal drive signal 61 used by the horizontal scanning unit 80 and a vertical drive signal 62 used by the vertical scanning unit 90, respectively.
  • the light source unit 20 is provided with an R laser driver 66, a G laser driver 67, and a B laser driver 68 for driving the R laser 63, the G laser 64, and the B laser 65, respectively.
  • the R laser driver 66, the G laser driver 67, and the B laser driver 68 are provided with drive signals 60r, 60g, R drive signal 60r, G drive signal 60g, and B drive signal 60b output from the drive signal supply circuit 18 in units of pixels, respectively.
  • laser light also referred to as “light beam”
  • Each laser 63, 64, 65 can be configured as, for example, a semiconductor laser or a solid-state laser with a harmonic generation mechanism.
  • the drive current can be directly modulated to modulate the intensity of the laser beam.
  • each laser needs to have an external modulator to modulate the intensity of the laser light.
  • the light source unit 20 is provided with an R light intensity detection unit 51, a G light intensity detection unit 52, and a B light intensity detection unit 53.
  • the R light intensity detector 51 detects the intensity of the laser light emitted from the R laser 63.
  • the G light intensity detection unit 52 detects the intensity of the laser light emitted from the G laser 64.
  • the B light intensity detection unit 53 detects the intensity of the laser light emitted from the B laser 65.
  • the light intensity detectors 51, 52, and 53 can detect the intensity of laser light emitted from the lasers 63, 64, and 65, respectively.
  • Each light intensity detector 51, 52, 53 outputs a detection signal having an amplitude level corresponding to the detected intensity of the laser light to the drive controller 10. Note that lasers incorporating the light intensity detectors 51, 52, and 53 can be applied to the lasers 63, 64, and 65, respectively.
  • the light source unit 20 is provided with collimating optical systems 71, 72, 73, dichroic mirrors 74, 75, 76, and a combination optical system 77.
  • the collimating optical systems 71, 72, and 73 are provided so as to collimate the laser light emitted from the lasers 63, 64, and 65 into parallel light.
  • the dichroic mirrors 74, 75, and 76 combine the laser beams collimated by the collimating optical systems 71, 72, and 73.
  • the coupling optical system 77 guides the combined laser light to the optical fiber cable 50.
  • the laser beams emitted from the lasers 63, 64, and 65 are collimated by the collimating optical systems 71, 72, and 73 and then enter the dichroic mirrors 74, 75, and 76, respectively. Thereafter, each of the laser beams is selectively reflected and transmitted with respect to the wavelength by these dichroic mirrors 74, 75, and 76.
  • the three primary color laser beams incident on these three dichroic mirrors 74, 75, and 76 are reflected or transmitted in a wavelength selective manner, reach the coupling optical system 77, and are collected and output to the optical fiber cable 50.
  • the scanning unit 30 located between the light source unit 20 and the user's eye 101 includes a collimating optical system 79, a horizontal scanning unit 80, a vertical scanning unit 90, a first relay optical system 85, and a second relay.
  • An optical system 95 is provided.
  • the collimating optical system 79 collimates the laser light generated by the light source unit 20 and emitted through the optical fiber cable 50.
  • the horizontal scanning unit 80 reciprocally scans the laser beam collimated by the collimating optical system 79 in the horizontal direction for image display.
  • the vertical scanning unit 90 scans the laser beam scanned in the horizontal direction by the horizontal scanning unit 80 in the vertical direction.
  • the first relay optical system 85 is provided between the horizontal scanning unit 80 and the vertical scanning unit 90.
  • the second relay optical system 95 emits laser light scanned in the horizontal direction and the vertical direction to the pupil 101a.
  • the horizontal scanning unit 80 and the vertical scanning unit 90 scan in the horizontal direction and the vertical direction to scan the laser beam incident from the optical fiber cable 50 in a state in which the laser beam can be projected on the user's retina 101b as an image. It is an optical system.
  • the horizontal scanning unit 80 includes a deflection element 81 and a horizontal scanning drive circuit 82.
  • the deflection element 81 is a resonance type deflection element having a deflection surface for scanning the laser beam in the horizontal direction.
  • the horizontal scanning drive circuit 82 generates a drive signal based on the horizontal drive signal 61 that resonates the deflection element 81 and swings the deflection surface of the deflection element 81.
  • the vertical scanning unit 90 includes a deflection element 91 and a vertical scanning drive circuit 92.
  • the deflection element 91 is a non-resonant type deflection element having a deflection surface for scanning the laser beam in the vertical direction.
  • the vertical scanning drive circuit 92 generates a drive signal for swinging the deflection surface of the deflection element 91 in a non-resonant state based on the vertical drive signal 62.
  • the vertical scanning unit 90 vertically scans laser light for forming an image from the first horizontal scanning line toward the last horizontal scanning line for each frame of the image to be displayed.
  • the “horizontal scanning line” means one scanning in the horizontal direction by the horizontal scanning unit 80.
  • the deflection elements 81 and 91 are galvanometer mirrors here.
  • the deflection elements 81 and 91 can be driven by any driving method such as piezoelectric driving, electromagnetic driving, and electrostatic driving as long as the deflection surface (reflection surface) can be swung or rotated so as to scan the laser beam. It may be a thing.
  • a resonance type deflection element is used for the horizontal scanning unit 80 and a non-resonance type deflection element is used for the vertical scanning unit 90.
  • the present invention is not limited to this. It may be a type of deflection element.
  • the first relay optical system 85 that relays the laser light between the horizontal scanning unit 80 and the vertical scanning unit 90 converts the laser light scanned in the horizontal direction by the deflection surface of the deflection element 81 into the deflection surface of the deflection element 91. To converge. Then, the laser light is scanned in the vertical direction by the deflection surface of the deflection element 91, and the front of the eye 101 is passed through the second relay optical system 95 in which two lenses 95a and 95b having positive refractive power are arranged in series. It is reflected by the half mirror 31 positioned at. The laser light reflected by the half mirror 31 enters the user's pupil 101a, and an image corresponding to the image signal S is projected onto the retina 101b.
  • the user recognizes the laser light incident on the pupil 101a as an image. Further, the half mirror 31 transmits the external light 200 so as to enter the user's pupil 101a. Thereby, the user can visually recognize an image obtained by superimposing an image based on laser light on an external scene based on external light.
  • the respective laser beams are made substantially parallel to each other and converted into convergent laser beams by the lens 95a.
  • the laser beams are converted into substantially parallel laser beams by the lens 95b, and the center lines of these laser beams are converted so as to converge on the user's pupil 101a.
  • FIG. 4 shows the relationship between the maximum scanning range G and the standard scanning range Z by the deflection elements 81 and 91 of the horizontal scanning unit 80 and the vertical scanning unit 90.
  • the maximum scanning range G is a range formed by the horizontal maximum scanning range Xa and the vertical scanning maximum range Ya shown in FIG.
  • the standard scanning range Z is a range formed by the horizontal scanning standard range X1 and the vertical scanning standard range Y1 shown in FIG.
  • the “maximum scanning range” means the maximum range in which the deflection element 81 of the horizontal scanning unit 80 and the deflection element 91 of the vertical scanning unit 90 can scan the laser beam.
  • the “standard scanning range Z” is a scanning range determined by default in the image display device 1.
  • the horizontal scanning drive circuit 82 amplifies the horizontal drive signal 61 output from the drive signal supply circuit 18 and applies it to the deflection element 81 to drive the deflection surface of the deflection element 81.
  • the vertical scanning drive circuit 92 amplifies the vertical drive signal 62 output from the drive signal supply circuit 18 and applies it to the deflection element 91 to drive the deflection surface of the deflection element 91. Then, the intensity was modulated in accordance with the image signal S from the light source unit 20 at the timing when the scanning positions of the deflection element 81 and the deflection element 91 are within the standard scanning range Z in the maximum scanning range G of the deflection element 81 and the deflection element 91. Laser light is emitted.
  • the laser beam is scanned in the standard scanning range Z by the deflection element 81 and the deflection element 91, and the laser beam for one frame is scanned in the standard scanning range Z.
  • This scanning is repeated for each frame image. 4 virtually shows the locus ⁇ of the laser light scanned by the deflection element 81 and the deflection element 91 when it is assumed that the laser light is always emitted from the light source unit 20.
  • the number of scans in the horizontal scanning direction X by the deflecting element 81 is about several hundred to one thousand per frame, and FIG. 4 simply shows the locus ⁇ of the laser beam.
  • the laser beam for intensity detection is emitted when the scanning position of the scanning unit 30 is at the edge D2 of the standard display area D where the laser beam is scanned in the standard scanning range Z to form an image. Therefore, since the user recognizes the intensity detection laser beam as the design of the edge of the display image, the laser beam can be adjusted without causing the user to feel uncomfortable or uncomfortable.
  • the edge D2 can be switched in the range of the effective display area between the standard mode and the extended mode by operating the operation unit 40.
  • the standard mode is a mode provided at the periphery of the original image D1 within a predetermined standard display area D.
  • the extended mode is a mode in which the original image D1 is arranged in the standard display area D as shown in FIG. 5B and is provided outside the standard display area D that is the periphery of the original image D1.
  • the standard display area D is an effective display area
  • a display area formed by the standard display area D and the edge D2 is an effective display area.
  • the control unit 11 When the standard mode selection instruction is input from the operation unit 40, the control unit 11 reduces the original image D1 according to the image information F, and displays an image (edge D2) having a predetermined luminance at the periphery of the original image D1.
  • the provided image information is generated and output as an image signal S.
  • the image signal S here is a component video signal, but other image signals may be used.
  • the edge D2 can be provided.
  • the control unit 11 does not reduce the original image D1 corresponding to the image information F, and an image (edge) having a predetermined luminance is formed around the original image D1.
  • the image information provided with the part D2) is generated and output as the image signal S.
  • the edge D2 is an image having a predetermined luminance and each pixel position is not required to be highly accurate, a range in which an image cannot be formed with high accuracy can be used.
  • the edge D2 may be formed at a scanning position that cannot be used for displaying the original image D1. It becomes possible.
  • the luminance of the edge D2 is set so as to be the maximum value for each color of R, G, and B. That is, the drive control unit 10 outputs the R drive signal, the G drive signal, and the B drive signal so that the laser light of each color of R, G, and B has the maximum specified intensity from the light source unit 20. Therefore, the user recognizes the edge D2 as a white frame.
  • each of the light intensity detectors 51, 52, 53 detects the intensity of the laser light emitted from the lasers 63, 64, 65 so as to have the maximum specified intensity as the intensity detecting laser light.
  • the drive control unit 10 adjusts the drive signal based on detection signals output from the light intensity detection units 51, 52, and 53, respectively.
  • Laser light is emitted from the lasers 63, 64, and 65 so as to have the maximum specified intensity. Therefore, it becomes easier to detect variations in output characteristics that change depending on temperature or the like, compared to low-intensity laser light, and it is possible to adjust the drive signal quickly and easily.
  • a laser beam with 50% of the maximum specified intensity may be output from the lasers 63, 64, 65 as the intensity detecting laser beam.
  • edge D2 a frame surrounding the entire periphery (four sides) of the original image D1 is formed as the edge D2, but the shape of the edge D2 is not limited to this. That is, various types of edge portions D2 can be selected by operating the operation unit 40.
  • an edge D2 in which regions of predetermined luminance are provided only at the four corners of the original image D1.
  • edge D2 patterns are stored in the flash memory 13 as image data.
  • the control unit 11 reads the image data of the selected edge D2 from the flash memory 13, generates image information combined with the original image D1, and generates an image signal. Output as S.
  • the width W of the edge D2 can be changed by an operation on the operation unit 40 as shown in FIG. 7A.
  • the control unit 11 Based on the selection input from the user to the operation unit 40, the control unit 11 adjusts the width W of the edge D2 read from the flash memory 13 to the selected width, and combines the original image D1 with the image information. And output as an image signal S.
  • the image data of the edge D2 having a different width W may be stored in the flash memory 13, and the image data of the edge D2 having the selected width W may be read from the flash memory 13.
  • the brightness of the edge D2 can be changed by an operation on the operation unit 40 as shown in FIG. 7B.
  • the control unit 11 adjusts the luminance of the edge D2 read from the flash memory 13, generates image information combined with the original image D1, and generates the image signal S. Output as. Therefore, even if the brightness of the edge D2 is high and it is difficult for the user to visually recognize the original image D1, the brightness of the edge D2 can be changed by the user's selection to make it easy to visually recognize.
  • the control unit 11 may dynamically change the luminance of the edge D2 according to the state of the original image D1. For example, when the average luminance value of the original image D1 is lower than a predetermined value, the original image D1 can be easily visually recognized by reducing the luminance of the edge portion W1.
  • the drive control unit 10 outputs the outputs of the R drive signal 60r, the G drive signal 60g, and the B drive signal 60b as edge drive signals to the lasers 63, 64, and 65 simultaneously.
  • the edge D2 is white and has a predetermined luminance.
  • the light intensity detectors 51, 52, 53 can simultaneously detect the intensity detection laser beams emitted from the lasers 63, 64, 65, and therefore the drive signal adjustment process in the drive controller 10. Can be performed quickly.
  • FIG. 8 is a diagram showing the state of each drive signal when the horizontal scanning position is at the AA line position in FIG. 5A.
  • the drive control unit 10 transmits the outputs of the R drive signal 60r, the G drive signal 60g, and the B drive signal 60b as edge drive signals to the lasers 63, 64, and 65 at timings that do not overlap each other. Output.
  • Lasers 63, 64, and 65 emit laser beams having a predetermined intensity so as not to overlap at different timings, thereby forming edge D2. Since the laser beams for intensity detection are emitted from the lasers 63, 64, and 65 at different timings as described above, it is possible to reduce power consumption necessary for forming an image of the edge portion D2.
  • drive signals 60r, 60g, and 60b are sequentially output as edge drive signals. Therefore, the brightness of the edge portion D2 is reduced, and the edge portion D2 can be made to be visually recognized by the user more softly, and the visual recognition of the original image D1 can be suppressed from being inhibited by the edge portion D2.
  • the edge drive signal output from the drive control unit 10 can be intermittently performed in units of one or more image frames as shown in FIG. 10A.
  • power consumption necessary for forming the image of the edge D2 can be reduced, and the brightness of the edge D2 can be reduced so that the user can visually recognize the edge D2 more softly. It is possible to suppress the viewing of the original image D1 from being obstructed by the edge D2.
  • the power consumption can be further reduced by reducing the number of appearances of the image frame displaying the edge D2.
  • the edge D2 can be further visually recognized by the user, and the visual recognition of the original image D1 can be suppressed from being inhibited by the edge D2.
  • the automatic addition mode in which the edge portion D2 is dynamically added can be operated by an operation by the user to the operation unit 40.
  • the CPU 12 functions as a luminance determination unit that determines whether or not the average luminance in units of image frames of the original image D1 included in the image information F is within a specified range in the control unit 11.
  • the CPU 12 outputs an edge drive signal from the drive control unit 10 in the image frame of the original image D1 that has been determined that the average luminance is within the specified range as the luminance determination means.
  • control unit 11 calculates an average luminance value of an image of an image frame to be displayed next to the user among the original images D1 included in the image information F (step S10).
  • control unit 11 determines whether or not the average luminance value calculated in step S1 is within a specified range (step S11). In this process, if it is determined that the average luminance value is within the specified range (step S11: YES), the control unit 11 compresses the size of the original image D1 to reduce the resolution (step S12), and the process is performed in step S13. Migrate to
  • control unit 11 reads the image data of the edge D2 from the flash memory 13, and generates image information in which the image of the edge D2 serving as a white frame is added to the original image D1 whose size is compressed.
  • the image signal S is output to the drive signal supply circuit 18 (step S14).
  • step S12 determines whether the average luminance value is not within the specified range (step S11: NO).
  • the control unit 11 executes the automatic addition mode by repeatedly performing the above processing.
  • the automatic addition mode for example, when the original image D1 has a predetermined luminance or higher, an image with the edge D2 added can be displayed. Therefore, it is possible to prevent the luminance of the edge D2 from being too high with respect to the original image D1 and making it difficult to visually recognize the original image D1.
  • the said process may be performed per image frame, even if it is a case where the edge D2 is added by performing in multiple image frame units, a user can visually recognize the edge D2 more naturally. Can be made.
  • step S12 the size of the original image D1 is compressed.
  • the size of the original image D1 is not particularly compressed, and the control unit 11 has an edge outside the standard display area D. You may make it perform the process which provides D2. In this way, although the display area is larger than the standard display area D, the image size of the original image D1 does not have to be reduced depending on whether or not the edge portion D2 is formed, and the original image D1 is easily visible. Become.
  • control unit 11 may dynamically change the width W of the edge D2 according to the state of the original image D1. For example, when the average luminance value of the original image D1 is lower than a predetermined range (a range that includes the specified range and is wider than the specified range), the width W of the edge W1 is narrowed so that the original image D1 is visually recognized. It can be made easier.
  • a predetermined range a range that includes the specified range and is wider than the specified range
  • the light intensity detectors 51, 52, 53 (20a) are adjacent to or built in the lasers 63, 64, 65, but the positions of the light intensity detectors 51, 52, 53 (20a) are positioned at the lasers 63, 64. , 65 need only be at a position where the intensity of the laser beam output can be detected.
  • the light intensity detectors 51, 52, and 53 (20a) may be arranged at positions where the laser beam scanned by the scanner 30 is incident.
  • the image processing is performed after the image information F is stored in the flash memory 13, but the present invention is not limited to this, and any processing may be performed as long as the drive signal can be generated according to the image information.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

When the scanning position of a scanning unit is at the edge section of an effective display area in which an image is formed by scanning laser light outputted from a light source unit with the scanning unit, a drive signal for the edge section predetermined for the edge section is outputted by a drive control unit to control the light source unit to output laser light having a predetermined intensity, and the intensity of the laser light outputted from the light source unit in response to the drive signal for the edge section is detected by a light intensity detection unit.

Description

画像表示装置Image display device
 本発明は、画像表示装置に関する。さらに詳細には、画像情報に基づく駆動信号を生成する駆動制御部と、駆動制御部から出力される駆動信号に応じた強度のレーザ光を出射する光源部と、光源部から出射されたレーザ光を2次元方向に走査する走査部とを備え、走査部によって走査されたレーザ光により画像を表示する画像表示装置に関する。 The present invention relates to an image display device. More specifically, a drive control unit that generates a drive signal based on image information, a light source unit that emits laser light having an intensity corresponding to the drive signal output from the drive control unit, and a laser beam emitted from the light source unit And an image display device that displays an image by laser light scanned by the scanning unit.
 従来より、網膜走査型画像表示装置やスクリーン走査型画像表示装置などの画像表示装置が知られている。網膜走査型画像表示装置は、画像情報に基づいて生成したレーザ光を、利用者の少なくとも一方の網膜に走査して投影することにより画像を表示する。また、スクリーン走査型画像表示装置は、画像情報に基づいて生成したレーザ光を、スクリーン上に走査して画像を表示する。 Conventionally, image display devices such as a retinal scanning image display device and a screen scanning image display device are known. The retinal scanning image display device displays an image by scanning and projecting laser light generated based on image information onto at least one retina of a user. Further, the screen scanning type image display device displays an image by scanning a laser beam generated based on image information on a screen.
 この画像表示装置は、駆動信号に応じた強度のレーザ光を出射する光源部と、光源部から出射されたレーザ光を2次元方向に走査する走査部とを有している。 This image display device has a light source unit that emits laser light having an intensity corresponding to a drive signal, and a scanning unit that scans the laser light emitted from the light source unit in a two-dimensional direction.
 レーザ光を出射する光源部は、周囲温度の変化などによってレーザ光の出力特性が変化することから、表示する画像の輝度を正常に保つことができないことがある。 The light source unit that emits laser light may not be able to maintain normal brightness of the displayed image because the output characteristics of the laser light change due to changes in ambient temperature.
 そこで、本発明者は、光走査部による走査範囲のうち画像を形成する範囲(有効表示範囲)外に走査位置があるときに光源部から強度検出用レーザ光を出射し、当該強度検出用レーザ光の強度に応じて光源部を調整して、画像の輝度を正常に保つ画像表示装置を提案している(特許文献1参照)。 Therefore, the present inventor emits intensity detection laser light from the light source unit when the scanning position is outside the image forming range (effective display range) of the scanning range by the optical scanning unit, and the intensity detection laser An image display apparatus has been proposed in which the light source unit is adjusted in accordance with the intensity of light to keep the luminance of the image normal (see Patent Document 1).
特開2008-233562号公報JP 2008-233562 A
 しかし、上記特許文献1に記載の画像表示装置では、強度検出用レーザ光が有効表示領域外の光としてスクリーンや利用者の網膜へ投射されたりすることを防止するために、強度検出用レーザ光の出射を遮蔽する遮蔽部材を設けている。そのため、材料コストがかかる。しかも、この遮蔽部材の設置はその調整が困難な場合があり、製造コストが上昇することがある。 However, in the image display device described in Patent Document 1, the intensity detection laser beam is used to prevent the intensity detection laser beam from being projected onto the screen or the user's retina as light outside the effective display area. A shielding member for shielding the emission of the light is provided. Therefore, the material cost is high. In addition, the installation of the shielding member may be difficult to adjust, and the manufacturing cost may increase.
 本発明は、かかる課題に鑑みてなされたものであり、遮蔽部材を設けることなく、画像の輝度を正常に保つことができる画像表示装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide an image display apparatus that can maintain the brightness of an image normally without providing a shielding member.
 上記目的を達成するために、本発明の一つの観点によれば、画像表示装置において、光源部と、走査部と、光強度検出部と、駆動制御部と、を備えている。前記光源部は、駆動信号に応じた強度のレーザ光を出射する。前記走査部は、前記光源部から出射されたレーザ光を2次元方向に走査する。前記光強度検出部は、前記光源部から出射されるレーザ光の強度を検出する。前記駆動制御部は、前記駆動信号を画像情報に応じて生成すると共に、前記光強度検出部によって検出したレーザ光の強度に基づき前記駆動信号を補正する。さらに、前記駆動制御部は、前記走査部によって前記レーザ光が走査されて画像が形成される有効表示領域のうち、その縁部に前記走査部の走査位置があるときに当該縁部用に予め決められた縁部用駆動信号を出力して所定強度のレーザ光を前記光源部から出射させる。さらに、前記光強度検出部は、前記縁部用駆動信号により前記光源部から出射されるレーザ光の強度を検出する。 To achieve the above object, according to one aspect of the present invention, an image display apparatus includes a light source unit, a scanning unit, a light intensity detection unit, and a drive control unit. The light source unit emits laser light having an intensity corresponding to a drive signal. The scanning unit scans the laser beam emitted from the light source unit in a two-dimensional direction. The light intensity detection unit detects the intensity of laser light emitted from the light source unit. The drive control unit generates the drive signal according to image information, and corrects the drive signal based on the intensity of the laser light detected by the light intensity detection unit. Further, the drive control unit is configured in advance for an edge of the effective display region where the laser beam is scanned by the scanning unit to form an image when the scanning unit has a scanning position at the edge. A predetermined edge driving signal is output, and laser light having a predetermined intensity is emitted from the light source unit. Further, the light intensity detection unit detects the intensity of the laser light emitted from the light source unit by the edge drive signal.
 このように、画像表示装置は、画像が形成される有効表示領域の縁部に走査部の走査位置があるときに、強度検出用レーザ光を出射する。これにより、この強度検出用レーザ光を表示画像の縁のデザインとして利用者へ認識させつつも、この強度検出用レーザ光の強度を検出して光源部から出射するレーザ光の強度が調整される。その結果、画像の輝度を正常に保つことができる。 As described above, the image display device emits the intensity detection laser beam when the scanning position of the scanning unit is at the edge of the effective display area where the image is formed. Thereby, the intensity of the laser beam emitted from the light source unit is adjusted by detecting the intensity of the laser beam for intensity detection while allowing the user to recognize the intensity detection laser beam as the design of the edge of the display image. . As a result, the brightness of the image can be kept normal.
 前記画像表示装置において、前記光源部は、三原色に対応したレーザ光をそれぞれ出射する複数の光源を備えるようにしてもよい。この場合、前記駆動制御部は、前記有効表示領域の縁部に前記走査部の走査位置があるときに前記縁部用駆動信号を前記複数の光源にそれぞれ入力して所定強度のレーザ光を前記複数の光源からそれぞれ出射させる。 In the image display device, the light source unit may include a plurality of light sources that respectively emit laser beams corresponding to the three primary colors. In this case, the drive control unit inputs the edge drive signal to the plurality of light sources when the scanning position of the scanning unit is at the edge of the effective display area, and outputs laser light with a predetermined intensity to the plurality of light sources. The light is emitted from a plurality of light sources.
 このように画像表示装置が構成されることで、所定強度のレーザ光を表示画像の縁のデザインとして利用者へ認識させつつも、各光源の強度をそれぞれ調整することができる。 By configuring the image display device in this way, it is possible to adjust the intensity of each light source while allowing the user to recognize laser light of a predetermined intensity as the design of the edge of the display image.
 前記画像表示装置において、前記駆動制御部は、前記縁部用駆動信号を前記複数の光源に同時に出力して、前記所定強度のレーザ光を前記複数の光源から同時に出射させるようにしてもよい。 In the image display device, the drive control unit may simultaneously output the edge driving signal to the plurality of light sources to simultaneously emit the laser light having the predetermined intensity from the plurality of light sources.
 このように画像表示装置が構成されることで、光強度検出部では、光源から出射される強度検出用のレーザ光を同時に検出することができ、駆動制御部における駆動信号の調整処理を迅速に行うことが可能となる。 By configuring the image display device in this way, the light intensity detection unit can simultaneously detect the intensity detection laser light emitted from the light source, and the drive control unit can quickly adjust the drive signal. Can be done.
 前記画像表示装置において、前記駆動制御部は、前記縁部用駆動信号を前記複数の光源間で重複しないタイミングで出力して、前記所定強度のレーザ光を各前記光源間で重複しないタイミングで出射させるようにしてもよい。 In the image display device, the drive control unit outputs the edge drive signal at a timing that does not overlap between the plurality of light sources, and emits the laser beam having the predetermined intensity at a timing that does not overlap between the light sources. You may make it make it.
 このように画像表示装置が構成されることで、縁部の画像を形成するために必要な消費電力を低減することができる。また、縁部の輝度が低減されて、よりソフトに縁部を利用者に視認させることができ、原画像の視認が縁部により阻害されることを抑制できる。 By configuring the image display device in this way, it is possible to reduce the power consumption necessary to form the edge image. Further, the brightness of the edge portion is reduced, the edge portion can be made to be visually recognized by the user softer, and it is possible to suppress the obstruction of the visibility of the original image by the edge portion.
 前記画像表示装置において、表示対象の原画像を縮小し、当該原画像の周縁を所定輝度の画像として前記画像情報を生成する画像処理手段を備えるようにしてもよい。 The image display device may include an image processing unit that reduces the original image to be displayed and generates the image information using a peripheral edge of the original image as an image having a predetermined luminance.
 このように画像表示装置が構成されることで、走査部の走査範囲に余裕がない場合であっても、縁部を設けることが可能となる。 By configuring the image display device in this way, it is possible to provide an edge even when there is no margin in the scanning range of the scanning unit.
 前記画像表示装置において、前記駆動制御部は、前記縁部用駆動信号の出力を、1以上の画像フレーム単位で断続的に行うようにしてもよい。 In the image display device, the drive control unit may intermittently output the edge drive signal in units of one or more image frames.
 このように画像表示装置が構成されることで、縁部の画像を形成するために必要な消費電力を低減することができる。また、縁部の輝度が低減されて、よりソフトに縁部を利用者に視認させることができ、原画像の視認が縁部により阻害されることを抑制できる。 By configuring the image display device in this way, it is possible to reduce the power consumption necessary to form the edge image. Further, the brightness of the edge portion is reduced, the edge portion can be made to be visually recognized by the user softer, and it is possible to suppress the obstruction of the visibility of the original image by the edge portion.
 前記画像表示装置において、前記画像情報に含まれる原画像の画像フレーム単位の平均輝度が規定範囲にあるか否かを判定する輝度判定手段を備えるようにしてもよい。この場合、前記駆動制御部は、前記輝度判定手段により平均輝度が規定範囲にあると判定した原画像の画像フレームで、前記縁部用駆動信号の出力を行う。 The image display device may further include a luminance determination unit that determines whether or not the average luminance of the original image included in the image information is within a specified range. In this case, the drive control unit outputs the edge drive signal in the image frame of the original image in which the average luminance is determined to be within the specified range by the luminance determination unit.
 このように画像表示装置が構成されることで、例えば、原画像に対して縁部の輝度が高すぎて原画像が視認しにくくなることを防止することができる By configuring the image display device in this way, for example, it is possible to prevent the luminance of the edge portion from being too high with respect to the original image and making it difficult to visually recognize the original image.
 前記画像表示装置において、前記縁部用駆動信号の信号レベルを変更して前記光源部から出射するレーザ光の前記所定強度を変更する縁部輝度変更手段を設けるようにしてもよい。 In the image display device, edge luminance changing means for changing the predetermined intensity of the laser light emitted from the light source unit by changing the signal level of the edge drive signal may be provided.
 このように画像表示装置が構成されることで、例えば、縁部の輝度が高くて利用者によっては原画像が視認しにくくなる場合であっても、利用者の選択により縁部の輝度を変更して視認しやすくすることができる。 By configuring the image display device in this manner, for example, even when the brightness of the edge is high and it is difficult for some users to visually recognize the original image, the brightness of the edge is changed by the user's selection. And can be easily recognized.
 前記画像表示装置において、前記所定強度のレーザ光を出射する前記縁部の縁幅を変更する縁幅変更手段を設けるようにしてもよい。 In the image display device, edge width changing means for changing the edge width of the edge that emits the laser beam having the predetermined intensity may be provided.
 このように画像表示装置が構成されることで、例えば、縁部の幅が大きく利用者によっては原画像が視認しにくくなる場合であっても、利用者の選択により縁部の幅を変更することで原画像を視認しやすくできる。 By configuring the image display device in this way, for example, even when the width of the edge is large and it is difficult for some users to visually recognize the original image, the width of the edge is changed by the user's selection. This makes it easy to visually recognize the original image.
 本発明によれば、画像が形成される有効表示領域の縁部に走査部の走査位置があるときに、強度検出用レーザ光を出射する。これにより、この強度検出用レーザ光を表示画像の縁のデザインとして利用者へ認識させつつも、この強度検出用レーザ光の強度を検出して光源部から出射するレーザ光の強度を調整して、画像の輝度を正常に保つことができる。 According to the present invention, the intensity detection laser beam is emitted when the scanning position of the scanning unit is at the edge of the effective display area where the image is formed. This allows the user to recognize the intensity detection laser beam as the design of the edge of the display image, while adjusting the intensity of the laser beam emitted from the light source unit by detecting the intensity of the intensity detection laser beam. The image brightness can be kept normal.
本発明の一実施形態に係る画像表示装置の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an image display device according to an embodiment of the present invention. 図1に示す画像表示装置の表示画像を示す図である。It is a figure which shows the display image of the image display apparatus shown in FIG. 本発明の一実施形態に係る画像表示装置の具体的構成を示す図である。It is a figure which shows the specific structure of the image display apparatus which concerns on one Embodiment of this invention. 図3に示す画像表示装置の走査部の動作説明図である。It is operation | movement explanatory drawing of the scanning part of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の表示画像の例を示す図である。It is a figure which shows the example of the display image of the image display apparatus shown in FIG. 図3に示す画像表示装置の駆動信号の説明図である。It is explanatory drawing of the drive signal of the image display apparatus shown in FIG. 図3に示す画像表示装置の駆動信号の説明図である。It is explanatory drawing of the drive signal of the image display apparatus shown in FIG. 図3に示す画像表示装置の駆動信号の説明図である。It is explanatory drawing of the drive signal of the image display apparatus shown in FIG. 図3に示す画像表示装置の駆動信号の説明図である。It is explanatory drawing of the drive signal of the image display apparatus shown in FIG. 図3に示す画像表示装置の自動付加モードの流れを説明するための図である。It is a figure for demonstrating the flow of the automatic addition mode of the image display apparatus shown in FIG.
 以下に、本発明に好適な実施形態について図面に基づいて説明する。なお、以下の説明では、網膜走査型画像表示装置を例に挙げて説明する。網膜走査型画像表示装置は、画像情報に基づく駆動信号に応じたレーザ光を走査部により走査して、利用者の少なくとも一方の網膜に画像を投影し、画像を表示する。しかし、本発明は、網膜走査型画像表示装置に限定されるものではない。例えば、スクリーン走査型画像表示装置等、レーザ光を走査して画像を表示する他の画像表示装置に対して適用することができる。なお、スクリーン走査型画像表示装置画像情報に基づく駆動信号に応じた強度のレーザ光を走査部により走査することによって、スクリーン上に画像を投影表示する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, a retinal scanning image display device will be described as an example. The retinal scanning image display apparatus scans a laser beam corresponding to a drive signal based on image information with a scanning unit, projects an image on at least one retina of a user, and displays the image. However, the present invention is not limited to the retinal scanning image display device. For example, the present invention can be applied to other image display devices that display an image by scanning laser light, such as a screen scanning image display device. The image is projected and displayed on the screen by scanning the laser beam with the intensity corresponding to the drive signal based on the image information on the screen scanning type image display device.
[1.画像表示装置の概略]
 まず、本実施形態に係る画像表示装置の概略を図1及び図2を参照して説明する。
[1. Outline of image display apparatus]
First, an outline of the image display apparatus according to the present embodiment will be described with reference to FIGS. 1 and 2.
 図1に示すように、本実施形態の画像表示装置1は、駆動制御部10と、光源部20と、走査部30と、接眼レンズであるレンズ95bと、操作部40とを備えており、次のように動作する。 As shown in FIG. 1, the image display device 1 of the present embodiment includes a drive control unit 10, a light source unit 20, a scanning unit 30, a lens 95b that is an eyepiece, and an operation unit 40. It works as follows.
 まず、駆動制御部10は画像情報Fに応じて駆動信号を生成する。この画像情報Fは外部から入力される情報であり、所定フォーマットの画像データ(例えば、ビットマップデータBit Map Data)やコンポーネント映像信号 (Component Video Signal)などがある。また、駆動信号は画像情報Fの画素単位で三原色(R,G,B)に対応してそれぞれ生成されて出力される。 First, the drive control unit 10 generates a drive signal according to the image information F. This image information F is information input from the outside and includes image data in a predetermined format (for example, bitmap data Bit Map Data), component video signal (Component Video Signal), and the like. Further, drive signals are generated and output corresponding to the three primary colors (R, G, B) in units of pixels of the image information F.
 駆動制御部10から出力された画素毎の駆動信号は光源部20に順次入力され、光源部20はこのように入力された駆動信号に応じた強度のレーザ光を順次出射する。 The drive signal for each pixel output from the drive control unit 10 is sequentially input to the light source unit 20, and the light source unit 20 sequentially emits laser light having an intensity corresponding to the input drive signal.
 光源部20から画素単位で順次出射されるレーザ光は走査部30により2次元方向(X-Y方向)に走査される。このように走査されたレーザ光は、レンズ95bを介して、利用者の眼101の瞳孔101aに入射する。このとき、瞳孔101aの位置に射出瞳位置がくるように設定されており、これにより利用者の眼101の網膜101bに画像が投影される。 Laser light sequentially emitted from the light source unit 20 in units of pixels is scanned by the scanning unit 30 in a two-dimensional direction (XY direction). The laser beam thus scanned enters the pupil 101a of the user's eye 101 through the lens 95b. At this time, the exit pupil position is set at the position of the pupil 101 a, and thereby an image is projected onto the retina 101 b of the user's eye 101.
 光源部20は、周囲温度の変化などによってレーザ光の出力特性が変化する。従って、駆動制御部10から同じ信号レベルの駆動信号を入力した場合であっても、光源部20から出力されるレーザ光の強度が変わってしまうことになる。 In the light source unit 20, the output characteristics of the laser light change due to changes in ambient temperature and the like. Therefore, even when a drive signal having the same signal level is input from the drive control unit 10, the intensity of the laser light output from the light source unit 20 changes.
 そこで、本実施形態に係る画像表示装置1においては、光源部20から出射されるレーザ光の強度を検出する光強度検出部20aを備える。駆動制御部10は、この光強度検出部20aによって検出したレーザ光の強度に基づき駆動信号を補正するようにしている。 Therefore, the image display device 1 according to the present embodiment includes a light intensity detection unit 20 a that detects the intensity of the laser light emitted from the light source unit 20. The drive controller 10 corrects the drive signal based on the intensity of the laser beam detected by the light intensity detector 20a.
 具体的には、駆動制御部10は、強度検出用レーザ光を出射するための強度検出用駆動信号を光源部20に入力して、光源部20から強度検出用レーザ光を出射させる。光源部20には、強度検出用レーザ光の強度を検出するための光強度検出部20aが配置される。この光強度検出部20aから強度検出用レーザ光の強度を示す情報が駆動制御部10へ出力される。駆動制御部10では、光強度検出部20aから入力される前記情報に基づいて光源部20の出力特性を判定して、当該出力特性に応じて駆動信号を調整する。 Specifically, the drive control unit 10 inputs an intensity detection drive signal for emitting intensity detection laser light to the light source unit 20 and causes the light source unit 20 to emit intensity detection laser light. The light source unit 20 is provided with a light intensity detection unit 20a for detecting the intensity of the intensity detection laser beam. Information indicating the intensity of the intensity detection laser beam is output from the light intensity detection unit 20 a to the drive control unit 10. The drive control unit 10 determines the output characteristic of the light source unit 20 based on the information input from the light intensity detection unit 20a, and adjusts the drive signal according to the output characteristic.
 例えば、光源部20から出射させるレーザ光の強度の最大値を設定しているとき、この最大値の強度のレーザ光を光源部20から出射させるために駆動制御部10から強度検出用駆動信号を出力したとする。このとき、光強度検出部20aにおいて検出したレーザ光の強度が前記最大値の95%であれば、駆動制御部10は駆動信号のレベルを上げる補正が必要であると判定して、駆動信号の調整を行う。これにより、画像表示装置1が表示する画像の輝度を正常に保つことができるようにしている。 For example, when the maximum value of the intensity of the laser beam emitted from the light source unit 20 is set, an intensity detection drive signal is output from the drive control unit 10 in order to emit the laser beam having the maximum intensity from the light source unit 20. Suppose that it outputs. At this time, if the intensity of the laser beam detected by the light intensity detection unit 20a is 95% of the maximum value, the drive control unit 10 determines that correction to increase the level of the drive signal is necessary, and Make adjustments. Thereby, the brightness | luminance of the image which the image display apparatus 1 displays can be maintained normally.
 強度検出用駆動信号に応じて光源部20から出射される強度検出用レーザ光は、内部校正用に用いられるものであることから、遮蔽部材を用いて外部に出射させずにバックグランド処理を行うこともできる。しかし、遮蔽部材の材料費や取り付け工数などがかかる。 Since the intensity detection laser beam emitted from the light source unit 20 in accordance with the intensity detection drive signal is used for internal calibration, the background processing is performed without emitting it to the outside using a shielding member. You can also. However, the material cost of a shielding member, the attachment man-hour, etc. start.
 そこで、本実施形態に係る画像表示装置1においては、画像を表示する有効表示領域に強度検出用レーザ光を出射させるようにしている。 Therefore, in the image display device 1 according to the present embodiment, the intensity detection laser beam is emitted to the effective display area where the image is displayed.
 特に、強度検出用レーザ光によって、図2に示すように、有効表示領域Eにおける表示画像の縁部D2に一定輝度の領域を形成するようにしている。このように一定輝度の縁部D2を形成することで、利用者は有効表示領域Eとそれ以外の領域との区別が容易になり、しかも、表示画像も視認しやすくなる。一方で、利用者は強度検出用レーザ光が有効表示領域Eで出射された場合であっても一定輝度の縁部D2として認識するため、違和感がなく、不快感も生じない。 Particularly, as shown in FIG. 2, a region having a constant luminance is formed at the edge D2 of the display image in the effective display region E by the intensity detection laser beam. By forming the edge D2 having a constant luminance in this way, the user can easily distinguish between the effective display area E and the other areas, and the display image can be easily viewed. On the other hand, even if the intensity detection laser beam is emitted from the effective display area E, the user recognizes it as the edge D2 having a constant luminance, so there is no sense of incongruity and no discomfort.
 このように表示画像の縁部D2に一定輝度の領域を形成するために、画像表示装置1では、強度検出用レーザ光を一定強度とし、この強度検出用レーザ光を縁部画像形成用のレーザ光として光源部20から出射させている。すなわち、駆動制御部10は、走査部30によってレーザ光が走査されて画像が形成される有効表示領域の縁部に走査部30の走査位置があるときに、当該縁部用に予め決められた駆動信号(以下、「縁部用駆動信号」とも呼ぶ。)を出力する。これにより、強度検出用レーザ光が縁部画像形成用のレーザ光として光源部20から出射される。 In this way, in order to form a region having a constant luminance at the edge D2 of the display image, the image display device 1 sets the intensity detection laser light to a constant intensity, and uses the intensity detection laser light as the edge image formation laser. Light is emitted from the light source unit 20 as light. That is, when the scanning position of the scanning unit 30 is at the edge of the effective display area where an image is formed by scanning the laser beam by the scanning unit 30, the drive control unit 10 is predetermined for the edge. A drive signal (hereinafter also referred to as “edge drive signal”) is output. Thereby, the intensity detection laser beam is emitted from the light source unit 20 as the edge image forming laser beam.
 そして、画像表示装置1では、縁部用駆動信号により光源部20から出射される強度検出用レーザ光の強度を光強度検出部20aにより検出し、駆動制御部10により駆動信号の調整を行うようにしている。 In the image display device 1, the intensity of the intensity detection laser light emitted from the light source unit 20 is detected by the edge drive signal by the light intensity detection unit 20 a, and the drive signal is adjusted by the drive control unit 10. I have to.
 また、画像表示装置1には、操作部40が設けられている。利用者はこの操作部40を操作することによって、縁部D2の輝度や幅が変更可能となる。すなわち、駆動制御部10は、操作部40から縁部D2の輝度を変更する指示を受けると、縁部輝度変更手段として、その指示に応じた輝度になるように縁部用駆動信号を生成して出力する。同様に、駆動制御部10は、操作部40から縁部D2の幅を変更する指示を受けると、その指示に応じた幅になるように縁部用駆動信号を生成して出力する。 Further, the image display device 1 is provided with an operation unit 40. The user can change the brightness and width of the edge D2 by operating the operation unit 40. That is, when the drive control unit 10 receives an instruction to change the luminance of the edge D2 from the operation unit 40, the drive control unit 10 generates an edge drive signal so that the luminance according to the instruction is obtained as an edge luminance change unit. Output. Similarly, when the drive control unit 10 receives an instruction to change the width of the edge D2 from the operation unit 40, the drive control unit 10 generates and outputs an edge drive signal so that the width corresponds to the instruction.
 なお、有効表示領域Eに表示される画像は、原画像D1と、その周縁に配置された縁部D2とによって形成される。駆動制御部10は、画像処理手段10aを備えている。この画像処理手段10aは、画像情報Fに応じた原画像D1を縮小し、この原画像の周縁を所定輝度の画像(縁部D2)とした画像情報を生成し、この画像情報に応じて駆動信号を出力する。 Note that the image displayed in the effective display area E is formed by the original image D1 and the edge D2 arranged on the periphery thereof. The drive control unit 10 includes image processing means 10a. The image processing means 10a reduces the original image D1 according to the image information F, generates image information in which the periphery of the original image is an image having a predetermined luminance (edge D2), and is driven according to the image information. Output a signal.
 このように、画像表示装置1では、画像が形成される有効表示領域の縁部D2に走査部30の走査位置があるときに、強度検出用レーザ光を出射する。これにより、この強度検出用レーザ光を表示画像の縁のデザインとして利用者へ認識させつつも、この強度検出用レーザ光の強度を検出して光源部20から出射するレーザ光を調整し、画像の輝度を正常に保っている。 Thus, the image display device 1 emits the intensity detection laser beam when the scanning position of the scanning unit 30 is at the edge D2 of the effective display area where the image is formed. As a result, while making the user recognize the intensity detection laser beam as the edge design of the display image, the intensity of the intensity detection laser beam is detected and the laser beam emitted from the light source unit 20 is adjusted to obtain an image. The brightness is kept normal.
[2.画像表示装置1の具体的構成及び動作]
 以下、本実施形態に係る画像表示装置1について、図3~図11を参照して更に具体的に説明する。
[2. Specific Configuration and Operation of Image Display Device 1]
Hereinafter, the image display device 1 according to the present embodiment will be described more specifically with reference to FIGS.
[2.1.画像表示装置1の電気的構成及び光学的構成を含む具体的構成]
 図3に示すように、画像表示装置1は、駆動制御部10と、光源部20と、走査部30と、操作部40と、光ファイバケーブル50と、ハーフミラー31とを備えて構成される。
[2.1. Specific configuration including electrical configuration and optical configuration of image display apparatus 1]
As shown in FIG. 3, the image display apparatus 1 includes a drive control unit 10, a light source unit 20, a scanning unit 30, an operation unit 40, an optical fiber cable 50, and a half mirror 31. .
 駆動制御部10は、画像情報Fに応じた画像信号Sを生成して出力する制御部11と、画像を合成するための要素となる信号等を発生する駆動信号供給回路18とを備える。 The drive control unit 10 includes a control unit 11 that generates and outputs an image signal S corresponding to the image information F, and a drive signal supply circuit 18 that generates a signal that is an element for combining images.
 制御部11は、その内部に記憶されている制御プログラムにしたがって後述する所定の処理を実行することによって、上述した画像処理手段、縁部輝度変更手段及び縁幅変更手段として機能するほか、画像表示装置1全体を制御する制御手段や後述する輝度判定手段として機能する。 In addition to functioning as the above-described image processing means, edge brightness changing means, and edge width changing means, the control unit 11 executes predetermined processing to be described later according to a control program stored therein, and also displays an image display. It functions as a control means for controlling the entire apparatus 1 and a brightness determination means described later.
 制御部11は、CPU(Central  Processing  Unit)12と、不揮発性メモリであるフラッシュメモリ(Flash  Memory)13と、RAM(Random Access Memory)14と、VRAM(Video Random Access Memory)15と、入力インターフェイス(I/F)16とを備えている。これらはデータ通信用のバスにそれぞれ接続されており、このデータ通信用のバスを介して各種情報の送受信を行う。 The control unit 11 includes a CPU (Central Processing Unit) 12, a flash memory (Flash Memory) 13, which is a nonvolatile memory, a RAM (Random Access Memory) 14, a VRAM (Video Random Access Memory) 15, and an input interface ( I / F) 16. These are respectively connected to a bus for data communication, and various information is transmitted / received via the bus for data communication.
 CPU12は、フラッシュメモリ13に記憶されている制御プログラムを実行することにより、制御手段等として画像表示装置1を構成する各部を動作させて、画像表示装置1が備える各種機能を実行させる演算処理装置である。また、このCPU12は、入力I/F16を介して入力される画像情報Fなどを所定の画像フォーマットに変換してフラッシュメモリ13に記憶する。さらに、CPU12は、操作部40から入力される情報を取得し、当該情報に応じた処理を行う。 The CPU 12 executes a control program stored in the flash memory 13 to operate each unit constituting the image display device 1 as a control unit or the like, thereby executing various functions provided in the image display device 1. It is. In addition, the CPU 12 converts the image information F or the like input via the input I / F 16 into a predetermined image format and stores it in the flash memory 13. Further, the CPU 12 acquires information input from the operation unit 40 and performs processing according to the information.
 また、CPU12は、画像情報Fに応じた原画像D1に縁部D2を付加して画像情報を生成し、画像信号Sとして駆動信号供給回路18へ出力する。 The CPU 12 generates image information by adding the edge D2 to the original image D1 corresponding to the image information F, and outputs the image information to the drive signal supply circuit 18 as an image signal S.
 駆動信号供給回路18は、画像信号Sに基づいて、画像を形成するための要素となる各信号を画素単位で生成する。すなわち、駆動信号供給回路18からは、R(赤色)駆動信号60r,G(緑色)駆動信号60g,B(青色)駆動信号60bが生成されて出力される。また、駆動信号供給回路18は、水平走査部80で使用される水平駆動信号61と、垂直走査部90で使用される垂直駆動信号62とをそれぞれ出力する。 The drive signal supply circuit 18 generates each signal, which is an element for forming an image, on a pixel basis based on the image signal S. That is, the drive signal supply circuit 18 generates and outputs an R (red) drive signal 60r, a G (green) drive signal 60g, and a B (blue) drive signal 60b. The drive signal supply circuit 18 outputs a horizontal drive signal 61 used by the horizontal scanning unit 80 and a vertical drive signal 62 used by the vertical scanning unit 90, respectively.
 光源部20には、Rレーザ63,Gレーザ64,Bレーザ65をそれぞれ駆動するためのRレーザドライバ66,Gレーザドライバ67,Bレーザドライバ68が設けられている。Rレーザドライバ66,Gレーザドライバ67,Bレーザドライバ68は、駆動信号供給回路18から画素単位で出力されるR駆動信号60r、G駆動信号60g、B駆動信号60bの各駆動信号60r,60g,60bをもとに、それぞれ強度変調されたレーザ光(「光束」とも呼ぶ。)を出射させる。各レーザ63,64,65は、例えば、半導体レーザや高調波発生機構付き固体レーザとして構成することが可能である。なお、半導体レーザを用いる場合は駆動電流を直接変調して、レーザ光の強度変調を行うことができる。一方、固体レーザを用いる場合は、各レーザそれぞれに外部変調器を備えてレーザ光の強度変調を行う必要がある。 The light source unit 20 is provided with an R laser driver 66, a G laser driver 67, and a B laser driver 68 for driving the R laser 63, the G laser 64, and the B laser 65, respectively. The R laser driver 66, the G laser driver 67, and the B laser driver 68 are provided with drive signals 60r, 60g, R drive signal 60r, G drive signal 60g, and B drive signal 60b output from the drive signal supply circuit 18 in units of pixels, respectively. Based on 60b, laser light (also referred to as “light beam”) whose intensity is modulated is emitted. Each laser 63, 64, 65 can be configured as, for example, a semiconductor laser or a solid-state laser with a harmonic generation mechanism. When using a semiconductor laser, the drive current can be directly modulated to modulate the intensity of the laser beam. On the other hand, when a solid-state laser is used, each laser needs to have an external modulator to modulate the intensity of the laser light.
 また、光源部20には、R光強度検出部51と、G光強度検出部52と、B光強度検出部53とが設けられる。R光強度検出部51はRレーザ63より出射されたレーザ光の強度を検出する。G光強度検出部52は、Gレーザ64より出射されたレーザ光の強度を検出する。B光強度検出部53は、Bレーザ65より出射されたレーザ光の強度を検出する。各光強度検出部51,52,53により、各レーザ63,64,65から出射されるレーザ光の強度を検出可能としている。各光強度検出部51,52,53は、検出したレーザ光の強度に応じた振幅レベルの検出信号を駆動制御部10へ出力する。なお、各レーザ63,64,65に光強度検出部51,52,53を内蔵したレーザを適用することもできる。 Further, the light source unit 20 is provided with an R light intensity detection unit 51, a G light intensity detection unit 52, and a B light intensity detection unit 53. The R light intensity detector 51 detects the intensity of the laser light emitted from the R laser 63. The G light intensity detection unit 52 detects the intensity of the laser light emitted from the G laser 64. The B light intensity detection unit 53 detects the intensity of the laser light emitted from the B laser 65. The light intensity detectors 51, 52, and 53 can detect the intensity of laser light emitted from the lasers 63, 64, and 65, respectively. Each light intensity detector 51, 52, 53 outputs a detection signal having an amplitude level corresponding to the detected intensity of the laser light to the drive controller 10. Note that lasers incorporating the light intensity detectors 51, 52, and 53 can be applied to the lasers 63, 64, and 65, respectively.
 さらに、光源部20は、コリメート光学系71,72,73と、ダイクロイックミラー74,75,76と、合光学系77とが設けられている。コリメート光学系71,72,73は、各レーザ63,64,65より出射されたレーザ光を平行光にコリメートするように設けられる。ダイクロイックミラー74,75,76は、コリメート光学系71,72,73によりコリメートされたレーザ光を合波する。結合光学系77は、合波されたレーザ光を光ファイバケーブル50に導く。 Furthermore, the light source unit 20 is provided with collimating optical systems 71, 72, 73, dichroic mirrors 74, 75, 76, and a combination optical system 77. The collimating optical systems 71, 72, and 73 are provided so as to collimate the laser light emitted from the lasers 63, 64, and 65 into parallel light. The dichroic mirrors 74, 75, and 76 combine the laser beams collimated by the collimating optical systems 71, 72, and 73. The coupling optical system 77 guides the combined laser light to the optical fiber cable 50.
 従って、各レーザ63,64,65から出射したレーザ光は、コリメート光学系71,72,73によってそれぞれ平行化された後に、ダイクロイックミラー74,75,76に入射される。その後、これらのダイクロイックミラー74,75,76により、各レーザ光が波長に関して選択的に反射・透過される。そして、これら3つのダイクロイックミラー74,75,76にそれぞれ入射した3原色のレーザ光は、波長選択的に反射または透過して結合光学系77に達し、集光されて光ファイバケーブル50へ出力される。 Therefore, the laser beams emitted from the lasers 63, 64, and 65 are collimated by the collimating optical systems 71, 72, and 73 and then enter the dichroic mirrors 74, 75, and 76, respectively. Thereafter, each of the laser beams is selectively reflected and transmitted with respect to the wavelength by these dichroic mirrors 74, 75, and 76. The three primary color laser beams incident on these three dichroic mirrors 74, 75, and 76 are reflected or transmitted in a wavelength selective manner, reach the coupling optical system 77, and are collected and output to the optical fiber cable 50. The
 光源部20と利用者の眼101との間に位置する走査部30には、コリメート光学系79と、水平走査部80と、垂直走査部90と、第1リレー光学系85と、第2リレー光学系95とが設けられている。コリメート光学系79は、光源部20で生成され、光ファイバケーブル50を介して出射されるレーザ光を平行光化する。水平走査部80は、コリメート光学系79で平行光化されたレーザ光を画像表示のために水平方向に往復走査する。垂直走査部90は、水平走査部80で水平方向に走査されたレーザ光を垂直方向に走査する。第1リレー光学系85は、水平走査部80と垂直走査部90との間に設けられる。第2リレー光学系95は、水平方向と垂直方向に走査されたレーザ光を瞳孔101aへ出射する。 The scanning unit 30 located between the light source unit 20 and the user's eye 101 includes a collimating optical system 79, a horizontal scanning unit 80, a vertical scanning unit 90, a first relay optical system 85, and a second relay. An optical system 95 is provided. The collimating optical system 79 collimates the laser light generated by the light source unit 20 and emitted through the optical fiber cable 50. The horizontal scanning unit 80 reciprocally scans the laser beam collimated by the collimating optical system 79 in the horizontal direction for image display. The vertical scanning unit 90 scans the laser beam scanned in the horizontal direction by the horizontal scanning unit 80 in the vertical direction. The first relay optical system 85 is provided between the horizontal scanning unit 80 and the vertical scanning unit 90. The second relay optical system 95 emits laser light scanned in the horizontal direction and the vertical direction to the pupil 101a.
 水平走査部80及び垂直走査部90は、光ファイバケーブル50から入射されたレーザ光を画像として利用者の網膜101bに投影可能な状態にするために、水平方向と垂直方向に走査して走査光束とする光学系である。水平走査部80は、偏向素子81と水平走査駆動回路82とを備えている。偏向素子81は、レーザ光を水平方向に走査するため偏向面を有する共振型の偏向素子である。水平走査駆動回路82は、偏向素子81を共振させて偏向素子81の偏向面を揺動させる駆動信号を水平駆動信号61に基づいて発生する。 The horizontal scanning unit 80 and the vertical scanning unit 90 scan in the horizontal direction and the vertical direction to scan the laser beam incident from the optical fiber cable 50 in a state in which the laser beam can be projected on the user's retina 101b as an image. It is an optical system. The horizontal scanning unit 80 includes a deflection element 81 and a horizontal scanning drive circuit 82. The deflection element 81 is a resonance type deflection element having a deflection surface for scanning the laser beam in the horizontal direction. The horizontal scanning drive circuit 82 generates a drive signal based on the horizontal drive signal 61 that resonates the deflection element 81 and swings the deflection surface of the deflection element 81.
 一方、垂直走査部90は、偏向素子91と、垂直走査駆動回路92とを備えている。偏向素子91は、レーザ光を垂直方向に走査するため偏向面を有する非共振型の偏向素子である。垂直走査駆動回路92は、偏向素子91の偏向面を非共振状態で揺動させる駆動信号を垂直駆動信号62に基づいて発生する。垂直走査部90は、表示すべき画像の1フレームごとに、画像を形成するためのレーザ光を最初の水平走査線から最後の水平走査線に向かって垂直に走査する。ここで「水平走査線」とは、水平走査部80による水平方向への1走査を意味する。 On the other hand, the vertical scanning unit 90 includes a deflection element 91 and a vertical scanning drive circuit 92. The deflection element 91 is a non-resonant type deflection element having a deflection surface for scanning the laser beam in the vertical direction. The vertical scanning drive circuit 92 generates a drive signal for swinging the deflection surface of the deflection element 91 in a non-resonant state based on the vertical drive signal 62. The vertical scanning unit 90 vertically scans laser light for forming an image from the first horizontal scanning line toward the last horizontal scanning line for each frame of the image to be displayed. Here, the “horizontal scanning line” means one scanning in the horizontal direction by the horizontal scanning unit 80.
 なお、偏向素子81,91は、ここではガルバノミラーを用いることとする。しかし、偏向素子81,91は、レーザ光を走査するようにその偏向面(反射面)を揺動又は回転させられるものであれば、圧電駆動、電磁駆動、静電駆動等いずれの駆動方式によるものであってもよい。また、本実施形態においては、水平走査部80に共振タイプの偏向素子を用い、垂直走査部90を非共振タイプの偏向素子を用いることとしているが、これに限らず、例えば、どちらも非共振タイプの偏向素子としてもよい。 Note that the deflection elements 81 and 91 are galvanometer mirrors here. However, the deflection elements 81 and 91 can be driven by any driving method such as piezoelectric driving, electromagnetic driving, and electrostatic driving as long as the deflection surface (reflection surface) can be swung or rotated so as to scan the laser beam. It may be a thing. In this embodiment, a resonance type deflection element is used for the horizontal scanning unit 80 and a non-resonance type deflection element is used for the vertical scanning unit 90. However, the present invention is not limited to this. It may be a type of deflection element.
 また、水平走査部80と垂直走査部90との間でレーザ光を中継する第1リレー光学系85は、偏向素子81の偏向面によって水平方向に走査されたレーザ光を偏向素子91の偏向面に収束させる。そして、このレーザ光が偏向素子91の偏向面によって垂直方向に走査され、正の屈折力を持つ2つのレンズ95a,95bが直列配置された第2リレー光学系95を介して、眼101の前方に位置させたハーフミラー31で反射される。ハーフミラー31で反射されたレーザ光は利用者の瞳孔101aに入射し、網膜101b上に画像信号Sに応じた画像が投影される。これにより、利用者はこのように瞳孔101aに入射するレーザ光を、画像として認識する。また、ハーフミラー31は外光200を透過して利用者の瞳孔101aに入射させるようにしている。これにより、これにより利用者は外光に基づく外景にレーザ光に基づく画像を重ねた画像を視認することができる。 Further, the first relay optical system 85 that relays the laser light between the horizontal scanning unit 80 and the vertical scanning unit 90 converts the laser light scanned in the horizontal direction by the deflection surface of the deflection element 81 into the deflection surface of the deflection element 91. To converge. Then, the laser light is scanned in the vertical direction by the deflection surface of the deflection element 91, and the front of the eye 101 is passed through the second relay optical system 95 in which two lenses 95a and 95b having positive refractive power are arranged in series. It is reflected by the half mirror 31 positioned at. The laser light reflected by the half mirror 31 enters the user's pupil 101a, and an image corresponding to the image signal S is projected onto the retina 101b. As a result, the user recognizes the laser light incident on the pupil 101a as an image. Further, the half mirror 31 transmits the external light 200 so as to enter the user's pupil 101a. Thereby, the user can visually recognize an image obtained by superimposing an image based on laser light on an external scene based on external light.
 なお、第2リレー光学系95においては、レンズ95aによって、それぞれのレーザ光がそのレーザ光の中心線を相互に略平行にされ、かつそれぞれ収束レーザ光に変換される。そして、レンズ95bによってそれぞれほぼ平行なレーザ光となると共に、これらのレーザ光の中心線が利用者の瞳孔101aに収束するように変換される。 In the second relay optical system 95, the respective laser beams are made substantially parallel to each other and converted into convergent laser beams by the lens 95a. The laser beams are converted into substantially parallel laser beams by the lens 95b, and the center lines of these laser beams are converted so as to converge on the user's pupil 101a.
 図4には、水平走査部80及び垂直走査部90の偏向素子81,91による最大走査範囲Gと標準走査範囲Zとの関係が示されている。最大走査範囲Gは、図4に示す水平最大走査範囲Xa及び垂直走査最大範囲Yaにより形成される範囲である。また、標準走査範囲Zは、図4に示す水平走査標準範囲X1及び垂直走査標準範囲Y1により形成される範囲である。ここで、「走査最大範囲」とは、水平走査部80の偏向素子81及び垂直走査部90の偏向素子91がレーザ光を走査できる最大の範囲を意味する。また、「標準走査範囲Z」とは、画像表示装置1においてデフォルトで定められた走査範囲である。 FIG. 4 shows the relationship between the maximum scanning range G and the standard scanning range Z by the deflection elements 81 and 91 of the horizontal scanning unit 80 and the vertical scanning unit 90. The maximum scanning range G is a range formed by the horizontal maximum scanning range Xa and the vertical scanning maximum range Ya shown in FIG. The standard scanning range Z is a range formed by the horizontal scanning standard range X1 and the vertical scanning standard range Y1 shown in FIG. Here, the “maximum scanning range” means the maximum range in which the deflection element 81 of the horizontal scanning unit 80 and the deflection element 91 of the vertical scanning unit 90 can scan the laser beam. The “standard scanning range Z” is a scanning range determined by default in the image display device 1.
 水平走査駆動回路82は、駆動信号供給回路18から出力される水平駆動信号61を増幅して、偏向素子81に印加し、偏向素子81の偏向面を駆動する。垂直走査駆動回路92は、駆動信号供給回路18から出力される垂直駆動信号62を増幅して、偏向素子91に印加し、偏向素子91の偏向面を駆動する。そして、偏向素子81及び偏向素子91の最大走査範囲Gのうち、標準走査範囲Zに偏向素子81及び偏向素子91の走査位置があるタイミングで光源部20から画像信号Sに応じて強度変調されたレーザ光が出射される。これにより、偏向素子81及び偏向素子91によってレーザ光が標準走査範囲Zで走査され、1フレーム分のレーザ光が標準走査範囲Z内で走査される。この走査が1フレームの画像ごとに繰り返される。なお、図4には、光源部20からレーザ光が常時出射されたと仮定したときに偏向素子81及び偏向素子91によって走査されるレーザ光の軌跡γが仮想的に示されている。ただし、偏向素子81による水平走査方向Xの走査数は、1フレームあたり数百から千程度あり、図4ではレーザ光の軌跡γを簡略して記載している。 The horizontal scanning drive circuit 82 amplifies the horizontal drive signal 61 output from the drive signal supply circuit 18 and applies it to the deflection element 81 to drive the deflection surface of the deflection element 81. The vertical scanning drive circuit 92 amplifies the vertical drive signal 62 output from the drive signal supply circuit 18 and applies it to the deflection element 91 to drive the deflection surface of the deflection element 91. Then, the intensity was modulated in accordance with the image signal S from the light source unit 20 at the timing when the scanning positions of the deflection element 81 and the deflection element 91 are within the standard scanning range Z in the maximum scanning range G of the deflection element 81 and the deflection element 91. Laser light is emitted. As a result, the laser beam is scanned in the standard scanning range Z by the deflection element 81 and the deflection element 91, and the laser beam for one frame is scanned in the standard scanning range Z. This scanning is repeated for each frame image. 4 virtually shows the locus γ of the laser light scanned by the deflection element 81 and the deflection element 91 when it is assumed that the laser light is always emitted from the light source unit 20. However, the number of scans in the horizontal scanning direction X by the deflecting element 81 is about several hundred to one thousand per frame, and FIG. 4 simply shows the locus γ of the laser beam.
[2.2.レーザ光の強度調整処理]
 次に、画像表示装置1におけるレーザ光の強度調整処理について説明する。
[2.2. Laser light intensity adjustment process]
Next, laser light intensity adjustment processing in the image display apparatus 1 will be described.
 上述したように、標準走査範囲Zでレーザ光が走査されて画像が形成される標準表示領域Dの縁部D2に走査部30の走査位置があるときに、強度検出用レーザ光を出射する。そのため、利用者は強度検出用レーザ光を表示画像の縁のデザインとして認識するため、利用者に違和感や不快感を生じさせることなく、レーザ光の調整が可能となる。 As described above, the laser beam for intensity detection is emitted when the scanning position of the scanning unit 30 is at the edge D2 of the standard display area D where the laser beam is scanned in the standard scanning range Z to form an image. Therefore, since the user recognizes the intensity detection laser beam as the design of the edge of the display image, the laser beam can be adjusted without causing the user to feel uncomfortable or uncomfortable.
 この縁部D2は、操作部40への操作によって、標準モードと、拡張モードとで有効表示領域の範囲を切り替え可能となっている。標準モードは、図5Aに示すように、予め定められた標準表示領域D内で原画像D1の周縁に設けるモードである。拡張モードは、図5Bに示すように標準表示領域Dに原画像D1を配置し、原画像D1の周縁である標準表示領域D外に設けるモードである。なお、標準モードのときは標準表示領域Dが有効表示領域となり、拡張モードでは、標準表示領域Dと縁部D2とで形成される表示領域が有効表示領域となる。 The edge D2 can be switched in the range of the effective display area between the standard mode and the extended mode by operating the operation unit 40. As shown in FIG. 5A, the standard mode is a mode provided at the periphery of the original image D1 within a predetermined standard display area D. The extended mode is a mode in which the original image D1 is arranged in the standard display area D as shown in FIG. 5B and is provided outside the standard display area D that is the periphery of the original image D1. In the standard mode, the standard display area D is an effective display area, and in the extended mode, a display area formed by the standard display area D and the edge D2 is an effective display area.
 制御部11は、操作部40から標準モードの選択指示が入力されると、画像情報Fに応じた原画像D1を縮小し、この原画像D1の周縁に所定輝度の画像(縁部D2)を設けた画像情報を生成し、画像信号Sとして出力する。ここでの画像信号Sは、コンポーネント映像信号であるが、他の画像信号を用いるようにしてもよい。 When the standard mode selection instruction is input from the operation unit 40, the control unit 11 reduces the original image D1 according to the image information F, and displays an image (edge D2) having a predetermined luminance at the periphery of the original image D1. The provided image information is generated and output as an image signal S. The image signal S here is a component video signal, but other image signals may be used.
 このように標準モードで動作して、規定の解像度(例えば、800×600ピクセル)内で縁部D2を設けることにより、例えば、走査部30での走査範囲に余裕がない場合であっても、縁部D2を設けることが可能となる。 In this way, by operating in the standard mode and providing the edge D2 within a prescribed resolution (for example, 800 × 600 pixels), for example, even when there is no margin in the scanning range of the scanning unit 30, The edge D2 can be provided.
 一方、制御部11は、操作部40から拡張モードの選択指示が入力されると、画像情報Fに応じた原画像D1を縮小せずに、この原画像D1の周縁に所定輝度の画像(縁部D2)を設けた画像情報を生成し、画像信号Sとして出力する。 On the other hand, when an instruction to select an expansion mode is input from the operation unit 40, the control unit 11 does not reduce the original image D1 corresponding to the image information F, and an image (edge) having a predetermined luminance is formed around the original image D1. The image information provided with the part D2) is generated and output as the image signal S.
 このように拡張モードで動作して、規定の解像度(例えば、800×600ピクセル)外で縁部D2を設けることにより、例えば、走査部30での走査範囲に余裕がある場合に、原画像D1の解像度を損なわずに表示することができる。また、縁部D2は所定輝度の画像であり各画素位置が高精度であることは要求されないことから、精度よく画像を形成することができない範囲を用いることができる。例えば、水平走査部80において偏向素子81のように共振揺動するような偏向素子を用いた場合に、原画像D1表示のためには用いることができない走査位置で縁部D2を形成することが可能となる。 In this way, by operating in the extended mode and providing the edge D2 outside the specified resolution (for example, 800 × 600 pixels), for example, when the scanning range in the scanning unit 30 has a margin, the original image D1 Can be displayed without losing resolution. Further, since the edge D2 is an image having a predetermined luminance and each pixel position is not required to be highly accurate, a range in which an image cannot be formed with high accuracy can be used. For example, when a deflecting element that resonates and swings like the deflecting element 81 is used in the horizontal scanning unit 80, the edge D2 may be formed at a scanning position that cannot be used for displaying the original image D1. It becomes possible.
 また、縁部D2の輝度は、R,G,Bの各色について最大値となるように設定される。すなわち、駆動制御部10は、光源部20からR,G,Bの各色のレーザ光が最大規定強度になるように、R駆動信号、G駆動信号、B駆動信号を出力するようにしており、そのため、利用者は縁部D2を白枠として認識する。 Also, the luminance of the edge D2 is set so as to be the maximum value for each color of R, G, and B. That is, the drive control unit 10 outputs the R drive signal, the G drive signal, and the B drive signal so that the laser light of each color of R, G, and B has the maximum specified intensity from the light source unit 20. Therefore, the user recognizes the edge D2 as a white frame.
 一方、各光強度検出部51,52,53は、レーザ63,64,65から最大規定強度となるように出射されたレーザ光を強度検出用レーザ光として、その強度を検出する。駆動制御部10は、各光強度検出部51,52,53からそれぞれ出力される検出信号に基づいて駆動信号の調整を行う。最大規定強度となるようにレーザ63,64,65からレーザ光を出射する。そのため、低い強度のレーザ光に比べ、温度等によって変化する出力特性のばらつきを検出しやすくなり、駆動信号の調整を迅速かつ容易に行うことが可能となる。なお、例えば、最大規定強度の50%のレーザ光を強度検出用レーザ光としてレーザ63,64,65から出力させるようにしてもよい。 On the other hand, each of the light intensity detectors 51, 52, 53 detects the intensity of the laser light emitted from the lasers 63, 64, 65 so as to have the maximum specified intensity as the intensity detecting laser light. The drive control unit 10 adjusts the drive signal based on detection signals output from the light intensity detection units 51, 52, and 53, respectively. Laser light is emitted from the lasers 63, 64, and 65 so as to have the maximum specified intensity. Therefore, it becomes easier to detect variations in output characteristics that change depending on temperature or the like, compared to low-intensity laser light, and it is possible to adjust the drive signal quickly and easily. For example, a laser beam with 50% of the maximum specified intensity may be output from the lasers 63, 64, 65 as the intensity detecting laser beam.
 また、縁部D2として、上述においては、原画像D1の周縁(四辺)すべてを囲むような枠を形成するようにしたが、縁部D2の形はこれに限られない。すなわち、操作部40への操作によって種々の形の縁部D2を選択することができる。 Further, in the above description, a frame surrounding the entire periphery (four sides) of the original image D1 is formed as the edge D2, but the shape of the edge D2 is not limited to this. That is, various types of edge portions D2 can be selected by operating the operation unit 40.
 例えば、図6Aに示すように、原画像D1の四隅だけに所定輝度の領域を設けた縁部D2を形成することができる。また、図6Bに示すように、原画像D1の四隅以外に所定輝度の領域を設けた縁部D2を形成することもできる。 For example, as shown in FIG. 6A, it is possible to form an edge D2 in which regions of predetermined luminance are provided only at the four corners of the original image D1. Further, as shown in FIG. 6B, it is also possible to form an edge portion D2 in which regions of predetermined luminance are provided in addition to the four corners of the original image D1.
 これらの縁部D2のパターンは、フラッシュメモリ13に画像データとして記憶されている。制御部11は、操作部40への利用者からの選択入力に基づき、フラッシュメモリ13から当該選択された縁部D2の画像データを読み出し、原画像D1と合成した画像情報を生成し、画像信号Sとして出力する。 These edge D2 patterns are stored in the flash memory 13 as image data. Based on the selection input from the user to the operation unit 40, the control unit 11 reads the image data of the selected edge D2 from the flash memory 13, generates image information combined with the original image D1, and generates an image signal. Output as S.
 また、本実施形態に係る画像表示装置1では、操作部40への操作によって図7Aに示すように縁部D2の幅Wを変更することができるようにしている。制御部11は、操作部40への利用者からの選択入力に基づき、フラッシュメモリ13から読み出した縁部D2の幅Wを当該選択された幅に調整して、原画像D1と合成した画像情報を生成し、画像信号Sとして出力する。なお、幅Wの異なる縁部D2の画像データをフラッシュメモリ13に記憶しておき、選択された幅Wとなる縁部D2の画像データをフラッシュメモリ13から読み出すようにしてもよい。この構成により、例えば、縁部D2の幅が大きく利用者によっては原画像D1が視認しにくくなる場合であっても、利用者の選択により縁部D2の幅Wを変更することで原画像D1を視認しやすくできる。 Further, in the image display device 1 according to the present embodiment, the width W of the edge D2 can be changed by an operation on the operation unit 40 as shown in FIG. 7A. Based on the selection input from the user to the operation unit 40, the control unit 11 adjusts the width W of the edge D2 read from the flash memory 13 to the selected width, and combines the original image D1 with the image information. And output as an image signal S. The image data of the edge D2 having a different width W may be stored in the flash memory 13, and the image data of the edge D2 having the selected width W may be read from the flash memory 13. With this configuration, for example, even when the width of the edge D2 is large and it is difficult for some users to visually recognize the original image D1, the original image D1 can be changed by changing the width W of the edge D2 by the user's selection. Can be easily seen.
 また、本実施形態に係る画像表示装置1では、操作部40への操作によって図7Bに示すように縁部D2の輝度を変更することができるようにしている。制御部11は、操作部40への利用者からの選択入力に基づき、フラッシュメモリ13から読み出した縁部D2の輝度を調整して、原画像D1と合成した画像情報を生成し、画像信号Sとして出力する。従って、縁部D2の輝度が高くて利用者によっては原画像D1が視認しにくくなる場合であっても、利用者の選択により縁部D2の輝度を変更して視認しやすくすることができる。なお、原画像D1の状態に応じて制御部11が縁部D2の輝度を動的に変更するようにすることもできる。例えば、原画像D1の輝度平均値が所定値よりも低い場合に、縁部W1の輝度を低くすることで、原画像D1を視認しやすくすることができる。 Further, in the image display device 1 according to the present embodiment, the brightness of the edge D2 can be changed by an operation on the operation unit 40 as shown in FIG. 7B. Based on the selection input from the user to the operation unit 40, the control unit 11 adjusts the luminance of the edge D2 read from the flash memory 13, generates image information combined with the original image D1, and generates the image signal S. Output as. Therefore, even if the brightness of the edge D2 is high and it is difficult for the user to visually recognize the original image D1, the brightness of the edge D2 can be changed by the user's selection to make it easy to visually recognize. Note that the control unit 11 may dynamically change the luminance of the edge D2 according to the state of the original image D1. For example, when the average luminance value of the original image D1 is lower than a predetermined value, the original image D1 can be easily visually recognized by reducing the luminance of the edge portion W1.
 また、駆動制御部10は、図8に示すように、縁部用駆動信号としてR駆動信号60r,G駆動信号60g,B駆動信号60bの出力を同時にレーザ63,64,65に出力して、所定強度のレーザ光をレーザ63,64,65から同時に出射させることにより、縁部D2を白色で所定輝度としている。この構成により、光強度検出部51,52,53では、レーザ63,64,65から出射される強度検出用のレーザ光を同時に検出することができるため、駆動制御部10における駆動信号の調整処理を迅速に行うことが可能となる。なお、図8は図5AのA-A線位置に水平走査位置があるときの各駆動信号の状態を示す図である。 Further, as shown in FIG. 8, the drive control unit 10 outputs the outputs of the R drive signal 60r, the G drive signal 60g, and the B drive signal 60b as edge drive signals to the lasers 63, 64, and 65 simultaneously. By simultaneously emitting laser beams having a predetermined intensity from the lasers 63, 64, and 65, the edge D2 is white and has a predetermined luminance. With this configuration, the light intensity detectors 51, 52, 53 can simultaneously detect the intensity detection laser beams emitted from the lasers 63, 64, 65, and therefore the drive signal adjustment process in the drive controller 10. Can be performed quickly. FIG. 8 is a diagram showing the state of each drive signal when the horizontal scanning position is at the AA line position in FIG. 5A.
 また、駆動制御部10は、図9に示すように、縁部用駆動信号としてR駆動信号60r,G駆動信号60g,B駆動信号60bの出力をそれぞれ重複しないタイミングでレーザ63,64,65に出力する。所定強度のレーザ光をレーザ63,64,65は、それぞれ異なるタイミングで重複しないようにレーザ光を出射し、これにより縁部D2が形成される。このように異なるタイミングでレーザ63,64,65から強度検出用のレーザ光を出射させるため、縁部D2の画像を形成するために必要な消費電力を低減することができる。また、図9に示すように、縁部用駆動信号として駆動信号60r,60g,60bを順次出力する。そのため、縁部D2の輝度が低減されて、よりソフトに縁部D2を利用者に視認させることができ、原画像D1の視認が縁部D2により阻害されることを抑制できる。 Further, as shown in FIG. 9, the drive control unit 10 transmits the outputs of the R drive signal 60r, the G drive signal 60g, and the B drive signal 60b as edge drive signals to the lasers 63, 64, and 65 at timings that do not overlap each other. Output. Lasers 63, 64, and 65 emit laser beams having a predetermined intensity so as not to overlap at different timings, thereby forming edge D2. Since the laser beams for intensity detection are emitted from the lasers 63, 64, and 65 at different timings as described above, it is possible to reduce power consumption necessary for forming an image of the edge portion D2. Further, as shown in FIG. 9, drive signals 60r, 60g, and 60b are sequentially output as edge drive signals. Therefore, the brightness of the edge portion D2 is reduced, and the edge portion D2 can be made to be visually recognized by the user more softly, and the visual recognition of the original image D1 can be suppressed from being inhibited by the edge portion D2.
 また、駆動制御部10からの縁部用駆動信号の出力を、図10Aに示すように、1以上の画像フレーム単位で断続的に行うようにすることもできる。この構成により、縁部D2の画像を形成するために必要な消費電力を低減することができると共に、縁部D2の輝度が低減されて、よりソフトに縁部D2を利用者に視認させることができ、原画像D1の視認が縁部D2により阻害されることを抑制できる。 Also, the edge drive signal output from the drive control unit 10 can be intermittently performed in units of one or more image frames as shown in FIG. 10A. With this configuration, power consumption necessary for forming the image of the edge D2 can be reduced, and the brightness of the edge D2 can be reduced so that the user can visually recognize the edge D2 more softly. It is possible to suppress the viewing of the original image D1 from being obstructed by the edge D2.
 また、図10Bに示すように、縁部D2を表示する画像フレームの出現回数を低減させることにより、さらに消費電力を低減することができる。また、利用者に対してさらにソフトに縁部D2を視認させることができ、原画像D1の視認が縁部D2により阻害されることを抑制できる。 Also, as shown in FIG. 10B, the power consumption can be further reduced by reducing the number of appearances of the image frame displaying the edge D2. Further, the edge D2 can be further visually recognized by the user, and the visual recognition of the original image D1 can be suppressed from being inhibited by the edge D2.
 また、本実施形態に係る画像表示装置1では、操作部40への利用者による操作によって、縁部D2を動的に付加する自動付加モードを動作させることができる。この自動付加モードでは、制御部11において、画像情報Fに含まれる原画像D1の画像フレーム単位の平均輝度が規定範囲にあるか否かを判定する輝度判定手段としてCPU12が機能する。CPU12は輝度判定手段として平均輝度が規定範囲にあると判定した原画像D1の画像フレームで、駆動制御部10から縁部用駆動信号の出力を行う。 Further, in the image display device 1 according to the present embodiment, the automatic addition mode in which the edge portion D2 is dynamically added can be operated by an operation by the user to the operation unit 40. In the automatic addition mode, the CPU 12 functions as a luminance determination unit that determines whether or not the average luminance in units of image frames of the original image D1 included in the image information F is within a specified range in the control unit 11. The CPU 12 outputs an edge drive signal from the drive control unit 10 in the image frame of the original image D1 that has been determined that the average luminance is within the specified range as the luminance determination means.
 以下、この自動付加モードについて、図11を参照して具体的に説明する。 Hereinafter, the automatic addition mode will be specifically described with reference to FIG.
 この自動付加モードにおいて、制御部11は、まず、画像情報Fに含まれる原画像D1のうち、次に利用者に表示する画像フレームの画像の平均輝度値を算出する(ステップS10)。 In this automatic addition mode, first, the control unit 11 calculates an average luminance value of an image of an image frame to be displayed next to the user among the original images D1 included in the image information F (step S10).
 次に、制御部11は、ステップS1で算出した平均輝度値が規定範囲にあるかを判定する(ステップS11)。この処理において、平均輝度値が規定範囲にあると判定すると(ステップS11:YES)、制御部11は、原画像D1のサイズを圧縮して解像度を低減して(ステップS12)、処理をステップS13に移行する。 Next, the control unit 11 determines whether or not the average luminance value calculated in step S1 is within a specified range (step S11). In this process, if it is determined that the average luminance value is within the specified range (step S11: YES), the control unit 11 compresses the size of the original image D1 to reduce the resolution (step S12), and the process is performed in step S13. Migrate to
 このステップS13の処理において、制御部11は、フラッシュメモリ13から縁部D2の画像データを読み出し、サイズを圧縮した原画像D1に白枠となる縁部D2の画像を付加した画像情報を生成し、画像信号Sとして駆動信号供給回路18へ出力する(ステップS14)。 In the process of step S13, the control unit 11 reads the image data of the edge D2 from the flash memory 13, and generates image information in which the image of the edge D2 serving as a white frame is added to the original image D1 whose size is compressed. The image signal S is output to the drive signal supply circuit 18 (step S14).
 一方、ステップS12において、平均輝度値が規定範囲にないと判定すると(ステップS11:NO)、制御部11は、処理を終了する。 On the other hand, when it is determined in step S12 that the average luminance value is not within the specified range (step S11: NO), the control unit 11 ends the process.
 制御部11は、上記処理を繰り返し行うことで、自動付加モードを実行するようにしている。 The control unit 11 executes the automatic addition mode by repeatedly performing the above processing.
 このように、自動付加モードを実行することにより、例えば、原画像D1が所定輝度以上のときに縁部D2を付加した画像を表示することができる。そのため、原画像D1に対して縁部D2の輝度が高すぎて原画像D1が視認しにくくなることを防止することができる。 Thus, by executing the automatic addition mode, for example, when the original image D1 has a predetermined luminance or higher, an image with the edge D2 added can be displayed. Therefore, it is possible to prevent the luminance of the edge D2 from being too high with respect to the original image D1 and making it difficult to visually recognize the original image D1.
 なお、上記処理は、1画像フレーム単位で行ってもよいが、複数画像フレーム単位で行うことにより、縁部D2を付加させた場合であっても、より自然に利用者に縁部D2を視認させることができる。 In addition, although the said process may be performed per image frame, even if it is a case where the edge D2 is added by performing in multiple image frame units, a user can visually recognize the edge D2 more naturally. Can be made.
 また、ステップS12において、原画像D1のサイズを圧縮するようにしているが、図5Bに示すように、原画像D1のサイズは特に圧縮せず、制御部11が標準表示領域D外に縁部D2を設ける処理を行うようにしてもよい。このようにすることで、表示領域は標準表示領域Dより拡がるものの、縁部D2を形成したときとしないときとで原画像D1の画像サイズが小さくならなくて済み、原画像D1が視認しやすくなる。 In step S12, the size of the original image D1 is compressed. However, as shown in FIG. 5B, the size of the original image D1 is not particularly compressed, and the control unit 11 has an edge outside the standard display area D. You may make it perform the process which provides D2. In this way, although the display area is larger than the standard display area D, the image size of the original image D1 does not have to be reduced depending on whether or not the edge portion D2 is formed, and the original image D1 is easily visible. Become.
 また、原画像D1の状態に応じて制御部11が縁部D2の幅Wを動的に変更するようにするようにしてもよい。例えば、原画像D1の輝度平均値が所定範囲(上記規定範囲を含み上記規定範囲よりも広い範囲)よりも低い場合に、縁部W1の幅Wを狭くすることで、原画像D1を視認しやすくすることができる。 Also, the control unit 11 may dynamically change the width W of the edge D2 according to the state of the original image D1. For example, when the average luminance value of the original image D1 is lower than a predetermined range (a range that includes the specified range and is wider than the specified range), the width W of the edge W1 is narrowed so that the original image D1 is visually recognized. It can be made easier.
 以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の概要の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. The present invention can be implemented in other forms that have been modified or improved.
 例えば、光強度検出部51,52,53(20a)をレーザ63,64,65に隣接又は内蔵させるようにしたが、光強度検出部51,52,53(20a)の位置はレーザ63,64,65から出力されるレーザ光の強度を検出することができる位置にあればよい。例えば、走査部30により走査されたレーザ光が入射される位置に光強度検出部51,52,53(20a)を配置するようにしてもよい。 For example, the light intensity detectors 51, 52, 53 (20a) are adjacent to or built in the lasers 63, 64, 65, but the positions of the light intensity detectors 51, 52, 53 (20a) are positioned at the lasers 63, 64. , 65 need only be at a position where the intensity of the laser beam output can be detected. For example, the light intensity detectors 51, 52, and 53 (20a) may be arranged at positions where the laser beam scanned by the scanner 30 is incident.
 また、画像情報Fをフラッシュメモリ13に記憶した後に画像処理を施すこととしたが、これに限られず、画像情報に応じて駆動信号を生成することができればどのような処理を行ってもよい。 Further, the image processing is performed after the image information F is stored in the flash memory 13, but the present invention is not limited to this, and any processing may be performed as long as the drive signal can be generated according to the image information.
1 画像表示装置
10 駆動制御部
11 制御部(画像処理手段、縁部輝度変更手段、縁幅変更手段、輝度判定手段)
20 光源部
30 走査部
DESCRIPTION OF SYMBOLS 1 Image display apparatus 10 Drive control part 11 Control part (Image processing means, edge brightness | luminance change means, edge width change means, brightness | luminance determination means)
20 Light source unit 30 Scan unit

Claims (9)

  1.  駆動信号に応じた強度のレーザ光を出射する光源部と、前記光源部から出射されたレーザ光を2次元方向に走査する走査部と、
     前記光源部から出射されるレーザ光の強度を検出する光強度検出部と、
     前記駆動信号を画像情報に応じて生成すると共に、前記光強度検出部によって検出したレーザ光の強度に基づき前記駆動信号を補正する駆動制御部と、を備え、
     前記駆動制御部は、前記走査部によって前記レーザ光が走査されて画像が形成される有効表示領域のうち、その縁部に前記走査部の走査位置があるときに当該縁部用に予め決められた縁部用駆動信号を出力して所定強度のレーザ光を前記光源部から出射させ、
     前記光強度検出部は、前記縁部用駆動信号に基づき前記光源部から出射されるレーザ光の強度を検出する画像表示装置。
    A light source unit that emits laser light having an intensity according to the drive signal, a scanning unit that scans the laser light emitted from the light source unit in a two-dimensional direction,
    A light intensity detection unit for detecting the intensity of the laser light emitted from the light source unit;
    A drive control unit that generates the drive signal according to image information and corrects the drive signal based on the intensity of the laser light detected by the light intensity detection unit;
    The drive control unit is determined in advance for an edge of the effective display area where the laser beam is scanned by the scanning unit to form an image when the scanning unit has a scanning position at the edge. The edge drive signal is output to emit laser light of a predetermined intensity from the light source unit,
    The light intensity detection unit is an image display device that detects the intensity of laser light emitted from the light source unit based on the edge drive signal.
  2.  前記光源部は、三原色に対応したレーザ光をそれぞれ出射する複数の光源を備え、
     前記駆動制御部は、前記有効表示領域の縁部に前記走査部の走査位置があるときに前記縁部用駆動信号を前記複数の光源にそれぞれ入力して所定強度のレーザ光を前記複数の光源からそれぞれ出射させることを特徴とする請求項1に記載の画像表示装置。
    The light source unit includes a plurality of light sources that respectively emit laser beams corresponding to the three primary colors,
    The drive control unit inputs the edge drive signal to the plurality of light sources when the scanning position of the scanning unit is at the edge of the effective display area, and outputs laser light of a predetermined intensity to the plurality of light sources. The image display device according to claim 1, wherein each of the image display devices emits light from the light source.
  3.  前記駆動制御部は、前記縁部用駆動信号を前記複数の光源に同時に出力して、前記所定強度のレーザ光を前記複数の光源から同時に出射させることを特徴とする請求項2に記載の画像表示装置。 3. The image according to claim 2, wherein the drive control unit simultaneously outputs the edge drive signal to the plurality of light sources, and causes the plurality of light sources to emit the laser light having the predetermined intensity simultaneously. Display device.
  4.  前記駆動制御部は、前記縁部用駆動信号を前記複数の光源間で重複しないタイミングで出力して、前記所定強度のレーザ光を各前記光源間で重複しないタイミングで出射させることを特徴とする請求項2に記載の画像表示装置。 The drive control unit outputs the edge drive signal at a timing that does not overlap between the plurality of light sources, and emits the laser beam having the predetermined intensity at a timing that does not overlap between the light sources. The image display device according to claim 2.
  5.  表示対象の原画像を縮小し、当該原画像の周縁を所定輝度の画像として前記画像情報を生成する画像処理手段を備えたことを特徴とする請求項1~4のいずれか1項に記載の画像表示装置。 5. The image processing unit according to claim 1, further comprising an image processing unit that reduces the original image to be displayed and generates the image information by using a peripheral edge of the original image as an image having a predetermined luminance. Image display device.
  6.  前記駆動制御部は、前記縁部用駆動信号の出力を、1以上の画像フレーム単位で断続的に行うことを特徴とする請求項1~5のいずれか1項に記載の画像表示装置。 6. The image display device according to claim 1, wherein the drive control unit intermittently outputs the edge drive signal in units of one or more image frames.
  7.  前記画像情報に含まれる原画像の画像フレーム単位の平均輝度が規定範囲にあるか否かを判定する輝度判定手段を備え、
     前記駆動制御部は、前記輝度判定手段により平均輝度が規定範囲にあると判定した原画像の画像フレームで、前記縁部用駆動信号の出力を行うことを特徴とする請求項1~6のいずれか1項に記載の画像表示装置。
    Luminance determination means for determining whether or not the average luminance of the image frame unit of the original image included in the image information is within a specified range,
    The drive control unit outputs the edge drive signal in an image frame of an original image in which the average luminance is determined to be within a specified range by the luminance determination unit. The image display device according to claim 1.
  8.  前記縁部用駆動信号の信号レベルを変更して前記光源部から出射するレーザ光の前記所定強度を変更する縁部輝度変更手段を設けたことを特徴とする請求項1~7のいずれか1項に記載の画像表示装置。 The edge luminance changing means is provided for changing the predetermined intensity of the laser beam emitted from the light source unit by changing the signal level of the edge driving signal. The image display device according to item.
  9.  前記所定強度のレーザ光を出射する前記縁部の縁幅を変更する縁幅変更手段を設けたことを特徴とする請求項1~8のいずれか1項に記載の画像表示装置。 9. The image display device according to claim 1, further comprising edge width changing means for changing an edge width of the edge that emits the laser beam having the predetermined intensity.
PCT/JP2010/053437 2009-03-12 2010-03-03 Image display device WO2010103974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-059889 2009-03-12
JP2009059889A JP2010211149A (en) 2009-03-12 2009-03-12 Image display

Publications (1)

Publication Number Publication Date
WO2010103974A1 true WO2010103974A1 (en) 2010-09-16

Family

ID=42728264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053437 WO2010103974A1 (en) 2009-03-12 2010-03-03 Image display device

Country Status (2)

Country Link
JP (1) JP2010211149A (en)
WO (1) WO2010103974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018725A1 (en) * 2013-08-07 2015-02-12 Evonik Industries Ag Iron oxide and silicon dioxide-containing core-sheath particles having an improved heating rate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024084B2 (en) * 2011-09-14 2016-11-09 ソニー株式会社 Projector device and light source control method for projector device
CN103676420B (en) * 2012-09-04 2015-08-19 光宝科技股份有限公司 There is the laser scan type projection arrangement of phase-detection and compensate function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038676A1 (en) * 2006-09-29 2008-04-03 Brother Kogyo Kabushiki Kaisha Image display device and retinal scanning type image display device
JP2008197205A (en) * 2007-02-09 2008-08-28 Brother Ind Ltd Image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038676A1 (en) * 2006-09-29 2008-04-03 Brother Kogyo Kabushiki Kaisha Image display device and retinal scanning type image display device
JP2008197205A (en) * 2007-02-09 2008-08-28 Brother Ind Ltd Image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018725A1 (en) * 2013-08-07 2015-02-12 Evonik Industries Ag Iron oxide and silicon dioxide-containing core-sheath particles having an improved heating rate

Also Published As

Publication number Publication date
JP2010211149A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4582179B2 (en) Image display device
US10659740B2 (en) Image rendering apparatus, head up display, and image luminance adjusting method
JP4735234B2 (en) Image display system
US9794531B2 (en) Image display apparatus and image display adjusting method
JP4930129B2 (en) Optical scanning device, optical scanning image display device, and retinal scanning image display device
US10490112B2 (en) Drawing apparatus and drawing method for reduced influence of leakage on visibility of a display image
JP6269462B2 (en) Image display device and image display adjustment method
JP6137006B2 (en) Image display device and image display method
JP2011075957A (en) Image display device
WO2015146071A1 (en) Image display device and image display adjustment method
WO2010103974A1 (en) Image display device
US10473918B2 (en) Image drawing device and image drawing method that detects and controls laser light
JP5976925B2 (en) Projection apparatus, head-up display, control method, program, and storage medium
JP2011191454A (en) Image display device
JP6311823B2 (en) Image display device and image display method
JP2017083631A (en) Display device, control method, program and storage medium
US10310259B2 (en) Image rendering apparatus, head up display, and image luminance adjusting method
JP2011069902A (en) Image display
WO2019163656A1 (en) Laser light output control device and laser scanning display device
JP2016099561A (en) Projection device, projection method, program, and storage medium
JP2017009890A (en) Head-up display device
JP6295900B2 (en) Image drawing apparatus and image drawing method
JP2020021003A (en) Projection device and control method thereof and program
JP2016057576A (en) Image display device and image display method
JP2021033176A (en) Virtual image display device and drawing controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750728

Country of ref document: EP

Kind code of ref document: A1