WO2010103673A1 - Electrolytic water purifier - Google Patents

Electrolytic water purifier Download PDF

Info

Publication number
WO2010103673A1
WO2010103673A1 PCT/JP2009/057977 JP2009057977W WO2010103673A1 WO 2010103673 A1 WO2010103673 A1 WO 2010103673A1 JP 2009057977 W JP2009057977 W JP 2009057977W WO 2010103673 A1 WO2010103673 A1 WO 2010103673A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen gas
oxygen
water tank
circulation pump
Prior art date
Application number
PCT/JP2009/057977
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 表
Original Assignee
株式会社アーガコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アーガコーポレーション filed Critical 株式会社アーガコーポレーション
Publication of WO2010103673A1 publication Critical patent/WO2010103673A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolytic water purifier that is used to purify tap water and supply water that can be used in general households or business establishments.
  • water purification devices that purify tap water supplied from the water supply have become widespread due to the growing health-consciousness.
  • it is a type that passes a filtration filter containing activated carbon or ore with its own weight by pouring water from above, or a valve that is connected to a water pipe and passed through the filtration filter.
  • a type of drinking water by appropriately discharging the water has been implemented.
  • Such a water purifier has been proposed with an electrolysis function. That is, it is a water purifier having a function of generating hydrogen gas by electrolyzing tap water supplied from the water supply and dissolving the hydrogen gas in the tap water.
  • This water purifier is mainly intended to lower the redox potential by increasing the amount of dissolved hydrogen in the treated water, and to improve the water useful for health by increasing the dissolved hydrogen. (See Patent Documents 1 and 2).
  • JP 2005-261999 A Japanese Patent No. 2605642
  • this invention is proposed in order to solve the subject which the conventional electrolytic water purifier mentioned above has, Comprising: It always keeps in the fixed range, without reducing the dissolved hydrogen amount of the water to drink.
  • An object of the present invention is to provide a novel electrolytic water purifier that can be used.
  • the electrolytic-type water purifier which concerns on 1st invention is a water-purification process part which purifies water, and this
  • a water purification apparatus comprising a treated water tank in which water that has passed through a water purification treatment unit is stored and a water discharge unit that discharges water stored in the treated water tank, wherein pure water is removed from the water that has passed through the water purification treatment unit.
  • Treated water and the above hydrogen gas together It is to characterized in that it comprises a circulation pump for returning to the treated water tank.
  • water such as tap water is first purified by the purified water treatment unit, and then purified water by the purified water generation unit, and a part thereof is stored in the treated water tank.
  • the other part is electrolyzed by being sent to the hydrogen gas generator.
  • Hydrogen gas is generated by this electrolysis.
  • the generated hydrogen gas is stored in the treated water tank through the circulation route while being dissolved in the water taken out from the treated water tank by the circulation pump.
  • the water in this treated water tank is discharged outside from a water discharging part, and a user can drink it. Therefore, according to this electrolytic water purifier, the water stored in the treated water tank is circulated through the circulation route by driving the circulation pump, so that the amount of dissolved hydrogen in the treated water gradually increases. The user can drink with the amount of dissolved hydrogen close to saturation.
  • a second invention is the middle part of the circulation route according to the first invention, wherein the hydrogen gas is interposed between the circulation pump and a treated water tank.
  • a bubble miniaturization filter for miniaturizing the bubbles is arranged.
  • the amount of dissolved hydrogen in the treated water can be further increased.
  • the circulation pump and the hydrogen gas generator are connected to a control device having a built-in timer.
  • a light illuminance sensor is connected to the control device, and when the control device determines that the illuminance is a predetermined illuminance via the light illuminance sensor, the circulation pump and the hydrogen gas generator are It is characterized by being repeatedly driven and stopped over time.
  • the circulation pump and the hydrogen gas generator both start driving. . And, when the control device determines through a timer that the drive of the circulation pump and the hydrogen gas generation unit has elapsed, the drive of the circulation pump and the hydrogen gas generation unit is stopped for a predetermined time, Further, when the control device determines that the stop of the circulation pump and the hydrogen gas generation unit has elapsed for a predetermined time, the control device starts driving the circulation pump and the hydrogen gas generation unit again.
  • the start and stop of the driving of the circulation pump and the hydrogen gas generation unit are controlled to be repeated, and the circulation pump and the hydrogen gas generation unit are always driven. It does not continue. Therefore, according to the electrolytic water purifier according to the third aspect of the invention, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
  • 4th invention is the said 1st, 2nd or 3rd invention
  • generation part was produced
  • An oxygen gas distribution route through which oxygen gas flows is connected, and the leading end of the oxygen gas distribution route is an oxygen gas discharge port for releasing oxygen gas sucked by the user.
  • oxygen gas generated together with hydrogen gas by electrolyzing pure water passes through the oxygen gas circulation route and is released from the oxygen gas discharge port. Therefore, according to the fourth aspect of the invention, the user can take oxygen released from the oxygen gas discharge port into the body, and can effectively use the oxygen gas generated by electrolysis. .
  • a fan for sending out the oxygen gas is arranged in the middle of the oxygen gas circulation route.
  • the oxygen release switch is connected to the control device, and the oxygen release switch is turned on when the circulation pump and the hydrogen gas generation unit are stopped.
  • the control device determines that it has been operated, the fan, the circulation pump, and the hydrogen gas generation unit start driving.
  • the control device determines that the oxygen release switch is turned on when the circulation pump and the hydrogen gas generator are stopped.
  • the fan, the circulation pump, and the hydrogen gas generator start to drive. Therefore, not only the hydrogen gas generation unit and the circulation pump are started to drive, but hydrogen gas is generated and the amount of dissolved hydrogen in the treated water tank is forcibly increased.
  • the oxygen gas flowing into the gas is discharged from the oxygen gas discharge port at a predetermined pressure. Therefore, according to the electrolytic water purifier according to the fifth aspect of the present invention, even when driving of the circulation pump and the hydrogen gas generation unit is stopped, the user needs to suck oxygen gas.
  • the oxygen gas can be sucked at any time by turning on the switch.
  • the hydrogen gas produced by the hydrogen gas production unit is treated via the circulation route while being dissolved in the water taken out from the treated water tank by a circulation pump. Since it is stored in the water tank, the amount of dissolved hydrogen in the treated water will gradually increase, and the user can drink while the amount of dissolved hydrogen is close to saturation. It can be maintained in a certain range without reducing the amount of dissolved hydrogen.
  • the circulation pump and the hydrogen gas generation unit are controlled to repeat the start and stop of the drive, and the circulation pump and the hydrogen gas generation unit are always driven. Since it does not continue, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
  • oxygen gas generated together with hydrogen gas by electrolyzing pure water flows into the oxygen gas circulation route and is released from the oxygen gas discharge port. Therefore, the user can take in the oxygen gas released from the oxygen gas discharge port into the body, and can effectively use the oxygen gas generated by electrolysis.
  • the controller determines that the oxygen release switch is turned on when the circulation pump and the hydrogen gas generation unit are stopped.
  • the fan, the circulation pump, and the hydrogen gas generation unit start driving, and the hydrogen gas generation unit and the circulation pump start driving, so that hydrogen gas is generated and the amount of dissolved hydrogen in the treated water tank is forced.
  • the oxygen gas that has flowed into the oxygen gas circulation route by the start of driving of the fan is released from the oxygen gas discharge port by a predetermined pressure. Therefore, according to the electrolytic water purifier according to the fifth aspect of the present invention, even when driving of the circulation pump and the hydrogen gas generation unit is stopped, the user needs to suck oxygen gas. The oxygen gas can be sucked at any time by turning on the switch.
  • FIG. 1 is an external perspective view showing an electrolytic water purifier according to an embodiment of the present invention. It is a partial view of the electrolytic water purifier shown in FIG. 1, (a) is a front view which shows a display panel, (b) respectively shows an operation panel. It is a schematic diagram which shows the structure of the electrolytic water purifier which concerns on embodiment of this invention. It is a block diagram which shows the control system of the electrolytic water purifier which concerns on embodiment of this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is the electrolysis apparatus which comprises the electrolytic water purifier which concerns on embodiment of this invention, Comprising: (a) is a front view, (b) is the A section enlarged view of (a).
  • electrolysis apparatus which comprises the electrolytic water purifier which concerns on embodiment of this invention, Comprising: (a) is a sectional side view, (b) is the B section enlarged view of (a). It is a flowchart which shows operation
  • the electrolytic water purifier 1 is a water purifier used at home, and, as shown in FIG. 1, a cold water tank 22 described later (in the present invention) in a housing 2 formed in a rectangular parallelepiped shape. ), A hot water tank 23, a pressurizing pump 15, and the like are accommodated. And the recessed part 2a is formed in the front of the said housing
  • the cold water spout 3 is a part from which drinking water in a cold water tank 22 (a treated water tank constituting the present invention) to be described later is discharged, and the hot water spout 4 is disposed in a hot water tank 23 to be described later. This is the site where drinking water is discharged.
  • a cold water opening / closing operation lever 5 constituting an on-off valve is disposed behind the cold water outlet 3
  • a hot water opening / closing operation lever 6 constituting an on-off valve is located behind the hot water outlet 4. Is arranged.
  • the cold water opening / closing operation lever 5 and the hot water opening / closing operation lever 6 are both connected to an opening / closing valve (not shown), and are urged in the front direction (in the closing direction) by an elastic material (not shown).
  • the cold water or hot water is discharged from the cold water discharge port 3 or the hot water discharge port 4 by being pushed backward by the user through a container such as a cup (not shown) (or by a user's finger). To do.
  • a receiving plate 2f on which a cup (not shown) can be placed is disposed below the cold water outlet 3 and the hot water outlet 4 in the recess 2a.
  • the receiving plate 2f is formed with a through hole 2g through which cold water or hot water discharged from the cold water outlet 3 or the hot water outlet 4 passes, and one end of which is not shown in the figure below the through hole 2g.
  • the other end of a drainage tube (not shown) connected to the tank is connected.
  • an oxygen suction tube 7 for sucking oxygen gas is disposed on the right side plate 2d of the housing 2 shown in FIG. 1, and the base end of the oxygen suction tube 7 is an electrolysis device 32 (hydrogen of the present invention) described later. It is connected to the oxygen gas discharge port 39d of the gas generation unit).
  • An upper front panel 2b is fixed above the recess 2a, and a circular display panel 8 and an operation panel 9 disposed below the display panel 8 are disposed on the upper front panel 2b.
  • a power supply operation lamp 8A connected to the control device 20 shown in FIG. 4 is arranged, and the power supply of the electrolytic water purifier 1 is turned on. It is lit in green in the state, and is turned off in the OFF state.
  • a hot water state display lamp 8B connected to the control device 20 is arranged on the lower left side of the power supply operation lamp 8A, and turns red when the water temperature in a hot water tank 23 described later is heated to a predetermined temperature.
  • a cold water state display lamp 8C connected to the control device 20 is arranged on the lower right side of the power supply operation lamp 8A, and blue when the water temperature in the cold water tank 22 described later is cooled to a predetermined temperature. Is turned on and turned off at room temperature.
  • a hydrogen / oxygen generating lamp 8D connected to the control device 20 is disposed below the hot water state display lamp 8B, and the blue color is generated when hydrogen gas and oxygen gas are being generated by the operation of the electrolyzer 32 described later. Illuminated.
  • a hydrogen / oxygen resting lamp 8E connected to the control device 20 is disposed below the cold water state display lamp 8C. During the halting of the generation of hydrogen gas and oxygen gas due to the operation stop of the electrolyzer 32 described later. Orange lights up.
  • a filter replacement warning lamp 8F connected to the control device 20 is disposed at the lower central portion of the hydrogen / oxygen generating lamp 8D and the hydrogen / oxygen resting lamp 8E.
  • This filter replacement warning lamp 8F is used to replace a later-described sediment filter 12 and carbon filter 13 (water purification unit of the present invention) according to an operation signal when a filter replacement timer 9G connected to the control device 20 has reached a set time.
  • the red light for warning is turned on and is always off.
  • the set time of the filter replacement timer 9G is set to about 4400 hours (about 6 months) in order to maintain the water purification of tap water.
  • an oxygen release switch 9A connected to the control device 20 shown in FIG. 4 and displayed as “OXI” is arranged.
  • the oxygen release switch 9A is in a state where the oxygen release switch 9A is turned off and the hydrogen / oxygen resting lamp 8E is turned on, and oxygen gas is not generated by the electrolyzer 32 described later.
  • the electrolysis device 32 is started to draw oxygen gas from the oxygen suction tube 7. it can.
  • a hot water temperature switch 9B connected to the control device 20 and displayed as “HOT” is disposed on the right side of the oxygen release switch 9A.
  • the hot water temperature switch 9B is in a state where the hot water temperature switch 9B is lit and the hot water state display lamp 8B is lit, and the water temperature in the hot water tank 23 described later is heated to a predetermined temperature.
  • the on / off display part of the warm water temperature switch 9B is turned off by manually pressing, and the operation of the heater 27 to be described later is stopped, and the water temperature in the warm water tank 23 is stopped. Is not heated to a predetermined temperature (normal temperature state).
  • a light illuminance sensor 9C connected to the control device 20 is disposed on the right side of the hot water temperature switch 9B.
  • the light illuminance sensor 9C senses the illuminance in the room and outputs a bright signal when the set illuminance reaches the set illuminance, and outputs a dark signal when the set illuminance is not reached.
  • a bright signal is output to start the operation of the electrolytic water purifier 1 to maintain automatic operation.
  • a dark signal is output to perform electrolysis. The automatic operation of the water purifier 1 is stopped and the resting state is maintained.
  • a cold water temperature switch 9D connected to the control device 20 and displayed as “COLD” is arranged.
  • the chilled water temperature switch 9D is in a state where the chilled water temperature switch 9D is lit and the hot / cold water state display lamp 8C is lit, and the water temperature in the chilled water tank 22 described later is cooled to a predetermined temperature.
  • the on / off display part of the cold water temperature switch 9D is turned off by manually pressing, and the operation of the cooler 24 described later is stopped, and the inside of the cold water tank 22 is The water temperature is not maintained at a predetermined temperature (normal temperature state).
  • a timer reset switch 9E connected to the control device 20 and displayed as “RESET” is arranged.
  • This timer reset switch 9E is based on the warning due to the lighting of the filter replacement warning lamp 8F, in order to start the operation of the filter replacement timer 9G after replacing the sediment filter 12 and the carbon filter 13 which will be described later.
  • the on / off display portion of the timer reset switch 9E is turned on and the count time is reset to zero (0).
  • a lower front panel 2c is detachably attached to the lower portion of the recess 2a.
  • a cold water tank 22, a hot water tank 23, and a drainage water, which will be described later, are provided behind the lower front panel 2c (in the casing 2).
  • a tank (not shown) and the like are accommodated.
  • the electrolytic water purifier 1 according to this embodiment will be described with reference to the schematic diagram shown in FIG. 3 including these configurations.
  • the electrolytic water purifier 1 is connected to a public water supply through a pipe (reference numeral is omitted) and a water stop valve 11, and a sediment filter 12 is connected to the pipe.
  • a sediment filter 12 fine impurities such as rust, sand, and dust in water supplied from the water supply are removed through a 5 to 6 ⁇ m hole (not shown).
  • a carbon filter 13 is connected to the sediment filter 12, and chlorine compounds, thin pigments, odors and the like in water that have passed through the sediment filter 12 are adsorbed by the adsorption action of activated carbon (not shown) of the carbon filter 13.
  • a pressure pump 15 is connected to the carbon filter 13 via an electromagnetic valve 14, and water supplied from the water supply is pumped downstream.
  • the electromagnetic valve 14 and the pressurizing pump 15 are connected to the control device 20 shown in FIG. 4 and are driven or stopped by the operation of a float switch 21 in the reserve tank 18 described later.
  • the reverse osmosis membrane filter 16 (pure water generation unit of the present invention).
  • the reverse osmosis membrane filter 16 has 0.0001 ⁇ m (about 1 million minutes of hair).
  • the semipermeable membrane having micropores (not shown) in 1) provides pure water from which impurities such as heavy metals, various bacteria and organic compounds are removed by about 95% from the water pumped from the pressurizing pump 15, and allows permeation. The water containing impurities cannot be discharged from the drainage tube (reference numeral is omitted) connected to the lower part.
  • one ore filter 17 is connected to the reverse osmosis membrane filter 16 and an ion exchange resin filter 31 is connected via the other branch joint (reference numeral is omitted).
  • one ore filter 17 is laminated with natural ore Io-oishi, feldspar, tourmaline, etc. (not shown), and pure water passes through the one ore filter 17 so that the pure water contains Mineral components are dissolved.
  • a reserve tank 18 is further connected to the ore filter 17, and water discharged from the ore filter 17 is stored in the reserve tank 18.
  • the reserve tank 18 is provided with a float switch 21 for maintaining a predetermined amount of stored water, and a cold water tank 22, a hot water tank 23, and a lower portion of the reserve tank 18. Are connected to each other.
  • the float switch 21 includes a floating body 21a that is hermetically sealed and floats on the water surface, an L-shaped support body 21b that supports the floating body 21a, and the support body 21b by the vertical movement of the floating body 21a. And a micro switch 21c which is electrically turned on / off via the switch.
  • the supply route for supplying the pure water of the present invention to the treated water tank is constituted by the ore filter 17 and the reserve tank 18.
  • the tip end side of the floating body 21a descends, and the microswitch connected to the control device 20 shown in FIG.
  • the energization of 21c is turned ON, the electromagnetic valve 14 is opened, and the pressurizing pump 15 is driven, so that the water that has passed through the ore filter 17 is replenished in the reserve tank 18.
  • the energization of the microswitch 21c is turned off, the solenoid valve 14 is closed, the pressurizing pump 15 is stopped, and the reserve tank 18 is filled. The water that has passed through the ore filter 17 is not replenished.
  • a cold water tank 22 and a hot water tank 23 are connected to the lower side of the spare tank 18 via pipes (reference numerals are omitted).
  • the cold water tank 22 is provided with a cooler 24 for cooling the stored water, and a cold water thermostat 25 for detecting the temperature of the stored cold water so as to maintain the temperature at a predetermined temperature. 25a is installed in the water.
  • the cooler 24 and the cold water thermostat 25 are connected to the control device 20 shown in FIG. 4, and when the water temperature in the cold water tank 22 rises above a predetermined temperature, the cold water thermostat 25 is energized. As a result, the cooler 24 is driven to cool the temperature of the stored water.
  • the cooler thermostat 25 is turned off, and the drive of the cooler 24 is stopped. Further, the cold water tank 22 is connected to a pipe body (the reference numeral is omitted) whose tip is the cold water outlet 3 for discharging cold water. Accordingly, when the cold water opening / closing operation lever 5 is operated rearward, the cold water stored in the cold water tank 22 is discharged from the cold water discharge port 3 by its own weight, and according to the discharged water amount, the spare tank 18 is discharged. The cold water tank 22 is replenished to the cold water tank 22 by a drop (self-weight).
  • the hot water tank 23 is equipped with a heater 27 for heating the stored water, and hot water for temperature detection to maintain the temperature of the hot water stored in the hot water tank 23 at a predetermined temperature.
  • the thermostat 28 is mounted with the temperature detector 28a disposed in water. Among these, the heater 27 and the hot water thermostat 28 are connected to the control device 20 shown in FIG. 4, and when the water temperature in the hot water tank 23 falls below a predetermined temperature, the hot water thermostat 28 is energized. By turning on, the heater 27 is operated and the temperature of the stored water is heated. On the other hand, when the water temperature rises to a predetermined temperature, the operation of the heater 27 is stopped by turning off the energization of the hot water thermostat 28.
  • the hot water tank 23 is connected to a tubular body (the reference numeral is omitted) whose tip is the hot water outlet 4. In addition, when the hot water is discharged from the hot water outlet 4, the water stored in the spare tank 18 drops into the hot water tank 23 through the pipe body (self-weight). ).
  • the ion exchange resin filter 31 is an electrolysis apparatus for electrolyzing ultrapure water pumped from the ion exchange resin filter 31 to generate hydrogen gas and oxygen gas (hydrogen gas generation unit of the present invention). 32 is connected. As shown in FIGS. 5 and 6, the electrolyzer 32 includes an outer container 33 that can store water, and an inner container that can store water inside the outer container 33 by forming a gap in the inner upper portion thereof.
  • the outer container 33 is formed with a barrel 33a capable of storing water (electrolyte) on the lower side, and the stored water is stored below the barrel 33a.
  • a discharge port 33b for discharging is formed.
  • An open / close valve 41 (see FIG. 3) that is manually opened and closed is disposed at the discharge port 33b.
  • the drainage by the on-off valve 41 is drainage for removing scales and the like deposited by electrolysis, which will be described later, in the electrolysis apparatus 32.
  • the reverse osmosis membrane filter 16 and the ion exchange are disposed. Since pure water filtered by the filter 31 is supplied, there is little accumulation of scale and the like, and drainage is performed about once a year.
  • the outer container 33 is formed with a widened portion 33d that is inclined and widened in a V-shape above the trunk portion 33a, and an upright portion 33f that is erected on the upper portion that is continuous with the widened portion 33d.
  • These side portions shown in FIG. 5 are sealed by side plates (not shown), and the upper portion of the upright portion 33f is fixed to the container lid 35.
  • the inner container 34 has a flow port 34a through which water can flow at the lower end, and a widened portion 34b that is widened by inclining in a V shape upward from the flow port 34a, and this widened portion 34b.
  • An upright portion 34c is formed at a continuous upper portion, and the upper portion of the upright portion 34c is fixed to the container lid 35.
  • a hydrogen gas passage 43 through which hydrogen gas, which will be described later, can flow, and a later described Thus, an oxygen gas flow path 44 through which oxygen gas can flow is formed.
  • the hydrogen gas duct 38 has an opening (reference numeral is omitted) through which hydrogen gas from the hydrogen gas flow path 43 can flow at the lower end, and a lower side standing up above the opening.
  • An upright portion 38a is formed, a reduced width portion 38b is formed that is continuous with the lower upright portion 38a, and a reduced width portion 38b is formed, and a hydrogen gas discharge portion 38c that is upwardly continued and continuous with the reduced width portion 38b is formed.
  • a hydrogen gas discharge port 38d opened so as to discharge hydrogen gas is formed, and the hydrogen gas discharge port 38d is connected to the carbon air filter 57 shown in FIG. Has been. Further, as shown in FIG.
  • the reduced width portion 38b is formed in a mountain shape that rises from the left and right toward the center, and the hydrogen gas discharge portion 38c is formed at the top of the mountain shape. Accordingly, hydrogen gas generated by the cathode electrolytic plate 51 described later is efficiently concentrated on the hydrogen gas discharge portion 38c.
  • the oxygen gas duct 39 has an opening (reference numeral is omitted) through which oxygen gas from the oxygen gas flow path 44 can flow at the lower end, and the lower side standing up above the opening.
  • An upright portion 39a is formed, a reduced width portion 39b is formed which is continuous with the lower upright portion 39a, and a reduced width portion 39b is formed, and an oxygen gas discharge portion 39c is formed which is continuous upward with the reduced width portion 38b.
  • an oxygen gas discharge port 39d opened so as to discharge oxygen gas is formed. This oxygen gas discharge port 39d is connected to the oxygen delivery fan 59 shown in FIG. It is connected.
  • the reduced width portion 39b is formed in a mountain shape that increases from the left and right toward the center. Since the oxygen gas discharge portion 39c is formed at the top, oxygen gas generated by the anode electrolytic plate 52 described later is efficiently concentrated on the oxygen gas discharge portion 39c.
  • the water supply joint 46 is fixed to the container lid 35 in the electrolysis apparatus 32, and the ultrapure water from the ion exchange resin filter 31 is connected to the water supply joint 46.
  • a water supply hole 46c for supplying water is formed.
  • a tube fixing portion 46a for fixing a tube (reference numeral is omitted) connected to the discharge port of the ion exchange resin filter 31 is formed on the upper end side of the water supply joint 46, and below the tube fixing portion 46a. Is formed integrally with a valve body mounting portion 46b for mounting a float valve body 47 to be described later.
  • a discharge hole 46d having a diameter larger than that of the water supply hole 46c is formed in the valve body mounting portion 46b, and a tapered hole having a tapered surface that decreases in diameter toward the water supply hole 46c is formed at the upper end of the discharge hole 46d.
  • 46 f is formed, and a part of the valve body mounting portion 46 b is formed with a notch (reference numeral is omitted) in which a later-described support body 47 c of the float valve body 47 can be rotated.
  • a float valve body 47 for maintaining the predetermined amount of ultrapure water supplied from the water supply hole 46 c is mounted on the valve body mounting portion 46 b of the water supply joint 46.
  • the float valve body 47 prevents the inflow of the ultrapure water when the ultrapure water reaches a predetermined amount, and includes a floating body 47a that is sealed in a hollow shape and floats on the water surface,
  • the rod 47b is composed of a floating body 47a and an L-shaped support 47c that supports the valve rod 47b.
  • the support 47c has a floating body 47a fixed to one end side, and the other end is rotatably supported by a valve body mounting portion 46b of the water supply joint 46 by a pin 47d.
  • valve rod 47b is erected on the other end side of the support 47c, and the taper is formed on the upper end of the valve rod 47b by rotating the support 47c counterclockwise as shown in FIG.
  • a tapered convex portion 47f having a tapered surface that can be in close contact with the hole 46f is formed.
  • the float valve body 47 When the surface of the ultrapure water stored in the electrolyzer 32 is reduced by a certain amount, the float valve body 47 is lowered at the front end side of the floating body 47a, and this lowering causes the support 47c to pass through the support body 47c.
  • the tapered protrusion 47f of the valve rod 47b is separated from the tapered hole 46f of the water supply joint 46 to form a gap, and ultrapure water from the ion exchange resin filter 31 is pumped into the inside through this gap.
  • the support 47c When the amount of ultrapure water stored in the electrolyzer 32 increases, the leading end of the floating body 47a rises accordingly, and when the amount of stored water reaches a predetermined amount, the support 47c is interposed.
  • the tapered protrusion 47f of the valve rod 47b is brought into close contact with the tapered hole 46f of the water supply joint 46, and the supply of ultrapure water pumped from the ion exchange resin filter 31 is prevented by this close contact state.
  • an electrolysis unit 40 that generates hydrogen gas and oxygen gas by electrolysis is disposed in the body 33a of the inner container 34 shown in FIG.
  • a cathode side electrode rod 48 and an anode side electrode rod 49 are fixed to the body portion 33a so as to face each other in an insulated state, and one cathode side electrode rod 48 is formed in a plate shape.
  • the cathode electrolytic plate 51 with titanium platinum plating on the surface is fixed, and the anode electrode plate 49 with the titanium platinum plating on the plate-shaped surface is attached to the other anode side electrode rod 49. It is fixed so as to face the cathode electrolytic plate 51.
  • the cathode electrolytic plate 51 and the anode electrolytic plate 52 are disposed below the flow port 34a of the inner vessel 34, and an ion exchange film 53 is provided in a gap between the cathode electrolytic plate 51 and the anode electrolytic plate 52 facing each other.
  • the cathode electrolytic plate 51 and the anode electrolytic plate 52 are separated from each other by the ion exchange film 53.
  • a net body 54 having a mesh capable of freely flowing pure water is disposed around the cathode electrolytic plate 51 and the anode electrolytic plate 52.
  • the deionized water (electrolytic solution) stored therein is electrolyzed by energizing the cathode side electrode rod 48 and the anode side electrode rod 49 shown in FIG. Then, hydrogen gas (H 2 ) is generated on one cathode electrolytic plate 51 side.
  • This hydrogen gas is discharged to the hydrogen gas discharge port 38d of the hydrogen gas duct 38 through the hydrogen gas flow path 43, and one of the hydrogen gases is connected via the piping member 56 (see FIG. 3) connected to the hydrogen gas discharge port 38d. It is sent to the carbon air filter 57.
  • oxygen gas (O 2 ) is generated on the other anode electrolytic plate 52 side, and this oxygen gas is discharged through the oxygen gas flow path 44 to the oxygen gas discharge port 39d of the oxygen gas duct 39. It is sent to the other oxygen delivery fan 59 through a piping member 58 connected to the oxygen gas discharge port 39d.
  • a circulation pump 62 is connected to the carbon air filter 57 via a tube (reference numerals are omitted). The circulation pump 62 is driven only when the electrolysis device 32 is operated.
  • the circulation pump 62 includes a gas inlet 62a connected to the carbon air filter 57 and one end of the cold water tank 22 described above. And a water suction port 62b connected to the other end of the pipe body (the reference numeral is omitted) is disposed, and when the circulation pump 62 is driven, the carbon air filter 57 is connected to one of the gas suction ports 62a. From the cold water tank 22 is sucked through the other water suction port 62b.
  • the sucked hydrogen gas (H 2 ) and water (H 2 O) are mixed by a pump mechanism (not shown) by a pump mechanism (not shown), and hydrogen water (H 2 + H 2 O), which is pumped from the discharge port 62c.
  • the discharge port 62c of the circulation pump 62 is connected to the bubble miniaturization filter 63 via a tube (reference numerals are omitted).
  • the bubble miniaturization filter 63 is a built-in semipermeable membrane having a micropore (not shown) of 0.0001 ⁇ m (about 1 / 1,000,000 of hair), and the circulation pump 62 is formed by the semipermeable membrane.
  • the hydrogen gas bubbles pumped from are refined to increase the amount of dissolved hydrogen in the hydrogen water.
  • the bubble miniaturizing filter 63 is connected to the cold water tank 22 through a tube (reference numerals are omitted).
  • the hydrogen water from the bubble miniaturization filter 63 is pumped and stored in the cold water tank 22, and the hydrogen water stored in the cold water tank 22 is stored in the circulation pump 62.
  • the circulation pump 62 By being driven, it is sucked from the water suction port 62b of the circulation pump 62 and mixed with the hydrogen gas from the carbon air filter 57 sucked from the gas suction port 62a, and the discharge port 62c of the circulation pump 62 From the above, the air is refined and stored in the cold water tank 22 through the bubble refining filter 63.
  • the hydrogen water stored in the cold water tank 22 is circulated through the cold water tank 22, the circulation pump 62 and the bubble refinement filter 63 constituting the circulation route of the present invention, so that the amount of dissolved hydrogen in the treated water is reduced. It gradually increases, and the user can drink in a state where the amount of dissolved hydrogen is close to saturation.
  • the other oxygen delivery fan 59 connected to the electrolysis device 32 is driven only while the electrolysis device 32 is in operation, and when the oxygen delivery fan 59 is driven, the electrolysis device Oxygen generated by 32 is sucked from the electrolysis device 32 and sent out into the oxygen suction tube 7 shown in FIG.
  • the user can suck oxygen gas from the oxygen gas discharge port 7a of the oxygen suction tube 7 while the electrolysis device 32 is in operation.
  • the electrolysis device 32 is operated by the bright signal of the light illuminance sensor 9C described above or by pressing the oxygen release switch 9A even when not activated by the dark signal from the light illuminance sensor 9C (forcedly).
  • the circulation pump 62 and the oxygen delivery fan 59 are driven simultaneously with the operation of the electrolyzer 32.
  • the time for the electrolyzer 32 and the like to operate is set to 15 minutes by the hydrogen generation operation timer 9H connected to the control device 20 shown in FIG.
  • the time is set to 45 minutes by the hydrogen generation pause timer 9I connected to the control device 20.
  • the set time of the hydrogen generation operation timer 9H is set to 15 minutes
  • the set time of the hydrogen generation stop timer 9I is set to 45 minutes
  • the set illuminance of 9C is set to illuminance corresponding to the use time zone of the electrolytic water purifier 1 (indoor illuminance in the sunshine hours body).
  • the water stop valve 11 shown in FIG. 1 is previously opened manually.
  • step St1 whether or not the amount of water in the reserve tank 18 is a predetermined amount is determined by the control device 20 via the micro switch 21c of the float switch 21, and it is determined that the predetermined amount has not been reached. Advances to step St2, and if it is determined that the predetermined amount has been reached, advances to the next step St3. Among these, when the process proceeds to step St2, the electromagnetic valve 14 is opened and the pressurizing pump 15 is driven, so that the sediment filter 12, the carbon filter 13, the electromagnetic valve 14, and the reverse osmosis membrane filter are driven.
  • step St1 the routine returns to step St1 to repeatedly determine whether or not the amount of water in the spare tank 18 is a predetermined amount.
  • the water pumped by the pressurizing pump 15 is also branched from the reverse osmosis membrane filter 16 to the ion exchange resin filter 31, and the tapered hole 46f of the water supply joint 46 disposed in the electrolysis device 32 is opened. If so, the electrolyzer 32 is also purified and replenished with water.
  • step St3 whether or not the illuminance of the light illuminance sensor 9C is the set illuminance is determined by the control device 20 via the light illuminance sensor 9C, and it is determined that the set illuminance has not been reached. In this case, the process returns to step St3 and is repeated, and when it is determined that the set illuminance has been reached, the process proceeds to the next step St4.
  • the electrolysis device 32 is activated, and the circulation pump 62 and the oxygen delivery fan 59 are driven, so that hydrogen gas, oxygen gas and Is generated, and the process proceeds to the next step St5.
  • step St4 When the operation of the electrolyzer 32 is started in step St4, the hydrogen / oxygen generating lamp 8D of the display panel 8 shown in FIG. 2 is turned on. This lighting state is the above electrolyzer in step St6 described later. 32 until the operation of 32 is stopped.
  • the hydrogen gas generated by the electrolysis device 32 is sucked into the circulation pump 62 through the carbon air filter 57 and mixed with the hydrogen water from the cold water tank 22, and the hydrogen gas passes through the bubble refinement filter 63. Is returned to the cold water tank 22 again as dissolved hydrogen water.
  • the oxygen gas generated by the electrolysis device 32 is sent out by the oxygen sending fan 59 and can be sucked from the tip of the oxygen suction tube 7.
  • next step St5 whether or not the operating time of the electrolyzer 32 has elapsed for 15 minutes is determined by the control device 20 via the hydrogen generation operation timer 9H, and the operating time of the electrolyzer 32 and the like is determined. If it is determined that 15 minutes have not elapsed, the process returns to step St4 and is repeated. If it is determined that 15 minutes have elapsed for the electrolyzer 32 or the like, the next step St6 is performed. Proceed to When the process proceeds to the next step St6, the operation of the electrolysis device 32 is stopped and the driving of the circulation pump 62 and the oxygen delivery fan 59 is stopped, so that hydrogen gas and oxygen gas by the electrolysis device 32 are stopped. Is paused, and the process proceeds to the next step St7. When the operation of the electrolyzer 32 is stopped in step St6, the hydrogen / oxygen resting lamp 8E of the display panel 8 shown in FIG. 2 is turned on. This lighting is performed in the next step St4. The operation is continued until the operation is started.
  • step St7 whether or not the oxygen release switch 9A is ON is determined by the control device 20 via the oxygen release switch 9A. If it is determined that the oxygen release switch 9A is ON, the process returns to step St4.
  • the electrolysis device 32 is operated repeatedly, and the circulation pump 62 and the oxygen delivery fan 59 are driven to generate hydrogen gas and oxygen gas by the electrolysis of the electrolysis device 32, and not ON ( If it is determined that it is OFF, the process proceeds to the next step St8.
  • step St4 the condition for determining that the oxygen release switch 9A is ON is that the hydrogen / oxygen resting lamp 8E is lit and hydrogen gas and oxygen gas are not generated. The condition is that the oxygen release switch 9A is pressed in order for the user to suck oxygen gas.
  • step St8 it is determined by the control device 20 via the hydrogen generation pause timer 9I whether or not the pause time of the electrolyzer 32 etc. has passed 45 minutes, and the electrolyzer 32 etc. If it is determined that the pause time has not elapsed for 45 minutes, the process returns to step St6 and is repeated. If it is determined that the operation time of the electrolyzer 32 or the like has elapsed for 45 minutes, step St3 To go back and repeat.
  • the electrolytic water purifier 1 is not always operated continuously, for example, at midnight (while sleeping) that does not require drinking of hydrogen water or ingestion of oxygen gas.
  • the illuminance sensor 9C senses the illuminance in the room and the operation is suspended, and even when the operation is not suspended, the electrolysis device 32, the hydrogen generation operation timer 9H or the hydrogen generation suspension timer 9I.
  • the cycle in which the circulation pump 62 and the oxygen delivery fan 59 are driven for 15 minutes and stopped for 45 minutes is repeated. Therefore, in this electrolytic water purifier 1, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
  • the cold water temperature switch 9D is pressed to perform the OFF operation.
  • the cooler 24 is stopped. This allows the user to drink room temperature hydrogen water.
  • the ON / OFF operation by the cold water temperature switch 9D can be performed at any time during the automatic operation described above.
  • the hot water state display lamp 8B of the display panel 8 and the hot water temperature switch 9B of the operation panel 9 shown in FIG. 2 are lit (warming), the hot water temperature switch 9B is pressed to perform an OFF operation.
  • the heater 27 is stopped.
  • the ON / OFF operation by the hot water temperature switch 9B can be operated at any time during the automatic operation described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

A novel electrolytic water purifier is provided by which the amount of hydrogen dissolved in drinking water can be kept in a certain range without decreasing. The water purifier includes a carbon filter (13), etc. for purifying water, a cold-water tank (22) in which the water having passed through the reverse osmosis membrane filter (16), etc. is stored, and a cold-water discharge opening (3) through which the water stored in the cold-water tank (22) is discharged. The water purifier further includes a reverse osmosis membrane filter (16) with which pure water is produced from the water having passed through the carbon filter (13), etc., a supply route through which the pure water produced is supplied from the reverse osmosis membrane filter (16) to the cold-water tank (22), an electrolytic device (32) in which part of the pure water produced with the reverse osmosis membrane filter (16) is electrolyzed to generate hydrogen gas, a circulation route through which the treated water taken out of the cold-water tank (22) is returned to the cold-water tank (22), and a circulation pump (62) which is disposed in the circulation route and through which the treated water taken out of the cold-water tank (22) and the hydrogen gas are returned together to the cold-water tank (22).

Description

電解式浄水装置Electrolytic water purifier
 本発明は、水道水等を浄水し、一般家庭や事業所などにおいて飲用される水を供給するために使用される電解式浄水装置に関するものである。 The present invention relates to an electrolytic water purifier that is used to purify tap water and supply water that can be used in general households or business establishments.
 近年、健康志向の高まりから、上水道から供給される水道水を浄水する浄水装置が広く普及している。特に、家庭で使用されるものでは、上方から水を注ぐことにより水の自重で活性炭や鉱石等を含む濾過フィルタを通過させるタイプのものや、水道管に接続させ濾過フィルタを通過させた後に弁(蛇口又はコック)を開放することにより水道の水圧を利用して水を吐出させるタイプのもの、さらには水道管から供給された水道水を濾過フィルタ等で濾過した水をタンクに貯留させておき、その水を適宜排出して飲料するタイプのものが実施されている。 In recent years, water purification devices that purify tap water supplied from the water supply have become widespread due to the growing health-consciousness. In particular, in the case of household use, it is a type that passes a filtration filter containing activated carbon or ore with its own weight by pouring water from above, or a valve that is connected to a water pipe and passed through the filtration filter. A type that discharges water by using the water pressure of the tap water by opening the (faucet or cock), and further, the water obtained by filtering tap water supplied from the water pipe with a filter or the like is stored in a tank. A type of drinking water by appropriately discharging the water has been implemented.
 ところで、こうした浄水装置には、これまで電気分解機能を付加したものが提案されている。すなわち、上水道から供給された水道水を電気分解することにより、水素ガスを生成し、この水素ガスを上記水道水に溶解させる機能を備えた浄水装置である。この浄水装置は、処理水中における溶存水素量を上げて酸化還元電位を低下させることを主目的としたものであり、溶存水素を増加させることにより、健康に有用な水に改質するものである(特許文献1,2参照)。 By the way, such a water purifier has been proposed with an electrolysis function. That is, it is a water purifier having a function of generating hydrogen gas by electrolyzing tap water supplied from the water supply and dissolving the hydrogen gas in the tap water. This water purifier is mainly intended to lower the redox potential by increasing the amount of dissolved hydrogen in the treated water, and to improve the water useful for health by increasing the dissolved hydrogen. (See Patent Documents 1 and 2).
特開2005-261999号公報JP 2005-261999 A 特許第2605642号公報Japanese Patent No. 2605642
 しかしながら、上記各特許文献に開示された浄水装置では、水の溶存水素量は、時間の経過により徐々に低下し、飲用する際における溶存水素量は極めて微量となってしまう場合が多く、上述した水の改質による効果も時間の経過により半減されて行く。 However, in the water purifiers disclosed in each of the above patent documents, the amount of dissolved hydrogen in the water gradually decreases with the passage of time, and the amount of dissolved hydrogen when drinking is often extremely small. The effect of water reforming is also halved over time.
 そこで、本発明は、上述した従来の電解式浄水装置が有する課題を解決するために提案されたものであって、飲用される水の溶存水素量を低下させることなく常に一定の範囲に保持することができる新規な電解式浄水装置を提供することを目的とするものである。 Then, this invention is proposed in order to solve the subject which the conventional electrolytic water purifier mentioned above has, Comprising: It always keeps in the fixed range, without reducing the dissolved hydrogen amount of the water to drink. An object of the present invention is to provide a novel electrolytic water purifier that can be used.
 本発明は、上記の課題を解決するために提案されたものであって、第1の発明(請求項1記載の発明)に係る電解式浄水装置は、水を浄水する浄水処理部と、この浄水処理部を経た水が貯留される処理水タンクと、この処理水タンクに貯留された水を吐水する吐水部とを備えた浄水装置であって、上記浄水処理部を経た水から純水を生成する純水生成部と、この純水生成部から生成された純水を上記処理水タンクに供給する供給ルートと、上記純水生成部により生成された純水の一部を電気分解することにより水素ガスを生成する水素ガス生成部と、上記処理水タンク内から処理水を取り出し再び該処理水タンクに戻す循環ルートと、この循環ルートの中途部に配置され、上記処理水タンクから取り出された処理水と上記水素ガスとを一緒に該処理水タンクに戻す循環ポンプと、を備えてなることを特徴とするものである。 This invention is proposed in order to solve said subject, Comprising: The electrolytic-type water purifier which concerns on 1st invention (invention of Claim 1) is a water-purification process part which purifies water, and this A water purification apparatus comprising a treated water tank in which water that has passed through a water purification treatment unit is stored and a water discharge unit that discharges water stored in the treated water tank, wherein pure water is removed from the water that has passed through the water purification treatment unit. Electrolyzing a portion of the pure water generated by the pure water generation unit to be generated, a supply route for supplying the pure water generated from the pure water generation unit to the treated water tank, and the pure water generation unit A hydrogen gas generating unit that generates hydrogen gas, a circulation route that extracts the treated water from the treated water tank and returns it to the treated water tank, and is disposed in the middle of the circulating route and is removed from the treated water tank. Treated water and the above hydrogen gas together It is to characterized in that it comprises a circulation pump for returning to the treated water tank.
 この第1の発明では、水道水などの水は、先ず浄水処理部にて浄水され、その後、純水生成部により純水となって一部は処理水タンクに貯留される。他の一部は、水素ガス生成部に送られることにより電気分解される。この電気分解されたことにより水素ガスが生成される。この生成された水素ガスは、循環ポンプにより、上記処理水タンクから取り出された水に溶解しながら上記循環ルートを経て処理水タンクに貯留される。なお、この処理水タンク内の水は、吐水部から外部に吐水され、これを使用者は飲用することができる。したがって、この電解式浄水装置によれば、処理水タンク内に貯留される水は、上記循環ポンプの駆動により循環ルートを経て循環することにより、処理水中の溶存水素量が徐々に増加することとなり、使用者は溶存水素量が飽和状態に近い状態で飲用することが可能となる。 In the first aspect of the invention, water such as tap water is first purified by the purified water treatment unit, and then purified water by the purified water generation unit, and a part thereof is stored in the treated water tank. The other part is electrolyzed by being sent to the hydrogen gas generator. Hydrogen gas is generated by this electrolysis. The generated hydrogen gas is stored in the treated water tank through the circulation route while being dissolved in the water taken out from the treated water tank by the circulation pump. In addition, the water in this treated water tank is discharged outside from a water discharging part, and a user can drink it. Therefore, according to this electrolytic water purifier, the water stored in the treated water tank is circulated through the circulation route by driving the circulation pump, so that the amount of dissolved hydrogen in the treated water gradually increases. The user can drink with the amount of dissolved hydrogen close to saturation.
 また、第2の発明(請求項2記載の発明)は、前記第1の発明において、前記循環ルートの中途部であって、前記循環ポンプと処理水タンクとの間には、前記水素ガスの気泡を微細化させる気泡微細化フィルタが配置されてなることを特徴とするものである。 A second invention (invention according to claim 2) is the middle part of the circulation route according to the first invention, wherein the hydrogen gas is interposed between the circulation pump and a treated water tank. A bubble miniaturization filter for miniaturizing the bubbles is arranged.
 この第2の発明に係る電解式浄水装置では、前記気泡微細化フィルタにより水素ガスの気泡を微細化させることから、処理水中の溶存水素量をより高めることができる。 In the electrolytic water purifier according to the second aspect of the present invention, since the bubbles of hydrogen gas are refined by the bubble refinement filter, the amount of dissolved hydrogen in the treated water can be further increased.
 また、第3の発明(請求項3記載の発明)は、前記第1又は第2の発明において、前記循環ポンプと水素ガス生成部とは、タイマが内蔵された制御装置に接続されてなるとともに、この制御装置には光照度センサが接続され、上記光照度センサを介して上記制御装置が所定の照度であると判別した場合には、タイマを介して、上記循環ポンプと水素ガス生成部とを所定時間に亘って駆動と停止とを繰り返すようにされてなることを特徴とするものである。 According to a third invention (invention according to claim 3), in the first or second invention, the circulation pump and the hydrogen gas generator are connected to a control device having a built-in timer. A light illuminance sensor is connected to the control device, and when the control device determines that the illuminance is a predetermined illuminance via the light illuminance sensor, the circulation pump and the hydrogen gas generator are It is characterized by being repeatedly driven and stopped over time.
 この第3の発明に係る電解式浄水装置では、光照度センサにより、制御装置が所定の光の照度に達したと判断した場合には、上記循環ポンプと水素ガス生成部とがともに駆動を開始する。そして、これら循環ポンプと水素ガス生成部との駆動が所定時間経過したとタイマを介して制御装置が判別した場合には、所定時間だけ該循環ポンプと水素ガス生成部との駆動を停止し、また更に該循環ポンプと水素ガス生成部との停止が所定時間経過したと制御装置が判別した場合には、再び制御装置は循環ポンプと水素ガス生成部との駆動を開始する。このように、この第3の発明に係る電解式浄水装置では、循環ポンプと水素ガス生成部との駆動の開始及び停止を繰り返すように制御され、常時循環ポンプと水素ガス生成部とが駆動し続けるものではない。したがって、この第3の発明に係る電解式浄水装置によれば、処理水中の溶存水素量を一定量に保つことができるばかりではなく、節電を図ることができる。 In the electrolytic water purifier according to the third aspect of the invention, when the control device determines that the illuminance of the predetermined light has been reached by the light illuminance sensor, the circulation pump and the hydrogen gas generator both start driving. . And, when the control device determines through a timer that the drive of the circulation pump and the hydrogen gas generation unit has elapsed, the drive of the circulation pump and the hydrogen gas generation unit is stopped for a predetermined time, Further, when the control device determines that the stop of the circulation pump and the hydrogen gas generation unit has elapsed for a predetermined time, the control device starts driving the circulation pump and the hydrogen gas generation unit again. Thus, in the electrolytic water purifier according to the third aspect of the invention, the start and stop of the driving of the circulation pump and the hydrogen gas generation unit are controlled to be repeated, and the circulation pump and the hydrogen gas generation unit are always driven. It does not continue. Therefore, according to the electrolytic water purifier according to the third aspect of the invention, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
 また、第4の発明(請求項4記載の発明)は、前記第1、第2又は第3の発明において、前記水素ガス生成部には、前記純水の電気分解により水素ガスと共に生成された酸素ガスが流通する酸素ガス流通ルートが接続され、この酸素ガス流通ルートの先端は、使用者が吸引する酸素ガスを放出する酸素ガス放出口とされてなることを特徴とするものである。 Moreover, 4th invention (invention of Claim 4) is the said 1st, 2nd or 3rd invention, The said hydrogen gas production | generation part was produced | generated with hydrogen gas by the electrolysis of the said pure water. An oxygen gas distribution route through which oxygen gas flows is connected, and the leading end of the oxygen gas distribution route is an oxygen gas discharge port for releasing oxygen gas sucked by the user.
 この第4の発明に係る電解式浄水装置では、純水を電気分解することにより水素ガスと共に発生した酸素ガスは、上記酸素ガス流通ルート内を通過して酸素ガス放出口から放出される。したがって、この第4の発明によれば、使用者は、酸素ガス放出口から放出された酸素を体内に取り込むことができ、電気分解により生成された酸素ガスを有効に利用することが可能となる。 In the electrolytic water purifier according to the fourth aspect of the invention, oxygen gas generated together with hydrogen gas by electrolyzing pure water passes through the oxygen gas circulation route and is released from the oxygen gas discharge port. Therefore, according to the fourth aspect of the invention, the user can take oxygen released from the oxygen gas discharge port into the body, and can effectively use the oxygen gas generated by electrolysis. .
 また、第5の発明(請求項5記載の発明)は、前記第4の発明において、前記酸素ガス流通ルートの中途部には前記酸素ガスを送り出すファンが配置されてなるとともに、このファンは、前記制御装置に接続されてなるとともに、該制御装置には、酸素放出用スイッチが接続されてなり、前記循環ポンプと水素ガス生成部の駆動が停止している際に上記酸素放出用スイッチがオン操作されたと上記制御装置が判別した場合には、上記ファンと循環ポンプと水素ガス生成部とが駆動を開始することを特徴とするものである。 According to a fifth invention (invention of claim 5), in the fourth invention, a fan for sending out the oxygen gas is arranged in the middle of the oxygen gas circulation route. The oxygen release switch is connected to the control device, and the oxygen release switch is turned on when the circulation pump and the hydrogen gas generation unit are stopped. When the control device determines that it has been operated, the fan, the circulation pump, and the hydrogen gas generation unit start driving.
 この第5の発明に係る電解式浄水装置では、前記循環ポンプと水素ガス生成部の駆動が停止している際において、上記酸素放出用スイッチがオン操作されたと上記制御装置が判別した場合には、上記ファンと循環ポンプと水素ガス生成部とが駆動を開始する。したがって、こうした水素ガス生成部と循環ポンプの駆動開始により、水素ガスが生成され処理水タンク内の溶存水素量が強制的に増加するばかりではなく、上記ファンの駆動開始により、酸素ガス流通ルート内に流入した酸素ガスは、所定の圧力により前記酸素ガス放出口から放出される。したがって、この第5の発明に係る電解式浄水装置によれば、循環ポンプと水素ガス生成部の駆動が停止している場合においても、使用者に酸素ガスを吸引する必要性が生じた場合には、いつでも上記スイッチをオン操作することにより酸素ガスを吸引することが可能となる。 In the electrolytic water purifier according to the fifth aspect of the present invention, when the control device determines that the oxygen release switch is turned on when the circulation pump and the hydrogen gas generator are stopped. The fan, the circulation pump, and the hydrogen gas generator start to drive. Therefore, not only the hydrogen gas generation unit and the circulation pump are started to drive, but hydrogen gas is generated and the amount of dissolved hydrogen in the treated water tank is forcibly increased. The oxygen gas flowing into the gas is discharged from the oxygen gas discharge port at a predetermined pressure. Therefore, according to the electrolytic water purifier according to the fifth aspect of the present invention, even when driving of the circulation pump and the hydrogen gas generation unit is stopped, the user needs to suck oxygen gas. The oxygen gas can be sucked at any time by turning on the switch.
 第1の発明(請求項1記載の発明)では、上記水素ガス生成部により生成された水素ガスは、循環ポンプにより、上記処理水タンクから取り出された水に溶解しながら上記循環ルートを経て処理水タンクに貯留されることから、処理水中の溶存水素量が徐々に増加することとなり、使用者は溶存水素量が飽和状態に近い状態で飲用することが可能であるとともに、飲用される水の溶存水素量を低下させることなく一定の範囲に保持することができる。 In the first invention (the invention described in claim 1), the hydrogen gas produced by the hydrogen gas production unit is treated via the circulation route while being dissolved in the water taken out from the treated water tank by a circulation pump. Since it is stored in the water tank, the amount of dissolved hydrogen in the treated water will gradually increase, and the user can drink while the amount of dissolved hydrogen is close to saturation. It can be maintained in a certain range without reducing the amount of dissolved hydrogen.
 また、第2の発明(請求項2記載の発明)では、前記気泡微細化フィルタにより水素ガスの気泡を微細化させることから、処理水中の溶存水素量をより高めることができ、飲用される水の溶存水素量を低下させることなく一定の範囲に保持することができる。 Moreover, in 2nd invention (invention of Claim 2), since the bubble of hydrogen gas is refined | miniaturized by the said bubble refinement | purification filter, the amount of dissolved hydrogen in a treated water can be raised more, and the drinking water The amount of dissolved hydrogen can be kept within a certain range without lowering.
 また、第3の発明(請求項3記載の発明)では、前記循環ポンプと水素ガス生成部との駆動の開始及び停止を繰り返すように制御され、常時循環ポンプと水素ガス生成部とが駆動し続けるものではないことから、処理水中の溶存水素量を一定量に保つことができるばかりではなく、節電を図ることができる。 In the third invention (the invention according to claim 3), the circulation pump and the hydrogen gas generation unit are controlled to repeat the start and stop of the drive, and the circulation pump and the hydrogen gas generation unit are always driven. Since it does not continue, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
 また、第4の発明(請求項4記載の発明)では、純水を電気分解することにより水素ガスと共に発生した酸素ガスは、前記酸素ガス流通ルート内に流入して酸素ガス放出口から放出されることから、使用者は、酸素ガス放出口から放出された酸素ガスを体内に取り込むことができ、電気分解により生成された酸素ガスを有効に利用することが可能となる。 In the fourth invention (the invention described in claim 4), oxygen gas generated together with hydrogen gas by electrolyzing pure water flows into the oxygen gas circulation route and is released from the oxygen gas discharge port. Therefore, the user can take in the oxygen gas released from the oxygen gas discharge port into the body, and can effectively use the oxygen gas generated by electrolysis.
 また、第5の発明(請求項5記載の発明)では、前記循環ポンプと水素ガス生成部の駆動が停止している際において、上記酸素放出用スイッチがオン操作されたと上記制御装置が判別した場合には、上記ファンと循環ポンプと水素ガス生成部とが駆動を開始し、こうした水素ガス生成部と循環ポンプの駆動開始により、水素ガスが生成され処理水タンク内の溶存水素量が強制的に増加するばかりではなく、上記ファンの駆動開始により、酸素ガス流通ルート内に流入した酸素ガスは、所定の圧力により前記酸素ガス放出口から放出される。したがって、この第5の発明に係る電解式浄水装置によれば、循環ポンプと水素ガス生成部の駆動が停止している場合においても、使用者に酸素ガスを吸引する必要性が生じた場合には、いつでも上記スイッチをオン操作することにより酸素ガスを吸引することが可能となる。 In the fifth invention (the invention according to claim 5), the controller determines that the oxygen release switch is turned on when the circulation pump and the hydrogen gas generation unit are stopped. In such a case, the fan, the circulation pump, and the hydrogen gas generation unit start driving, and the hydrogen gas generation unit and the circulation pump start driving, so that hydrogen gas is generated and the amount of dissolved hydrogen in the treated water tank is forced. In addition, the oxygen gas that has flowed into the oxygen gas circulation route by the start of driving of the fan is released from the oxygen gas discharge port by a predetermined pressure. Therefore, according to the electrolytic water purifier according to the fifth aspect of the present invention, even when driving of the circulation pump and the hydrogen gas generation unit is stopped, the user needs to suck oxygen gas. The oxygen gas can be sucked at any time by turning on the switch.
本発明の実施の形態に係る電解式浄水装置を示す外形斜視図である。1 is an external perspective view showing an electrolytic water purifier according to an embodiment of the present invention. 図1に示す電解式浄水装置の部分図であって、(a)は表示パネル、(b)は操作パネルをそれぞれ示す正面図である。It is a partial view of the electrolytic water purifier shown in FIG. 1, (a) is a front view which shows a display panel, (b) respectively shows an operation panel. 本発明の実施の形態に係る電解式浄水装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrolytic water purifier which concerns on embodiment of this invention. 本発明の実施の形態に係る電解式浄水装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the electrolytic water purifier which concerns on embodiment of this invention. 本発明の実施の形態に係る電解式浄水装置を構成する電解装置であって、(a)は正面図、(b)は(a)のA部拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the electrolysis apparatus which comprises the electrolytic water purifier which concerns on embodiment of this invention, Comprising: (a) is a front view, (b) is the A section enlarged view of (a). 本発明の実施の形態に係る電解式浄水装置を構成する電解装置であって、(a)は側断面図、(b)は(a)のB部拡大図である。It is the electrolysis apparatus which comprises the electrolytic water purifier which concerns on embodiment of this invention, Comprising: (a) is a sectional side view, (b) is the B section enlarged view of (a). 本発明の実施の形態に係る電解式浄水装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the electrolytic water purifier which concerns on embodiment of this invention.
 以下、本発明を実施するための実施の形態に係る電解式浄水装置について、図面を参照しながら詳細に説明する。 Hereinafter, an electrolytic water purifier according to an embodiment for carrying out the present invention will be described in detail with reference to the drawings.
 この実施の形態に係る電解式浄水装置1は、家庭で使用される浄水装置であり、図1に示すように、直方体状に成形された筐体2内に、後述する冷水タンク22(本発明の処理水タンク)、温水タンク23、加圧ポンプ15等が収容されている。そして、上記筐体2の正面のやや上方には、凹部2aが形成され、この凹部2a内には、冷水用吐水口3(本発明の吐水部)と、この冷水用吐水口3に並んだ温水用吐水口4とが配置されている。上記冷水用吐水口3は、後述する冷水タンク(本発明を構成する処理水タンク)22内の飲用水が吐水される部位であり、上記温水用吐水口4は、後述する温水タンク23内の飲用水が吐水される部位である。そして、上記冷水用吐水口3の後方には、開閉弁を構成する冷水用開閉操作レバー5が配置され、上記温水用吐水口4の後方には、開閉弁を構成する温水用開閉操作レバー6が配置されている。 The electrolytic water purifier 1 according to this embodiment is a water purifier used at home, and, as shown in FIG. 1, a cold water tank 22 described later (in the present invention) in a housing 2 formed in a rectangular parallelepiped shape. ), A hot water tank 23, a pressurizing pump 15, and the like are accommodated. And the recessed part 2a is formed in the front of the said housing | casing 2 a little, and it lined up in this recessed part 2a with the cold water outlet 3 (water discharge part of this invention), and this cold water outlet 3 A hot water outlet 4 is arranged. The cold water spout 3 is a part from which drinking water in a cold water tank 22 (a treated water tank constituting the present invention) to be described later is discharged, and the hot water spout 4 is disposed in a hot water tank 23 to be described later. This is the site where drinking water is discharged. A cold water opening / closing operation lever 5 constituting an on-off valve is disposed behind the cold water outlet 3, and a hot water opening / closing operation lever 6 constituting an on-off valve is located behind the hot water outlet 4. Is arranged.
 これら冷水用開閉操作レバー5及び温水用開閉操作レバー6は、何れも図示しない開閉弁に連結されてなるものであって、図示しない弾性材により正面方向(閉方向に)に付勢されてなるものであり、図示しないコップ等の容器を介して(又は使用者の手指により)使用者により後方に押圧されることにより、上記冷水用吐水口3や温水用吐水口4から冷水又は温水を吐水するものである。なお、上記凹部2a内の上記冷水用吐水口3や温水用口4の下方には、図示しないコップが載置できる受板2fが配置されている。この受板2fには、上記冷水用吐水口3や温水用吐水口4から吐水された冷水又は温水が通過する透孔2gが形成され、この透孔2gの下方には、一端が図示しない排水用タンクに接続された図示しない排水用チューブの他端が接続されている。また、図1に示す筐体2の右側板2dには、酸素ガスを吸引するための酸素吸引チューブ7が配置され、この酸素吸引チューブ7の基端が後述する電解装置32(本発明の水素ガス生成部)の酸素ガス吐出口39dに接続されている。 The cold water opening / closing operation lever 5 and the hot water opening / closing operation lever 6 are both connected to an opening / closing valve (not shown), and are urged in the front direction (in the closing direction) by an elastic material (not shown). The cold water or hot water is discharged from the cold water discharge port 3 or the hot water discharge port 4 by being pushed backward by the user through a container such as a cup (not shown) (or by a user's finger). To do. A receiving plate 2f on which a cup (not shown) can be placed is disposed below the cold water outlet 3 and the hot water outlet 4 in the recess 2a. The receiving plate 2f is formed with a through hole 2g through which cold water or hot water discharged from the cold water outlet 3 or the hot water outlet 4 passes, and one end of which is not shown in the figure below the through hole 2g. The other end of a drainage tube (not shown) connected to the tank is connected. Further, an oxygen suction tube 7 for sucking oxygen gas is disposed on the right side plate 2d of the housing 2 shown in FIG. 1, and the base end of the oxygen suction tube 7 is an electrolysis device 32 (hydrogen of the present invention) described later. It is connected to the oxygen gas discharge port 39d of the gas generation unit).
 また、上記凹部2aの上方には、上正面パネル2bが固定され、この上正面パネル2bには、円形状の表示パネル8と、この表示パネル8の下方に配置された操作パネル9とが配置されている。これらのうち、図2(a)に示す一方の表示パネル8の上方中央には、図4に示す制御装置20に接続された電源作動ランプ8Aが配置され、電解式浄水装置1の電源がONの状態において緑色に点灯され、OFFの状態において消灯される。この電源作動ランプ8Aの下方左側には、制御装置20に接続された温水状態表示ランプ8Bが配置され、後述する温水タンク23内の水温が所定温度に加温されている状態のときに赤色に点灯され、常温の状態のときに消灯される。また、上記電源作動ランプ8Aの下方右側には、制御装置20に接続された冷水状態表示ランプ8Cが配置され、後述する冷水タンク22内の水温が所定温度に冷却されている状態のときに青色に点灯され、常温の状態のときに消灯される。 An upper front panel 2b is fixed above the recess 2a, and a circular display panel 8 and an operation panel 9 disposed below the display panel 8 are disposed on the upper front panel 2b. Has been. Among these, in the upper center of one display panel 8 shown in FIG. 2A, a power supply operation lamp 8A connected to the control device 20 shown in FIG. 4 is arranged, and the power supply of the electrolytic water purifier 1 is turned on. It is lit in green in the state, and is turned off in the OFF state. A hot water state display lamp 8B connected to the control device 20 is arranged on the lower left side of the power supply operation lamp 8A, and turns red when the water temperature in a hot water tank 23 described later is heated to a predetermined temperature. Turns on and turns off at room temperature. Further, a cold water state display lamp 8C connected to the control device 20 is arranged on the lower right side of the power supply operation lamp 8A, and blue when the water temperature in the cold water tank 22 described later is cooled to a predetermined temperature. Is turned on and turned off at room temperature.
 また、上記温水状態表示ランプ8Bの下方には、制御装置20に接続された水素・酸素生成中ランプ8Dが配置され、後述する電解装置32の作動により水素ガス及び酸素ガスが生成中において青色が点灯される。また、上記冷水状態表示ランプ8Cの下方には、制御装置20に接続された水素・酸素休止中ランプ8Eが配置され、後述する電解装置32の作動停止による水素ガス及び酸素ガスの生成休止中において橙色が点灯される。また、これら水素・酸素生成中ランプ8D及び水素・酸素休止中ランプ8Eの下方中央部には、制御装置20に接続されたフィルタ交換警告ランプ8Fが配置されている。このフィルタ交換警告ランプ8Fは、制御装置20に接続されたフィルタ交換タイマ9Gが設定時間に到達した作動信号により、後述するセディメントフィルタ12及びカーボンフィルタ13(本発明の浄水処理部)の交換時期を警告するための赤色が点灯され、常時は消灯されている。なお、上記フィルタ交換タイマ9Gの設定時間は、水道水の浄水性を維持するために約4400時間(約6か月)に設定されている。 Also, a hydrogen / oxygen generating lamp 8D connected to the control device 20 is disposed below the hot water state display lamp 8B, and the blue color is generated when hydrogen gas and oxygen gas are being generated by the operation of the electrolyzer 32 described later. Illuminated. Also, a hydrogen / oxygen resting lamp 8E connected to the control device 20 is disposed below the cold water state display lamp 8C. During the halting of the generation of hydrogen gas and oxygen gas due to the operation stop of the electrolyzer 32 described later. Orange lights up. Further, a filter replacement warning lamp 8F connected to the control device 20 is disposed at the lower central portion of the hydrogen / oxygen generating lamp 8D and the hydrogen / oxygen resting lamp 8E. This filter replacement warning lamp 8F is used to replace a later-described sediment filter 12 and carbon filter 13 (water purification unit of the present invention) according to an operation signal when a filter replacement timer 9G connected to the control device 20 has reached a set time. The red light for warning is turned on and is always off. The set time of the filter replacement timer 9G is set to about 4400 hours (about 6 months) in order to maintain the water purification of tap water.
 また、図2(b)に示す他方の操作パネル9の左端には、図4に示す制御装置20に接続され、「OXI」と表示された酸素放出スイッチ9Aが配置されている。この酸素放出スイッチ9Aは、該酸素放出スイッチ9Aが消灯中であるとともに、上記水素・酸素休止中ランプ8Eが点灯中であって、後述する電解装置32により酸素ガスが生成されていない休止中の任意の時期に、手動で押すことにより該酸素放出スイッチ9Aのオン・オフ表示部が点灯されるとともに、該電解装置32の作動が開始されて上記酸素吸引チューブ7から酸素ガスを吸引することができる。また、この酸素放出スイッチ9Aの右側には、制御装置20に接続され、「HOT」と表示された温水温度スイッチ9Bが配置されている。この温水温度スイッチ9Bは、該温水温度スイッチ9Bが点灯中であるとともに、上記温水状態表示ランプ8Bが点灯中であって、後述する温水タンク23内の水温が所定温度に加温されている状態(温水の状態)の任意の時期に、手動で押すことにより該温水温度スイッチ9Bのオン・オフ表示部が消灯されるとともに、後述するヒーター27の作動が停止されて上記温水タンク23内の水温が所定温度に加温されない状態(常温の状態)になる。 Further, at the left end of the other operation panel 9 shown in FIG. 2B, an oxygen release switch 9A connected to the control device 20 shown in FIG. 4 and displayed as “OXI” is arranged. The oxygen release switch 9A is in a state where the oxygen release switch 9A is turned off and the hydrogen / oxygen resting lamp 8E is turned on, and oxygen gas is not generated by the electrolyzer 32 described later. At any time, by manually pressing the on / off indicator of the oxygen release switch 9A, the electrolysis device 32 is started to draw oxygen gas from the oxygen suction tube 7. it can. Further, on the right side of the oxygen release switch 9A, a hot water temperature switch 9B connected to the control device 20 and displayed as “HOT” is disposed. The hot water temperature switch 9B is in a state where the hot water temperature switch 9B is lit and the hot water state display lamp 8B is lit, and the water temperature in the hot water tank 23 described later is heated to a predetermined temperature. At any time of (warm water state), the on / off display part of the warm water temperature switch 9B is turned off by manually pressing, and the operation of the heater 27 to be described later is stopped, and the water temperature in the warm water tank 23 is stopped. Is not heated to a predetermined temperature (normal temperature state).
 また、上記温水温度スイッチ9Bの右側には、制御装置20に接続された光照度センサ9Cが配置されている。この光照度センサ9Cは、室内の照度を感知して設定照度におい設定照度に達した場合には明信号を出力し、設定照度に達しない場合には暗信号をするものであって、例えば、室内が設定照度の明るさに達したときには、明信号を出力して電解式浄水装置1を作動開始させ自動運転が維持されるとともに、設定照度よりも暗くなったときには、暗信号を出力して電解式浄水装置1の自動運転を停止させ休止状態が維持される。 Also, a light illuminance sensor 9C connected to the control device 20 is disposed on the right side of the hot water temperature switch 9B. The light illuminance sensor 9C senses the illuminance in the room and outputs a bright signal when the set illuminance reaches the set illuminance, and outputs a dark signal when the set illuminance is not reached. When the brightness reaches the set illuminance, a bright signal is output to start the operation of the electrolytic water purifier 1 to maintain automatic operation. When the brightness becomes darker than the set illuminance, a dark signal is output to perform electrolysis. The automatic operation of the water purifier 1 is stopped and the resting state is maintained.
 また、上記光照度センサ9Cの右側には、制御装置20に接続され、「COLD」と表示された冷水温度スイッチ9Dが配置されている。この冷水温度スイッチ9Dは、該冷水温度スイッチ9Dが点灯中であるとともに、上記温冷水状態表示ランプ8Cが点灯中であって、後述する冷水タンク22内の水温が所定温度に冷却されている状態(冷水の状態)の任意の時期に、手動で押すことにより該冷水温度スイッチ9Dのオン・オフ表示部が消灯されるとともに、後述するクーラー24の作動が停止されて、上記冷水タンク22内の水温が所定温度に維持されない状態(常温の状態)になる。また、上記冷水温度スイッチ9Dの右側には、制御装置20に接続され、「RESET」と表示されたタイマリセットスイッチ9Eが配置されている。このタイマリセットスイッチ9Eは、前記フィルタ交換警告ランプ8Fの点灯による警告に基づき、後述するセディメントフィルタ12及びカーボンフィルタ13を交換した後に前記フィルタ交換タイマ9Gの作動を開始させるべく、上記タイマリセットスイッチ9Eを押すことにより該タイマリセットスイッチ9Eのオン・オフ表示部が点灯されるとともに、カウント時間が零(0)にリセットされる。 Further, on the right side of the light illuminance sensor 9C, a cold water temperature switch 9D connected to the control device 20 and displayed as “COLD” is arranged. The chilled water temperature switch 9D is in a state where the chilled water temperature switch 9D is lit and the hot / cold water state display lamp 8C is lit, and the water temperature in the chilled water tank 22 described later is cooled to a predetermined temperature. At any time of the (cold water state), the on / off display part of the cold water temperature switch 9D is turned off by manually pressing, and the operation of the cooler 24 described later is stopped, and the inside of the cold water tank 22 is The water temperature is not maintained at a predetermined temperature (normal temperature state). Further, on the right side of the cold water temperature switch 9D, a timer reset switch 9E connected to the control device 20 and displayed as “RESET” is arranged. This timer reset switch 9E is based on the warning due to the lighting of the filter replacement warning lamp 8F, in order to start the operation of the filter replacement timer 9G after replacing the sediment filter 12 and the carbon filter 13 which will be described later. By pressing 9E, the on / off display portion of the timer reset switch 9E is turned on and the count time is reset to zero (0).
 また、上記凹部2aの下方には、下正面パネル2cが着脱自在に取り付けられ、この下正面パネル2cの後方(上記筐体2内)には、後述する冷水タンク22,温水タンク23、排水用タンク(図示は省略)等が収容されている。これらの構成を含めて、以下、図3に示す模式図を参照しながらこの実施の形態に係る電解式浄水装置1を説明する。 A lower front panel 2c is detachably attached to the lower portion of the recess 2a. A cold water tank 22, a hot water tank 23, and a drainage water, which will be described later, are provided behind the lower front panel 2c (in the casing 2). A tank (not shown) and the like are accommodated. Hereinafter, the electrolytic water purifier 1 according to this embodiment will be described with reference to the schematic diagram shown in FIG. 3 including these configurations.
 この電解式浄水装置1は、公共の上水道に配管(符号は省略する。)及び止水弁11を介して接続されており、この配管にはセディメントフィルタ12が接続されている。このセディメントフィルタ12では、図示しない5~6μmの孔により上水道から給水された水中の錆や砂、塵埃などをはじめ、微細な不純物が取り除かれる。このセディメントフィルタ12には、カーボンフィルタ13が接続され、このカーボンフィルタ13の図示しない活性炭の吸着作用により、上記セディメントフィルタ12を経た水中の塩素化合物や薄い色素,臭気等が吸着される。また、このカーボンフィルタ13には、電磁弁14を介して加圧ポンプ15が接続され、上水道から給水された水が下流側に圧送される。これら電磁弁14及び加圧ポンプ15は、図4に示す制御装置20に接続され、後述する予備タンク18内のフロートスイッチ21の作動により駆動又は停止される。 The electrolytic water purifier 1 is connected to a public water supply through a pipe (reference numeral is omitted) and a water stop valve 11, and a sediment filter 12 is connected to the pipe. In the sediment filter 12, fine impurities such as rust, sand, and dust in water supplied from the water supply are removed through a 5 to 6 μm hole (not shown). A carbon filter 13 is connected to the sediment filter 12, and chlorine compounds, thin pigments, odors and the like in water that have passed through the sediment filter 12 are adsorbed by the adsorption action of activated carbon (not shown) of the carbon filter 13. In addition, a pressure pump 15 is connected to the carbon filter 13 via an electromagnetic valve 14, and water supplied from the water supply is pumped downstream. The electromagnetic valve 14 and the pressurizing pump 15 are connected to the control device 20 shown in FIG. 4 and are driven or stopped by the operation of a float switch 21 in the reserve tank 18 described later.
 また、図3に示す上記加圧ポンプ15には、逆浸透膜フィルタ16(本発明の純水生成部)が接続され、この逆浸透膜フィルタ16では、0.0001μm(頭髪の約100万分の1)の図示しない微孔を有する半透膜によって、上記加圧ポンプ15から圧送された水から重金属、各種細菌や有機化合物などの不純物が約95%取り除かれた純水が得られるとともに、透過できずに不純物を含む水は下部に接続された排水用チューブ(符号は省略する。)から外部に排出される。また、この逆浸透膜フィルタ16には、一方の鉱石フィルタ17が接続されるとともに、他方の分岐継手(符号は省略する。)を介してイオン交換樹脂フィルタ31が接続されている。 3 is connected to a reverse osmosis membrane filter 16 (pure water generation unit of the present invention). The reverse osmosis membrane filter 16 has 0.0001 μm (about 1 million minutes of hair). The semipermeable membrane having micropores (not shown) in 1) provides pure water from which impurities such as heavy metals, various bacteria and organic compounds are removed by about 95% from the water pumped from the pressurizing pump 15, and allows permeation. The water containing impurities cannot be discharged from the drainage tube (reference numeral is omitted) connected to the lower part. In addition, one ore filter 17 is connected to the reverse osmosis membrane filter 16 and an ion exchange resin filter 31 is connected via the other branch joint (reference numeral is omitted).
 これらのうち、一方の鉱石フィルタ17には、図示しない天然鉱石の医王石、長石、トルマリン等が積層されており、該一方の鉱石フィルタ17を純水が通過することにより、該純水にはミネラル成分が溶解される。この鉱石フィルタ17には、さらに予備タンク18が接続され、この予備タンク18内に上記鉱石フィルタ17から吐水された水が貯留される。また、この予備タンク18には、貯留された水を所定量に維持するためのフロートスイッチ21が内設されているとともに、該予備タンク18の下部には、冷水タンク22と、温水タンク23とがそれぞれ接続されている。上記フロートスイッチ21は、中空状に密閉され水面上で浮動可能な浮動体21aと、この浮遊体21aを支持するL字状の支持体21bと、上記浮動体21aの上下動により上記支持体21bを介して電気的にON/OFF作動するマイクロスイッチ21cとにより構成されている。なお、本発明の純水を処理水タンクに供給する供給ルートは、上記鉱石フィルタ17及び予備タンク18により構成されている。 Among these, one ore filter 17 is laminated with natural ore Io-oishi, feldspar, tourmaline, etc. (not shown), and pure water passes through the one ore filter 17 so that the pure water contains Mineral components are dissolved. A reserve tank 18 is further connected to the ore filter 17, and water discharged from the ore filter 17 is stored in the reserve tank 18. The reserve tank 18 is provided with a float switch 21 for maintaining a predetermined amount of stored water, and a cold water tank 22, a hot water tank 23, and a lower portion of the reserve tank 18. Are connected to each other. The float switch 21 includes a floating body 21a that is hermetically sealed and floats on the water surface, an L-shaped support body 21b that supports the floating body 21a, and the support body 21b by the vertical movement of the floating body 21a. And a micro switch 21c which is electrically turned on / off via the switch. The supply route for supplying the pure water of the present invention to the treated water tank is constituted by the ore filter 17 and the reserve tank 18.
 したがって、上記予備タンク18内の貯留水量が一定量だけ減少すると上記浮動体21aの先端側が下降し、この下降により上記支持体21bを介して、図4に示す制御装置20に接続されたマイクロスイッチ21cの通電がONとなって、上記電磁弁14が開かれるとともに加圧ポンプ15が駆動され、予備タンク18内に鉱石フィルタ17を通過した水が補充される。また、上記予備タンク18内の貯留水量が所定量に達すると、上記マイクロスイッチ21cの通電がOFFとなって、上記電磁弁14が閉じられるとともに加圧ポンプ15が停止され、予備タンク18内に上記鉱石フィルタ17を通過した水は補充されなくなる。 Therefore, when the amount of stored water in the reserve tank 18 decreases by a certain amount, the tip end side of the floating body 21a descends, and the microswitch connected to the control device 20 shown in FIG. The energization of 21c is turned ON, the electromagnetic valve 14 is opened, and the pressurizing pump 15 is driven, so that the water that has passed through the ore filter 17 is replenished in the reserve tank 18. When the amount of stored water in the reserve tank 18 reaches a predetermined amount, the energization of the microswitch 21c is turned off, the solenoid valve 14 is closed, the pressurizing pump 15 is stopped, and the reserve tank 18 is filled. The water that has passed through the ore filter 17 is not replenished.
 そして、上記予備タンク18の下方には、それぞれ管体(符号は省略する。)を介して冷水タンク22と、温水タンク23が接続されている。上記冷水タンク22には、貯留された水を冷却するためのクーラー24が装着されているとともに、貯留された冷水の温度を所定温度に維持すべく温度検出する冷水用サーモスタット25が、温度検出部25aを水中に配置して装着されている。これらのうち、クーラー24及び冷水用サーモスタット25は図4に示す制御装置20に接続され、冷水タンク22内の水温が所定の温度以上に上昇した場合には、上記冷水用サーモスタット25の通電がONとなることにより、クーラー24が駆動されて上記貯留水の水温が冷却される。これに対して、水温が所定の温度まで下降した場合には、上記冷水用サーモスタット25の通電がOFFとなることにより、クーラー24の駆動が停止される。また、上記冷水タンク22には、先端が冷水を吐水する前記冷水用吐水口3とされた管体(符号は省略する。)が接続されている。したがって、前記冷水用開閉操作レバー5を後方に操作すると、上記冷水タンク22内に貯留された冷水は、自重により上記冷水用吐水口3から吐水され、この吐水量に応じて、前記予備タンク18に貯留された水が落差(自重)により冷水タンク22に補充される。 Further, a cold water tank 22 and a hot water tank 23 are connected to the lower side of the spare tank 18 via pipes (reference numerals are omitted). The cold water tank 22 is provided with a cooler 24 for cooling the stored water, and a cold water thermostat 25 for detecting the temperature of the stored cold water so as to maintain the temperature at a predetermined temperature. 25a is installed in the water. Among these, the cooler 24 and the cold water thermostat 25 are connected to the control device 20 shown in FIG. 4, and when the water temperature in the cold water tank 22 rises above a predetermined temperature, the cold water thermostat 25 is energized. As a result, the cooler 24 is driven to cool the temperature of the stored water. On the other hand, when the water temperature falls to a predetermined temperature, the cooler thermostat 25 is turned off, and the drive of the cooler 24 is stopped. Further, the cold water tank 22 is connected to a pipe body (the reference numeral is omitted) whose tip is the cold water outlet 3 for discharging cold water. Accordingly, when the cold water opening / closing operation lever 5 is operated rearward, the cold water stored in the cold water tank 22 is discharged from the cold water discharge port 3 by its own weight, and according to the discharged water amount, the spare tank 18 is discharged. The cold water tank 22 is replenished to the cold water tank 22 by a drop (self-weight).
 また、上記温水タンク23には、貯留された水を加温するためのヒーター27が装着されているとともに、該温水タンク23に貯留された温水の温度を所定温度に維持すべく温度検出する温水用サーモスタット28が、温度検出部28aを水中に配置して装着されている。これらのうち、ヒーター27及び温水用サーモスタット28は、図4に示す制御装置20に接続され、温水タンク23内の水温が所定の温度以下に下降した場合には、上記温水用サーモスタット28の通電がONとなることにより、ヒーター27が作動されて上記貯留水の水温が加温される。これに対して、水温が所定の温度まで上昇した場合には、上記温水用サーモスタット28の通電がOFFとなることにより、ヒーター27の作動が停止される。また、上記温水タンク23には、先端が前記温水用吐水口4となされた管体(符号は省略する。)が接続されている。また、この温水タンク23への水の補充は、上記温水用吐水口4から温水が吐出されると、前記予備タンク18に貯留された水が管体を介して該温水タンク23に落差(自重)により補充される。 The hot water tank 23 is equipped with a heater 27 for heating the stored water, and hot water for temperature detection to maintain the temperature of the hot water stored in the hot water tank 23 at a predetermined temperature. The thermostat 28 is mounted with the temperature detector 28a disposed in water. Among these, the heater 27 and the hot water thermostat 28 are connected to the control device 20 shown in FIG. 4, and when the water temperature in the hot water tank 23 falls below a predetermined temperature, the hot water thermostat 28 is energized. By turning on, the heater 27 is operated and the temperature of the stored water is heated. On the other hand, when the water temperature rises to a predetermined temperature, the operation of the heater 27 is stopped by turning off the energization of the hot water thermostat 28. The hot water tank 23 is connected to a tubular body (the reference numeral is omitted) whose tip is the hot water outlet 4. In addition, when the hot water is discharged from the hot water outlet 4, the water stored in the spare tank 18 drops into the hot water tank 23 through the pipe body (self-weight). ).
 また、上述した逆浸透膜フィルタ16から分岐して接続された他方のイオン交換樹脂フィルタ31では、イオン交換樹脂のイオン交換作用により、上記逆浸透膜フィルタ16から圧送された純水中のカルシウムや炭酸ガスなどや、殺菌のために水中に存在する残留塩素が除去された超純水が生成される。このイオン交換樹脂フィルタ31には、該イオン交換樹脂フィルタ31から圧送された超純水を電気分解して、水素ガスと酸素ガスとを生成するための電解装置(本発明の水素ガス生成部)32が接続されている。この電解装置32は、図5及び図6に示すように、水を収容可能な外側容器33と、この外側容器33の内側上部に隙間を形成して配置され内側に水を収容可能な内側容器34と、これら外側容器33及び内側容器34の上端に固定された容器蓋35と、この容器蓋35の上面に固定された支持蓋37と、この支持蓋37に固定された水素ガス用ダクト38及び酸素ガス用ダクト39とから構成された構造体をなしている。 Moreover, in the other ion exchange resin filter 31 branched and connected from the reverse osmosis membrane filter 16 described above, calcium in pure water pumped from the reverse osmosis membrane filter 16 or Ultrapure water from which carbon dioxide and other residual chlorine present in the water for sterilization is removed is generated. The ion exchange resin filter 31 is an electrolysis apparatus for electrolyzing ultrapure water pumped from the ion exchange resin filter 31 to generate hydrogen gas and oxygen gas (hydrogen gas generation unit of the present invention). 32 is connected. As shown in FIGS. 5 and 6, the electrolyzer 32 includes an outer container 33 that can store water, and an inner container that can store water inside the outer container 33 by forming a gap in the inner upper portion thereof. 34, a container lid 35 fixed to the upper ends of the outer container 33 and the inner container 34, a support lid 37 fixed to the upper surface of the container lid 35, and a hydrogen gas duct 38 fixed to the support lid 37. And the structure comprised from the duct 39 for oxygen gas.
 これらのうち、上記外側容器33は、図6に示すように、下方側に水(電解液)を貯留可能な胴部33aが形成され、この胴部33aの下方には、貯留された水を排出するための排出口33bが形成されている。この排出口33bには手動により開閉される開閉弁41(図3参照)が配置されている。この開閉弁41による排水は、電解装置32内に後述する電気分解により析出されたスケールなどを除去するための排水であって、この電解装置32内には、前記逆浸透膜フィルタ16及びイオン交換フィルタ31により濾過された純水が供給されることから、スケールなどの蓄積が少なく、約1年に1回程度の排水がなされる。また、上記外側容器33には、上記胴部33aと連続する上方にV字状に傾斜して拡幅された拡幅部33dが形成され、この拡幅部33dと連続する上部に起立された起立部33fが形成されており、これらの図5に示す左右方向の側部は図示しない側板により封止されているとともに、上記起立部33fの上部は、上記容器蓋35に固定されている。 Among these, as shown in FIG. 6, the outer container 33 is formed with a barrel 33a capable of storing water (electrolyte) on the lower side, and the stored water is stored below the barrel 33a. A discharge port 33b for discharging is formed. An open / close valve 41 (see FIG. 3) that is manually opened and closed is disposed at the discharge port 33b. The drainage by the on-off valve 41 is drainage for removing scales and the like deposited by electrolysis, which will be described later, in the electrolysis apparatus 32. In the electrolysis apparatus 32, the reverse osmosis membrane filter 16 and the ion exchange are disposed. Since pure water filtered by the filter 31 is supplied, there is little accumulation of scale and the like, and drainage is performed about once a year. In addition, the outer container 33 is formed with a widened portion 33d that is inclined and widened in a V-shape above the trunk portion 33a, and an upright portion 33f that is erected on the upper portion that is continuous with the widened portion 33d. These side portions shown in FIG. 5 are sealed by side plates (not shown), and the upper portion of the upright portion 33f is fixed to the container lid 35.
 また、前記内側容器34は、下端に水が流通可能な流通口34aが形成され、この流通口34aから上方にV字状に傾斜して拡幅された拡幅部34bが形成され、この拡幅部34bと連続する上部に起立された起立部34cが形成されており、この起立部34cの上部は、前記容器蓋35に固定されている。そして、前記外側容器33の拡幅部33d及び起立部33fと、上記内側容器34の拡幅部34b及び起立部34cとの間には、後述する水素ガスが流通可能な水素ガス流路43と、後述する酸素ガスが流通可能な酸素ガス流路44とが形成される。 Further, the inner container 34 has a flow port 34a through which water can flow at the lower end, and a widened portion 34b that is widened by inclining in a V shape upward from the flow port 34a, and this widened portion 34b. An upright portion 34c is formed at a continuous upper portion, and the upper portion of the upright portion 34c is fixed to the container lid 35. Between the widened portion 33d and the upright portion 33f of the outer container 33 and the widened portion 34b and the upright portion 34c of the inner container 34, a hydrogen gas passage 43 through which hydrogen gas, which will be described later, can flow, and a later described Thus, an oxygen gas flow path 44 through which oxygen gas can flow is formed.
 また、前記水素ガス用ダクト38は、下端に上記水素ガス流路43からの水素ガスが流通可能な開口(符号は省略する。)が形成され、この開口と連続する上方に起立された下側起立部38aが形成され、この下側起立部38aと連続する上方に縮幅された縮幅部38bが形成され、この縮幅部38bと連続する上方に起立された水素ガス吐出部38cが形成されている。この水素ガス吐出部38cの上端には、水素ガスを吐出可能に開口された水素ガス吐出口38dが形成され、この水素ガス吐出口38dは配管部材56により図3に示すカーボンエアフィルタ57に接続されている。また、上記縮幅部38bは、図5に示すように、左右から中央に向かって高くなる山形状に形成されており、この山形状の頂部に上記水素ガス吐出部38cが形成されていることから、後述する陰極電解板51により生成された水素ガスが、該水素ガス吐出部38cに効率的に集中させられる。 Further, the hydrogen gas duct 38 has an opening (reference numeral is omitted) through which hydrogen gas from the hydrogen gas flow path 43 can flow at the lower end, and a lower side standing up above the opening. An upright portion 38a is formed, a reduced width portion 38b is formed that is continuous with the lower upright portion 38a, and a reduced width portion 38b is formed, and a hydrogen gas discharge portion 38c that is upwardly continued and continuous with the reduced width portion 38b is formed. Has been. At the upper end of the hydrogen gas discharge portion 38c, a hydrogen gas discharge port 38d opened so as to discharge hydrogen gas is formed, and the hydrogen gas discharge port 38d is connected to the carbon air filter 57 shown in FIG. Has been. Further, as shown in FIG. 5, the reduced width portion 38b is formed in a mountain shape that rises from the left and right toward the center, and the hydrogen gas discharge portion 38c is formed at the top of the mountain shape. Accordingly, hydrogen gas generated by the cathode electrolytic plate 51 described later is efficiently concentrated on the hydrogen gas discharge portion 38c.
 また、前記酸素ガス用ダクト39は、下端に前記酸素ガス流路44からの酸素ガスが流通可能な開口(符号は省略する。)が形成され、この開口と連続する上方に起立された下側起立部39aが形成され、この下側起立部39aと連続する上方に縮幅された縮幅部39bが形成され、この縮幅部38bと連続する上方に起立された酸素ガス吐出部39cが形成されている。この酸素ガス吐出部39cの上端には、酸素ガスを吐出可能に開口された酸素ガス吐出口39dが形成され、この酸素ガス吐出口39dは配管部材58により図3に示す酸素送出用ファン59に接続されている。また、上記縮幅部39bは、図示は省略するが、上記水素ガス用ダクト38の縮幅部38bと同様に、左右から中央に向かって高くなる山形状に形成されており、この山形状の頂部に上記酸素ガス吐出部39cが形成されていることから、後述する陽極電解板52により生成された酸素ガスが、該酸素ガス吐出部39cに効率的に集中させられる。 Further, the oxygen gas duct 39 has an opening (reference numeral is omitted) through which oxygen gas from the oxygen gas flow path 44 can flow at the lower end, and the lower side standing up above the opening. An upright portion 39a is formed, a reduced width portion 39b is formed which is continuous with the lower upright portion 39a, and a reduced width portion 39b is formed, and an oxygen gas discharge portion 39c is formed which is continuous upward with the reduced width portion 38b. Has been. At the upper end of the oxygen gas discharge portion 39c, an oxygen gas discharge port 39d opened so as to discharge oxygen gas is formed. This oxygen gas discharge port 39d is connected to the oxygen delivery fan 59 shown in FIG. It is connected. In addition, although the illustration of the reduced width portion 39b is omitted, like the reduced width portion 38b of the hydrogen gas duct 38, the reduced width portion 39b is formed in a mountain shape that increases from the left and right toward the center. Since the oxygen gas discharge portion 39c is formed at the top, oxygen gas generated by the anode electrolytic plate 52 described later is efficiently concentrated on the oxygen gas discharge portion 39c.
 また、上記電解装置32には、上記容器蓋35に、図5及び図6に示すように、給水継手46が固定され、この給水継手46には、前記イオン交換樹脂フィルタ31からの超純水を供給するための給水穴46cが形成されている。この給水継手46の上端側には、上記イオン交換樹脂フィルタ31の吐出口と接続するチューブ(符号は省略する)を固定するためのチューブ固定部46aが成形され、このチューブ固定部46aの下方には、後述するフロート弁体47を装着する弁体装着部46bが一体的に成形されている。この弁体装着部46bには、上記給水穴46cよりも大径の吐出穴46dが形成され、この吐出穴46dの上端には、上記給水穴46cに向かって縮径するテーパ面を有するテーパ穴46fが形成されているとともに、上記弁体装着部46bの一部はフロート弁体47の後述する支持体47cが回動可能な切欠き(符号は省略する)が形成されている。 Further, as shown in FIGS. 5 and 6, the water supply joint 46 is fixed to the container lid 35 in the electrolysis apparatus 32, and the ultrapure water from the ion exchange resin filter 31 is connected to the water supply joint 46. A water supply hole 46c for supplying water is formed. A tube fixing portion 46a for fixing a tube (reference numeral is omitted) connected to the discharge port of the ion exchange resin filter 31 is formed on the upper end side of the water supply joint 46, and below the tube fixing portion 46a. Is formed integrally with a valve body mounting portion 46b for mounting a float valve body 47 to be described later. A discharge hole 46d having a diameter larger than that of the water supply hole 46c is formed in the valve body mounting portion 46b, and a tapered hole having a tapered surface that decreases in diameter toward the water supply hole 46c is formed at the upper end of the discharge hole 46d. 46 f is formed, and a part of the valve body mounting portion 46 b is formed with a notch (reference numeral is omitted) in which a later-described support body 47 c of the float valve body 47 can be rotated.
 また、上記電解装置32には、上記給水継手46の弁体装着部46bに、上記給水穴46cから供給される超純水を所定の水量に維持するためのフロート弁体47が装着されている。このフロート弁体47は、上記超純水が所定量に達したときに該超純水の流入を阻止するものであって、中空状に密閉され水面上で浮動可能な浮動体47aと、弁棒47bと、これら浮動体47a及び弁棒47bを支持するL字状の支持体47cとから構成されている。この支持体47cは、一端側に浮動体47aが固定され、他端側が、上記給水継手46の弁体装着部46bにピン47dにより回動可能に支持されている。また、上記支持体47cの他端側には、弁棒47bが立設され、この弁棒47bの上端には、上記支持体47cが図5に示す反時計方向に回動することにより上記テーパ穴46fと密着可能なテーパ面を有するテーパ凸部47fが形成されている。 In the electrolyzer 32, a float valve body 47 for maintaining the predetermined amount of ultrapure water supplied from the water supply hole 46 c is mounted on the valve body mounting portion 46 b of the water supply joint 46. . The float valve body 47 prevents the inflow of the ultrapure water when the ultrapure water reaches a predetermined amount, and includes a floating body 47a that is sealed in a hollow shape and floats on the water surface, The rod 47b is composed of a floating body 47a and an L-shaped support 47c that supports the valve rod 47b. The support 47c has a floating body 47a fixed to one end side, and the other end is rotatably supported by a valve body mounting portion 46b of the water supply joint 46 by a pin 47d. Further, a valve rod 47b is erected on the other end side of the support 47c, and the taper is formed on the upper end of the valve rod 47b by rotating the support 47c counterclockwise as shown in FIG. A tapered convex portion 47f having a tapered surface that can be in close contact with the hole 46f is formed.
 そして、上記フロート弁体47は、上記電解装置32内に貯留された超純水の水面が一定量だけ減水すると、上記浮動体47aの先端側が下降し、この下降により上記支持体47cを介して、上記弁棒47bのテーパ凸部47fが上記給水継手46のテーパ穴46fから離隔して隙間が形成され、この隙間から内部に前記イオン交換樹脂フィルタ31からの超純水が圧送される。また、上記電解装置32内における超純水の貯留水量が増大すると、それに伴って上記浮動体47aの先端側が上昇し、該貯留水量が所定量に達した際には上記支持体47cを介して、上記弁棒47bのテーパ凸部47fが上記給水継手46のテーパ穴46fに密着され、この密着状態により上記イオン交換樹脂フィルタ31から圧送される超純水の供給は阻止される。 When the surface of the ultrapure water stored in the electrolyzer 32 is reduced by a certain amount, the float valve body 47 is lowered at the front end side of the floating body 47a, and this lowering causes the support 47c to pass through the support body 47c. The tapered protrusion 47f of the valve rod 47b is separated from the tapered hole 46f of the water supply joint 46 to form a gap, and ultrapure water from the ion exchange resin filter 31 is pumped into the inside through this gap. When the amount of ultrapure water stored in the electrolyzer 32 increases, the leading end of the floating body 47a rises accordingly, and when the amount of stored water reaches a predetermined amount, the support 47c is interposed. The tapered protrusion 47f of the valve rod 47b is brought into close contact with the tapered hole 46f of the water supply joint 46, and the supply of ultrapure water pumped from the ion exchange resin filter 31 is prevented by this close contact state.
 また、上記電解装置32には、図6に示す内容器34の胴部33a内に、電気分解により水素ガス及び酸素ガスを生成する電解部40が配置されている。この電解部40は、上記胴部33aに陰極側電極棒48及び陽極側電極棒49が、絶縁状態で対向して固定されており、一方の陰極側電極棒48には、板状に形成された表面にチタン白金めっきが施された陰極電解板51が固定され、他方の陽極側電極棒49には、板状に形成された表面にチタン白金めっきが施された陽極電解板52が、上記陰極電解板51と対面して固定されている。これら陰極電解板51及び陽極電解板52は、上記内容器34の流通口34aの下方に配置され、陰極電解板51と陽極電解板52との対面する中央部には、イオン交換フィルム53が隙間を形成して配置され、このイオン交換フィルム53により、陰極電解板51と陽極電解板52とが分離されている。また、陰極電解板51及び陽極電解板52の周囲には、純水を自由に流通可能な網目を有するネット体54が配置されている。 Further, in the electrolysis apparatus 32, an electrolysis unit 40 that generates hydrogen gas and oxygen gas by electrolysis is disposed in the body 33a of the inner container 34 shown in FIG. In the electrolysis section 40, a cathode side electrode rod 48 and an anode side electrode rod 49 are fixed to the body portion 33a so as to face each other in an insulated state, and one cathode side electrode rod 48 is formed in a plate shape. The cathode electrolytic plate 51 with titanium platinum plating on the surface is fixed, and the anode electrode plate 49 with the titanium platinum plating on the plate-shaped surface is attached to the other anode side electrode rod 49. It is fixed so as to face the cathode electrolytic plate 51. The cathode electrolytic plate 51 and the anode electrolytic plate 52 are disposed below the flow port 34a of the inner vessel 34, and an ion exchange film 53 is provided in a gap between the cathode electrolytic plate 51 and the anode electrolytic plate 52 facing each other. The cathode electrolytic plate 51 and the anode electrolytic plate 52 are separated from each other by the ion exchange film 53. Further, around the cathode electrolytic plate 51 and the anode electrolytic plate 52, a net body 54 having a mesh capable of freely flowing pure water is disposed.
 そして、このように構成された電解装置32では、図6に示す陰極側電極棒48と陽極側電極棒49とにそれぞれ通電することにより、内部に貯留された純水(電解液)が電気分解され、一方の陰極電解板51側に水素ガス(H)が生成される。この水素ガスは、水素ガス流路43を経て、水素ガス用ダクト38の水素ガス吐出口38dに吐出され、この水素ガス吐出口38dと接続する配管部材56(図3参照)を介して一方のカーボンエアフィルタ57に送られる。また、他方の陽極電解板52側には酸素ガス(O)が生成され、この酸素ガスは、酸素ガス流路44を経て、酸素ガス用ダクト39の酸素ガス吐出口39dに吐出され、この酸素ガス吐出口39dと接続する配管部材58を介して他方の酸素送出用ファン59に送られる。 In the electrolysis apparatus 32 configured as described above, the deionized water (electrolytic solution) stored therein is electrolyzed by energizing the cathode side electrode rod 48 and the anode side electrode rod 49 shown in FIG. Then, hydrogen gas (H 2 ) is generated on one cathode electrolytic plate 51 side. This hydrogen gas is discharged to the hydrogen gas discharge port 38d of the hydrogen gas duct 38 through the hydrogen gas flow path 43, and one of the hydrogen gases is connected via the piping member 56 (see FIG. 3) connected to the hydrogen gas discharge port 38d. It is sent to the carbon air filter 57. Further, oxygen gas (O 2 ) is generated on the other anode electrolytic plate 52 side, and this oxygen gas is discharged through the oxygen gas flow path 44 to the oxygen gas discharge port 39d of the oxygen gas duct 39. It is sent to the other oxygen delivery fan 59 through a piping member 58 connected to the oxygen gas discharge port 39d.
 これらのうち、一方のカーボンエアフィルタ57では、図示しないカーボン粉末などの濾過材により、上記電解装置32で生成された水素ガス中に含まれる泡が除去される。このカーボンエアフィルタ57には、管体(符号は省略する。)を介して循環ポンプ62が接続されている。この循環ポンプ62は上記電解装置32の作動時にのみ駆動されるものであって、該循環ポンプ62には、上記カーボンエアフィルタ57と接続されるガス吸入口62aと、上述した冷水タンク22に一端が接続された管体(符号は省略する。)の他端と接続された水吸入口62bとが配置され、該循環ポンプ62の駆動時において、一方のガス吸入口62aにより上記カーボンエアフィルタ57からの水素ガスが吸入されるとともに、他方の水吸入口62bにより上記冷水タンク22内からの水が吸入される。 Among these, in one carbon air filter 57, bubbles contained in the hydrogen gas generated by the electrolysis device 32 are removed by a filtering material such as carbon powder (not shown). A circulation pump 62 is connected to the carbon air filter 57 via a tube (reference numerals are omitted). The circulation pump 62 is driven only when the electrolysis device 32 is operated. The circulation pump 62 includes a gas inlet 62a connected to the carbon air filter 57 and one end of the cold water tank 22 described above. And a water suction port 62b connected to the other end of the pipe body (the reference numeral is omitted) is disposed, and when the circulation pump 62 is driven, the carbon air filter 57 is connected to one of the gas suction ports 62a. From the cold water tank 22 is sucked through the other water suction port 62b.
 そして、上記循環ポンプ62では、図示しないポンプ機構により、吸入された水素ガス(H)と水(HO)とが図示しないポンプ機構により混合され、水中に水素を溶存した水素水(H+HO)として吐出口62cから圧送される。この循環ポンプ62の吐出口62cは、管体(符号は省略する。)を介して気泡微細化フィルタ63に接続されている。この気泡微細化フィルタ63は、0.0001μm(頭髪の約100万分の1)の図示しない微孔を有する半透膜が内蔵されてなるものであって、該半透膜によって、上記循環ポンプ62から圧送された水素ガスの気泡を微細化させ、水素水中の溶存水素量を高める作用をする。この気泡微細化フィルタ63は、管体(符号は省略する。)を介して上記冷水タンク22に接続されている。 In the circulation pump 62, the sucked hydrogen gas (H 2 ) and water (H 2 O) are mixed by a pump mechanism (not shown) by a pump mechanism (not shown), and hydrogen water (H 2 + H 2 O), which is pumped from the discharge port 62c. The discharge port 62c of the circulation pump 62 is connected to the bubble miniaturization filter 63 via a tube (reference numerals are omitted). The bubble miniaturization filter 63 is a built-in semipermeable membrane having a micropore (not shown) of 0.0001 μm (about 1 / 1,000,000 of hair), and the circulation pump 62 is formed by the semipermeable membrane. The hydrogen gas bubbles pumped from are refined to increase the amount of dissolved hydrogen in the hydrogen water. The bubble miniaturizing filter 63 is connected to the cold water tank 22 through a tube (reference numerals are omitted).
 したがって、図3に示すように、気泡微細化フィルタ63からの水素水は、上記冷水タンク22内に圧送されて貯留され、この冷水タンク22内に貯留された水素水は、上記循環ポンプ62が駆動されることにより、該循環ポンプ62の水吸入口62bから吸引されるとともに、ガス吸入口62aから吸引された上記カーボンエアフィルタ57からの水素ガスと混合され、該循環ポンプ62の吐出口62cから上記気泡微細化フィルタ63を経て、再び上記冷水タンク22内に圧送されて貯留される。すなわち、上記冷水タンク22内に貯留された水素水は、本発明の循環ルートを構成する冷水タンク22、循環ポンプ62及び気泡微細化フィルタ63を経て循環することにより、処理水中の溶存水素量が徐々に増加することとなり、使用者は溶存水素量が飽和状態に近い状態で飲用することが可能となる。 Therefore, as shown in FIG. 3, the hydrogen water from the bubble miniaturization filter 63 is pumped and stored in the cold water tank 22, and the hydrogen water stored in the cold water tank 22 is stored in the circulation pump 62. By being driven, it is sucked from the water suction port 62b of the circulation pump 62 and mixed with the hydrogen gas from the carbon air filter 57 sucked from the gas suction port 62a, and the discharge port 62c of the circulation pump 62 From the above, the air is refined and stored in the cold water tank 22 through the bubble refining filter 63. That is, the hydrogen water stored in the cold water tank 22 is circulated through the cold water tank 22, the circulation pump 62 and the bubble refinement filter 63 constituting the circulation route of the present invention, so that the amount of dissolved hydrogen in the treated water is reduced. It gradually increases, and the user can drink in a state where the amount of dissolved hydrogen is close to saturation.
 また、上記電解装置32に接続された他方の酸素送出用ファン59は、上記電解装置32が作動中にのみ駆動されるものであって、この酸素送出用ファン59の駆動時において、上記電解装置32により生成された酸素を該電解装置32から吸引するとともに、該酸素送出用ファン59を経て図1に示す酸素吸引チューブ7内に送出される。そして、使用者は、上記電解装置32が作動中において、上記酸素吸引チューブ7の酸素ガス放出口7aから酸素ガスを吸引することができる。 The other oxygen delivery fan 59 connected to the electrolysis device 32 is driven only while the electrolysis device 32 is in operation, and when the oxygen delivery fan 59 is driven, the electrolysis device Oxygen generated by 32 is sucked from the electrolysis device 32 and sent out into the oxygen suction tube 7 shown in FIG. The user can suck oxygen gas from the oxygen gas discharge port 7a of the oxygen suction tube 7 while the electrolysis device 32 is in operation.
 なお、上記電解装置32は、上述した光照度センサ9Cの明信号により作動され、又は、該光照度センサ9Cからの暗信号により作動されない状態においても上記酸素放出スイッチ9Aを押すことにより(強制的に)作動され、この電解装置32の作動と同時に、上記循環ポンプ62と酸素送出用ファン59とがそれぞれ駆動される。また、これら電解装置32等が作動する時間は、図4に示す制御装置20に接続された水素生成作動タイマ9Hにより15分に設定され、電解装置32等が作動を停止して休止する時間は、制御装置20に接続された水素生成休止タイマ9Iにより45分に設定されている。これらの設定時間は、上述した設定時間に限定されるものではなく、冷水用吐水口3から水素水を飲用する頻度により自由に変更することができる。 The electrolysis device 32 is operated by the bright signal of the light illuminance sensor 9C described above or by pressing the oxygen release switch 9A even when not activated by the dark signal from the light illuminance sensor 9C (forcedly). The circulation pump 62 and the oxygen delivery fan 59 are driven simultaneously with the operation of the electrolyzer 32. Further, the time for the electrolyzer 32 and the like to operate is set to 15 minutes by the hydrogen generation operation timer 9H connected to the control device 20 shown in FIG. The time is set to 45 minutes by the hydrogen generation pause timer 9I connected to the control device 20. These set times are not limited to the set times described above, and can be freely changed according to the frequency of drinking hydrogen water from the cold water outlet 3.
 次に、上記電解式浄水装置1により水素ガスを生成して水素水を貯留するとともに、酸素ガスを生成する手順及び作用効果について、図7に示すフローチャートを参照して説明する。この電解式浄水装置1を作動させる前の準備段階において、前記水素生成作動タイマ9Hの設定時間は15分間に設定され、水素生成休止タイマ9Iの設定時間は45分に設定され、また、光照度センサ9Cの設定照度は上記電解式浄水装置1の使用時間帯に対応した照度(日照時間体における室内の照度)に設定されている。また、図1に示す止水弁11は、手動により予め開放されている。 Next, a procedure for generating hydrogen gas by the electrolytic water purification apparatus 1 to store hydrogen water and generating oxygen gas, and an operation effect thereof will be described with reference to a flowchart shown in FIG. In the preparatory stage before the electrolytic water purifier 1 is operated, the set time of the hydrogen generation operation timer 9H is set to 15 minutes, the set time of the hydrogen generation stop timer 9I is set to 45 minutes, and the light intensity sensor The set illuminance of 9C is set to illuminance corresponding to the use time zone of the electrolytic water purifier 1 (indoor illuminance in the sunshine hours body). Moreover, the water stop valve 11 shown in FIG. 1 is previously opened manually.
 最初のステップSt1において、前記予備タンク18の水量は所定量か否かが、前記フロートスイッチ21のマイクロスイッチ21cを介して制御装置20により判別され、所定量に達していないと判別された場合にはステップSt2に進み、所定量に達していると判別された場合には次のステップSt3に進む。これらのうち、ステップSt2に進んだ場合には、前記電磁弁14が開放されるとともに、前記加圧ポンプ15が駆動され、前記セディメントフィルタ12、カーボンフィルタ13、電磁弁14、逆浸透膜フィルタ16及び鉱石フィルタ17を経て純水化された水が圧送されて上記予備タンク18に補充され、ステップSt1に戻って繰返し予備タンク18の水量は所定量か否かが判別される。なお、上記加圧ポンプ15により圧送される水は、上記逆浸透膜フィルタ16からイオン交換樹脂フィルタ31にも分岐され、前記電解装置32に配置された給水継手46のテーパ穴46fが開放されている場合には、上記電解装置32内にも純水化されて水が補充される。 In the first step St1, whether or not the amount of water in the reserve tank 18 is a predetermined amount is determined by the control device 20 via the micro switch 21c of the float switch 21, and it is determined that the predetermined amount has not been reached. Advances to step St2, and if it is determined that the predetermined amount has been reached, advances to the next step St3. Among these, when the process proceeds to step St2, the electromagnetic valve 14 is opened and the pressurizing pump 15 is driven, so that the sediment filter 12, the carbon filter 13, the electromagnetic valve 14, and the reverse osmosis membrane filter are driven. 16 and the ore filter 17 are used to pump the purified water and replenish it to the spare tank 18, and the routine returns to step St1 to repeatedly determine whether or not the amount of water in the spare tank 18 is a predetermined amount. The water pumped by the pressurizing pump 15 is also branched from the reverse osmosis membrane filter 16 to the ion exchange resin filter 31, and the tapered hole 46f of the water supply joint 46 disposed in the electrolysis device 32 is opened. If so, the electrolyzer 32 is also purified and replenished with water.
 また、次のステップSt3に進んだ場合には、光照度センサ9Cの照度は設定照度か否かが、前記光照度センサ9Cを介して制御装置20により判別され、設定照度に達していないと判別された場合には、ステップSt3に戻って繰り返され、設定照度に達していると判別された場合には、次のステップSt4に進む。次のステップSt4に進んだ場合には、上記電解装置32が作動されるとともに、前記循環ポンプ62及び酸素送出用ファン59が駆動されて、上記電解装置32の電解作用により水素ガスと酸素ガスとが生成され、次のステップSt5に進む。なお、上記ステップSt4において上記電解装置32の作動が開始されると、図2に示す表示パネル8の水素・酸素生成中ランプ8Dが点灯され、この点灯状態は、後述するステップSt6において上記電解装置32の作動が停止されるまでの間に亘り継続される。また、上記電解装置32により生成された水素ガスは、前記カーボンエアフィルタ57を経て上記循環ポンプ62に吸引されて前記冷水タンク22からの水素水と混合され、気泡微細化フィルタ63を経て水素ガスが溶存された水素水として再び上記冷水タンク22に戻される。これらの循環ルートを経て循環することにより、処理水中の溶存水素量が徐々に増加することとなり、使用者は溶存水素量が飽和状態に近い状態で飲用することが可能となる。また、上記電解装置32により生成された酸素ガスは、上記酸素送出用ファン59により送出され、前記酸素吸引チューブ7の先端から吸引することができる。 When the process proceeds to the next step St3, whether or not the illuminance of the light illuminance sensor 9C is the set illuminance is determined by the control device 20 via the light illuminance sensor 9C, and it is determined that the set illuminance has not been reached. In this case, the process returns to step St3 and is repeated, and when it is determined that the set illuminance has been reached, the process proceeds to the next step St4. When the process proceeds to the next step St4, the electrolysis device 32 is activated, and the circulation pump 62 and the oxygen delivery fan 59 are driven, so that hydrogen gas, oxygen gas and Is generated, and the process proceeds to the next step St5. When the operation of the electrolyzer 32 is started in step St4, the hydrogen / oxygen generating lamp 8D of the display panel 8 shown in FIG. 2 is turned on. This lighting state is the above electrolyzer in step St6 described later. 32 until the operation of 32 is stopped. The hydrogen gas generated by the electrolysis device 32 is sucked into the circulation pump 62 through the carbon air filter 57 and mixed with the hydrogen water from the cold water tank 22, and the hydrogen gas passes through the bubble refinement filter 63. Is returned to the cold water tank 22 again as dissolved hydrogen water. By circulating through these circulation routes, the amount of dissolved hydrogen in the treated water gradually increases, and the user can drink in a state where the amount of dissolved hydrogen is close to saturation. Further, the oxygen gas generated by the electrolysis device 32 is sent out by the oxygen sending fan 59 and can be sucked from the tip of the oxygen suction tube 7.
 また、次のステップSt5では、上記電解装置32等の作動時間は15分間経過したか否かが、前記水素生成作動タイマ9Hを介して制御装置20により判別され、上記電解装置32等の作動時間が15分間経過していないと判別された場合には、ステップSt4に戻って繰り返され、上記電解装置32等の作動時間が15分間経過していると判別された場合には、次のステップSt6に進む。次のステップSt6に進んだ場合には、上記電解装置32の作動が停止されるとともに、前記循環ポンプ62及び酸素送出用ファン59の駆動が停止されて、上記電解装置32による水素ガスと酸素ガスとの生成は休止され、次のステップSt7に進む。なお、上記ステップSt6において上記電解装置32の作動が停止されると、図2に示す表示パネル8の水素・酸素休止中ランプ8Eが点灯され、この点灯は、次回のステップSt4において上記電解装置32の作動が開始されるまでの間に亘り継続される。 In the next step St5, whether or not the operating time of the electrolyzer 32 has elapsed for 15 minutes is determined by the control device 20 via the hydrogen generation operation timer 9H, and the operating time of the electrolyzer 32 and the like is determined. If it is determined that 15 minutes have not elapsed, the process returns to step St4 and is repeated. If it is determined that 15 minutes have elapsed for the electrolyzer 32 or the like, the next step St6 is performed. Proceed to When the process proceeds to the next step St6, the operation of the electrolysis device 32 is stopped and the driving of the circulation pump 62 and the oxygen delivery fan 59 is stopped, so that hydrogen gas and oxygen gas by the electrolysis device 32 are stopped. Is paused, and the process proceeds to the next step St7. When the operation of the electrolyzer 32 is stopped in step St6, the hydrogen / oxygen resting lamp 8E of the display panel 8 shown in FIG. 2 is turned on. This lighting is performed in the next step St4. The operation is continued until the operation is started.
 次のステップSt7では、酸素放出スイッチ9AがONであるか否かが、該酸素放出スイッチ9Aを介して制御装置20により判別され、ONであると判別された場合には、ステップSt4に戻って、繰り返し、上記電解装置32が作動されるとともに、前記循環ポンプ62及び酸素送出用ファン59が駆動されて、上記電解装置32の電解作用により水素ガスと酸素ガスとが生成され、ONではない(OFFである)と判別された場合には、次のステップSt8に進む。なお、上記ステップSt4において、酸素放出スイッチ9AがONであると判別される条件は、前記水素・酸素休止中ランプ8Eが点灯していて水素ガス及び酸素ガスが生成されていないにもかかわらず、使用者が酸素ガスを吸引したいために、上記酸素放出スイッチ9Aが押されていることが条件となる。 In the next step St7, whether or not the oxygen release switch 9A is ON is determined by the control device 20 via the oxygen release switch 9A. If it is determined that the oxygen release switch 9A is ON, the process returns to step St4. The electrolysis device 32 is operated repeatedly, and the circulation pump 62 and the oxygen delivery fan 59 are driven to generate hydrogen gas and oxygen gas by the electrolysis of the electrolysis device 32, and not ON ( If it is determined that it is OFF, the process proceeds to the next step St8. In step St4, the condition for determining that the oxygen release switch 9A is ON is that the hydrogen / oxygen resting lamp 8E is lit and hydrogen gas and oxygen gas are not generated. The condition is that the oxygen release switch 9A is pressed in order for the user to suck oxygen gas.
 次のステップSt8に進んだ場合には、電解装置32等の休止時間は45分間経過したか否かが、前記水素生成休止タイマ9Iを介して制御装置20により判別され、上記電解装置32等の休止時間が45分間経過していないと判別された場合には、ステップSt6に戻って繰り返され、上記電解装置32等の作動時間が45分間経過していると判別された場合には、ステップSt3に戻って繰り返される。 When the process proceeds to the next step St8, it is determined by the control device 20 via the hydrogen generation pause timer 9I whether or not the pause time of the electrolyzer 32 etc. has passed 45 minutes, and the electrolyzer 32 etc. If it is determined that the pause time has not elapsed for 45 minutes, the process returns to step St6 and is repeated. If it is determined that the operation time of the electrolyzer 32 or the like has elapsed for 45 minutes, step St3 To go back and repeat.
 以上のように、本実施の形態に係る電解式浄水装置1は、常時連続的に運転されるものではなく、例えば、水素水の飲用や酸素ガスの摂取を必要としない深夜(就寝中)には、前記光照度センサ9Cにより室内の照度を感知して運転が休止されるとともに、休止されてない場合であっても、前記水素生成作動タイマ9H又は水素生成休止タイマ9Iにより、前記電解装置32、循環ポンプ62及び酸素送出用ファン59が15分間駆動され45分間停止されるサイクルを繰り返すものである。したがって、この電解式浄水装置1では、処理水中の溶存水素量を一定量に保つことができるばかりではなく、節電をも図ることができる。 As described above, the electrolytic water purifier 1 according to the present embodiment is not always operated continuously, for example, at midnight (while sleeping) that does not require drinking of hydrogen water or ingestion of oxygen gas. The illuminance sensor 9C senses the illuminance in the room and the operation is suspended, and even when the operation is not suspended, the electrolysis device 32, the hydrogen generation operation timer 9H or the hydrogen generation suspension timer 9I. The cycle in which the circulation pump 62 and the oxygen delivery fan 59 are driven for 15 minutes and stopped for 45 minutes is repeated. Therefore, in this electrolytic water purifier 1, not only can the amount of dissolved hydrogen in the treated water be kept constant, but also power saving can be achieved.
 なお、図2に示す表示パネル8の冷水状態表示ランプ8Cと、操作パネル9の冷水温度スイッチ9Dとが点灯中(冷却中)に、該冷水温度スイッチ9Dを押してOFF操作することにより、上述したクーラー24が停止される。これによって、使用者は常温の水素水を飲用することができる。この冷水温度スイッチ9DによるON/OFF操作は、上述した自動運転中の任意の時期に操作することができる。また、図2に示す表示パネル8の温水状態表示ランプ8Bと、操作パネル9の温水温度スイッチ9Bとが点灯中(加温中)に、該温水温度スイッチ9Bを押してOFF操作することにより、上述したヒーター27が停止される。これによって、使用者は常温の純水を飲用することができる。この温水温度スイッチ9BによるON/OFF操作は、上述した自動運転中の任意の時期に操作することができる。 In addition, while the cold water state display lamp 8C of the display panel 8 shown in FIG. 2 and the cold water temperature switch 9D of the operation panel 9 are lit (cooling), the cold water temperature switch 9D is pressed to perform the OFF operation. The cooler 24 is stopped. This allows the user to drink room temperature hydrogen water. The ON / OFF operation by the cold water temperature switch 9D can be performed at any time during the automatic operation described above. Further, when the hot water state display lamp 8B of the display panel 8 and the hot water temperature switch 9B of the operation panel 9 shown in FIG. 2 are lit (warming), the hot water temperature switch 9B is pressed to perform an OFF operation. The heater 27 is stopped. Thus, the user can drink room temperature pure water. The ON / OFF operation by the hot water temperature switch 9B can be operated at any time during the automatic operation described above.
 1 電解式浄水装置
 2 筐体
 3 冷水用吐水口
 4 温水用吐水口
 7 酸素吸引チューブ
 7a 酸素ガス放出口
 12 セディメントフィルタ
 13 カーボンフィルタ
 15 加圧ポンプ
 16 逆浸透膜フィルタ
 17 鉱石フィルタ
 18 予備タンク
 20 制御装置
 22 冷水タンク
 23 温水タンク
 31 イオン交換樹脂フィルタ
 32 電解装置
 38d 水素ガス吐出口
 39d 酸素ガス吐出口
 40 電解部
 51 陰極電解板
 52 陽極電解板
 57 カーボンエアフィルタ
 59 酸素送出用ファン
 62 循環ポンプ
 63 気泡微細化フィルタ
DESCRIPTION OF SYMBOLS 1 Electrolytic water purifier 2 Case 3 Cold water outlet 4 Hot water outlet 7 Oxygen suction tube 7a Oxygen gas outlet 12 Sediment filter 13 Carbon filter 15 Pressure pump 16 Reverse osmosis membrane filter 17 Ore filter 18 Spare tank 20 Control device 22 Cold water tank 23 Hot water tank 31 Ion exchange resin filter 32 Electrolytic device 38d Hydrogen gas discharge port 39d Oxygen gas discharge port 40 Electrolytic part 51 Cathode electrolytic plate 52 Anode electrolytic plate 57 Carbon air filter 59 Oxygen delivery fan 62 Circulation pump 63 Bubble miniaturization filter

Claims (5)

  1.  水を浄水する浄水処理部と、この浄水処理部を経た水が貯留される処理水タンクと、この処理水タンクに貯留された水を吐水する吐水部とを備えた浄水装置であって、
     上記浄水処理部を経た水から純水を生成する純水生成部と、
     この純水生成部から生成された純水を上記処理水タンクに供給する供給ルートと、
     上記純水生成部により生成された純水の一部を電気分解することにより水素ガスを生成する水素ガス生成部と、
     上記処理水タンク内から処理水を取り出し再び該処理水タンクに戻す循環ルートと、
     この循環ルートの中途部に配置され、上記処理水タンクから取り出された処理水と上記水素ガスとを一緒に該処理水タンクに戻す循環ポンプと、
     を備えてなることを特徴とする電解式浄水装置。
    A water purification apparatus comprising a water purification unit for purifying water, a treated water tank for storing water that has passed through the water purification unit, and a water discharge unit for discharging water stored in the treated water tank,
    A pure water generation unit that generates pure water from the water that has passed through the water purification unit;
    A supply route for supplying pure water generated from the pure water generator to the treated water tank;
    A hydrogen gas generation unit that generates hydrogen gas by electrolyzing a part of pure water generated by the pure water generation unit;
    A circulation route for removing treated water from the treated water tank and returning it to the treated water tank;
    A circulation pump that is disposed in the middle of the circulation route and returns the treated water taken out from the treated water tank and the hydrogen gas together to the treated water tank;
    Electrolytic water purifier characterized by comprising.
  2.  前記循環ルートの中途部であって、前記循環ポンプと処理水タンクとの間には、前記水素ガスの気泡を微細化させる気泡微細化フィルタが配置されてなることを特徴とする請求項1記載の電解式浄水装置。 The bubble refinement filter which refines | miniaturizes the bubble of the said hydrogen gas is arrange | positioned between the said circulation pump and a treated water tank in the middle part of the said circulation route, The 1st aspect is characterized by the above-mentioned. Electrolytic water purifier.
  3.  前記循環ポンプと水素ガス生成部とは、タイマが内蔵された制御装置に接続されてなるとともに、この制御装置には光照度センサが接続され、
     上記光照度センサを介して上記制御装置が所定の照度であると判別した場合には、タイマを介して、上記循環ポンプと水素ガス生成部とを所定時間に亘って駆動と停止とを繰り返すようにされてなることを特徴とする請求項1又は2記載の何れかの電解式浄水装置。
    The circulation pump and the hydrogen gas generation unit are connected to a control device with a built-in timer, and a light illuminance sensor is connected to the control device,
    When the control device determines that the illuminance is predetermined via the light illuminance sensor, the circulation pump and the hydrogen gas generator are repeatedly driven and stopped over a predetermined time via a timer. The electrolytic water purifier according to claim 1 or 2, wherein
  4.  前記水素ガス生成部には、前記純水の電気分解により水素ガスと共に生成された酸素ガスを流出する酸素ガス流出ルートが接続され、この酸素ガス流出ルートの先端は、使用者が吸引する酸素ガスを放出する酸素ガス放出口とされてなることを特徴とする請求項1,2又は3記載の何れかの電解式浄水装置。 The hydrogen gas generation section is connected to an oxygen gas outflow route for flowing out oxygen gas generated together with hydrogen gas by electrolysis of the pure water, and the tip of the oxygen gas outflow route is an oxygen gas sucked by a user. The electrolytic water purifier according to any one of claims 1, 2, and 3, wherein the oxygen water discharge port is configured to release oxygen.
  5.  前記酸素ガス流出ルートの中途部には前記酸素ガスを送り出すファンが配置されてなるとともに、このファンは、前記制御装置に接続されてなるとともに、該制御装置には、酸素放出用スイッチが接続されてなり、
     前記循環ポンプと水素ガス生成部の駆動が停止している際に上記酸素放出用スイッチがオン操作されたと上記制御装置が判別した場合には、上記ファンと循環ポンプと水素ガス生成部とが駆動を開始することを特徴とする請求項4記載の電解式浄水装置。
    A fan for sending out the oxygen gas is arranged in the middle of the oxygen gas outflow route. The fan is connected to the control device, and an oxygen release switch is connected to the control device. And
    When the controller determines that the oxygen release switch is turned on while the circulation pump and the hydrogen gas generation unit are stopped, the fan, the circulation pump, and the hydrogen gas generation unit are driven. The electrolytic water purifier according to claim 4, wherein
PCT/JP2009/057977 2009-03-09 2009-04-22 Electrolytic water purifier WO2010103673A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009055476A JP2010207691A (en) 2009-03-09 2009-03-09 Electrolytic water purifying apparatus
JP2009-055476 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103673A1 true WO2010103673A1 (en) 2010-09-16

Family

ID=42727977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057977 WO2010103673A1 (en) 2009-03-09 2009-04-22 Electrolytic water purifier

Country Status (3)

Country Link
JP (1) JP2010207691A (en)
TW (1) TW201033133A (en)
WO (1) WO2010103673A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175451A (en) * 2016-08-29 2016-12-07 福州品行科技发展有限公司 Separate type multiplex hydrogen-rich kettle and using method thereof
CN106241967A (en) * 2016-08-29 2016-12-21 福州品行科技发展有限公司 Hydrogen rich water spray kettle and method of work thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805422B2 (en) * 2011-04-05 2015-11-04 シャープ株式会社 Dissolved hydrogen water generator
US10369532B2 (en) * 2014-05-27 2019-08-06 Hikarimirai Co., Ltd. Gas-dissolving device and gas-dissolving method
JP6280007B2 (en) * 2014-09-10 2018-02-14 ビクトリージャパン株式会社 Drinking water supply device
JP6297010B2 (en) * 2015-07-10 2018-03-20 株式会社ドクターズチョイス Hydrogen water server
JP6190431B2 (en) * 2015-09-01 2017-08-30 シャープ株式会社 Dissolved hydrogen water generator
JP6307051B2 (en) * 2015-09-08 2018-04-04 株式会社日本トリム Hydrogen water refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118653A (en) * 1996-08-27 1998-05-12 Nippon Torimu:Kk Electrolytic hydrogen dissolved water and method for making the same and apparatus therefor
JPH1177048A (en) * 1997-09-11 1999-03-23 Takao Miyauchi Apparatus for producing activated hydrogen water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2004066071A (en) * 2002-08-05 2004-03-04 Noritz Corp Hydrogen reduction water treatment apparatus
JP2005319427A (en) * 2004-05-11 2005-11-17 K & K:Kk Alkaline water generator
JP2006150188A (en) * 2004-11-26 2006-06-15 Noritz Corp Hydrogen water production device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118653A (en) * 1996-08-27 1998-05-12 Nippon Torimu:Kk Electrolytic hydrogen dissolved water and method for making the same and apparatus therefor
JPH1177048A (en) * 1997-09-11 1999-03-23 Takao Miyauchi Apparatus for producing activated hydrogen water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2004066071A (en) * 2002-08-05 2004-03-04 Noritz Corp Hydrogen reduction water treatment apparatus
JP2005319427A (en) * 2004-05-11 2005-11-17 K & K:Kk Alkaline water generator
JP2006150188A (en) * 2004-11-26 2006-06-15 Noritz Corp Hydrogen water production device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175451A (en) * 2016-08-29 2016-12-07 福州品行科技发展有限公司 Separate type multiplex hydrogen-rich kettle and using method thereof
CN106241967A (en) * 2016-08-29 2016-12-21 福州品行科技发展有限公司 Hydrogen rich water spray kettle and method of work thereof

Also Published As

Publication number Publication date
JP2010207691A (en) 2010-09-24
TW201033133A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
WO2010103673A1 (en) Electrolytic water purifier
US6491879B2 (en) Ozone generator
CN104386640B (en) Method and apparatus for carrying out programmable processing to the water in water refrigerator
US8192619B2 (en) Portable filtration and ozonation apparatus
US6296756B1 (en) Hand portable water purification system
JP2004520161A (en) Water treatment system under the sink
JP2004505770A (en) Water treatment system under the sink
US20080116146A1 (en) Water purification system
JP2010149030A (en) Ro water purifier
JP2011025114A (en) Switching type ro water purifier
US20020060189A1 (en) Method and apparatus for controlling a household water purifier
JP2011020098A (en) Raw water sensor-controlled ro water purifier
KR100620067B1 (en) Water Purifying System Generating Disolved Oxygen and Dissolved Hydrogen
US10071402B2 (en) Method for sterilizing water treatment apparatus having plurality of tanks
JP5882025B2 (en) Hydrogen water production apparatus and hydrogen water production method
US6475352B2 (en) Method and apparatus for monitoring an ozone generator in a household water purifier
KR101076630B1 (en) Hydrogen water humidifier
JP5202286B2 (en) UV water purifier
JP2007017087A (en) Refrigerator
KR20090012948A (en) A ion water producting device
KR20070113792A (en) A ion water producting device
JPH11277079A (en) Water treatment apparatus
KR20090101334A (en) Cold and warm water purifier
KR101076629B1 (en) Hydrogen water cold storage show case
KR200405857Y1 (en) The cold water tank for using a cold water ionizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841499

Country of ref document: EP

Kind code of ref document: A1