WO2010102514A1 - 高效太阳能立体电池及其制造方法 - Google Patents

高效太阳能立体电池及其制造方法 Download PDF

Info

Publication number
WO2010102514A1
WO2010102514A1 PCT/CN2010/000295 CN2010000295W WO2010102514A1 WO 2010102514 A1 WO2010102514 A1 WO 2010102514A1 CN 2010000295 W CN2010000295 W CN 2010000295W WO 2010102514 A1 WO2010102514 A1 WO 2010102514A1
Authority
WO
WIPO (PCT)
Prior art keywords
efficiency
light
meson
photocell
solar
Prior art date
Application number
PCT/CN2010/000295
Other languages
English (en)
French (fr)
Inventor
杨振宇
Original Assignee
Yang Zhenyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Zhenyu filed Critical Yang Zhenyu
Priority to AU2010223753A priority Critical patent/AU2010223753A1/en
Priority to EP10750310A priority patent/EP2408020A1/en
Priority to US13/262,642 priority patent/US20120024379A1/en
Priority to CA2757335A priority patent/CA2757335A1/en
Publication of WO2010102514A1 publication Critical patent/WO2010102514A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the present invention relates to a highly efficient solar solid battery comprising a light meson, a photocell or a photovoltaic cell and a reflective meson.
  • the current solar cell photoelectric conversion is up to about 35%, and the surface of the solar cell
  • the photoelectric conversion layer of the solar cell always has a certain absorption and conversion of the photon per unit area, and the photoelectric conversion layer of the solar cell directly faces the sun.
  • the method of receiving solar photons is always difficult to satisfy people's desire for small area and low cost of solar cells. Therefore, solar cells are greatly restricted in terms of widespread promotion and application.
  • the object of the invention is to improve the photoelectric conversion efficiency of the solar cell, increase the conversion power of the unit area under sunlight, greatly reduce the cost of photoelectric conversion, and save limited resources. And in terms of stability and reliability, it is superior to all current solar cells.
  • a high-efficiency solar solid battery is formed by connecting or fixing a photoconductive meson, a high-efficiency photocell, and a light reflecting meson.
  • Photons of sunlight are uniformly radiated to or reflected by a photoconductive meson onto a photocell or photocell, while a photocell or light that is radiated or reflected to a high-efficiency photocell by a reflective meson of light
  • the saturated photons on the battery pack are radiated to or reflected from the other angle to the photovoltaic cell or the photovoltaic cell, and the photoelectric conversion efficiency of the solar cell can be improved regardless of the intensity of the sunlight.
  • a concentrator made up of one or more lenticular lenses made of a light guiding meson material is symmetrical or asymmetrical about a concentrating light guide made of a light guiding meson material.
  • One or more high-efficiency photocells separated by a light-guide meson are separated by a high-efficiency photocell, and the other side is a light-reflecting meson, or a high-efficiency photocell separated by a photoconductive meson or a high-efficiency photocell, and the other side a light-reflecting meson and a light-concentrating high-efficiency solar three-dimensional battery that is connected or fixed to a light-reflecting meson and an output portion of the high-efficiency photovoltaic cell; or, by one or more high-efficiency photovoltaic cells separated by a light-guide meson; Or the other side is a high-efficiency photocell, and the other side is a light-reflecting meson or a high-efficiency photocell separated by a light-guide meson
  • a high-efficiency photovoltaic cell is a double-sided photovoltaic cell or a photovoltaic cell group that is assembled or fixed on a substrate; or a photovoltaic cell or a photovoltaic cell is assembled or fixed on a substrate.
  • the other side is the reflection meson of light.
  • the substrate is made of a thermal conductive meson and is connected or fixed to any one of the photocell or the photovoltaic cell output pole to form a photocell or a photovoltaic cell to be heated to the outside.
  • the channel of the exchange is made of a thermal conductive meson and is connected or fixed to any one of the photocell or the photovoltaic cell output pole to form a photocell or a photovoltaic cell to be heated to the outside.
  • an output portion of a high-efficiency photovoltaic cell is a heat exchanger in which a conductor, an insulating material, and a light reflecting material are combined or fixed to exchange heat with an insulating gas or liquid.
  • the high-efficiency solar three-dimensional battery has dual performances of waste heat output and high-efficiency solar battery power output when working efficiently.
  • High-efficiency solar three-dimensional batteries can function effectively at all times, ensuring normal power output of high-efficiency solar three-dimensional batteries.
  • the focus or condensing range of each of the convex lenses on the high-efficiency solar cell concentrator does not exceed the size range of the plane of the light guide as seen by the central vertical axis of the lenticular lens.
  • the high-efficiency solar three-dimensional battery is in an efficient working state regardless of the position of the sun.
  • the light guiding body of the high-efficiency solar solid battery is formed by a convex lens and a semi-convex lens or a convex lens, a concave lens and a semi-convex lens.
  • Fig. 1 is a cross-sectional view showing an example of a concentrating high-efficiency solar three-dimensional battery in the present invention.
  • Fig. 2 is a cross-sectional view showing another example of the non-concentrating type high-efficiency solar three-dimensional battery of the present invention.
  • the concentrating high-efficiency solar three-dimensional battery consists of a high-efficiency solar cell output part, a high-efficiency photocell (3) part, a concentrating body (5) part, a photoconductor part, and a light reflecting part.
  • High-efficiency solar three-dimensional battery output part High-efficiency solar photovoltaic cell high-efficiency photocell (3) thermal substrate (6), tightly connected power output one pole (1), high-efficiency solar cell output part of insulating sleeve (2), efficient The solar cell output part of the solar cell output is electrically connected to the other pole (10), and the insulating liquid (12) flowing between the two electrodes of the high-efficiency solar cell output portion, which is a high-performance photovoltaic cell (3).
  • Piece (6) Through the heat output of the heat output (10), (1) and the insulated liquid, the dual output performance of the high-efficiency solar battery can be output.
  • the concentrating body (5) is a hollow object made of a light-guide material and fixed by a plurality of spherical convex lenses into a hemispherical shape, and each double-sided spherical convex lens on the concentrating body (5) ( 13)
  • the focus is concentrated on the center of a plurality of spherical convex lenses that are fixed into a hemisphere. It maintains high-density photons in the center of the concentrator (5) regardless of the position of the sun.
  • Photoconductor section High-density photons are evenly distributed by a double-sided spherical convex lens (14) and a single-sided spherical convex lens (11).
  • the photocell on the thermal conductive substrate (6) is centered on the photoconductor, separated from the air by a plurality of layers, and is connected to the electrode of the battery pack by (16) connected to the electrode (1), and
  • the cast photoconductive material (9) forms a light guiding strip centered around the photoconductor, and is formed by plating a light reflecting meson (15) on the light guiding strip.
  • the reflecting portion of the light the reflecting meson of the light is plated on the electrode (1) connected to the (16) with a concavo-convex light reflecting surface (7), and the light reflecting meson is plated on the electrode (8) layer of the photocell and
  • the light reflecting surface (15) of the light guiding material (9) forms a mutual reflection portion of light.
  • the high-density photons derived from the photoconductor portion are uniformly reflected by the uneven light-reflecting surface (7) and the photoconductive material (9) of the conical center to the surface of the photovoltaic cell of the high-efficiency photocell (3); 3) Photons that are reflected on the surface of the photo-battery without absorption of photons, and from another angle, through the photoconductive material (9) and the light-reflecting surface (15), are totally totally reflected to the photovoltaic cell of the high-efficiency photocell (3). On the surface, the photovoltaic cell that reaches the high-efficiency photocell (3) can greatly absorb the solar photons reflected in any direction, and improve the photoelectric conversion efficiency of the solar cell.
  • the high-efficiency solar three-dimensional battery consists of a high-efficiency solar three-dimensional battery output part, a high-efficiency photocell (3) part, a light-guide material casing (5), a light guide part, and a light-reflecting part.
  • High-efficiency solar three-dimensional battery output part High-efficiency photovoltaic battery for high-efficiency solar three-dimensional battery
  • the heat output of the air for heat exchange can also output the dual output performance of the high-efficiency solar three-dimensional battery.
  • High-efficiency photovoltaic cell (3) Part: An insulating layer is coated on both sides of a thermally conductive substrate (6)
  • the electrode (8) layer of the photocell is photolithographically formed into a photovoltaic cell series electrode (8), and then photolithographically formed into a photovoltaic cell series electrode (8) layer, plated with a light conversion layer, and then photolithographically plated.
  • a layer of transparent electrodes is used to form a photovoltaic cell by photolithography.
  • the photocell on the thermal substrate (6) is centered on the photoconductor and is spirally wound from the inert gas (9) space.
  • Light guide part composed of inert gas (9)
  • the sunlight photon is passed through a casing (5) made of a light-conducting material into the surface of the photovoltaic cell which is directly flashed by the inert gas (9) photon on the high-efficiency photovoltaic cell (3).
  • the total reflection portion of light is a total reflection meson plated with light on the electrode (10).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

.

Description

高效太阳能立体电池及其制造方法
技术领域
本发明涉及包括设置光导介子、 光电池或光电池组和光的反射介子构 成高效太阳能立体电池。
背景技术
目前的太阳能电池的光电转换最多在 35%左右, 而且太阳能电池表面
必须面对太阳, 当太阳光强时, 太阳能电池的光电转换层上, 所需单位平 方面积上的光子数达到饱和, 光子除了被太阳能电池的光电转换层吸收了 的, 全部被反射出去; 当太阳光弱时, 光书子也有很少部分反射出去。 被反 射出去的光子说明了目前的太阳能电池对阳光的利用率极低, 使得目前的 太阳能电池单位电量的面积很大, 成本也很高等。 不管发明者如何改变难 太阳能电池的光电转换层的配方, 太阳能电池的光电转换层对光子在单位 面积的吸收、 转换都总是一定的, 靠目前这种由太阳能电池的光电转换层 直接面向太阳, 接收太阳光子的方法, 总是难以满足人们对太阳能电池要 求单位电量的面积很小、 成本低廉愿望的, 故导致太阳能电池在广泛的推 广和应用方面受到了很大程度制约。
发明内容
本发明的目的主要提高太阳能电池的光电转换效率, 提高阳光下的单 位面积转换电量, 极大的降低光电转换的成本, 节约有限资源。 并且在稳 定和可靠性等方面, 都优于目前所有的太阳能电池。
为了达到上述目的, 按照本发明目的的一个方面, 高效太阳能立体电 池由光导介子、 高效光电池和光的反射介子组连或固连而成。
使阳光的光子通过光导介子均匀辐射到或—反射到光电池或光电池组 上, 同时通过光的反射介子使得辐射到或反射到高效光电池的光电池或光 电池组上达到饱和光子从另一个角度上辐射到或反射到光电池或光电池组 上, 不论在阳光强弱情况下, 都能达到提高太阳能电池的光电转换效率的 目的。
按照本发明目的的另一个方面, 由光导介子材料制成的由一个或多个 凸透镜组连或固连的聚光体与以光导介子材料制成的聚光导光体为中心对 称或非对称, 相围的一个或多个由光导介子相隔的高效光电池或者相隔一 面是高效光电池, 而另一面是光的反射介子, 或相绕由光导介子相隔的高 效光电池或者相隔一面是高效光电池, 而另一面是光的反射介子和与光的 反射介子和高效光电池的输出部分组连或固连而成聚光型高效太阳能立体 电池; 或者, 由相围的一个或多个由光导介子相隔的高效光电池; 或相隔 一面是高效光电池, 而另一面是光的反射介子或相绕由光导介子相隔的高 效光电池或者相隔一面是高效光电池, 而另一面是光的反射介子和与光的 反射介子和高效光电池的输出部分组连或固连而成非聚光型高效太阳能立 体电池。
使阳光通过聚光体聚集在导光体上,使高密度光子通过镀在高效光电 池的输出部分的反射介子和光导介子均匀地从多个角度辐射到或反射到高 效光电池的光电池或光电池组; 或者使阳光直射在光导介子上, 由光导介 子和光的反射介子将阳光光子传导从多个角度上, 辐射到或反射到高效光 电池的光电池或光电池组上。 ^ 按照本发明目的的另一个方面, 高效光电池是在一基片上组连或固连 而成双面光电池或光电池组; 或在一基片上组连或固连而成一面是光电池 或光电池组, 而另一面是光的反射介子。
这样可以极大的降低光电转换的成本, 节约有限资源
按照本发明目的的另一个方面,基片是由一导热介子制成与光电池或 光电池组输出极任意一极组连或固连而成光电池或光电池组与外界进行热 交换的通道。
按照本发明目的的另一个方面, 高效光电池的输出部分由导体、 绝缘 材料和光的反射材料组连或固连而成与绝缘的气体或液体进行热交换的热 交换器。
使其高效太阳能立体电池在高效工作时,具有余热输出和高效太阳能 电池电量输出双重性能。 高效太阳能立体电池不管在什么情况下, 都能正 常发挥高效作用, 保障高效太阳能立体电池正常电能输出。
按照本发明目的的另一个方面,是将高效太阳能立体电池聚光体上的 每一个凸透镜的焦点或聚光范围不超过凸透镜中心垂直轴看到的导光体的 平面的大小范围。
使其不管太阳的位置如何, 高效太阳能立体电池都处于高效工作状 态。
按照本发明的另一个方面,高效太阳能立体电池的导光体是由凸透镜 和半凸透镜或者凸透镜、 凹透镜和半凸透镜组连或固连而成。
面结合附图和实施例对本发明加以进一步说明。
图 1为本发明中的聚光型高效太阳能立体电池中的一例的剖面图。
图 2为本发明中的非聚光型高效太阳能立体电池中的另一例的剖面图。 参见图一、聚光型高效太阳能立体电池由: 高效太阳能电池输出部分、 高效光电池 (3 ) 部分、 聚光体 (5 ) 部分、 光导体部分、 光的反射部分构 成。
高效太阳能立体电池输出部分: 高效太阳能立体电池的高效光电池 ( 3 ) 的导热基片 (6 )、 紧密连接成的电量输出一个极(1 )、 高效太阳能电 池输出部分的绝缘套 (2 )、 高效太阳能立体电池输出部分电量输出另一个 极(10 )、与在高效太阳能立体电池输出部分电量输出两极间流动的绝缘液 体(12 )构成即能使高效太阳能立体电池的高效光电池(3 )的导热基片(6 ) 通过电量输出极(10)、 (1)与绝缘的液体进行热交换的热输出, 又能输出 高效太阳能立体电池电量的双重输出性能。
聚光体 (5) 部分: 聚光体 (5) 是由光导材料制成, 由多个球面凸透 镜固连成半球状的空心物体, 聚光体 (5) 上的每块双面球面凸透镜 (13) 的焦点都聚集在多个球面凸透镜固连成半球状的中心。 使其不管太阳的位 置如何, 在聚光体 (5) 中心始终保持有高密度光子。
光导体部分: 由双面球面凸透镜 (14) 和单面球面凸透镜 (11) 使高 密度光子均匀地分配。
高效光电池 (3) 部分:在一导热基片 (6) 的双面上, 镀一层绝缘层 (4) 和光电池的电极 (8) 层, 通过光刻成光电池串联电极 (8), 再在光 刻成光电池串联电极(8)层上, 镀上光转换层, 再经光刻成光电池镀一层 透明电极, 再通过光刻制成光电池组。 导热基片 (6)上的光电池组以光导 体为中心, 与空气相隔, 成螺旋状绕制数层, 再与电极 (1) 连着的 (16) 与电池组的一电极相连接, 并浇铸光导材料(9)形成绕光导体为中心的导 光带, 在导光带上镀层光的反射介子 (15) 而成。
光的反射部分: 光的反射介子镀在电极 (1) 连着的 (16) 上以圆锥 中心凹凸不平的光反射面(7), 与光的反射介子镀在光电池的电极(8)层 和光导材料 (9) 的光反射面 (15), 形成光的互反射部分。
使来源于光导体部分的高密度光子均匀地通过圆锥中心凹凸不平的 光反射面 (7)、 光导材料 (9) 全反射到高效光电池 (3) 的光电池组的表 面上; 使在高效光电池(3)的光电池组的表面上未吸收光子而发生反射的 光子, 从另一个角度上, 通过光导材料 (9)、 光反射面(15), 再度全反射 到高效光电池 (3) 的光电池组的表面上, 达到高效光电池 (3) 的光电池 组能极大地吸收任意方向反射过来的太阳光子的目的, 提高太阳能电池的 光电转换效率。 参见图二、 高效太阳能立体电池由: 高效太阳能立体电池输出部分、 高效光电池 (3) 部分、 光导材料制成的外壳(5)、 光导部分、 光的全反射 部分构成。
高效太阳能立体电池输出部分: 高效太阳能立体电池的高效光电池
(3) 的导热基片 (6)、 紧密连接成的电量输出一个极 (10), 高效太阳能 立体电池输出部分的绝缘套 (2)、 高效太阳能立体电池输出部分电量输出 另一个极 (1)、 与在高效太阳能立体电池输出部分电量输出两极间流动空 气构成即能使高效太阳能立体电池的高效光电池 (3) 的导热基片 (6) 通 过电量输出极(10)、 (1)与流动的空气进行热交换的热输出, 又能输出高 效太阳能立体电池电量的双重输出性能。
高效光电池 (3) 部分:在一导热基片 (6) 的双面上, 镀一层绝缘层
(4) 和光电池的电极 (8) 层, 通过光刻成光电池串联电极 (8), 再在光 刻成光电池串联电极(8)层上, 镀上光转换层, 再经光刻成光电池镀一层 透明电极, 再通过光刻制成光电池组。 导热基片(6)上的光电池组以光导 体为中心, 与惰性气体 (9) 空间相隔, 成螺旋状绕制而成。
光导部分: 由惰性气体 (9) 构成
阳光光子通过光导材料制成的外壳(5)进入由惰性气体 (9) 光子直 接闪烁在高效光电池 (3) 的光电池组的表面上。
光的全反射部分: 是在电极 (10) 上镀上光的全反射介子。

Claims

权 利 要 求 书
1、 一种用于民房、 公共场所、 工厂、 交通工具 (汽车、 航天等) 等 一切需要电能场所的高效太阳能立体电池及其制造方法。 其特征在于: 高效太阳能立体电池由光导介子、 高效光电池、 光的反射介子和既能散 热又能输出高效太阳能立体电池电量的输出部分组连或固连而成。
2、 如权利要求 1所述的高效太阳能立体电池及其制造方法, 其特征 在于: 阳光通过聚光体或其聚光形式的聚光, 使光子浓缩, 经聚光导光 体射到反射介子上, 由反射介子直接反射到高效光电池吸收的面上, 对 未被高效光电池吸收的光子再次通过光的反射介子进行上下左右反复多 次反射到高效光电池的吸收面上, 使其被高效光电池完全吸收。 或者, 光子直射在高效光电池吸收面上, 未被吸收光子通过光的反射介子再次 反射到高效光电池的吸收面上, 使其被高效光电池再次吸收。
3、 如权利要求 1所述的高效太阳能立体电池及其制造方法, 其特征 在于: 由光导介子材料制成的由一个或多个凸透镜组连或固连的聚光体, 或其它形式组连或固连能聚光的聚光体与以光导介子材料制成的聚光导 光体为中心对称或非对称, 相围的一个或多个由光导介子相隔的高效光 电池或者相隔一面是高效光电池, 而另一面是光的反射介子, 或相绕由 光导介子相隔的高效光电池或者相隔一面是高效光电池, 而另一面是光 的反射介子和与光的反射介子和高效光电池的输出部分组连或固连而成 聚光型高效太阳能立体电池; 或者, 由相围的一个或多个由光导介子相 隔的高效光电池, 或相隔一面是高效光电池, 而另一面是光的反射介子 或相绕由光导介子相隔的高效光电池或者相隔一面是高效光电池, 而另 一面是光的反射介子和与光的反射介子和高效光电池的输出部分组连或 固连而成非聚光型高效太阳能立体电池。
4、 如权利要求 1所述的高效太阳能立体电池及其制造方法, 其特征 在于: 高效光电池是在一基片上组连或固连而成双面光电池或光电池组; 或在一基片上组连或固连而成一面是光电池或光电池组, 而另一面是光 的反射介子的。
5、 如权利要求 1所述的高效太阳能立体电池及其制造方法, 其特征 在于: 光电池或光电池组与光导介子相隔绕制而成; 或者, 由光电池或 光电池组分块, 由一块或多块组连或固连与光导介子相隔绕制而成。
6、 如权利要求 1所述的高效太阳能立体电池及其制造方法, 其特征 在于: 高效太阳能立体电池的输出部分由导体、 绝缘材料和光的反射材 料组连或固连而成既能与绝缘的气体或液体, 将高效光电池上产生的热 进行热交换形成热交换器, 既能输出高效太阳能立体电池在光电转换过 程中的副热, 又能输出高效太阳能立体电池电量。
7、 如权利要求 2所述的高效太阳能立体电池及其制造方法, 其特征 在于: 聚光体上的每一个的焦点或其它聚光形式聚光的焦点范围不超垂 直轴看到的聚光导光体的平面的大小范围。
8、。如权利要求 2所述的高效太阳能立体电池及其制造方法,其特征 在于: 聚光导光体是由光导介子材料制成透镜或透镜组组连或固连而成。
9、 如权利要求 2所述的高效太阳能立体电池及其制造方法, 其特征 在于: 聚光体或其形式聚光与聚光导光体形成的焦点都落在由光的反射 介子制成光反射面上的圆锥光反射面上。
PCT/CN2010/000295 2009-03-11 2010-03-10 高效太阳能立体电池及其制造方法 WO2010102514A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2010223753A AU2010223753A1 (en) 2009-03-11 2010-03-10 High-efficiency three-dimensional solar cell and method for manufacturing the same
EP10750310A EP2408020A1 (en) 2009-03-11 2010-03-10 High-efficiency three-dimensional solar cell and method for manufacturing the same
US13/262,642 US20120024379A1 (en) 2009-03-11 2010-03-10 High-efficiency three-dimensional solar cell and method for manufacturing the same
CA2757335A CA2757335A1 (en) 2009-03-11 2010-03-10 High-efficiency three-dimensional solar cell and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910118969A CN101521242A (zh) 2009-03-11 2009-03-11 高效太阳能电池及其制造方法
CN200910118969.8 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010102514A1 true WO2010102514A1 (zh) 2010-09-16

Family

ID=41081715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000295 WO2010102514A1 (zh) 2009-03-11 2010-03-10 高效太阳能立体电池及其制造方法

Country Status (7)

Country Link
US (1) US20120024379A1 (zh)
EP (1) EP2408020A1 (zh)
KR (1) KR20110135963A (zh)
CN (1) CN101521242A (zh)
AU (1) AU2010223753A1 (zh)
CA (1) CA2757335A1 (zh)
WO (1) WO2010102514A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521242A (zh) * 2009-03-11 2009-09-02 杨振宇 高效太阳能电池及其制造方法
TWI484115B (zh) * 2012-08-31 2015-05-11 George Uh-Schu Liau 光電盒
GB2561369B (en) * 2017-04-11 2020-01-08 Univ Exeter Construction block with photovoltaic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031054A1 (fr) * 1997-01-13 1998-07-16 Hitachi, Ltd. Transducteur photoelectrique et dispositif l'utilisant
WO2008050392A1 (fr) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Appareil photovoltaïque à concentration
CN101373797A (zh) * 2008-09-08 2009-02-25 集美大学 高效光伏发电聚光器
CN101521242A (zh) * 2009-03-11 2009-09-02 杨振宇 高效太阳能电池及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988166A (en) * 1975-01-07 1976-10-26 Beam Engineering, Inc. Apparatus for enhancing the output of photovoltaic solar cells
US5716442A (en) * 1995-05-26 1998-02-10 Fertig; Robert T. Light pipe with solar bulb energy conversion system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031054A1 (fr) * 1997-01-13 1998-07-16 Hitachi, Ltd. Transducteur photoelectrique et dispositif l'utilisant
WO2008050392A1 (fr) * 2006-10-24 2008-05-02 Daido Steel Co., Ltd Appareil photovoltaïque à concentration
CN101373797A (zh) * 2008-09-08 2009-02-25 集美大学 高效光伏发电聚光器
CN101521242A (zh) * 2009-03-11 2009-09-02 杨振宇 高效太阳能电池及其制造方法

Also Published As

Publication number Publication date
EP2408020A1 (en) 2012-01-18
AU2010223753A1 (en) 2011-11-03
KR20110135963A (ko) 2011-12-20
US20120024379A1 (en) 2012-02-02
CA2757335A1 (en) 2010-09-16
CN101521242A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
TW200412410A (en) Photovoltaic array module design for solar electric power generation systems
WO2007090339A1 (fr) Appareil à cellules solaires de type concentration
RU2676214C1 (ru) Система концентрированной солнечной энергии
KR20070104300A (ko) 태양전지 집속모듈 구조
US10554168B2 (en) Light-concentrating solar system
TW201201389A (en) Electromagnetic wave gathering device and solar cell module with the same
CN101989629B (zh) 一种太阳能电池模块及其制作方法
WO2010102514A1 (zh) 高效太阳能立体电池及其制造方法
CN102437797A (zh) 一种聚光型太阳能温差发电装置
TWI437273B (zh) 可切換光聚焦位置之系統
CN103138630A (zh) 一种太阳能光热分离元件
CN103137762A (zh) 一种太阳能聚光光伏发电组件
WO2023216617A1 (zh) 分光吸收集热组件、光伏热电联供系统及电能存储系统
CN101974963A (zh) 一种低倍聚光发电供热的太阳能瓦
CN103411754B (zh) 反射式聚光光伏聚光器光斑强度分布测量方法
CN202871837U (zh) 一种光伏光热集热组件
CN102034886B (zh) 一种二次聚光太阳能光伏装置
CN111953290B (zh) 一种热电联合多功能玻璃装置
TW201103158A (en) A solar cell module and the fabrication method of the same
CN103138631A (zh) 一种太阳能聚焦光热分离元件
CN204216845U (zh) 一种菲涅尔式聚光光伏光热组件
WO2012122909A1 (zh) 一种聚光太阳能装置
US20090293935A1 (en) Solar collector capable of receiving light rays with different incident angles
CN104218876B (zh) 使用光热分离器的发电机构
CN218387420U (zh) 一种光伏光热耦合高效热电输出组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2757335

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13262642

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117023841

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010750310

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010223753

Country of ref document: AU

Date of ref document: 20100310

Kind code of ref document: A