WO2010102422A1 - 一种硅基发光材料及发光器件 - Google Patents

一种硅基发光材料及发光器件 Download PDF

Info

Publication number
WO2010102422A1
WO2010102422A1 PCT/CN2009/000260 CN2009000260W WO2010102422A1 WO 2010102422 A1 WO2010102422 A1 WO 2010102422A1 CN 2009000260 W CN2009000260 W CN 2009000260W WO 2010102422 A1 WO2010102422 A1 WO 2010102422A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon
modulation
band gap
luminescent material
Prior art date
Application number
PCT/CN2009/000260
Other languages
English (en)
French (fr)
Inventor
陈弘
贾海强
周均铭
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to PCT/CN2009/000260 priority Critical patent/WO2010102422A1/zh
Publication of WO2010102422A1 publication Critical patent/WO2010102422A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3223IV compounds
    • H01S5/3224Si

Definitions

  • the invention relates to a light-emitting material and a light-emitting device, and more particularly to a silicon-based light-emitting material for an active light-emitting layer and a device using the same. Background technique
  • the first generation of semiconductor materials represented by silicon has such a huge impact on life that computers, televisions, radios, automobiles, etc. cannot escape from small silicon wafers.
  • With the development of information technology higher requirements are placed on the speed of information transmission, storage capacity, and processing functions.
  • Si integrated circuits are limited by the speed of electron movement in S i, and the device size has gradually reached the limit. If photoelectron technology can be introduced into silicon chips, and light waves can be used as information carriers instead of electrons, information transmission speed and processing power can be greatly improved, and information technology such as electronic computers, communication and display can be developed to a new stage. Therefore, it is necessary to make a breakthrough, and achieving photoelectric integration is the only way.
  • silicon luminescence properties mainly includes: bulk silicon luminescence, nano-silicon crystal, Er-doped Silicon nanoclusters, quantum cascaded sub-band composite luminescence, S i / Ge quantum structures, etc.
  • the body S i luminescence is obtained by introducing a three-dimensional stress field through the dislocation control technique in S i , adjusting the energy band structure of Si, and obtaining the luminescence of Si (Nature 414, 470 (2001)).
  • the main problem with this method applied to lasers is that two major problems that hinder the population inversion are unavoidable: Auger recombination and free carrier absorption.
  • Nano-silicon refers to crystalline silicon particles having a diameter of less than 5 nm, and porous silicon is actually a nano-silicon material. Due to the quantum size effect of nano-silicon, it has a novel quantum phenomenon, and its unique optical and electrical properties have attracted great interest. However, due to the difficulty in controlling the uniformity of the size of the nano-Si, it is difficult to realize the Si-based laser.
  • the luminescence of erbium-doped silicon is a very sharp photoluminescence spectrum observed at a low temperature of 1.54 ⁇ when a high concentration of rare earth ions erbium (Er3+) is incorporated into silicon. This wavelength corresponds exactly to the quartz glass light absorption minimum for fiber optic communication.
  • the solid solubility of Er in Si is relatively low, less than lE18cm- 3 , the luminous efficiency is very low, and the luminous intensity at room temperature is very weak.
  • the quantum cascade structure in silicon luminescence research is to connect array quantum wells together, and its luminescence is a process based on electronic transition between sub-bands, quantum cascade Si / Ge system.
  • the working wavelength is not directly related to the bandgap of the material used, but is determined only by the coupling quantum well subband spacing, but there is a basic limitation: the number of cycles of the continuous quantum cascade is limited by the critical thickness of the dislocation mismatch structure, the emission wavelength In the far infrared range, and can only work at low temperatures, it can not meet the needs of optical interconnects for microelectronic chips.
  • Another object of the present invention is to provide a method of preparing the above silicon-based luminescent material; and a further object of the present invention is to provide a silicon-based light-emitting device.
  • the invention discloses a silicon-based luminescent material comprising at least two modulation layers, and an indirect band gap layer is disposed between each two modulation layers.
  • the material of the indirect band gap layer is preferably Among them ( ⁇ 0 ⁇ 4.
  • the thickness of the indirect band gap layer is preferably from 1 nm to 10 nm.
  • the material of the modulation layer is preferably; - x C3 ⁇ 4 or S i ! - y C y , wherein, 0.2 x l, l% ⁇ y ⁇ 10%; further, when the indirect band gap layer When the material is SinGez, the preferred range of X is 0.2 x_z l, 0 z 0.4.
  • the thickness of the modulation layer is preferably from 1 nm to 20 nm.
  • the corresponding indirect band gap material is Si.
  • the number of layers of the modulation layer is preferably 2 to 21 layers.
  • the present invention discloses a method of preparing the above-described silicon-based luminescent material, comprising growing each of the modulating layer and the indirect bandgap layer layer by layer in a bottom-up order.
  • the method of preparing the modulation layer and the indirect band gap layer is preferably molecular beam epitaxy (MBE) or chemical vapor deposition (CVD).
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the growth temperature by the molecular beam epitaxy method is preferably 500 ° C - 80 (rC
  • the growth temperature by chemical vapor deposition is preferably 700 ° C - 1000 ° C.
  • the growth rate of the modulation layer is from 0.04 nm/s to 0.4 nm/s.
  • the growth rate of the intermediate band gap layer is 0.04 nm/s.
  • the present invention provides a silicon-based light-emitting device comprising a substrate and a buffer layer, an active light-emitting layer and a cap layer sequentially disposed on the substrate, wherein the active light-emitting layer uses the silicon-based light-emitting layer described above Material production.
  • the substrate is preferably a silicon substrate, a silicon SiO (Silicon On Insulator) substrate or a silicon-based material which has been epitaxially grown with other structures, and the buffer layer material is preferably Si.
  • the present invention discloses a method of preparing the above silicon-based light-emitting device, comprising the steps of:
  • each of the modulation layer and the indirect band gap layer is grown layer by layer on the buffer layer in a bottom-up order;
  • the substrate is preferably a silicon substrate, a silicon SOI (silicon on insulator) substrate or a silicon-based material having other structures epitaxially grown, and the buffer layer material is preferably Si.
  • the method of preparing the modulation layer and the indirect band gap layer is preferably molecular beam epitaxy (MBE) or chemical vapor deposition (CVD).
  • the growth temperature by the molecular beam epitaxy method is preferably 500 ° C - 80 (rC, the growth temperature by the chemical vapor deposition method is preferably 700 °C-1000 °C.
  • the growth rate of the modulation layer is from 0.04 nm/s to 0.4 nm/s.
  • the growth rate of the intermediate band gap layer is from 0.04 nm/s to 0.4 nm/s.
  • the lattice of the lattice is destroyed in three-dimensional periodicity, so that the K-space of the energy band is only a defect, and the conduction band of the indirect band gap material and the valence band of the valence band in the same K space cause the band gap transformation of the material with indirect band gap.
  • the constraint of momentum conservation is overcome, and the efficient illumination of silicon-based materials is realized.
  • the growth of the modulation layer is mainly island-like growth.
  • the modulation In order to form uneven stress on both sides of the indirect band gap layer, the modulation must be controlled by adjusting the growth temperature and the thickness and stress of the modulation layer. Island speed and islanding mode.
  • the method provided by the present invention is suitable for the growth of multi-quantum structured silicon-based luminescent materials on all types of molecular beam epitaxy (MBE) devices and chemical vapor deposition (CVD) devices.
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the conditions of the flow/beam size, substrate temperature, carrier gas type, and relative flow/beam ratio of each reaction beam source, gas source, etc. should be adjusted to optimize the epitaxy.
  • the crystal quality of the structure for example, the growth quality of the SiGe modulation layer can be analyzed according to transmission electron microscopy, the growth temperature is adjusted to control the stress in the modulation layer, and the S i and Ge beam current ratios are controlled to adjust the SiGe composition.
  • the silicon-based luminescent material of the invention can realize quasi-direct band gap luminescence, and the growth method adopts the existing CVD or MBE material growth technology, and can realize large-scale production;
  • the silicon-based luminescent material of the invention can be applied in the silicon optoelectronic integrated circuit industry to realize the leap of silicon integrated circuit performance. At the same time, due to the realization of quasi-direct bandgap luminescence of silicon-based materials, the advantages of scale of silicon epitaxial process can be utilized. Silicon luminescent materials are used in the optoelectronics industry such as light-emitting diodes.
  • Embodiment 1 is a schematic structural view of a light emitting device in Embodiment 1;
  • Example 4 is an 80K light fluorescence line of the silicon-based light-emitting device of Example 6;
  • Fig. 7 is an 80K light fluorescence line of the silicon-based light-emitting device of Example 10.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is as shown in FIG. 1 , and includes a substrate 6 , a silicon buffer layer 5 on the substrate 6 , an active light-emitting layer 7 and a cap layer 1 , wherein the active light-emitting layer uses the present invention.
  • the silicon-based luminescent material comprises a first modulating layer 4 and a second modulating layer 2, and a layer of Si is interposed between the two modulating layers as an indirect band gap layer 3, wherein the first modulating layer 4 uses Si ⁇ C, the second modulation Layer 2 uses Si. 95 C. . . . 5 , each layer of the modulation layer has a thickness of 20 legs, and the thickness of the Si indirect band gap layer is 10 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon SOI substrate 6, using a CVD epitaxial growth method, first growing a 3QQ silicon buffer layer at 9Q (TC growth temperature), and then growing each layer layer by layer in the order from bottom to top. The layer and the indirect bandgap layer are finally regrown by a 20 nm thick silicon cap layer.
  • the growth rate of the control modulation layer is 0.08 nm/s
  • the growth rate of the Si indirect band gap layer is 0.10 nm/s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of five layers of Ge modulation layers, and each layer of the Ge-modulation layer has a layer of Si as an indirect band gap layer.
  • the thickness of the Si modulation layer is 1.1 nm, and the thickness of the Si indirect band gap layer is 2.2 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, utilizing MBE epitaxial growth method, firstly grow 2QQ silicon buffer layer at 8Q (TC growth temperature), then grow each modulation layer and indirect band gap layer layer by layer in the order from bottom to top, and finally regenerate a layer of 10 cm thick silicon.
  • the cap layer in the above growth process, controls the growth rate of the Ge modulation layer to be 0.04 nm/s, and the growth rate of the Si indirect band gap layer is 0.06 nm/s.
  • Example 3 is a light-emitting line of 80K light emitted from the silicon-based luminescent material of the present embodiment. As can be seen from the figure, the peak value of the fluorescence energy of the active region (1.21 eV) is greater than the width of the indirect band gap of the silicon material (1.15). eV).
  • Example 3
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 11 layers of Si. . 8 Ge. 2 modulation layer, every two layers of Si. . 8 Ge. . Have a layer of an indirect band gap Si layer, said Si layer between the second modulation. . 8 Ge.
  • the thickness of the 2 modulation layer is 20 nm, and the thickness of the Si layer is 10 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: a silicon-on-insulator (Si1) On-Insulator (SOI) substrate is used, and a 300 nm silicon buffer layer is first grown by a CVD epitaxial growth method at a growth temperature of 900 ° C, and then The respective modulation layers and indirect band gap layers are grown layer by layer in the order from bottom to top, and finally a 200 nm thick silicon cap layer is regenerated, and Si is controlled during the above growth. . 8 Ge.
  • the growth rate of the second modulation layer is 0.08nm / s
  • the growth rate of the Si layer is 0. lnm / s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 21 layers of Si. . 3 Ge. . 7 modulation layer, every two layers of Si. . 3 Ge. There is a layer of Si between the 7 modulation layers. . 7 Ge. . 3 as an indirect bandgap layer, said Si. . 3 Ge.
  • the thickness of the 7- modulation layer is 8 nm, the Si. . 7 Ge. 3
  • the thickness of the indirect band gap layer is 5 legs.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a MBE epitaxial growth method, first growing a 5QQ silicon buffer layer at 5Q (TC growth temperature), and then growing each layer in a layer-by-layer manner from bottom to top. modulation layer and indirect bandgap layer, and finally a layer thickness of the grown silicon cap 20 conscientious Si layer, the growth process, the growth rate of control .. Si 3 Ge .. 7 modulation layer was 0.08nm / s, Si .. The growth rate of the 7 Ge.. 3 indirect band gap layer is 0.10 nm/s.
  • Example 5 is a light-emitting line of 80K light emitted from the silicon-based luminescent material of the present embodiment. As can be seen from the figure, the peak value of the fluorescence energy of the active region (1.056 eV) is greater than the width of the indirect band gap of the silicon germanium material ( 1.006eV) o Example 5
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 21 layers of Si. . 5 Ge. 5 modulation layer, every two layers of Si. . 5 Ge. There is a layer of Si between the 5 modulation layers. . 8 Ge. 2 as an indirect band gap layer, the Si. . 5 Ge. The thickness of the 5 modulation layer is 8 nm, the Si. . 8 Ge. 2 Indirect band gap layer thickness is 5nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a CVD epitaxial growth method, first growing a 500-cm silicon buffer layer at a growth temperature of 700 ° C, and then growing each layer in layers from bottom to top. The modulation layer and the indirect bandgap layer are finally re-grown with a 10 nm thick silicon cap layer, and during the above growth, Si is controlled. . 5 Ge. The growth rate of the 5 modulation layer is 0.06 nm/s, Si. . 8 Ge. Growth rate. Indirect bandgap layer 2 was 0.04nm / s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 16 layers of modulation layer, and a layer of Si is present between each two layers of the modulation layer. . 8 Ge. 2.
  • the modulation layer of the odd layer uses Si. . 6 Ge. 4.
  • the modulation layer of the even layer uses Si. . 5 Ge. 5
  • each layer of the modulation layer has a thickness of 10 nm, the Si. . 8 Ge. 2
  • the thickness of the indirect band gap layer is 2 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a CVD epitaxial growth method, first growing a 500-cm silicon buffer layer at a growth temperature of 800 ° C, and then growing each layer in a layer-by-layer manner from bottom to top. The modulation layer and the indirect band gap layer are finally regrown by a 20 nm thick Si cap layer. During the above growth process, the growth rate of the modulation layer is controlled to be 0.06 nm/s, Si. . s Ge. Growth rate. Indirect bandgap layer 2 was 0.10nm / s.
  • Example 7 is a light-emitting line of 80K light emitted from the silicon-based luminescent material of the present embodiment. As can be seen from the figure, the peak value of the fluorescence energy of the active region (1.154 eV) is greater than the width of the indirect band gap of the silicon germanium material ( 1.054eV).
  • Example 7
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of eight modulation layers, and each layer of the modulation layer has a layer of Si as an indirect band gap layer, wherein The modulation layer uses Si. . 6 Ge. 4.
  • the thickness of each modulation layer is 3 nm, and the thickness of the Si indirect band gap layer is 1 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, utilizing CVD epitaxial growth method, firstly grow a 500 silicon buffer layer at a growth temperature of 700 ° C, and then grow each modulation layer and indirect band gap layer layer by layer in the order from bottom to top, and finally regenerate a 30 nm thick silicon cap.
  • the growth rate of the control modulation layer is 0.06 nm/s
  • the growth rate of the Si indirect band gap layer is 0.10 nm/s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that in the first embodiment, wherein the silicon-based luminescent material comprises a total of 11 layers of Ge modulation layer, and each layer of the Ge modulation layer has a layer of Si as an indirect band gap layer.
  • the thickness of the Ge modulation layer is 2 nm, and the thickness of the Si indirect band gap layer is 3 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon SOI substrate, a 3QQnm silicon buffer layer is first grown by a CVD epitaxial growth method at a growth temperature of lQQCrC, and then each modulation layer and indirect layer are grown layer by layer in a bottom-up order. The gap layer is finally regenerated with a layer of 2 Onm thick silicon cap layer.
  • the growth rate of the Ge modulation layer is controlled to be 0.05 nm/s, and the growth rate of the Si indirect band gap layer is 0.06 nm/s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based luminescent material comprises a total of 21 modulation layers, and each layer of the modulation layer has a layer of Si as an indirect band gap layer, wherein The modulation layer uses Si. . 97 C. . . . 3 , each layer of the modulation layer has a thickness of 2 nm, and the Si indirect band gap layer has a thickness of 3 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using MBE epitaxial growth method, first growing a 5QQ silicon buffer layer at 6Q (TC growth temperature), and then growing each layer in layers from bottom to top. The modulation layer and the indirect bandgap layer are finally regenerated by a 30 nm thick silicon cap layer.
  • the growth rate of the control modulation layer is 0.06 nm/s
  • the growth rate of the Si indirect band gap layer is 0.10 nm/s. .
  • Example 10 The structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of eight modulation layers, and each layer of the modulation layer has a layer of Si as an indirect band gap layer, wherein The modulation layer uses Si. . 98 C. . . . 2 , each layer of the modulation layer has a thickness of 4 nm, and the Si indirect band gap layer has a thickness of 4 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a CVD epitaxial growth method, first growing a 5QQ silicon buffer layer at 7Q (TC growth temperature), and then growing each layer in layers from bottom to top. The modulation layer and the indirect bandgap layer are finally regenerated by a 30 nm thick silicon cap layer.
  • the growth rate of the control modulation layer is 0.06 nm/s
  • the growth rate of the Si indirect band gap layer is 0.10 nm/s. .
  • Example 11 is a light-emitting line of 80K light emitted from the silicon-based luminescent material of the present embodiment. As can be seen from the figure, the peak value of the fluorescence energy of the active region (1.17 eV) is greater than the width of the indirect band gap of the silicon material (1.15). eV).
  • Example 11
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 18 modulation layers, and each layer of the modulation layer has a layer of Si as an indirect band gap layer, wherein The modulation layer uses Si. . 98 C. . . . 2 , each layer of the modulation layer has a thickness of 12 nm, and the Si indirect band gap layer has a thickness of 6 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a CVD epitaxial growth method, first growing a 5QQ silicon buffer layer at 7Q (TC growth temperature), and then growing each layer in layers from bottom to top. The modulation layer and the indirect bandgap layer are finally re-grown by a 30 nm thick silicon cap layer. During the above growth process, the growth rate of the control modulation layer is 0.2 nm/s, and the growth rate of the Si indirect band gap layer is 0.2 nm/s.
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of eight modulation layers, and each layer has a layer of Si between the two modulation layers. . 6 Ge. 4.
  • As an indirect band gap layer wherein the modulation layer uses Si. . 4 Ge. 6.
  • the thickness of each modulation layer is 15 nm, and the thickness of the Si indirect band gap layer is 7 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: using a silicon (001) substrate, using a CVD epitaxial growth method, first growing a 5QQ silicon buffer layer at 7Q (TC growth temperature), and then growing each layer in layers from bottom to top. The modulation layer and the indirect bandgap layer are finally regrown by a 30 nm thick silicon cap layer. During the above growth process, the growth rate of the control modulation layer is 0.3 nm/s, and the growth rate of the Si indirect band gap layer is 0.3 nm/s. .
  • the structure of the silicon-based light-emitting device to be prepared in this embodiment is the same as that of the first embodiment, wherein the silicon-based light-emitting material comprises a total of 20 modulation layers, and each layer of the modulation layer has a layer of S i as an indirect band gap layer.
  • the modulation layer uses S i . . 98 C. . . . 2 , the thickness of each modulation layer is 17 nm, and the thickness of the S i indirect band gap layer is 8 nm.
  • the method for preparing the above silicon-based light-emitting device is as follows: a silicon (001) substrate is used, and a CVD epitaxial growth method is used to first grow a 5 QQ silicon buffer layer at a BC growth temperature, and then layer by layer in a bottom-up order. The growth layer and the indirect bandgap layer are grown, and a silicon capping layer having a thickness of 30 nm is regenerated. In the above growth process, the growth rate of the modulation layer is controlled to be 0.4 nm/s, and the growth rate of the S i indirect band gap layer is 0. 4nm/s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

一种硅基发光材料及发光器件 技术领域 本发明涉及一种发光材料及发光器件, 特别涉及一种用于有源发 光层的硅基发光材料及使用该发光材料的器件。 背景技术
以硅为代表的第一代半导体材料, 对生活的影响如此巨大, 计算 机、 电视机、 收音机、 汽车等等, 都无法脱离小小的硅片。 随着信息 技术的日益发展, 对信息的传递速度、 储存能力、 处理功能提出更高 要求,但 Si集成电路受到 S i中电子运动速度的限制, 其器件尺寸已 逐步趋向极限。如果能在硅芯片中引入光电子技术, 用光波代替电子 作为信息载体, 则可大大地提高信息传输速度和处理能力, 使电子计 算机、通信和显示等信息技术发展到一个全新的阶段。 所以要有所突 破, 实现光电集成是必由之路。
20世纪 90年代以来, 人们采用了^艮多不同方法来突破纯硅材料 本身带隙结构对硅发光的限制, 近年来对硅发光性能的研究主要包 括: 体硅发光 、 纳米硅晶体、 掺 Er硅纳米簇、 量子级联的子带间复 合发光、 S i / Ge量子结构等。
体 S i发光是通过在 S i中通过位错控制技术,引进三维的应力场, 调节 Si的能带结构, 获得 Si的发光(Nature 414 , 470 ( 2001 ) )。 该方法应用于激光器的主要问题是无法避免阻碍粒子数反转的两个 主要问题: 俄歇复合和自由载流子吸收。
纳米硅是指是直径小于 5nm的晶体硅颗粒,多孔硅实际上也是一 种纳米硅材料。 由于纳米硅存在的量子尺寸效应,使其具有新奇的量 子现象, 它独特的光学和电学特性引起人们极大兴趣。 然而由于纳米 Si尺寸的一致性控制困难, 实现 Si基激光器有一定的难度。
掺铒硅的发光是在硅中掺入高浓度的稀土离子铒(Er3+)时,低温 下在波长 1. 54 μ ηι处可观察到一个非常尖锐的光致发光光谱。这一波 长正好对应于光纤通信的石英玻璃光吸收最小值。 但是, Er在 Si中 的固溶度较低, 小于 lE18cm— 3, 发光效率很低, 室温发光强度很弱。
硅发光研究中的量子级联结构就是把数组量子阱串联在一起,其 发光是一种基于子带间电子跃迁的过程, 量子级联结构 Si / Ge系统 的工作波长与所用材料的带隙无直接关系,仅由耦合量子阱子带间距 决定, 但有一个基本限制:连续量子级联的周期数目受限于位错不匹 配结构的临界厚度, 发射波长处于远红外波段, 且只能在低温下工 作, 满足不了微电子芯片光互连的需求。
在半导体技术领域,随着能带技术、 纳米技术、 微细加工技术的 发展, 人们对微观世界的认识逐渐深入, 在纳米尺度, 材料的很多特 性将发生变化, 对于硅量子点、 硅 /锗原子尺度的超晶格体系等低维 材料,由于能带折叠效应,有可能产生赝直接带隙,导致辐射复合效率 大大提高, 以制备效率较高的硅体系发光材料,但目前由于种种物理 上的限制和材料工艺上的困难, 均未得到根本性的突破。
发明内容 本发明的目的是提供一种硅基发光材料,该发光材料能够实现准 直接带隙结构的发光;
本发明的另一目的是提供一种上述硅基发光材料的制备方法; 本发明的又一目的是提供一种硅基发光器件。
本发明的又一目的是提供一种上述硅基发光器件的制备方法。 一方面,本发明公开了一种硅基发光材料,包括至少两层调制层, 且每两层调制层之间都设有一间接带隙层。
上述硅基发光材料中, 所述间接带隙层的材料优选
Figure imgf000004_0001
其 中( ζ 0· 4。
上述硅基发光材料中, 所述间接带隙层的厚度优选 lnm-10nm。 上述硅基发光材料中, 所述调制层的材料优选 ;— xC¾或 S i !-yCy , 其中, 0.2 x l, l%<y<10%; 进一步地, 当所述间接带隙层的材 料采用 SinGez时, 所述 X优选范围是 0.2 x_z l, 0 z 0.4。
上述硅基发光材料中, 所述调制层的厚度优选 lnm- 20nm。
进一步地, 所述调制层为 Si Cy时, 对应间接带隙材料为 Si。 上述硅基发光材料中, 所述调制层的层数优选 2-21层。
另一方面, 本发明公开了一种制备上述硅基发光材料的方法, 包 括按照由下至上的次序逐层生长各调制层和间接带隙层。
上述制备方法中,制备所述调制层和间接带隙层的方法优选分子 束外延生长法 (MBE)或化学气相沉积法 (CVD)。 上述制备方法中, 当所述调制层为 Si yCy或 xG ^时, 采用分子 束外延生长法的生长温度优选 500°C-80(rC, 采用化学气相沉积法的 生长温度优选 700°C-1000°C。
上述制备方法中,所述调制层的生长速率为 0.04 nm/s -0.4nm/s。 上述制备方法中, 所述中间带隙层的生长速率为 0.04nm/s
-0.4nm/ s。
又一方面, 本发明还提供了一种硅基发光器件, 包括基底和在基 底上顺序设置的緩沖层、 有源发光层和盖帽层, 其中, 所述有源发光 层使用上述的硅基发光材料制作。
上述硅基发光器件中,所述基底优选硅基底、硅 S0I(Silicon On Insulator)基底或已经外延生长有其它结构的硅基材料, 所述緩沖 层材料优选 Si。
又一方面, 本发明公开了一种制备上述硅基发光器件的方法, 包 括以下步骤:
( 1 ) 首先, 在基底上制备一层緩沖层;
(2 ) 然后, 在所述緩沖层上按照由下至上的次序逐层生长各调 制层和间接带隙层;
上述制备方法中, 所述基底优选硅基底、 硅 SOI ( Silicon On Insulator)基底或已经外延生长有其它结构的硅基材料, 所述緩沖 层材料优选 Si。
上述制备方法中,制备所述调制层和间接带隙层的方法优选分子 束外延生长法 (MBE)或化学气相沉积法 (CVD)。
上述制备方法中, 当所述调制层为 S -yCy或 ;— xG ^时, 采用分子 束外延生长法的生长温度优选 500°C-80(rC, 采用化学气相沉积法的 生长温度优选 700°C-1000°C。
上述制备方法中,所述调制层的生长速率为 0.04 nm/s -0.4nm/s。 上述制备方法中, 所述中间带隙层的生长速率为 0.04nm/s -0.4nm/ s。 本发明在硅基发光材料的制备中,利用多周期的在间接带隙材料 两侧的调制材料层形成的在三维空间的不均匀应力使得间接带隙材 料在三维空间存在不均匀的应力而使得其晶格在三维的周期性得到 破坏, 从而能带的 K空间只有 Γ点, 间接带隙材料的导带和价带在相 同的 K空间的 Γ点,使得具有间接带隙材料的带隙转化成准直接带隙, 在周边材料的量子限制下突破动量守恒的制约, 实现硅基材料的高 效发光。
根据目前的分析和理解, 调制层的生长主要为岛状生长, 为了在 间接带隙层两侧形成不均匀应力, 进而实现调制, 就必须通过调整生 长温度和调制层厚度和应力等条件来控制成岛速率和成岛模式。
本发明所提供的方法适用于在所有类型的分子束外延(MBE )设备 和化学气相淀积(CVD)设备上进行多量子结构硅基发光材料的生长。 在使用不同的外延设备时, 由于不同设备之间的差异, 应调节各反应 束源、 气源的流量 /束流大小、基底温度、 载气种类和相对流量 /束流 比例等条件,优化外延结构的晶体质量, 例如可以根据透射电镜分析 S iGe调制层的生长质量, 调整生长温度来控制调制层中应力大小, 同时控制 S i、 Ge束流比来调整 S iGe组分等。
本发明的硅基发光材料可以实现准直接带隙发光,其生长方法采 用现有 CVD或 MBE材料生长技术, 可以实现规模化生产;
本发明的硅基发光材料可以应用在硅光电集成电路产业,实现硅 集成电路性能的飞跃,同时,由于实现了硅基材料的准直接带隙发光, 利用硅外延工艺的规模化优势,可以将硅发光材料应用于发光二极管 等光电子产业。
附图说明
图 1为实施例 1中发光器件的结构示意图;
图 2为实施例 2中发光器件的 80K光荧光谱线;
图 3为实施例 4的硅基发光器件的 80K光荧光谱线;
图 4为实施例 6的硅基发光器件的 80K光荧光谱线;
图 5为实施例 7的硅基发光器件的 80K光荧光谱线;
图 6为实施例 9的硅基发光器件的 80K光荧光谱线;
图 7为实施例 10的硅基发光器件的 80K光荧光谱线。 附图标记
1-盖帽层 2-第二调制层 3-间接带隙层 4-第一调制 层
5-硅緩沖层 6-基底 7-有源发光层
具体实施方式 下面将结合具体实施例进一步阐述本发明的硅基发光材料的结 构和制备方法以及使用该硅基发光材料作为发光层的器件,在器件的 制备中, 除发光层以外的结构可以采用已公开的硅基外延结构,但这 护 围以所附的权利要求书为准。 ' ' ' ' 实施例 1
本实施例要制备的硅基发光器件结构如图 1所示, 包括基底 6、 位于基底 6上的硅緩沖层 5、 有源发光层 7和盖帽层 1, 其中, 有源 发光层使用本发明的硅基发光材料,包括第一调制层 4和第二调制层 2, 两层调制层之间有一层 Si作为间接带隙层 3, 其中, 第一调制层 4使用 Si^C , 第二调制层 2使用 Si。.95C。.。5, 每层调制层的厚度为 20腿, 所述 Si间接带隙层厚度为 10nm。
制备上述硅基发光器件的方法如下:采用硅 S0I基底 6,利用 CVD 外延生长法, 在 9Q(TC生长温度下, 首先生长 3QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 20nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0.08nm/s, Si间接带隙层的生长速率为 0.10nm/s。 实施例 2
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 5层 Ge调制层,每两层 Ge调制层之间都有一 层 Si作为间接带隙层, 所述 Ge调制层的厚度为 l. lnm, 所述 Si 间 接带隙层厚度为 2.2nm。
制备上述硅基发光器件的方法如下: 采用硅(001 )基底, 利用 MBE外延生长法, 在 8Q(TC生长温度下, 首先生长 2QQ謹硅緩沖层, 然后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生 长一层厚 10謹的硅盖帽层, 上述生长过程中,控制 Ge调制层的生长 速率为 0.04nm/s, Si间接带隙层的生长速率为 0.06nm/s。
图 2为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出,有源区的荧光能量峰值(1.21eV)大于硅材料的间接带隙 禁带宽度(1.15eV)。 实施例 3
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 11层 Si。.8Ge。.2调制层, 每两层 Si。.8Ge。.2调制 层之间都有一层 Si作为间接带隙层, 所述 Si。.8Ge。.2调制层的厚度为 20nm, 所述 Si层厚度为 10nm。
制备上述硅基发光器件的方法如下:采用绝缘体上有硅(Si 1 icon On Insulator,筒称 SOI)基底, 利用 CVD外延生长法, 在 900°C生长 温度下, 首先生长 300nm硅緩沖层, 然后按照由下至上的次序逐层生 长各调制层和间接带隙层, 最后再生长一层厚 200nm的硅盖帽层, 上 述生长过程中, 控制 Si。.8Ge。.2调制层的生长速率为 0.08nm/s, Si层 的生长速率为 0. lnm/s。 实施例 4
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 21层 Si。.3Ge。.7调制层, 每两层 Si。.3Ge。.7调制 层之间都有一层 Si。.7Ge。.3作为间接带隙层, 所述 Si。.3Ge。.7调制层的厚 度为 8nm, 所述 Si。.7Ge。.3间接带隙层厚度为 5腿。
制备上述硅基发光器件的方法如下: 采用硅(001 )基底, 利用 MBE外延生长法, 在 5Q(TC生长温度下, 首先生长 5QQ謹硅緩沖层, 然后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生 长一层厚 20謹的 Si硅盖帽层, 上述生长过程中, 控制 Si。.3Ge。.7调制 层的生长速率为 0.08nm/s, Si。.7Ge。.3间接带隙层层的生长速率为 0.10nm/s。
图 3为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出, 有源区的荧光能量峰值(1.056eV)大于硅锗材料的间接 带隙禁带宽度(1.006eV)o 实施例 5
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 21层 Si。.5Ge。.5调制层, 每两层 Si。.5Ge。.5调制 层之间都有一层 Si。.8Ge。.2作为间接带隙层, 所述 Si。.5Ge。.5调制层的厚 度为 8nm, 所述 Si。.8Ge。.2间接带隙层层厚度为 5nm。
制备上述硅基发光器件的方法如下: 采用硅(001 )基底, 利用 CVD外延生长法, 在 700°C生长温度下, 首先生长 500謹硅緩沖层, 然后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生 长一层厚 10nm的硅盖帽层, 上述生长过程中, 控制 Si。.5Ge。.5调制层 的生长速率为 0.06nm/s , Si。.8Ge。.2 间接带隙层的生长速率为 0.04nm/s。 实施例 6
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 16 层调制层, 每两层调制层之间都有一层 Si。.8Ge。.2作为间接带隙层, 其中, 奇数层的调制层使用 Si。.6Ge。.4, 偶 数层的调制层使用 Si。.5Ge。.5,每层调制层的厚度为 10nm,所述 Si。.8Ge。.2 间接带隙层厚度为 2nm。
制备上述硅基发光器件的方法如下: 采用硅(001 )基底, 利用 CVD外延生长法, 在 800°C生长温度下, 首先生长 500謹硅緩沖层, 然后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生 长一层厚 20nm的 Si盖帽层, 上述生长过程中,控制调制层的生长速 率为 0.06nm/s, Si。.sGe。.2间接带隙层的生长速率为 0.10nm/s。
图 4为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出, 有源区的荧光能量峰值(1.154eV)大于硅锗材料的间接 带隙禁带宽度(1.054eV)。 实施例 7
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 8层调制层, 每两层调制层之间都有一层 Si 作为间接带隙层, 其中, 调制层使用 Si。.6Ge。.4, 每层调制层的厚度为 3nm, 所述 Si间接带隙层厚度为 lnm。
制备上述硅基发光器件的方法如下: 采用硅(001 )基底, 利用 CVD外延生长法, 在 700°C生长温度下, 首先生长 500謹硅緩沖层, 然后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生 长一层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速 率为 0.06nm/s, Si间接带隙层的生长速率为 0.10nm/s。
图 5为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出,有源区的荧光能量峰值(1.51eV)大于硅材料的间接带隙 禁带宽度(1.15eV)。 实施例 8
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 11层 Ge调制层, 每两层 Ge调制层之间都有 一层 Si作为间接带隙层, 所述 Ge调制层的厚度为 2nm, 所述 Si 间 接带隙层厚度为 3nm。
制备上述硅基发光器件的方法如下: 采用硅 S0I基底, 利用 CVD 外延生长法, 在 lQQCrC生长温度下, 首先生长 3QQnm硅緩沖层, 然 后按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长 一层厚 2 Onm的硅盖帽层, 上述生长过程中, 控制 Ge调制层的生长速 率为 0.05nm/s, Si间接带隙层的生长速率为 0.06nm/s。 实施例 9
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 21层调制层, 每两层调制层之间都有一层 Si 作为间接带隙层, 其中, 调制层使用 Si。.97C。.。3, 每层调制层的厚度为 2nm, 所述 Si间接带隙层厚度为 3nm。
制备上述硅基发光器件的方法如下:采用硅(001)基底,利用 MBE 外延生长法, 在 6Q(TC生长温度下, 首先生长 5QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0.06nm/s, Si间接带隙层的生长速率为 0.10nm/s。
图 6为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出,有源区的荧光能量峰值(1.19eV)大于硅材料的间接带隙 禁带宽度(1.15eV)。 实施例 10 本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 8层调制层, 每两层调制层之间都有一层 Si 作为间接带隙层, 其中, 调制层使用 Si。.98C。.。2, 每层调制层的厚度为 4nm, 所述 Si间接带隙层厚度为 4nm。
制备上述硅基发光器件的方法如下:采用硅(001)基底,利用 CVD 外延生长法, 在 7Q(TC生长温度下, 首先生长 5QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0.06nm/s, Si间接带隙层的生长速率为 0.10nm/s。
图 7为本实施例的硅基发光材料发出的的 80K光荧光谱线,从图 上可以看出,有源区的荧光能量峰值(1.17eV)大于硅材料的间接带隙 禁带宽度(1.15eV)。 实施例 11
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 18层调制层, 每两层调制层之间都有一层 Si 作为间接带隙层, 其中, 调制层使用 Si。.98C。.。2, 每层调制层的厚度为 12nm, 所述 Si间接带隙层厚度为 6nm。
制备上述硅基发光器件的方法如下:采用硅(001)基底,利用 CVD 外延生长法, 在 7Q(TC生长温度下, 首先生长 5QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0.2nm/s, Si间接带隙层的生长速率为 0.2nm/s。 实施例 12
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 8 层调制层, 每两层调制层之间都有一层 Si。.6Ge。.4作为间接带隙层, 其中, 调制层使用 Si。.4Ge。.6, 每层调制层 的厚度为 15nm, 所述 Si间接带隙层厚度为 7nm。
制备上述硅基发光器件的方法如下:采用硅(001)基底,利用 CVD 外延生长法, 在 7Q(TC生长温度下, 首先生长 5QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0.3nm/s, Si间接带隙层的生长速率为 0.3nm/s。 实施例 13
本实施例要制备的硅基发光器件结构与实施例 1相同, 其中, 所 述硅基发光材料共包括 20层调制层, 每两层调制层之间都有一层 S i 作为间接带隙层, 其中, 调制层使用 S i。.98C。.。2, 每层调制层的厚度为 17nm, 所述 S i间接带隙层厚度为 8nm。
制备上述硅基发光器件的方法如下:采用硅(001)基底,利用 CVD 外延生长法, 在 7 Q(TC生长温度下, 首先生长 5 QQ謹硅緩沖层, 然后 按照由下至上的次序逐层生长各调制层和间接带隙层,最后再生长一 层厚 30nm的硅盖帽层, 上述生长过程中, 控制调制层的生长速率为 0. 4nm/s , S i间接带隙层的生长速率为 0. 4nm/s。
表 1 实施例 1-13的主要参数
Figure imgf000012_0001
1.1 0.04 2.2 0.06 800°C
9 S i o.
共 21层 Si Si ( 001 ) 500nm
2 0.06 3 0.10
10 S ί
共 8层 Si Si ( 001 ) 500nm
4 0.06 4 0.10
11 S ί
共 18层 Si Si ( 001 ) 500nm
12 0.2 6 0.2
12 S ί
共 8层 S i 6GCo. Si ( 001 ) 500nm
15 0.3 7 0.3
13 S ί
共 20层 Si Si ( 001 ) 500nm
17 0.4 8 0.4 上述各个实施例中使用的都是普通 Si基底或硅 S0I基底, 盖帽 层也是普通的 Si盖帽层, 但是, 本领域技术人员应当理解, 本发明 的基底和盖帽层还可以是具有各种复杂结构的器件,以实现各种功能 和应用。
上面结合具体的实施例对本发明进行了描述, 然而, 需要说明的。。。。 C C C C 是, 对于本领域的技术人员而言, 在不脱离本发明的精神和范围的情 况下, 可以对上述实施例作出许多改变和修改, 这些改变和修改都落 在本发明的权利要求限定的范围内。

Claims

权 利 要 求
1. 一种硅基发光材料, 包括至少两层调制层, 且每两层调制层 之间都设有一间接带隙层。
2. 根据权利要求 1所述的硅基发光材料, 其特征在于, 所述间 接带隙层的材料为 SihGe" 其中( z 0.4。
3. 根据权利要求 1所述的硅基发光材料, 其特征在于, 所述间 接带隙层的厚度为 lnm- 10nm。
4. 根据权利要求 1所述的硅基发光材料, 其特征在于, 所述调 制层的材料为 或 S —yCy, 其中, 0.2 x l, l% y 10% 。
5. 根据权利要求 2所述的硅基发光材料, 其特征在于, 所述调 制层的材料为 或 S —yCy,其中, 0.2 x l, 0.2 <χ-ζ < 1, 1% <y< 10%, ( ζ 0· 4。
6. 根据权利要求 1、 4或 5所述的硅基发光材料, 其特征在于, 所述调制层的厚度为 lnm- 20nm。
7. 根据权利要求 4、 5或 6所述的硅基发光材料, 其特征在于, 所述调制层为 SihCy, 所述间接带隙材料为 Si。
8. 根据权利要求 1所述的硅基发光材料, 其特征在于, 所述调 制层的层数为 2-21层。
9. 一种制备权利要求 1-8所述硅基发光材料的方法, 包括按照 由下至上的次序逐层生长各调制层和间接带隙层。
10. 根据权利要求 9 所述的硅基发光材料制备方法, 其特征在 于,制备所述调制层和间接带隙层的方法为分子束外延生长法或化学 气相沉积法。
11. 根据权利要求 10所述的硅基发光材料制备方法, 其特征在 于, 所述分子束外延生长法的生长温度为 500°C-8()(rC, 所述化学气 相沉积法的生长温度为 700°C-1000°C。
12. 根据权利要求 9 所述的硅基发光材料制备方法, 其特征在 于, 所述调制层的生长速率为 0.04 nm/s _0.4nm/s。
13. 根据权利要求 9 所述的硅基发光材料制备方法, 其特征在 于, 所述中间带隙层的生长速率为 0.04nm/s _0.4nm/s。
14. 一种硅基发光器件, 包括基底和在基底上顺序设置的緩沖 层、 有源发光层和盖帽层, 其中, 所述有源发光层使用权利要求 1-8 所述的硅基发光材料制作。
15. 根据权利要求 14所述的硅基发光器件, 其特征在于, 所述 基底为硅基底或硅 SOI基底。
16. 一种制备权利要求 14或 15所述硅基发光器件的方法,包括 以下步骤:
( 1 ) 首先, 在基底上制备一层緩沖层;
(2 ) 然后, 在所述緩沖层上按照由下至上的次序逐层生长各调 制层和间接带隙层;
17. 根据权利要求 16所述的制备方法, 其特征在于, 所述基底 为硅基底或硅 S0I基底, 所述緩沖层材料为 Si。
18. 根据权利要求 16所述的制备方法, 其特征在于, 制备所述
" 19. 根据权利要求;所述的制备方法 其^征在于, 所述分子 束外延生长法的生长温度为 500°C-80(rC, 所述化学气相沉积法的生 长温度为 700°C_1000°C。
20. 根据权利要求 16所述的制备方法, 其特征在于, 所述调制 层的生长速率为 0.04 nm/s _0.4nm/s。
21. 根据权利要求 16所述的制备方法, 其特征在于, 所述间接带隙层 的生长速率为 0.04nm/s _0.4nm/s。
PCT/CN2009/000260 2009-03-11 2009-03-11 一种硅基发光材料及发光器件 WO2010102422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000260 WO2010102422A1 (zh) 2009-03-11 2009-03-11 一种硅基发光材料及发光器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000260 WO2010102422A1 (zh) 2009-03-11 2009-03-11 一种硅基发光材料及发光器件

Publications (1)

Publication Number Publication Date
WO2010102422A1 true WO2010102422A1 (zh) 2010-09-16

Family

ID=42727767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000260 WO2010102422A1 (zh) 2009-03-11 2009-03-11 一种硅基发光材料及发光器件

Country Status (1)

Country Link
WO (1) WO2010102422A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187045B2 (en) * 2002-07-16 2007-03-06 Osemi, Inc. Junction field effect metal oxide compound semiconductor integrated transistor devices
US7442320B2 (en) * 2004-06-18 2008-10-28 Ultradots, Inc. Nanostructured materials and photovoltaic devices including nanostructured materials
CN101399300A (zh) * 2007-09-25 2009-04-01 中国科学院物理研究所 一种硅基发光材料及发光器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187045B2 (en) * 2002-07-16 2007-03-06 Osemi, Inc. Junction field effect metal oxide compound semiconductor integrated transistor devices
US7442320B2 (en) * 2004-06-18 2008-10-28 Ultradots, Inc. Nanostructured materials and photovoltaic devices including nanostructured materials
CN101399300A (zh) * 2007-09-25 2009-04-01 中国科学院物理研究所 一种硅基发光材料及发光器件

Similar Documents

Publication Publication Date Title
US8507925B2 (en) Optoelectronic device and method for manufacturing the same
US8344409B2 (en) Optoelectronic device and method for manufacturing the same
TWI469391B (zh) 發光二極體
CN103762286B (zh) 高光萃取效率发光器件
TWI501420B (zh) 發光二極體
Kuykendall et al. Gallium Nitride Nanowires and Heterostructures: Toward Color‐Tunable and White‐Light Sources
US20140077240A1 (en) Iv material photonic device on dbr
CN105405939B (zh) 一种发光二极管及其制造方法
TW201603264A (zh) 包括n型及p型超晶格之電子裝置
Chang et al. Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode
TW202143509A (zh) 金屬氧化物半導體為基的發光裝置
TW201244160A (en) Method for making light emitting diode
US8823045B2 (en) Light emitting diode with graphene layer
US10541511B2 (en) Semiconductor light-emitting element, manufacturing method of semiconductor light-emitting element, and semiconductor device
JP2016517627A (ja) InGaNを含んでいる活性領域を有している半導体構造、このような半導体構造を形成する方法、及びこのような半導体構造から形成された発光デバイス
US8946736B2 (en) Optoelectronic device and method for manufacturing the same
CN105088181A (zh) 一种硅基量子点激光器材料的mocvd制备方法
JP5379211B2 (ja) エピタキシャル構造体及びその製造方法
Hayashi et al. Thermally engineered flip-chip InGaN/GaN well-ordered nanocolumn array LEDs
WO2010102422A1 (zh) 一种硅基发光材料及发光器件
Liu et al. Enhanced photoluminescence of multilayer Ge quantum dots on Si (001) substrates by increased overgrowth temperature
CN101399300A (zh) 一种硅基发光材料及发光器件
CN104157751B (zh) P型层粗化的发光二极管led生长方法
US20180122986A1 (en) Light-emitting device and manufacturing method thereof
Philip Epitaxial Growth of III-Nitride Nanostructures and Their Optoelectronic Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841291

Country of ref document: EP

Kind code of ref document: A1