WO2010099555A1 - The present invention relates to a method for producing carbon dioxide and hydrogen from hydrocarbons using chemical looping reforming (clr) - Google Patents
The present invention relates to a method for producing carbon dioxide and hydrogen from hydrocarbons using chemical looping reforming (clr) Download PDFInfo
- Publication number
- WO2010099555A1 WO2010099555A1 PCT/AT2010/000054 AT2010000054W WO2010099555A1 WO 2010099555 A1 WO2010099555 A1 WO 2010099555A1 AT 2010000054 W AT2010000054 W AT 2010000054W WO 2010099555 A1 WO2010099555 A1 WO 2010099555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- fuel
- gas stream
- clr
- reforming
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/46—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using discontinuously preheated non-moving solid materials, e.g. blast and run
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/48—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/52—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/725—Redox processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/04—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0283—Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0838—Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0866—Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1076—Copper or zinc-based catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1247—Higher hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
- C01B2203/147—Three or more purification steps in series
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/148—Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Definitions
- the present invention relates to a process for the production of carbon dioxide and hydrogen from hydrocarbons using "Chemical Looping Reforming” (CLR).
- CLR Chemical Looping Reforming
- synthesis gas gas mixtures for chemical synthesis of higher molecular weight compounds consist mostly of carbon monoxide CO and hydrogen H 2 .
- Raw synthesis gas is understood to be the gas mixture emerging directly from the reactor, which may contain significant amounts of CO 2 , H 2 O and incompletely reacted hydrocarbons.
- Synthesis gas is currently produced mainly from gaseous or liquid hydrocarbons (generally designated C x H y ), with the main raw materials being natural gas, liquefied petroleum gas and naphtha.
- the currently used processes for synthesis gas supply usually include numerous pre- and post-treatment stages and are the product of decades of optimization. Therefore, only the most important concepts are discussed here.
- reforming The hydrocarbons are split by means of catalysts in a process called reforming.
- two technological approaches are distinguished: reformer with external heat supply by heating the tubular reactors with gas flames and autothermal reformer, in which O 2 metered is supplied to release the necessary heat.
- reformer with external heat supply by heating the tubular reactors with gas flames
- autothermal reformer in which O 2 metered is supplied to release the necessary heat.
- reactions proceed predominantly according to the following chemical equations (1) to (4):
- nickel-based catalysts are typically used for methane reforming. Since these catalysts are deactivated by sulfur, as complete as possible separation of sulfur-containing components from the feedstock is required.
- heat input through the reactor wall limits the reaction progress. The need to heat at temperatures of 750-1,000 0 C in the pressurized reactors introduce caused extreme demands on the material of the reactor wall.
- catalytic water gas shift stages usually follow, which are also referred to as "CO shifts" and allow an adjustment of the CO / H 2 ratio via the temperature dependence of the thermodynamic equilibrium of the reaction according to equation (4) .
- CO is oxidized with water vapor in the presence of metal oxide to CO 2 , wherein at the same time further hydrogen is obtained.
- several CO shift stages are often connected in series, with the temperature decreasing from stage to stage.
- the separation of CO 2 takes place. This occurs because of the typically high pressure level of about 2 MPa (20 bar) by means of physical washing methods such as gas cleaning by multistage combinations of selective adsorption and desorption (eg Rectisol ® process). Alternatively, chemical washing processes (amine washing, carbonate washing, see) used; These gain in attractiveness compared to the physical processes with decreasing pressure level in the synthesis gas stream.
- physical washing methods such as gas cleaning by multistage combinations of selective adsorption and desorption (eg Rectisol ® process).
- chemical washing processes amine washing, carbonate washing, see
- the catalyst is not continuously charged with feedstock, but cyclically moved between two reaction zones.
- the fuel reactor (FR) reforming of the feedstock takes place in a manner similar to that described above for the processes currently used industrially.
- the air reactor (AR) the catalyst is partially oxidized, liberating heat. The oxidation is preferably carried out with air. Both heat and selective oxygen can be transported from one zone to the other.
- Particularly suitable for this process based on the circulating fluidized bed technology twin bed fluidized bed systems in which the catalyst is present as a vortexable bulk material.
- alternatively applied fixed bed reactors or rotating apparatuses with a fixed catalyst structure are conceivable.
- the principle of CLR was first described around 1950. See, for example, U.S.
- suitable metal oxides are used as bed materials, ie as reforming catalysts or oxygen carriers, and cycled between the two reactors, as indicated by the two curved arrows in the drawing.
- the essential technical requirements of these materials are sufficient oxygen transport capacity, sufficient catalytic activity for hydrocarbon splitting, low tendency to coke formation and sufficient mechanical strength for use in the fluidized bed.
- the parameter lambda ⁇ in FIG. 1 indicates the ratio between the oxygen introduced into the air reactor and the theoretically required amount of oxygen in order to oxidize the entire hydrocarbon to CO 2 and H 2 O. If hydrogen (pure or as synthesis gas) is to be obtained, then ⁇ ⁇ 1 must be present.
- the Ryden process takes place autothermally at temperatures between 700 and 950 ° C., especially since heat energy is recovered from the reaction gas mixture after it leaves the fuel reactor FR, as indicated by the arrows "Q" in the drawing.
- the CLR system is also followed by a one-stage or multistage CO shift stage, after which either CO 2 or H 2 can be selectively removed.
- the synthesis gas is not diluted by atmospheric nitrogen.
- the object of the invention was to provide a reforming process which makes CO 2 and H 2 available as pure process streams in a more economical manner than hitherto.
- the invention in its simplest embodiment is a process for the continuous production of carbon dioxide CO 2 and hydrogen H 2 by reforming a carbon and hydrogen-containing fuel using the "Chemical Looping Reforming" (CLR) technology by means of at least one Catalyst and particulate metal oxide serving as an oxidizer cycled between two CLR reactors, ie an air reactor into which an oxygen-containing combustion gas, preferably air, is introduced and a fuel reactor into which a fuel stream is introduced gas mixture comprising mainly CO 2 and H 2 is subjected to a purification or separation step in order to obtain one of these two gases as a substantially pure gas stream and an exhaust gas stream, the method being characterized in that the exhaust gas stream is subjected to a second purification / separation step is subjected to also obtain the second gas as a substantially
- adsorption, absorption or washing process can be used, such as physical washing process, such as the above-mentioned Rectisol® ® process, or chemical washing processes, for example amine scrubbing or Carbonat ⁇ sche.
- the second exhaust gas stream is at least partially recycled to the CLR reactors, where it is again subjected to reforming.
- incomplete oxidation of the carbon contained in the fuel to CO or CO 2
- CO contained in the exhaust gas stream is essentially completely oxidized to CO 2 in the fuel reactor, which is why the CO 2 required by the prior art is completely oxidized. Shift steps can be omitted.
- the process can be operated entirely autothermally, so that no steam reformer is necessary for the CLR reaction, whereby an external heating can be omitted and the reaction is not limited by the reactor wall material.
- one or more additional purification steps may be provided for one or both of the desired CO 2 and H 2 gases.
- scrubbers of different operation can be run through successively for the same gas, for example amine and carbonate scrubber for the separation of CO 2 .
- a separate cleaning step to remove unwanted components, such as hydrogen sulfide H 2 S be provided.
- a third exhaust gas flow is generated, which is subsequently returned to the CLR process.
- the second exhaust gas flow may also be divided by a power splitter, so that a usually less than part of the exhaust gas (bleed or bleed stream) is discharged from the system, while the remainder is the third exhaust gas Ström is recycled to CLR. How large the ratio between such Abblasestrom and the third exhaust gas flow depends on the amount of impurities to be discharged.
- the blow-off flow is in the range of less than 1% up to several percent of the second exhaust flow.
- a blow-off flow of 10% or more may be useful, for example, where particular attention is paid to obtaining one of the two major products, ie CO 2 or H 2 , in high purity and high system throughput while yielding at the other gas is less essential.
- the pressure and temperature conditions within the CLR system can also be influenced, so that the blow-off flow also allows a "fine-tuning" of the CLR reaction conditions.
- the second offgas stream may be subjected to one or more additional purification steps, and before, after, or in between, a blow off stream may be branched off, resulting in a combination of the above-mentioned advantages.
- the second or third exhaust gas stream obtained as described above is recycled in accordance with the present invention into the fuel-cell reactor of the CLR system, preferably via the fuel feed line, i. along with fresh fuel in a shared stream.
- This has the advantage that, on the one hand, no further supply line into the fuel reactor is required and, on the other hand, a uniform distribution of the exhaust gas and the fresh fuel in the fuel reactor is ensured, whereby local concentration fluctuations within the reactor and thus fluctuations in the reaction rates are avoided.
- CO-shift reactions according to the present invention are not absolutely necessary, one or more of such process steps can still be incorporated into the process. be included driving the invention to allow even higher clean gas yields in certain cases.
- the time at which such CO shift is carried out is not particularly limited, but preferably such is done before and / or after the first gas purification step to obtain one of the two desired pure gases. If CO 2 is first recovered from the gas mixture, the optional CO shift is preferably carried out before.
- FIGS. 4 and 5 two possible such embodiments of the invention with CO shift are shown schematically.
- the exhaust gas from the air reactor is a gas mixture consisting mainly of nitrogen N 2 and argon Ar.
- a substantially pure mixture of N 2 and Ar can be obtained by controlling the operating conditions, ie, the ratios of the gas flows and the operating temperatures, such that substantially all of the oxygen is supplied to the Solid, ie the catalyst and oxygen carrier, bound transferred into the fuel reactor and consumed in the ongoing there redox reactions.
- a suitable gas separation such as a cryogenic rectification
- the fuel used in the process according to the invention is not particularly limited but is preferably made from ashless hydrocarbons, such as e.g. Natural gas, liquefied petroleum gas or mineral spirits, selected, which contributes to the purity of the gases to be recovered and increases the possible operating life of the plant before it becomes necessary to clean it.
- ashless hydrocarbons such as e.g. Natural gas, liquefied petroleum gas or mineral spirits, selected, which contributes to the purity of the gases to be recovered and increases the possible operating life of the plant before it becomes necessary to clean it.
- FIGS. 6 and 7 are at the Computer simulated and detailed calculated methods similar to those shown in Figs. 3 and 4.
- the first example comprises a continuous process procedure according to FIG. 6.
- this is a CLR system comprising an air reactor AR and a fuel reactor FR, which are operated as fluidized-bed reactors. Between AR and FR a particulate solid is circulated as catalyst and oxygen carrier.
- an oxygen-containing gas in the present case preferably air according to the invention is introduced
- the catalyst is oxidized with oxygen, which is then transferred to the reactor FR, where it catalyzes the combustion of the fuel introduced there C x H y and at the same time serves as an oxidizing agent, ie gives off oxygen.
- As fuel pure methane (CH 4 ) is used in the present case.
- the global stoichiometric air ratio ⁇ in the CLR system is 0.25, ie only% of the amount of oxygen required to completely oxidize the fuel to CO 2 and H 2 O is fed into the reactor AR.
- balance points are represented by dotted lines and associated reference symbols 1 to 12, ie those points in the process sequence at which the substance and energy balances were calculated whose values are given in Table 1 below.
- the reference numerals therefore at the same time also designate the corresponding material flows at the respective location.
- reference numeral 1 corresponds to the Lucasfeed in the air reactor AR; 2 the feed of fresh fuel; 3, the feed into the fuel reactor FR, which consists of fresh fuel and waste gas 9 to be recycled; 4 the exhaust gas flow from the fuel reactor FR, in a first separation stage for the separation / purification of CO 2 , as "1st stage: CO 2 -Sep.” denotes, flows; 7 shows the first exhaust gas stream from the first gas purification stage, from which water 8 was removed in a drying stage (shown as cooler / condenser) and into a second separation stage for separating / purifying H 2 , as "2nd stage: H 2 -Sep.
- the catalyst used in practice mostly an artificially produced solid powder, consisting of an active metal oxide, for example oxides of nickel, iron, manganese, cobalt or copper, and a usually oxidic support matrix, for example Al 2 O 3 , TiO 2 or ZrO 2 , and / or naturally occurring and purposefully concentrated solid powders, such as olivine and / or ilmenite used, which is adapted by the relevant expert usually minutely to the respective reforming conditions, ie, especially on fuel, temperature and pressure to the efficiency of the CLR Process to optimize.
- an active metal oxide for example oxides of nickel, iron, manganese, cobalt or copper
- a usually oxidic support matrix for example Al 2 O 3 , TiO 2 or ZrO 2
- / or naturally occurring and purposefully concentrated solid powders such as olivine and / or ilmenite used, which is adapted by the relevant expert usually minutely to the respective reforming conditions, ie, especially on fuel, temperature and pressure to the efficiency of the CLR Process to
- water vapor H 2 O is included in order to achieve a steam to carbon ratio of 1.0 when it enters the CLR fuel reactor FR.
- the CLR system works autothermally, which is why the calculation below shows no increase or decrease of heat. Also, a partial internal heat recovery for preheating the supplied streams was assumed.
- the separation efficiency of the CO 2 separation stage in this example is 90%, that of the H 2 separation stage 80%.
- Example 1 the process procedure is shown schematically in Fig. 7, the method of Example 1 was extended by a CO shift stage "CO shift" before CO 2 - separation and a power distributor, the second exhaust stream 9 in a Abblasestrom 10 and a third exhaust stream 11 shares. The latter is for recycling, as already mixed in Example 1, with the stream 2 of fresh fuel (and water vapor), so as to give the feed stream 3 in the fuel reactor FR.
- Numeral 5 designates the steam supply to the CO shift stage and 6 the CO 2 -enriched exhaust gas from the CO shift supplied to the first gas separation stage.
- hydrocarbon again methane (CH 4 ) is used.
- the primary fuel used in the calculation contains 1% by volume N 2
- the gas stream at balance point 7 contains an N 2 content of 10% by volume.
- the global stoichiometric air ratio ⁇ in the CLR reaction was set at 0.3. Water vapor H 2 O is contained in the primary fuel stream 2 in such an amount that when entering the CLR fuel reactor FR a ratio between steam and carbon of 0.3 is achieved.
- Example 2 The separation efficiency of the CO 2 separation stage was given in Example 2 as 90% and in Example 3 as 60%, from which in each case the necessary separation efficiency of the H 2 separation stage in order to conclude the mass and energy balance results.
- stream 5 Before the high-temperature CO shift stage, ie after balance point 4, in stream 5, an amount of water vapor is supplied so that the necessary ratio between steam and carbon of 2.0 for the CO shift stage is reached.
- Example 2 For Example 2, whose calculated values are given in Table 2 and in which the separation efficiency of the CO 2 separation stage is 90%, a necessary separation efficiency of the H 2 separation stage of 86% results.
- Example 3 With the values given in Table 3, in which the separation efficiency of the CO 2 separation stage is only 60%, a necessary separation efficiency of the H 2 separation stage of 78% results.
- the present invention enables the recovery of up to four pure gases, namely CO 2 , H 2 , N 2 and Ar, from the reforming of a hydrocarbon, wherein the CO-Sh.
- CO 2 recovery ift reactions can be omitted.
- the invention is a further development of the prior art, which brings significant improvements in the performance of CLR processes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
The invention encompasses a method for continuously producing CO2 and H2 by reforming a fuel comprising carbon and hydrogen using the CLR technology by way of at least one particulate metal oxide that serves as a catalyst and oxygen carrier and is cycled between two CLR reactors, these being an air reactor AR into which an oxygen-containing combustion gas, preferably air 1 is introduced and a fuel reactor FR into which a fuel flow 2 is introduced, wherein the gas mixture formed by way of CLR and comprising primarily CO2 und H2 is subjected to a scrubbing and/or separating step so as to obtain one of said two gases as a substantially pure gas flow 13 and a waste gas flow 7, with the waste gas flow 7 being subjected to a second scrubbing and/or separating step so as to obtain the second gas as a substantially pure gas flow 14 and a second waste gas flow 9.
Description
Verfahren zur Herstellung von Kohlendioxid und Wasserstoff Process for the production of carbon dioxide and hydrogen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Kohlendioxid und Wasserstoff aus Kohlenwasserstoffen unter Verwendung von "Chemical Looping Reforming" (CLR).The present invention relates to a process for the production of carbon dioxide and hydrogen from hydrocarbons using "Chemical Looping Reforming" (CLR).
STAND DER TECHNIKSTATE OF THE ART
Herstellung von SynthesegasProduction of synthesis gas
Als Synthesegas werden Gasgemische zur chemischen Synthese höhermolekularer Verbindungen bezeichnet, die zumeist vorwiegend aus Kohlenmonoxid CO und Wasserstoff H2 bestehen. Unter Roh-Synthesegas wird das direkt aus dem Reaktor austretende Gasgemisch verstanden, das signifikante Anteile an CO2, H2O und nicht vollständig umgesetzten Kohlenwasserstoffen enthalten kann. Synthesegas wird gegenwärtig hauptsächlich aus gasförmigen oder flüssigen Kohlenwasserstoffen (allge- mein mit CxHy bezeichnet) hergestellt, wofür die Hauptrohstoffe Erdgas, Flüssiggas und Naphtha sind. Die derzeit eingesetzten Prozesse zur Synthesegasbereitstellung umfassen üblicherweise zahlreiche Vor- und Nachbehandlungsstufen und sind das Produkt jahrzehntelanger Optimierung. Hierin wird daher lediglich auf die wichtigsten Konzepte eingegangen.As synthesis gas gas mixtures for chemical synthesis of higher molecular weight compounds are called, which consist mostly of carbon monoxide CO and hydrogen H 2 . Raw synthesis gas is understood to be the gas mixture emerging directly from the reactor, which may contain significant amounts of CO 2 , H 2 O and incompletely reacted hydrocarbons. Synthesis gas is currently produced mainly from gaseous or liquid hydrocarbons (generally designated C x H y ), with the main raw materials being natural gas, liquefied petroleum gas and naphtha. The currently used processes for synthesis gas supply usually include numerous pre- and post-treatment stages and are the product of decades of optimization. Therefore, only the most important concepts are discussed here.
Die Kohlenwasserstoffe werden in einem Prozess, der als Reformierung bezeichnet wird, mit Hilfe von Katalysatoren gespalten. Dabei werden prinzipiell zwei technologische Ansätze unterschieden: Reformer mit externer Wärmezufuhr durch Beheizung der rohrförmigen Reaktoren mit Gasflammen sowie autotherme Reformer, bei denen O2 dosiert zugeführt wird, um die notwendige Wärme freizusetzen. Chemisch laufen dabei vorwiegend Reaktionen gemäß den folgenden chemischen Gleichungen (1) bis (4) ab:The hydrocarbons are split by means of catalysts in a process called reforming. In principle, two technological approaches are distinguished: reformer with external heat supply by heating the tubular reactors with gas flames and autothermal reformer, in which O 2 metered is supplied to release the necessary heat. Chemically, reactions proceed predominantly according to the following chemical equations (1) to (4):
Dampfreformierung: CxHy + x H2O -> x CO + (x+34y) H2 (1) Trockene Reformierung: CxHy + x CO2 ■* 2x CO + 1/4y H2 (2)Steam reforming: C x H y + x H 2 O -> x CO + (x + 34y) H 2 (1) Dry reforming: C x H y + x CO 2 ■ * 2x CO + 1 / 4y H 2 (2)
Partielle Oxidation: CxHy + 1/2χ O2 -> x CO + 1/4y H2 (3)Partial Oxidation: C x H y + 1/2 χ 2 O -> CO + x 1/4 y H 2 (3)
CO-Shift-Reaktion: CO + H2O <- -» CO2 + H2 (4)
In Reformern mit externer Wärmezufuhr wird Wasserdampf im Überschuss bereitgestellt, um Katalysatordeaktivierung durch Kohlenstoffablagerungen zu vermeiden. CO2 wird eingesetzt, um das Verhältnis von CO zu H2 im Synthesegas auf die Anforderungen nachfolgender Prozesse abzustimmen. Einen Überblick samt Diskussion derzeit eingesetzter Reformierprozesse für Erdgas als Einsatzstoff gibt I. Dybkjaer, "Tubulär reforming and autothermal reforming of natural gas - an overview of avail- able processes", Fuel Processing Technology 42, 85-107 (1995). Die Temperatur im Reformer beträgt üblicherweise zwischen 700 und 950 0C, und der Druck liegt typischerweise zwischen 1 ,5 und 4,0 MPa (15-40 bar). Der Katalysator liegt bei allen die- sen Prozessen unbewegt im Festbett vor. Für die Methanreformierung kommen typischerweise auf Nickel basierende Katalysatoren zum Einsatz. Da diese Katalysatoren von Schwefel deaktiviert werden, ist eine möglichst vollständige Abscheidung schwefelhaltiger Komponenten aus dem Einsatzstoff erforderlich. Bei Reformern mit externer Wärmezufuhr limitiert der Wärmeeintrag durch die Reaktorwand den Reak- tionsfortschritt. Die Notwendigkeit, Wärme bei Temperaturen von 750-1.000 0C in die druckbeaufschlagten Reaktoren einzubringen, bedingt extreme Anforderungen an den Werkstoff der Reaktorwand.CO shift reaction: CO + H 2 O <- - »CO 2 + H 2 (4) In reformers with external heat input, excess water vapor is provided to prevent catalyst deactivation by carbon deposits. CO 2 is used to adjust the ratio of CO to H 2 in the synthesis gas to the requirements of subsequent processes. An overview and discussion of currently used reforming processes for natural gas as feedstock is provided by I. Dybkjaer, "Tubular reforming and autothermal reforming of natural gas - an overview of available processes", Fuel Processing Technology 42, 85-107 (1995). The temperature in the reformer is usually between 700 and 950 0 C, and the pressure is typically between 1, 5 and 4.0 MPa (15-40 bar). The catalyst is stationary in the fixed bed for all these processes. For methane reforming, nickel-based catalysts are typically used. Since these catalysts are deactivated by sulfur, as complete as possible separation of sulfur-containing components from the feedstock is required. For heat exchangers with external heat input, the heat input through the reactor wall limits the reaction progress. The need to heat at temperatures of 750-1,000 0 C in the pressurized reactors introduce caused extreme demands on the material of the reactor wall.
Im Anschluss an den Reformierschritt folgen meist katalytische Wassergas-Shift-Stu- fen, die auch als "CO-Shifts" bezeichnet werden und eine Einstellung des CO/H2- Verhältnisses über die Temperaturabhängigkeit des thermodynamischen Gleichgewichts der Reaktion gemäß Gleichung (4) erlauben. Hierzu wird CO mit Wasserdampf in Gegenwart von Metalloxidkatalysatoren zu CO2 oxidiert, wobei gleichzeitig weiterer Wasserstoff anfällt. Für die Produktion von reinem H2 werden häufig mehre- re CO-Shift-Stufen in Serie geschaltet, wobei die Temperatur von Stufe zu Stufe abnimmt.Subsequent to the reforming step, catalytic water gas shift stages usually follow, which are also referred to as "CO shifts" and allow an adjustment of the CO / H 2 ratio via the temperature dependence of the thermodynamic equilibrium of the reaction according to equation (4) , For this purpose, CO is oxidized with water vapor in the presence of metal oxide to CO 2 , wherein at the same time further hydrogen is obtained. For the production of pure H 2 , several CO shift stages are often connected in series, with the temperature decreasing from stage to stage.
Nachdem das CO/H2-Verhältnis eingestellt ist, erfolgt die Abtrennung von CO2. Dies geschieht wegen des typischerweise hohen Druckniveaus von über 2 MPa (20 bar) mittels physikalischer Waschverfahren wie etwa Gasreinigung durch mehrstufige Kombinationen selektiver Adsorption und Desorption (z.B. Rectisol®-Verfahren). Alternativ dazu werden auch chemische Waschverfahren (Aminwäsche, Carbonatwä-
sehe) eingesetzt; diese gewinnen mit sinkendem Druckniveau im Synthesegasstrom an Attraktivität gegenüber den physikalischen Verfahren.After the CO / H 2 ratio is adjusted, the separation of CO 2 takes place. This occurs because of the typically high pressure level of about 2 MPa (20 bar) by means of physical washing methods such as gas cleaning by multistage combinations of selective adsorption and desorption (eg Rectisol ® process). Alternatively, chemical washing processes (amine washing, carbonate washing, see) used; These gain in attractiveness compared to the physical processes with decreasing pressure level in the synthesis gas stream.
Die schwer wiegenden Nachteile solcher Reformierverfahren nach dem Stand der Technik sind zusammengefasst vor allem der erhebliche apparative Aufwand und der hohe Energiebedarf sowie, bei externer Wärmezufuhr, die Limitierung der Reaktionsführung durch den maximal möglichen Wärmeübergang durch die Reaktorwand hindurch.The serious disadvantages of such reforming methods according to the prior art are summarized above all the considerable expenditure on equipment and the high energy demand and, with external heat supply, the limitation of the reaction by the maximum possible heat transfer through the reactor wall.
Chemical Looping Reforming (CLR)Chemical Looping Reforming (CLR)
Bei dieser Technologie wird der Katalysator nicht kontinuierlich mit Einsatzstoff beaufschlagt, sondern zyklisch zwischen zwei Reaktionszonen bewegt. In einer Zone, dem Brennstoffreaktor ("fuel reactor", FR), erfolgt eine Reformierung der Einsatzstoffe in ähnlicher Weise, wie dies oben für die derzeit großtechnisch eingesetzten Ver- fahren beschrieben wurde. In der zweiten Zone, dem Luftreaktor ("air reactor", AR), wird der Katalysator teilweise oxidiert, wobei Wärme freigesetzt wird. Die Oxidation erfolgt bevorzugt mit Luft. Dabei kann sowohl Wärme als auch selektiv Sauerstoff von einer Zone in die andere transportiert werden. Besonders eignen sich für dieses Verfahren auf der zirkulierenden Wirbelschichttechnologie beruhende Zweibett- Wirbelschichtsysteme, in denen der Katalysator als wirbelfähiges Schüttgut vorliegt. Grundsätzlich sind auch alternierend beaufschlagte Festbettreaktoren oder rotierende Apparate mit fester Katalysatorstruktur denkbar. Das Prinzip von CLR wurde erstmals um 1950 beschrieben. Siehe beispielsweise die US-Patentveröffentlichungen Nr. 2.607.670, 2.678.264, 2.607.668, 2.607.669, 2.665.199, 2.592.377, 2.671.721 , 2.671.719, 2.635.952, 2.550.742, 2.569.380, 2.640.034, 2.631.094 und 2.527.197, sowie die GB-A-634.933 und GB-A-636.206.In this technology, the catalyst is not continuously charged with feedstock, but cyclically moved between two reaction zones. In one zone, the fuel reactor (FR), reforming of the feedstock takes place in a manner similar to that described above for the processes currently used industrially. In the second zone, the air reactor (AR), the catalyst is partially oxidized, liberating heat. The oxidation is preferably carried out with air. Both heat and selective oxygen can be transported from one zone to the other. Particularly suitable for this process based on the circulating fluidized bed technology twin bed fluidized bed systems in which the catalyst is present as a vortexable bulk material. In principle, alternatively applied fixed bed reactors or rotating apparatuses with a fixed catalyst structure are conceivable. The principle of CLR was first described around 1950. See, for example, U.S. Patent Publication Nos. 2,607,670, 2,678,264, 2,607,668, 2,607,669, 2,665,199, 2,592,377, 2,671,721, 2,671,719, 2,635,952, 2,550,742, 2,569. 380, 2,640,034, 2,631,094 and 2,527,197, as well as GB-A-634,933 and GB-A-636,206.
CLR-Verfahren wurden erst vor wenigen Jahren auch in Kombination mit CO2-Ab- scheidetechnologien vorgeschlagen; siehe z.B. T. Mattisson und A. Lyngfelt, "Appli- cations of chemical looping combustion with capture of CO2", Proceedings of the 2nd Nordic Minisymposium on Carbon Dioxide Capture and Storage, Göteborg, Schweden (2001). In der Folge wurden ausführliche Untersuchungen von CLR in der Wir-
belschicht, u.a. zur Herstellung von Wasserstoff, durchgeführt; siehe M. Ryden, "Hydrogen production from fossil fuels with carbon dioxide capture, using chemical- looping technologies", Dissertation an der Technische Hochschule Chalmers, Göteborg, Schweden (2008). Der darin offenbarte und bisher lediglich in Pilotanlagen rea- lisierte Stand der Technik ist in Fig. 1 schematisch dargestellt und lässt sich wie folgt zusammenfassen.CLR procedures were only recently proposed in combination with CO 2 separation technologies; See, eg, T. Mattisson and A. Lyngfelt, "appli- cations of chemical looping combustion with capture of CO 2", Proceedings of the 2 nd Nordic Mini Symposium on Carbon Dioxide Capture and Storage, Gothenburg, Sweden (2001). Subsequently, detailed investigations of CLR in the Belschicht, including for the production of hydrogen, carried out; See M. Ryden, "Hydrogen Production from Fossil Fuels with Carbon Dioxide Capture, Using Chemical Looping Technologies", Dissertation at Chalmers University of Technology, Gothenburg, Sweden (2008). The prior art disclosed therein and previously realized only in pilot plants is shown schematically in FIG. 1 and can be summarized as follows.
In den beiden Wirbelschichtreaktoren AR und FR werden geeignete Metalloxide als Bettmaterialien, d.h. als Reformierungskatalysator bzw. Sauerstoffträger, eingesetzt und zwischen den beiden Reaktoren zykliert, wie dies durch die beiden gekrümmten Pfeile in der Zeichnung angedeutet wird. Die wesentlichen technischen Anforderungen dieser Materialien sind eine ausreichende Sauerstofftransportkapazität, eine ausreichende katalytische Aktivität zur Kohlenwasserstoffspaltung, geringe Neigung zur Koksbildung und eine ausreichende mechanische Festigkeit für den Einsatz in der Wirbelschicht. Der Parameter Lambda λ in Fig. 1 gibt das Verhältnis zwischen dem in den Luftreaktor eingebrachten Sauerstoff und der theoretisch benötigten Sauerstoffmenge, um den gesamten Kohlenwasserstoff zu CO2 und H2O zu oxidie- ren, an. Soll Wasserstoff (rein oder als Synthesegas) gewonnen werden, muss daher λ < 1 sein. Der Prozess nach Ryden läuft global gesehen autotherm bei Temperatu- ren zwischen 700 und 950 0C ab, zumal Wärmeenergie aus dem Reaktionsgasgemisch nach dessen Austritt aus dem Brennstoffreaktor FR rückgewonnen wird, wie dies in der Zeichnung durch die Pfeile "Q" angedeutet ist. Je nach Umlaufrate des in den Wirbelschichtreaktoren zirkulierenden Feststoffs stellt sich eine notwendige Temperaturdifferenz zwischen Luftreaktor und Brennstoffreaktor ein. Zur Erzeugung von Wasserstoff wird dem CLR-System zudem eine ein- oder mehrstufige CO-Shift-Stufe nachgeschaltet, wonach entweder CO2 oder H2 selektiv abgetrennt werden können.In the two fluidized bed reactors AR and FR, suitable metal oxides are used as bed materials, ie as reforming catalysts or oxygen carriers, and cycled between the two reactors, as indicated by the two curved arrows in the drawing. The essential technical requirements of these materials are sufficient oxygen transport capacity, sufficient catalytic activity for hydrocarbon splitting, low tendency to coke formation and sufficient mechanical strength for use in the fluidized bed. The parameter lambda λ in FIG. 1 indicates the ratio between the oxygen introduced into the air reactor and the theoretically required amount of oxygen in order to oxidize the entire hydrocarbon to CO 2 and H 2 O. If hydrogen (pure or as synthesis gas) is to be obtained, then λ <1 must be present. The Ryden process takes place autothermally at temperatures between 700 and 950 ° C., especially since heat energy is recovered from the reaction gas mixture after it leaves the fuel reactor FR, as indicated by the arrows "Q" in the drawing. Depending on the circulation rate of the circulating in the fluidized bed reactors solid a necessary temperature difference between the air reactor and the fuel reactor. To generate hydrogen, the CLR system is also followed by a one-stage or multistage CO shift stage, after which either CO 2 or H 2 can be selectively removed.
Die Vorteile dieses CLR-Verfahrens gegenüber den großtechnisch eingesetzten Re- formierungsprozessen sind folgende: - Durch den guten guten Wärmetransport in der Wirbelschicht herrschen praktisch isotherme Bedingungen innerhalb jeder Reaktionszone. Es kommt zu keinen mate-
rialschädigenden Temperaturspitzen und auch zu keiner Limitierung des Reaktionsfortschritts durch den Wärmeübergang.The advantages of this CLR process compared to the reforming processes used on a large scale are the following: By virtue of the good heat transfer in the fluidized bed, practically isothermal conditions prevail within each reaction zone. There is no material rialschädigenden temperature peaks and also to no limitation of the reaction progress through the heat transfer.
- Es ist weniger Dampf für die Vermeidung von Kohlenstoffablagerungen erforderlich, was den spezifischen Energieeinsatz verringert. - CLR ist toleranter im Bezug auf Verunreinigungen des Einsatzstoffs, da der Katalysator im Luftreaktor kontinuierlich von Kohlenstoffablagerungen und Schwefelvergiftungen befreit wird.- Less steam is needed to avoid carbon deposits, which reduces the specific energy input. - CLR is more tolerant to contaminants of the feed since the catalyst in the air reactor is continuously cleared of carbon deposits and sulfur poisoning.
- Es ist keine Wärmeübertragung durch die Reaktorwand notwendig, so dass anstelle der ansonsten hochbelasteten Edelstahlrohre mit ausgemauerten Apparaten und bei höheren Temperaturen im Reaktor gearbeitet werden kann. Dies ist speziell bei Druckbetrieb relevant, da die mögliche Betriebstemperatur auf Grund der Thermodynamik den möglichen Umsatz festlegt. Dieser wird mit steigendem Druck generell schlechter, weswegen eine Temperaturerhöhung wesentliche Verbesserungen mit sich bringt. - Es ist keine Luftzerlegungsanlage notwendig.- There is no heat transfer through the reactor wall necessary, so that instead of the otherwise highly loaded stainless steel tubes with bricked-out equipment and at higher temperatures in the reactor can be used. This is especially relevant in printing operation, since the possible operating temperature determines the possible turnover due to the thermodynamics. This becomes generally worse with increasing pressure, which is why a temperature increase brings about significant improvements. - No air separation plant is necessary.
- Das Synthesegas ist nicht durch Luftstickstoff verdünnt.- The synthesis gas is not diluted by atmospheric nitrogen.
- Als Nebenprodukt der Reformierung fällt im Luftreaktor ein nahezu sauerstofffreies Gas an, das bei Einsatz von Luft als Oxidationsmittel hauptsächlich aus N2 und Ar besteht.- As a by-product of the reforming falls in the air reactor to an almost oxygen-free gas, which consists of using air as the oxidant mainly of N 2 and Ar.
Allerdings weist auch ein solches CLR-System Nachteile auf. Neben dem in Wirbelschichtreaktoren unvermeidlichen Katalysator-Abrieb und der damit verbundenen Staubbeladung der austretenden Ströme, die eine eigene Staubabscheidung erfordern kann, liegt der Hauptnachteil des von Ryden offenbarten Verfahrens darin, dass keine reinen Prozessströme beider Gase, d.h. CO2 und H2, erhältlich sind.However, such a CLR system also has disadvantages. In addition to the inevitable catalyst wear in fluidized bed reactors and the associated dust loading of the effluents, which may require separate dust separation, the major disadvantage of the method disclosed by Ryden is that no pure process streams of both gases, ie CO 2 and H 2 , are available ,
Ist nämlich das Ziel eines Prozesses nach Ryden die gleichzeitige Bereitstellung von H2 und CO2, so kann bei Verwendung speziell geeigneter Trennverfahren jeweils nur einer der beiden Ströme rein bereitgestellt werden, z.B. reiner H2 durch Druckwech- seladsorptionsverfahren oder reines CO2 durch chemische oder physikalische Waschverfahren. Der jeweils andere Strom enthält auch alle übrigen, im System enthaltenen Komponenten, die entweder aus unvollständigem Umsatz der eingesetzten
Kohlenwasserstoffe resultieren oder aber als Störstoffe zusammen mit dem Kohlen- wasserstoff-Feed (z.B. Schwefelverbindungen) bzw. als Leckstrom aus dem Luftreaktor (z.B. N2, Edelgase) in den Brennstoffreaktor eingebracht werden.If the goal of a process according to Ryden is the simultaneous provision of H 2 and CO 2 , only one of the two streams can be provided purely by using specially suitable separation processes, eg pure H 2 by pressure swing adsorption process or pure CO 2 by chemical or physical washing methods. The other stream also contains all other components contained in the system, either from incomplete sales of the used Hydrocarbons result or as impurities together with the hydrocarbon feed (eg sulfur compounds) or as leakage from the air reactor (eg N 2 , noble gases) are introduced into the fuel reactor.
Zweistufige Gasauftrennung zur Isolierung reiner GasströmeTwo-stage gas separation for the isolation of pure gas streams
Prinzipiell ist natürlich bekannt, dass sich für die Isolierung reiner Gase durch eine sequenzielle Anordnung mehrerer Gastrennverfahren Vorteile im Bezug auf jeweils notwendige Trennleistungen ergeben. Dieses Prinzip der Stofftrennung wird für die Trennung von CO2 und H2 in Kombination mit herkömmlichen großtechnischen Re- formierverfahren eingesetzt, indem eine CO2-Abtrennung mittels physikalischer Wäsche und eine H2-Abtrennung aus dem CO2-abgereicherten Restgas mittels Druckwechseladsorption nacheinander erfolgen (A. Prelipceanu, H.-P. Kaballo, U. Keresti- cioglu, "Linde's Rectisol® Wash Process", Second International Freiberg Conference on IGCC & XtL Technologies, 8.-12. Mai 2007, Freiberg, Deutschland). Es ist somit keine vollständige CO2-Abtrennung erforderlich, um trotzdem auch reinen H2 zu erhalten. Diese in Fig. 2 schematisch dargestellte Prozessabfolge trägt bei großtechnischen Reformieranlagen wesentlich zur Senkung des apparativen Aufwands für die Gastrennung bei. Die Kombination einer solchen zweistufigen Gasauftrennung mit CLR-Anlagen ist jedoch weder aus der Praxis noch aus der Literatur bekannt, da eine einfache sequenzielle Schaltung von CLR und physikalischen Waschverfahren wie etwa der oben erwähnten Rectisol®-Wäsche von Linde aufgrund des für CLR bislang diskutierten begrenzten Druckniveaus nicht oder nur unter beträchtlichem Aufwand möglich wäre.In principle, it is of course known that there are advantages in terms of each necessary separation performance for the isolation of pure gases by a sequential arrangement of several gas separation processes. This principle of material separation is used for the separation of CO 2 and H 2 in combination with conventional large-scale reforming processes in which CO 2 separation by means of physical scrubbing and H 2 separation from the CO 2 -depleted residual gas take place successively by means of pressure swing adsorption (A. Prelipceanu, H.-P. Kaballo, U. Keresti- cioglu, "Linde's Rectisol® ® Wash Process", Second International Freiberg Conference on IGCC & XtL Technologies, 8 to 12 May 2007 in Freiberg, Germany). Thus, no complete CO 2 separation is required to still obtain pure H 2 . This process sequence, which is shown schematically in FIG. 2, contributes substantially to reducing the apparatus expense for gas separation in large-scale reforming plants. However, the combination of such two-stage Gasauftrennung with CLR systems is known neither in practice nor in the literature as a simple sequential circuit CLR and physical washing methods such as the above-mentioned Rectisol® ® scrubbing Linde due to the previously discussed for CLR limited Pressure levels would not or only with considerable effort would be possible.
Ziel der Erfindung war vor diesem Hintergrund die Bereitstellung eines Reformierverfahrens, durch das auf wirtschaftlichere Weise als bisher gleichzeitig CO2 und H2 als reine Prozesströme erhältlich sind.Against this background, the object of the invention was to provide a reforming process which makes CO 2 and H 2 available as pure process streams in a more economical manner than hitherto.
OFFENBARUNG DER ERFINDUNG Dieses Ziel wird von den Erfindern grundsätzlich dadurch erreicht, dass die an sich bekannten Verfahren eines CLR-Prozesses, ähnlich wie von Ryden, s.o., geoffenbart, und einer mehrstufigen Gasreinigung kombiniert werden.
Die Erfindung besteht demnach in ihrer einfachsten Ausführungsform in einem Verfahren zur kontinuierlichen Herstellung von Kohlendioxid CO2 und Wasserstoff H2 durch Reformieren eines Kohlenstoff und Wasserstoff enthaltenden Brennstoffs unter Anwendung der "Chemical Looping Reforming"- (CLR-) Technologie mittels zumin- dest eines als Katalysator und als Sauerstoffträger dienenden partikulären Metalloxids, das zwischen zwei CLR-Reaktoren, d.h. einem Luftreaktor, in den ein sauerstoffhaltiges Verbrennungsgas, vorzugsweise Luft, eingeleitet wird, und einem Brennstoffreaktor, in den ein Brennstoffstrom eingeleitet wird, zykliert wird, wobei das mittels CLR gebildete, hauptsächlich CO2 und H2 umfassende Gasgemisch einem Reinigungs- bzw. Trennschritt unterzogen wird, um eines dieser beiden Gase als im Wesentlichen reinen Gasstrom sowie einen Abgasstrom zu erhalten, wobei das Verfahren dadurch gekennzeichnet ist, dass der Abgasstrom einem zweiten Reinigungs- /Trennschritt unterzogen wird, um auch das zweite Gas als im Wesentlichen reinen Gasstrom sowie einen zweiten Abgasstrom zu erhalten.DISCLOSURE OF THE INVENTION This object is basically achieved by the inventors by combining the per se known methods of a CLR process, similar to that of Ryden, and a multi-stage gas purification. Accordingly, the invention in its simplest embodiment is a process for the continuous production of carbon dioxide CO 2 and hydrogen H 2 by reforming a carbon and hydrogen-containing fuel using the "Chemical Looping Reforming" (CLR) technology by means of at least one Catalyst and particulate metal oxide serving as an oxidizer cycled between two CLR reactors, ie an air reactor into which an oxygen-containing combustion gas, preferably air, is introduced and a fuel reactor into which a fuel stream is introduced gas mixture comprising mainly CO 2 and H 2 is subjected to a purification or separation step in order to obtain one of these two gases as a substantially pure gas stream and an exhaust gas stream, the method being characterized in that the exhaust gas stream is subjected to a second purification / separation step is subjected to also obtain the second gas as a substantially pure gas stream and a second exhaust gas stream.
Auf diese Weise ist es selbst in dieser einfachsten Ausführungsform der Erfindung möglich, die beiden beim Chemical Looping Reforming von Kohlenwasserstoffen vorwiegend anfallenden Gase, d.h. CO2 und H2, kontinuierlich als Reingasströme zu erhalten.In this way, even in this simplest embodiment of the invention, it is possible to continuously obtain the two gases predominantly occurring in chemical loop reforming of hydrocarbons, ie CO 2 and H 2 , as pure gas streams.
Zur Reinigung der beiden Gase können alle herkömmlicherweise eingesetzten Verfahren, z.B. Adsorptions-, Absorptions- oder Waschverfahren eingesetzt werden, wie etwa physikalische Waschverfahren, z.B. das oben erwähnte Rectisol®-Verfahren, oder chemische Waschverfahren, z.B. Aminwäsche oder Carbonatwäsche.To clean the two gases all methods commonly employed, such as adsorption, absorption or washing process can be used, such as physical washing process, such as the above-mentioned Rectisol® ® process, or chemical washing processes, for example amine scrubbing or Carbonatwäsche.
Zur deutlichen Steigerung der Effizienz bei gleichzeitiger Erhöhung der Wirtschaftlichkeit wird in bevorzugten Ausführungsformen der Erfindung der zweite Abgasstrom zumindest teilweise zu den CLR-Reaktoren rezykliert, wo er erneut der Reformierung unterzogen wird. Dadurch wird einerseits eine unvollständige Oxidation des im Brennstoffs enthaltenen Kohlenstoffs (zu CO oder CO2) vermieden, und im Abgasstrom enthaltenes CO wird im Brennstoffreaktor im Wesentlichen vollständig zu CO2 oxidiert, weswegen die nach dem Stand der Technik zwingend erforderlichen CO-
Shift-Stufen entfallen können. Weiters kann das Verfahren gänzlich autotherm betrieben werden, so dass für die CLR-Reaktion keine Dampfreformer notwendig sind, wodurch auch eine externe Beheizung entfallen kann und die Reaktionsführung nicht durch das Reaktorwandmaterial limitiert ist.In order to significantly increase the efficiency while at the same time increasing the economy, in preferred embodiments of the invention the second exhaust gas stream is at least partially recycled to the CLR reactors, where it is again subjected to reforming. As a result, incomplete oxidation of the carbon contained in the fuel (to CO or CO 2 ) is avoided on the one hand, and CO contained in the exhaust gas stream is essentially completely oxidized to CO 2 in the fuel reactor, which is why the CO 2 required by the prior art is completely oxidized. Shift steps can be omitted. Furthermore, the process can be operated entirely autothermally, so that no steam reformer is necessary for the CLR reaction, whereby an external heating can be omitted and the reaction is not limited by the reactor wall material.
Im Falle der Rezyklierung des gesamten zweiten Abgasstroms werden - selbst bei unvollständiger Abtrennung der gewünschten Reingase CO2 und H2 in den Reinigungsschritten - nach einer gewissen Anzahl an Rezyklierungsrunden der gesamte Kohlenstoff und der gesamte Wasserstoff in Form von Reingasströmen gewonnen. Das bedeutet, dass der Material- und Kostenaufwand für die Reinigungsstufen niedrig gehalten werden kann, da keine extrem hohe Reinigungseffizienz erforderlich ist.In the case of recycling the entire second exhaust gas stream - even with incomplete separation of the desired pure gases CO 2 and H 2 in the purification steps - after a certain number of recycling cycles, the total carbon and the total hydrogen are recovered in the form of clean gas streams. This means that the cost of materials and costs for the purification stages can be kept low, since no extremely high cleaning efficiency is required.
In alternativen Ausführungsformen kann anstelle des gesamten Abgasstroms aus der zweiten Gasreinigungsstufe nur ein Teil davon in den CLR-Prozess rezykliert wer- den. Dies kann aus mehreren Gründen gewünscht werden.In alternative embodiments, instead of the entire exhaust stream from the second gas purification stage, only a portion of it may be recycled to the CLR process. This can be desired for several reasons.
Einerseits können ein oder mehrere zusätzliche Reinigungsschritte für eines oder beide der gewünschten Gase CO2 und H2 vorgesehen werden. Das bedeutet, dass beispielsweise mehrere relativ einfache und somit kostengünstige Gaswäscher für dasselbe Gas in Serie geschaltet werden können, um zusammen für eine annehmbare Reinigungseffizienz zu sorgen. Ebenso können Wäscher unterschiedlicher Arbeitsweise für dasselbe Gas nacheinander durchlaufen werden, beispielsweise Amin- und Carbonatwäscher zur Abtrennung von CO2. Auch kann ein eigener Reinigungsschritt zur Entfernung unerwünschter Komponenten, wie z.B. Schwefelwasser- stoff H2S, vorgesehen sein. In allen Fällen wird ein dritter Abgasstrom erzeugt, der anschließend in den CLR-Prozess rückgeführt wird.On the one hand, one or more additional purification steps may be provided for one or both of the desired CO 2 and H 2 gases. This means, for example, that several relatively simple and therefore inexpensive gas scrubbers can be connected in series for the same gas, to provide an acceptable cleaning efficiency. Similarly, scrubbers of different operation can be run through successively for the same gas, for example amine and carbonate scrubber for the separation of CO 2 . Also, a separate cleaning step to remove unwanted components, such as hydrogen sulfide H 2 S, be provided. In all cases, a third exhaust gas flow is generated, which is subsequently returned to the CLR process.
Vor allem zur Entfernung von Verunreinigungen, wie z.B. von H2S oder von in den Brennstoffreaktor als Leckstrom eingetretenem Stickstoff N2, kann gemäß vorliegen- der Erfindung der zweite Abgasstrom auch durch einen Stromverteiler ("Splitter") geteilt werden, so dass ein - zumeist geringer - Teil als Abgas (Abblase- oder "Bleed"- Strom) aus dem System ausgeschleust wird, während der Rest als dritter Abgas-
ström zum CLR rezykliert wird. Wie groß das Verhältnis zwischen einem solchen Abblasestrom und dem dritten Abgasstrom ist, hängt von der Menge an auszuschleusenden Verunreinigungen ab. Typischerweise liegt der Abblasestrom im Bereich von unter 1 % bis hin zu mehreren Prozent des zweiten Abgasstroms. In manchen Fällen kann jedoch auch ein Abblasestrom von 10 % oder mehr von Nutzen sein, beispielsweise wenn besonderes Augenmerk darauf gelegt wird, eines der beiden Hauptprodukte, d.h. CO2 oder H2, in hoher Reinheit und mit hohem Anlagendurchsatz zu gewinnen, während die Ausbeute am anderen Gas weniger wesentlich ist. Durch geeignete Wahl der Menge an Abblasestrom können außerdem die Druck- und Tempera- turbedingungen innerhalb des CLR-Systems beeinflusst werden, so dass der Abblasestrom auch eine "Feineinstellung" der CLR-Reaktionsbedingungen ermöglicht. Eine solche Ausführungsform der vorliegenden Erfindung mit Gasverteiler ist schematisch in Fig. 3 dargestellt.In particular, in order to remove impurities such as H 2 S or nitrogen N 2 that has entered the fuel reactor as leakage current, according to the present invention, the second exhaust gas flow may also be divided by a power splitter, so that a usually less than part of the exhaust gas (bleed or bleed stream) is discharged from the system, while the remainder is the third exhaust gas Ström is recycled to CLR. How large the ratio between such Abblasestrom and the third exhaust gas flow depends on the amount of impurities to be discharged. Typically, the blow-off flow is in the range of less than 1% up to several percent of the second exhaust flow. In some cases, however, a blow-off flow of 10% or more may be useful, for example, where particular attention is paid to obtaining one of the two major products, ie CO 2 or H 2 , in high purity and high system throughput while yielding at the other gas is less essential. By suitable choice of the amount of blow-off flow, the pressure and temperature conditions within the CLR system can also be influenced, so that the blow-off flow also allows a "fine-tuning" of the CLR reaction conditions. Such an embodiment of the present invention with gas distributor is shown schematically in FIG.
Gemäß vorliegender Erfindung kann jedoch auch eine Kombination der oben beschriebenen Ausführungsformen realisiert werden, d.h. der zweite Abgasstrom kann einem oder mehreren zusätzlichen Reinigungsschritten unterzogen werden, und davor, danach oder dazwischen kann ein Abblasestrom abgezweigt werden, was eine Kombination der oben erwähnten Vorteile mit sich bringt.However, according to the present invention, a combination of the embodiments described above can be realized, i. the second offgas stream may be subjected to one or more additional purification steps, and before, after, or in between, a blow off stream may be branched off, resulting in a combination of the above-mentioned advantages.
Der zweite oder der wie oben beschrieben erhaltene dritte Abgasstrom wird gemäß vorliegender Erfindung in den Brennstroffreaktor des CLR-Systems rezykliert, wobei die Einspeisung vorzugsweise über die Brennstofffeed-Zuleitung, d.h. zusammen mit frischem Brennstoff in einem gemeinsamen Strom, erfolgt. Das hat den Vorteil, dass einerseits keine weitere Zuleitung in den Brennstoffreaktor vonnöten ist und andererseits eine gleichmäßige Verteilung des Abgases und des frischen Brennstoffs im Brennstoffreaktor gewährleistet ist, wodurch lokale Konzentrationsschwankungen innerhalb des Reaktors und damit Schwankungen der Reaktionsgeschwindigkeiten vermieden werden.The second or third exhaust gas stream obtained as described above is recycled in accordance with the present invention into the fuel-cell reactor of the CLR system, preferably via the fuel feed line, i. along with fresh fuel in a shared stream. This has the advantage that, on the one hand, no further supply line into the fuel reactor is required and, on the other hand, a uniform distribution of the exhaust gas and the fresh fuel in the fuel reactor is ensured, whereby local concentration fluctuations within the reactor and thus fluctuations in the reaction rates are avoided.
Obwohl CO-Shift-Reaktionen gemäß vorliegender Erfindung nicht zwingend erforderlich sind, können dennoch ein oder mehrere solcher Verfahrensschritte in das Ver-
fahren der Erfindung miteinbezogen werden, um in bestimmten Fällen noch höhere Reingasausbeuten zu ermöglichen. Zu welchem Zeitpunkt ein solcher CO-Shift durchgeführt wird, ist nicht speziell eingeschränkt, vorzugsweise erfolgt ein solcher jedoch vor und/oder nach dem ersten Gasreinigungsschritt zur Gewinnung eines der beiden gewünschten Reingase. Wird zuerst CO2 aus dem Gasgemisch gewonnen, wird der optionale CO-Shift vorzugsweise davor durchgeführt. In den Fig. 4 und 5 sind zwei mögliche solcher Ausführungsformen der Erfindung mit CO-Shift schematisch dargestellt.Although CO-shift reactions according to the present invention are not absolutely necessary, one or more of such process steps can still be incorporated into the process. be included driving the invention to allow even higher clean gas yields in certain cases. The time at which such CO shift is carried out is not particularly limited, but preferably such is done before and / or after the first gas purification step to obtain one of the two desired pure gases. If CO 2 is first recovered from the gas mixture, the optional CO shift is preferably carried out before. In FIGS. 4 and 5, two possible such embodiments of the invention with CO shift are shown schematically.
Wie zuvor erwähnt fällt bei CLR-Verfahren als Abgas aus dem Luftreaktor ein hauptsächlich aus Stickstoff N2 und Argon Ar bestehendes Gasgemisch an. In einer bevorzugten Ausführungsform der vorliegenden Erfindung kann darüber hinaus ein im Wesentlichen reines Gemisch aus N2 und Ar erhalten werden, indem die Betriebsbedingungen, d.h. die Verhältnisse der Gasströme und die Betriebstemperaturen, so ge- steuert werden, dass im Wesentlichen der gesamte Sauerstoff an den Feststoff, d.h. den Katalysator und Sauerstoffträger, gebunden in den Brennstoffreaktor übergeleitet und in den dort ablaufenden Redoxreaktionen verbraucht wird. Wird das Luftreaktor-Abgas einer geeigneten Gastrennung, wie z.B. einer Tieftemperatur-Rektifikation, unterzogen, können auf diese Weise gemäß vorliegender Erfindung insgesamt vier Gase, nämlich CO2, H2, N2 und Ar, im Wesentlichen rein gewonnen werden.As previously mentioned, in CLR processes, the exhaust gas from the air reactor is a gas mixture consisting mainly of nitrogen N 2 and argon Ar. In a preferred embodiment of the present invention, moreover, a substantially pure mixture of N 2 and Ar can be obtained by controlling the operating conditions, ie, the ratios of the gas flows and the operating temperatures, such that substantially all of the oxygen is supplied to the Solid, ie the catalyst and oxygen carrier, bound transferred into the fuel reactor and consumed in the ongoing there redox reactions. If the air reactor exhaust gas is subjected to a suitable gas separation, such as a cryogenic rectification, in this way according to the present invention a total of four gases, namely CO 2 , H 2 , N 2 and Ar, can be recovered substantially pure.
Der im erfindungsgemäßen Verfahren eingesetzte Brennstoff ist nicht speziell eingeschränkt, wird jedoch vorzugsweise aus aschefreien Kohlenwasserstoffen, wie z.B. Erdgas, Flüssiggas oder Leichtbenzin, ausgewählt, was der Reinheit der zu gewin- nenden Gase zuträglich ist und die mögliche Betriebsdauer der Anlage, bevor eine Reinigung derselben erforderlich wird, erhöht.The fuel used in the process according to the invention is not particularly limited but is preferably made from ashless hydrocarbons, such as e.g. Natural gas, liquefied petroleum gas or mineral spirits, selected, which contributes to the purity of the gases to be recovered and increases the possible operating life of the plant before it becomes necessary to clean it.
BEISPIELEEXAMPLES
Die Erfindung wird nachstehend anhand dreier konkreter Ausführungsbeispiele illus- triert, die freilich nicht als Einschränkung aufzufassen sind. Bei diesen in den Fig. 6 und 7 schematisch dargestellten Verfahrensbeispielen handelt es sich um am Com-
puter simulierte und detailliert berechnete Verfahren, die den in den Fig. 3 und 4 dargestellten ähneln.The invention will be illustrated below with reference to three concrete exemplary embodiments, which are of course not to be construed as limiting. These method examples shown schematically in FIGS. 6 and 7 are at the Computer simulated and detailed calculated methods similar to those shown in Figs. 3 and 4.
Beispiel 1example 1
Das erste Beispiel umfasst eine kontinuierliche Verfahrensführung gemäß Fig. 6. Hierbei handelt es sich grundsätzlich um ein CLR-System aus einem Luftreaktor AR und einem Brennstoffreaktor FR, die als Wirbelschichtreaktoren betrieben werden. Zwischen AR und FR wird ein partikulärer Feststoff als Katalysator und Sauerstoffträ- ger zirkuliert. Im Reaktor AR, in den ein sauerstoffhaltiges Gas, im vorliegenden Fall erfindungsgemäß bevorzugt Luft, eingeleitet wird, wird der Katalysator mit Sauerstoff oxidiert, der anschließend in den Reaktor FR transferiert wird, wo er die Verbrennung des dort eingeleiteten Brennstoffs CxHy katalysiert und gleichzeitig als Oxidations- mittel dient, d.h. Sauerstoff abgibt. Als Brennstoff wird im vorliegenden Fall reines Methan (CH4) eingesetzt. Das globale stöchiometrische Luftverhältnis λ im CLR-System beträgt 0,25, d.h. es wird nur % der zur vollständigen Oxidation des Brennstoffs zu CO2 und H2O benötigten Sauerstoffmenge in den Reaktor AR eingespeist.The first example comprises a continuous process procedure according to FIG. 6. In principle, this is a CLR system comprising an air reactor AR and a fuel reactor FR, which are operated as fluidized-bed reactors. Between AR and FR a particulate solid is circulated as catalyst and oxygen carrier. In the reactor AR, in which an oxygen-containing gas, in the present case preferably air according to the invention is introduced, the catalyst is oxidized with oxygen, which is then transferred to the reactor FR, where it catalyzes the combustion of the fuel introduced there C x H y and at the same time serves as an oxidizing agent, ie gives off oxygen. As fuel pure methane (CH 4 ) is used in the present case. The global stoichiometric air ratio λ in the CLR system is 0.25, ie only% of the amount of oxygen required to completely oxidize the fuel to CO 2 and H 2 O is fed into the reactor AR.
In Fig. 6 sind durch punktierte Linien und zugehörige Bezugszeichen 1 bis 12 Bilanz- punkte dargestellt, d.h. jene Punkte im Verfahrensablauf, an denen die Stoff- und Energiebilanzen berechnet wurden, deren Werte in nachstehender Tabelle 1 angegeben sind. Die Bezugszeichen bezeichnen daher gleichzeitig auch die entsprechenden Stoffströme an der jeweiligen Stelle. In der Zeichnung entspricht Bezugszeichen 1 dem Luftfeed in den Luftreaktor AR; 2 dem Feed an frischem Brennstoff; 3 dem Feed in den Brennstoffreaktor FR, der aus frischem Brennstoff und zu rezyklieren- dem Abgas 9 besteht; 4 dem Abgasstrom aus dem Brennstoff reaktor FR, der in eine erste Trennstufe zur Abtrennung/Reinigung von CO2, als "1. Stufe: CO2-Sep." bezeichnet, mündet; 7 dem ersten Abgasstrom aus der ersten Gasreinigungsstufe, aus dem in einer Trocknungsstufe (als Kühler/Kondensator dargestellt) Wasser 8 entfernt wurde und der in eine zweite Trennstufe zur Abtrennung/Reinigung von H2, als "2. Stufe: H2-Sep." bezeichnet, eingeführt wird; 9 dem zweiten Abgasstrom aus der zweiten Gastrennstufe, der zum CLR-System rezykliert wird; 12 dem Abgas aus dem
Luftreaktor AR; 13 dem (mit H2O-Dampf vermischten) CO2-Strom aus der ersten Gasreinigung; und 14 dem reinen H2-Strom aus der zweiten Gasreinigung.In FIG. 6, balance points are represented by dotted lines and associated reference symbols 1 to 12, ie those points in the process sequence at which the substance and energy balances were calculated whose values are given in Table 1 below. The reference numerals therefore at the same time also designate the corresponding material flows at the respective location. In the drawing, reference numeral 1 corresponds to the Luftfeed in the air reactor AR; 2 the feed of fresh fuel; 3, the feed into the fuel reactor FR, which consists of fresh fuel and waste gas 9 to be recycled; 4 the exhaust gas flow from the fuel reactor FR, in a first separation stage for the separation / purification of CO 2 , as "1st stage: CO 2 -Sep." denotes, flows; 7 shows the first exhaust gas stream from the first gas purification stage, from which water 8 was removed in a drying stage (shown as cooler / condenser) and into a second separation stage for separating / purifying H 2 , as "2nd stage: H 2 -Sep. " is introduced; 9, the second exhaust stream from the second gas separation stage, which is recycled to the CLR system; 12 the exhaust from the Air reactor AR; 13 the CO 2 stream (mixed with H 2 O vapor) from the first gas purification; and 14 the pure H 2 stream from the second gas purification.
Als Katalysator wird in der Praxis zumeist ein künstlich hergestelltes Feststoffpulver, bestehend aus einem aktiven Metalloxid, z.B. Oxide von Nickel, Eisen, Mangan, Cobalt oder Kupfer, und einer meist oxidischen Trägermatrix, z.B. AI2O3, TiO2 oder ZrO2, und/oder natürlich vorkommende und gezielt aufkonzentrierte Feststoffpulver, wie z.B. Olivin und/oder Ilmenit, eingesetzt, das vom einschlägigen Fachmann üblicherweise minutös an die jeweiligen Reformierbedingungen, d.h. vor allem an Brenn- stoff, Temperatur und Druck, angepasst wird, um die Effizienz des CLR-Verfahrens zu optimieren.The catalyst used in practice mostly an artificially produced solid powder, consisting of an active metal oxide, for example oxides of nickel, iron, manganese, cobalt or copper, and a usually oxidic support matrix, for example Al 2 O 3 , TiO 2 or ZrO 2 , and / or naturally occurring and purposefully concentrated solid powders, such as olivine and / or ilmenite used, which is adapted by the relevant expert usually minutely to the respective reforming conditions, ie, especially on fuel, temperature and pressure to the efficiency of the CLR Process to optimize.
Im Primärbrennstoffstrom 2 ist Wasserdampf H2O enthalten, um beim Eintritt in den CLR-Brennstoffreaktor FR ein Verhältnis zwischen Dampf und Kohlenstoff von 1 ,0 zu erzielen. Das CLR-System arbeitet autotherm, weswegen in der nachstehenden Berechnung keine Zu- oder Abfuhr von Wärme aufscheint. Auch wurde von einer teilweisen internen Wärmerückgewinnung zur Vorwärmung der zugeführten Ströme ausgegangen. Die Trennleistung der CO2-Abtrennstufe beträgt in diesem Beispiel 90 %, jene der H2-Abtrennstufe 80 %.In the primary fuel stream 2, water vapor H 2 O is included in order to achieve a steam to carbon ratio of 1.0 when it enters the CLR fuel reactor FR. The CLR system works autothermally, which is why the calculation below shows no increase or decrease of heat. Also, a partial internal heat recovery for preheating the supplied streams was assumed. The separation efficiency of the CO 2 separation stage in this example is 90%, that of the H 2 separation stage 80%.
Bei der praktischen Ausführung der Erfindung sind diese Wirkungsgrade der Gasabtrennung und -reinigung mittels bekannter Trennschritte erzielbar, beispielsweise mit Amin- oder Carbonat-Wäschern zur CO2-Gewinnung bei geringem Druck oder physikalischen Waschverfahren bzw. mittels Druckwechseladsorption an Kohlenstoff- Molekularsieben ("pressure swing adsorption", PSA) zur H2-Abtrennung. Im vorliegenden Beispiel wurde für den H2-Reinstrom 14 ein Druck von 18 bar angenommen, was in der Praxis einer Abtrennung mittels PSA entspricht.In the practice of the invention, these efficiencies of gas separation and purification by known separation steps are achievable, for example with amine or carbonate scrubbers for CO 2 production at low pressure or physical washing process or by pressure swing adsorption on carbon molecular sieves ("pressure swing Adsorption ", PSA) for H 2 separation. In the present example, a pressure of 18 bar was assumed for the H 2 stream 14, which corresponds in practice to a separation by means of PSA.
Wie speziell aus Fig. 6 gut zu erkennen ist, sind im erfindungsgemäßen Verfahren keine CO-Shift-Reaktionen vonnöten, um kontinuierlich CO zu CO2 zu oxidieren, da dieser Schritt durch die zyklische Verfahrensführung im Brennstoffreaktor FR erfolgt. Dies trägt wesentlich zur Vereinfachung und Kostensenkung der Gasgewinnung bei.
Weiters ist aufgrund der Annahme von reinem Methan als Brennstoff kein Abblasestrom erforderlich. In der Praxis ist jedoch ein gewisser, wenngleich - bei ausreichend reinem Brennstoff - minimaler Abblasestrom zu bevorzugen, um geringfügige unvermeidliche Verunreinigungen aus dem System auszuschleusen. Alternativ oder zusätzlich dazu kann jedoch auch ein eigener Wäscher oder dergleichen zur selektiven Abtrennung bestimmter Verunreinigungen, wie z.B. H2S, vorgesehen sein, wie dies zuvor bereits ausgeführt wurde. Ausführungsformen mit Stromverteiler und Abblasestrom werden in den späteren Beispielen 2 und 3 beschrieben.As can be clearly seen in particular from FIG. 6, no CO shift reactions are required in the process according to the invention in order to continuously oxidize CO to CO 2 , since this step takes place through the cyclical process control in the fuel reactor FR. This contributes significantly to the simplification and cost reduction of gas production. Furthermore, due to the assumption of pure methane as the fuel, no bleed stream is required. In practice, however, a certain, albeit with sufficiently pure fuel, minimum blow-off flow is to be preferred in order to remove minor unavoidable impurities from the system. Alternatively or additionally, however, a separate scrubber or the like for the selective separation of certain impurities, such as H 2 S, may be provided, as has already been stated above. Embodiments with current distributor and blow-off current will be described in later examples 2 and 3.
In den Strömen 13 und 14 werden die zu gewinnenden Gase CO2 und H2 kontinuierlich aus dem Verfahren abgezogen. Ersteres ist zwar noch mit Wasserdampf vermischt, der sich jedoch durch eine einfache nachgeschaltete Trocknung leicht vom CO2 abtrennen lässt. Wasserstoff fällt hingegen aufgrund der angenommenen Abtrennung mittels Druckwechseladsorption (PSA) sofort zu 100 % rein an.In streams 13 and 14, the CO 2 and H 2 gases to be recovered are withdrawn continuously from the process. Although the former is still mixed with water vapor, it can easily be separated from CO 2 by simple downstream drying. Hydrogen, on the other hand, is immediately 100% pure due to the assumed separation by pressure swing adsorption (PSA).
Die Ergebnisse der Verfahrenssimulation und -berechnung sind in nachstehender Tabelle 1 angegeben.
The results of the process simulation and calculation are given in Table 1 below.
Tabelle 1Table 1
Strom Nr.Power no.
1 2 3 4 7 8 9 12 13 141 2 3 4 7 8 9 12 13 14
Druck [bara] 1 ,01 1 ,26 1 ,21 1 ,01 8,00 1...8 1 ,21 1 ,01 1 ,50 18,00Pressure [bara] 1, 01 1, 26 1, 21 1, 01 8,00 1 ... 8 1, 21 1, 01 1, 50 18,00
Temperatur [X] 25,0 82,5 59,6 850,0 40,0 40,0 19,3 981 ,9 90,0 150,9Temperature [X] 25.0 82.5 59.6 850.0 40.0 40.0 19.3 981, 9 90.0 150.9
Normvolumenstrom [Nm3/h] 3904 3651 6110 8121 4925 — 2459 3009 1888 2466Standard volume flow [Nm 3 / h] 3904 3651 6110 8121 4925 - 2459 3009 1888 2466
Massenstrom [kg/h] 5009 2846 5263 6374 2639 1052 2417 3748 2684 222Mass flow [kg / h] 5009 2846 5263 6374 2639 1052 2417 3748 2684 222
Ar [vol%] 0,91 0,00 0,00 0,00 0,00 0,00 0,00 1 ,15 0,00 0,00Ar [vol%] 0.91 0.00 0.00 0.00 0.00 0.00 0.00 1, 15 0.00 0.00
CH4 [vol%] 0,00 27,55 16,46 0,00 0,00 0,00 0,00 0,00 0,00 0,00CH4 [vol%] 0.00 27.55 16.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO [vol%] 0,00 0,00 27,58 20,75 34,21 0,00 68,53 0,00 0,00 0,00CO [vol%] 0.00 0.00 27.58 20.75 34.21 0.00 68.53 0.00 0.00 0.00
CO2 [vol%] 0,04 0,00 1 ,83 13,76 2,27 0,00 4,55 0,05 53,27 0,00CO2 [vol%] 0.04 0.00 1, 83 13.76 2.27 0.00 4.55 0.05 53.27 0.00
H2 [vol%] 0,00 0,00 10,09 37,96 62,59 0,00 25,08 0,00 0,00 100,00H2 [vol%] 0.00 0.00 10.09 37.96 62.59 0.00 25.08 0.00 0.00 100.00
H2O [vol%] 1 ,88 72,45 44,04 27,53 0,92 100,00 1 ,85 2,36 46,73 0,00H2O [vol%] 1, 88 72.45 44.04 27.53 0.92 100.00 1, 85 2.36 46.73 0.00
N2 [vol%] 76,62 0,00 0,00 0,00 0,00 0,00 0,00 96,44 0,00 0,00N2 [vol%] 76.62 0.00 0.00 0.00 0.00 0.00 0.00 96.44 0.00 0.00
02 [vol%] 20,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0002 [vol%] 20.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Heizwert [MJ/Nm3] 0,00 9,86 10,46 6,71 11 ,07 0,00 11 ,36 0,00 0,00 10,79
Calorific value [MJ / Nm 3 ] 0.00 9.86 10.46 6.71 11, 07 0.00 11, 36 0.00 0.00 10.79
In diesem Verfahren der Erfindung werden pro mol CH4 2,45 mol H2 gewonnen, wobei ein Teil dieses H2 durch Reduktion von H2O im Brennstoffreaktor entsteht. Im H2-Strom 14 werden 74 % des Energieinhalts des Primärbrennstoffstroms 2 (auf Basis des Heizwerts berechnet) aus dem zyklischen CLR-System gewonnen.In this process of the invention, 2.45 mol of H 2 are obtained per mole of CH 4 , with part of this H 2 being produced by reduction of H 2 O in the fuel reactor. In the H 2 stream 14, 74% of the energy content of the primary fuel stream 2 (calculated on the basis of the calorific value) is recovered from the cyclic CLR system.
Weiters ist aus Tabelle 1 zu erkennen, dass der Abgasstrom 12 aus dem Luftreaktor AR außer N2 (96,44 %) und Argon (1 ,15 %) lediglich äußerst geringe Mengen an CO2 (0,05 % im Vergleich zu 0,04 %, die bereits im Luftfeed 1 enthalten waren) und H2O (2,36 %) enthält, so dass nach einer einfachen Trocknung und einer anschlie- ßenden Trennung auch die beiden Gase N2 und Ar in im Wesentlichen reiner Form gewonnen werden können. Bei einer geplanten Verwendung von N2 als Inertgas kann die Abtrennung des Argons sogar gänzlich entfallen.Furthermore, it can be seen from Table 1 that the exhaust gas stream 12 from the air reactor AR except N 2 (96.44%) and argon (1, 15%) only extremely small amounts of CO 2 (0.05% compared to 0, 04%, which were already contained in Luftfeed 1) and H 2 O (2.36%), so that after a simple drying and a subsequent separation, the two gases N 2 and Ar are obtained in substantially pure form can. In the case of a planned use of N 2 as an inert gas, the separation of the argon can even be omitted altogether.
Somit können gemäß vorliegender Erfindung sogar bis zu vier Reingase gleichzeitig auf relativ ökonomische Weise aus dem Reformierer gewonnen werden. Das erfindungsgemäßen Verfahren stellt demnach eine deutliche Vereinfachung und Verbesserung des Standes der Technik dar.Thus, according to the present invention, even up to four pure gases can be simultaneously recovered from the reformer in a relatively economical manner. The process according to the invention therefore represents a significant simplification and improvement of the prior art.
Beispiele 2 und 3Examples 2 and 3
In diesen Beispielen, deren Verfahrensführung in Fig. 7 schematisch dargestellt ist, wurde das Verfahren aus Beispiel 1 um eine CO-Shiftstufe "CO-Shift" vor der CO2- Abtrennung sowie um einen Stromverteiler erweitert, der den zweiten Abgasstrom 9 in einen Abblasestrom 10 und einen dritten Abgasstrom 11 teilt. Letzterer wird zur Rezyklierung, wie bereits in Beispiel 1 , mit dem Strom 2 aus frischem Brennstoff (und Wasserdampf) vermischt, um so den Feedstrom 3 in den Brennstoffreaktor FR zu ergeben.In these examples, the process procedure is shown schematically in Fig. 7, the method of Example 1 was extended by a CO shift stage "CO shift" before CO 2 - separation and a power distributor, the second exhaust stream 9 in a Abblasestrom 10 and a third exhaust stream 11 shares. The latter is for recycling, as already mixed in Example 1, with the stream 2 of fresh fuel (and water vapor), so as to give the feed stream 3 in the fuel reactor FR.
Bezugszeichen 5 kennzeichnet die Wasserdampfzufuhr zur CO-Shift-Stufe und 6 das an CO2 angereicherte Abgas aus dem CO-Shift, das der ersten Gastrennstufe zugeführt wird.
Als Kohlenwasserstoff wird erneut Methan (CH4) eingesetzt. Zur Illustration der Notwendigkeit der Abtrennung einer inerten Komponente oder "Verunreinigung" des Einsatzstoffs mittels des Abblasestroms 10 enthält der eingesetzte Primärbrennstoff in der Berechnung 1 Vol.-% N2, und der Gasstrom an Bilanzpunkt 7 einen N2-Gehalt von 10 Vol.-%. Das globale stöchiometrische Luftverhältnis λ in der CLR-Reaktion wurde mit 0,3 angesetzt. Wasserdampf H2O ist im Primärbrennstoffstrom 2 in einer solchen Menge enthalten, dass beim Eintritt in den CLR-Brennstoffreaktor FR ein Verhältnis zwischen Dampf und Kohlenstoff von 0,3 erzielt wird. Die Trennleistung der Cθ2-Abtrennstufe wurde in Beispiel 2 mit 90 % und in Beispiel 3 mit 60 % vorge- geben, woraus sich jeweils die notwendige Trenneffizienz der H2-Abtrennstufe, um die Massen- und Energiebilanz zu schließen, ergibt. Vor der Hochtemperatur-CO- Shiftstufe, d.h. nach Bilanzpunkt 4, wird in Strom 5 eine solche Menge an Wasserdampf zugeführt, dass das notwendige Verhältnis zwischen Dampf und Kohlenstoff von 2,0 für die CO-Shiftstufe erreicht wird.Numeral 5 designates the steam supply to the CO shift stage and 6 the CO 2 -enriched exhaust gas from the CO shift supplied to the first gas separation stage. As hydrocarbon again methane (CH 4 ) is used. To illustrate the necessity of separating an inert component or "contamination" of the feedstock by means of the blow-off stream 10, the primary fuel used in the calculation contains 1% by volume N 2 , and the gas stream at balance point 7 contains an N 2 content of 10% by volume. , The global stoichiometric air ratio λ in the CLR reaction was set at 0.3. Water vapor H 2 O is contained in the primary fuel stream 2 in such an amount that when entering the CLR fuel reactor FR a ratio between steam and carbon of 0.3 is achieved. The separation efficiency of the CO 2 separation stage was given in Example 2 as 90% and in Example 3 as 60%, from which in each case the necessary separation efficiency of the H 2 separation stage in order to conclude the mass and energy balance results. Before the high-temperature CO shift stage, ie after balance point 4, in stream 5, an amount of water vapor is supplied so that the necessary ratio between steam and carbon of 2.0 for the CO shift stage is reached.
Für Beispiel 2, dessen berechnete Werte in Tabelle 2 angegeben sind und bei dem die Trennleistung der CO2-Trennstufe 90 % beträgt, ergibt sich eine notwendige Trennleistung der H2-Trennstufe von 86 %. Für Beispiel 3 mit den in Tabelle 3 angegebenen Werten, bei dem die Trennleistung der Cθ2-Trennstufe nur 60 % beträgt, ergibt sich eine notwendige Trennleistung der H2-Trennstufe von 78 %.
For Example 2, whose calculated values are given in Table 2 and in which the separation efficiency of the CO 2 separation stage is 90%, a necessary separation efficiency of the H 2 separation stage of 86% results. For Example 3 with the values given in Table 3, in which the separation efficiency of the CO 2 separation stage is only 60%, a necessary separation efficiency of the H 2 separation stage of 78% results.
Tabelle 2Table 2
Strom Nr.Power no.
1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 14
Druck [bara] 1 ,01 1,26 1,21 1 ,01 1 ,01 1 ,01 8,00 1...8 3,32 1 ,21 1 ,21 1 ,01 1 ,50 18,00Pressure [bara] 1, 01 1,26 1,21 1, 01 1, 01 1, 01 8,00 1 ... 8 3,32 1, 21 1, 21 1, 01 1, 50 18,00
Temperatur rc] 25,0 47,0 45,2 850,0 100,0 525,7 40,0 40,0 43,0 43,0 43,0 981,9 90,0 150,9Temperature rc] 25.0 47.0 45.2 850.0 100.0 525.7 40.0 40.0 43.0 43.0 43.0 981.9 90.0 150.9
Normvolumenstrom [Nm=Vh] 3654 1415 2776 4787 1783 6571 3940 — 1396 36 1360 2815 1861 2544Standard volume flow [Nm = Vh] 3654 1415 2776 4787 1783 6571 3940 - 1396 36 1360 2815 1861 2544
Massenstrom [kg/hl 4688 1054 2362 3402 1433 4835 1572 618 1343 35 1308 3507 2645 229Mass flow [kg / hl 4688 1054 2362 3402 1433 4835 1572 618 1343 35 1308 3507 2645 229
Ar [vol%] 0,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1 ,15 0,00 0,00Ar [vol%] 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1, 15 0.00 0.00
CH4 [vol%] 0,00 71 ,07 36,24 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00CH4 [vol%] 0.0071, 07 36.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO [vol%] 0,00 0,00 15,98 25,49 0,00 6,93 11 ,55 0,00 32,60 32,60 32,60 0,00 0,00 0,00CO [vol%] 0.00 0.00 15.98 25.49 0.00 6.93 11, 55 0.00 32.60 32.60 32.60 0.00 0.00 0.00
CO2 [vol%] 0,04 0,00 3,87 7,03 0,00 16,76 2,80 0,00 7,89 7,89 7,89 0,05 53,27 0,00CO2 [vol%] 0.04 0.00 3.87 7.03 0.00 16.76 2.80 0.00 7.89 7.89 7.89 0.05 53.27 0.00
H2 [vol%] 0,00 0,00 14,06 45,53 0,00 44,82 74,73 0,00 28,69 28,69 28,69 0,00 0,00 100,00H2 [vol%] 0.00 0.00 14.06 45.53 0.00 44.82 74.73 0.00 28.69 28.69 28.69 0.00 0.00 100.00
H2O [vol%] 1 ,88 28,22 15,66 13,72 100,00 25,50 0,92 100,00 2,61 2,61 2,61 2,36 46,73 0,00H2O [vol%] 1, 88 28,22 15,66 13,72 100,00 25,50 0,92 100,00 2,61 2,61 2,61 2,36 46,73 0,00
N2 [vol%] 76,62 0,72 14,20 8,23 0,00 6,00 10,00 0,00 28,22 28,22 28,22 96,44 0,00 0,00N2 [vol%] 76.62 0.72 14.20 8.23 0.00 6.00 10.00 0.00 28.22 28.22 28.22 96.44 0.00 0.00
02 fvol%l 20,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0002% by volume 20.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Heizwert [MJ/Nm3] 0,00 25,44 16,50 8,13 0,00 5,71 9,52 0,00 7,21 7,21 7,21 0,00 0,00 10,79
Calorific value [MJ / Nm 3 ] 0,00 25,44 16,50 8,13 0,00 5,71 9,52 0,00 7,21 7,21 7,21 0,00 0,00 10,79
Tabelle 3Table 3
Strom Nr.Power no.
1 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 4 5 6 7 8 9 10 11 12 13 14
Druck [bara] 1 ,01 1 ,26 1 ,21 1 ,01 1 ,01 1 ,01 8,00 1...8 1 ,21 1 ,21 1 ,21 1 ,01 1 ,50 18,00Pressure [bara] 1, 01 1, 26 1, 21 1, 01 1, 01 1, 01 8,00 1 ... 8 1, 21 1, 21 1, 21 1, 01 1, 50 18,00
Temperatur [0Cl 25,0 48,1 43,8 850,0 100,0 528,2 40,0 40,0 40,9 40,9 40,9 981 ,9 90,0 150,9Temperature [ 0 Cl 25.0 48.1 43.8 850.0 100.0 528.2 40.0 40.0 40.9 40.9 40.9 981, 9 90.0 150.9
Normvolumenstrom [Nm=Vh] 3966 1443 3852 5864 2064 7928 4876 ... 2461 51 2410 3056 1840 2415Standard volume flow [Nm = Vh] 3966 1443 3852 5864 2064 7928 4876 ... 2461 51 2410 3056 1840 2415
Massenstrom [kg/hl 5088 1075 3729 4858 1659 6517 2928 974 2710 56 2654 3807 2616 217Mass flow [kg / hl 5088 1075 3729 4858 1659 6517 2928 974 2710 56 2654 3807 2616 217
Ar [vol%] 0,91 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1 ,15 0,00 0,00Ar [vol%] 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1, 15 0.00 0.00
CH4 [vol%] 0,00 69,72 26,11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00CH4 [vol%] 0.00 69.72 26.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO [vol%] 0,00 0,00 14,62 26,28 0,00 7,26 11 ,80 0,00 23,37 23,37 23,37 0,00 0,00 0,00CO [vol%] 0.00 0.00 14.62 26.28 0.00 7.26 11, 80 0.00 23.37 23.37 23.37 0.00 0.00 0.00
C02 [vol%] 0,04 0,00 16,61 11,39 0,00 20,61 13,40 0,00 26,55 26,55 26,55 0,05 53,27 0,00C02 [vol%] 0.04 0.00 16.61 11.39 0.00 20.61 13.40 0.00 26.55 26.55 26.55 0.05 53.27 0.00
H2 [vol%] 0,00 0,00 17,79 36,65 0,00 39,29 63,88 0,00 28,43 28,43 28,43 0,00 0,00 100,00H2 [vol%] 0.00 0.00 17.79 36.65 0.00 39.29 63.88 0.00 28.43 28.43 28.43 0.00 0.00 100.00
OO H20 [vol%] 1 ,88 29,57 12,22 17,37 100,00 26,70 0,92 100,00 1 ,83 1 ,83 1 ,83 2,36 46,73 0,00OO H20 [vol%] 1, 88 29.57 12.22 17.37 100.00 26.70 0.92 100.00 1, 83 1, 83 1, 83 2.36 46.73 0.00
N2 [vol%] 76,62 0,70 12,66 8,32 0,00 6,15 10,00 0,00 19,81 19,81 19,81 96,44 0,00 0,00N2 [vol%] 76.62 0.70 12.66 8.32 0.00 6.15 10.00 0.00 19.81 19.81 19.81 96.44 0.00 0.00
02 [vol%] 20,56 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0002 [vol%] 20.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Heizwert [MJ/Nm3] 0,00 24,96 13,11 7,27 0,00 5,16 8,38 0,00 6,02 6,02 6,02 0,00 0,00 10,79
Calorific value [MJ / Nm 3 ] 0.00 24.96 13.11 7.27 0.00 5.16 8.38 0.00 6.02 6.02 6.02 0.00 0.00 10.79
Ein Vergleich der Beispiele 2 und 3 zeigt, dass sich die Mengen an erhaltenem CO2, rund 1861 bzw. 1840 Nm3/h mit gleichem H2O-Gehalt, und die Mengen an erhaltenem H2, rund 2544 bzw. 2415 Nm3/h, durch die geringere Trennleistung der Gasreinigungsschritte im zweiten Fall nur in geringem Ausmaß ändern. Trotz der um 30 % bzw. 8 % niedrigeren Effizienz der beiden Gastrennstufen nimmt nämlich die Menge an gewonnenem Reingas nur um 1 ,1 % im Fall von CO2 bzw. um 5,3 % im Fall von H2 ab. Dies bestätigt, dass die vorliegende Erfindung ermöglicht, mittels Gaswäschern geringerer Leistungsfähigkeit, was den apparativen Aufwand (z.B. die Kolonnenhöhe) bzw. den notwendigen Chemikaieneinsatz verringert, dennoch hochreine Gase aus einem CLR-Prozess zu erhalten.A comparison of Examples 2 and 3 shows that the amounts of CO 2 obtained , about 1861 and 1840 Nm 3 / h with the same H 2 O content, and the amounts of H 2 obtained , about 2544 and 2415 Nm 3 / h, change only to a small extent due to the lower separation efficiency of the gas purification steps in the second case. In fact, despite the 30% and 8% lower efficiency of the two gas separation stages, the amount of clean gas recovered decreases only by 1, 1% in the case of CO 2 and by 5.3% in the case of H 2 . This confirms that the present invention makes it possible to obtain high-purity gases from a CLR process by means of lower-efficiency gas scrubbers, which reduces the expenditure on equipment (eg column height) or the necessary use of chemicals.
Natürlich erhöht sich im Fall einer geringeren Trennleistung die Menge an zirkulierendem Gas, so dass Gaswäscher mit hoher Effizienz im Allgemeinen dennoch zu bevorzugen sind. Die Festlegung geeigneter Abscheideleistungen der Gastrennstufen ist somit Gegenstand wirtschaftlicher Betrachtungen und kann von einem durchschnittlichem Fachmann auf dem Gebiet der Kohlenwasserstoff-Reformierung leicht optimiert werden.Of course, in the case of lower separation efficiency, the amount of circulating gas increases, so that high efficiency gas scrubbers are generally still preferable. The determination of suitable separation efficiencies of the gas separation stages is thus the subject of economic considerations and can be easily optimized by one of ordinary skill in the art of hydrocarbon reforming.
Wie bereits erwähnt ermöglicht die vorliegende Erfindung die Gewinnung von bis zu vier Reingasen, nämlich CO2, H2, N2 und Ar, aus der Reformierung eines Kohlenwasserstoffs, wobei die nach dem Stand der Technik zur CO2-Gewinnung zwingend erforderlichen CO-Sh ift-Reaktionen entfallen können. Somit stellt die Erfindung eine Weiterentwicklung des Standes der Technik dar, die deutliche Verbesserungen in der Durchführung von CLR-Verfahren mit sich bringt.
As already mentioned, the present invention enables the recovery of up to four pure gases, namely CO 2 , H 2 , N 2 and Ar, from the reforming of a hydrocarbon, wherein the CO-Sh. Required by the prior art for CO 2 recovery ift reactions can be omitted. Thus, the invention is a further development of the prior art, which brings significant improvements in the performance of CLR processes.
Claims
1. Verfahren zur kontinuierlichen Herstellung von Kohlendioxid CO2 und Wasserstoff H2 durch Reformieren eines Kohlenstoff und Wasserstoff enthaltenden Brenn- Stoffs unter Anwendung der "Chemical Looping Reforming"- (CLR-) Technologie mittels zumindest eines als Katalysator und als Sauerstoffträger dienenden partikulären Metalloxids, das zwischen zwei "Chemical Looping Reforming"-Reaktoren, d.h. einem Luftreaktor (AR), in den ein sauerstoffhaltiges Verbrennungsgas, vorzugsweise Luft, (1) eingeleitet wird, und einem Brennstoffreaktor (FR), in den ein Brennstoff- ström (2) eingeleitet wird, zykliert wird, wobei das mittels Chemical Looping Reforming gebildete, hauptsächlich CO2 und H2 umfassende Gasgemisch einem Reini- gungs- bzw. Trennschritt unterzogen wird, um eines dieser beiden Gase als im Wesentlichen reinen Gasstrom (13) sowie einen Abgasstrom (7) zu erhalten, dadurch gekennzeichnet, dass der Abgasstrom (7) einem zweiten Reinigungs- bzw. Trennschritt unterzogen wird, um auch das zweite Gas als im Wesentlichen reinen Gasstrom (14) sowie einen zweiten Abgasstrom (9) zu erhalten.A process for the continuous production of carbon dioxide CO 2 and hydrogen H 2 by reforming a carbon and hydrogen-containing fuel using "Chemical Looping Reforming" (CLR) technology using at least one particulate metal oxide serving as a catalyst and an oxygen carrier, which is introduced between two "Chemical Looping Reforming" reactors, ie an air reactor (AR) into which an oxygen-containing combustion gas, preferably air, (1) is introduced, and a fuel reactor (FR) into which a fuel stream (2) is introduced is cycled, wherein the formed by chemical loop reforming, mainly CO 2 and H 2 comprising gas mixture is subjected to a cleaning or separation step to one of these two gases as a substantially pure gas stream (13) and an exhaust gas stream (7 ), characterized in that the exhaust gas stream (7) is subjected to a second cleaning or separation step, too to obtain the second gas as a substantially pure gas stream (14) and a second exhaust gas stream (9).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der zweite Abgasstrom (9) zumindest teilweise zu den "Chemical Looping Reforming"-Reaktoren (AR, FR) rezykliert wird.2. The method according to claim 1, characterized in that the second exhaust gas stream (9) is at least partially recycled to the "Chemical Looping Reforming" reactors (AR, FR).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Abgasstrom (9) in einen zu rezyklierenden dritten Abgasstrom (11) und einen aus dem Zyklus auszuschleusenden Abblasestrom (10) geteilt wird.3. The method according to claim 2, characterized in that the second exhaust gas stream (9) is divided into a to be recycled third exhaust gas stream (11) and a auszuschleusenden from the cycle Abblasestrom (10).
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der zweite Abgasstrom (9) einem dritten Reinigungs-ATrennschritt unterzogen wird und der dabei erhaltene dritte Abgasstrom (11) rezykliert wird.4. The method according to claim 2 or 3, characterized in that the second exhaust gas stream (9) is subjected to a third cleaning-ATrennschritt and the thereby obtained third exhaust gas stream (11) is recycled.
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der zweite bzw. dritte Abgasstrom (9, 11) in den Brennstoffreaktor (FR) rezykliert wird. 5. The method according to any one of claims 2 to 4, characterized in that the second or third exhaust gas stream (9, 11) in the fuel reactor (FR) is recycled.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der zweite bzw. dritte Abgasstrom (9, 11) zusammen mit frischem Brennstoff (2) als gemeinsamer Strom (3) in den Brennstoffreaktor (FR) eingeleitet wird.6. The method according to claim 5, characterized in that the second or third exhaust gas stream (9, 11) is introduced together with fresh fuel (2) as a common stream (3) in the fuel reactor (FR).
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Gasgemisch (4, 7) vor dem ersten und/oder vor dem zweiten Reinigungsschritt einer CO-Shiftreaktion zur Oxidation von CO zu CO2 unterzogen wird.7. The method according to any one of the preceding claims, characterized in that the gas mixture (4, 7) before the first and / or prior to the second purification step of a CO shift reaction for the oxidation of CO to CO 2 is subjected.
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekenn- zeichnet, dass das Abgas (12) aus dem Luftreaktor (AR) einem Trennschritt unterzogen wird und im Wesentlichen reiner Stickstoff N2 und im Wesentlichen reines Argon Ar erhalten werden.8. The method according to any one of the preceding claims, characterized in that the exhaust gas (12) from the air reactor (AR) is subjected to a separation step and substantially pure nitrogen N 2 and substantially pure argon Ar are obtained.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekenn- zeichnet, dass als Brennstoff (2) ein aschefreier Kohlenwasserstoff, wie z.B. Erdgas,9. Process according to one of the preceding claims, characterized in that as fuel (2) an ashless hydrocarbon, such as e.g. Natural gas,
Flüssiggas oder Leichtbenzin, eingesetzt wird. LPG or light gasoline is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT3412009A AT507917B1 (en) | 2009-03-02 | 2009-03-02 | PROCESS FOR PREPARING CARBON DIOXIDE AND HYDROGEN |
ATA341/2009 | 2009-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010099555A1 true WO2010099555A1 (en) | 2010-09-10 |
Family
ID=42164734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2010/000054 WO2010099555A1 (en) | 2009-03-02 | 2010-02-26 | The present invention relates to a method for producing carbon dioxide and hydrogen from hydrocarbons using chemical looping reforming (clr) |
Country Status (2)
Country | Link |
---|---|
AT (1) | AT507917B1 (en) |
WO (1) | WO2010099555A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012101729A1 (en) | 2012-03-01 | 2013-09-05 | Institut für Energie- und Umwelttechnik e.V. | Burning gaseous fuel by chemical looping, comprises oxidizing the gaseous fuel using nano-scale oxygen carriers, which are mounted on a fixed-bed reactor |
WO2013144904A1 (en) * | 2012-03-30 | 2013-10-03 | Alstom Technology Ltd | Method for carbon capture in a gas turbine based power plant using chemical looping reactor system |
WO2013144884A3 (en) * | 2012-03-30 | 2014-03-06 | Alstom Technology Ltd | Method and apparatus for treatment of unburnts |
EP2778214A1 (en) * | 2013-03-15 | 2014-09-17 | Babcock & Wilcox Power Generation Group, Inc. | Chemical looping processes for partial oxidation of carbonaceous fuels |
CN109181779A (en) * | 2018-09-14 | 2019-01-11 | 东南大学 | A kind of chemical chain oil gas coproduction collaboration carbon dioxide reduction method |
US10473326B2 (en) * | 2014-12-12 | 2019-11-12 | IFP Energies Nouvelles | Method and plant for chemical looping oxidation-reduction combustion of a gaseous hydrocarbon feedstock with in-situ catalytic reforming of the feed |
CN115836025A (en) * | 2020-07-13 | 2023-03-21 | 沙特阿拉伯石油公司 | Dry reforming of hydrocarbons |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005012166A1 (en) * | 2003-07-28 | 2005-02-10 | Uhde Gmbh | Method for extracting hydrogen from a gas containing methane, especially natural gas and system for carrying out said method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2319052B1 (en) * | 2007-07-27 | 2010-02-15 | Consejo Superior De Investigaciones Cientificas | OXYGEN TRANSPORTER OF NIO / AL2O3, PROCEDURE FOR OBTAINING THE SAME AND ITS APPLICATIONS. |
-
2009
- 2009-03-02 AT AT3412009A patent/AT507917B1/en not_active IP Right Cessation
-
2010
- 2010-02-26 WO PCT/AT2010/000054 patent/WO2010099555A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005012166A1 (en) * | 2003-07-28 | 2005-02-10 | Uhde Gmbh | Method for extracting hydrogen from a gas containing methane, especially natural gas and system for carrying out said method |
Non-Patent Citations (3)
Title |
---|
CHIESA P ET AL: "Three-reactors chemical looping process for hydrogen production", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB LNKD- DOI:10.1016/J.IJHYDENE.2008.02.032, vol. 33, no. 9, 1 May 2008 (2008-05-01), pages 2233 - 2245, XP022638441, ISSN: 0360-3199, [retrieved on 20080408] * |
Q. ZAFAR, T. MATTISON, B. GEVERT: "Integrated Hydrogen and Power Production with CO2 Capture using Chemical Looping Reforming - Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support", INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH, 19 April 2005 (2005-04-19), pages 3485 - 3496, XP002583496, DOI: 10.1021/ie048978i * |
RYDEN M ET AL: "Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB LNKD- DOI:10.1016/J.IJHYDENE.2005.12.003, vol. 31, no. 10, 1 August 2006 (2006-08-01), pages 1271 - 1283, XP024899975, ISSN: 0360-3199, [retrieved on 20060801] * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012101729A1 (en) | 2012-03-01 | 2013-09-05 | Institut für Energie- und Umwelttechnik e.V. | Burning gaseous fuel by chemical looping, comprises oxidizing the gaseous fuel using nano-scale oxygen carriers, which are mounted on a fixed-bed reactor |
CN104203374A (en) * | 2012-03-30 | 2014-12-10 | 阿尔斯通技术有限公司 | Method and apparatus for treatment of unburnts |
JP2015519531A (en) * | 2012-03-30 | 2015-07-09 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Method and apparatus for treating unburned material |
US8753108B2 (en) | 2012-03-30 | 2014-06-17 | Alstom Technology Ltd | Method and apparatus for treatment of unburnts |
CN104203374B (en) * | 2012-03-30 | 2017-09-26 | 通用电器技术有限公司 | Method and apparatus for handling unburned thing |
WO2013144884A3 (en) * | 2012-03-30 | 2014-03-06 | Alstom Technology Ltd | Method and apparatus for treatment of unburnts |
WO2013144904A1 (en) * | 2012-03-30 | 2013-10-03 | Alstom Technology Ltd | Method for carbon capture in a gas turbine based power plant using chemical looping reactor system |
US9481837B2 (en) | 2013-03-15 | 2016-11-01 | The Babcock & Wilcox Company | Chemical looping processes for partial oxidation of carbonaceous fuels |
CN104046393A (en) * | 2013-03-15 | 2014-09-17 | 巴布科克和威尔科克斯能量产生集团公司 | Chemical looping processes for partial oxidation of carbonaceous fuels |
EP2778214A1 (en) * | 2013-03-15 | 2014-09-17 | Babcock & Wilcox Power Generation Group, Inc. | Chemical looping processes for partial oxidation of carbonaceous fuels |
AU2014201127B2 (en) * | 2013-03-15 | 2018-07-05 | The Babcock & Wilcox Company | Chemical looping processes for partial oxidation of carbonaceous fuels |
CN104046393B (en) * | 2013-03-15 | 2020-08-07 | 巴布考克及威尔考克斯公司 | Chemical looping process for partial oxidation of carbonaceous fuels |
US10473326B2 (en) * | 2014-12-12 | 2019-11-12 | IFP Energies Nouvelles | Method and plant for chemical looping oxidation-reduction combustion of a gaseous hydrocarbon feedstock with in-situ catalytic reforming of the feed |
CN109181779A (en) * | 2018-09-14 | 2019-01-11 | 东南大学 | A kind of chemical chain oil gas coproduction collaboration carbon dioxide reduction method |
CN115836025A (en) * | 2020-07-13 | 2023-03-21 | 沙特阿拉伯石油公司 | Dry reforming of hydrocarbons |
Also Published As
Publication number | Publication date |
---|---|
AT507917B1 (en) | 2014-02-15 |
AT507917A1 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010099555A1 (en) | The present invention relates to a method for producing carbon dioxide and hydrogen from hydrocarbons using chemical looping reforming (clr) | |
EP1751080B1 (en) | Coproduction of methanol and ammonia from natural gas | |
EP2261308B1 (en) | Process for the production of natural gas | |
DE69113711T2 (en) | Separation of carbon dioxide and nitrogen from combustion gases with the recovery of nitrogen and argon as by-products. | |
EP0816290B1 (en) | Process for the production of carbon monoxide and hydrogen | |
CA2802941C (en) | Co-production of methanol and ammonia | |
CH697901B1 (en) | Polygenerationsanordnung. | |
EA034603B1 (en) | Process for the production of formaldehyde | |
DE3687493T2 (en) | RECOVERY OF HEAT IN CASCADE IN THE PRODUCTION OF OXYGEN AND NITROGEN. | |
DE69913662T2 (en) | METHOD FOR TREATING H2S ARM FLOWS WITH PARTIAL COMBUSTION OF THE INLET FLOW | |
EP3176152A1 (en) | Method for generating urea | |
EP4098610A1 (en) | Method and installation for producing pure hydrogen by steam reforming with low carbon dioxide emissions | |
WO2018091593A1 (en) | Method for the combined production of methanol and ammonia | |
DE102011016759A1 (en) | Preparing ammonia comprises conducting alkane dehydrogenation to produce hydrogen-rich stream, purifying the stream, optionally mixing purified nitrogen with hydrogen-rich stream, compressing the stream, preparing ammonia and liquefying | |
WO2006114108A1 (en) | Method for coproducing methanol and ammonia from natural gas | |
RU2758773C2 (en) | Method for producing formaldehyde-stabilised urea | |
CN102746870A (en) | FT synthesis technology | |
WO2012013485A1 (en) | Process for reuse of co2-containing offgases | |
DE69801883T2 (en) | OXYGEN AND NITROGEN ADDITIVES TO INCREASE THE YIELD OF PRODUCING AMMONIA | |
US20220259043A1 (en) | System and method for water-based chemical-looping hydrogen generation | |
CN112744785A (en) | Chemical chain coupling process for co-producing synthesis gas and hydrogen by utilizing carbon dioxide in situ | |
EP4066921B1 (en) | Method and installation for producing methanol and ammonia | |
EP3967653A1 (en) | Sorption-enhanced water-gas shift process for the formation of a co2 product stream and an h2 product stream | |
DE3718880A1 (en) | Process for purifying exhaust gases from desulphurisation plants | |
JPS59203702A (en) | Manufacture of hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10714154 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10714154 Country of ref document: EP Kind code of ref document: A1 |