WO2010098638A2 - Lithium secondary battery comprising a negative electrode with a water-based binder - Google Patents

Lithium secondary battery comprising a negative electrode with a water-based binder Download PDF

Info

Publication number
WO2010098638A2
WO2010098638A2 PCT/KR2010/001264 KR2010001264W WO2010098638A2 WO 2010098638 A2 WO2010098638 A2 WO 2010098638A2 KR 2010001264 W KR2010001264 W KR 2010001264W WO 2010098638 A2 WO2010098638 A2 WO 2010098638A2
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
carbonate
formula
negative electrode
Prior art date
Application number
PCT/KR2010/001264
Other languages
French (fr)
Korean (ko)
Other versions
WO2010098638A3 (en
Inventor
전종호
Original Assignee
주식회사 엘지화학
윤수진
유성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 윤수진, 유성훈 filed Critical 주식회사 엘지화학
Priority to JP2011538573A priority Critical patent/JP5431494B2/en
Priority to US13/203,061 priority patent/US8691448B2/en
Priority claimed from KR1020100017594A external-priority patent/KR101069100B1/en
Publication of WO2010098638A2 publication Critical patent/WO2010098638A2/en
Publication of WO2010098638A3 publication Critical patent/WO2010098638A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery having a negative electrode using an aqueous binder.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • a lithium secondary battery has a negative electrode, a positive electrode, and a nonaqueous electrolyte that provides a migration path between lithium ions therebetween, and oxidation and reduction reactions when lithium ions are intercalated / deintercalated at the positive electrode and the negative electrode By generating electrical energy.
  • a binder As a negative electrode of the lithium secondary battery, a binder is used to bind the active material particles to maintain a molded body.
  • a solvent-based binder i.e., a binder using an organic solvent as a solvent
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • Aqueous binders unlike solvent binders, are economical, environmentally friendly, and harmless to the health of workers.
  • the binding effect is also greater than that of the solvent-based binder, the ratio of the active material per volume can be increased, and high capacity can be obtained.
  • the problem to be solved by the present invention is to be applied to a lithium secondary battery having a negative electrode using an aqueous binder to form a stable SEI film on the negative electrode, by controlling the amount of LiF in the formed SEI film can improve the life characteristics of the battery
  • the present invention provides a lithium secondary battery having a nonaqueous electrolyte.
  • a lithium secondary battery comprising a negative electrode, a positive electrode and a nonaqueous electrolyte
  • the negative electrode comprises an aqueous binder, the non-aqueous electrolyte, (a) a cyclic anhydride or derivatives thereof; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
  • the aqueous binder is preferably SBR (styrene-butadiene rubber).
  • the cyclic anhydride or derivative thereof is preferably any one selected from the group consisting of compounds represented by the following formulas (1) to (4) or a mixture of two or more thereof.
  • R 1 to R 11 are each independently halogen or an alkyl, alkenyl or alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with halogen.
  • the borane compound uses a compound represented by the following formula (5)
  • the borate compound uses a compound represented by the following formula (6).
  • R 12 to R 14 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
  • R 15 to R 17 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
  • the content of the (a) component and (b) component may be 0.05 to 10% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
  • the lithium secondary battery according to the present invention has the following effects.
  • the cyclic anhydride or derivative thereof contained in the nonaqueous electrolyte forms a stable SEI film on the surface of the negative electrode.
  • the anion receptor of the borane compound or the borate compound elutes the LiF in the SEI film which increases with the use of the aqueous binder and the cyclic anhydride (or derivative thereof) to control the LiF content in the SEI film. Accordingly, the resistance of the SEI film is controlled to improve the life characteristics of the battery.
  • Example 1 is an XPS graph obtained from a surface of a negative electrode after charging a battery according to Example 1 and Comparative Example 1 at 0.1C, respectively.
  • a lithium secondary battery comprising a negative electrode, a positive electrode, and a nonaqueous electrolyte
  • the negative electrode comprises an aqueous binder, the nonaqueous electrolyte, (a) a cyclic anhydride or derivatives thereof; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
  • the lithium secondary battery of the present invention is manufactured economically and environmentally friendly by using an aqueous binder as the binder of the negative electrode.
  • an aqueous binder is preferably SBR (styrene-butadiene rubber), and, as is well known, may be applied to a negative electrode by dispersing it in water together with a thickener such as carboxymethyl cellulose (CMC).
  • SBR styrene-butadiene rubber
  • a nonaqueous electrolyte solution contains (a) cyclic anhydride or its derivative (s).
  • the cyclic anhydride or its derivatives ring-open at a potential lower than the solvent at the time of initial charge to form an SEI film on the surface of the cathode.
  • Such cyclic anhydrides or derivatives thereof are preferably any one selected from the group consisting of compounds represented by the following formulas (1) to (4) or mixtures of two or more thereof.
  • R 1 to R 11 are each independently halogen or an alkyl, alkenyl or alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with halogen.
  • the SEI film formed from the above-mentioned component (a) has high stability, it contains a large amount of LiF and acts as a large resistance during charge and discharge.
  • the reason why the LiF content in the SEI film is greatly increased is that in addition to the cause of using the component (a), an aqueous binder is used as the negative electrode binder.
  • an aqueous binder is used as the negative electrode binder.
  • the negative electrode using the aqueous binder has a high water content.
  • the hydrofluoric acid content in the nonaqueous electrolytic solution is significantly increased, so that the amount of LiF is also increased when the SEI film is formed by the component (a).
  • the lithium secondary battery of the present invention solves this problem by adding any one anion receptor selected from the group consisting of (b) a borane compound, a borate compound, and a mixture thereof to the nonaqueous electrolyte. That is, an anion receptor made of a borane compound or a borate compound contained in the nonaqueous electrolyte elutes LiF in the SEI film increased with the use of an aqueous binder and a cyclic anhydride (or a derivative thereof). Accordingly, since the LiF content in the SEI film is controlled to be low, the resistance of the SEI film is lowered, thereby improving the life characteristics of the battery.
  • the lithium secondary battery of the present invention it is preferable to use a compound represented by the following formula (5) as the borane compound added to the nonaqueous electrolyte and a compound represented by the following formula (6) as the borate compound.
  • R 12 to R 14 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
  • R 15 to R 17 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
  • the above-mentioned components (a) and (b) are preferably added in an amount of 0.05 to 10% by weight, for example, based on the total weight of the nonaqueous electrolyte, in consideration of the life improvement effect and performance of the battery.
  • the nonaqueous electrolyte contains an organic solvent.
  • the organic solvent is not particularly limited as long as it is usually used as an organic solvent for nonaqueous electrolyte, and cyclic carbonate, linear carbonate, lactone, ether, ester, acetonitrile, lactam, and / or ketone can be used.
  • Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), fluoroethylene carbonate (FEC), and the like.
  • Examples of the linear carbonate include diethyl carbonate (DEC) and dimethyl carbonate. (DMC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and the like, and these may be used alone or in combination of two or more thereof.
  • Examples of the lactone include gamma-butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane And 1,2-diethoxyethane.
  • Examples of such esters include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl pivalate and the like.
  • the lactam includes N-methyl-2-pyrrolidone (NMP) and the like
  • the ketone includes polymethylvinyl ketone.
  • a halogen derivative of the organic solvent may be used, but is not limited thereto. These organic solvents can be used individually or in mixture of 2 or more types.
  • the nonaqueous electrolyte includes an electrolyte salt
  • the electrolyte salt is not particularly limited as long as it is usually used as an electrolyte salt for nonaqueous electrolyte.
  • the electrolyte salt is (i) Li +, Na + , a cation and (ii) selected from the group consisting of K + PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - , but can be configured with a combination of an anion selected from the group consisting of, but not always limited thereto.
  • These electrolyte salts can be used individually or in mixture of 2 or more types.
  • the electrolyte salt is LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li and LiC ( It is preferable to use lithium salts such as CF 3 SO 2 ) 3 and LiC 4 BO 8 .
  • the lithium secondary battery of the present invention includes all conventional lithium secondary batteries, such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the lithium secondary battery of the present invention can be prepared according to conventional methods known in the art.
  • a porous separator may be placed between the positive electrode and the negative electrode to prepare a nonaqueous electrolyte.
  • the electrode of a lithium secondary battery can be manufactured by conventional methods known in the art.
  • a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode.
  • Lithium cobalt oxides such as lithium nickel oxide, LiCoO 2 , and manganese, nickel, and cobalt in which some of these oxides are substituted with other transition metals, or vanadium oxide containing lithium, etc.), but are not limited thereto. .
  • the negative electrode active material may be a conventional negative electrode active material that can be used in the negative electrode of a conventional lithium secondary battery, non-limiting examples of lithium metal, lithium alloy, carbon, petroleum coke that can occlude and release lithium ions ), Activated carbon, graphite, carbon fiber, and the like.
  • lithium oxide may be occluded and released, and metal oxides such as TiO 2 , SnO 2, and the like having a potential of less than 2 V may be used, but are not limited thereto.
  • carbon materials such as graphite, carbon fiber and activated carbon are preferable.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the electrode active material can be easily adhered and is not reactive in the voltage range of the battery.
  • Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
  • Examples of the positive electrode binder that can be used include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and the like, and styrene butadiene rubber (SBR) is used as the negative electrode binder.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the electrochemical device.
  • carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
  • Solvents for forming the electrode include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents are used alone or in combination of two or more. It can be mixed and used. However, when forming a cathode, water is used as a solvent. The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents are used alone or in combination of two or more. It can be mixed and used. However, when forming a cathode, water is used as a solvent. The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of
  • the lithium secondary battery of the present invention may include a separator.
  • the separator is not particularly limited, but it is preferable to use a porous separator, and non-limiting examples include a polypropylene-based, polyethylene-based, or polyolefin-based porous separator.
  • the lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
  • Ethylene carbonate (EC): Ethyl methyl carbonate (EMC) 3: 7 (v: v) to dissolve LiPF 6 in an organic solvent to a concentration of 1M, and then to the solution succinic anhydride and tripropyl borate of the formula
  • the nonaqueous electrolyte was prepared by adding 0.5% by weight and 0.1% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
  • An electrode was prepared using LiCoO 2 as the positive electrode, artificial graphite as the negative electrode, and SBR as the negative electrode binder.
  • a bicell type pouch battery was manufactured by a conventional method of injecting the nonaqueous electrolyte prepared by the above-described method.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that tripropyl borane was used instead of tripropyl borate.
  • a nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 1% by weight of fluoroethylene carbonate represented by Formula 8 was further added.
  • a nonaqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that Tris (trimethyl silyl) borate was used instead of tripropyl borate.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that Maleic anhydride was used instead of Succinic anhydride.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that Phthalic anhydride was used instead of Succinic anhydride.
  • a nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that tripropyl borate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 3, except that tripropyl borate was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that succinic anhydride was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 2, except that succinic anhydride was not added.
  • a nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 4, except that succinic anhydride was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 5, except that tripropyl borate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 6, except that tripropyl borate was not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that succinic anhydride and tripropyl borate were not added.
  • a nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that PVdF was used instead of SBR as a negative electrode binder in preparing a lithium secondary battery.
  • Example 1 Succinic anhydride 0.5 wt% tripropyl borate 0.1wt% 85.7
  • Example 2 Succinic anhydride 0.5 wt% tripropyl borane 0.1 wt% 82.7
  • Example 3 Succinic anhydride 0.5 wt% Fluoro-ethylene carbonate 1wt% tripropyl borate 0.1 wt% 86.3
  • Example 4 Succinic anhydride 0.5 wt% Tris (trimethyl silyl) borate 0.1 wt% 81.3
  • Example 5 Maleic anhydride 0.5 wt% tripropyl borate 0.1 wt% 77.8
  • Example 6 Phthalic anhydride 0.5 wt% tripropyl borate 0.1 wt% 72.7 Comparative
  • Example 1 Succinic anhydride 0.5 wt% 62.3
  • Example 2 Succinic anhydride 0.5 wt% Fluoro-ethylene carbonate 1wt% 65.6 Comparative Example 3 triprop
  • the lithium secondary battery of Comparative Example 9 which used PVdF as a solvent-based binder as a negative electrode binder, was found to have a significantly reduced lifespan. Since the negative electrode using the solvent-based binder has a lower specific surface area than the negative electrode using the aqueous binder, the increase in resistance per unit area due to both additives of the present invention is estimated to have shown this result.
  • the lithium secondary battery of Example 1 in which a nonaqueous electrolyte including a cyclic anhydride derivative and an anion receptor is applied to a negative electrode using an aqueous binder according to the present invention the nonaqueous electrolyte containing only a cyclic anhydride derivative alone is an aqueous binder.
  • the LiF content in the SEI film is significantly reduced compared to the battery of Comparative Example 1 applied to the negative electrode using. This is because the anion receptor eluted LiF among the components of the SEI film on the surface of the cathode, thereby confirming that an SEI film is easily formed.

Abstract

The present invention relates to a lithium secondary battery comprising a negative electrode, a positive electrode, and a non-aqueous electrolyte. The negative electrode contains a water-based binder, and the non-aqueous electrolyte contains: (a) a cyclic anhydride or a derivative thereof; and (b) an anion receptor selected from the group consisting of borane compounds, borate compounds, and a mixture thereof. According to the present invention, the negative electrode is provided with a stable SEI film, and the amount of LiF in the SEI film is controlled, thereby lengthening the lifespan of the battery.

Description

수계 바인더를 포함하는 음극을 구비한 리튬 이차전지Lithium secondary battery having a negative electrode including an aqueous binder
본 출원은 2009년 02월 26일에 출원된 한국특허출원 제10-2009-0016358호 및 2010년 02월 26일에 출원된 한국특허출원 제10-2010-0017594호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims the priority based on Korean Patent Application No. 10-2009-0016358 filed February 26, 2009 and Korean Patent Application No. 10-2010-0017594 filed February 26, 2010, All content disclosed in the specification and drawings of an application is incorporated in this application.
본 발명은 수계 바인더를 사용한 음극을 구비한 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery having a negative electrode using an aqueous binder.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다. Recently, interest in energy storage technology is increasing. As the field of application extends to the energy of mobile phones, camcorders, notebook PCs, and even electric vehicles, the demand for high energy density of batteries used as power sources for such electronic devices is increasing. Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
리튬 이차전지는 음극, 양극 및 이 사이에서 리튬 이온의 이동 경로를 제공하는 비수 전해액을 구비하며, 리튬 이온이 양극 및 음극에서 삽입(intercalation)/탈삽입((deintercalation)될 때의 산화 및 환원반응에 의해 전기 에너지를 생성한다. A lithium secondary battery has a negative electrode, a positive electrode, and a nonaqueous electrolyte that provides a migration path between lithium ions therebetween, and oxidation and reduction reactions when lithium ions are intercalated / deintercalated at the positive electrode and the negative electrode By generating electrical energy.
리튬 이차전지의 음극으로는 활물질 입자들을 결착시켜 성형체를 유지하기 위하여 바인더가 사용되는데, 폴리불화비닐리덴(PVdF)으로 대표되는 용제계 바인더(즉, 유기용제를 용매로 하는 바인더)와, 스티렌-부타디엔 러버(styrene-butadiene rubber, 이하 SBR이라 함)로 대표되는 수계 바인더(즉, 물을 용매로 하는 바인더)로 나뉜다. 수계 바인더는 용제계 바인더와 달리 경제적, 친환경적이고, 작업자의 건강에도 무해하다. 또한, 용제계 바인더에 비하여 결착효과도 크므로 동일체적당 활물질의 비율을 높일 수 있어 고용량화가 가능하므로, 최근 활발히 이용되고 있다. As a negative electrode of the lithium secondary battery, a binder is used to bind the active material particles to maintain a molded body. A solvent-based binder (i.e., a binder using an organic solvent as a solvent) represented by polyvinylidene fluoride (PVdF) and styrene- Butadiene rubber (styrene-butadiene rubber, hereinafter referred to as SBR) is divided into an aqueous binder (ie, water-based binder). Aqueous binders, unlike solvent binders, are economical, environmentally friendly, and harmless to the health of workers. In addition, since the binding effect is also greater than that of the solvent-based binder, the ratio of the active material per volume can be increased, and high capacity can be obtained.
그러나, 이러한 리튬 이차 전지는 충방전이 반복됨에 따라 성능이 열화되는 문제점이 있다. 이와 같은 문제는 전지의 용량 밀도를 증가시킬수록 더 심각해진다. However, such a lithium secondary battery has a problem in that performance deteriorates as charging and discharging are repeated. This problem becomes more serious as the capacity density of the battery increases.
전술한 문제점들을 해결하기 위하여, 다양한 화합물을 비수 전해액에 첨가하여 음극 표면상에 고체 전해질 계면(SEI) 막을 형성하는 방법들이 제시되었다. 그러나, 안정한 SEI 막을 형성하면서 수명특성도 현저히 개선하는 등, 수계 바인더를 사용한 음극을 구비한 리튬 이차전지에 최적화된 비수 전해액에 대한 연구가 계속되고 있다. In order to solve the above-mentioned problems, methods for forming a solid electrolyte interface (SEI) film on the negative electrode surface by adding various compounds to the nonaqueous electrolyte have been proposed. However, researches on nonaqueous electrolytes optimized for lithium secondary batteries having a negative electrode using an aqueous binder have continued, such as forming a stable SEI film and remarkably improving life characteristics.
따라서 본 발명이 해결하고자 하는 과제는, 수계 바인더를 사용한 음극을 구비한 리튬 이차전지에 적용되어 음극에 안정한 SEI 막을 형성하며, 형성된 SEI 막 중 LiF의 양을 제어하여 전지의 수명특성을 개선할 수 있는 비수 전해액을 구비한 리튬 이차전지를 제공하는데 있다.Therefore, the problem to be solved by the present invention is to be applied to a lithium secondary battery having a negative electrode using an aqueous binder to form a stable SEI film on the negative electrode, by controlling the amount of LiF in the formed SEI film can improve the life characteristics of the battery The present invention provides a lithium secondary battery having a nonaqueous electrolyte.
상기 과제를 해결하기 위하여, 본 발명에 따라 음극, 양극 및 비수 전해액을 포함하는 리튬 이차전지는, 상기 음극이 수계 바인더를 포함하고, 상기 비수 전해액은, (a) 환형 무수물 또는 그 유도체; 및 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유한다 In order to solve the above problems, according to the present invention, a lithium secondary battery comprising a negative electrode, a positive electrode and a nonaqueous electrolyte, the negative electrode comprises an aqueous binder, the non-aqueous electrolyte, (a) a cyclic anhydride or derivatives thereof; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
본 발명의 리튬 이차전지에 있어서, 상기 수계 바인더는 SBR(styrene-butadiene rubber)인 것이 바람직하다.In the lithium secondary battery of the present invention, the aqueous binder is preferably SBR (styrene-butadiene rubber).
또한, 본 발명의 리튬 이차전지에 있어서, 상기 환형 무수물 또는 그 유도체는 하기 화학식 1 내지 4로 표시되는 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것이 바람직하다.In the lithium secondary battery of the present invention, the cyclic anhydride or derivative thereof is preferably any one selected from the group consisting of compounds represented by the following formulas (1) to (4) or a mixture of two or more thereof.
화학식 1
Figure PCTKR2010001264-appb-C000001
Formula 1
Figure PCTKR2010001264-appb-C000001
화학식 2
Figure PCTKR2010001264-appb-C000002
Formula 2
Figure PCTKR2010001264-appb-C000002
화학식 3 Formula 3
화학식 4
Figure PCTKR2010001264-appb-C000004
Formula 4
Figure PCTKR2010001264-appb-C000004
상기 화학식 1 내지 4에서, R1 내지 R11은 각각 서로 독립적으로 할로겐이거나, 할로겐으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 알케닐기 또는 알콕시기이다.In Formulas 1 to 4, R 1 to R 11 are each independently halogen or an alkyl, alkenyl or alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with halogen.
또한, 본 발명의 리튬 이차전지에 있어서, 보란 화합물은 하기 화학식 5로 표시되는 화합물을, 보레이트 화합물은 하기 화학식 6으로 표시되는 화합물을 사용하는 것이 바람직하다.In addition, in the lithium secondary battery of the present invention, it is preferable that the borane compound uses a compound represented by the following formula (5), and the borate compound uses a compound represented by the following formula (6).
화학식 5
Figure PCTKR2010001264-appb-C000005
Formula 5
Figure PCTKR2010001264-appb-C000005
상기 화학식 5에서, R12 내지 R14는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 5, R 12 to R 14 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
화학식 6
Figure PCTKR2010001264-appb-C000006
Formula 6
Figure PCTKR2010001264-appb-C000006
상기 화학식 6에서, R15 내지 R17은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 6, R 15 to R 17 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
본 발명의 리튬 이차전지에 있어서, 상기 (a) 성분 및 (b) 성분의 함량은 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량%일 수 있다. In the lithium secondary battery of the present invention, the content of the (a) component and (b) component may be 0.05 to 10% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
본 발명에 따른 리튬 이차전지는 다음과 같은 효과를 나타낸다.The lithium secondary battery according to the present invention has the following effects.
첫째, 음극의 바인더로서 수계 바인더를 사용하므로서 경제적이며 친환경적으로 제조된다. 또한, 용제계 바인더에 비하여 결착효과도 크므로 동일체적당 음극 활물질의 비율을 높일 수 있어 고용량화가 가능하다.First, it is economically and environmentally friendly by using an aqueous binder as a negative electrode binder. In addition, since the binding effect is greater than that of the solvent-based binder, it is possible to increase the ratio of the negative electrode active material per volume, thereby increasing the capacity.
둘째, 비수 전해액에 함유된 환형 무수물 또는 그 유도체는 음극 표면에 안정한 SEI 막을 형성한다. 또한, 보란 화합물 또는 보레이트 화합물로 된 음이온 리셉터는 수계 바인더 및 환형 무수물(또는 그 유도체) 사용에 따라 증가되는 SEI 막 중의 LiF를 용출시켜 SEI 막 내의 LiF 함량을 제어한다. 이에 따라 SEI 막의 저항이 제어되어 전지의 수명특성이 개선된다. Second, the cyclic anhydride or derivative thereof contained in the nonaqueous electrolyte forms a stable SEI film on the surface of the negative electrode. In addition, the anion receptor of the borane compound or the borate compound elutes the LiF in the SEI film which increases with the use of the aqueous binder and the cyclic anhydride (or derivative thereof) to control the LiF content in the SEI film. Accordingly, the resistance of the SEI film is controlled to improve the life characteristics of the battery.
도 1은 실시예 1 및 비교예 1에 따른 전지를 각각 0.1C로 충전한 후, 음극 표면으로부터 얻은 XPS 그래프이다.1 is an XPS graph obtained from a surface of a negative electrode after charging a battery according to Example 1 and Comparative Example 1 at 0.1C, respectively.
이하, 본 발명에 대해 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따라 음극, 양극 및 비수 전해액을 포함하는 리튬 이차전지는, 상기 음극이 수계 바인더를 포함하고, 상기 비수 전해액은, (a) 환형 무수물 또는 그 유도체; 및 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유한다.According to the present invention, a lithium secondary battery comprising a negative electrode, a positive electrode, and a nonaqueous electrolyte, the negative electrode comprises an aqueous binder, the nonaqueous electrolyte, (a) a cyclic anhydride or derivatives thereof; And (b) any one anion receptor selected from the group consisting of borane compounds, borate compounds, and mixtures thereof.
전술한 바와 같이, 본 발명의 리튬 이차전지는 음극의 바인더로서 수계 바인더를 사용하므로서 경제적이며 친환경적으로 제조된다. 또한, 용제계 바인더에 비하여 결착효과도 크므로 동일체적당 음극 활물질의 비율을 높일 수 있어 고용량화가 가능하다. 수계 바인더로는 SBR(styrene-butadiene rubber)인 것이 바람직하며, 잘 알려진 바와 같이 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 물에 분산시켜 음극에 적용할 수 있다.As described above, the lithium secondary battery of the present invention is manufactured economically and environmentally friendly by using an aqueous binder as the binder of the negative electrode. In addition, since the binding effect is greater than that of the solvent-based binder, it is possible to increase the ratio of the negative electrode active material per volume, thereby increasing the capacity. The aqueous binder is preferably SBR (styrene-butadiene rubber), and, as is well known, may be applied to a negative electrode by dispersing it in water together with a thickener such as carboxymethyl cellulose (CMC).
또한, 본 발명의 리튬 이차전지에 있어서, 비수 전해액은, (a) 환형 무수물 또는 그 유도체를 함유한다. 환형 무수물 또는 그 유도체는 초기 충전시에 용매보다 낮은 전위에서 개환반응하여 음극 표면에 SEI 막을 형성한다. Moreover, in the lithium secondary battery of this invention, a nonaqueous electrolyte solution contains (a) cyclic anhydride or its derivative (s). The cyclic anhydride or its derivatives ring-open at a potential lower than the solvent at the time of initial charge to form an SEI film on the surface of the cathode.
이러한 환형 무수물 또는 그 유도체는 하기 화학식 1 내지 4로 표시되는 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것이 바람직하다. Such cyclic anhydrides or derivatives thereof are preferably any one selected from the group consisting of compounds represented by the following formulas (1) to (4) or mixtures of two or more thereof.
<화학식 1><Formula 1>
Figure PCTKR2010001264-appb-I000001
Figure PCTKR2010001264-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2010001264-appb-I000002
Figure PCTKR2010001264-appb-I000002
<화학식 3><Formula 3>
Figure PCTKR2010001264-appb-I000003
Figure PCTKR2010001264-appb-I000003
<화학식 4><Formula 4>
Figure PCTKR2010001264-appb-I000004
Figure PCTKR2010001264-appb-I000004
상기 화학식 1 내지 4에서, R1 내지 R11은 각각 서로 독립적으로 할로겐이거나, 할로겐으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 알케닐기 또는 알콕시기이다.In Formulas 1 to 4, R 1 to R 11 are each independently halogen or an alkyl, alkenyl or alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with halogen.
전술한 (a) 성분으로부터 형성된 SEI 막은 안정성이 높으나, 다량의 LiF를 포함하여 충방전시 큰 저항으로 작용한다. 이와 같이 SEI 막 내의 LiF 함량이 크게 증가되는 이유는 (a) 성분 사용에 따른 원인 외에도, 음극 바인더로서 수계 바인더를 사용하기 때문이다. 즉, PVdF와 같은 용제계 바인더와 달리, 수계 바인더를 사용한 음극은 수분 함량이 높아지게 된다. 이에 따라, 비수 전해액 내의 불산 함량이 현저히 증가하게 되므로, (a) 성분에 의한 SEI 막 형성시 LiF의 양도 증대된다.Although the SEI film formed from the above-mentioned component (a) has high stability, it contains a large amount of LiF and acts as a large resistance during charge and discharge. The reason why the LiF content in the SEI film is greatly increased is that in addition to the cause of using the component (a), an aqueous binder is used as the negative electrode binder. In other words, unlike a solvent-based binder such as PVdF, the negative electrode using the aqueous binder has a high water content. As a result, the hydrofluoric acid content in the nonaqueous electrolytic solution is significantly increased, so that the amount of LiF is also increased when the SEI film is formed by the component (a).
본 발명의 리튬 이차전지는 비수 전해액에 (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 첨가하므로서 이러한 문제를 해결하였다. 즉, 비수 전해액에 함유된 보란 화합물 또는 보레이트 화합물로 된 음이온 리셉터는 수계 바인더 및 환형 무수물(또는 그 유도체) 사용에 따라 증가된 SEI 막 중의 LiF를 용출시킨다. 이에 따라 SEI 막 내의 LiF 함량이 낮게 제어되므로, SEI 막의 저항이 낮아져 전지의 수명특성이 개선된다.    The lithium secondary battery of the present invention solves this problem by adding any one anion receptor selected from the group consisting of (b) a borane compound, a borate compound, and a mixture thereof to the nonaqueous electrolyte. That is, an anion receptor made of a borane compound or a borate compound contained in the nonaqueous electrolyte elutes LiF in the SEI film increased with the use of an aqueous binder and a cyclic anhydride (or a derivative thereof). Accordingly, since the LiF content in the SEI film is controlled to be low, the resistance of the SEI film is lowered, thereby improving the life characteristics of the battery.
본 발명의 리튬 이차전지에 있어서, 비수 전해액에 첨가된 보란 화합물로는 하기 화학식 5로 표시되는 화합물을, 보레이트 화합물로는 하기 화학식 6으로 표시되는 화합물을 사용하는 것이 바람직하다.In the lithium secondary battery of the present invention, it is preferable to use a compound represented by the following formula (5) as the borane compound added to the nonaqueous electrolyte and a compound represented by the following formula (6) as the borate compound.
<화학식 5><Formula 5>
Figure PCTKR2010001264-appb-I000005
Figure PCTKR2010001264-appb-I000005
상기 화학식 5에서, R12 내지 R14는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 5, R 12 to R 14 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
<화학식 6><Formula 6>
Figure PCTKR2010001264-appb-I000006
Figure PCTKR2010001264-appb-I000006
상기 화학식 6에서, R15 내지 R17은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 6, R 15 to R 17 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
전술한 (a) 성분 및 (b) 성분은 전지의 수명 향상 효과 및 성능을 고려할 때 예를 들어 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량%를 첨가하는 것이 바람직하다.The above-mentioned components (a) and (b) are preferably added in an amount of 0.05 to 10% by weight, for example, based on the total weight of the nonaqueous electrolyte, in consideration of the life improvement effect and performance of the battery.
본 발명의 리튬 이차전지에 있어서, 비수 전해액은 유기 용매를 포함한다. 상기 유기 용매는 통상 비수 전해액용 유기 용매로 사용하고 있는 것이면 특별히 제한하지 않으며, 환형 카보네이트, 선형 카보네이트, 락톤, 에테르, 에스테르, 아세토니트릴, 락탐, 및/또는 케톤을 사용할 수 있다.In the lithium secondary battery of the present invention, the nonaqueous electrolyte contains an organic solvent. The organic solvent is not particularly limited as long as it is usually used as an organic solvent for nonaqueous electrolyte, and cyclic carbonate, linear carbonate, lactone, ether, ester, acetonitrile, lactam, and / or ketone can be used.
상기 환형 카보네이트의 예로는 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC), 플루오르에틸렌 카보네이트(FEC) 등이 있고, 상기 선형 카보네이트의 예로는 디에틸 카보네이트(DEC), 디메틸 카보네이트(DMC), 디프로필 카보네이트(DPC), 에틸 메틸 카보네이트(EMC), 및 메틸 프로필 카보네이트(MPC) 등이 있으며, 이들을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다. 상기 락톤의 예로는 감마-부티로락톤(GBL)이 있으며, 상기 에테르의 예로는 디부틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란, 1,4-디옥산, 1,2-디메톡시에탄, 1,2-디에톡시에탄 등이 있다. 상기 에스테르의 예로는 메틸 포메이트, 에틸 포메이트, 프로필 포메이트, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 부틸 프로피오네이트, 메틸 피발레이트 등이 있다. 또한, 상기 락탐으로는 N-메틸-2-피롤리돈(NMP) 등이 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 또한, 상기 유기 용매의 할로겐 유도체도 사용 가능하나, 이에 한정하지는 않는다. 이들 유기 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), fluoroethylene carbonate (FEC), and the like. Examples of the linear carbonate include diethyl carbonate (DEC) and dimethyl carbonate. (DMC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propyl carbonate (MPC), and the like, and these may be used alone or in combination of two or more thereof. Examples of the lactone include gamma-butyrolactone (GBL), and examples of the ether include dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane And 1,2-diethoxyethane. Examples of such esters include methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, butyl propionate, methyl pivalate and the like. In addition, the lactam includes N-methyl-2-pyrrolidone (NMP) and the like, and the ketone includes polymethylvinyl ketone. In addition, a halogen derivative of the organic solvent may be used, but is not limited thereto. These organic solvents can be used individually or in mixture of 2 or more types.
본 발명의 리튬 이차전지에 있어서, 비수 전해액은 전해질 염을 포함하는데, 상기 전해질 염은 통상 비수 전해액용 전해질 염으로 사용하고 있는 것이면 특별히 제한하지 않는다. In the lithium secondary battery of the present invention, the nonaqueous electrolyte includes an electrolyte salt, and the electrolyte salt is not particularly limited as long as it is usually used as an electrolyte salt for nonaqueous electrolyte.
상기 전해질 염은 (i) Li+, Na+, K+로 이루어진 군에서 선택된 양이온과 (ii) PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 -, C(CF2SO2)3 -로 이루어진 군에서 선택된 음이온의 조합으로 이루어질 수 있으나, 이에 한정하지 않는다. 이들 전해질 염은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 특히, 상기 전해질 염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li 및 LiC(CF3SO2)3, LiC4BO8 등의 리튬염을 사용하는 것이 바람직하다.The electrolyte salt is (i) Li +, Na + , a cation and (ii) selected from the group consisting of K + PF 6 -, BF 4 -, Cl -, Br -, I -, ClO 4 -, AsF 6 -, CH 3 CO 2 -, CF 3 SO 3 -, N (CF 3 SO 2) 2 -, C (CF 2 SO 2) 3 - , but can be configured with a combination of an anion selected from the group consisting of, but not always limited thereto. These electrolyte salts can be used individually or in mixture of 2 or more types. In particular, the electrolyte salt is LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li and LiC ( It is preferable to use lithium salts such as CF 3 SO 2 ) 3 and LiC 4 BO 8 .
한편, 본 발명의 리튬 이차전지는 리튬금속 이차전지, 리튬이온 이차전지, 리튬폴리머 이차전지 또는 리튬이온폴리머 이차전지 등, 통상적인 리튬 이차전지들을 모두 포함한다.Meanwhile, the lithium secondary battery of the present invention includes all conventional lithium secondary batteries, such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
본 발명의 리튬 이차전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 다공성의 세퍼레이터를 넣고 비수 전해액을 투입하여 제조할 수 있다.The lithium secondary battery of the present invention can be prepared according to conventional methods known in the art. For example, a porous separator may be placed between the positive electrode and the negative electrode to prepare a nonaqueous electrolyte.
리튬 이차전지의 전극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 전극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산재를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 전극을 제조할 수 있다.The electrode of a lithium secondary battery can be manufactured by conventional methods known in the art. For example, a slurry may be prepared by mixing and stirring a solvent, a binder, a conductive material, and a dispersant in an electrode active material, and then applying (coating) to a current collector of a metal material, compressing, and drying the electrode to prepare an electrode. have.
양극활물질은 LiMxOy(M = Co, Ni, Mn, CoaNibMnc)와 같은 리튬 전이금속 복합산화물(예를 들면, LiMn2O4 등의 리튬 망간 복합산화물, LiNiO2 등의 리튬 니켈 산화물, LiCoO2 등의 리튬 코발트 산화물 및 이들 산화물의 망간, 니켈, 코발트의 일부를 다른 전이금속 등으로 치환한 것 또는 리튬을 함유한 산화바나듐 등) 등을 사용할 수 있으나, 이에 한정하지는 않는다. The positive electrode active material may be a lithium transition metal composite oxide such as LiM x O y (M = Co, Ni, Mn, Co a Ni b Mn c ) (for example, lithium manganese composite oxide such as LiMn 2 O 4 , LiNiO 2, etc.). Lithium cobalt oxides such as lithium nickel oxide, LiCoO 2 , and manganese, nickel, and cobalt in which some of these oxides are substituted with other transition metals, or vanadium oxide containing lithium, etc.), but are not limited thereto. .
음극활물질은 종래 리튬 이차전지의 음극에 사용될 수 있는 통상적인 음극활물질이 사용 가능하며, 이의 비제한적인 예로는 리튬 이온을 흡장 및 방출할 수 있는 리튬 금속, 리튬 합금, 탄소, 석유코크(petroleum coke), 활성화 탄소(activated carbon), 흑연(graphite), 탄소 섬유(carbon fiber) 등이 있다. 기타, 리튬을 흡장 및 방출할 수 있고, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2 등과 같은 금속 산화물을 사용할 수 있으나, 이에 한정하지는 않는다. 특히, 흑연, 탄소섬유(carbon fiber), 활성화 탄소 등의 탄소재가 바람직하다.The negative electrode active material may be a conventional negative electrode active material that can be used in the negative electrode of a conventional lithium secondary battery, non-limiting examples of lithium metal, lithium alloy, carbon, petroleum coke that can occlude and release lithium ions ), Activated carbon, graphite, carbon fiber, and the like. In addition, lithium oxide may be occluded and released, and metal oxides such as TiO 2 , SnO 2, and the like having a potential of less than 2 V may be used, but are not limited thereto. In particular, carbon materials such as graphite, carbon fiber and activated carbon are preferable.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 전극활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the electrode active material can be easily adhered and is not reactive in the voltage range of the battery. Non-limiting examples of the positive electrode current collector is a foil produced by aluminum, nickel or a combination thereof, and non-limiting examples of the negative electrode current collector is produced by copper, gold, nickel or copper alloy or a combination thereof Foil and the like.
사용 가능한 양극 바인더의 예로는 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVdF) 등을 들 수 있고, 음극 바인더로는 SBR(styrene butadiene rubber)을 사용한다.Examples of the positive electrode binder that can be used include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and the like, and styrene butadiene rubber (SBR) is used as the negative electrode binder.
도전재로는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다.The conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the electrochemical device. In general, carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
전극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 다만, 음극을 형성하는 경우 용매로서 물을 사용한다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 전극활물질, 바인더, 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.Solvents for forming the electrode include organic solvents such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents are used alone or in combination of two or more. It can be mixed and used. However, when forming a cathode, water is used as a solvent. The amount of the solvent used is sufficient to dissolve and disperse the electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
본 발명의 리튬 이차전지는 세퍼레이터를 포함할 수 있다. 상기 세퍼레이터는 특별한 제한이 없으나, 다공성 세퍼레이터를 사용하는 것이 바람직하며, 비제한적인 예로는 폴리프로필렌계, 폴리에틸렌계, 또는 폴리올레핀계 다공성 세퍼레이터 등이 있다.The lithium secondary battery of the present invention may include a separator. The separator is not particularly limited, but it is preferable to use a porous separator, and non-limiting examples include a polypropylene-based, polyethylene-based, or polyolefin-based porous separator.
본 발명의 리튬 이차전지는 그 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예Example 1 One
비수 전해액의 제조Preparation of Nonaqueous Electrolyte
에틸렌 카보네이트(EC): 에틸 메틸 카보네이트(EMC)= 3: 7(v: v)의 조성을 갖는 유기 용매에 LiPF6를 1M 농도가 되도록 용해시킨 후, 상기 용액에 하기 화학식 7의 succinic anhydride 및 tripropyl borate를 비수 전해액 총 중량을 기준으로 각각 0.5 중량% 및 0.1 중량% 첨가하여 비수 전해액을 제조하였다.Ethylene carbonate (EC): Ethyl methyl carbonate (EMC) = 3: 7 (v: v) to dissolve LiPF 6 in an organic solvent to a concentration of 1M, and then to the solution succinic anhydride and tripropyl borate of the formula The nonaqueous electrolyte was prepared by adding 0.5% by weight and 0.1% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
화학식 7
Figure PCTKR2010001264-appb-C000007
Formula 7
Figure PCTKR2010001264-appb-C000007
리튬 이차전지의 제조Fabrication of Lithium Secondary Battery
양극으로 LiCoO2를, 음극으로 인조 흑연을 사용하고, 음극 바인더로서 SBR을 사용하여 전극을 제조한 다음. 전술한 방법으로 준비한 비수 전해액을 주입하는 통상적인 방법으로 바이셀 형태의 파우치 전지를 제조하였다. An electrode was prepared using LiCoO 2 as the positive electrode, artificial graphite as the negative electrode, and SBR as the negative electrode binder. A bicell type pouch battery was manufactured by a conventional method of injecting the nonaqueous electrolyte prepared by the above-described method.
실시예Example 2 2
tripropyl borate 대신 tripropyl borane을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that tripropyl borane was used instead of tripropyl borate.
실시예Example 3 3
하기 화학식 8로 표시되는 플루오로에틸렌 카보네이트 1 중량%를 더 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that 1% by weight of fluoroethylene carbonate represented by Formula 8 was further added.
화학식 8
Figure PCTKR2010001264-appb-C000008
Formula 8
Figure PCTKR2010001264-appb-C000008
실시예Example 4 4
tripropyl borate 대신 Tris(trimethyl silyl) borate를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that Tris (trimethyl silyl) borate was used instead of tripropyl borate.
실시예Example 5 5
Succinic anhydride 대신 Maleic anhydride를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that Maleic anhydride was used instead of Succinic anhydride.
실시예Example 6 6
Succinic anhydride 대신 Phthalic anhydride를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that Phthalic anhydride was used instead of Succinic anhydride.
비교예Comparative example 1 One
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that tripropyl borate was not added.
비교예Comparative example 2 2
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 3과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 3, except that tripropyl borate was not added.
비교예Comparative example 3 3
succinic anhydride를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that succinic anhydride was not added.
비교예Comparative example 4 4
succinic anhydride를 첨가하지 않은 것을 제외하고는, 실시예 2와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 2, except that succinic anhydride was not added.
비교예Comparative example 5 5
succinic anhydride를 첨가하지 않은 것을 제외하고는, 실시예 4와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 4, except that succinic anhydride was not added.
비교예Comparative example 6 6
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 5와 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 5, except that tripropyl borate was not added.
비교예Comparative example 7 7
tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 6과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 6, except that tripropyl borate was not added.
비교예Comparative example 8 8
succinic anhydride 및 tripropyl borate를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were prepared in the same manner as in Example 1, except that succinic anhydride and tripropyl borate were not added.
비교예Comparative example 9 9
리튬 이차전지 제조시 음극 바인더로서 SBR 대신 PVdF를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 비수 전해액 및 리튬 이차전지를 제조하였다.A nonaqueous electrolyte solution and a lithium secondary battery were manufactured in the same manner as in Example 1, except that PVdF was used instead of SBR as a negative electrode binder in preparing a lithium secondary battery.
수명 특성 평가Life characteristic evaluation
실시예 1 내지 6 및 비교예 1 내지 9에 따른 파우치 전지를 0.5 C로 충방전을 200회 실시하였고, 초기용량 대비 용량 유지율을 측정하여 그 결과를 하기 표 1에 나타내었다. Pouch cells according to Examples 1 to 6 and Comparative Examples 1 to 9 were charged and discharged at 0.5 C for 200 times, and the capacity retention ratio was measured in relation to the initial capacity, and the results are shown in Table 1 below.
표 1
첨가제 200회 충방전 후 용량 유지율 (%)
실시예 1 Succinic anhydride 0.5 wt%tripropyl borate 0.1wt% 85.7
실시예 2 Succinic anhydride 0.5 wt%tripropyl borane 0.1 wt% 82.7
실시예 3 Succinic anhydride 0.5 wt%Fluoro-ethylene carbonate 1wt%tripropyl borate 0.1 wt% 86.3
실시예 4 Succinic anhydride 0.5 wt%Tris(trimethyl silyl) borate 0.1 wt% 81.3
실시예 5 Maleic anhydride 0.5 wt%tripropyl borate 0.1 wt% 77.8
실시예 6 Phthalic anhydride 0.5 wt%tripropyl borate 0.1 wt% 72.7
비교예 1 Succinic anhydride 0.5 wt% 62.3
비교예 2 Succinic anhydride 0.5 wt%Fluoro-ethylene carbonate 1wt% 65.6
비교예 3 tripropyl borate 0.1 wt% 65.9
비교예 4 tripropyl borane 0.1 wt% 62.2
비교예 5 Tris(trimethyl silyl) borate 0.1 wt% 60.5
비교예 6 Maleic anhydride 0.5 wt% 52.4
비교예 7 Phthalic anhydride 0.5 wt% 44.3
비교예 8 없음 51.2
비교예 9 Succinic anhydride 0.5 wt%tripropyl borate 0.1wt%(음극 바인더 : PVdF) 26.1
Table 1
additive Capacity retention rate after 200 charge / discharge cycles (%)
Example 1 Succinic anhydride 0.5 wt% tripropyl borate 0.1wt% 85.7
Example 2 Succinic anhydride 0.5 wt% tripropyl borane 0.1 wt% 82.7
Example 3 Succinic anhydride 0.5 wt% Fluoro-ethylene carbonate 1wt% tripropyl borate 0.1 wt% 86.3
Example 4 Succinic anhydride 0.5 wt% Tris (trimethyl silyl) borate 0.1 wt% 81.3
Example 5 Maleic anhydride 0.5 wt% tripropyl borate 0.1 wt% 77.8
Example 6 Phthalic anhydride 0.5 wt% tripropyl borate 0.1 wt% 72.7
Comparative Example 1 Succinic anhydride 0.5 wt% 62.3
Comparative Example 2 Succinic anhydride 0.5 wt% Fluoro-ethylene carbonate 1wt% 65.6
Comparative Example 3 tripropyl borate 0.1 wt% 65.9
Comparative Example 4 tripropyl borane 0.1 wt% 62.2
Comparative Example 5 Tris (trimethyl silyl) borate 0.1 wt% 60.5
Comparative Example 6 Maleic anhydride 0.5 wt% 52.4
Comparative Example 7 Phthalic anhydride 0.5 wt% 44.3
Comparative Example 8 none 51.2
Comparative Example 9 Succinic anhydride 0.5 wt% tripropyl borate 0.1wt% (cathode binder: PVdF) 26.1
상기 표 1에서 알 수 있듯이, 본 발명에 따라 환형 무수물 유도체 및 음이온 리셉터를 동시에 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 리튬 이차전지는, 환형 무수물 유도체 및 음이온 리셉터를 모두 첨가하지 않거나 또는 각각 단독으로 사용하는 경우보다 수명이 크게 향상되었음을 확인할 수 있다. As can be seen in Table 1, in the lithium secondary battery in which the nonaqueous electrolyte solution including the cyclic anhydride derivative and the anion receptor at the same time was applied to the negative electrode using the aqueous binder, all of the cyclic anhydride derivative and the anion receptor were not added or each alone It can be seen that the lifespan is greatly improved than when used as.
한편, 본 발명에 따른 비수 전해액을 사용하였으나 음극 바인더로서 용제계 바인더인 PVdF를 사용한 비교예 9의 리튬 이차전지는 수명이 크게 저하됨을 확인할 수 있다. 용제계 바인더를 사용한 음극은 수계 바인더를 사용한 음극에 비해 낮은 비표면적을 가지므로, 본 발명의 양 첨가제들에 의한 단위 면적당 저항 증가가 커져서 이러한 결과를 나타낸 것으로 추정된다. Meanwhile, although the nonaqueous electrolyte according to the present invention was used, the lithium secondary battery of Comparative Example 9, which used PVdF as a solvent-based binder as a negative electrode binder, was found to have a significantly reduced lifespan. Since the negative electrode using the solvent-based binder has a lower specific surface area than the negative electrode using the aqueous binder, the increase in resistance per unit area due to both additives of the present invention is estimated to have shown this result.
SEI 막의 LiF 함량 평가LiF content evaluation of SEI membrane
실시예 1 및 비교예 1에 따른 전지를 0.1C로 충전한 후, 음극을 탈리하여 XPS로 표면분석을 시행하였고, 그 결과를 도 1에 나타내었다.After charging the battery according to Example 1 and Comparative Example 1 at 0.1C, the negative electrode was detached and subjected to surface analysis by XPS, the results are shown in FIG.
도 1을 참조하면, 본 발명에 따라 환형 무수물 유도체 및 음이온 리셉터를 동시에 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 실시예 1의 리튬 이차전지는, 환형 무수물 유도체만을 단독으로 포함한 비수 전해액을 수계 바인더를 사용한 음극에 적용한 비교예 1의 전지보다 SEI 막 내의 LiF 함량이 크게 감소되었음을 알 수 있다. 이는 음이온 리셉터가 음극 표면의 SEI막의 성분 중 LiF를 용출시켰기 때문으로서, 이에 따라 충방전이 용이한 SEI 막이 형성됨을 확인할 수 있다. Referring to FIG. 1, the lithium secondary battery of Example 1 in which a nonaqueous electrolyte including a cyclic anhydride derivative and an anion receptor is applied to a negative electrode using an aqueous binder according to the present invention, the nonaqueous electrolyte containing only a cyclic anhydride derivative alone is an aqueous binder. It can be seen that the LiF content in the SEI film is significantly reduced compared to the battery of Comparative Example 1 applied to the negative electrode using. This is because the anion receptor eluted LiF among the components of the SEI film on the surface of the cathode, thereby confirming that an SEI film is easily formed.

Claims (9)

  1. 음극, 양극 및 비수 전해액을 포함하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode, a positive electrode and a nonaqueous electrolyte,
    상기 음극은 수계 바인더를 포함하고,The negative electrode includes an aqueous binder,
    상기 비수 전해액은,The nonaqueous electrolyte,
    (a) 환형 무수물 또는 그 유도체; 및(a) cyclic anhydrides or derivatives thereof; And
    (b) 보란 화합물, 보레이트 화합물 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 음이온 리셉터를 함유하는 것을 특징으로 하는 리튬 이차전지. (b) A lithium secondary battery comprising any one anion receptor selected from the group consisting of borane compounds, borate compounds and mixtures thereof.
  2. 제1항에 있어서,The method of claim 1,
    상기 수계 바인더는 SBR(styrene-butadiene rubber)인 것을 특징으로 하는 리튬 이차전지.The aqueous binder is a lithium secondary battery, characterized in that SBR (styrene-butadiene rubber).
  3. 제1항에 있어서,The method of claim 1,
    상기 환형 무수물 또는 그 유도체는 하기 화학식 1 내지 4로 표시되는 화합물로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.The cyclic anhydride or a derivative thereof is any one selected from the group consisting of compounds represented by the following Chemical Formulas 1 to 4 or a mixture of two or more thereof.
    <화학식 1><Formula 1>
    Figure PCTKR2010001264-appb-I000007
    Figure PCTKR2010001264-appb-I000007
    <화학식 2><Formula 2>
    Figure PCTKR2010001264-appb-I000008
    Figure PCTKR2010001264-appb-I000008
    <화학식 3><Formula 3>
    Figure PCTKR2010001264-appb-I000009
    Figure PCTKR2010001264-appb-I000009
    <화학식 4><Formula 4>
    Figure PCTKR2010001264-appb-I000010
    Figure PCTKR2010001264-appb-I000010
    상기 화학식 1 내지 4에서, R1 내지 R11은 각각 서로 독립적으로 할로겐이거나, 할로겐으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 알케닐기 또는 알콕시기이다.In Formulas 1 to 4, R 1 to R 11 are each independently halogen or an alkyl, alkenyl or alkoxy group having 1 to 10 carbon atoms unsubstituted or substituted with halogen.
  4. 제1항에 있어서,The method of claim 1,
    상기 보란 화합물은 하기 화학식 5로 표시되는 화합물인 것을 특징으로 하는 리튬 이차전지.The borane compound is a lithium secondary battery, characterized in that the compound represented by the formula (5).
    <화학식 5><Formula 5>
    Figure PCTKR2010001264-appb-I000011
    Figure PCTKR2010001264-appb-I000011
    상기 화학식 5에서, R12 내지 R14는 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 5, R 12 to R 14 are each independently hydrogen or halogen, or an alkyl group or silyl group having 1 to 6 carbon atoms.
  5. 제1항에 있어서,The method of claim 1,
    상기 보레이트 화합물은 하기 화학식 6으로 표시되는 화합물인 것을 특징으로 하는 리튬 이차전지.The borate compound is a lithium secondary battery, characterized in that the compound represented by the formula (6).
    <화학식 6><Formula 6>
    Figure PCTKR2010001264-appb-I000012
    Figure PCTKR2010001264-appb-I000012
    상기 화학식 6에서, R15 내지 R17은 각각 서로 독립적으로 수소 또는 할로겐이거나, 탄소수 1 내지 6의 알킬기 또는 실릴기이다.In Formula 6, R 15 to R 17 are each independently hydrogen or halogen, or an alkyl or silyl group having 1 to 6 carbon atoms.
  6. 제1항에 있어서,The method of claim 1,
    상기 (a) 성분 및 (b) 성분의 함량은 비수 전해액 총 중량을 기준으로 각각 0.05 내지 10 중량% 인 것을 특징으로 하는 리튬 이차전지.The content of the component (a) and (b) is a lithium secondary battery, characterized in that 0.05 to 10% by weight, respectively, based on the total weight of the nonaqueous electrolyte.
  7. 제1항에 있어서,The method of claim 1,
    상기 비수 전해액은 리튬염 및 카보네이트 유기용매를 포함하는 것을 특징으로 하는 리튬 이차전지.The non-aqueous electrolyte lithium secondary battery, characterized in that it comprises a lithium salt and a carbonate organic solvent.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 리튬염은 LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, 및,LiC4BO8으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) Lithium secondary battery, characterized in that any one selected from the group consisting of 3 , and , LiC 4 BO 8 or a mixture of two or more thereof.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 카보네이트 유기용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 및 플루오르에틸렌 카보네이트로 이루어진 군으로부터 선택된 환형 카보네이트, 디에틸 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트 및 메틸프로필 카보네이트로 이루어진 군으로부터 선택된 선형 카보네이트 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지. The carbonate organic solvent is linear selected from the group consisting of cyclic carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, dipropyl carbonate and methylpropyl carbonate selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate and fluoroethylene carbonate Lithium secondary battery, characterized in that the carbonate or a mixture thereof.
PCT/KR2010/001264 2009-02-26 2010-02-26 Lithium secondary battery comprising a negative electrode with a water-based binder WO2010098638A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011538573A JP5431494B2 (en) 2009-02-26 2010-02-26 Lithium secondary battery with a negative electrode containing an aqueous binder
US13/203,061 US8691448B2 (en) 2009-02-26 2010-02-26 Lithium secondary battery with anode containing aqueous binder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090016358 2009-02-26
KR10-2009-0016358 2009-02-26
KR1020100017594A KR101069100B1 (en) 2009-02-26 2010-02-26 Lithium secondary battery having a negative electrode including an aqueous binder
KR10-2010-0017594 2010-02-26

Publications (2)

Publication Number Publication Date
WO2010098638A2 true WO2010098638A2 (en) 2010-09-02
WO2010098638A3 WO2010098638A3 (en) 2010-11-25

Family

ID=42666096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001264 WO2010098638A2 (en) 2009-02-26 2010-02-26 Lithium secondary battery comprising a negative electrode with a water-based binder

Country Status (1)

Country Link
WO (1) WO2010098638A2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814523A2 (en) * 1993-10-22 1997-12-29 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US6168885B1 (en) * 1998-08-21 2001-01-02 Sri International Fabrication of electrodes and devices containing electrodes
US6991874B1 (en) * 1998-05-04 2006-01-31 Basf Aktiengesellschaft Compositions suitable for electrochemical cells
US20070212615A1 (en) * 2004-04-20 2007-09-13 Degussa Ag Electrolyte Composition in Addition to the Use Thereof as an Electrolyte Material for Electrochemical Energy Storage Systems
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
KR20080053399A (en) * 2005-10-05 2008-06-12 메드트로닉 인코포레이티드 Lithium-ion battery
US20090017386A1 (en) * 2007-07-11 2009-01-15 Ferro Corporation Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814523A2 (en) * 1993-10-22 1997-12-29 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US6991874B1 (en) * 1998-05-04 2006-01-31 Basf Aktiengesellschaft Compositions suitable for electrochemical cells
US6168885B1 (en) * 1998-08-21 2001-01-02 Sri International Fabrication of electrodes and devices containing electrodes
US20070212615A1 (en) * 2004-04-20 2007-09-13 Degussa Ag Electrolyte Composition in Addition to the Use Thereof as an Electrolyte Material for Electrochemical Energy Storage Systems
US20070287070A1 (en) * 2004-07-20 2007-12-13 Takefumi Okumura Electrode for Polymer Electrolyte Secondary Battery and Polymer Electrolyte Secondary Battery
KR20080053399A (en) * 2005-10-05 2008-06-12 메드트로닉 인코포레이티드 Lithium-ion battery
US20090017386A1 (en) * 2007-07-11 2009-01-15 Ferro Corporation Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising The Same

Also Published As

Publication number Publication date
WO2010098638A3 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2016159702A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
KR101135605B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2013172646A1 (en) Negative electrode for lithium battery
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2013165077A1 (en) Electrolyte additive, lithium secondary battery and non-aqueous electrolyte comprising additive
WO2015065102A1 (en) Lithium secondary battery
WO2013073901A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2014204141A1 (en) Anode active material for lithium secondary battery, lithium secondary battery including same, and method for manufacturing anode active material
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2020032545A1 (en) Method for precisely analyzing degree of impregnation of electrolyte of electrode in cell
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2019147083A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery and lithium secondary battery comprising same
WO2020149682A1 (en) Anode and lithium secondary battery comprising same
KR101069100B1 (en) Lithium secondary battery having a negative electrode including an aqueous binder
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2013137596A1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2020204625A1 (en) Electrode for lithium secondary battery
WO2016052996A1 (en) Lithium secondary battery comprising non-aqueous electrolyte
WO2020105981A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
KR20080086638A (en) Electrolyte for lithium rechargeable battery and a lithium rechargeable battery comprising it
WO2018174619A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2018097575A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2021225396A1 (en) Cathode for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746477

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011538573

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203061

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10746477

Country of ref document: EP

Kind code of ref document: A2