WO2010098343A1 - Methane fermentation system and apparatus for producing fertilizer using same - Google Patents

Methane fermentation system and apparatus for producing fertilizer using same Download PDF

Info

Publication number
WO2010098343A1
WO2010098343A1 PCT/JP2010/052844 JP2010052844W WO2010098343A1 WO 2010098343 A1 WO2010098343 A1 WO 2010098343A1 JP 2010052844 W JP2010052844 W JP 2010052844W WO 2010098343 A1 WO2010098343 A1 WO 2010098343A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
methane fermentation
nitrogen
fermentation
temperature
Prior art date
Application number
PCT/JP2010/052844
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 高橋
一孝 梅津
修 濱本
卓也 三崎
良則 久芳
Original Assignee
三井造船株式会社
国立大学法人帯広畜産大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社, 国立大学法人帯広畜産大学 filed Critical 三井造船株式会社
Publication of WO2010098343A1 publication Critical patent/WO2010098343A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • C05F17/15Addition or removal of substances other than water or air to or from the material during the treatment the material being gas
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/40Treatment of liquids or slurries
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a methane fermentation system for reducing the amount of nitrogen contained in a fermented liquid (methane fermented liquid) obtained by subjecting a material to be fermented to methane fermentation, and a fertilizer manufacturing apparatus using the same.
  • organic waste such as food waste, livestock manure and sewage treatment sludge is used as raw material (fermented material) to perform anaerobic methane fermentation treatment, and biogas generated at that time is collected and recycled energy
  • raw material Fermented material
  • biogas generated at that time is collected and recycled energy
  • Patent Document 1 methane fermentation liquor (digested liquor) is reduced to farmland because it contains a large amount of plant nutrients, and its use as a fertilizer is being studied.
  • the fermented liquid contains a considerable amount of organic nitrogen and ammonia nitrogen, and the value of Kjeldahl nitrogen (total of organic nitrogen and ammonia nitrogen) in the fermented liquid is considerably high.
  • the organic nitrogen and ammonia nitrogen are converted into nitrate ions and nitrite ions by microorganisms in the soil, and excess nitrogen content that is not absorbed by the plants out of these nitrate nitrogen enters the groundwater. There was a problem of polluting (nitrogen contamination).
  • the present invention has been made in view of the above circumstances, and its problem is that a methane fermentation system capable of obtaining a fermented liquid in which the nitrogen contamination problem of groundwater is reduced when reduced to farmland as a fertilizer and fertilizer production using the same To provide an apparatus.
  • the first aspect of the present invention includes a methane fermentation tank, a heating tank that raises the fermentation liquid from the methane fermentation tank to a temperature higher than the fermentation temperature of the methane fermentation tank,
  • An methane fermentation system comprising: an ammonia removal device that removes ammonia from a fermentation liquor coming out of a temperature raising tank.
  • the temperature of the fermentation liquid (methane fermentation liquid) coming out of the methane fermentation tank is increased to a temperature higher than the fermentation temperature of the methane fermentation tank, so that the organic nitrogen in the fermentation liquid is increased.
  • disassembles into ammonia nitrogen advances, and the ratio of ammonia nitrogen which exists in fermentation liquid can be increased.
  • the ammonia nitrogen can be effectively reduced and contained in the fermentation liquid.
  • the total amount of organic nitrogen and ammonia nitrogen can be effectively reduced. That is, the total amount of nitrogen in the fermentation broth can be reduced to remove in advance the excess nitrogen that becomes the source of nitrogen contamination, thus reducing the problem of nitrogen contamination of groundwater when the fermentation broth is reduced to farmland as a fertilizer can do.
  • the sterilization effect of the fermentation broth itself can be obtained at the same time in addition to the reduction of the excess nitrogen. it can. That is, bacteria and viruses can be sterilized at the same time, and the problem of soil contamination with bacteria and viruses when the fermented liquor is reduced to farmland can be prevented. Above 70 ° C, porcine prabovirus can be killed in a short time.
  • the ammonia removing device diffuses and removes ammonia from the liquid by gas-liquid contact between the supplied gas and the fermentation broth. It is a tower and is configured to utilize part or all of the biogas produced in the methane fermentation tank as the gas supplied to the ammonia diffusion tower.
  • the ammonia removal device as an ammonia diffusion tower capable of gas-liquid contact, a large amount of ammonia can be effectively diffused and removed from the fermentation broth in a state in which the proportion of ammonia nitrogen is increased. Is possible. Furthermore, since part or all of the biogas produced in the methane fermentation tank is used as gas-liquid contact gas supplied to the ammonia diffusion tower, the gas-liquid contact gas supply device is separately installed. This eliminates the need to reduce the manufacturing cost of the entire system.
  • the ammonia removed from the fermentation liquor in the ammonia diffusion tower is returned to the original biogas line and sent to the desulfurizer, it is possible to prevent pH reduction (acidification) accompanying the desulfurization process of the desulfurizer. it can.
  • a third aspect of the present invention is characterized by comprising a methane fermentation tank in which a fermentation process is performed at a temperature of 60 ° C. or higher, and an ammonia removal device that removes ammonia from the fermentation liquor discharged from the methane fermentation tank. It is a methane fermentation system.
  • a normal high temperature fermentation of 60 ° C. or higher, for example, 62 ° C. or 65 ° C., or even 70 ° C.
  • the reaction in which organic nitrogen in the fermentation broth decomposes into ammonia nitrogen proceeds, and the proportion of ammonia nitrogen present in the fermentation broth can be increased.
  • the ammonia nitrogen can be effectively reduced and contained in the fermentation liquid.
  • the total amount of organic nitrogen and ammonia nitrogen can be effectively reduced. That is, the total amount of nitrogen in the fermentation broth can be reduced to remove in advance the excess nitrogen that becomes the source of nitrogen contamination, thus reducing the problem of nitrogen contamination of groundwater when the fermentation broth is reduced to farmland as a fertilizer can do.
  • the sterilizing effect of the fermentation broth itself can be obtained at the same time in addition to the reduction of excess nitrogen. it can. That is, bacteria and viruses can be sterilized at the same time, and the problem of soil contamination with bacteria and viruses when the fermented liquor is reduced to farmland can be prevented. Above 70 ° C, porcine prabovirus can be killed in a short time.
  • a part of the fermentation broth that has exited the ammonia removing device is returned to the methane fermentation tank.
  • the ammonia concentration in the fermentation liquor in the methane fermentation tank can be reduced by returning this fermentation liquor to the methane fermentation tank.
  • ammonia inhibition can be prevented.
  • a fifth aspect of the present invention is characterized in that in the methane fermentation system according to the first aspect or the second aspect, the methane fermentation tank is subjected to a fermentation treatment in a temperature range of 35 to 40 ° C.
  • Medium temperature methane fermentation (35 °C ⁇ 40 °C) with low temperature has the merit that methane fermentation can be performed without worrying about the problem of ammonia inhibition, but the resulting fermentation broth has a high proportion of organic nitrogen and ammonia. The state of nitrogen is low. Therefore, even if ammonia is removed from the fermentation liquid as it is, the efficiency of ammonia removal is low.
  • the temperature raising tank is provided in the latter stage of the medium temperature methane fermentation tank, in addition to the above-described effects of the first aspect or the second aspect, the fermentation liquid discharged from the medium temperature methane fermentation tank Even if a large amount of organic nitrogen is contained therein, the organic nitrogen in the fermentation broth can be decomposed into ammonia nitrogen by raising the temperature of the fermentation broth to 60 ° C. or higher in the heating tank.
  • a sixth aspect of the present invention is characterized in that, in the methane fermentation system described in the first aspect or the second aspect, the temperature in the heating tank is 65 to 80 ° C.
  • the operational effects of the first aspect or the second aspect can be obtained more effectively. That is, the amount of nitrogen in the fermentation broth that has passed through the ammonia removing device can be greatly reduced.
  • the seventh aspect of the present invention is characterized in that, in the methane fermentation system described in the third aspect or the fourth aspect, the temperature in the methane fermentation tank is 65 to 80 ° C.
  • the operational effect of the third aspect or the fourth aspect can be obtained more effectively. That is, the amount of nitrogen in the fermentation broth that has passed through the ammonia removing device can be greatly reduced.
  • the eighth aspect of the present invention utilizes a methane fermentation system characterized in that the fermentation liquid after removal of ammonia obtained from the methane fermentation system described in the first aspect or the third aspect is used as a fertilizer. It is a fertilizer manufacturing device.
  • the fertilizer manufactured by the fertilizer manufacturing apparatus using the methane fermentation system according to the present embodiment can reduce the problem of nitrogen contamination of groundwater when it is returned to farmland. Moreover, when the fertilizer is returned to farmland, the problem of soil contamination with bacteria and viruses can also be prevented.
  • the amount of nitrogen in the methane fermentation broth can be reduced, the amount of nitrogen contained in the fermentation broth obtained by this system is small, and nitrogen pollution of groundwater when reduced to farmland as fertilizer Problems can be reduced.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a methane fermentation system according to the present invention.
  • a methane fermentation solution 1 ′ obtained by subjecting the material to be fermented M to methane fermentation is finally sprayed onto farmland, and the material M to be fermented is subjected to methane fermentation.
  • the obtained biogas G is collected by the gas holder 10 and is finally provided with a line L2 that is used as energy for the gas engine 11 or the like.
  • the line L1 for spraying the methane fermentation broth 1 ′ onto the farmland (agricultural land reduction) is a methane fermentation broth (digestion liquid) obtained by fermentation treatment of the material M to be fermented in the methane fermentation tank 1 and the methane fermentation tank 1.
  • 1 ′ is derived from the methane fermentation tank 1
  • the temperature of the methane fermentation liquid 1 ′ is increased and the temperature of the methane fermentation liquid 1 ′ is increased by the heat exchanger 5 for sending it to the temperature raising tank 2.
  • the temperature of the methane fermentation broth 1 ' is decomposed into ammonia nitrogen, and the temperature of the methane fermentation broth 1' is heated in the temperature riser 2 so that the fermentation broth 2 is heated.
  • the line L2 that uses the biogas G obtained by subjecting the material to be fermented M to methane fermentation as the energy of the gas engine 11 or the like is a discharge pipe 6 for deriving the biogas G generated in the methane fermentation tank 1.
  • the desulfurization device 4 for removing sulfur content in sulfur compounds (for example, hydrogen sulfide, mercaptan, etc.) generated together with biogas by methane fermentation, and to send biogas after desulfurization to the gas engine 11 and the like It is comprised from the gas holder 10 for storing biogas temporarily.
  • the lead-out pipe 6 includes a biogas introduction pipe 6 'branched in the middle.
  • This biogas introduction pipe 6 ′ is used to feed biogas generated in the methane fermentation tank 1 as a gas to be brought into gas-liquid contact with the fermentation liquid 2 ′ treated in the temperature raising tank 2 and the ammonia diffusion tower 3. is there.
  • the ammonia diffused by the gas-liquid contact in the ammonia diffusion tower 3 is returned through the ammonia lead-out pipe 7 connected to the lead-out pipe 6 and sent to the desulfurizer 4 together with the biogas in the lead-out pipe 6. It has become.
  • Examples of the material to be fermented M to be subjected to methane fermentation in this system include livestock waste, organic sludge, green farm waste, and the like.
  • livestock waste include manure of livestock (eg, pigs, cows, chickens, etc.), carcasses and / or processed products thereof.
  • Green farm waste includes agricultural waste, food processing waste, and the like as household waste, as well as household waste.
  • the methane fermenter 1 is composed of a tank in which air is shut off in order to maintain the activity by the absolute anaerobic methane fermentation bacteria.
  • Fermenter 1 has a solids concentration (usually in the range of 3 to 40% by weight) and fermentation temperature (usually about 32 to 37 ° C for medium temperature fermentation, about 52 to 55 ° C for high temperature fermentation, and about 60 to 70 ° C for ultra high temperature fermentation. ),
  • the shape and operating conditions vary. For example, in the case of a raw material (up to a solid concentration of 10% by weight) having a high water content by mixing washing wastewater, a wet type complete mixing type fermenter is used.
  • a complete mixing type fermenter In the case of raw materials with a high water content (solids concentration up to about 10% by weight), a complete mixing type fermenter is used. About 15 days, high temperature methane fermentation bacteria (optimum temperature 55 ° C) may have a retention time (Retention Time) of about 15 days, and medium temperature methane fermentation bacteria (optimum temperature 37 ° C) may have a residence time of about 25-30 days. Is possible.
  • the fermented liquid after methane fermentation of the above-mentioned high water content type is a liquid containing, for example, a moisture content of 95% by weight and a solid content of about 5% by weight, and is a variety of liquids derived from anaerobic microorganisms and their metabolites. It contains a large amount of amino acids (containing a lot of organic nitrogen) and organic acids.
  • the heat exchanger 5 is provided to feed the methane fermentation liquid 1 ′ fermented in the methane fermentation tank 1 after raising the temperature to the temperature raising tank 2. Thereby, in the temperature rising tank 2, the time until the temperature in the tank is raised to a predetermined temperature can be shortened.
  • the heat exchanger 5 ′ is provided for recovering the temperature of the fermentation liquid 3 ′ from which ammonia is removed by the ammonia diffusion tower 3 and coming out of the diffusion tower 3.
  • the recovered heat recovered by the heat exchanger 5 ′ can be used for heating and heat insulation of the methane fermentation tank 1.
  • the temperature raising tank 2 is not particularly limited, and the temperature of the fermentation broth 1 can be raised to about 55 ° C. to 80 ° C., preferably 60 ° C. to 75 ° C., more preferably 62 ° C. to 70 ° C. (heating) Etc.). It is still preferable if it can be heated by steam.
  • the temperature of the methane fermentation broth 1 ′ obtained by fermentation in the methane fermentation tank 1 is increased in the temperature raising tank 2, the organic nitrogen in the methane fermentation broth 1 ′ is decomposed into ammonia nitrogen. Therefore, the temperature of the methane fermentation liquid 1 ′ is increased and heat-treated to increase ammonia nitrogen in the fermentation liquid 2 ′.
  • the ammonia is removed by passing the fermented liquid 2 'through an ammonia removing device by the ammonia diffusion tower 3 in the subsequent stage, and as a result, the amount of organic nitrogen in the methane fermented liquid 1 is reduced.
  • the temperature of the heating tank 2 and the heat treatment time for decomposing the organic nitrogen in the methane fermentation liquid 1 into ammonia nitrogen vary depending on the conditions of the methane fermentation treatment.
  • the processing conditions of the methane fermentation broth 1 in the temperature raising tank 2 are as follows: when medium temperature fermentation (about 37 ° C.) is performed, 70 to 80 ° C. for about 1 hour, and when high temperature fermentation (about 55 ° C.) is performed.
  • the ultra-high temperature fermentation about 60 ° C.
  • the temperature raising tank as in another embodiment (third embodiment) described later No processing in 2 is necessary.
  • the organic nitrogen is already decomposed into ammonia nitrogen during the fermentation process because it is processed at an extremely high temperature, and is present in the methane fermentation liquid 1 as ammonia nitrogen.
  • the process conditions of the methane fermentation liquid 1 in the temperature rising tank 2 change with conditions of a methane fermentation process, it is not limited to the conditions mentioned above, Temperature and heat processing time are suitably set according to the kind of methane fermentation process. It is possible to set. Moreover, sterilization of the methane fermentation liquid 1 can also be performed by processing the methane fermentation liquid 1 subjected to the methane fermentation treatment in the heating tank 2.
  • the fermented liquid 2 ′ treated in the temperature raising tank 2 is introduced from the temperature raising tank 2 to the ammonia removing device.
  • an ammonia diffusion tower 3 is provided as an ammonia removing device.
  • the ammonia stripping tower 3 used in this embodiment introduces a liquid (fermented liquid 2 ′) from the top of the ammonia stripping tower 3 and introduces a gas (biogas G supplied from the biogas introduction pipe 6 ′) from the bottom.
  • a liquid and the gas are made to face each other and come into contact with each other.
  • the ammonia diffusion tower 3 should just be comprised so that gas-liquid contact can be carried out, and is not restricted to an opposing type.
  • the biogas introduced into the ammonia diffusion tower 3 is biogas G generated from the methane fermentation tank 1.
  • the biogas G outputs the feed force of the biogas G by the pressure accompanying the production of the biogas G itself generated in the methane fermentation tank 1, and the biogas G passes through the biogas outlet pipe 6 by the feed force. It is introduced into the ammonia diffusion tower 3 from the biogas introduction pipe 6 '.
  • a valve 8 is provided on the biogas outlet pipe 6 to adjust the amount of biogas G introduced into the ammonia diffusion tower 3 to be constant. It is preferable to do this.
  • the valve 8 is closed and the biogas G is introduced into the ammonia diffusion tower 3 through the biogas introduction pipe 6 '.
  • the valve 8 is opened by a predetermined amount, a part of the biogas G is introduced into the ammonia diffusion tower 3, and a part is introduced into the desulfurization tower 4.
  • the ammonia diffusion tower described above examples include a spray type and a shelf type.
  • the temperature in the ammonia diffusion tower may be a temperature at which ammonia in the fermentation broth 2 ′ treated in the heating tank 2 can be appropriately diffused and removed, and is preferably about 55 to 80 ° C.
  • ammonia removal device is not limited to the ammonia diffusion tower 3, and examples thereof include a membrane separation device.
  • Ammonia diffused in the ammonia stripping tower 3 is returned to the biogas lead-out pipe 6 through the ammonia lead-out pipe 7 connected to the biogas lead-out pipe 6, and introduced into the desulfurization tower 4 together with the biogas G to be desulfurized.
  • the biogas G contains ammonia diffused from the ammonia diffusion tower 3
  • the sulfuric acid is neutralized by the ammonia, so that the alkalinity can be ensured during desulfurization and the desulfurization conditions are maintained. It becomes easy. For example, it is effective when the desulfurization conditions must be maintained at pH 6 or higher.
  • the biogas G desulfurized by the desulfurization apparatus 4 is temporarily stored in a gas holder and used as energy for the gas engine 11 or the like as necessary.
  • the fermented liquid 3 ′ from which ammonia has been removed by gas-liquid contact in the ammonia diffusion tower 3 has reduced nitrogen that causes soil contamination, and is derived from the ammonia diffusion tower 3 and heated by the heat exchanger 5 ′. It is exchanged and sprayed on farmland as fertilizer (returned to farmland).
  • FIG. 2 is a schematic diagram showing a second embodiment of the methane fermentation system according to the present invention. The parts different from the first embodiment will be described, and the description of the common parts will be omitted.
  • a blower 9 and a heat exchanger 5 ′′ are provided, and warm air is introduced into the ammonia diffusion tower 3. With such a configuration, a certain amount of gas (air) can be introduced into the ammonia diffusion tower 3 regardless of the amount of biogas G that fluctuates.
  • the introduced air and the fermented liquid 2 ′ treated in the heating tank 2 are in gas-liquid contact in the ammonia diffusion tower 3, and the diffused ammonia is introduced into the deodorizing device 12 through the ammonia outlet pipe 7 ′ and deodorized. .
  • the deodorization tower 12 removes ammonia and malodorous components (mercaptan, skatole, etc.) diffused together with ammonia.
  • FIG. 3 is a schematic view showing a third embodiment of the methane fermentation system according to the present invention.
  • the parts different from the first embodiment will be described, and the description of the common parts will be omitted.
  • This aspect is one aspect of the methane fermentation system according to the present invention when the ultra-high temperature methane fermentation treatment is performed.
  • the ultra-high temperature methane fermentation (about 60 to 70 ° C.) treatment is performed, the temperature of the methane fermentation liquid 1 ′ obtained by fermentation in the methane fermentation tank 1 is as high as about 60 to 70 ° C. Therefore, organic nitrogen in the methane fermentation broth 1 ′ is decomposed into ammonia nitrogen, and the proportion of ammonia nitrogen in the methane fermentation broth increases.
  • the temperature raising tank 2 is not provided as in Embodiment 1 or Embodiment 2, most of the organic nitrogen has already been decomposed into ammonia nitrogen in the methane fermentation liquid 1 ′.
  • the methane fermentation liquor 1 ′ emitted from the gas can be directly introduced into the ammonia stripping tower 3 and brought into gas-liquid contact to dissipate ammonia, thereby reducing the amount of nitrogen in the methane fermentation broth 1 ′.
  • ammonia nitrogen in the methane fermentation broth 1 increases to cause fermentation inhibition. Therefore, in this embodiment, in order to reduce the ammonia concentration in the methane fermentation solution 1 ′, the fermentation solution 3 ′ from which ammonia has been removed by gas-liquid contact in the ammonia diffusion tower 3 is removed through the ammonia removal fermentation solution outlet pipe 7 ′′. By returning to the fermenter 1, the ammonia concentration in the methane fermentation liquid is reduced to suppress ammonia inhibition.
  • Example 1 Hereinafter, the present invention will be described based on examples.
  • a medium temperature methane co-fermentation treatment 37 ° C.
  • the methane fermentation liquid (digested liquid) obtained by the methane fermentation treatment was introduced into the temperature raising tank through a heat exchanger.
  • the temperature rising tank was heated up to 70 degreeC in the airtight state, and the methane fermentation liquid was heat-processed at 70 degreeC for 1 hour.
  • the fermented liquid heat-treated in the temperature raising tank is sprayed from the upper part of the ammonia diffusion tower whose interior is maintained at 65 ° C., and the biogas and gas produced by the intermediate temperature methane fermentation process introduced from the lower part of the ammonia diffusion tower.
  • the fermented liquor which made the liquid contact and performed the ammonia removal process was obtained.
  • Nitrogen contained in fermentation broth obtained by fermenting organic fermented materials is classified as organic nitrogen, ammonia nitrogen, nitrate nitrogen and / or nitrite nitrogen.
  • the total nitrogen amount refers to the total amount of nitrogen contained in the fermentation broth, that is, the total amount of organic nitrogen, ammonia nitrogen, nitrate nitrogen and / or nitrite nitrogen.
  • the amount of ammonia nitrogen existing in advance is also added.
  • nitrogen is anaerobic, most of the nitrogen is present in the form of organic nitrogen and ammonia nitrogen, not nitrate nitrogen and / or nitrite nitrogen. To do.
  • Total nitrogen amount organic nitrogen amount + ammonia nitrogen amount + nitrate nitrogen and / or nitrite nitrogen amount
  • methane fermentation anaerobic fermentation
  • Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
  • Example 3 The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set to 4 hours at 60 ° C., and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower whose interior was maintained at 55 ° C.
  • Example 1 is the same as Example 1 except that the gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part.
  • Example 4 The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set to 1 hour at 60 ° C., and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower whose interior was maintained at 55 ° C.
  • Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
  • Example 5 The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set at 55 ° C. for 4 hours, and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower maintained at 50 ° C. was used as the ammonia diffusion tower.
  • Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
  • Example 6 The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set at 55 ° C. for 1 hour, and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower maintained at 50 ° C. was used as the ammonia diffusion tower.
  • Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
  • a 10 L methane fermenter was subjected to a medium temperature methane co-fermentation process (37 ° C.) with 1: 1 garbage of separated garbage and milk of cow's manure.
  • the methane fermentation broth obtained by the intermediate temperature methane fermentation treatment is sprayed from the upper part of the ammonia diffusion tower whose inside is maintained at 35 ° C., and is introduced by the intermediate temperature methane fermentation treatment introduced from the lower part of the ammonia diffusion tower.
  • the produced biogas was brought into gas-liquid contact to obtain a fermentation broth that had been subjected to ammonia removal treatment. Then, the total nitrogen in the fermented liquid of the fermented liquid which performed the ammonia removal process was measured.
  • Example 1 The results of Example 1 are shown in Table 1, and the results of Examples 2 to 6 and the comparative example are shown in Table 2.
  • the fermentation liquid finally sprayed onto the farmland is a fermentation liquid (ammonia-removed fermentation liquid) that has been subjected to ammonia removal treatment. Since the effect of the present invention is obtained if the amount of nitrogen in the liquid is reduced, the measurement of the amount of nitrogen was made only to measure the total nitrogen in the fermentation broth subjected to the ammonia removal treatment.
  • the total nitrogen amount in the methane fermentation broth obtained by performing the intermediate temperature methane fermentation treatment in Examples 2 to 6 and the comparative example is the same as the value in Example 1 because the same treatment as in Example 1 is performed. The same.
  • FIG. 4 is a graph showing the relationship between the treatment conditions in the heating tank in Examples 1 to 6 and the corresponding total nitrogen amount in the ammonia-removed fermentation broth.
  • FIG. 5 is a graph showing the relationship between the outlet concentration in the ammonia diffusion tower and the temperature in the ammonia diffusion tower.
  • Example 1 in the methane fermentation liquid obtained by an intermediate temperature methane fermentation treatment (37 ° C.) that is anaerobic fermentation, as is apparent from Table 1, 1800 (mg / L) of nitrogen as the total nitrogen amount Is present.
  • ammonia nitrogen is increased by 300 (mg / L). This is because organic nitrogen 300 (mg / L) is converted to ammonia by heating methane fermentation liquid in a heating tank at 70 ° C. for 1 hour in organic nitrogen 1000 (mg / L) in methane fermentation liquid. It means that it was decomposed into nitrogen. Therefore, the organic nitrogen is reduced from 1000 (mg / L) to 700 (mg / L) by the treatment in the heating tank.
  • ammonia nitrogen in the ammonia-removed fermentation broth has been drastically reduced. This is also due to the fact that a large amount of ammonia was diffused in the ammonia diffusion tower for the same reason that the total nitrogen amount was drastically reduced.
  • Organic nitrogen was not detected in the ammonia-removed fermentation broth (the amount of organic nitrogen was 0 because ammonia nitrogen and Kjeldahl nitrogen were the same amount). That is, the organic nitrogen that has been reduced to 700 (mg / L) by the treatment in the heating tank is decomposed from the organic nitrogen to the ammonia nitrogen by the ammonia removal treatment in the ammonia diffusion tower, and the ammonia nitrogen is converted into ammonia. It is thought that it was released from the diffusion tower.
  • the total nitrogen amount in the ammonia-removed fermentation liquid and the Kjeldahl nitrogen amount must be equal, but the total nitrogen amount is 600 (mg / L) in the results of Table 1.
  • Kjeldahl nitrogen is different from 500 (mg / L). This is due to the measurement method.
  • the quantitative measurement of nitrogen in the examples and comparative examples of the present invention is measured by absorptiometry. Therefore, in the ammonia-removed fermentation broth having a brown coloration of the humic substance, the quantitative value is affected by the coloration effect, and sometimes an error of several hundred mg / L may occur. Therefore, the difference between the total nitrogen amount 600 (mg / L) and the Kjeldahl nitrogen amount 500 (mg / L) is considered as an error range.
  • the present invention decomposes and removes organic nitrogen in a methane fermentation broth obtained by a medium temperature methane fermentation treatment (37 ° C.) into ammonia nitrogen, thereby removing all of the methane fermentation broth.
  • the amount of nitrogen is reduced, and the fermented liquid has the effect of being able to be sprayed on farmland (agricultural land reduction) as a fertilizer that does not cause groundwater contamination by nitrogen.
  • the total nitrogen in the fermented liquid after the methane fermentation liquid obtained by carrying out the intermediate temperature methane fermentation process (37 degreeC) without performing the process by a temperature rising tank is ammonia removal process in an ammonia diffusion tower.
  • the amount is shown, it is 1450 (mg / L), which is overwhelmingly higher than Example 1 of the present invention. From this, it can be seen that the present invention has the effect of reducing the total nitrogen amount.
  • Example 2 to Example 6 will be described.
  • Table 2 shows the treatment conditions (except for the comparative example) in the temperature raising tank, the temperature in the ammonia diffusion tower, the total nitrogen amount in the ammonia-removed fermentation liquid, and the methane fermentation tank liquid in each example and comparative example. Values for total nitrogen are shown.
  • the methane fermentation treatment (medium temperature fermentation) is performed under the same conditions (37 ° C.) in each example and comparative example.
  • the total amount of nitrogen in the obtained methane fermentation broth is the same.
  • the total nitrogen amount in the ammonia-removed fermentation liquid is 1800 mg / L in the ammonia-removed fermentation liquid that is finally reduced to farmland.
  • the total amount of nitrogen can be reduced to 800-870 mg / L. That is, the present invention has the effect of reducing the total nitrogen amount in the methane fermentation broth by 930 to 1000 mg / L.
  • the comparative example can only reduce the amount of total nitrogen in the methane fermentation broth by 350 mg / L, the present invention has a very significant effect on reducing the amount of nitrogen in the methane fermentation broth. It can be said.
  • FIG. 4 shows the relationship between the treatment conditions in the heating tank and the total nitrogen amount in the ammonia-removed fermentation broth in each example.
  • the amount of total nitrogen in an ammonia removal fermentation liquid is so small that the processing temperature in a temperature rising tank is high, and heating time is long.
  • the higher the treatment temperature in the temperature raising tank the longer the heating time, the more the organic nitrogen in the methane fermentation liquid is decomposed into ammonia nitrogen, and the ammonia nitrogen in the methane fermentation liquid increases, Since a large amount of ammonia is diffused and removed in the ammonia diffusion tower at the latter stage, the total amount of nitrogen in the ammonia-removed fermentation liquor is reduced.
  • FIG. 5 shows the relationship between the temperature in the diffusion tower in the ammonia diffusion tower and the outlet ammonia concentration to be diffused (concentration at the outlet of the ammonia diffusion tower). This shows that the higher the temperature, the more ammonia is released.
  • the present invention provides a methane for reducing nitrogen in a methane fermentation solution so that groundwater is not contaminated by nitrogen contained in the methane fermentation solution when the methane fermentation solution obtained by the methane fermentation treatment is reduced to farmland as a fertilizer.
  • This is a fermentation system, and the methane fermentation broth can be effectively used according to the present invention.

Abstract

To obtain a fermentation liquor by which the problem of the pollution of underground water with nitrogen can be reduced when the fermentation liquor is applied back to a farm land as a fertilizer, disclosed is a methane fermentation system characterized by being provided with a methane fermentation tank, a heating tank for heating a fermentation liquor released from the methane fermentation tank to a temperature higher than the fermentation temperature in the methane fermentation tank, and an ammonia-removing device for removing ammonia from the fermentation liquor released from the heating tank. According to this methane fermentation system, organic nitrogen in the fermentation liquor released from the methane fermentation tank is degraded into ammonia nitrogen so that the ratio of ammonia nitrogen is increased, and ammonia is then removed by the ammonia-removing device in the following step. Thus, nitrogen in the methane fermentation liquor can be reduced.

Description

メタン発酵システムおよびそれを利用した肥料製造装置Methane fermentation system and fertilizer production equipment using the same
 本発明は、被発酵材をメタン発酵させて得られる発酵液(メタン発酵液)中に含まれる窒素の量を低減するためのメタン発酵システムおよびそれを利用した肥料製造装置に関するものである。 The present invention relates to a methane fermentation system for reducing the amount of nitrogen contained in a fermented liquid (methane fermented liquid) obtained by subjecting a material to be fermented to methane fermentation, and a fertilizer manufacturing apparatus using the same.
 従来より、生ごみ、家畜糞尿、下水処理汚泥等の有機性廃棄物を原料(被発酵材)として嫌気性処理であるメタン発酵処理を行い、その際に発生するバイオガスを回収してリサイクルエネルギーとして活用する技術が知られている(特許文献1)。一方、メタン発酵液(消化液)は、その液中に植物栄養成分を多量に含むことから農地に還元され肥料としての利用が検討されている。 Conventionally, organic waste such as food waste, livestock manure and sewage treatment sludge is used as raw material (fermented material) to perform anaerobic methane fermentation treatment, and biogas generated at that time is collected and recycled energy The technique utilized as is known (Patent Document 1). On the other hand, methane fermentation liquor (digested liquor) is reduced to farmland because it contains a large amount of plant nutrients, and its use as a fertilizer is being studied.
 しかし、前記メタン発酵液を肥料としてそのまま農地還元すると以下のような問題があった。 
 該発酵液中には相当量の有機体窒素およびアンモニア態窒素が含まれ、発酵液中のケルダール窒素(有機体窒素とアンモニア態窒素の合計)の数値がかなり高くなっており、発酵液をこのまま肥料として農地に還元すると、前記有機体窒素およびアンモニア態窒素が土壌中の微生物によって硝酸イオンや亜硝酸イオンになり、これらの硝酸態窒素のうち植物に吸収されない過剰窒素分が地下水に入り込んで地下水を汚染(窒素汚染)するという問題が生じていた。
However, when the methane fermentation liquor is used as fertilizer for agricultural land reduction, there are the following problems.
The fermented liquid contains a considerable amount of organic nitrogen and ammonia nitrogen, and the value of Kjeldahl nitrogen (total of organic nitrogen and ammonia nitrogen) in the fermented liquid is considerably high. When reduced to farmland as fertilizer, the organic nitrogen and ammonia nitrogen are converted into nitrate ions and nitrite ions by microorganisms in the soil, and excess nitrogen content that is not absorbed by the plants out of these nitrate nitrogen enters the groundwater. There was a problem of polluting (nitrogen contamination).
 本発明は上記事情に鑑みなされたもので、その課題は、肥料として農地還元したときに地下水の前記窒素汚染の問題を低減した発酵液を得ることができるメタン発酵システムおよびそれを利用した肥料製造装置を提供することにある。 The present invention has been made in view of the above circumstances, and its problem is that a methane fermentation system capable of obtaining a fermented liquid in which the nitrogen contamination problem of groundwater is reduced when reduced to farmland as a fertilizer and fertilizer production using the same To provide an apparatus.
 上記目的を達成するため、本発明の第1の態様は、メタン発酵槽と、前記メタン発酵槽から出る発酵液を前記メタン発酵槽の発酵温度より高い温度に昇温する昇温槽と、前記昇温槽から出る発酵液からアンモニアを除去するアンモニア除去装置と、を備えたことを特徴とするメタン発酵システムである。 In order to achieve the above object, the first aspect of the present invention includes a methane fermentation tank, a heating tank that raises the fermentation liquid from the methane fermentation tank to a temperature higher than the fermentation temperature of the methane fermentation tank, An methane fermentation system comprising: an ammonia removal device that removes ammonia from a fermentation liquor coming out of a temperature raising tank.
 本態様によれば、昇温槽において、メタン発酵槽から出る発酵液(メタン発酵液)を前記メタン発酵槽の発酵温度より高い温度に昇温処理することによって、発酵液中の有機体窒素がアンモニア態窒素に分解する反応が進行し、発酵液中に存在するアンモニア態窒素の割合を増加させることができる。アンモニア態窒素の割合を増加させるためには、昇温槽の温度を55℃以上で、60℃、62℃或は65℃、更には70℃に高めると一層効果的である。 
 そして、アンモニア態窒素の存在割合を増加させた状態の発酵液に対して、アンモニア除去装置によるアンモニア除去を実行するので、アンモニア態窒素を効果的に減少させることができ、発酵液中に含まれる有機体窒素およびアンモニア態窒素のトータルの量を効果的に減少させることができる。 
 すなわち、発酵液中の窒素のトータル量を低減して前記窒素汚染源となる過剰窒素分を予め除去することができるので、該発酵液を肥料として農地還元したときに地下水の窒素汚染の問題を低減することができる。
According to this aspect, in the temperature raising tank, the temperature of the fermentation liquid (methane fermentation liquid) coming out of the methane fermentation tank is increased to a temperature higher than the fermentation temperature of the methane fermentation tank, so that the organic nitrogen in the fermentation liquid is increased. Reaction which decomposes | disassembles into ammonia nitrogen advances, and the ratio of ammonia nitrogen which exists in fermentation liquid can be increased. In order to increase the proportion of ammonia nitrogen, it is more effective to raise the temperature of the heating tank to 55 ° C. or higher, 60 ° C., 62 ° C., 65 ° C., or even 70 ° C.
And, since the ammonia removal by the ammonia removing device is performed on the fermentation liquid in a state where the existence ratio of the ammonia nitrogen is increased, the ammonia nitrogen can be effectively reduced and contained in the fermentation liquid. The total amount of organic nitrogen and ammonia nitrogen can be effectively reduced.
That is, the total amount of nitrogen in the fermentation broth can be reduced to remove in advance the excess nitrogen that becomes the source of nitrogen contamination, thus reducing the problem of nitrogen contamination of groundwater when the fermentation broth is reduced to farmland as a fertilizer can do.
 また、昇温槽の温度を前記の如く、60℃、62℃或は65℃、更には70℃に高めると、前記過剰窒素の減少に加えて、発酵液自体の滅菌効果も同時に得ることができる。すなわち、バクテリアやウィルスの殺菌を同時に行うことができ、発酵液を農地還元した際にバクテリアやウィルスで土壌が汚染される問題を防止することができる。70℃以上ではブタプラボウィルスも短時間で死滅させることができる。 Further, when the temperature of the heating tank is increased to 60 ° C., 62 ° C., 65 ° C., or 70 ° C. as described above, the sterilization effect of the fermentation broth itself can be obtained at the same time in addition to the reduction of the excess nitrogen. it can. That is, bacteria and viruses can be sterilized at the same time, and the problem of soil contamination with bacteria and viruses when the fermented liquor is reduced to farmland can be prevented. Above 70 ° C, porcine prabovirus can be killed in a short time.
 本発明の第2の態様は、第1の態様に係るメタン発酵システムにおいて、前記アンモニア除去装置は、供給される気体と前記発酵液との気液接触により液中からアンモニアを放散除去するアンモニア放散塔であり、前記メタン発酵槽で生成されたバイオガスの一部または全部を前記アンモニア放散塔に供給される前記気体として利用するように構成されていることを特徴とするものである。 According to a second aspect of the present invention, in the methane fermentation system according to the first aspect, the ammonia removing device diffuses and removes ammonia from the liquid by gas-liquid contact between the supplied gas and the fermentation broth. It is a tower and is configured to utilize part or all of the biogas produced in the methane fermentation tank as the gas supplied to the ammonia diffusion tower.
 本態様によれば、アンモニア除去装置を気液接触可能なアンモニア放散塔として構成することにより、アンモニア態窒素の割合が増加された状態の発酵液中から多量のアンモニアを効果的に放散除去することが可能となる。 
 更に、メタン発酵槽で生成されたバイオガスの一部または全部を、アンモニア放散塔に供給される気液接触用の気体として利用するので、前記気液接触用の気体の供給装置を別途設置する必要がなくなり、システム全体の製造コストを抑えることができる。 
 また更に、アンモニア放散塔で発酵液中から除去されたアンモニアを元のバイオガスラインに戻して脱硫装置に送れば、該脱量装置の脱硫進行に伴うpH低下(酸性化)を防止することができる。
According to this aspect, by configuring the ammonia removal device as an ammonia diffusion tower capable of gas-liquid contact, a large amount of ammonia can be effectively diffused and removed from the fermentation broth in a state in which the proportion of ammonia nitrogen is increased. Is possible.
Furthermore, since part or all of the biogas produced in the methane fermentation tank is used as gas-liquid contact gas supplied to the ammonia diffusion tower, the gas-liquid contact gas supply device is separately installed. This eliminates the need to reduce the manufacturing cost of the entire system.
Furthermore, if the ammonia removed from the fermentation liquor in the ammonia diffusion tower is returned to the original biogas line and sent to the desulfurizer, it is possible to prevent pH reduction (acidification) accompanying the desulfurization process of the desulfurizer. it can.
 本発明の第3の態様は、60℃以上の温度で発酵処理が行われるメタン発酵槽と、前記メタン発酵槽から出る発酵液からアンモニアを除去するアンモニア除去装置と、を備えたことを特徴とするメタン発酵システムである。 A third aspect of the present invention is characterized by comprising a methane fermentation tank in which a fermentation process is performed at a temperature of 60 ° C. or higher, and an ammonia removal device that removes ammonia from the fermentation liquor discharged from the methane fermentation tank. It is a methane fermentation system.
 本態様によれば、所謂中温メタン発酵(約37℃)や高温メタン発酵(約55℃)に比して、60℃以上の例えば62℃或は65℃、更には70℃という通常の高温発酵を超える高温メタン発酵を行うことにより、発酵液中の有機体窒素がアンモニア態窒素に分解する反応が進行し、発酵液中に存在するアンモニア態窒素の割合を増加させることができる。アンモニア態窒素の割合を増加させるためには、メタン発酵槽における発酵温度を62℃或は65℃、更には70℃に高めると一層効果的である。 
 そして、アンモニア態窒素の存在割合を増加させた状態の発酵液に対して、アンモニア除去装置によるアンモニア除去を実行するので、アンモニア態窒素を効果的に減少させることができ、発酵液中に含まれる有機体窒素およびアンモニア態窒素のトータルの量を効果的に減少させることができる。 
 すなわち、発酵液中の窒素のトータル量を低減して前記窒素汚染源となる過剰窒素分を予め除去することができるので、該発酵液を肥料として農地還元したときに地下水の窒素汚染の問題を低減することができる。
According to this aspect, compared with so-called medium temperature methane fermentation (about 37 ° C.) and high temperature methane fermentation (about 55 ° C.), a normal high temperature fermentation of 60 ° C. or higher, for example, 62 ° C. or 65 ° C., or even 70 ° C. By performing high-temperature methane fermentation exceeding 1, the reaction in which organic nitrogen in the fermentation broth decomposes into ammonia nitrogen proceeds, and the proportion of ammonia nitrogen present in the fermentation broth can be increased. In order to increase the proportion of ammonia nitrogen, it is more effective to raise the fermentation temperature in the methane fermenter to 62 ° C., 65 ° C., or even 70 ° C.
And, since the ammonia removal by the ammonia removing device is performed on the fermentation liquid in a state where the existence ratio of the ammonia nitrogen is increased, the ammonia nitrogen can be effectively reduced and contained in the fermentation liquid. The total amount of organic nitrogen and ammonia nitrogen can be effectively reduced.
That is, the total amount of nitrogen in the fermentation broth can be reduced to remove in advance the excess nitrogen that becomes the source of nitrogen contamination, thus reducing the problem of nitrogen contamination of groundwater when the fermentation broth is reduced to farmland as a fertilizer can do.
 また、メタン発酵槽の温度を前記の如く、60℃、62℃或は65℃、更には70℃に高めると、前記過剰窒素の減少に加えて、発酵液自体の滅菌効果も同時に得ることができる。すなわち、バクテリアやウィルスの殺菌を同時に行うことができ、発酵液を農地還元した際にバクテリアやウィルスで土壌が汚染される問題を防止することができる。70℃以上ではブタプラボウィルスも短時間で死滅させることができる。 Further, when the temperature of the methane fermenter is increased to 60 ° C., 62 ° C., 65 ° C., or 70 ° C. as described above, the sterilizing effect of the fermentation broth itself can be obtained at the same time in addition to the reduction of excess nitrogen. it can. That is, bacteria and viruses can be sterilized at the same time, and the problem of soil contamination with bacteria and viruses when the fermented liquor is reduced to farmland can be prevented. Above 70 ° C, porcine prabovirus can be killed in a short time.
 本発明の第4の態様は、第3の態様に係るメタン発酵システムにおいて、前記アンモニア除去装置を出た発酵液の一部を前記メタン発酵槽に戻すように構成されていることを特徴とする。 According to a fourth aspect of the present invention, in the methane fermentation system according to the third aspect, a part of the fermentation broth that has exited the ammonia removing device is returned to the methane fermentation tank. .
 上記の如く超高温メタン発酵を行うと、中温メタン発酵(約37℃)や高温メタン発酵(約55℃)に比して、メタン発酵槽内に多量のアンモニアが発生し、この多量に発生したアンモニアによって発酵が進みにくくなる現象、すなわちアンモニア阻害の現象が現れる。 When ultra-high temperature methane fermentation was performed as described above, a large amount of ammonia was generated in the methane fermenter compared to medium temperature methane fermentation (about 37 ° C.) and high temperature methane fermentation (about 55 ° C.). A phenomenon in which fermentation is difficult to proceed due to ammonia, that is, a phenomenon of ammonia inhibition appears.
 本態様によれば、アンモニア除去装置から出た発酵液は、アンモニア除去処理を経ているので、この発酵液をメタン発酵槽に戻すことで、メタン発酵槽内の発酵液中のアンモニア濃度を薄めることができ、以ってアンモニア阻害を防止することができる。 According to this aspect, since the fermentation liquor that has come out of the ammonia removal device has undergone ammonia removal treatment, the ammonia concentration in the fermentation liquor in the methane fermentation tank can be reduced by returning this fermentation liquor to the methane fermentation tank. Thus, ammonia inhibition can be prevented.
 本発明の第5の態様は、第1の態様または第2の態様に係るメタン発酵システムにおいて、前記メタン発酵槽は、35~40℃の温度範囲で発酵処理が行われることを特徴とする。 A fifth aspect of the present invention is characterized in that in the methane fermentation system according to the first aspect or the second aspect, the methane fermentation tank is subjected to a fermentation treatment in a temperature range of 35 to 40 ° C.
 温度が低めの中温メタン発酵(35℃~40℃)は、アンモニア阻害の問題を気にせずにメタン発酵を行うことができるメリットがあるが、得られる発酵液は有機態窒素の割合が多くアンモニア態窒素の割合が少ない状態にある。従って、そのまま発酵液中からアンモニア除去を行ってもアンモニア除去の効率が低い。 
 本態様によれば、中温メタン発酵槽の後段に昇温槽が設けられているので、前記第1の態様または第2の態様の前記作用効果に加えて、中温メタン発酵槽から出た発酵液中に有機態窒素が多量に含まれていても該昇温槽で60℃以上に発酵液を昇温することによって、発酵液中の有機態窒素をアンモニア態窒素に分解することができる。
Medium temperature methane fermentation (35 ℃ ~ 40 ℃) with low temperature has the merit that methane fermentation can be performed without worrying about the problem of ammonia inhibition, but the resulting fermentation broth has a high proportion of organic nitrogen and ammonia. The state of nitrogen is low. Therefore, even if ammonia is removed from the fermentation liquid as it is, the efficiency of ammonia removal is low.
According to this aspect, since the temperature raising tank is provided in the latter stage of the medium temperature methane fermentation tank, in addition to the above-described effects of the first aspect or the second aspect, the fermentation liquid discharged from the medium temperature methane fermentation tank Even if a large amount of organic nitrogen is contained therein, the organic nitrogen in the fermentation broth can be decomposed into ammonia nitrogen by raising the temperature of the fermentation broth to 60 ° C. or higher in the heating tank.
 本発明の第6の態様は、第1の態様または第2の態様に記載されたメタン発酵システムにおいて、前記昇温槽内の温度が65~80℃であることを特徴とするものである。 A sixth aspect of the present invention is characterized in that, in the methane fermentation system described in the first aspect or the second aspect, the temperature in the heating tank is 65 to 80 ° C.
 本態様によれば、昇温槽内の温度が高いため、前記第1の態様又は第2の態様の作用効果を、一層効果的に得ることができる。すなわち、アンモニア除去装置を経た発酵液中の窒素の量を大きく低減することができる。 According to this aspect, since the temperature in the heating tank is high, the operational effects of the first aspect or the second aspect can be obtained more effectively. That is, the amount of nitrogen in the fermentation broth that has passed through the ammonia removing device can be greatly reduced.
 本発明の第7の態様は、第3の態様または第4の態様に記載されたメタン発酵システムにおいて、前記メタン発酵槽内の温度が65~80℃であることを特徴とするものである。 The seventh aspect of the present invention is characterized in that, in the methane fermentation system described in the third aspect or the fourth aspect, the temperature in the methane fermentation tank is 65 to 80 ° C.
 本態様によれば、メタン発酵槽内の温度が高いため、前記第3の態様又は第4の態様の作用効果を、一層効果的に得ることができる。すなわち、アンモニア除去装置を経た発酵液中の窒素の量を大きく低減することができる。 According to this aspect, since the temperature in the methane fermenter is high, the operational effect of the third aspect or the fourth aspect can be obtained more effectively. That is, the amount of nitrogen in the fermentation broth that has passed through the ammonia removing device can be greatly reduced.
 本発明の第8の態様は、前記第1の態様または第3の態様に記載されたメタン発酵システムから得られるアンモニア除去後の発酵液を肥料とすることを特徴とするメタン発酵システムを利用した肥料の製造装置である。 The eighth aspect of the present invention utilizes a methane fermentation system characterized in that the fermentation liquid after removal of ammonia obtained from the methane fermentation system described in the first aspect or the third aspect is used as a fertilizer. It is a fertilizer manufacturing device.
 本態様に係るメタン発酵システムを利用した肥料の製造装置により製造された肥料は、農地還元したときに地下水の窒素汚染の問題を低減することができる。 
 また、該肥料を農地還元した際にバクテリアやウィルスで土壌が汚染される問題も防止することができる。
The fertilizer manufactured by the fertilizer manufacturing apparatus using the methane fermentation system according to the present embodiment can reduce the problem of nitrogen contamination of groundwater when it is returned to farmland.
Moreover, when the fertilizer is returned to farmland, the problem of soil contamination with bacteria and viruses can also be prevented.
 本発明によれば、メタン発酵液中の窒素の量を低減することができ、本システムによってえられた発酵液は含有される窒素の量も少なく、肥料として農地還元した際に地下水の窒素汚染の問題を低減することができる。 According to the present invention, the amount of nitrogen in the methane fermentation broth can be reduced, the amount of nitrogen contained in the fermentation broth obtained by this system is small, and nitrogen pollution of groundwater when reduced to farmland as fertilizer Problems can be reduced.
本発明の第1の実施形態に係るメタン発酵システムの概略構成図。The schematic block diagram of the methane fermentation system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るメタン発酵システムの概略構成図。The schematic block diagram of the methane fermentation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るメタン発酵システムの概略構成図。The schematic block diagram of the methane fermentation system which concerns on the 3rd Embodiment of this invention. 本発明に係る実施例1~実施例6における昇温槽での処理条件とそれに対応するアンモニア除去発酵液中の全窒素量との関係を表す図。The figure showing the relationship between the process conditions in the heating tank in Example 1- Example 6 which concerns on this invention, and the total nitrogen amount in the ammonia removal fermentation liquid corresponding to it. 本発明に係るアンモニア放散塔における放散塔内の温度と放散される出口アンモニア濃度との関係を表す図。The figure showing the relationship between the temperature in the stripping tower in the ammonia stripping tower which concerns on this invention, and the density | concentration of the exiting ammonia diffused.
 以下、図を参照しながら、本発明に係るメタン発酵システムの実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the methane fermentation system according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 図1は、本発明に係るメタン発酵システムの第1の実施態様を表した概略構成図である。 
 第1の実施態様のメタン発酵システムは、被発酵材Mをメタン発酵処理して得られるメタン発酵液1’を最終的に農地へ散布するラインL1と、被発酵材Mをメタン発酵処理して得られるバイオガスGをガスホルダー10で回収し最終的にガスエンジン11等のエネルギーとして使用するラインL2とを備えている。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a methane fermentation system according to the present invention.
In the methane fermentation system of the first embodiment, a methane fermentation solution 1 ′ obtained by subjecting the material to be fermented M to methane fermentation is finally sprayed onto farmland, and the material M to be fermented is subjected to methane fermentation. The obtained biogas G is collected by the gas holder 10 and is finally provided with a line L2 that is used as energy for the gas engine 11 or the like.
 メタン発酵液1’を農地へ散布(農地還元)するラインL1は、被発酵材Mをメタン発酵処理するメタン発酵槽1、メタン発酵槽1で発酵処理されて得られたメタン発酵液(消化液)1’をメタン発酵槽1から導出した際、メタン発酵液1’の温度を上げて昇温槽2に送り込むための熱交換器5、熱交換器5によって温度が上がったメタン発酵液1’を更に昇温して、メタン発酵液1’中の有機態窒素をアンモニア態窒素に分解するための昇温槽2、メタン発酵液1’が昇温槽2で昇温処理されて発酵液2’となり、昇温槽2より導出される発酵液2’を気液接触させ、発酵液2’中のアンモニアを放散除去させるためのアンモニア放散塔3およびアンモニア放散塔3でアンモニア放散処理された後に得られた発酵液3’を農地へ散布する前に該発酵液3’の温度を回収するための熱交換器5’で構成されている。 The line L1 for spraying the methane fermentation broth 1 ′ onto the farmland (agricultural land reduction) is a methane fermentation broth (digestion liquid) obtained by fermentation treatment of the material M to be fermented in the methane fermentation tank 1 and the methane fermentation tank 1. ) When 1 ′ is derived from the methane fermentation tank 1, the temperature of the methane fermentation liquid 1 ′ is increased and the temperature of the methane fermentation liquid 1 ′ is increased by the heat exchanger 5 for sending it to the temperature raising tank 2. The temperature of the methane fermentation broth 1 'is decomposed into ammonia nitrogen, and the temperature of the methane fermentation broth 1' is heated in the temperature riser 2 so that the fermentation broth 2 is heated. After being subjected to an ammonia emission treatment in the ammonia diffusion tower 3 and the ammonia diffusion tower 3 for causing the fermentation liquid 2 'derived from the heating tank 2 to come into gas-liquid contact and to diffuse and remove the ammonia in the fermentation liquid 2'. Disperse the obtained fermented liquid 3 'to farmland It is composed of a 'heat exchanger 5 for recovering the temperature of' the fermentation liquor 3.
 一方、被発酵材Mをメタン発酵処理して得られるバイオガスGをガスエンジン11等のエネルギーとして使用するラインL2は、メタン発酵槽内1で発生したバイオガスGを導出するための導出管6、メタン発酵によってバイオガスと供に発生する硫黄化合物(例えば硫化水素、メルカプタン等)中の硫黄分を除去するための脱硫装置4、および脱硫後のバイオガスをガスエンジン11等に送り込むために、一時的にバイオガスを貯留しておくためのガスホルダー10から構成されている。 On the other hand, the line L2 that uses the biogas G obtained by subjecting the material to be fermented M to methane fermentation as the energy of the gas engine 11 or the like is a discharge pipe 6 for deriving the biogas G generated in the methane fermentation tank 1. In order to send the desulfurization device 4 for removing sulfur content in sulfur compounds (for example, hydrogen sulfide, mercaptan, etc.) generated together with biogas by methane fermentation, and to send biogas after desulfurization to the gas engine 11 and the like, It is comprised from the gas holder 10 for storing biogas temporarily.
 導出管6は、途中で分岐したバイオガス導入管6’を備えている。このバイオガス導入管6’は、メタン発酵槽1で発生したバイオガスを昇温槽2で処理された発酵液2’とアンモニア放散塔3で気液接触させるための気体として送り込むためのものである。なお、アンモニア放散塔3で気液接触によって放散したアンモニアは、導出管6と連結しているアンモニア導出管7を経て戻され、導出管6中のバイオガスと供に脱硫装置4に送り込まれる構成となっている。 The lead-out pipe 6 includes a biogas introduction pipe 6 'branched in the middle. This biogas introduction pipe 6 ′ is used to feed biogas generated in the methane fermentation tank 1 as a gas to be brought into gas-liquid contact with the fermentation liquid 2 ′ treated in the temperature raising tank 2 and the ammonia diffusion tower 3. is there. In addition, the ammonia diffused by the gas-liquid contact in the ammonia diffusion tower 3 is returned through the ammonia lead-out pipe 7 connected to the lead-out pipe 6 and sent to the desulfurizer 4 together with the biogas in the lead-out pipe 6. It has become.
 本システムでメタン発酵処理される被発酵材Mとしては、例えば畜産廃棄物、有機性汚泥、緑農廃棄物などが挙げられる。畜産廃棄物としては、家畜(例えば、豚、牛、ニワトリ等)の糞尿や、屠体および/またはその加工品が挙げられる。また、緑農廃棄物には家庭の生ゴミの他、産業廃棄物生ごみとして、農水産業廃棄物、食品加工廃棄物等が含まれる。 Examples of the material to be fermented M to be subjected to methane fermentation in this system include livestock waste, organic sludge, green farm waste, and the like. Examples of livestock waste include manure of livestock (eg, pigs, cows, chickens, etc.), carcasses and / or processed products thereof. Green farm waste includes agricultural waste, food processing waste, and the like as household waste, as well as household waste.
 メタン発酵槽1は、絶対嫌気性のメタン発酵菌による活動を維持するために、空気を遮断したタンクにより構成される。発酵槽1は固形物濃度(通常3~40重量%の範囲)と発酵温度(通常、中温発酵では約32~37℃、高温発酵では約52~55℃、超高温発酵では約60~70℃)によって、形状や運転条件が異なってくる。例えば、洗浄廃水が混合したりして高含水率になった原料(固形物濃度10重量%まで)の場合は湿式型の完全混合方式の発酵槽が用いられる。 
 なお、発酵槽には、必要に応じて保温のための加熱手段を設けておくことが好ましい。
The methane fermenter 1 is composed of a tank in which air is shut off in order to maintain the activity by the absolute anaerobic methane fermentation bacteria. Fermenter 1 has a solids concentration (usually in the range of 3 to 40% by weight) and fermentation temperature (usually about 32 to 37 ° C for medium temperature fermentation, about 52 to 55 ° C for high temperature fermentation, and about 60 to 70 ° C for ultra high temperature fermentation. ), The shape and operating conditions vary. For example, in the case of a raw material (up to a solid concentration of 10% by weight) having a high water content by mixing washing wastewater, a wet type complete mixing type fermenter is used.
In addition, it is preferable to provide the heating means for heat retention in a fermenter as needed.
 高含水率の原料(固形物濃度を10重量%程度まで)の場合は、完全混合方式の発酵槽を用い、超高温メタン発酵菌(至適温度65℃)では滞留時間(Retention Time)を10日間程度、高温メタン発酵菌(至適温度55℃)では滞留時間(Retention Time)を15日間程度、中温メタン発酵菌(至適温度37℃)では滞留時間を25~30日間程度とすることが可能である。 In the case of raw materials with a high water content (solids concentration up to about 10% by weight), a complete mixing type fermenter is used. About 15 days, high temperature methane fermentation bacteria (optimum temperature 55 ° C) may have a retention time (Retention Time) of about 15 days, and medium temperature methane fermentation bacteria (optimum temperature 37 ° C) may have a residence time of about 25-30 days. Is possible.
 上述した高含水率型のメタン発酵後の発酵液は、例えば水分含有率95重量%、固形分5重量%程度を含む液体であり、嫌気性微生物の菌体およびその代謝産物に由来する各種のアミノ酸(有機態窒素を多く含む)や有機酸などを多量に含んでいる。 The fermented liquid after methane fermentation of the above-mentioned high water content type is a liquid containing, for example, a moisture content of 95% by weight and a solid content of about 5% by weight, and is a variety of liquids derived from anaerobic microorganisms and their metabolites. It contains a large amount of amino acids (containing a lot of organic nitrogen) and organic acids.
 熱交換器5、5’については公知のものが使用可能である。例えば、多管円筒形熱交換器、2重管式熱交換器、プレート式熱交換器、コイル式熱交換器、渦巻き式熱交換器等が挙げられる。 
 熱交換器5は、メタン発酵槽1で発酵処理されたメタン発酵液1’を、昇温槽2に温度を上げてから送り込むために設けられたものである。これにより昇温槽2では槽内の温度を所定の温度に上げるまでの時間を短縮することができる。 
 熱交換器5’は、アンモニア放散塔3でアンモニア除去され、該放散塔3からでる発酵液3’の温度を回収するために設けられたものである。また、熱交換器5’で回収された回収熱はメタン発酵槽1の加熱や保温に利用することができる。
A well-known thing can be used about the heat exchangers 5 and 5 '. For example, a multi-tube cylindrical heat exchanger, a double tube heat exchanger, a plate heat exchanger, a coil heat exchanger, a spiral heat exchanger, and the like can be given.
The heat exchanger 5 is provided to feed the methane fermentation liquid 1 ′ fermented in the methane fermentation tank 1 after raising the temperature to the temperature raising tank 2. Thereby, in the temperature rising tank 2, the time until the temperature in the tank is raised to a predetermined temperature can be shortened.
The heat exchanger 5 ′ is provided for recovering the temperature of the fermentation liquid 3 ′ from which ammonia is removed by the ammonia diffusion tower 3 and coming out of the diffusion tower 3. In addition, the recovered heat recovered by the heat exchanger 5 ′ can be used for heating and heat insulation of the methane fermentation tank 1.
 昇温槽2については、特に限定されるものではなく発酵液1の温度を約55℃~80℃まで、好ましくは60℃~75℃、更に好ましくは62℃~70℃に昇温できる(加熱等できる)ものであればよい。スチーム加熱できるものであればなお好ましい。 The temperature raising tank 2 is not particularly limited, and the temperature of the fermentation broth 1 can be raised to about 55 ° C. to 80 ° C., preferably 60 ° C. to 75 ° C., more preferably 62 ° C. to 70 ° C. (heating) Etc.). It is still preferable if it can be heated by steam.
 本発明では、昇温槽2においてメタン発酵槽1で発酵処理されて得られたメタン発酵液1’の温度を上げ加熱処理すると、メタン発酵液1’中の有機態窒素がアンモニア態窒素に分解されることを利用し、メタン発酵液1’を昇温し加熱処理して発酵液2’中にアンモニア態窒素を増やす状態にしている。 In the present invention, when the temperature of the methane fermentation broth 1 ′ obtained by fermentation in the methane fermentation tank 1 is increased in the temperature raising tank 2, the organic nitrogen in the methane fermentation broth 1 ′ is decomposed into ammonia nitrogen. Therefore, the temperature of the methane fermentation liquid 1 ′ is increased and heat-treated to increase ammonia nitrogen in the fermentation liquid 2 ′.
 そして、該発酵液2’を後段のアンモニア放散塔3によるアンモニア除去装置を通すことによってアンモニアを除去し、その結果メタン発酵液1中の有機態窒素の量を低減するようにしている。 The ammonia is removed by passing the fermented liquid 2 'through an ammonia removing device by the ammonia diffusion tower 3 in the subsequent stage, and as a result, the amount of organic nitrogen in the methane fermented liquid 1 is reduced.
 メタン発酵液1中の有機態窒素をアンモニア態窒素に分解するための昇温槽2の温度および加熱処理時間は、メタン発酵処理の条件によって異なる。 The temperature of the heating tank 2 and the heat treatment time for decomposing the organic nitrogen in the methane fermentation liquid 1 into ammonia nitrogen vary depending on the conditions of the methane fermentation treatment.
 例えば、昇温槽2でのメタン発酵液1の処理条件は、中温発酵(約37℃)を行った場合では70~80℃で1時間程度、高温発酵(約55℃)を行った場合では、60℃~70℃で1~4時間程度、超高温発酵(約60℃)を行った場合では、後述する他の実施態様(第3の実施態様)のように基本的には昇温槽2での処理は必要ない。理由は、超高温で処理するため発酵処理の際に既に有機態窒素がアンモニア態窒素に分解され、メタン発酵液1中にアンモニア態窒素として存在しているからである。なお、超高温発酵した場合に、昇温槽2を設けて、昇温槽2内でメタン発酵液1中に残っている有機態窒素をアンモニア態窒素に分解する処理を行うことはなんら問題ない。 For example, the processing conditions of the methane fermentation broth 1 in the temperature raising tank 2 are as follows: when medium temperature fermentation (about 37 ° C.) is performed, 70 to 80 ° C. for about 1 hour, and when high temperature fermentation (about 55 ° C.) is performed. When the ultra-high temperature fermentation (about 60 ° C.) is performed at 60 ° C. to 70 ° C. for about 1 to 4 hours, basically the temperature raising tank as in another embodiment (third embodiment) described later No processing in 2 is necessary. The reason is that the organic nitrogen is already decomposed into ammonia nitrogen during the fermentation process because it is processed at an extremely high temperature, and is present in the methane fermentation liquid 1 as ammonia nitrogen. In addition, when carrying out ultra-high temperature fermentation, there is no problem in providing a temperature raising tank 2 and performing a process of decomposing organic nitrogen remaining in the methane fermentation liquid 1 into ammonia nitrogen in the temperature raising tank 2. .
 以上、昇温槽2でのメタン発酵液1の処理条件は、メタン発酵処理の条件によって異なるが、上述した条件に限定されるものでなく、メタン発酵処理の種類によって適宜温度と加熱処理時間を設定することが可能である。 
 また、昇温槽2にてメタン発酵処理されたメタン発酵液1を処理することで、メタン発酵液1の滅菌も併せて行うことができる。
As mentioned above, although the process conditions of the methane fermentation liquid 1 in the temperature rising tank 2 change with conditions of a methane fermentation process, it is not limited to the conditions mentioned above, Temperature and heat processing time are suitably set according to the kind of methane fermentation process. It is possible to set.
Moreover, sterilization of the methane fermentation liquid 1 can also be performed by processing the methane fermentation liquid 1 subjected to the methane fermentation treatment in the heating tank 2.
 昇温槽2で処理された発酵液2’は、昇温槽2からアンモニア除去装置に導入される。本態様ではアンモニア除去装置としてアンモニア放散塔3が設けられている。 
 本態様で使用するアンモニア放散塔3は、アンモニア放散塔3の上部から液体(発酵液2’)を導入し、下部から気体(バイオガス導入管6’から供給されるバイオガスG)を導入して、液体と気体を対向させて接触するように構成したものである。勿論、アンモニア放散塔3は、気液接触できるように構成されていればよく、対向式に限られるものではない。
The fermented liquid 2 ′ treated in the temperature raising tank 2 is introduced from the temperature raising tank 2 to the ammonia removing device. In this embodiment, an ammonia diffusion tower 3 is provided as an ammonia removing device.
The ammonia stripping tower 3 used in this embodiment introduces a liquid (fermented liquid 2 ′) from the top of the ammonia stripping tower 3 and introduces a gas (biogas G supplied from the biogas introduction pipe 6 ′) from the bottom. Thus, the liquid and the gas are made to face each other and come into contact with each other. Of course, the ammonia diffusion tower 3 should just be comprised so that gas-liquid contact can be carried out, and is not restricted to an opposing type.
 本態様においてアンモニア放散塔3内に導入されるバイオガスは、メタン発酵槽1から発生するバイオガスGである。バイオガスGは、メタン発酵槽1内で発生するバイオガスG自体の生成に伴う圧力によってバイオガスGの送り力を出しており、その送り力によってバイオガスGは、バイオガス導出管6を経てバイオガス導入管6’からアンモニア放散塔3へ導入される。しかし、バイオガスGの生成量が変動するためそれに伴い圧力が変化しバイオガスGの送り力も一定ではなくなる。そこで、一定量のバイオガスGをアンモニア放散塔3に導入するため、バイオガス導出管6上にバルブ8を設けてアンモニア放散塔3に導入されるバイオガスGの量を一定になるように調節するのが好ましい。 In this embodiment, the biogas introduced into the ammonia diffusion tower 3 is biogas G generated from the methane fermentation tank 1. The biogas G outputs the feed force of the biogas G by the pressure accompanying the production of the biogas G itself generated in the methane fermentation tank 1, and the biogas G passes through the biogas outlet pipe 6 by the feed force. It is introduced into the ammonia diffusion tower 3 from the biogas introduction pipe 6 '. However, since the amount of biogas G produced varies, the pressure changes accordingly, and the feed force of biogas G is not constant. Therefore, in order to introduce a certain amount of biogas G into the ammonia diffusion tower 3, a valve 8 is provided on the biogas outlet pipe 6 to adjust the amount of biogas G introduced into the ammonia diffusion tower 3 to be constant. It is preferable to do this.
 例えば、バイオガスGの発生量が少ない場合は、ガス圧が小さいためバルブ8を閉めて、バイオガス導入管6’を通じてアンモニア放散塔3へバイオガスGを導入する。一方、バイオガスGの発生量が多い場合は、ガス圧が大きいためバルブ8を所定量開いて、バイオガスGの一部をアンモニア放散塔3へ導入し、一部を脱硫塔4に導入するようにすればよい。 For example, when the amount of generated biogas G is small, the gas pressure is small, so the valve 8 is closed and the biogas G is introduced into the ammonia diffusion tower 3 through the biogas introduction pipe 6 '. On the other hand, when the amount of biogas G generated is large, the gas pressure is large, so that the valve 8 is opened by a predetermined amount, a part of the biogas G is introduced into the ammonia diffusion tower 3, and a part is introduced into the desulfurization tower 4. What should I do?
 上述したアンモニア放散塔の例としては、スプレー式、棚段式等が挙げられる。 
 アンモニア放散塔内の温度は、昇温槽2で処理された発酵液2’中のアンモニアが適切に放散除去できる温度であればよく、約55~80℃であることが好ましい。
Examples of the ammonia diffusion tower described above include a spray type and a shelf type.
The temperature in the ammonia diffusion tower may be a temperature at which ammonia in the fermentation broth 2 ′ treated in the heating tank 2 can be appropriately diffused and removed, and is preferably about 55 to 80 ° C.
 さらに、アンモニア除去装置については、アンモニア放散塔3に限られるものではなく、例えば膜分離装置等が挙げられる。 Furthermore, the ammonia removal device is not limited to the ammonia diffusion tower 3, and examples thereof include a membrane separation device.
 アンモニア放散塔3で放散したアンモニアは、バイオガス導出管6と連結しているアンモニア導出管7を通じてバイオガス導出管6に戻され、バイオガスGと供に脱硫塔4へ導入され脱硫処理がなされる。例えば生物脱硫処理等のように硫化水素等が生物脱硫されて硫酸になる場合、その硫酸の生成によって脱硫塔4内は酸性度が高まる。酸性度が高まると脱硫能力が低下する。しかし本実施例では、バイオガスGはアンモニア放散塔3から放散したアンモニアを含んでいるので、該アンモニアによって前記硫酸が中和され、脱硫する際のアルカリ度の確保ができ、脱硫条件を保持し易くなる。例えば脱硫条件をpH6以上に保持しなければならない場合には効果がある。 Ammonia diffused in the ammonia stripping tower 3 is returned to the biogas lead-out pipe 6 through the ammonia lead-out pipe 7 connected to the biogas lead-out pipe 6, and introduced into the desulfurization tower 4 together with the biogas G to be desulfurized. The For example, when hydrogen sulfide or the like is biodesulfurized into sulfuric acid as in biodesulfurization treatment, the acidity in the desulfurization tower 4 is increased by the production of the sulfuric acid. As the acidity increases, the desulfurization capacity decreases. However, in this embodiment, since the biogas G contains ammonia diffused from the ammonia diffusion tower 3, the sulfuric acid is neutralized by the ammonia, so that the alkalinity can be ensured during desulfurization and the desulfurization conditions are maintained. It becomes easy. For example, it is effective when the desulfurization conditions must be maintained at pH 6 or higher.
 そして、脱硫装置4で脱硫処理されたバイオガスGは、一旦、ガスホルダーに蓄えられ必要に応じてガスエンジン11等のエネルギーとして使用される。 The biogas G desulfurized by the desulfurization apparatus 4 is temporarily stored in a gas holder and used as energy for the gas engine 11 or the like as necessary.
 一方、アンモニア放散塔3で気液接触してアンモニアが除去された発酵液3’は、土壌汚染の原因となる窒素が低減されており、アンモニア放散塔3から導出され熱交換器5’によって熱交換され、農地に肥料として散布(農地還元)される。 On the other hand, the fermented liquid 3 ′ from which ammonia has been removed by gas-liquid contact in the ammonia diffusion tower 3 has reduced nitrogen that causes soil contamination, and is derived from the ammonia diffusion tower 3 and heated by the heat exchanger 5 ′. It is exchanged and sprayed on farmland as fertilizer (returned to farmland).
 このように、本発明のメタン発酵システムでは、窒素による地下水汚染を防止できる、窒素分が低減された肥料を製造することが可能である。 Thus, in the methane fermentation system of the present invention, it is possible to produce a fertilizer with reduced nitrogen content that can prevent groundwater contamination by nitrogen.
 図2は、本発明に係るメタン発酵システムの第2の実施態様を表した概略図である。第1の実施態様と相違する部分を説明し、共通する部分については説明を省略する。 
 本態様では、ブロワー9と熱交換器5’’を設け、暖めた空気をアンモニア放散塔3に導入するようにした態様である。このような構成としたことで、変動するバイオガスGの生成量に関係なく一定量の気体(空気)をアンモニア放散塔3に導入することができる。
FIG. 2 is a schematic diagram showing a second embodiment of the methane fermentation system according to the present invention. The parts different from the first embodiment will be described, and the description of the common parts will be omitted.
In this embodiment, a blower 9 and a heat exchanger 5 ″ are provided, and warm air is introduced into the ammonia diffusion tower 3. With such a configuration, a certain amount of gas (air) can be introduced into the ammonia diffusion tower 3 regardless of the amount of biogas G that fluctuates.
 導入された空気と昇温槽2で処理された発酵液2’は、アンモニア放散塔3内で気液接触し、放散したアンモニアはアンモニア導出管7’通じて脱臭装置12に導入され脱臭される。脱臭塔12ではアンモニアやアンモニアとともに放散した悪臭成分(メルカプタン、スカトール等)の除去が行われる。 
 なお、脱臭装置12で脱臭された気体を、再度ブロワー9を経由してアンモニア放散塔3に導入する気体として利用できるような構成とすることも可能である。
The introduced air and the fermented liquid 2 ′ treated in the heating tank 2 are in gas-liquid contact in the ammonia diffusion tower 3, and the diffused ammonia is introduced into the deodorizing device 12 through the ammonia outlet pipe 7 ′ and deodorized. . The deodorization tower 12 removes ammonia and malodorous components (mercaptan, skatole, etc.) diffused together with ammonia.
In addition, it is also possible to make it the structure which can utilize the gas deodorized with the deodorizing apparatus 12 as a gas introduce | transduced into the ammonia diffusion tower 3 through the blower 9 again.
 図3は、本発明に係るメタン発酵システムの第3の実施態様を表した概略図である。第1の実施態様と相違する部分を説明し、共通する部分については説明を省略する。 
 本態様は、超高温メタン発酵処理を行った際の本発明に係るメタン発酵システムの一態様である。 
 本態様では、超高温メタン発酵(約60~70℃)処理を行うため、メタン発酵槽1で発酵処理されて得られるメタン発酵液1’の温度が約60~70℃と高温になる。従って、メタン発酵液1’中の有機態窒素は、アンモニア態窒素に分解され、メタン発酵液中のアンモニア態窒素の割合が増加する。よって、実施態様1または実施態様2のように昇温槽2を設けなくても、メタン発酵液1’中では既に有機態窒素の多くがアンモニア態窒素に分解されているので、メタン発酵槽1から出るメタン発酵液1’を直接アンモニア放散塔3へ導入し、気液接触させてアンモニアを放散させ、メタン発酵液1’中の窒素の量を低減することが出来る。
FIG. 3 is a schematic view showing a third embodiment of the methane fermentation system according to the present invention. The parts different from the first embodiment will be described, and the description of the common parts will be omitted.
This aspect is one aspect of the methane fermentation system according to the present invention when the ultra-high temperature methane fermentation treatment is performed.
In this embodiment, since the ultra-high temperature methane fermentation (about 60 to 70 ° C.) treatment is performed, the temperature of the methane fermentation liquid 1 ′ obtained by fermentation in the methane fermentation tank 1 is as high as about 60 to 70 ° C. Therefore, organic nitrogen in the methane fermentation broth 1 ′ is decomposed into ammonia nitrogen, and the proportion of ammonia nitrogen in the methane fermentation broth increases. Therefore, even if the temperature raising tank 2 is not provided as in Embodiment 1 or Embodiment 2, most of the organic nitrogen has already been decomposed into ammonia nitrogen in the methane fermentation liquid 1 ′. The methane fermentation liquor 1 ′ emitted from the gas can be directly introduced into the ammonia stripping tower 3 and brought into gas-liquid contact to dissipate ammonia, thereby reducing the amount of nitrogen in the methane fermentation broth 1 ′.
 ここで、超高温メタン発酵の特徴として、前述したようにメタン発酵液1’中のアンモニア態窒素が増加、すなわちアンモニアの濃度が増加することで発酵阻害を引き起こすということが挙げられる。そこで、本態様ではメタン発酵液1’中のアンモニア濃度を小さくするため、アンモニア放散塔3で気液接触してアンモニアが除去された発酵液3’をアンモニア除去発酵液導出管7’’を通じてメタン発酵槽1に戻すことにより、メタン発酵液中のアンモニア濃度を小さくしアンモニア阻害を抑制している。 Here, as a characteristic of ultrahigh temperature methane fermentation, as described above, ammonia nitrogen in the methane fermentation broth 1 'increases, that is, the concentration of ammonia increases to cause fermentation inhibition. Therefore, in this embodiment, in order to reduce the ammonia concentration in the methane fermentation solution 1 ′, the fermentation solution 3 ′ from which ammonia has been removed by gas-liquid contact in the ammonia diffusion tower 3 is removed through the ammonia removal fermentation solution outlet pipe 7 ″. By returning to the fermenter 1, the ammonia concentration in the methane fermentation liquid is reduced to suppress ammonia inhibition.
 [実施例1]
 以下、実施例に基づいて本発明を説明する。 
 10Lのメタン発酵槽を用いて、分別生ごみと搾乳牛の糞尿との中温メタン共発酵処理(37℃)を行った。 
 次に、メタン発酵処理して得られたメタン発酵液(消化液)を熱交換器を通して、昇温槽に導入した。 
 その後、密閉状態で昇温槽を70℃まで昇温し、メタン発酵液を70℃で1時間加熱処理を行った。次いで昇温槽で加熱処理された発酵液を、内部が65℃に維持されたアンモニア放散塔の上部から噴霧し、アンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させて、アンモニア除去処理を行った発酵液を得た。 
 そして、中温メタン発酵処理を行ったメタン発酵液、昇温槽で昇温処理後の発酵液およびアンモニア除去処理を行った発酵液(アンモニア除去発酵液)のそれぞれの発酵液中の全窒素、ケルダール窒素、アンモニア態窒素を下水道試験方法(「下水道試験方法(1974年版)、発行者:伊藤武秀、発行所:社団法人日本下水道協会、初版発行1974年11月20日の第3刷(1977年5月20日)に記載されている方法)に従って定量した。
[Example 1]
Hereinafter, the present invention will be described based on examples.
Using a 10 L methane fermentation tank, a medium temperature methane co-fermentation treatment (37 ° C.) between the separated garbage and the excreta of the milking cow was performed.
Next, the methane fermentation liquid (digested liquid) obtained by the methane fermentation treatment was introduced into the temperature raising tank through a heat exchanger.
Then, the temperature rising tank was heated up to 70 degreeC in the airtight state, and the methane fermentation liquid was heat-processed at 70 degreeC for 1 hour. Next, the fermented liquid heat-treated in the temperature raising tank is sprayed from the upper part of the ammonia diffusion tower whose interior is maintained at 65 ° C., and the biogas and gas produced by the intermediate temperature methane fermentation process introduced from the lower part of the ammonia diffusion tower. The fermented liquor which made the liquid contact and performed the ammonia removal process was obtained.
And total nitrogen and Kjeldahl in each fermented liquid of the methane fermented liquid which performed the intermediate temperature methane fermentation process, the fermented liquid after the temperature rising process in the temperature rising tank, and the fermented liquid (ammonia removed fermented liquid) which performed the ammonia removal process Nitrogen, ammonia-nitrogen sewerage test method ("Sewerage test method (1974 version), publisher: Takehide Ito, publisher: Japan Sewerage Association, first edition published on November 20, 1974, 3rd edition (1977) Quantification was carried out according to the method described in (May 20).
 ここで、全窒素、ケルダール窒素、アンモニア態窒素の量について説明する。 
 有機性の被発酵材(例えば家畜の糞尿)を発酵処理して得られる発酵液中に含まれる窒素は、有機態窒素、アンモニア態窒素、硝酸態窒素及び/又は亜硝酸態窒素に分類される。 
 そして、全窒素量とは、発酵液中に含まれる全窒素量、すなわち、有機態窒素量、アンモニア態窒素量、硝酸態窒素及び/又は亜硝酸態窒素量の合計をいう。 
 ケルダール窒素の定量においては、有機態窒素量の他にあらかじめ存在するアンモニア態窒素量も合算される。 
 また、本実施態様であるメタン発酵(嫌気性発酵)では、嫌気状態であるので窒素はそのほとんどが硝酸態窒素及び/又は亜硝酸態窒素ではなく、有機態窒素およびアンモニア態窒素の形で存在する。
Here, the amount of total nitrogen, Kjeldahl nitrogen, and ammonia nitrogen will be described.
Nitrogen contained in fermentation broth obtained by fermenting organic fermented materials (eg, livestock manure) is classified as organic nitrogen, ammonia nitrogen, nitrate nitrogen and / or nitrite nitrogen. .
The total nitrogen amount refers to the total amount of nitrogen contained in the fermentation broth, that is, the total amount of organic nitrogen, ammonia nitrogen, nitrate nitrogen and / or nitrite nitrogen.
In the determination of Kjeldahl nitrogen, in addition to the amount of organic nitrogen, the amount of ammonia nitrogen existing in advance is also added.
In the methane fermentation (anaerobic fermentation) according to this embodiment, since nitrogen is anaerobic, most of the nitrogen is present in the form of organic nitrogen and ammonia nitrogen, not nitrate nitrogen and / or nitrite nitrogen. To do.
 後述する実施例における上記関係を式に表すと、
 
 全窒素量=有機態窒素量+アンモニア態窒素量+硝酸態窒素及び/又は亜硝酸態窒素量
 
 ケルダール窒素定量値=有機態窒素量+アンモニア態窒素量
 
となる。したがって、
 
 全窒素量=ケルダール窒素定量値+硝酸態窒素及び/又は亜硝酸態窒素量
 
となるが、メタン発酵(嫌気性発酵)では、硝酸態窒素及び/又は亜硝酸態窒素の発生がないため、硝酸態窒素及び/又は亜硝酸態窒素量は0である。 
 よって、全窒素量=ケルダール窒素量となる。
Expressing the above relationship in an example to be described later in an equation,

Total nitrogen amount = organic nitrogen amount + ammonia nitrogen amount + nitrate nitrogen and / or nitrite nitrogen amount
Kjeldahl nitrogen quantitative value = organic nitrogen + ammonia nitrogen
It becomes. Therefore,

Total nitrogen = Kjeldahl quantitative nitrogen + nitrate and / or nitrite nitrogen
However, in methane fermentation (anaerobic fermentation), since there is no generation of nitrate nitrogen and / or nitrite nitrogen, the amount of nitrate nitrogen and / or nitrite nitrogen is zero.
Therefore, the total nitrogen amount = Kjeldahl nitrogen amount.
 [実施例2] [Example 2]
 昇温槽でのメタン発酵液の加熱処理条件を65℃で1時間としたことと、内部が60℃に維持されたアンモニア放散塔内で、昇温槽で処理された発酵液をアンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させたこと以外は実施例1と同様である。 The heat treatment conditions of the methane fermentation liquid in the temperature raising tank were set at 65 ° C. for 1 hour, and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower maintained at 60 ° C. was used as the ammonia diffusion tower. Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
 [実施例3]
 昇温槽でのメタン発酵液の加熱処理条件を60℃で4時間としたことと、内部が55℃に維持されたアンモニア放散塔内で、昇温槽で処理された発酵液をアンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させたこと以外は実施例1と同様である。
[Example 3]
The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set to 4 hours at 60 ° C., and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower whose interior was maintained at 55 ° C. Example 1 is the same as Example 1 except that the gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part.
 [実施例4]
 昇温槽でのメタン発酵液の加熱処理条件を60℃で1時間としたことと、内部が55℃に維持されたアンモニア放散塔内で、昇温槽で処理された発酵液をアンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させたこと以外は実施例1と同様である。
[Example 4]
The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set to 1 hour at 60 ° C., and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower whose interior was maintained at 55 ° C. Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
 [実施例5]
 昇温槽でのメタン発酵液の加熱処理条件を55℃で4時間としたことと、内部が50℃に維持されたアンモニア放散塔内で、昇温槽で処理された発酵液をアンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させたこと以外は実施例1と同様である。
[Example 5]
The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set at 55 ° C. for 4 hours, and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower maintained at 50 ° C. was used as the ammonia diffusion tower. Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
 [実施例6]
 昇温槽でのメタン発酵液の加熱処理条件を55℃で1時間としたことと、内部が50℃に維持されたアンモニア放散塔内で、昇温槽で処理された発酵液をアンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させたこと以外は実施例1と同様である。
[Example 6]
The heat treatment condition of the methane fermentation liquid in the temperature raising tank was set at 55 ° C. for 1 hour, and the fermentation liquid treated in the temperature raising tank in the ammonia diffusion tower maintained at 50 ° C. was used as the ammonia diffusion tower. Example 1 is the same as Example 1 except that gas-liquid contact is made with the biogas produced by the intermediate temperature methane fermentation process introduced from the lower part of the sample.
 [比較例]
 10Lのメタン発酵槽に、分別生ごみと搾乳牛の糞尿1:1のバイオマスによる、中温メタン共発酵処理(37℃)を行った。 
 次に、次に中温メタン発酵処理して得られたメタン発酵液を、内部が35℃に維持されたアンモニア放散塔の上部から噴霧し、アンモニア放散塔の下部から導入された中温メタン発酵処理によって生成したバイオガスと気液接触させて、アンモニア除去処理を行った発酵液を得た。 
 そこで、アンモニア除去処理を行った発酵液の発酵液中の全窒素を測定した。
[Comparative example]
A 10 L methane fermenter was subjected to a medium temperature methane co-fermentation process (37 ° C.) with 1: 1 garbage of separated garbage and milk of cow's manure.
Next, the methane fermentation broth obtained by the intermediate temperature methane fermentation treatment is sprayed from the upper part of the ammonia diffusion tower whose inside is maintained at 35 ° C., and is introduced by the intermediate temperature methane fermentation treatment introduced from the lower part of the ammonia diffusion tower. The produced biogas was brought into gas-liquid contact to obtain a fermentation broth that had been subjected to ammonia removal treatment.
Then, the total nitrogen in the fermented liquid of the fermented liquid which performed the ammonia removal process was measured.
 実施例1の結果を表1に、実施例2~実施例6および比較例の結果を表2に示す。 
 なお、実施例2~実施例6および比較例においては、最終的に農地に散布(農地還元)する発酵液は、アンモニア除去処理を行った発酵液(アンモニア除去発酵液)であるため、該発酵液中での窒素量が低減されていれば本発明の効果があることから、窒素量の測定はアンモニア除去処理を行った発酵液中のトータル窒素のみを測定することとした。また、実施例2~実施例6および比較例における中温メタン発酵処理されて得られたメタン発酵液中の全窒素量は、実施例1と同様の処理を行っているため実施例1の値と同じである。
The results of Example 1 are shown in Table 1, and the results of Examples 2 to 6 and the comparative example are shown in Table 2.
In Examples 2 to 6 and the comparative example, the fermentation liquid finally sprayed onto the farmland (reduction in farmland) is a fermentation liquid (ammonia-removed fermentation liquid) that has been subjected to ammonia removal treatment. Since the effect of the present invention is obtained if the amount of nitrogen in the liquid is reduced, the measurement of the amount of nitrogen was made only to measure the total nitrogen in the fermentation broth subjected to the ammonia removal treatment. In addition, the total nitrogen amount in the methane fermentation broth obtained by performing the intermediate temperature methane fermentation treatment in Examples 2 to 6 and the comparative example is the same as the value in Example 1 because the same treatment as in Example 1 is performed. The same.
 また、図4には、実施例1~実施例6における昇温槽での処理条件とそれに対応するアンモニア除去発酵液中のトータル窒素量との関係をあらわすグラフを示した。 
 更に、図5には、アンモニア放散塔における出口濃度とアンモニア放散塔内の温度との関係をあらわすグラフを示した。
FIG. 4 is a graph showing the relationship between the treatment conditions in the heating tank in Examples 1 to 6 and the corresponding total nitrogen amount in the ammonia-removed fermentation broth.
FIG. 5 is a graph showing the relationship between the outlet concentration in the ammonia diffusion tower and the temperature in the ammonia diffusion tower.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 実施例1の結果(表1)を中心に、他の実施例および比較例の結果(表2)も参照しつつ本発明の効果について説明する。 
 実施例1において、嫌気性発酵である中温メタン発酵処理(37℃)されて得られたメタン発酵液中には、表1から明らかなように、トータル窒素量として1800(mg/L)の窒素が存在している。
The effects of the present invention will be described with reference to the results of other examples and comparative examples (Table 2), focusing on the results of Table 1 (Table 1).
In Example 1, in the methane fermentation liquid obtained by an intermediate temperature methane fermentation treatment (37 ° C.) that is anaerobic fermentation, as is apparent from Table 1, 1800 (mg / L) of nitrogen as the total nitrogen amount Is present.
 そして、前述したように、ケルダール窒素(量)=有機態窒素(量)+アンモニア態窒素(量)であるから、メタン発酵液中の有機態窒素量は1800-800=1000(mg/L)となる。また、本実施例は嫌気性発酵処理であるため全窒素量とケルダール窒素量は1800(mg/L)と等しくなっている。 As described above, since Kjeldahl nitrogen (amount) = organic nitrogen (amount) + ammonia nitrogen (amount), the amount of organic nitrogen in the methane fermentation liquid is 1800-800 = 1000 (mg / L). It becomes. Moreover, since a present Example is an anaerobic fermentation process, the total nitrogen amount and the Kjeldahl nitrogen amount are equal to 1800 (mg / L).
 次に、メタン発酵液を昇温槽で70℃で1時間加熱処理した後の発酵液中の各窒素の量を見ると、アンモニア態窒素が300(mg/L)増加している。これは、メタン発酵液中の有機態窒素1000(mg/L)中、メタン発酵液を昇温槽で70℃で1時間加熱処理したことにより、有機態窒素300(mg/L)がアンモニア態窒素に分解されたことを意味している。従って、昇温槽での処理により、有機態窒素は1000(mg/L)から700(mg/L)に低減されている。 Next, when the amount of each nitrogen in the fermentation broth after heat-treating the methane fermentation broth at 70 ° C. for 1 hour in a heating tank, ammonia nitrogen is increased by 300 (mg / L). This is because organic nitrogen 300 (mg / L) is converted to ammonia by heating methane fermentation liquid in a heating tank at 70 ° C. for 1 hour in organic nitrogen 1000 (mg / L) in methane fermentation liquid. It means that it was decomposed into nitrogen. Therefore, the organic nitrogen is reduced from 1000 (mg / L) to 700 (mg / L) by the treatment in the heating tank.
 昇温槽で処理後の発酵液を、内部が65℃に維持されたアンモニア放散塔で、中温メタン発酵処理によって生成したバイオガスと気液接触させて得られたアンモニア除去発酵液中の全窒素の量を見ると、600(mg/L)と激減しているのがわかる。これはアンモニア放散塔で多量のアンモニアが放散したことによるもので、アンモニア除去発酵液中の全窒素量が600(mg/L)程度であれば地下水汚染も起さず、逆に植物の栄養源として消費される量である。 Total nitrogen in the ammonia-removed fermentation broth obtained by bringing the fermented liquor after treatment in the heating tank into gas-liquid contact with the biogas produced by the medium-temperature methane fermentation treatment in an ammonia diffusion tower whose interior is maintained at 65 ° C When you see the amount of, you can see that it is drastically reduced to 600 (mg / L). This is due to the fact that a large amount of ammonia was diffused in the ammonia stripping tower. If the total amount of nitrogen in the ammonia-removed fermentation liquor is about 600 (mg / L), there will be no groundwater contamination. As the amount consumed.
 また、アンモニア除去発酵液中のアンモニア態窒素も激減している。これも全窒素量が激減した理由と同じで、アンモニア放散塔で多量のアンモニアが放散したことによるものである。 
 なお、有機態窒素はアンモニア除去発酵液中からは検出されなかった(アンモニア態窒素とケルダール窒素が同量のため有機態窒素量は0である)。つまり、昇温槽での処理により700(mg/L)に低減されていた有機態窒素は、アンモニア放散塔でのアンモニア除去処理によって有機態窒素からアンモニア窒素に分解され、アンモニア態窒素として、アンモニア放散塔から放散したと考えられる。
In addition, ammonia nitrogen in the ammonia-removed fermentation broth has been drastically reduced. This is also due to the fact that a large amount of ammonia was diffused in the ammonia diffusion tower for the same reason that the total nitrogen amount was drastically reduced.
Organic nitrogen was not detected in the ammonia-removed fermentation broth (the amount of organic nitrogen was 0 because ammonia nitrogen and Kjeldahl nitrogen were the same amount). That is, the organic nitrogen that has been reduced to 700 (mg / L) by the treatment in the heating tank is decomposed from the organic nitrogen to the ammonia nitrogen by the ammonia removal treatment in the ammonia diffusion tower, and the ammonia nitrogen is converted into ammonia. It is thought that it was released from the diffusion tower.
 なお、本実施例では嫌気性発酵処理であるため、アンモニア除去発酵液中の全窒素量とケルダール窒素量は等しくならなければいけないが、表1の結果では全窒素量が600(mg/L)、ケルダール窒素が500(mg/L)と差が生じている。これは測定法に起因するものである。 
 本発明の実施例および比較例における窒素の定量測定は、吸光光度法によって測定されている。そのため、フミン系物質の褐色系の着色があるアンモニア除去発酵液では、着色の影響によって定量値に影響を与え、時に数百mg/Lの誤差が生じる場合がある。よって、全窒素量600(mg/L)とケルダール窒素量500(mg/L)との差は誤差範囲と考えられる。
In addition, since it is an anaerobic fermentation process in this example, the total nitrogen amount in the ammonia-removed fermentation liquid and the Kjeldahl nitrogen amount must be equal, but the total nitrogen amount is 600 (mg / L) in the results of Table 1. , Kjeldahl nitrogen is different from 500 (mg / L). This is due to the measurement method.
The quantitative measurement of nitrogen in the examples and comparative examples of the present invention is measured by absorptiometry. Therefore, in the ammonia-removed fermentation broth having a brown coloration of the humic substance, the quantitative value is affected by the coloration effect, and sometimes an error of several hundred mg / L may occur. Therefore, the difference between the total nitrogen amount 600 (mg / L) and the Kjeldahl nitrogen amount 500 (mg / L) is considered as an error range.
 上述したように、本発明は、例えば、中温メタン発酵処理(37℃)されて得られたメタン発酵液中の有機態窒素をアンモニア態窒素に分解し除去することで、メタン発酵液中の全窒素の量を低減し、該発酵液が窒素による地下水汚染を起さない肥料として農地に散布(農地還元)することが可能となる効果を有している。 As described above, the present invention, for example, decomposes and removes organic nitrogen in a methane fermentation broth obtained by a medium temperature methane fermentation treatment (37 ° C.) into ammonia nitrogen, thereby removing all of the methane fermentation broth. The amount of nitrogen is reduced, and the fermented liquid has the effect of being able to be sprayed on farmland (agricultural land reduction) as a fertilizer that does not cause groundwater contamination by nitrogen.
 表2の比較例では、昇温槽による処理を行わずに中温メタン発酵処理(37℃)されて得られたメタン発酵液を、アンモニア放散塔でアンモニア除去処理した後の発酵液中の全窒素量が示されているが、1450(mg/L)と本発明の実施例1よりも圧倒的に多い。これからも本発明が全窒素量低減の効果があることがわかる。 In the comparative example of Table 2, the total nitrogen in the fermented liquid after the methane fermentation liquid obtained by carrying out the intermediate temperature methane fermentation process (37 degreeC) without performing the process by a temperature rising tank is ammonia removal process in an ammonia diffusion tower. Although the amount is shown, it is 1450 (mg / L), which is overwhelmingly higher than Example 1 of the present invention. From this, it can be seen that the present invention has the effect of reducing the total nitrogen amount.
 次に、実施例2から実施例6について説明する。 
 表2には、各実施例および比較例における、昇温槽での処理条件(比較例は除く)、アンモニア放散塔内の温度、アンモニア除去発酵液中の全窒素量およびメタン発酵槽液中の全窒素量の値が示されている。 
 実施例2から実施例6および比較例において、メタン発酵液中の全窒素量については、各実施例および比較例とも同じ条件(37℃)でメタン発酵処理(中温発酵)を行っているので、得られたメタン発酵液中の全窒素量はみな同じである。
Next, Example 2 to Example 6 will be described.
Table 2 shows the treatment conditions (except for the comparative example) in the temperature raising tank, the temperature in the ammonia diffusion tower, the total nitrogen amount in the ammonia-removed fermentation liquid, and the methane fermentation tank liquid in each example and comparative example. Values for total nitrogen are shown.
In Example 2 to Example 6 and the comparative example, for the total nitrogen amount in the methane fermentation liquid, the methane fermentation treatment (medium temperature fermentation) is performed under the same conditions (37 ° C.) in each example and comparative example. The total amount of nitrogen in the obtained methane fermentation broth is the same.
 しかし、昇温槽での処理条件によって、各実施例で、最終的に農地還元されるアンモニア除去発酵液中の全窒素量に相違が見られる。 
 特に、昇温槽での処理温度を60℃以上にすると(実施例2、3、4)、メタン発酵液中の全窒素量1800mg/Lを、最終的に農地還元されるアンモニア除去発酵液中の全窒素量800~870mg/Lにまで減少させることができる。 
 つまり、本発明は、メタン発酵液中の全窒素の量を、930~1000mg/Lも減少させる効果を有している。比較例が、メタン発酵液中の全窒素の量を、350mg/Lしか減少することができないことを考慮すれば、本発明はメタン発酵液中の窒素量の低減について、非常に大きな効果があるといえる。
However, depending on the processing conditions in the temperature raising tank, there is a difference in the total nitrogen amount in the ammonia-removed fermentation liquid that is finally reduced to farmland in each example.
In particular, when the treatment temperature in the heating tank is set to 60 ° C. or more (Examples 2, 3, and 4), the total nitrogen amount in the methane fermentation liquid is 1800 mg / L in the ammonia-removed fermentation liquid that is finally reduced to farmland. The total amount of nitrogen can be reduced to 800-870 mg / L.
That is, the present invention has the effect of reducing the total nitrogen amount in the methane fermentation broth by 930 to 1000 mg / L. Considering that the comparative example can only reduce the amount of total nitrogen in the methane fermentation broth by 350 mg / L, the present invention has a very significant effect on reducing the amount of nitrogen in the methane fermentation broth. It can be said.
 図4には、各実施例における昇温槽での処理条件とアンモニア除去発酵液中の全窒素量との関係が示されている。 
 これによると、本発明では昇温槽での処理温度が高いほど、加熱時間が長いほどアンモニア除去発酵液中の全窒素量が少ないのがわかる。言い換えれば、昇温槽での処理温度が高いほど、加熱時間が長いほど、メタン発酵液中の有機態窒素がアンモニア態窒素に分解され、メタン発酵液中のアンモニア態窒素が増加することにより、後段のアンモニア放散塔で多量のアンモニアが放散除去されるので、アンモニア除去発酵液中の全窒素量が少なくなるということである。
FIG. 4 shows the relationship between the treatment conditions in the heating tank and the total nitrogen amount in the ammonia-removed fermentation broth in each example.
According to this, in this invention, it turns out that the amount of total nitrogen in an ammonia removal fermentation liquid is so small that the processing temperature in a temperature rising tank is high, and heating time is long. In other words, the higher the treatment temperature in the temperature raising tank, the longer the heating time, the more the organic nitrogen in the methane fermentation liquid is decomposed into ammonia nitrogen, and the ammonia nitrogen in the methane fermentation liquid increases, Since a large amount of ammonia is diffused and removed in the ammonia diffusion tower at the latter stage, the total amount of nitrogen in the ammonia-removed fermentation liquor is reduced.
 図5には、アンモニア放散塔における放散塔内の温度と放散される出口アンモニア濃度(アンモニア放散塔の出口での濃度)との関係を示したものである。これによると、温度が高いほど放散されるアンモニアの量が多いことがわかる。 FIG. 5 shows the relationship between the temperature in the diffusion tower in the ammonia diffusion tower and the outlet ammonia concentration to be diffused (concentration at the outlet of the ammonia diffusion tower). This shows that the higher the temperature, the more ammonia is released.
 本発明は、メタン発酵処理によって得られたメタン発酵液を肥料として農地還元する際、メタン発酵液中に含まれる窒素によって地下水が汚染されないように、メタン発酵液中の窒素を低減するためのメタン発酵システムであり、本発明によってメタン発酵液の有効利用が図れるものである。 The present invention provides a methane for reducing nitrogen in a methane fermentation solution so that groundwater is not contaminated by nitrogen contained in the methane fermentation solution when the methane fermentation solution obtained by the methane fermentation treatment is reduced to farmland as a fertilizer. This is a fermentation system, and the methane fermentation broth can be effectively used according to the present invention.
特開平10-235317号公報Japanese Patent Laid-Open No. 10-235317

Claims (10)

  1.  メタン発酵槽と、
     前記メタン発酵槽から出る発酵液を前記メタン発酵槽の発酵温度より高い温度に昇温する昇温槽と、
     前記昇温槽から出る発酵液からアンモニアを除去するアンモニア除去装置と、
     を備えたことを特徴とするメタン発酵システム。
    A methane fermenter,
    A temperature raising tank that raises the temperature of the fermentation liquid coming out of the methane fermentation tank to a temperature higher than the fermentation temperature of the methane fermentation tank,
    An ammonia removal device for removing ammonia from the fermentation liquor coming out of the heating tank;
    A methane fermentation system characterized by comprising:
  2.  請求項1に記載されたメタン発酵システムにおいて、
     前記アンモニア除去装置は、供給される気体と前記発酵液との気液接触により液中からアンモニアを放散除去するアンモニア放散塔であり、前記メタン発酵槽で生成されたバイオガスの一部または全部を前記アンモニア放散塔に供給される前記気体として利用するように構成されていることを特徴とするメタン発酵システム。
    In the methane fermentation system according to claim 1,
    The ammonia removal apparatus is an ammonia diffusion tower that diffuses and removes ammonia from the liquid by gas-liquid contact between the supplied gas and the fermentation liquid, and a part or all of the biogas generated in the methane fermentation tank is removed. It is comprised so that it may utilize as said gas supplied to the said ammonia diffusion tower, The methane fermentation system characterized by the above-mentioned.
  3.  60℃以上の温度で発酵処理が行われるメタン発酵槽と、
     前記メタン発酵槽から出る発酵液からアンモニアを除去するアンモニア除去装置と、を備えたことを特徴とするメタン発酵システム。
    A methane fermentation tank in which the fermentation process is performed at a temperature of 60 ° C. or higher;
    An methane fermentation system comprising: an ammonia removal device that removes ammonia from a fermentation broth discharged from the methane fermentation tank.
  4.  請求項3に記載されたメタン発酵システムにおいて、前記アンモニア除去装置を出た発酵液の一部を前記メタン発酵槽に戻すように構成されていることを特徴とするメタン発酵システム。 4. The methane fermentation system according to claim 3, wherein a part of the fermentation liquor that has exited the ammonia removal device is returned to the methane fermentation tank.
  5.  請求項1または請求項2に記載されたメタン発酵システムにおいて、前記メタン発酵槽は、35~40℃の温度範囲で発酵処理が行われることを特徴とするメタン発酵システム。 3. The methane fermentation system according to claim 1 or 2, wherein the methane fermentation tank is subjected to a fermentation treatment in a temperature range of 35 to 40 ° C.
  6.  請求項1又は2に記載されたメタン発酵システムにおいて、
     前記昇温槽内の温度が65~80℃であることを特徴とするメタン発酵システム。
    In the methane fermentation system according to claim 1 or 2,
    A methane fermentation system, wherein the temperature in the temperature raising tank is 65 to 80 ° C.
  7.  請求項3又は4に記載されたメタン発酵システムにおいて、
     前記メタン発酵槽内の温度が65~80℃であることを特徴とするメタン発酵システム。
    In the methane fermentation system according to claim 3 or 4,
    A methane fermentation system, wherein the temperature in the methane fermentation tank is 65 to 80 ° C.
  8.  請求項1又は3に記載されたメタン発酵システムから得られるアンモニア除去後の発酵液を肥料とすることを特徴とするメタン発酵システムを利用した肥料の製造装置。 A fertilizer production apparatus using a methane fermentation system, characterized in that the fermented liquid after removal of ammonia obtained from the methane fermentation system according to claim 1 or 3 is used as a fertilizer.
  9.  請求項2に記載されたメタン発酵システムにおいて、前記アンモニア放散塔を出た気体は、前記バイオガスを脱硫処理する脱硫装置に送られるように構成されていることを特徴とするメタン発酵システム。 3. The methane fermentation system according to claim 2, wherein the gas exiting the ammonia diffusion tower is sent to a desulfurization apparatus for desulfurizing the biogas.
  10.  請求項1又は3に記載されたメタン発酵システムにおいて、
     前記アンモニア除去装置は、供給される気体と前記発酵液との気液接触により液中からアンモニアを放散除去するアンモニア放散塔であり、
     該アンモニア放散塔に空気を送るブロアと、
     前記アンモニア放散塔を出た気体が送られる脱臭装置と、を備え、
     前記脱臭装置を出た気体は、前記ブロアを介して前記アンモニア放散塔に循環されるように構成されていることを特徴とするメタン発酵システム。
    In the methane fermentation system according to claim 1 or 3,
    The ammonia removal device is an ammonia diffusion tower that diffuses and removes ammonia from the liquid by gas-liquid contact between the supplied gas and the fermentation broth,
    A blower for sending air to the ammonia diffusion tower;
    A deodorizing device to which the gas exiting the ammonia diffusion tower is sent,
    The methane fermentation system, wherein the gas exiting the deodorizing device is configured to be circulated to the ammonia diffusion tower through the blower.
PCT/JP2010/052844 2009-02-27 2010-02-24 Methane fermentation system and apparatus for producing fertilizer using same WO2010098343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009047312A JP5491046B2 (en) 2009-02-27 2009-02-27 Methane fermentation system and fertilizer production equipment using the same
JP2009-047312 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098343A1 true WO2010098343A1 (en) 2010-09-02

Family

ID=42665549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052844 WO2010098343A1 (en) 2009-02-27 2010-02-24 Methane fermentation system and apparatus for producing fertilizer using same

Country Status (2)

Country Link
JP (1) JP5491046B2 (en)
WO (1) WO2010098343A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578558A1 (en) 2011-10-06 2013-04-10 Agroittica Acqua e Sole S.p.A. Process for the recycling of the nutrient elements used by crops
JP2015174820A (en) * 2014-03-12 2015-10-05 森田 剛 Production method of liquid fertilizer and coproduct from surplus organic compound which can be made into compost
EP2977440A1 (en) 2014-07-25 2016-01-27 Agroittica Acqua e Sole S.p.A. Process and system for the recycling in agriculture of the nutrients coming from the food chain
WO2020160998A1 (en) * 2019-02-04 2020-08-13 Haldor Topsøe A/S A process for cleaning biogas while producing a sulfur-containing fertilizer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761922B2 (en) * 2010-03-31 2015-08-12 三井造船環境エンジニアリング株式会社 Methane fermentation system
JP5902908B2 (en) 2011-10-19 2016-04-13 スタンレー電気株式会社 Semiconductor light emitting device and vehicle lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711265A (en) * 1993-06-24 1995-01-13 Meidensha Corp Method for utilizing energy of agricultural waste treating equipment
JP2003290751A (en) * 2002-04-01 2003-10-14 Sumitomo Heavy Ind Ltd Device and method for methane fermentation treatment
JP2006218429A (en) * 2005-02-14 2006-08-24 Ataka Construction & Engineering Co Ltd Solid organic waste treatment method and its apparatus
JP2008012422A (en) * 2006-07-05 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Leaf and stalk-treating method using organic waste
JP2008029983A (en) * 2006-07-31 2008-02-14 Mitsui Eng & Shipbuild Co Ltd Biogas generating system, thermal cracking gas generating system, biogas and thermal cracking gas generating system, and method therefor
JP2008253875A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442288B2 (en) * 1998-07-06 2003-09-02 株式会社クボタ Methane fermentation method for organic waste
JP2002079299A (en) * 1999-10-19 2002-03-19 Mitsubishi Heavy Ind Ltd Method for treating ammonia-containing waste
JP2002113494A (en) * 2000-10-06 2002-04-16 Mitsubishi Heavy Ind Ltd Method and apparatus for treating livestock waste
JP5221841B2 (en) * 2005-03-31 2013-06-26 三井造船環境エンジニアリング株式会社 Biogas generation system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711265A (en) * 1993-06-24 1995-01-13 Meidensha Corp Method for utilizing energy of agricultural waste treating equipment
JP2003290751A (en) * 2002-04-01 2003-10-14 Sumitomo Heavy Ind Ltd Device and method for methane fermentation treatment
JP2006218429A (en) * 2005-02-14 2006-08-24 Ataka Construction & Engineering Co Ltd Solid organic waste treatment method and its apparatus
JP2008012422A (en) * 2006-07-05 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Leaf and stalk-treating method using organic waste
JP2008029983A (en) * 2006-07-31 2008-02-14 Mitsui Eng & Shipbuild Co Ltd Biogas generating system, thermal cracking gas generating system, biogas and thermal cracking gas generating system, and method therefor
JP2008253875A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Biogas system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2578558A1 (en) 2011-10-06 2013-04-10 Agroittica Acqua e Sole S.p.A. Process for the recycling of the nutrient elements used by crops
JP2015174820A (en) * 2014-03-12 2015-10-05 森田 剛 Production method of liquid fertilizer and coproduct from surplus organic compound which can be made into compost
EP2977440A1 (en) 2014-07-25 2016-01-27 Agroittica Acqua e Sole S.p.A. Process and system for the recycling in agriculture of the nutrients coming from the food chain
WO2020160998A1 (en) * 2019-02-04 2020-08-13 Haldor Topsøe A/S A process for cleaning biogas while producing a sulfur-containing fertilizer

Also Published As

Publication number Publication date
JP2010201297A (en) 2010-09-16
JP5491046B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Hait et al. Vermistabilization of primary sewage sludge
Fagbohungbe et al. High solid anaerobic digestion: Operational challenges and possibilities
Bernet et al. Challenges and innovations on biological treatment of livestock effluents
Siles et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion
Garfí et al. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude
Demirer et al. Anaerobic biogasification of undiluted dairy manure in leaching bed reactors
Garfí et al. Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude
Lund et al. Inactivation of virus during anaerobic digestion of manure in laboratory scale biogas reactors
US5863434A (en) Psychrophilic anaerobic treatment of waste in a sequencing semibatch/batch bioreactor
WO2010098343A1 (en) Methane fermentation system and apparatus for producing fertilizer using same
BRPI0113435B1 (en) Method of reducing the number of viable microbial organisms and / or prions present in an organic material, system and utility thereof
Farhat et al. Combined effects of thermal pretreatment and increasing organic loading by co-substrate addition for enhancing municipal sewage sludge anaerobic digestion and energy production
Fan et al. Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: Buffering capacity promotion and methane production enhancement
JP2009500152A (en) Biowaste treatment
KR20170105950A (en) An autothermal aerobic/anaerobic digestion system in swine farms
Fagbohungbe et al. The effect of acidogenic and methanogenic conditions on the availability and stability of carbon, nitrogen and phosphorus in a digestate
Rubežius et al. Influence of biological pretreatment of poultry manure on biochemical methane potential and ammonia emission
DK2411338T3 (en) Biogas Production System
Adghim et al. Enhancing mono-and co-digestion of poultry manure by a novel post-hydrolysis ammonia stripping approach in a two-stage anaerobic digestion process
Flotats Biogas: perspectives of an old technology
Vergote et al. Stability of thermophilic pig manure mono-digestion: effect of thermal pre-treatment and separation
JP3484634B2 (en) Sterilization / fermentation processing system
Guo et al. Performance evaluation of a completely stirred anaerobic reactor treating pig manure at a low range of mesophilic conditions
Ólafsdóttir et al. Effects of different treatments of manure on mitigating methane emissions during storage and preserving the methane potential for anaerobic digestion
KR102137399B1 (en) ATAD type Swine Wastewater Treatment System for minimizing odor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746223

Country of ref document: EP

Kind code of ref document: A1