WO2010098040A1 - Medical thermometer and body temperature measurement system - Google Patents

Medical thermometer and body temperature measurement system Download PDF

Info

Publication number
WO2010098040A1
WO2010098040A1 PCT/JP2010/000968 JP2010000968W WO2010098040A1 WO 2010098040 A1 WO2010098040 A1 WO 2010098040A1 JP 2010000968 W JP2010000968 W JP 2010000968W WO 2010098040 A1 WO2010098040 A1 WO 2010098040A1
Authority
WO
WIPO (PCT)
Prior art keywords
body temperature
thermometer
unit
data
antenna
Prior art date
Application number
PCT/JP2010/000968
Other languages
French (fr)
Japanese (ja)
Inventor
小澤仁
栗尾勝
萩野喜晴
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to CN2010800080947A priority Critical patent/CN102317746A/en
Publication of WO2010098040A1 publication Critical patent/WO2010098040A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/024Means for indicating or recording specially adapted for thermometers for remote indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions

Definitions

  • the present invention relates to a measurement technique for measuring the body temperature of a subject.
  • the present invention relates to a measurement technique with excellent measurement accuracy in a body temperature measurement range of 32 to 42 ° C.
  • thermometer is attached to a measurement site of a subject and kept stationary for a certain period of time until the measurement is completed.
  • the measurer performs an operation of confirming and recording the measurement result.
  • thermometer attached to the measurement site, and accurate temperature measurement is not easy. Further, it is desirable that the work of checking and recording the measurement result is heavy on the measurer and can be recorded without bothering the measurer.
  • thermometer 1 a pasted thermometer including an antenna is proposed.
  • the thermometer since the thermometer is configured to operate by receiving power supply from the RF-ID reader / writer, it is not necessary to mount a power source on the thermometer, and the thermometer can be reduced in size and weight. be able to. As a result, it can be pasted on the measurement site of the subject for a long time.
  • the measurement result can be read simply by bringing the RF-ID reader / writer close to the measurement site to which the thermometer is attached, so that it is possible to greatly reduce the burden of confirmation / recording work of the measurer. .
  • thermometer in the case of the thermometer described in Patent Document 1, a thermistor is used as the temperature sensor.
  • the thermistor is advantageous in that it is small, light, and inexpensive, but has the disadvantage that its temperature characteristics are non-linear, aging is likely to occur, and it is susceptible to noise. For this reason, there is a limit in measurement accuracy, and in order to realize more accurate body temperature measurement (for example, body temperature measurement when accuracy of about ⁇ 0.05 ° C. is required), a temperature sensor having high measurement accuracy It is desirable to apply.
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize highly accurate body temperature measurement in an attached thermometer equipped with an antenna.
  • thermometer has the following configuration. That is, A body temperature tag including an antenna unit and a processing unit; A back film configured to be capable of being attached to the body surface of the subject; and A heat insulating material covering the processing section; A thermometer comprising a surface film sandwiched between the body temperature tag covered with the heat insulating material and the back film,
  • the processor is A power supply circuit connected to the antenna unit and activated in response to generation of an induced electromotive force in the antenna unit; Detection means in which two or more semiconductor temperature sensors for detecting a band gap voltage when two types of semiconductors of P-type and N-type are coupled and current is passed through the coupling portion of the two types of semiconductors are connected in parallel
  • Storage means for storing calibration data for calibrating the band gap voltage detected by the detection means, A band gap voltage detected by the detection means is transmitted through the antenna unit together with the calibration data when the power supply circuit is activated.
  • FIG. 1 is a diagram showing an external configuration of a body temperature measurement system 100 including a thermometer 110 and a data reading device 101 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a functional configuration of the body temperature tag 113 including the antenna 114 and the processing unit 115.
  • FIG. 3 is a diagram illustrating a functional configuration of the data reading apparatus 101.
  • FIG. 4 is a diagram illustrating a flow of a body temperature measurement process in the body temperature measurement system 100.
  • FIG. 5 is a diagram illustrating characteristics of the semiconductor temperature sensor.
  • FIG. 1 is a diagram showing an external configuration of a body temperature measurement system 100 including a thermometer 110 and a data reading device 101 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a functional configuration of the body temperature tag 113 including the antenna 114 and the processing unit 115.
  • FIG. 3 is a diagram illustrating a functional configuration of the data reading apparatus 101.
  • FIG. 4 is a diagram
  • FIG. 6 is a diagram illustrating a circuit configuration of the sensor unit 211.
  • FIG. 7 is a diagram illustrating a circuit configuration of the circuit unit 212.
  • FIG. 8 is a diagram illustrating a circuit configuration of the excessive rise prevention unit 201.
  • FIG. 9 is a diagram illustrating a manufacturing process of the thermometer 110.
  • FIG. 10 is a diagram for explaining the contents of the body temperature data calculation process in the signal processing unit 304.
  • FIG. 11 is a diagram illustrating an external configuration of a body temperature measurement system 1100 including a thermometer 1110 and a data reading device 1101 according to the second embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a state in which the measurement unit 1140 of the thermometer 1110 is attached to the armpit of the subject 1150.
  • FIG. 13 is a view showing a manufacturing process of the thermometer 1110.
  • thermometer described in each of the following embodiments uses a semiconductor temperature sensor (a sensor that detects a band gap voltage generated in proportion to the temperature at a joint between a P-type semiconductor and an N-type semiconductor) as a temperature sensor.
  • the semiconductor temperature sensor is suitable for high-precision body temperature measurement because it has high linearity in temperature characteristics, is resistant to changes with time, and is hardly affected by noise.
  • FIG. 1 shows a thermometer (an affixed thermometer with an antenna) 110 provided with a wireless tag (RF-ID) including a semiconductor temperature sensor and a portable person by a measurer according to the first embodiment of the present invention. It is a figure which shows the external appearance structure of the body temperature measurement system 100 provided with the data reader (portable apparatus) 101.
  • FIG. 1 shows a thermometer (an affixed thermometer with an antenna) 110 provided with a wireless tag (RF-ID) including a semiconductor temperature sensor and a portable person by a measurer according to the first embodiment of the present invention.
  • RFID wireless tag
  • thermometer 110 is fixed by sandwiching a body temperature tag 113, which is a wireless tag, between a film 111 on the front surface and a film 112 on the back surface (semi-permeable, thickness is about 100 ⁇ m). It becomes the composition.
  • a body temperature tag 113 which is a wireless tag
  • urethane polymers such as polyether urethane and polyester urethane
  • amide polymers such as polyether polyamide block polymer
  • acrylic polymers such as polyacrylate, polyethylene, polypropylene, ethylene / acetic acid It can be obtained from materials such as polyolefin polymers such as vinyl copolymers, and polyester polymers such as polyether polyesters.
  • the film 112 on the back surface is preferably selected from materials having water vapor permeability so as not to cause stuffiness or whitening when applied to the skin surface.
  • materials having water vapor permeability so as not to cause stuffiness or whitening when applied to the skin surface.
  • a urethane or amide film is used. Is preferred.
  • the front film 111 and the back film 112 may be made of any one of the above materials, or may be a laminated film in which a plurality of films made of any material are laminated.
  • the thickness of the film 112 on the back surface should be about 10 to 100 ⁇ m, preferably about 20 to 40 ⁇ m so as not to give a sense of incongruity when applied to the skin surface. Further, in order to improve the skin followability when applied to the skin surface, it is preferable to adjust the tensile strength to 100 to 900 kg / cm 2 and the 100% modulus to about 10 to 100 kg / cm 2 . The use of the back film 112 adjusted to this range is effective when applied to a skin surface with a large movement.
  • the film 112 on the back surface not only a non-porous film but also a porous film that is water vapor permeable and water impermeable is effective from the viewpoint of preventing stuffiness during sticking.
  • the material is not particularly limited, and can be easily obtained by applying a known porous technique.
  • a non-porous film the tendency for water vapor permeability to decrease as the film thickness increases appears significantly, but in the case of a porous film, the decrease in water vapor permeability does not appear in proportion to the thickness, which is useful. It is.
  • the adhesive film is applied to the film 112 on the back surface, and the thermometer 110 can be directly attached to an appropriate measurement site on the body surface of the subject.
  • Any adhesive can be used as long as it is used as a normal medical grade.
  • Solvent-based, water-based, hot-melt-based, and dry blend-based pressure-sensitive adhesives it is desirable to avoid the use of acrylic adhesives and polyurethane adhesives when radiation sterilization, especially intense gamma irradiation sterilization, is required. This is because there is a risk of lowering the adhesive strength due to irradiation.
  • any pressure-sensitive adhesive can be used as long as it is used as a normal medical grade.
  • acrylic pressure-sensitive adhesive, polyurethane-based pressure-sensitive adhesive, natural rubber or synthetic rubber-based pressure-sensitive adhesive, and medical polymer are mainly used.
  • Solvent-based, water-based, hot-melt-based, and dry-blend-based pressure-sensitive adhesives that are used as components are listed.
  • the film 111 on the front surface and the film 112 on the back surface are both flexible, and can be deformed along the shape of the measurement site when the thermometer 110 is attached to the measurement site of the subject. . In this way, the thermometer 110 can accurately detect the body temperature of the subject by fixing the processing unit 115 in close contact with the measurement site.
  • a body temperature tag 113 which is a wireless tag having an RF-ID function and including a semiconductor temperature sensor, includes an antenna coil (hereinafter simply referred to as an antenna) 114 and a processing unit 115 on a base sheet.
  • the body temperature tag 113 receives power supply from the data reading device 101 via the antenna 114 (for example, power supply by generation of induced electromotive force due to electromagnetic waves having a frequency of 13.56 MHz), so that the power supply circuit included in the processing unit 115 By supplying power to (not shown), the entire processing unit 115 is activated, and band gap voltage data (voltage data correlated with the body temperature of the subject) acquired in a temperature sensing unit including a semiconductor temperature sensor described later. ) Are transmitted as data together with various information to the data reading apparatus 101 via the antenna 114.
  • the processing unit 115 is covered with a heat insulating material (for example, an aluminum material having a thickness of about 1 mm) (see the AA cross section). . Thereby, it becomes possible to remove the influence of the outside air temperature.
  • a heat insulating material for example, an aluminum material having a thickness of about 1 mm
  • the data reading device 101 includes an RF-ID reader / writer.
  • the data reader 101 is magnetically coupled to the body temperature tag 113, and is connected to a power supply circuit included in the processing unit 115 of the body temperature tag 113. Power supply and reception of data from the body temperature tag 113.
  • thermometer 110 is an affixed thermometer equipped with an antenna, and is configured to operate by receiving power supply from the RF-ID reader / writer of the data reader. Therefore, there is no need to mount a power source inside, and a reduction in size and weight can be realized. As a result, it can be worn for a long time on the measurement site of the subject.
  • the measurement result is that the data reader 101 having an RF-ID reader / writer that transmits an electromagnetic wave of a predetermined frequency, for example, 13.56 MHz, is brought close to the measurement site to which the thermometer 110 is attached to about 5 to 15 mm. Therefore, it is possible to greatly reduce the burden of confirmation and recording work of measurement results by the measurer.
  • a predetermined frequency for example, 13.56 MHz
  • FIG. 2 is a diagram illustrating a functional configuration of the body temperature tag 113 including the antenna 114 and the processing unit 115.
  • reference numeral 201 denotes an overheating prevention unit, which controls to stop the body temperature measurement process when the body temperature tag 113 enters a state that affects the accuracy of body temperature measurement.
  • the state that affects the accuracy of the body temperature measurement is, for example, that excessive power is supplied from the data reading device 101 via the antenna 114 and the body temperature tag 113 itself generates heat (temperature rise). A state that gives an error to the result. Details of the circuit configuration of the excessive rise prevention unit 201 will be described later.
  • the 202 is a wireless communication unit and includes a rectifier circuit, a booster circuit, and the like.
  • the AC voltage generated in the antenna 114 is converted into a predetermined DC voltage and supplied to the storage unit 203 and the control unit 205.
  • the voltage data acquired by the control unit 205 is transmitted to the data reading apparatus 101 via the antenna 114 as data of a predetermined format together with various information.
  • 203 is a storage unit, which stores calibration data of a temperature sensing unit described later, identification information unique to the body temperature tag 113, and the like.
  • Reference numeral 204 denotes a temperature sensing unit, which includes a sensor unit 211 including a semiconductor temperature sensor and a circuit unit 212 that processes the output of the sensor unit 211. Details of the circuit configurations of the sensor unit 211 and the circuit unit 212 will be described later.
  • the control unit 205 is a control unit that controls the operations of the wireless communication unit 202 and the storage unit 203.
  • the output from the temperature sensing unit 204 is processed and transmitted to the wireless communication unit 202 as voltage data.
  • a sufficient voltage is necessary to achieve highly accurate body temperature measurement, for example, 0.01 ° C to 0.05 ° C measurement accuracy. Therefore, since the voltage (Vcc) higher than the voltage necessary for operating the storage unit 203 and the control unit 205 is required, the control unit 205 is provided with a power supply circuit (boost means) for that purpose. It shall be. This power supply circuit is activated as induction machine power is generated in the antenna 114.
  • FIG. 3 is a diagram illustrating a functional configuration of the data reading apparatus 101.
  • the data reading device 101 includes a power supply unit composed of a battery, a rechargeable battery, etc., a power ON / OFF switch, a selection switch (selection means) for selecting a measurement range, and operation switches including a body temperature data reading start switch. This is omitted here.
  • reference numeral 300 denotes an RF-ID reader / writer, which includes an antenna 301, a wireless communication unit 302, a signal conversion unit 303, and a signal processing unit 304.
  • the antenna 301 generates electromagnetic waves having a predetermined frequency, for example, 13.56 MHz, and magnetically couples with the antenna 114 of the body temperature tag 113 to supply power to the power circuit of the body temperature tag 113, Data is received from the body temperature tag 113.
  • a predetermined frequency for example, 13.56 MHz
  • the wireless communication unit 302 in order to supply power to the body temperature tag 113 via the antenna 301, the voltage applied to the antenna 301 is controlled, and the data received from the body temperature tag 113 via the antenna 301 is converted into the signal conversion unit 303. Or send to.
  • the signal conversion unit 303 converts the data transmitted from the wireless communication unit 302 into digital data and transmits it to the signal processing unit 304.
  • the signal processing unit 304 processes the digital data received from the signal conversion unit 303 and calculates the body temperature. Specifically, body temperature data is calculated based on voltage data and calibration data included in the received digital data. The calculated body temperature data is transmitted to the control unit 311 together with the identification information included in the received digital data.
  • the control unit 311 controls operations of the wireless communication unit 302, the signal conversion unit 303, and the signal processing unit 304.
  • the body temperature data transmitted from the signal processing unit 304 is stored in the storage unit 312 together with the identification information, or displayed on the display unit 313. Furthermore, body temperature data stored in the storage unit 312 is transmitted to the other information processing apparatus (another information processing apparatus connected by wire via the wired communication unit 314) via the wired communication unit 314 together with the identification information.
  • the other information processing apparatus another information processing apparatus connected by wire via the wired communication unit 314
  • FIG. 4 is a diagram illustrating a flow of a body temperature measurement process in the body temperature measurement system 100.
  • the data reading device 101 is placed under the armpit where the measurer (not shown) is one of the appropriate locations for the body temperature measurement of the subject (not shown).
  • the measurer is one of the appropriate locations for the body temperature measurement of the subject (not shown).
  • a body temperature data reading start switch for example, an electromagnetic wave of a predetermined frequency, for example, 13.56 MHz is generated, and the magnetic coupling between the antenna 301 and the antenna 114 Power is supplied from the data reader 101 to the thermometer 110 (401).
  • the processing unit 115 In the thermometer 110 to which power is supplied, the processing unit 115 is activated, and it is determined whether or not the body temperature tag 113 is in a state that affects the accuracy of body temperature measurement. When it is determined that the processing unit 115 is in a state that affects the accuracy of body temperature measurement, the processing unit 115 does not perform subsequent processing. In this case, the data reading apparatus 101 determines that no data is transmitted from the thermometer 110 within a predetermined time after power is supplied, and displays an error on the display unit 313 as a display process (421).
  • the processing unit 115 starts processing.
  • a current is passed through the semiconductor temperature sensor in the sensor unit 211 to detect a band gap voltage (413).
  • circuit unit 212 processes the detected band gap voltage (414), and the control unit 205 acquires voltage data (415).
  • the acquired voltage data is transmitted to the data reading device 101 together with the calibration data and identification information stored in the storage unit 203 (402, 416).
  • the data reader 101 calculates body temperature data based on voltage data and calibration data transmitted from the thermometer 110 as display processing. Further, the calculated body temperature data is stored in the storage unit 312 in association with the identification information and displayed on the display unit 313 (421).
  • FIG. 5 is a diagram illustrating characteristics of the semiconductor temperature sensor.
  • the semiconductor temperature sensor applied to the sensor unit 211 is configured by combining a P-type semiconductor and an N-type semiconductor, and when a direct current is passed, the semiconductor temperature sensor correlates with the temperature and is connected to the coupling unit (junction).
  • the generated voltage (band gap voltage Vb) is detected (5a in FIG. 5).
  • the band gap voltage Vb and the temperature have a linearity in a wide range of about ⁇ 40 ° C. to + 150 ° C. as shown in 5b of FIG.
  • the semiconductor temperature sensor has an advantage that it is more resistant to changes with time and less susceptible to noise than the thermistor.
  • FIG. 6 is a diagram illustrating a circuit configuration of the sensor unit 211 configured using the semiconductor temperature sensor illustrated in 5a of FIG.
  • reference numeral 601 denotes a constant current circuit, which adjusts the current flowing through each semiconductor temperature sensor to be uniform based on the power supply Vcc supplied from the control unit 205.
  • the 602 is a semiconductor temperature sensor, and is connected in series to the constant current circuit 601 on the downstream side of the constant current circuit 601.
  • a plurality of semiconductor temperature sensors 602 are connected to the constant current circuit 601, preferably 6 to 10, particularly preferably 8, and the semiconductor temperature sensors are connected in parallel to each other. The greater the number of semiconductor temperature sensors connected in parallel, the better the temperature resolution, but the higher the manufacturing cost, while the smaller the temperature resolution, the lower the temperature resolution.
  • the reason why the plurality of semiconductor temperature sensors are connected in parallel is to eliminate the influence of individual differences of the semiconductor temperature sensors. In order to realize more accurate body temperature measurement, the influence of individual differences of semiconductor temperature sensors cannot be ignored.
  • a plurality of semiconductor temperature sensors particularly preferably 8 to 10 semiconductor temperature sensors, are arranged in parallel. By connecting and taking an average value, the influence of individual differences is eliminated, a temperature resolution of 0.01 ° C. is obtained, and a measurement accuracy within 0.05 ° C. is obtained.
  • the sensor unit 211 outputs an average value Vb_avg of the voltages Vb1, Vb2,... Vbn output from each semiconductor temperature sensor.
  • each semiconductor temperature sensor is not limited to once, and may be configured to flow multiple times.
  • the voltage Vb_avg is output from the sensor unit 211 a plurality of times.
  • FIG. 7 is a diagram illustrating a circuit configuration of the circuit unit 212.
  • the circuit unit 212 includes a system connected to the A / D converter 701 via the comparison / amplifier 711 and the analog switch 712, and an A / D via the comparison / amplifier 721 and the analog switch 722. It is composed of two systems connected to the D converter 701.
  • the former system inputs the voltage Vb_avg output from the sensor unit 211 to the A / D converter 701 in the measurement range of ⁇ 40 ° C. to + 150 ° C.
  • the latter system outputs the voltage Vb_avg output from the sensor unit 211 to the A / D converter 701 in a measurement range of 20 ° C. to 50 ° C.
  • Whether to output using the first system or the second system is determined by selecting the measurement range with the selection switch (not shown) of the data reader 101. It is controlled by switching the analog switches 712 and 722 based on a signal from the control circuit 702.
  • the second system is selected.
  • the voltage Vb_avg input to the A / D converter 701 is A / D converted by the A / D converter 701 and input to the control circuit 702 as digital data.
  • Digital data input to the control circuit 702 is transmitted to the wireless communication unit 202.
  • each digital data is temporarily stored in the memory 703, and all the digital data stored in the memory 703 is stored in the control circuit 702. After calculating the average value, it may be transmitted to the wireless communication unit 202.
  • FIG. 8 is a diagram illustrating a circuit configuration of the excessive rise prevention unit 201.
  • reference numerals 801 and 802 denote switches.
  • the temperature upper limit signal is output when the digital data value calculated by the control unit 205 is less than or equal to a predetermined value, determining that the temperature measurement accuracy has been affected. .
  • a predetermined value determining that the temperature measurement accuracy has been affected.
  • the processing unit 115 stops the processing when it enters a state that affects the accuracy of body temperature measurement. As a result, it is possible to avoid displaying an erroneous measurement result in the data reading apparatus 101.
  • FIG. 9 is a diagram illustrating a manufacturing process of the thermometer 110.
  • thermometer 110 can be roughly divided into a body temperature tag manufacturing process, a calibration process, and a post-processing process.
  • a band-shaped base sheet 901 in which a plurality of antennas 114 are arranged is sequentially conveyed to the semiconductor temperature sensor mounting device 911, and the processing unit 115 is electrically connected to each antenna 114. Thereby, the body temperature tag 113 will be produced
  • the constant temperature bath 912 is a bath managed at a preset temperature, for example, 37 ° C.
  • An RF-ID reader / writer 913 is disposed inside the thermostat 912, and each body temperature tag 113 is transmitted by an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz when passing over the RF-ID reader / writer 913. Communicate with each body temperature tag 113.
  • the band gap voltage data in each body temperature tag 113 is received, and the received band gap voltage data is written into the storage unit 203 of each body temperature tag 113 as calibration data together with the temperature of the thermostat 912.
  • the base sheet 901 is conveyed at a sufficiently low speed, the temperature in the thermostat 912 is transmitted to the body temperature tag 113, and the temperature reaches an equilibrium state, and then the RF-ID reader / writer 913 is It is designed to pass through.
  • thermostat 912 only one thermostat 912 is disposed, but the number of thermostats is not limited to one.
  • a plurality of thermostats set at different temperatures for example, 32 ° C. and 42 ° C., or 32 ° C., 36 ° C. and 42 ° C. are prepared, and calibration data at each temperature is written to each temperature tag 113. Also good.
  • one of the thermostats may be used for testing the body temperature tag 113.
  • the body temperature tag 113 in which the calibration data is written is transported to a thermostat (temperature test chamber) controlled at a preset temperature, and band gap voltage data and calibration data are received from the body temperature tag 113. To do. Then, the temperature calculated based on the voltage data and the calibration data is compared with the temperature of the thermostatic chamber, and it is determined whether or not it is within a predetermined error range.
  • the base sheet 901 in which a plurality of body temperature tags 113 in which calibration data is written is arranged is sequentially conveyed to the film superposing device 914.
  • the processing unit 115 of each body temperature tag 113 is covered with a heat insulating material (for example, aluminum material having a thickness of about 1 mm, foaming polyurethane, or the like), and the films 111 and 112 are formed on the front and back surfaces of the base sheet 901. (Semi-permeable, thickness is about 100 ⁇ m) is bonded with an adhesive.
  • the adhesive mentioned above is applied to the film 112 on the back surface.
  • the base sheet 901 on which the film is bonded in the film superimposing device 914 is conveyed to the punching device 915 and cut for each body temperature tag 113, so that the thermometer 110 is generated.
  • FIG. 10 is a diagram for explaining the content of processing for calculating body temperature data in the signal processing unit 304.
  • the signal processing unit 304 corrects the graph (function) indicating the correspondence between the band gap voltage data and the body temperature data in the reference semiconductor temperature sensor based on the calibration data, and then substitutes the received band gap voltage data. By doing so, body temperature data is derived.
  • 10a in FIG. 10 is a diagram showing a correction process when one type of calibration data corresponding to one type of temperature is received.
  • the offset value of the correspondence relationship between the band gap voltage data and the body temperature data in the semiconductor temperature sensor serving as a reference is received.
  • the graph 1001 is translated in the direction of the arrow as a whole, and a graph 1002 is obtained.
  • the signal processing unit 304 derives body temperature data by substituting the voltage data received from the thermometer 110 into the graph 1002 after the parallel movement.
  • 10b in FIG. 10 is a diagram showing a correction process when two types of calibration data corresponding to two types of temperatures are received. As shown in 10b of FIG. 10, when two types of calibration data corresponding to two types of temperatures are received, a straight line 1011 passing through the two points is calculated, and this is calculated as band gap voltage data in the semiconductor temperature sensor. It is a graph showing the correspondence with body temperature data.
  • the signal processing unit 304 derives body temperature data by substituting the band gap voltage data received from the thermometer 110 into the calculated straight line.
  • 10c of FIG. 10 is a diagram showing a correction process when three or more types of calibration data corresponding to three or more types of temperatures are received. As shown in 10c of FIG. 10, when three or more kinds of calibration data corresponding to three or more kinds of temperatures are received, a regression line 1021 is calculated by the least square method based on the three or more points. This is a graph showing the correspondence between the band gap voltage data and the body temperature data in the semiconductor temperature sensor.
  • the signal processing unit 304 calculates the body temperature data by substituting the band gap voltage data received from the thermometer 110 into the calculated regression line 1021.
  • thermometer in the present embodiment is configured to apply a semiconductor temperature sensor as an affixed thermometer equipped with an antenna.
  • the treatment part is covered with a heat insulating material.
  • a plurality of semiconductor temperature sensors are connected in parallel in the sensor unit.
  • a current was passed through the sensor section a plurality of times and an average value was output during one body temperature measurement.
  • calibration data is stored for each body temperature tag in the storage section of the body temperature tag, and when the voltage data is transmitted by the data reader, the calibration data is also transmitted. It was set as the structure to do.
  • the overheating prevention unit stops the body temperature measurement and the erroneous measurement result is not displayed on the data reader.
  • the processing unit is arranged in the antenna.
  • the present invention is not limited to this, and the processing unit is connected to the antenna via a conductor extending from the antenna. May be.
  • the body temperature measurement system in the present embodiment will be described. For the sake of simplification, the description will mainly be made on differences from the first embodiment.
  • FIG. 11 shows a thermometer (attached thermometer equipped with an antenna) 1110 provided with a wireless tag (RF-ID) including a semiconductor temperature sensor according to the second embodiment of the present invention, and portable by a measurer. It is a figure which shows the external appearance structure of the body temperature measurement system 1100 provided with the data reader (portable apparatus) 1101.
  • RF-ID wireless tag
  • thermometer 1110 can be functionally divided into three parts.
  • the first part is an antenna part 1120 including an antenna 1114
  • the second part is an extension part 1130 provided with a conducting wire 1115 that electrically connects the antenna 1114 and the processing part 1116, and a third part.
  • the antenna 1114 has the same configuration and function as the antenna 114 described in the first embodiment.
  • the processing unit 1116 has the same configuration and function as the processing unit 115 in the first embodiment.
  • the body temperature measurement unit 1140 has the same configuration and function as the processing unit 115 in the first embodiment.
  • the data reading device (portable device) 1101 also has the same configuration and function as the data reading device 101 described in the first embodiment.
  • the antenna 1114 constituting the antenna portion 1120, the conducting wire 1115 constituting the extending portion 1130, and the processing portion 1116 constituting the body temperature measuring portion 1140 are integrally formed on the base sheet as a body temperature tag, Between the film 1111 and the back film 1112 (semi-permeable, thickness is about 100 ⁇ m).
  • the antenna 1114, the conductive wire 1115, and the processing unit 1116 that are integrally formed on the base sheet are collectively referred to as a body temperature tag 1113.
  • the film 1112b constituting the antenna portion 1120 and the extending portion 1130 is a urethane polymer such as polyether urethane or polyester urethane, an amide polymer such as polyether polyamide block polymer, poly It can be obtained from materials such as acrylic polymers such as acrylate, polyolefin polymers such as polyethylene, polypropylene, and ethylene / vinyl acetate copolymers, and polyester polymers such as polyether polyester.
  • the film 1112a constituting the body temperature measuring unit 1140 can be selected from materials having water vapor permeability so as not to cause stuffiness or whitening when being applied to the skin surface.
  • a urethane film or an amide film is used.
  • the front film 1111 and the back film 1112b may be made of any one of the above materials, or may be a laminated film in which a plurality of films made of any material are laminated.
  • the thickness of the film 1112a on the back surface should be about 10 to 100 ⁇ m, preferably about 20 to 40 ⁇ m, so as not to give a sense of incongruity when it is applied to the skin surface. Further, in order to improve the skin followability when applied to the skin surface, it is preferable to adjust the tensile strength to 100 to 900 kg / cm 2 and the 100% modulus to about 10 to 100 kg / cm 2 . Use of the back film 1112a adjusted to this range is effective when affixed to a skin surface with large movement.
  • the material is not particularly limited, and can be easily obtained by applying a known porous technique.
  • a non-porous film the tendency for water vapor permeability to decrease as the film thickness increases appears significantly, but in the case of a porous film, the decrease in water vapor permeability does not appear in proportion to the thickness, which is useful. It is.
  • the adhesive film is applied to the film 1112a on the back surface, and the thermometer 1110 can be directly attached to an appropriate measurement site on the body surface of the subject.
  • Any adhesive can be used as long as it is used as a normal medical grade.
  • Solvent-based, water-based, hot-melt-based, and dry blend-based pressure-sensitive adhesives it is desirable to avoid the use of acrylic adhesives and polyurethane adhesives when radiation sterilization, especially intense gamma irradiation sterilization, is required. This is because there is a risk of lowering the adhesive strength due to irradiation.
  • the film 1111 on the front surface and the film 1112a on the back surface are both flexible, and can be deformed along the shape of the measurement site when the thermometer 1110 is attached to the measurement site of the subject. . In this way, the thermometer 1110 can accurately detect the body temperature of the subject by fixing the processing unit 1116 in close contact with the measurement site.
  • the processing unit 1116 is covered with a heat insulating material (for example, an aluminum material having a thickness of about 1 mm). Thereby, the influence of outside temperature (environment temperature) can be removed.
  • a heat insulating material for example, an aluminum material having a thickness of about 1 mm.
  • the data reading device 1101 includes an RF-ID reader / writer.
  • a predetermined frequency for example, 13.2.
  • a 56 MHz electromagnetic wave is generated and magnetically coupled with the body temperature tag 1113, and power is supplied to the power supply circuit included in the processing unit 115 of the body temperature tag 1113 and data is received from the body temperature tag 1113.
  • FIG. 12 shows a state in which the body temperature measurement unit 1140 of the thermometer 1110 is attached to the armpit, which is one of the appropriate positions of the body temperature measurement site of the subject 1150.
  • the body temperature measuring unit 1140 and the antenna unit 1120 are connected via the extending portion 1130, so that the body temperature measuring unit 1140 is attached to the armpit of the subject 1150. Even in this state, the antenna unit 1120 can be disposed at a position away from the armpit of the subject 1150.
  • the measurer 1160 brings the data reading device 1101 close, for example, by pressing a body temperature data reading start switch (not shown), an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz is generated, and the body temperature tag 1113 Can be magnetically coupled easily and reliably. That is, it is possible to prevent the problem of reading error that may occur in the case of a pasted thermometer equipped with an antenna.
  • FIG. 13 is a diagram showing a manufacturing process of the thermometer 1110.
  • the manufacturing process of the thermometer 1110 is the same as that shown in FIG. 9 except that the shape of the body temperature tag 1113 is different, and thus the description thereof is omitted here.
  • the measurement accuracy is 0 by obtaining a temperature resolution of 0.01 ° C. in 32 to 42 ° C., which is a general measurement range of human body temperature. It became possible to achieve highly accurate body temperature measurement within 0.05 ° C, and to reliably read data from an attached thermometer equipped with an antenna.
  • the antenna unit 1120, the extending unit 1130, and the body temperature measuring unit 1140 are arranged on the same plane.
  • the present invention is not limited to this. It is good also as a shape which distributes the installation part 1130 perpendicularly
  • the antenna part 1120 and The extending portion 1130 may have a shape that is asymmetrically arranged with respect to the body temperature measuring portion 1140.
  • the body temperature measurement unit 1140 has a shape and size suitable for the measurement site of the subject to be pasted. Further, the extension unit is arranged so that the antenna unit 1120 can be securely magnetically coupled to the data reader 1101 in a state where the body temperature measurement unit 1140 is attached to the measurement site of the subject. It is desirable that the shapes and sizes of the 1130 and the antenna unit 1120 be determined.
  • the processing unit 115 determines that the measurement accuracy is affected and forcibly turns off the switch. You may comprise as follows.
  • the number of semiconductor temperature sensors connected in parallel in the sensor unit 211 is not specifically mentioned. For example, it is desirable to connect approximately eight semiconductor temperature sensors in parallel. This is because if the number of semiconductor temperature sensors connected in parallel is small, the influence of individual differences increases and the measurement accuracy decreases, while if the number of semiconductor temperature sensors is too large, the influence of errors due to heat generation increases.
  • thermometer 110 transmits voltage data, calibration data, and identification information to the data reading device 101.
  • the present invention is not limited to this.
  • information regarding the measurement range after switching may be transmitted.
  • the data reading apparatus 101 calculates the body temperature data in consideration of the received information regarding the measurement range.
  • the measurement range may be switched based on an instruction from the data reading device 101.
  • the data reading apparatus 101 calculates body temperature data in consideration of the instructed measurement range.

Abstract

High accuracy body temperature measurement is achieved in an adhesive thermometer. The disclosed medical thermometer is equipped with a body temperature tag (113), a back film (112) that is constituted to be adhesive, a heat insulating material that covers a processor (115), and a surface film (111) that is sandwiched between the processor (115) and the back film (112). The thermometer is characterized in that the processor (115) is equipped with a power circuit that is connected to an antenna (114) and that is activated accompanying the generation of induced electromotive force in the antenna (114), a detection means to which two types of semiconductors—a P-type and an N-type—are coupled and wherein two or more semiconductor temperature sensors which detect band-gap voltage are connected in parallel, and a storage means which stores calibration data to calibrate the band-gap voltage detected by the aforementioned detection means. With the activation of the aforementioned power circuit, the band-gap voltage detected by the aforementioned detection means is transmitted via the antenna (114) together with the aforementioned calibration data.

Description

体温計及び体温測定システムThermometer and body temperature measurement system
 本発明は、被検者の体温を測定する測定技術に関するものである。特に、体温の測定レンジである32~42℃での測定精度に優れた測定技術に関するものである。 The present invention relates to a measurement technique for measuring the body temperature of a subject. In particular, the present invention relates to a measurement technique with excellent measurement accuracy in a body temperature measurement range of 32 to 42 ° C.
 従来より、病院等では、定期的に患者の体温を測定し、測定結果の管理を行っている。一般に、体温の測定に際しては、体温計を被検者の測定部位に装着し、測定が完了するまでの一定時間、静止した状態を維持させる。また、測定が完了すると、測定者が測定結果を確認し記録するといった作業を行う。 Conventionally, hospitals and the like regularly measure patient temperature and manage measurement results. In general, when measuring body temperature, a thermometer is attached to a measurement site of a subject and kept stationary for a certain period of time until the measurement is completed. When the measurement is completed, the measurer performs an operation of confirming and recording the measurement result.
 しかしながら、被検者が幼児や重病の患者の場合、体温計を測定部位に装着させつづけることは困難であり、正確な体温測定を行うことは容易ではない。また、測定結果を確認し記録する作業は、測定者にとって負荷が高く、測定者の手を煩わせることなく記録できることが望ましい。 However, when the subject is an infant or a seriously ill patient, it is difficult to keep the thermometer attached to the measurement site, and accurate temperature measurement is not easy. Further, it is desirable that the work of checking and recording the measurement result is heavy on the measurer and can be recorded without bothering the measurer.
 これに対して、例えば、下記特許文献1では、アンテナを備える貼り付け型の体温計が提案されている。当該特許文献1によれば、体温計がRF-IDリーダ/ライタより電力供給を受けて作動する構成となっているため、体温計に電源を搭載させる必要がなく、体温計の小型・軽量化を実現することができる。この結果、被検者の測定部位に長時間貼り付けておくことが可能となっている。 On the other hand, for example, in Patent Document 1 below, a pasted thermometer including an antenna is proposed. According to Patent Document 1, since the thermometer is configured to operate by receiving power supply from the RF-ID reader / writer, it is not necessary to mount a power source on the thermometer, and the thermometer can be reduced in size and weight. be able to. As a result, it can be pasted on the measurement site of the subject for a long time.
 また、測定結果は、体温計が貼り付けられた測定部位にRF-IDリーダ/ライタを近づけるだけで読み取ることができるため、測定者の確認・記録作業の負荷を大幅に軽減させることが可能である。 In addition, the measurement result can be read simply by bringing the RF-ID reader / writer close to the measurement site to which the thermometer is attached, so that it is possible to greatly reduce the burden of confirmation / recording work of the measurer. .
特開2003-270051号公報JP 2003-270051 A
 しかしながら、上記特許文献1に記載の体温計の場合、温度センサとして、サーミスタが用いられる構成となっている。一般に、サーミスタは小型・軽量かつ安価であるといった利点がある反面、温度特性が非線形であり、経年変化が生じやすく、かつ、ノイズの影響を受けやすいといった欠点がある。このため、測定精度には限界があり、より高精度な体温測定(例えば、±0.05℃程度の精度が求められる場合の体温測定)を実現するためには、高い測定精度を有する温度センサを適用することが望ましい。 However, in the case of the thermometer described in Patent Document 1, a thermistor is used as the temperature sensor. In general, the thermistor is advantageous in that it is small, light, and inexpensive, but has the disadvantage that its temperature characteristics are non-linear, aging is likely to occur, and it is susceptible to noise. For this reason, there is a limit in measurement accuracy, and in order to realize more accurate body temperature measurement (for example, body temperature measurement when accuracy of about ± 0.05 ° C. is required), a temperature sensor having high measurement accuracy It is desirable to apply.
 本発明は上記課題に鑑みてなされたものであり、アンテナを備える貼り付け型の体温計において、高精度な体温測定を実現することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to realize highly accurate body temperature measurement in an attached thermometer equipped with an antenna.
 上記の目的を達成するために、本発明に係る体温計は以下のような構成を備える。即ち、
 アンテナ部と処理部とを備える体温タグと、
 被検者の体表面に貼り付け可能に構成される裏面フィルムと、
 前記処理部を覆う保温材と、
 前記保温材で覆われた前記体温タグを、前記裏面フィルムとの間で挟む表面フィルムと、を備える体温計であって、
 前記処理部は、
  前記アンテナ部に接続され、該アンテナ部における誘導起電力の発生に伴って起動される電源回路と、
  P型とN型の2種類の半導体が結合され、該2種類の半導体の結合部に電流を流した場合のバンドギャップ電圧を検出する半導体温度センサが、2個以上並列に接続された検出手段と、
  前記検出手段により検出されるバンドギャップ電圧を校正するための校正データを記憶する記憶手段と、を備え、
  前記電源回路の起動に伴って、前記検出手段により検出されたバンドギャップ電圧を、前記校正データとともに、前記アンテナ部を介して送信することを特徴とする。
In order to achieve the above object, the thermometer according to the present invention has the following configuration. That is,
A body temperature tag including an antenna unit and a processing unit;
A back film configured to be capable of being attached to the body surface of the subject; and
A heat insulating material covering the processing section;
A thermometer comprising a surface film sandwiched between the body temperature tag covered with the heat insulating material and the back film,
The processor is
A power supply circuit connected to the antenna unit and activated in response to generation of an induced electromotive force in the antenna unit;
Detection means in which two or more semiconductor temperature sensors for detecting a band gap voltage when two types of semiconductors of P-type and N-type are coupled and current is passed through the coupling portion of the two types of semiconductors are connected in parallel When,
Storage means for storing calibration data for calibrating the band gap voltage detected by the detection means,
A band gap voltage detected by the detection means is transmitted through the antenna unit together with the calibration data when the power supply circuit is activated.
 本発明によれば、アンテナを備える貼り付け型の体温計において、特に、0.01℃の温度分解能による体温測定を実現することが可能となる。 According to the present invention, it is possible to realize body temperature measurement with a temperature resolution of 0.01 ° C., in particular, in an attached thermometer equipped with an antenna.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の第1の実施形態における体温計110とデータ読み取り装置101とを備える体温測定システム100の外観構成を示す図である。 図2は、アンテナ114と処理部115とを備える体温タグ113の機能構成を示す図である。 図3は、データ読み取り装置101の機能構成を示す図である。 図4は、体温測定システム100における体温測定処理の流れを示す図である。 図5は、半導体温度センサの特性を示す図である。 図6は、センサ部211の回路構成を示す図である。 図7は、回路部212の回路構成を示す図である。 図8は、過昇防止部201の回路構成を示す図である。 図9は、体温計110の製造工程を示した図である。 図10は、信号処理部304における体温データ算出処理の内容を説明するための図である。 図11は、本発明の第2の実施形態における体温計1110とデータ読み取り装置1101とを備える体温測定システム1100の外観構成を示す図である。 図12は、体温計1110の測定部1140を被検者1150の腋下に装着した様子を示す図である。 図13は、体温計1110の製造工程を示した図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
FIG. 1 is a diagram showing an external configuration of a body temperature measurement system 100 including a thermometer 110 and a data reading device 101 according to the first embodiment of the present invention. FIG. 2 is a diagram illustrating a functional configuration of the body temperature tag 113 including the antenna 114 and the processing unit 115. FIG. 3 is a diagram illustrating a functional configuration of the data reading apparatus 101. FIG. 4 is a diagram illustrating a flow of a body temperature measurement process in the body temperature measurement system 100. FIG. 5 is a diagram illustrating characteristics of the semiconductor temperature sensor. FIG. 6 is a diagram illustrating a circuit configuration of the sensor unit 211. FIG. 7 is a diagram illustrating a circuit configuration of the circuit unit 212. FIG. 8 is a diagram illustrating a circuit configuration of the excessive rise prevention unit 201. FIG. 9 is a diagram illustrating a manufacturing process of the thermometer 110. FIG. 10 is a diagram for explaining the contents of the body temperature data calculation process in the signal processing unit 304. FIG. 11 is a diagram illustrating an external configuration of a body temperature measurement system 1100 including a thermometer 1110 and a data reading device 1101 according to the second embodiment of the present invention. FIG. 12 is a diagram illustrating a state in which the measurement unit 1140 of the thermometer 1110 is attached to the armpit of the subject 1150. FIG. 13 is a view showing a manufacturing process of the thermometer 1110.
 はじめに、本発明の各実施形態の概要について説明する。以下の各実施形態において説明する体温計は、温度センサとして、半導体温度センサ(P型半導体とN型半導体との結合部において、温度に比例して生じるバンドギャップ電圧を検出するセンサ)を用いることを特徴とする。 First, an overview of each embodiment of the present invention will be described. The thermometer described in each of the following embodiments uses a semiconductor temperature sensor (a sensor that detects a band gap voltage generated in proportion to the temperature at a joint between a P-type semiconductor and an N-type semiconductor) as a temperature sensor. Features.
 当該半導体温度センサは、温度特性における線形性が高いうえ、経時変化に強く、かつノイズの影響を受けにくいといった特性があり、高精度な体温測定に適している。 The semiconductor temperature sensor is suitable for high-precision body temperature measurement because it has high linearity in temperature characteristics, is resistant to changes with time, and is hardly affected by noise.
 しかしながら、上記特許文献1において適用されたサーミスタを、単純に半導体温度センサに置き換えただけで、0.01℃という高精度な温度分解能の体温測定を実現することはできず、適用に際しては体温測定の精度に影響を及ぼす各種要因を排除することが重要となってくる。 However, by simply replacing the thermistor applied in Patent Document 1 with a semiconductor temperature sensor, it is not possible to realize body temperature measurement with a high accuracy temperature resolution of 0.01 ° C. It is important to eliminate various factors that affect the accuracy of the system.
 そこで、以下に説明する各実施形態では、アンテナを備える貼り付け型の体温計において当該半導体温度センサを含む無線タグ(RF-ID機能を備えるタグ)を適用するにあたり、体温測定の精度に影響を及ぼす各種要因を排除することで、所望の精度を実現することとした。以下、本発明の各実施形態の詳細について図面を参照しながら説明する。なお、本発明は以下の各実施形態に限定されるものではなく、種々の変形例が採用されうるものとする。 Therefore, in each of the embodiments described below, in applying a wireless tag (a tag having an RF-ID function) including the semiconductor temperature sensor to an affixed thermometer including an antenna, the accuracy of body temperature measurement is affected. By eliminating various factors, the desired accuracy was achieved. Hereinafter, details of each embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and various modifications can be adopted.
 [第1の実施形態]
 <1.体温測定システムの外観構成>
 図1は、本発明の第1の実施形態における、半導体温度センサを含む無線タグ(RF-ID)が配された体温計(アンテナを備える貼り付け型の体温計)110と、測定者によって携帯可能なデータ読み取り装置(携帯装置)101とを備える体温測定システム100の外観構成を示す図である。
[First Embodiment]
<1. External configuration of body temperature measurement system>
FIG. 1 shows a thermometer (an affixed thermometer with an antenna) 110 provided with a wireless tag (RF-ID) including a semiconductor temperature sensor and a portable person by a measurer according to the first embodiment of the present invention. It is a figure which shows the external appearance structure of the body temperature measurement system 100 provided with the data reader (portable apparatus) 101. FIG.
 図1に示すように、体温計110は、表面のフィルム111と裏面のフィルム112(半透過性で、厚さは100μm程度)との間に、無線タグである体温タグ113が挟まれて固定された構成となっている。 As shown in FIG. 1, the thermometer 110 is fixed by sandwiching a body temperature tag 113, which is a wireless tag, between a film 111 on the front surface and a film 112 on the back surface (semi-permeable, thickness is about 100 μm). It becomes the composition.
 表面のフィルム111及び裏面のフィルム112としては、ポリエーテルウレタンやポリエステルウレタンなどのウレタン系ポリマー、ポリエーテルポリアミドブロックポリマーなどのアミド系ポリマー、ポリアクリレートなどのアクリル系ポリマー、ポリエチレンやポリプロピレン、エチレン/酢酸ビニル共重合体などのポリオレフィン系ポリマー、ポリエーテルポリエステルなどのポリエステル系ポリマーなどの材料から得ることができる。 As the front film 111 and the back film 112, urethane polymers such as polyether urethane and polyester urethane, amide polymers such as polyether polyamide block polymer, acrylic polymers such as polyacrylate, polyethylene, polypropylene, ethylene / acetic acid It can be obtained from materials such as polyolefin polymers such as vinyl copolymers, and polyester polymers such as polyether polyesters.
 また、裏面のフィルム112は皮膚面への貼り付け時にムレや白化などを生じないようにするために、水蒸気透過性を有する材質から選択することが好ましく、例えばウレタン系やアミド系のフィルムを用いることが好適である。なお、表面のフィルム111、裏面のフィルム112は上記材料のうちの何れか一種からなるものであってもよいし、任意の材料からなるフィルムを複数枚積層した積層フィルムであってもよい。 The film 112 on the back surface is preferably selected from materials having water vapor permeability so as not to cause stuffiness or whitening when applied to the skin surface. For example, a urethane or amide film is used. Is preferred. The front film 111 and the back film 112 may be made of any one of the above materials, or may be a laminated film in which a plurality of films made of any material are laminated.
 裏面のフィルム112は皮膚面に貼付した際に、違和感を生じないようにするために、その厚みを10~100μm、好ましくは20~40μm程度にすることがよい。また、皮膚面に貼り付けした際の皮膚追従性を良好にするためには、引張強度を100~900kg/cm、100%モジュラスを10~100kg/cm程度に調整することが好ましい。この範囲に調整した裏面のフィルム112を用いると、動きの大きい皮膚面に貼付した際に効果的である。 The thickness of the film 112 on the back surface should be about 10 to 100 μm, preferably about 20 to 40 μm so as not to give a sense of incongruity when applied to the skin surface. Further, in order to improve the skin followability when applied to the skin surface, it is preferable to adjust the tensile strength to 100 to 900 kg / cm 2 and the 100% modulus to about 10 to 100 kg / cm 2 . The use of the back film 112 adjusted to this range is effective when applied to a skin surface with a large movement.
 また、上記裏面のフィルム112として、無孔フィルムだけでなく、水蒸気透過性であって非透水性である多孔性フィルムを用いることも、貼付中のムレの防止の点から効果的である。このようなフィルムの場合には、材質には特に制限はされず、公知の多孔化技術を施すことによって簡単に得ることができる。無孔性フィルムの場合にはフィルム厚が大きくなるほど水蒸気透過性は低下する傾向が顕著に現れるが、多孔性フィルムの場合には厚みに比例して水蒸気透過性の低下が顕著に現れないので有用である。 Also, as the film 112 on the back surface, not only a non-porous film but also a porous film that is water vapor permeable and water impermeable is effective from the viewpoint of preventing stuffiness during sticking. In the case of such a film, the material is not particularly limited, and can be easily obtained by applying a known porous technique. In the case of a non-porous film, the tendency for water vapor permeability to decrease as the film thickness increases appears significantly, but in the case of a porous film, the decrease in water vapor permeability does not appear in proportion to the thickness, which is useful. It is.
 裏面のフィルム112には、粘着剤が塗布されており、体温計110を、被検者の体表面の適所の測定部位に直接、貼り付けることができるように構成されている。粘着剤は、通常の医療用グレードとして用いられるものであればいずれを用いてもよく、例えばアクリル系粘着剤、ポリウレタン系粘着剤、天然ゴム又は合成ゴム系粘着剤、医用高分子を主成分とする溶剤系、水系、ホットメルト系、ドライブレンド系の粘着剤があげられる。ただし放射線滅菌特に強度のガンマー線照射滅菌が必要な場合にはアクリル系粘着剤やポリウレタン系粘着剤の使用は避けた方が望ましい。これらは放射線照射による粘着力の低下を招くおそれがあるからである。 The adhesive film is applied to the film 112 on the back surface, and the thermometer 110 can be directly attached to an appropriate measurement site on the body surface of the subject. Any adhesive can be used as long as it is used as a normal medical grade. For example, an acrylic adhesive, a polyurethane adhesive, a natural rubber or a synthetic rubber adhesive, and a medical polymer as a main component. Solvent-based, water-based, hot-melt-based, and dry blend-based pressure-sensitive adhesives. However, it is desirable to avoid the use of acrylic adhesives and polyurethane adhesives when radiation sterilization, especially intense gamma irradiation sterilization, is required. This is because there is a risk of lowering the adhesive strength due to irradiation.
 また、裏面のフィルム112よりも表面のフィルム111の面積が大きい場合には、被検者の測定部位に貼り付けられるように貼り付け領域が残されていて、その領域には粘着剤が設けられ、この粘着剤は、通常の医療用グレードとして用いられるものであればいずれを用いてもよく、例えばアクリル系粘着剤、ポリウレタン系粘着剤、天然ゴム又は合成ゴム系粘着剤、医用高分子を主成分とする溶剤系、水系、ホットメルト系、ドライブレンド系の粘着剤があげられる。ただし放射線滅菌特に強度のガンマー線照射滅菌が必要な場合にはアクリル系粘着剤やポリウレタン系粘着剤の使用は避けた方が望ましい。これらは放射線照射による粘着力の低下を招くおそれがあるからである。 In addition, when the area of the film 111 on the front surface is larger than that of the film 112 on the back surface, a pasting area is left to be pasted on the measurement site of the subject, and an adhesive is provided in that area. Any pressure-sensitive adhesive can be used as long as it is used as a normal medical grade. For example, acrylic pressure-sensitive adhesive, polyurethane-based pressure-sensitive adhesive, natural rubber or synthetic rubber-based pressure-sensitive adhesive, and medical polymer are mainly used. Solvent-based, water-based, hot-melt-based, and dry-blend-based pressure-sensitive adhesives that are used as components are listed. However, it is desirable to avoid the use of acrylic adhesives and polyurethane adhesives when radiation sterilization, especially intense gamma irradiation sterilization, is required. This is because there is a risk of lowering the adhesive strength due to irradiation.
 また、表面のフィルム111と裏面のフィルム112は、いずれも柔軟性があり、体温計110を被検者の測定部位に貼り付けた際に、測定部位の形状に沿って変形できるようになっている。このように、処理部115が測定部位に密着して固定されることにより、体温計110は、被検者の体温を正確に検出することができる。 Moreover, the film 111 on the front surface and the film 112 on the back surface are both flexible, and can be deformed along the shape of the measurement site when the thermometer 110 is attached to the measurement site of the subject. . In this way, the thermometer 110 can accurately detect the body temperature of the subject by fixing the processing unit 115 in close contact with the measurement site.
 RF-ID機能を有し半導体温度センサを含む無線タグである体温タグ113は、ベースシート上にアンテナコイル(以下、単にアンテナと称す)114と処理部115とを備える。体温タグ113は、データ読み取り装置101から、アンテナ114を介して電力供給(例えば13.56MHzの周波数の電磁波による誘導起電力の発生による電力供給)を受けることで、処理部115に含まれる電源回路(不図示)に電源が供給されることで、処理部115全体が起動し、後述する半導体温度センサを含む感温部において取得されたバンドギャップ電圧データ(被検者の体温と相関する電圧データ)を、各種情報とともにデータとしてアンテナ114を介してデータ読み取り装置101に送信する。 A body temperature tag 113, which is a wireless tag having an RF-ID function and including a semiconductor temperature sensor, includes an antenna coil (hereinafter simply referred to as an antenna) 114 and a processing unit 115 on a base sheet. The body temperature tag 113 receives power supply from the data reading device 101 via the antenna 114 (for example, power supply by generation of induced electromotive force due to electromagnetic waves having a frequency of 13.56 MHz), so that the power supply circuit included in the processing unit 115 By supplying power to (not shown), the entire processing unit 115 is activated, and band gap voltage data (voltage data correlated with the body temperature of the subject) acquired in a temperature sensing unit including a semiconductor temperature sensor described later. ) Are transmitted as data together with various information to the data reading apparatus 101 via the antenna 114.
 なお、体温タグ113を構成するアンテナ114と処理部115のうち、処理部115は、保温材(例えば、厚さ1mm程度のアルミ材)により覆われているものとする(A-A断面参照)。これにより、外気温度の影響を除去することが可能となる。 Of the antenna 114 and the processing unit 115 constituting the body temperature tag 113, the processing unit 115 is covered with a heat insulating material (for example, an aluminum material having a thickness of about 1 mm) (see the AA cross section). . Thereby, it becomes possible to remove the influence of the outside air temperature.
 データ読み取り装置101は、RF-IDリーダ/ライタを備えており、体温タグ113に近づけた際に、体温タグ113との間で磁気結合し、体温タグ113の処理部115に含まれる電源回路への電力供給と、体温タグ113からのデータの受信とを行う。 The data reading device 101 includes an RF-ID reader / writer. When the data reading device 101 is close to the body temperature tag 113, the data reader 101 is magnetically coupled to the body temperature tag 113, and is connected to a power supply circuit included in the processing unit 115 of the body temperature tag 113. Power supply and reception of data from the body temperature tag 113.
 このように、体温測定システム100では、体温計110が、アンテナを備える貼り付け型の体温計となっており、データ読み取り装置が有するRF-IDリーダ/ライタより電力供給を受けて作動する構成となっているため、内部に電源を搭載しておく必要がなく、小型・軽量化を実現することができる。この結果、被検者の測定部位に長時間装着しておくことが可能となる。 Thus, in the thermometer measurement system 100, the thermometer 110 is an affixed thermometer equipped with an antenna, and is configured to operate by receiving power supply from the RF-ID reader / writer of the data reader. Therefore, there is no need to mount a power source inside, and a reduction in size and weight can be realized. As a result, it can be worn for a long time on the measurement site of the subject.
 また、測定結果は、所定の周波数、例えば13.56MHzの電磁波を送信するRF-IDリーダ/ライタを備えるデータ読み取り装置101を、体温計110が貼り付けられた測定部位に5~15mm程度に近づけるだけで読み取ることができるため、測定者による測定結果の確認・記録作業の負荷を大幅に軽減させることができる。 In addition, the measurement result is that the data reader 101 having an RF-ID reader / writer that transmits an electromagnetic wave of a predetermined frequency, for example, 13.56 MHz, is brought close to the measurement site to which the thermometer 110 is attached to about 5 to 15 mm. Therefore, it is possible to greatly reduce the burden of confirmation and recording work of measurement results by the measurer.
 <2.体温タグ113の機能構成>
 次に、体温タグ113の機能構成について説明する。図2は、アンテナ114と処理部115とを備える体温タグ113の機能構成を示す図である。
<2. Functional configuration of body temperature tag 113>
Next, the functional configuration of the body temperature tag 113 will be described. FIG. 2 is a diagram illustrating a functional configuration of the body temperature tag 113 including the antenna 114 and the processing unit 115.
 図2において、201は過昇防止部であり、体温タグ113が体温測定の精度に影響を与える状態となった場合に、体温測定処理を中止するように制御する。ここで体温測定の精度に影響を与える状態とは、例えば、アンテナ114を介してデータ読み取り装置101より過剰な電源が供給され、体温タグ113自体が発熱(温度上昇)することで、体温測定の結果に誤差を与えるような状態をいう。なお、過昇防止部201の回路構成の詳細は、後述する。 In FIG. 2, reference numeral 201 denotes an overheating prevention unit, which controls to stop the body temperature measurement process when the body temperature tag 113 enters a state that affects the accuracy of body temperature measurement. Here, the state that affects the accuracy of the body temperature measurement is, for example, that excessive power is supplied from the data reading device 101 via the antenna 114 and the body temperature tag 113 itself generates heat (temperature rise). A state that gives an error to the result. Details of the circuit configuration of the excessive rise prevention unit 201 will be described later.
 202は無線通信部であり、整流回路や昇圧回路等を備える。無線通信部202では、アンテナ114において生じた交流電圧を、所定の直流電圧に変換し、記憶部203及びコントロール部205に供給する。また、コントロール部205において取得された電圧データを各種情報とともに、所定形式のデータとして、アンテナ114を介してデータ読み取り装置101に送信する。 202 is a wireless communication unit and includes a rectifier circuit, a booster circuit, and the like. In the wireless communication unit 202, the AC voltage generated in the antenna 114 is converted into a predetermined DC voltage and supplied to the storage unit 203 and the control unit 205. In addition, the voltage data acquired by the control unit 205 is transmitted to the data reading apparatus 101 via the antenna 114 as data of a predetermined format together with various information.
 203は記憶部であり、後述する感温部の校正データや、体温タグ113固有の識別情報等を記憶する。 203 is a storage unit, which stores calibration data of a temperature sensing unit described later, identification information unique to the body temperature tag 113, and the like.
 204は感温部であり、半導体温度センサを備えるセンサ部211と、センサ部211の出力を処理する回路部212とを備える。なお、センサ部211及び回路部212の回路構成の詳細は、後述する。 Reference numeral 204 denotes a temperature sensing unit, which includes a sensor unit 211 including a semiconductor temperature sensor and a circuit unit 212 that processes the output of the sensor unit 211. Details of the circuit configurations of the sensor unit 211 and the circuit unit 212 will be described later.
 205はコントロール部であり、無線通信部202及び記憶部203の動作を制御する。また、感温部204からの出力を処理し、電圧データとして無線通信部202に送信する。なお、感温部204のセンサ部211に適用される半導体温度センサにおいて、精度の高い体温測定、例えば0.01℃~0.05℃の測定精度を実現するためには、充分な電圧が必要となるため(記憶部203やコントロール部205を作動させるのに必要な電圧よりも高い電圧(Vcc)が必要となるため)、コントロール部205には、そのための電源回路(昇圧手段)が備えられているものとする。この電源回路は、アンテナ114における誘導機電力の発生に伴って起動される。 205 is a control unit that controls the operations of the wireless communication unit 202 and the storage unit 203. In addition, the output from the temperature sensing unit 204 is processed and transmitted to the wireless communication unit 202 as voltage data. In addition, in the semiconductor temperature sensor applied to the sensor unit 211 of the temperature sensing unit 204, a sufficient voltage is necessary to achieve highly accurate body temperature measurement, for example, 0.01 ° C to 0.05 ° C measurement accuracy. Therefore, since the voltage (Vcc) higher than the voltage necessary for operating the storage unit 203 and the control unit 205 is required, the control unit 205 is provided with a power supply circuit (boost means) for that purpose. It shall be. This power supply circuit is activated as induction machine power is generated in the antenna 114.
 <3.データ読み取り装置の機能構成>
 次に、データ読み取り装置101の機能構成について説明する。図3は、データ読み取り装置101の機能構成を示す図である。データ読み取り装置101は、電池、充電池等で構成される電源部、電源ON/OFFスイッチ、測定レンジを選択する選択スイッチ(選択手段)、体温データ読み取り開始スイッチを含む操作スイッチを備えているが、ここでは省略している。
<3. Functional configuration of data reader>
Next, the functional configuration of the data reading apparatus 101 will be described. FIG. 3 is a diagram illustrating a functional configuration of the data reading apparatus 101. The data reading device 101 includes a power supply unit composed of a battery, a rechargeable battery, etc., a power ON / OFF switch, a selection switch (selection means) for selecting a measurement range, and operation switches including a body temperature data reading start switch. This is omitted here.
 図3において、300はRF-IDリーダ/ライタであり、アンテナ301、無線通信部302、信号変換部303、信号処理部304とを備える。 3, reference numeral 300 denotes an RF-ID reader / writer, which includes an antenna 301, a wireless communication unit 302, a signal conversion unit 303, and a signal processing unit 304.
 アンテナ301は、所定の周波数、例えば13.56MHzの周波数の電磁波を発生させて、体温タグ113のアンテナ114との間で磁気結合することで、体温タグ113の電源回路に電源を供給したり、体温タグ113よりデータを受信したりする。 The antenna 301 generates electromagnetic waves having a predetermined frequency, for example, 13.56 MHz, and magnetically couples with the antenna 114 of the body temperature tag 113 to supply power to the power circuit of the body temperature tag 113, Data is received from the body temperature tag 113.
 無線通信部302では、アンテナ301を介して体温タグ113に電源を供給するために、アンテナ301に印加する電圧を制御したり、アンテナ301を介して体温タグ113より受信したデータを信号変換部303に送信したりする。 In the wireless communication unit 302, in order to supply power to the body temperature tag 113 via the antenna 301, the voltage applied to the antenna 301 is controlled, and the data received from the body temperature tag 113 via the antenna 301 is converted into the signal conversion unit 303. Or send to.
 信号変換部303では、無線通信部302より送信されたデータをデジタルデータに変換し、信号処理部304に送信する。 The signal conversion unit 303 converts the data transmitted from the wireless communication unit 302 into digital data and transmits it to the signal processing unit 304.
 信号処理部304では、信号変換部303より受信したデジタルデータを処理し、体温を算出する。具体的には、受信したデジタルデータに含まれる、電圧データと校正データとに基づいて体温データを算出する。また、算出した体温データを、受信したデジタルデータに含まれる識別情報とともにコントロール部311に送信する。 The signal processing unit 304 processes the digital data received from the signal conversion unit 303 and calculates the body temperature. Specifically, body temperature data is calculated based on voltage data and calibration data included in the received digital data. The calculated body temperature data is transmitted to the control unit 311 together with the identification information included in the received digital data.
 コントロール部311では、無線通信部302、信号変換部303、信号処理部304の動作を制御する。また、信号処理部304から送信された体温データを、識別情報とともに記憶部312に格納したり、表示部313に表示したりする。更に、記憶部312に格納された体温データを、識別情報とともに有線通信部314を介して、他の情報処理装置(有線通信部314を介して有線接続された他の情報処理装置)に送信したりする。 The control unit 311 controls operations of the wireless communication unit 302, the signal conversion unit 303, and the signal processing unit 304. The body temperature data transmitted from the signal processing unit 304 is stored in the storage unit 312 together with the identification information, or displayed on the display unit 313. Furthermore, body temperature data stored in the storage unit 312 is transmitted to the other information processing apparatus (another information processing apparatus connected by wire via the wired communication unit 314) via the wired communication unit 314 together with the identification information. Or
 <4.体温測定処理の流れ>
 次に、体温測定システム100における体温測定処理の流れについて説明する。図4は、体温測定システム100における体温測定処理の流れを示す図である。
<4. Flow of temperature measurement process>
Next, the flow of the body temperature measurement process in the body temperature measurement system 100 will be described. FIG. 4 is a diagram illustrating a flow of a body temperature measurement process in the body temperature measurement system 100.
 図4に示すように、データ読み取り装置101が起動した後に、データ読み取り装置101を、測定者(不図示)が被検者(不図示)の体温測定部位の適所の1つである腋下に装着された体温計110の近傍に近づけ、例えば体温データ読み取り開始スイッチ(不図示)を押すことで、所定の周波数、例えば13.56MHzの電磁波が発生し、アンテナ301とアンテナ114との磁気結合により、データ読み取り装置101から体温計110に対して電源が供給される(401)。 As shown in FIG. 4, after the data reading device 101 is activated, the data reading device 101 is placed under the armpit where the measurer (not shown) is one of the appropriate locations for the body temperature measurement of the subject (not shown). By approaching the vicinity of the mounted thermometer 110 and pressing a body temperature data reading start switch (not shown), for example, an electromagnetic wave of a predetermined frequency, for example, 13.56 MHz is generated, and the magnetic coupling between the antenna 301 and the antenna 114 Power is supplied from the data reader 101 to the thermometer 110 (401).
 電源が供給された体温計110では、処理部115が起動し、体温タグ113が体温測定の精度に影響を与える状態になっているか否かを判定する。処理部115が体温測定の精度に影響を与える状態になっていると判定された場合には、処理部115では、以降の処理は行わない。この場合、データ読み取り装置101では、電源供給を行ってから一定時間内に体温計110よりデータの送信がないと判断し、表示処理として表示部313にエラー表示を行う(421)。 In the thermometer 110 to which power is supplied, the processing unit 115 is activated, and it is determined whether or not the body temperature tag 113 is in a state that affects the accuracy of body temperature measurement. When it is determined that the processing unit 115 is in a state that affects the accuracy of body temperature measurement, the processing unit 115 does not perform subsequent processing. In this case, the data reading apparatus 101 determines that no data is transmitted from the thermometer 110 within a predetermined time after power is supplied, and displays an error on the display unit 313 as a display process (421).
 一方、体温タグ113が体温測定の精度に影響を与える状態になっていないと判定された場合には、処理部115では処理を開始する。 On the other hand, when it is determined that the body temperature tag 113 is not in a state of affecting the accuracy of body temperature measurement, the processing unit 115 starts processing.
 具体的には、予め設定された測定レンジ(詳細は後述)に切り替えた後(412)、センサ部211内の半導体温度センサに電流を流し、バンドギャップ電圧を検出する(413)。 Specifically, after switching to a preset measurement range (details will be described later) (412), a current is passed through the semiconductor temperature sensor in the sensor unit 211 to detect a band gap voltage (413).
 更に、回路部212が当該検出されたバンドギャップ電圧を処理し(414)、コントロール部205では、電圧データを取得する(415)。 Further, the circuit unit 212 processes the detected band gap voltage (414), and the control unit 205 acquires voltage data (415).
 取得された電圧データは、記憶部203に記憶された校正データ及び識別情報とともに、データ読み取り装置101に送信される(402、416)。 The acquired voltage data is transmitted to the data reading device 101 together with the calibration data and identification information stored in the storage unit 203 (402, 416).
 データ読み取り装置101では、表示処理として体温計110より送信された電圧データ及び校正データに基づいて体温データを算出する。更に、算出された体温データを、識別情報と対応付けて記憶部312に記憶するとともに表示部313に表示する(421)。 The data reader 101 calculates body temperature data based on voltage data and calibration data transmitted from the thermometer 110 as display processing. Further, the calculated body temperature data is stored in the storage unit 312 in association with the identification information and displayed on the display unit 313 (421).
 <5.半導体温度センサの説明>
 次に、センサ部211に適用される一般的な半導体温度センサについて説明する。図5は、半導体温度センサの特性を示す図である。本実施形態において、センサ部211に適用される半導体温度センサは、P型半導体とN型半導体とが結合して構成され、直流電流を流した場合に温度に相関して結合部(ジャンクション)に生じる電圧(バンドギャップ電圧Vb)を検出するものである(図5の5a)。
<5. Description of semiconductor temperature sensor>
Next, a general semiconductor temperature sensor applied to the sensor unit 211 will be described. FIG. 5 is a diagram illustrating characteristics of the semiconductor temperature sensor. In this embodiment, the semiconductor temperature sensor applied to the sensor unit 211 is configured by combining a P-type semiconductor and an N-type semiconductor, and when a direct current is passed, the semiconductor temperature sensor correlates with the temperature and is connected to the coupling unit (junction). The generated voltage (band gap voltage Vb) is detected (5a in FIG. 5).
 なお、半導体温度センサの場合、図5の5bに示すように、バンドギャップ電圧Vbと温度とは、概ね-40℃から+150℃の広範囲において線形性を有している。また、半導体温度センサは、サーミスタと比較して、経時変化に強く、かつノイズの影響を受けにくいといった利点も有している。 In the case of the semiconductor temperature sensor, the band gap voltage Vb and the temperature have a linearity in a wide range of about −40 ° C. to + 150 ° C. as shown in 5b of FIG. In addition, the semiconductor temperature sensor has an advantage that it is more resistant to changes with time and less susceptible to noise than the thermistor.
 <6.センサ部211の回路構成>
 次に、センサ部211の回路構成について説明する。図6は、図5の5aに示す半導体温度センサを用いて構成されたセンサ部211の回路構成を示す図である。
<6. Circuit Configuration of Sensor Unit 211>
Next, the circuit configuration of the sensor unit 211 will be described. FIG. 6 is a diagram illustrating a circuit configuration of the sensor unit 211 configured using the semiconductor temperature sensor illustrated in 5a of FIG.
 図6において、601は定電流回路であり、コントロール部205より供給される電源Vccに基づいて、各半導体温度センサに流す電流が均一になるように調整する。 In FIG. 6, reference numeral 601 denotes a constant current circuit, which adjusts the current flowing through each semiconductor temperature sensor to be uniform based on the power supply Vcc supplied from the control unit 205.
 602は半導体温度センサであり、定電流回路601の下流側において、定電流回路601に対して直列に接続されている。なお、半導体温度センサ602は定電流回路601に対して複数個、好ましくは6~10個、特に好ましくは8個接続されており、それぞれの半導体温度センサは、互いに並列接続される。並列接続される半導体温度センサの個数は、多いほど温度分解能に優れるが、製造コストが高くなり、一方、少ないと温度分解能が低下する。 602 is a semiconductor temperature sensor, and is connected in series to the constant current circuit 601 on the downstream side of the constant current circuit 601. A plurality of semiconductor temperature sensors 602 are connected to the constant current circuit 601, preferably 6 to 10, particularly preferably 8, and the semiconductor temperature sensors are connected in parallel to each other. The greater the number of semiconductor temperature sensors connected in parallel, the better the temperature resolution, but the higher the manufacturing cost, while the smaller the temperature resolution, the lower the temperature resolution.
 このように、複数の半導体温度センサを並列接続したのは、半導体温度センサの個体差の影響を排除するためである。より高精度な体温測定を実現するためには、半導体温度センサの個体差の影響も無視することはできず、センサ部211では、複数、特に好ましくは8~10個の半導体温度センサを並列に接続し平均値をとることで、個体差の影響を排除し、0.01℃の温度分解能を得て、0.05℃以内の測定精度を得るようにしている。 The reason why the plurality of semiconductor temperature sensors are connected in parallel is to eliminate the influence of individual differences of the semiconductor temperature sensors. In order to realize more accurate body temperature measurement, the influence of individual differences of semiconductor temperature sensors cannot be ignored. In the sensor unit 211, a plurality of semiconductor temperature sensors, particularly preferably 8 to 10 semiconductor temperature sensors, are arranged in parallel. By connecting and taking an average value, the influence of individual differences is eliminated, a temperature resolution of 0.01 ° C. is obtained, and a measurement accuracy within 0.05 ° C. is obtained.
 このため、センサ部211からは、各半導体温度センサより出力された電圧Vb1、Vb2、・・・Vbnの平均値Vb_avgが出力される。 Therefore, the sensor unit 211 outputs an average value Vb_avg of the voltages Vb1, Vb2,... Vbn output from each semiconductor temperature sensor.
 なお、各半導体温度センサに電流を流すのは1回に限られず、複数回流すように構成してもよい。その場合、センサ部211からは、電圧Vb_avgが複数回出力されることとなる。 It should be noted that the current flowing through each semiconductor temperature sensor is not limited to once, and may be configured to flow multiple times. In that case, the voltage Vb_avg is output from the sensor unit 211 a plurality of times.
 <7.回路部212の回路構成>
 次に、回路部212の回路構成について説明する。図7は、回路部212の回路構成を示す図である。
<7. Circuit Configuration of Circuit Unit 212>
Next, the circuit configuration of the circuit unit 212 will be described. FIG. 7 is a diagram illustrating a circuit configuration of the circuit unit 212.
 図7に示すように、回路部212は、比較・増幅器711とアナログスイッチ712とを介してA/Dコンバータ701に接続される系と、比較・増幅器721とアナログスイッチ722とを介してA/Dコンバータ701に接続される系の2系統から構成されている。 As shown in FIG. 7, the circuit unit 212 includes a system connected to the A / D converter 701 via the comparison / amplifier 711 and the analog switch 712, and an A / D via the comparison / amplifier 721 and the analog switch 722. It is composed of two systems connected to the D converter 701.
 前者の系(第1の系)は、センサ部211より出力された電圧Vb_avgを、-40℃~+150℃の測定レンジでA/Dコンバータ701に入力する。一方、後者の系(第2の系)は、センサ部211より出力された電圧Vb_avgを、20℃~50℃の測定レンジでA/Dコンバータ701に出力する。 The former system (first system) inputs the voltage Vb_avg output from the sensor unit 211 to the A / D converter 701 in the measurement range of −40 ° C. to + 150 ° C. On the other hand, the latter system (second system) outputs the voltage Vb_avg output from the sensor unit 211 to the A / D converter 701 in a measurement range of 20 ° C. to 50 ° C.
 第1の系を用いて出力するか、第2の系を用いて出力するかは(つまり、測定レンジは)、データ読み取り装置101の選択スイッチ(不図示)で、測定レンジを選択することで指示され、制御回路702からの信号に基づいてアナログスイッチ712、722を切り替えることにより制御される。より高精度、即ち0.01℃の温度分解能で、0.05℃以内の測定精度の体温測定を行う場合には、第2の系が選択されることとなる。 Whether to output using the first system or the second system (that is, the measurement range) is determined by selecting the measurement range with the selection switch (not shown) of the data reader 101. It is controlled by switching the analog switches 712 and 722 based on a signal from the control circuit 702. When performing body temperature measurement with higher accuracy, that is, with a temperature resolution of 0.01 ° C. and measurement accuracy within 0.05 ° C., the second system is selected.
 A/Dコンバータ701に入力された電圧Vb_avgは、A/Dコンバータ701においてA/D変換され、デジタルデータとして制御回路702に入力される。 The voltage Vb_avg input to the A / D converter 701 is A / D converted by the A / D converter 701 and input to the control circuit 702 as digital data.
 制御回路702に入力されたデジタルデータは、無線通信部202に送信される。 Digital data input to the control circuit 702 is transmitted to the wireless communication unit 202.
 なお、センサ部211より電圧Vb_avgが複数回出力される場合にあっては、それぞれのデジタルデータをメモリ703に一時的に格納し、制御回路702において、メモリ703に格納された全てのデジタルデータの平均値を算出した後に、無線通信部202に送信するようにしてもよい。 When the voltage Vb_avg is output from the sensor unit 211 a plurality of times, each digital data is temporarily stored in the memory 703, and all the digital data stored in the memory 703 is stored in the control circuit 702. After calculating the average value, it may be transmitted to the wireless communication unit 202.
 <8.過昇防止部の回路構成>
 次に、過昇防止部201の回路構成について説明する。図8は、過昇防止部201の回路構成を示す図である。
<8. Circuit configuration of excessive rise prevention unit>
Next, the circuit configuration of the excessive rise prevention unit 201 will be described. FIG. 8 is a diagram illustrating a circuit configuration of the excessive rise prevention unit 201.
 図8において、801及び802はスイッチであり、コントロール部205より温度上限信号が入力された場合に、処理部115内への電源の供給を停止するとともに、データ読み取り装置101へのデータの送信を停止する。 In FIG. 8, reference numerals 801 and 802 denote switches. When a temperature upper limit signal is input from the control unit 205, supply of power to the processing unit 115 is stopped and transmission of data to the data reading apparatus 101 is performed. Stop.
 なお、温度上限信号はコントロール部205において算出されたデジタルデータの値が、所定の値以下であった場合に、体温測定の精度に影響を与える状態になったと判断し、出力されるものとする。上述したように、RF-IDリーダ/ライタより過剰な電源が供給された場合、体温タグ113全体が発熱し、高精度な体温測定を行うことができなくなるからである。 The temperature upper limit signal is output when the digital data value calculated by the control unit 205 is less than or equal to a predetermined value, determining that the temperature measurement accuracy has been affected. . As described above, when excessive power is supplied from the RF-ID reader / writer, the whole body temperature tag 113 generates heat, and it becomes impossible to perform highly accurate body temperature measurement.
 このように、処理部115では、体温測定の精度に影響を与える状態となった場合に、処理を停止する。これにより、データ読み取り装置101において、誤った測定結果が表示されることを回避することが可能となる。 In this way, the processing unit 115 stops the processing when it enters a state that affects the accuracy of body temperature measurement. As a result, it is possible to avoid displaying an erroneous measurement result in the data reading apparatus 101.
 <9.体温計110の製造工程>
 次に体温計110の製造工程について説明する。図9は、体温計110の製造工程を示した図である。
<9. Manufacturing process of thermometer 110>
Next, the manufacturing process of the thermometer 110 will be described. FIG. 9 is a diagram illustrating a manufacturing process of the thermometer 110.
 図9に示すように、体温計110は、体温タグ製造工程と、校正工程と、後処理工程とに大別することができる。 As shown in FIG. 9, the thermometer 110 can be roughly divided into a body temperature tag manufacturing process, a calibration process, and a post-processing process.
 体温タグ製造工程では、アンテナ114が複数配列された帯状のベースシート901が、順次、半導体温度センサ実装装置911に搬送され、それぞれのアンテナ114に処理部115が電気的に接続される。これにより、体温タグ113が生成されることとなる。 In the body temperature tag manufacturing process, a band-shaped base sheet 901 in which a plurality of antennas 114 are arranged is sequentially conveyed to the semiconductor temperature sensor mounting device 911, and the processing unit 115 is electrically connected to each antenna 114. Thereby, the body temperature tag 113 will be produced | generated.
 校正工程では、体温タグ113が複数配列されたベースシート901が、順次、恒温槽912に搬送される。恒温槽912は、予め設定された温度、例えば37℃に管理された槽である。 In the calibration process, the base sheets 901 on which a plurality of body temperature tags 113 are arranged are sequentially conveyed to the thermostat 912. The constant temperature bath 912 is a bath managed at a preset temperature, for example, 37 ° C.
 恒温槽912の内部には、RF-IDリーダ/ライタ913が配置されており、各体温タグ113がRF-IDリーダ/ライタ913上を通過する際に所定の周波数、たとえば13.56MHzの電磁波により、各体温タグ113と通信を行う。 An RF-ID reader / writer 913 is disposed inside the thermostat 912, and each body temperature tag 113 is transmitted by an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz when passing over the RF-ID reader / writer 913. Communicate with each body temperature tag 113.
 具体的には、各体温タグ113におけるバンドギャップ電圧データを受信し、該受信したバンドギャップ電圧データを恒温槽912の温度とともに、校正データとして各体温タグ113の記憶部203に書き込む。なお、恒温槽912において、ベースシート901は充分に低速で搬送され、恒温槽912内の温度が体温タグ113に伝達され、温度が平衡状態になったうえで、RF-IDリーダ/ライタ913上を通過するように設計されているものとする。 Specifically, the band gap voltage data in each body temperature tag 113 is received, and the received band gap voltage data is written into the storage unit 203 of each body temperature tag 113 as calibration data together with the temperature of the thermostat 912. In the thermostat 912, the base sheet 901 is conveyed at a sufficiently low speed, the temperature in the thermostat 912 is transmitted to the body temperature tag 113, and the temperature reaches an equilibrium state, and then the RF-ID reader / writer 913 is It is designed to pass through.
 なお、図9の例では、恒温槽912は1つのみ配置されているが、恒温槽の数は1つに限られない。異なる温度、例えば32℃と42℃、もしくは32℃、36℃及び42℃に設定された複数の恒温槽を用意し、それぞれの温度における校正データを、各体温タグ113に書き込むように構成してもよい。 In addition, in the example of FIG. 9, only one thermostat 912 is disposed, but the number of thermostats is not limited to one. A plurality of thermostats set at different temperatures, for example, 32 ° C. and 42 ° C., or 32 ° C., 36 ° C. and 42 ° C. are prepared, and calibration data at each temperature is written to each temperature tag 113. Also good.
 さらに、複数の恒温槽を用意した場合にあっては、そのうちの1つの恒温槽を体温タグ113の検定用として用いるようにしてもよい。具体的には、校正データが書き込まれた体温タグ113を予め設定された温度に管理された恒温槽(検定用の恒温槽)に搬送し、体温タグ113よりバンドギャップ電圧データ及び校正データを受信する。そして、該電圧データ及び校正データに基づいて算出された温度と恒温槽の温度とを対比し、予め定められた誤差範囲にあるか否かを判定する。 Furthermore, when a plurality of thermostats are prepared, one of the thermostats may be used for testing the body temperature tag 113. Specifically, the body temperature tag 113 in which the calibration data is written is transported to a thermostat (temperature test chamber) controlled at a preset temperature, and band gap voltage data and calibration data are received from the body temperature tag 113. To do. Then, the temperature calculated based on the voltage data and the calibration data is compared with the temperature of the thermostatic chamber, and it is determined whether or not it is within a predetermined error range.
 後処理工程では、校正データが書き込まれた体温タグ113が複数配列されたベースシート901が、順次、フィルム重ね合わせ装置914に搬送される。フィルム重ね合わせ装置914では、それぞれの体温タグ113の処理部115を保温材(例えば、厚さ1mm程度のアルミ材や発泡性ポリウレタン等)により覆うとともに、ベースシート901の表裏面にフィルム111、112(半透過性で、厚さは100μm程度)を接着剤で貼り合わせる。また、裏面のフィルム112には、上述した粘着剤が塗布される。 In the post-processing step, the base sheet 901 in which a plurality of body temperature tags 113 in which calibration data is written is arranged is sequentially conveyed to the film superposing device 914. In the film superposing device 914, the processing unit 115 of each body temperature tag 113 is covered with a heat insulating material (for example, aluminum material having a thickness of about 1 mm, foaming polyurethane, or the like), and the films 111 and 112 are formed on the front and back surfaces of the base sheet 901. (Semi-permeable, thickness is about 100 μm) is bonded with an adhesive. Moreover, the adhesive mentioned above is applied to the film 112 on the back surface.
 フィルム重ね合わせ装置914においてフィルムが貼り合わされたベースシート901は、打ち抜き装置915に搬送され、体温タグ113ごとに切断されることで、体温計110が生成される。 The base sheet 901 on which the film is bonded in the film superimposing device 914 is conveyed to the punching device 915 and cut for each body temperature tag 113, so that the thermometer 110 is generated.
 <10.データ読み取り装置における体温データ算出処理>
 次に、データ読み取り装置101の信号処理部304において体温データを算出するための処理について説明する。図10は、信号処理部304において体温データを算出するための処理の内容を説明するための図である。
<10. Body temperature data calculation process in data reader>
Next, processing for calculating body temperature data in the signal processing unit 304 of the data reading apparatus 101 will be described. FIG. 10 is a diagram for explaining the content of processing for calculating body temperature data in the signal processing unit 304.
 信号処理部304では、基準となる半導体温度センサにおける、バンドギャップ電圧データと体温データとの対応関係を示すグラフ(関数)を、校正データに基づいて補正した後に、受信したバンドギャップ電圧データを代入することにより、体温データを導出する。 The signal processing unit 304 corrects the graph (function) indicating the correspondence between the band gap voltage data and the body temperature data in the reference semiconductor temperature sensor based on the calibration data, and then substitutes the received band gap voltage data. By doing so, body temperature data is derived.
 図10の10aは、1種類の温度に対応する1種類の校正データを受信した場合における補正処理を示す図である。図10の10aに示すように、1種類の温度に対応する1種類の校正データを受信した場合には、基準となる半導体温度センサにおける、バンドギャップ電圧データと体温データとの対応関係のオフセット値を調整する。具体的には、グラフ1001を全体として矢印方向に平行移動させ、グラフ1002を得る。 10a in FIG. 10 is a diagram showing a correction process when one type of calibration data corresponding to one type of temperature is received. As shown at 10a in FIG. 10, when one type of calibration data corresponding to one type of temperature is received, the offset value of the correspondence relationship between the band gap voltage data and the body temperature data in the semiconductor temperature sensor serving as a reference. Adjust. Specifically, the graph 1001 is translated in the direction of the arrow as a whole, and a graph 1002 is obtained.
 信号処理部304では、体温計110より受信した電圧データを、当該平行移動後のグラフ1002に代入することで、体温データを導出する。 The signal processing unit 304 derives body temperature data by substituting the voltage data received from the thermometer 110 into the graph 1002 after the parallel movement.
 図10の10bは、2種類の温度に対応する2種類の校正データを受信した場合における補正処理を示す図である。図10の10bに示すように、2種類の温度に対応する2種類の校正データを受信した場合には、当該2点を通る直線1011を算出し、これを半導体温度センサにおけるバンドギャップ電圧データと体温データとの対応関係を示すグラフとする。 10b in FIG. 10 is a diagram showing a correction process when two types of calibration data corresponding to two types of temperatures are received. As shown in 10b of FIG. 10, when two types of calibration data corresponding to two types of temperatures are received, a straight line 1011 passing through the two points is calculated, and this is calculated as band gap voltage data in the semiconductor temperature sensor. It is a graph showing the correspondence with body temperature data.
 信号処理部304では、体温計110より受信したバンドギャップ電圧データを、当該算出された直線に代入することで、体温データを導出する。 The signal processing unit 304 derives body temperature data by substituting the band gap voltage data received from the thermometer 110 into the calculated straight line.
 図10の10cは、3種類以上の温度に対応する3種類以上の校正データを受信した場合における補正処理を示す図である。図10の10cに示すように、3種類以上の温度に対応する3種類以上の校正データを受信した場合には、当該3点以上の点に基づいて、最小2乗法により回帰直線1021を算出し、これを半導体温度センサにおけるバンドギャップ電圧データと体温データとの対応関係を示すグラフとする。 10c of FIG. 10 is a diagram showing a correction process when three or more types of calibration data corresponding to three or more types of temperatures are received. As shown in 10c of FIG. 10, when three or more kinds of calibration data corresponding to three or more kinds of temperatures are received, a regression line 1021 is calculated by the least square method based on the three or more points. This is a graph showing the correspondence between the band gap voltage data and the body temperature data in the semiconductor temperature sensor.
 信号処理部304では、体温計110より受信したバンドギャップ電圧データを、当該算出された回帰直線1021に代入することで、体温データを算出する。 The signal processing unit 304 calculates the body temperature data by substituting the band gap voltage data received from the thermometer 110 into the calculated regression line 1021.
 以上の説明から明らかなように、本実施形態における体温計では、アンテナを備える貼り付け型の体温計として、半導体温度センサを適用する構成とした。 As is clear from the above description, the thermometer in the present embodiment is configured to apply a semiconductor temperature sensor as an affixed thermometer equipped with an antenna.
 また、半導体温度センサの適用にあたり、
・外気温度の影響を除去するために、処理部を保温材で覆う構成とした。
・半導体温度センサの個体差の影響を排除するため、センサ部において、複数の半導体温度センサを並列に接続する構成とした。
・測定誤差を排除するため、1回の体温測定に際して、センサ部に対して複数回電流を流し、その平均値を出力する構成とした。
・体温タグの個体差の影響を排除するため、体温タグ内の記憶部に体温タグごとに校正データを記憶しておき、データ読み取り装置により電圧データを送信する際に、合わせて校正データを送信する構成とした。
・体温タグの発熱により測定に誤差が生じる恐れがある場合には、過昇防止部が体温測定を中止し、誤った測定結果がデータ読み取り装置に表示されることがないように構成した。
In application of semiconductor temperature sensor,
-In order to remove the influence of the outside air temperature, the treatment part is covered with a heat insulating material.
In order to eliminate the influence of individual differences of the semiconductor temperature sensors, a plurality of semiconductor temperature sensors are connected in parallel in the sensor unit.
-In order to eliminate measurement errors, a current was passed through the sensor section a plurality of times and an average value was output during one body temperature measurement.
・ In order to eliminate the influence of individual differences in body temperature tags, calibration data is stored for each body temperature tag in the storage section of the body temperature tag, and when the voltage data is transmitted by the data reader, the calibration data is also transmitted. It was set as the structure to do.
・ If there is a risk of measurement errors due to the heat generated by the body temperature tag, the overheating prevention unit stops the body temperature measurement and the erroneous measurement result is not displayed on the data reader.
 この結果、特に、人体の体温測定の一般的な測定レンジである32~42℃において0.01℃の温度分解能を得ることで、測定精度が0.05℃以内の高精度な体温測定を実現することが可能となった。 As a result, a high-accuracy body temperature measurement with a measurement accuracy of 0.05 ° C or less is achieved by obtaining a temperature resolution of 0.01 ° C in 32 to 42 ° C, which is the general measurement range of human body temperature. It became possible to do.
 [第2の実施形態]
 上記第1の実施形態では、アンテナ内に処理部を配する構成としたが、本発明はこれに限られず、アンテナから延設された導線を介して、アンテナに処理部を接続するように構成してもよい。以下、本実施形態における体温測定システムについて説明する。なお、簡略化のため、説明は、主に上記第1の実施形態との相違点について行うものとする。
[Second Embodiment]
In the first embodiment, the processing unit is arranged in the antenna. However, the present invention is not limited to this, and the processing unit is connected to the antenna via a conductor extending from the antenna. May be. Hereinafter, the body temperature measurement system in the present embodiment will be described. For the sake of simplification, the description will mainly be made on differences from the first embodiment.
 <1.体温測定システムの外観構成>
 図11は、本発明の第2の実施形態における、半導体温度センサを含む無線タグ(RF-ID)が配された体温計(アンテナを備える貼り付け型の体温計)1110と、測定者によって携帯可能なデータ読み取り装置(携帯装置)1101とを備える体温測定システム1100の外観構成を示す図である。
<1. External configuration of body temperature measurement system>
FIG. 11 shows a thermometer (attached thermometer equipped with an antenna) 1110 provided with a wireless tag (RF-ID) including a semiconductor temperature sensor according to the second embodiment of the present invention, and portable by a measurer. It is a figure which shows the external appearance structure of the body temperature measurement system 1100 provided with the data reader (portable apparatus) 1101.
 図11に示すように、体温計1110は、機能的に3つの部位に区分することができる。第1の部位はアンテナ1114を備えるアンテナ部1120であり、第2の部位はアンテナ1114と処理部1116とを電気的に接続する導線1115が配された延設部1130であり、第3の部位は、処理部1116を備える体温測定部1140である。 As shown in FIG. 11, the thermometer 1110 can be functionally divided into three parts. The first part is an antenna part 1120 including an antenna 1114, and the second part is an extension part 1130 provided with a conducting wire 1115 that electrically connects the antenna 1114 and the processing part 1116, and a third part. Is a body temperature measurement unit 1140 including a processing unit 1116.
 アンテナ1114は、上記第1の実施形態において説明したアンテナ114と同一の構成、機能を有している。処理部1116は、第1の実施形態における処理部115と同一の構成、機能を有している。体温測定部1140は、第1の実施形態における処理部115と同一の構成、機能を有している。データ読み取り装置(携帯装置)1101もまた、第1の実施形態において説明したデータ読み取り装置101と同一の構成、機能を有している。 The antenna 1114 has the same configuration and function as the antenna 114 described in the first embodiment. The processing unit 1116 has the same configuration and function as the processing unit 115 in the first embodiment. The body temperature measurement unit 1140 has the same configuration and function as the processing unit 115 in the first embodiment. The data reading device (portable device) 1101 also has the same configuration and function as the data reading device 101 described in the first embodiment.
 アンテナ部1120を構成するアンテナ1114と、延設部1130を構成する導線1115と、体温測定部1140を構成する処理部1116とは、体温タグとしてベースシート上に一体的に構成されており、表面のフィルム1111と裏面のフィルム1112(半透過性で、厚さは100μm程度)との間に、固定されている。なお、以下では、ベースシート上に一体的に構成されたアンテナ1114と導線1115と処理部1116とを総称して体温タグ1113と称することとする。 The antenna 1114 constituting the antenna portion 1120, the conducting wire 1115 constituting the extending portion 1130, and the processing portion 1116 constituting the body temperature measuring portion 1140 are integrally formed on the base sheet as a body temperature tag, Between the film 1111 and the back film 1112 (semi-permeable, thickness is about 100 μm). Hereinafter, the antenna 1114, the conductive wire 1115, and the processing unit 1116 that are integrally formed on the base sheet are collectively referred to as a body temperature tag 1113.
 表面のフィルム1111及び裏面のフィルム1112のうちアンテナ部1120と延設部1130を構成するフィルム1112bは、ポリエーテルウレタンやポリエステルウレタンなどのウレタン系ポリマー、ポリエーテルポリアミドブロックポリマーなどのアミド系ポリマー、ポリアクリレートなどのアクリル系ポリマー、ポリエチレンやポリプロピレン、エチレン/酢酸ビニル共重合体などのポリオレフィン系ポリマー、ポリエーテルポリエステルなどのポリエステル系ポリマーなどの材料から得ることができる。 Of the film 1111 on the front surface and the film 1112 on the back surface, the film 1112b constituting the antenna portion 1120 and the extending portion 1130 is a urethane polymer such as polyether urethane or polyester urethane, an amide polymer such as polyether polyamide block polymer, poly It can be obtained from materials such as acrylic polymers such as acrylate, polyolefin polymers such as polyethylene, polypropylene, and ethylene / vinyl acetate copolymers, and polyester polymers such as polyether polyester.
 また、裏面のフィルム1112のうち、体温測定部1140を構成するフィルム1112aは皮膚面への貼り付け時にムレや白化などを生じないようにするために、水蒸気透過性を有する材質から選択することが好ましく、例えばウレタン系やアミド系のフィルムを用いることが好適である。なお、表面のフィルム1111、裏面のフィルム1112bは上記材料のうちの何れか一種からなるものであってもよいし、任意の材料からなるフィルムを複数枚積層した積層フィルムであってもよい。 In addition, among the films 1112 on the back surface, the film 1112a constituting the body temperature measuring unit 1140 can be selected from materials having water vapor permeability so as not to cause stuffiness or whitening when being applied to the skin surface. Preferably, for example, a urethane film or an amide film is used. The front film 1111 and the back film 1112b may be made of any one of the above materials, or may be a laminated film in which a plurality of films made of any material are laminated.
 裏面のフィルム1112aは皮膚面に貼付した際に、違和感を生じないようにするために、その厚みを10~100μm、好ましくは20~40μm程度にすることがよい。また、皮膚面に貼り付けした際の皮膚追従性を良好にするためには、引張強度を100~900kg/cm、100%モジュラスを10~100kg/cm程度に調整することが好ましい。この範囲に調整した裏面のフィルム1112aを用いると、動きの大きい皮膚面に貼付した際に効果的である。また、上記裏面のフィルム1112aとして、無孔フィルムだけでなく、水蒸気透過性であって非透水性である多孔性フィルムを用いることも、貼付中のムレの防止の点から効果的である。このようなフィルムの場合には、材質には特に制限はされず、公知の多孔化技術を施すことによって簡単に得ることができる。無孔性フィルムの場合にはフィルム厚が大きくなるほど水蒸気透過性は低下する傾向が顕著に現れるが、多孔性フィルムの場合には厚みに比例して水蒸気透過性の低下が顕著に現れないので有用である。 The thickness of the film 1112a on the back surface should be about 10 to 100 μm, preferably about 20 to 40 μm, so as not to give a sense of incongruity when it is applied to the skin surface. Further, in order to improve the skin followability when applied to the skin surface, it is preferable to adjust the tensile strength to 100 to 900 kg / cm 2 and the 100% modulus to about 10 to 100 kg / cm 2 . Use of the back film 1112a adjusted to this range is effective when affixed to a skin surface with large movement. Moreover, it is effective from the point of prevention of the stuffiness during sticking to use not only a non-porous film but the water-permeable porous film which is water-impermeable as the film 1112a of the said back surface. In the case of such a film, the material is not particularly limited, and can be easily obtained by applying a known porous technique. In the case of a non-porous film, the tendency for water vapor permeability to decrease as the film thickness increases appears significantly, but in the case of a porous film, the decrease in water vapor permeability does not appear in proportion to the thickness, which is useful. It is.
 裏面のフィルム1112aには、粘着剤が塗布されており、体温計1110を、被検者の体表面の適所の測定部位に直接、貼り付けることができるように構成されている。粘着剤は、通常の医療用グレードとして用いられるものであればいずれを用いてもよく、例えばアクリル系粘着剤、ポリウレタン系粘着剤、天然ゴム又は合成ゴム系粘着剤、医用高分子を主成分とする溶剤系、水系、ホットメルト系、ドライブレンド系の粘着剤があげられる。ただし放射線滅菌特に強度のガンマー線照射滅菌が必要な場合にはアクリル系粘着剤やポリウレタン系粘着剤の使用は避けた方が望ましい。これらは放射線照射による粘着力の低下を招くおそれがあるからである。 The adhesive film is applied to the film 1112a on the back surface, and the thermometer 1110 can be directly attached to an appropriate measurement site on the body surface of the subject. Any adhesive can be used as long as it is used as a normal medical grade. For example, an acrylic adhesive, a polyurethane adhesive, a natural rubber or a synthetic rubber adhesive, and a medical polymer as a main component. Solvent-based, water-based, hot-melt-based, and dry blend-based pressure-sensitive adhesives. However, it is desirable to avoid the use of acrylic adhesives and polyurethane adhesives when radiation sterilization, especially intense gamma irradiation sterilization, is required. This is because there is a risk of lowering the adhesive strength due to irradiation.
 また、表面のフィルム1111と裏面のフィルム1112aは、いずれも柔軟性があり、体温計1110を被検者の測定部位に貼り付けた際に、測定部位の形状に沿って変形できるようになっている。このように、処理部1116が測定部位に密着して固定されることにより、体温計1110は、被検者の体温を正確に検出することができる。 Moreover, the film 1111 on the front surface and the film 1112a on the back surface are both flexible, and can be deformed along the shape of the measurement site when the thermometer 1110 is attached to the measurement site of the subject. . In this way, the thermometer 1110 can accurately detect the body temperature of the subject by fixing the processing unit 1116 in close contact with the measurement site.
 なお、体温タグ1113を構成するアンテナ1114と導線1115と処理部1116のうち、処理部1116は、保温材(例えば、厚さ1mm程度のアルミ材)により覆われているものとする。これにより、外気温度(環境温)の影響を除去することができる。 Of the antenna 1114, the conductive wire 1115, and the processing unit 1116 constituting the body temperature tag 1113, the processing unit 1116 is covered with a heat insulating material (for example, an aluminum material having a thickness of about 1 mm). Thereby, the influence of outside temperature (environment temperature) can be removed.
 一方、データ読み取り装置1101は、RF-IDリーダ/ライタを備えており、体温タグ113に近づけた際に、例えば体温データ読み取り開始スイッチ(不図示)を押すことで、所定の周波数、例えば13.56MHzの電磁波が発生し、体温タグ1113との間で磁気結合し、体温タグ1113の処理部115に含まれる電源回路への電力供給と、体温タグ1113からのデータの受信とを行う。 On the other hand, the data reading device 1101 includes an RF-ID reader / writer. When the data reading device 1101 approaches the body temperature tag 113, for example, by pressing a body temperature data reading start switch (not shown), a predetermined frequency, for example, 13.2. A 56 MHz electromagnetic wave is generated and magnetically coupled with the body temperature tag 1113, and power is supplied to the power supply circuit included in the processing unit 115 of the body temperature tag 1113 and data is received from the body temperature tag 1113.
 <2.体温測定システムにおける体温測定方法>
 次に、体温測定システム1100における体温測定方法について説明する。図12は、体温計1110の体温測定部1140を被検者1150の体温測定部位の適所の1つである腋下に装着した様子を示している。本実施形態における体温計1110では、体温測定部1140とアンテナ部1120とが、延設部1130を介して接続された構成となっているため、体温測定部1140が被検者1150の腋下に装着された状態においても、アンテナ部1120を、被検者1150の腋下から離れた位置に配置させることができる。
<2. Body temperature measurement method in body temperature measurement system>
Next, a body temperature measurement method in the body temperature measurement system 1100 will be described. FIG. 12 shows a state in which the body temperature measurement unit 1140 of the thermometer 1110 is attached to the armpit, which is one of the appropriate positions of the body temperature measurement site of the subject 1150. In the thermometer 1110 according to the present embodiment, the body temperature measuring unit 1140 and the antenna unit 1120 are connected via the extending portion 1130, so that the body temperature measuring unit 1140 is attached to the armpit of the subject 1150. Even in this state, the antenna unit 1120 can be disposed at a position away from the armpit of the subject 1150.
 このため、測定者1160がデータ読み取り装置1101を近づけた際に、例えば体温データ読取り開始スイッチ(不図示)を押すことで、所定の周波数、例えば13.56MHzの電磁波が発生させて体温タグ1113との間で簡単かつ確実に磁気結合させることができる。つまり、アンテナを備える貼り付け型の体温計の場合に生じうる読み取りエラーの問題を未然に防ぐことが可能となる。 For this reason, when the measurer 1160 brings the data reading device 1101 close, for example, by pressing a body temperature data reading start switch (not shown), an electromagnetic wave having a predetermined frequency, for example, 13.56 MHz is generated, and the body temperature tag 1113 Can be magnetically coupled easily and reliably. That is, it is possible to prevent the problem of reading error that may occur in the case of a pasted thermometer equipped with an antenna.
 <3.体温計1110の製造工程>
 次に体温計1110の製造工程について説明する。図13は、体温計1110の製造工程を示した図である。なお、体温計1110の製造工程は、体温タグ1113の形状が異なること以外は、図9と同じであるため、ここでは説明を省略する。
<3. Manufacturing process of thermometer 1110>
Next, the manufacturing process of the thermometer 1110 will be described. FIG. 13 is a diagram showing a manufacturing process of the thermometer 1110. The manufacturing process of the thermometer 1110 is the same as that shown in FIG. 9 except that the shape of the body temperature tag 1113 is different, and thus the description thereof is omitted here.
 以上の説明から明らかなように、本実施形態によれば、特に人体の体温測定の一般的な測定レンジである32~42℃において0.01℃の温度分解能を得ることで、測定精度が0.05℃以内の高精度な体温測定を実現することが可能となるとともに、アンテナを備える貼り付け型の体温計から、確実にデータを読み取ることが可能となった。 As is apparent from the above description, according to the present embodiment, the measurement accuracy is 0 by obtaining a temperature resolution of 0.01 ° C. in 32 to 42 ° C., which is a general measurement range of human body temperature. It became possible to achieve highly accurate body temperature measurement within 0.05 ° C, and to reliably read data from an attached thermometer equipped with an antenna.
 [第3の実施形態]
 上記第2の実施形態では、アンテナ部1120と延設部1130と体温測定部1140とを同一平面上に配する形状としたが、本発明はこれに限定されず、例えば、アンテナ部1120と延設部1130とを、体温測定部1140に対して垂直に配する形状としてもよい。
[Third Embodiment]
In the second embodiment, the antenna unit 1120, the extending unit 1130, and the body temperature measuring unit 1140 are arranged on the same plane. However, the present invention is not limited to this. It is good also as a shape which distributes the installation part 1130 perpendicularly | vertically with respect to the body temperature measurement part 1140.
 また、上記第1の実施形態では、アンテナ部1120と延設部1130と体温測定部1140とを左右対称に配置する形状としたが、本発明はこれに限定されず、例えば、アンテナ部1120と延設部1130とを、体温測定部1140に対して非対称に配置する形状としてもよい。 Moreover, in the said 1st Embodiment, although it was set as the shape which arrange | positions the antenna part 1120, the extension part 1130, and the body temperature measurement part 1140 symmetrically, this invention is not limited to this, For example, the antenna part 1120 and The extending portion 1130 may have a shape that is asymmetrically arranged with respect to the body temperature measuring portion 1140.
 また、いずれの場合も、体温測定部1140は、貼り付けられる被検者の測定部位に適した形状・大きさであることが望ましい。更に、体温測定部1140が被検者の測定部位に貼り付けられた状態で、アンテナ部1120が、データ読み取り装置1101との間で確実に磁気結合できる位置に配置されるように、延設部1130及びアンテナ部1120の形状・大きさが決定されることが望ましい。 In any case, it is desirable that the body temperature measurement unit 1140 has a shape and size suitable for the measurement site of the subject to be pasted. Further, the extension unit is arranged so that the antenna unit 1120 can be securely magnetically coupled to the data reader 1101 in a state where the body temperature measurement unit 1140 is attached to the measurement site of the subject. It is desirable that the shapes and sizes of the 1130 and the antenna unit 1120 be determined.
 [第4の実施形態]
 上記第1の実施形態では、コントロール部205において算出されたデジタルデータの値が所定の値以下であった場合に、体温測定の精度に影響を与える状態になったと判断し、過昇防止部201のスイッチをOFFすることで、処理部115による処理を停止する構成としたが、本発明はこれに限定されない。
[Fourth Embodiment]
In the first embodiment, when the value of the digital data calculated by the control unit 205 is less than or equal to a predetermined value, it is determined that the temperature measurement accuracy has been affected, and the overheating prevention unit 201 is determined. Although the processing by the processing unit 115 is stopped by turning off the switch, the present invention is not limited to this.
 例えば、アンテナ114を介して供給された電源電圧が所定の電圧値以上になった場合には、処理部115が、測定精度に影響を与える状態になったと判断し、強制的にスイッチをOFFするように構成してもよい。 For example, when the power supply voltage supplied via the antenna 114 exceeds a predetermined voltage value, the processing unit 115 determines that the measurement accuracy is affected and forcibly turns off the switch. You may comprise as follows.
 また、上記第1の実施形態では、センサ部211において並列接続した半導体温度センサの数について具体的に言及しなかったが、例えば、8個程度の半導体温度センサを並列接続することが望ましい。並列接続する半導体温度センサの数が少ないと、個体差の影響が大きくなり測定精度が低下する一方で、半導体温度センサの数が多すぎると、発熱による誤差の影響が大きくなるからである。 In the first embodiment, the number of semiconductor temperature sensors connected in parallel in the sensor unit 211 is not specifically mentioned. For example, it is desirable to connect approximately eight semiconductor temperature sensors in parallel. This is because if the number of semiconductor temperature sensors connected in parallel is small, the influence of individual differences increases and the measurement accuracy decreases, while if the number of semiconductor temperature sensors is too large, the influence of errors due to heat generation increases.
 また、上記第1の実施形態では、体温計110からデータ読み取り装置101に対して、電圧データと校正データと識別情報とを送信する構成としたが、本発明はこれに限定されない。例えば、測定レンジを切り替えた場合には、切り替えた後の測定レンジに関する情報を送信するように構成してもよい。この場合、データ読み取り装置101では、受信した測定レンジに関する情報も考慮して、体温データを算出することとなる。 In the first embodiment, the thermometer 110 transmits voltage data, calibration data, and identification information to the data reading device 101. However, the present invention is not limited to this. For example, when the measurement range is switched, information regarding the measurement range after switching may be transmitted. In this case, the data reading apparatus 101 calculates the body temperature data in consideration of the received information regarding the measurement range.
 また、測定レンジの切り替えを、データ読み取り装置101からの指示に基づいて行うように構成してもよい。この場合、データ読み取り装置101では、指示した測定レンジを考慮して、体温データを算出することとなる。 Further, the measurement range may be switched based on an instruction from the data reading device 101. In this case, the data reading apparatus 101 calculates body temperature data in consideration of the instructed measurement range.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2009年2月25日提出の日本国特許出願特願2009-043071を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2009-043071 filed on Feb. 25, 2009, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  アンテナ部と処理部とを備える体温タグと、
     被検者の体表面に貼り付け可能に構成される裏面フィルムと、
     前記処理部を覆う保温材と、
     前記保温材で覆われた前記体温タグを、前記裏面フィルムとの間で挟む表面フィルムと、を備える体温計であって、
     前記処理部は、
      前記アンテナ部に接続され、該アンテナ部における誘導起電力の発生に伴って起動される電源回路と、
      P型とN型の2種類の半導体が結合され、該2種類の半導体の結合部に電流を流した場合のバンドギャップ電圧を検出する半導体温度センサが、2個以上並列に接続された検出手段と、
      前記検出手段により検出されるバンドギャップ電圧を校正するための校正データを記憶する記憶手段と、を備え、
      前記電源回路の起動に伴って、前記検出手段により検出されたバンドギャップ電圧を、前記校正データとともに、前記アンテナ部を介して送信することを特徴とする体温計。
    A body temperature tag including an antenna unit and a processing unit;
    A back film configured to be capable of being attached to the body surface of the subject; and
    A heat insulating material covering the processing section;
    A thermometer comprising a surface film sandwiched between the body temperature tag covered with the heat insulating material and the back film,
    The processor is
    A power supply circuit connected to the antenna unit and activated in response to generation of an induced electromotive force in the antenna unit;
    Detection means in which two or more semiconductor temperature sensors for detecting a band gap voltage when two types of semiconductors of P-type and N-type are coupled and current is passed through the coupling portion of the two types of semiconductors are connected in parallel When,
    Storage means for storing calibration data for calibrating the band gap voltage detected by the detection means,
    A thermometer that transmits the band gap voltage detected by the detection means together with the calibration data via the antenna unit when the power supply circuit is activated.
  2.  前記処理部は、前記アンテナ部から延設された導線を介して、該アンテナ部に接続されていることを特徴とする請求項1に記載の体温計。 The thermometer according to claim 1, wherein the processing unit is connected to the antenna unit via a conductive wire extending from the antenna unit.
  3.  請求項1または2のいずれかに記載の体温計と、該体温計と磁気結合する携帯装置とを備える体温測定システムであって、
     前記携帯装置は、
     前記アンテナ部を介して送信された校正データに基づいて、バンドギャップ電圧と温度との対応関係を示す関数を算出する算出手段と、
     前記算出手段により算出された関数に、前記アンテナ部を介して送信されたバンドギャップ電圧を代入することにより、前記被検者の体温データを導出する導出手段と
     前記導出された体温データを格納する格納手段と、
     を備えることを特徴とする体温測定システム。
    A body temperature measurement system comprising the thermometer according to claim 1 and a portable device magnetically coupled to the thermometer,
    The portable device is:
    Based on calibration data transmitted through the antenna unit, a calculation unit that calculates a function indicating a correspondence relationship between the band gap voltage and the temperature;
    By substituting the band gap voltage transmitted via the antenna unit into the function calculated by the calculating means, the derivation means for deriving the body temperature data of the subject and the derived body temperature data are stored. Storage means;
    A body temperature measurement system comprising:
PCT/JP2010/000968 2009-02-25 2010-02-17 Medical thermometer and body temperature measurement system WO2010098040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800080947A CN102317746A (en) 2009-02-25 2010-02-17 Medical thermometer and body temperature measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009043071A JP5399740B2 (en) 2009-02-25 2009-02-25 Thermometer and body temperature measurement system
JP2009-043071 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010098040A1 true WO2010098040A1 (en) 2010-09-02

Family

ID=42665257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000968 WO2010098040A1 (en) 2009-02-25 2010-02-17 Medical thermometer and body temperature measurement system

Country Status (3)

Country Link
JP (1) JP5399740B2 (en)
CN (1) CN102317746A (en)
WO (1) WO2010098040A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061891B2 (en) * 2007-11-29 2011-11-22 Youn-Jan Lin Adhesive thermometer
CN102525429A (en) * 2010-11-05 2012-07-04 西铁城控股株式会社 Temperature measuring device
AT518718A1 (en) * 2016-06-14 2017-12-15 Ait Austrian Inst Tech Gmbh Temperature measuring device
JP2023026325A (en) * 2021-08-13 2023-02-24 キストラー ホールディング アクチエンゲゼルシャフト System for chip-removing machining of workpiece and for measuring and evaluating force and torque during chip-removing machining of workpiece

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786533B2 (en) * 2010-09-24 2015-09-30 株式会社村田製作所 Wireless thermometer and wireless thermometer measurement system
JP5562212B2 (en) * 2010-11-05 2014-07-30 シチズンホールディングス株式会社 Temperature measuring device
CN104504435A (en) * 2014-12-11 2015-04-08 杭州浙港智能科技有限公司 Body temperature measuring radio frequency tag applied to body surface of human body
CN105046314A (en) * 2015-07-22 2015-11-11 杭州浙港智能科技有限公司 NFC (near field communication) radio-frequency protocol based body temperature detection tag applied to human body surface and temperature measurement method for body temperature detection tag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340757A (en) * 1991-05-17 1992-11-27 Fujitsu Ltd Temperature detecting system for electronic device
JP2001004453A (en) * 1999-06-21 2001-01-12 Atsuo Morikawa Automatic thermometry system
JP2001059776A (en) * 1999-08-24 2001-03-06 Funai Electric Co Ltd Temperature detector and disk recorder
JP2001508216A (en) * 1997-11-10 2001-06-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Generator that generates a voltage proportional to absolute temperature
JP2003270051A (en) * 2002-03-20 2003-09-25 Sakano Kazuhito Temperature measuring apparatus and method therefor
JP2006125902A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Semiconductor integrated circuit apparatus and noncontact electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3735835B2 (en) * 1999-11-12 2006-01-18 株式会社山武 Integrated circuit device and calibration method
KR100560652B1 (en) * 2003-01-14 2006-03-16 삼성전자주식회사 Temperature detection circuit independent of power supply and temperature variation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340757A (en) * 1991-05-17 1992-11-27 Fujitsu Ltd Temperature detecting system for electronic device
JP2001508216A (en) * 1997-11-10 2001-06-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Generator that generates a voltage proportional to absolute temperature
JP2001004453A (en) * 1999-06-21 2001-01-12 Atsuo Morikawa Automatic thermometry system
JP2001059776A (en) * 1999-08-24 2001-03-06 Funai Electric Co Ltd Temperature detector and disk recorder
JP2003270051A (en) * 2002-03-20 2003-09-25 Sakano Kazuhito Temperature measuring apparatus and method therefor
JP2006125902A (en) * 2004-10-27 2006-05-18 Hitachi Ltd Semiconductor integrated circuit apparatus and noncontact electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061891B2 (en) * 2007-11-29 2011-11-22 Youn-Jan Lin Adhesive thermometer
CN102525429A (en) * 2010-11-05 2012-07-04 西铁城控股株式会社 Temperature measuring device
AT518718A1 (en) * 2016-06-14 2017-12-15 Ait Austrian Inst Tech Gmbh Temperature measuring device
AT518718B1 (en) * 2016-06-14 2018-05-15 Ait Austrian Inst Tech Gmbh Temperature measuring device
JP2023026325A (en) * 2021-08-13 2023-02-24 キストラー ホールディング アクチエンゲゼルシャフト System for chip-removing machining of workpiece and for measuring and evaluating force and torque during chip-removing machining of workpiece

Also Published As

Publication number Publication date
CN102317746A (en) 2012-01-11
JP2010197244A (en) 2010-09-09
JP5399740B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5358332B2 (en) Body temperature measurement system, data reader, and drive control method thereof
WO2010098040A1 (en) Medical thermometer and body temperature measurement system
US20130053661A1 (en) System for enabling reliable skin contract of an electrical wearable device
CN102326060B (en) Zero heat flux sensor and method of use
JP5284823B2 (en) Thermometer and body temperature measurement system
US20060122473A1 (en) Wireless patch temperature sensor system
JP5864884B2 (en) Measuring apparatus and measuring method
JP2007209428A (en) Instrument and system for measuring biological information
JP5284824B2 (en) Body temperature tag
JP2012007963A (en) Wireless thermometer and wireless body temperature measurement system
WO2003078948A1 (en) Temperature measuring device and temperature measuring method
US20180184902A1 (en) Wearable patch for patient monitoring
KR20160120396A (en) Patch type thermometer, and system and method for real-time measuring body temperature using the same
JP5232687B2 (en) Thermometer manufacturing method
JPWO2017183709A1 (en) Deep thermometer
CN101596102A (en) A kind of quick measurement ear thermometer and measuring method thereof
ES2643378T3 (en) Compression fitting
US11828662B2 (en) Electronic device
JP2010223743A (en) Sticking type clinical thermometer and device for measuring/managing temperature using sticking type clinical thermometer
EP3201891A1 (en) Interrupt detection for physiological sensor
CN209951234U (en) Detection system
JP5562212B2 (en) Temperature measuring device
JP2010223744A (en) Sticking type clinical thermometer and device for measuring/managing temperature using the same
JP6962464B2 (en) Stick-on type deep thermometer
WO2019111764A1 (en) Body temperature thermometer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008094.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745927

Country of ref document: EP

Kind code of ref document: A1