WO2010097047A1 - 二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法 - Google Patents

二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法 Download PDF

Info

Publication number
WO2010097047A1
WO2010097047A1 PCT/CN2010/070755 CN2010070755W WO2010097047A1 WO 2010097047 A1 WO2010097047 A1 WO 2010097047A1 CN 2010070755 W CN2010070755 W CN 2010070755W WO 2010097047 A1 WO2010097047 A1 WO 2010097047A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorption
heat pump
reactor
solution
Prior art date
Application number
PCT/CN2010/070755
Other languages
English (en)
French (fr)
Inventor
苏庆泉
Original Assignee
北京联力源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京联力源科技有限公司 filed Critical 北京联力源科技有限公司
Priority to CN201080018322.9A priority Critical patent/CN102413901B/zh
Publication of WO2010097047A1 publication Critical patent/WO2010097047A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a carbon dioxide separation and recovery technology in the fields of chemical engineering and environmental engineering, in particular to a carbon dioxide compression device and method, and a separation and recovery system and method for effectively removing carbon dioxide from flue gas. Background technique
  • C0 2 The massive emissions of greenhouse gases such as C0 2 are an important cause of global climate change. Therefore, the issue of C0 2 emissions has caused great concern in the international community.
  • C0 2 emissions from fossil fuel combustion one is to improve energy efficiency, and the other is to separate co 2 from combustion flue gas and use, store or store it.
  • the ammonia flue is used to spray the flue gas of the boiler of the thermal power station to absorb C0 2 , which can not only achieve the purpose of reducing CO 2 , but also obtain high quality fertilizer.
  • ammonium bicarbonate decomposes into ammonia, water and co 2 at an ambient temperature higher than 60 ° C, causing C0 2 to return to the atmosphere, the application of this CO 2 emission reduction method needs further study.
  • the removal technology of C0 2 is also a CaO carbonation-calcination cycle C0 2 separation (CCR) technique, a polymer membrane removal C0 2 , a 0 2 /C0 2 cycle combustion technique, and a chemical chain combustion (CLC) technique.
  • CCR CaO carbonation-calcination cycle C0 2 separation
  • CLC chemical chain combustion
  • C0 2 In the removal technique of C0 2 , a very important method is to remove C0 2 by solution absorption. According to the different properties of the absorbent, it can be divided into two categories. One type is a physical absorption method such as a water washing method, a low temperature methanol washing method (Rectisol), a polyethylene glycol dimethyl ether method (Selexol), and a propylene carbonate method. The other type is chemical absorption methods, such as hot potash method, low heat consumption Benfir method, activated MDEA method, MEA method, and the like. The above C0 2 removal technology is very mature, and industrialization has already been realized in the chemical industry.
  • a physical absorption method such as a water washing method, a low temperature methanol washing method (Rectisol), a polyethylene glycol dimethyl ether method (Selexol), and a propylene carbonate method.
  • the other type is chemical absorption methods, such as hot potash method, low heat consumption Benfir method, activate
  • the energy consumption for separating and recovering carbon dioxide from combustion flue gas by the conventional chemical absorption method is as high as 750 to 900 kcal/kg-C0 2 , so the operation cost of separation and recovery is very high.
  • the liquefaction of gaseous carbon dioxide is usually a process of condensing after secondary or tertiary compression. Since the compression of carbon dioxide in the process is carried out by a compressor, the power consumption is very large. Summary of the invention
  • An object of the present invention is to provide a carbon dioxide compression apparatus and method which solves the technical problem of utilizing waste heat to compress carbon dioxide gas, thereby effectively utilizing waste heat and improving energy utilization efficiency.
  • Another object of the present invention is to provide a low-energy carbon dioxide separation and recovery system and a separation and recovery method.
  • the technical problem to be solved is that it can remove carbon dioxide from the flue gas and reduce the amount of carbon dioxide emitted into the atmosphere. Compressing the separated carbon dioxide gas to obtain high-pressure carbon dioxide is beneficial to the storage and transportation of carbon dioxide, thereby contributing to environmental protection.
  • a carbon dioxide compression device comprises: an absorption reactor, a regeneration reactor, a booster pump and a throttle valve, wherein the absorption reactor is filled with a carbon dioxide absorbing solution for absorbing carbon dioxide gas; a regeneration reactor for decomposing the carbon dioxide absorption solution from the absorption reactor out of the carbon dioxide gas; the booster pump is for pressurizing and transporting the carbon dioxide absorption solution in the absorption reactor to the regeneration reactor; a pressure difference between the absorption reactor and the regeneration reactor on the pipeline flowing from the regeneration reactor to the absorption reactor; and a heat exchanger for outputting the absorption heat of the absorption reaction in the absorption reactor; A heat exchanger is provided in the regeneration reactor for providing regenerative heat of the regeneration reaction.
  • the present invention also proposes a carbon dioxide compression system comprising a plurality of stages of the above-described carbon dioxide compression apparatus, wherein the absorption reactor of the latter stage compression unit is connected to the regeneration reactor of the previous stage compression unit.
  • the system further includes a condenser coupled to the regeneration reactor of the last stage carbon dioxide compression unit for condensing the carbon dioxide gas from the regeneration reactor.
  • the invention also proposes a carbon dioxide compression system comprising a compression subsystem and a heat pump subsystem: the compression subsystem comprises one or more stages of series compression devices, each stage of compression device
  • the invention comprises: an absorption reactor for absorbing carbon dioxide gas; a regeneration reactor for decomposing the absorption solution from the absorption reactor out of the carbon dioxide gas; in the compression subsystem, the carbon dioxide absorption reactor of the latter stage compression device is connected to the front a regeneration reactor of the primary compression device; a regeneration reactor of the final primary compression device is coupled to a condenser;
  • the heat pump subsystem includes: a heat pump generator filled with a first heat pump absorption solution, the heat pump generator a heat exchanger for receiving heat absorption from the absorption reactor; a heat pump absorber filled with a second heat pump absorption solution, and an absorption heat exchanger disposed in the heat pump absorber for regeneration to the above a reactor heating; a steam passage connecting the heat pump generator and the heat pump absorber; the first heat pump absorption solution and the second heat pump ab
  • the second heat pump absorbs the absorbent concentration of the solution.
  • the concentration of the absorbent is higher than that of the first heat pump absorption solution;
  • the working medium is one of water, ammonia, methanol and ethanol or a mixture of several substances;
  • the absorbent is LiBr, NaBr, KBr, Li 4 Br , MgBr 2 , CaBr 2 , Lil, Nal, KI, NHJ, Mgl 2 , Cal 2 , LiCl, NaCl, KC1, NH 4 C1, MgCl 2 , CaCl 2 , LiN0 3 , NaN0 3 , KN0 3 , NH4N0 3 , Mg (N0 3 ) ⁇ P Ca (N0 3 ) 2 one or a mixture of several substances;
  • the heat exchanger is connected to a heat exchanger in the absorption reactor of the above-mentioned stages, and the absorption heat exchanger
  • the carbon dioxide compression system according to the embodiment of the present invention further comprises an absorbent crystallizer, which receives the heat pump absorption solution from the heat pump absorber and/or the heat pump generator and cools to form an absorption crystallization and a crystallization heat pump absorption solution.
  • the post-crystallization heat pump absorption solution is sent to the heat pump generator as a first heat pump absorption solution, and the absorption solution containing the absorbent crystals is sent to the heat pump absorber as a second heat pump absorption solution.
  • the carbon dioxide compression system according to the embodiment of the present invention further comprises a heat pump absorption solution from the heat exchanger, the heat pump absorption solution from the heat pump generator and/or the heat pump absorption solution from the heat pump absorber, and crystallization.
  • the post-absorption solution and/or the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • the heat pump generator is further provided with a generating heater for heating the first heat pump absorbing solution in the heat pump generator.
  • the invention also proposes a carbon dioxide separation and recovery system, comprising a separation subsystem and a compressor System and heat pump subsystem:
  • the separation subsystem includes: an absorption tower for absorbing carbon dioxide from a carbon dioxide-containing gas; a regeneration tower for regenerating a carbon dioxide absorbing solution; and the compression subsystem including one or more stages of series compression Apparatus, each stage of compression apparatus comprising: an absorption reactor for absorbing carbon dioxide gas from the separation subsystem; a regeneration reactor for decomposing the absorption solution from the absorption reactor out of carbon dioxide gas; in the compression subsystem, the latter
  • the carbon dioxide absorption reactor of the stage compression device is connected to the regeneration reactor of the previous stage compression device; the carbon dioxide absorption reactor of the first stage compression device is connected to the separation subsystem for receiving carbon dioxide gas; and the regeneration reaction of the final stage compression device
  • the heat pump subsystem includes: a heat pump generator filled with a first heat pump absorption solution, and a first heat exchanger and a second heat exchanger are disposed in the heat pump generator
  • potassium hydroxide monoethanolamine, diethanolamine, methyldiethanolamine, aminoacetic acid, propylene carbonate, polyethylene glycol dimethyl ether, or two or two of them are used in the absorption reactor.
  • the above mixture is used to absorb carbon dioxide.
  • the present invention also provides a carbon dioxide compression method comprising the steps of: reacting carbon dioxide gas with a carbon dioxide absorbing solution to form a carbonic acid compound in an absorption reactor; pressurizing and delivering the above carbonic acid compound to a regeneration reactor; In the middle, the carbonic acid compound from the absorption reactor is thermally decomposed to generate a carbon dioxide gas and a carbon dioxide absorption solution; and the carbon dioxide absorption solution generated in the regeneration reactor is depressurized and sent to the absorption reactor.
  • the object of the present invention and solving the technical problems thereof can also be achieved by the following technical solutions.
  • the invention also provides a carbon dioxide compression method comprising a multi-stage series compression process, each stage of the compression process comprising: in the absorption reactor, the carbon dioxide gas is absorbed by the carbon dioxide absorption solution; The carbon dioxide absorbing solution after absorbing the carbon dioxide is pressurized and sent to the regeneration reactor; in the regeneration reactor, the carbon dioxide absorbing solution from the absorption reactor is heated to generate a carbon dioxide gas and a carbon dioxide absorbing solution; and the regeneration reactor is generated The carbon dioxide absorbing solution is decompressed and sent to the absorption reactor; in addition to the first compression process, during the other compression process, the carbon dioxide gas entering the absorption reactor is the carbon dioxide gas generated by the regeneration reactor of the previous stage compression process. .
  • it also includes condensing carbon dioxide gas generated in the regeneration reactor in the final stage of the compression process to form a carbon dioxide liquid.
  • the present invention also provides a carbon dioxide compression method comprising the steps of: in the absorption reactor, the carbon dioxide gas is absorbed by the carbon dioxide absorption solution; the carbon dioxide absorption solution after the absorption of the carbon dioxide gas is sent to the regeneration reactor; Wherein, the carbon dioxide absorbing solution from the absorption reactor is heated to generate a carbon dioxide gas and a regenerated carbon dioxide absorbing solution; and the regenerated carbon dioxide absorbing solution generated in the regeneration reactor is sent to the absorption reactor.
  • the invention also provides a carbon dioxide compression method comprising a multi-stage series compression process, each stage compression process comprising: in the absorption reactor, the carbon dioxide gas is absorbed by the carbon dioxide absorption solution; and the carbon dioxide absorption solution after the absorption of the carbon dioxide is pressurized Conveyed into the regeneration reactor; in the regeneration reactor, the carbon dioxide absorption solution from the absorption reactor is heated to generate carbon dioxide gas and regenerated carbon dioxide absorption solution; and the regenerated carbon dioxide absorption solution generated in the regeneration reactor is decompressed and delivered to In the absorption reactor; in addition to the first stage compression process, in other compression processes, the carbon dioxide gas entering the absorption reactor is the carbon dioxide gas produced by the regeneration reactor of the previous stage compression process.
  • the aforementioned carbon dioxide compression method condenses carbon dioxide gas generated in the regeneration reactor of the final stage compression process to form a carbon dioxide liquid.
  • the carbon dioxide compression method described above further includes: a heat pump cycle process, wherein the heat pump cycle process comprises: in the absorption reactor, the absorption heat released by the carbon dioxide gas absorbed by the carbon dioxide absorption solution is used for heating The first heat pump absorbs the solution to generate working fluid vapor; and the working fluid vapor is sent to the heat pump absorber and absorbed by the second heat pump absorption solution in the heat pump absorber to release the absorbed heat, which is absorbed by the heat pump. It is sent to the regeneration reactor for heating the carbon dioxide absorbing solution in the regeneration reactor.
  • the heat pump cycle process comprises: in the absorption reactor, the absorption heat released by the carbon dioxide gas absorbed by the carbon dioxide absorption solution is used for heating The first heat pump absorbs the solution to generate working fluid vapor; and the working fluid vapor is sent to the heat pump absorber and absorbed by the second heat pump absorption solution in the heat pump absorber to release the absorbed heat, which is absorbed by the heat pump. It is sent to the regeneration reactor for heating the carbon dioxide absorbing solution in the
  • the invention also provides a carbon dioxide separation and recovery method for separating and recovering carbon dioxide from a carbon dioxide-containing feed gas gas, the method comprising a carbon dioxide separation process and carbon dioxide compression
  • the carbon dioxide separation process comprises: contacting the raw material gas with the carbon dioxide absorption solution in the absorption tower, so that the carbon dioxide absorption solution absorbs the carbon dioxide in the raw material gas; and the carbon dioxide absorption solution after the absorption of the carbon dioxide is output to the regeneration tower and heated to be heated.
  • the carbon dioxide absorbing liquid absorbing carbon dioxide is decomposed to form two phases of a carbon dioxide gas and an absorbing solution; and the carbon dioxide compression process is the carbon dioxide compression method described above, and the carbon dioxide gas formed in the regeneration tower is compressed.
  • the carbon dioxide gas and the absorption solution formed in the regeneration tower are separately sent to the heat pump generator for heating the heat pump absorption solution in the heat pump generator.
  • the heat pump generator for heating the heat pump absorption solution in the heat pump generator.
  • a portion of the heat of absorption generated in the heat pump absorber is delivered to the regeneration column for heating the carbon dioxide absorbing solution in the regeneration column.
  • a part of the heat pump absorption solution in the heat pump generator and/or a part of the heat pump absorption solution in the heat pump absorber is cooled to form an absorption crystallization and a crystallization heat pump absorption solution; the absorbent is crystallized or contains an absorbent
  • the crystallized absorption solution is delivered to the heat pump absorber as a second heat pump absorption solution, and the post-crystallization heat pump absorption solution is delivered to the heat pump generator as the first heat pump absorption solution.
  • the degree of conversion of the absorbent of the carbon dioxide absorbing solution in the subsequent stage of the absorption reactor is greater than 0.1% of the degree of conversion of the absorbent of the carbon dioxide absorbing solution in the previous stage of the absorption reactor.
  • the degree of conversion of the absorbent refers to the ratio of the molar concentration of the absorbent in the absorption solution combined with the carbon dioxide to the total molar concentration of the absorbent, and the regeneration reaction is generated under the conditions that the regeneration temperature is constant and the type of the absorbent and the total molar concentration are the same.
  • the equilibrium pressure of the carbon dioxide gas increases as the degree of conversion of the absorbent increases.
  • the carbon dioxide gas compression of the present invention is achieved by lowering the temperature of the absorption reaction while increasing the temperature of the regeneration reaction, and thereby increasing the degree of conversion of the absorbent of the absorption solution in the regeneration reactor step by step.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the absorption reaction of carbon dioxide is a strong exothermic reaction
  • the regeneration reaction of the carbon dioxide absorption solution is a reverse reaction of the carbon dioxide absorption reaction, which is a strong endothermic reaction.
  • the existing carbon dioxide chemical absorption technology in order to improve the CO 2 absorption capacity of the absorption liquid, the external cooling water is usually used to cool the carbon dioxide absorption solution entering the absorption tower to ensure that the absorption tower works at a lower temperature.
  • the external heat source is usually used as the regenerative heat to heat the absorption liquid in the regeneration tower to ensure that the regeneration tower operates at a temperature higher than the working temperature of the absorption tower.
  • the existing carbon dioxide chemical absorption technology needs to discharge a large amount of water to the environment through external cooling water.
  • Low-grade heat on the other hand, requires a large amount of externally driven heat source at a higher grade, and is therefore a process that consumes both energy and water.
  • the carbon dioxide separation and recovery system proposed by the present invention actually combines the carbon dioxide chemical absorption technology and the absorption heat pump circulation technology organically, and the carbon dioxide absorption process is released at a lower grade by the action of the absorption heat pump cycle.
  • the absorption heat is increased to a higher grade regenerative heat that can be used for the regeneration of the carbon dioxide absorption solution, thereby achieving a substantial reduction or no external cooling water and externally driven heat source.
  • the present invention employs an absorption compression process to compress the separated carbon dioxide, and the compression process can be carried out by using waste heat, thereby greatly eliminating power or other driving force. Therefore, the carbon dioxide separation and recovery system proposed by the present invention has the advantages of low energy consumption and low operating cost compared with the existing carbon dioxide separation and recovery system.
  • FIG. 1 is a schematic view showing a carbonization apparatus according to a first embodiment of the present invention.
  • Fig. 2 is a schematic view showing a carbonization compression system according to a second embodiment of the present invention.
  • Figure 3 is a schematic illustration of a two-carbon carbon compression system in accordance with a third embodiment of the present invention.
  • Figure 4 is a schematic illustration of a carbonization compression system in accordance with a fourth embodiment of the present invention.
  • Figure 5 is a schematic view of a carbon separation and recovery system according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic view of a secondary carbon separation and recovery system according to Embodiment 6 of the present invention.
  • a carbon dioxide compression apparatus which comprises an absorption reactor 101, a regeneration reactor 102, a booster pump 103 and a throttle valve 104.
  • the absorption reactor 101 and the regeneration reactor 102 are pressure-resistant containers each containing a carbon dioxide absorbing solution.
  • a heat exchanger 105 is provided in the absorption reactor 101 for generating the absorption reactor.
  • Heat output, a heat exchanger 106 is provided within the regeneration reactor 102 for providing heat to the regeneration reactor.
  • the absorption reactor 101 and the regeneration reactor 102 are connected by a pipe to circulate the carbon dioxide absorbing solution between the absorption reactor 101 and the regeneration reactor 102.
  • the booster pump 103 is used to pressurize and deliver the carbon dioxide absorbing solution in the absorption reactor 101 to the regeneration reactor 103, and the throttle valve 104 is disposed on the pipeline from the regeneration reactor to the absorption reactor for The pressure difference between the absorption reactor and the regeneration reactor is controlled.
  • the solute of the carbon dioxide absorbing solution in the absorption reactor and the regeneration reactor is: potassium carbonate, monoethanolamine, diethanolamine, methyldiethanolamine, glycine, propylene carbonate, polyethylene glycol dimethyl ether, or two of them or A mixture of two or more.
  • the function of the carbon dioxide absorbing solution is that the carbon dioxide gas and the carbon dioxide absorbing solution are adsorbed, dissolved or combined at a lower temperature and pressure in the absorption reactor, so that the carbon dioxide gas is absorbed; the carbon dioxide absorbing solution after absorbing carbon dioxide is regenerated
  • a reverse process opposite to that in the absorption reactor occurs, such as desorption, precipitation, or decomposition, thereby generating a carbon dioxide gas and a carbon dioxide absorbing solution, and the carbon dioxide gas obtained at a high temperature has a higher pressure.
  • the compression of carbon dioxide gas is achieved.
  • FIG. 2 it is a carbon dioxide compression system according to Embodiment 2 of the present invention.
  • the system includes a plurality of carbon dioxide compression devices as described in Embodiment 1, and the compression device 100, the compression device 200, and the compression device 300 are sequentially connected in series.
  • the booster pumps 103, 203, 303 are used to pressurize and deliver the carbon dioxide absorbing solution of the absorption reactor to the regeneration reactor, and the throttle valves 104, 204, 304 are used to control the pressure difference.
  • the absorption reactor of the latter compression device is connected to the regeneration reactor of the previous compression device, such as the absorption reactor 201 is connected to the regeneration reactor 102, receives the carbon dioxide gas from the regeneration reactor 102; and the absorption reactor 301 is connected to the regeneration.
  • Reactor 202 is configured to receive carbon dioxide gas from regeneration reactor 202.
  • High pressure carbon dioxide gas can be obtained in the regeneration reactor 302 by multistage compression of the compression device 100, the compression device 200, and the compression device 300.
  • each stage of the absorption reactor operates at the same lower temperature, and the stages of the regeneration reactor operate at the same temperature above the operating temperature of the absorption reactor.
  • FIG. 3 it is a carbon dioxide compression system according to Embodiment 3 of the present invention.
  • a condenser 400 is added to the regeneration reactor 302 of the compression device 300 for receiving the regeneration reactor 302. Carbon dioxide gas.
  • the incoming carbon dioxide gas is cooled in the condenser 400 to condense the carbon dioxide gas to form a carbon dioxide liquid.
  • the system includes a heat pump subsystem and the carbon dioxide compression device described in the foregoing embodiment 1.
  • the heat pump subsystem includes: a heat pump generator 21 filled with a first heat pump absorbing solution, and a heat generating device 32 is disposed in the heat pump generator 21 for receiving heat of absorption from the absorbing reactor 101 a heat pump absorber 22 filled with a second heat pump absorbing solution, in which a heat absorbing heat exchanger 26 is provided for supplying heat to the above-described regeneration reactor 102; a steam passage 23 communicating with said a heat pump generator 21 and the heat pump absorber 22; the first heat pump absorbing solution in the heat pump generator 21 has an absorbent concentration lower than that of the second heat pump absorbing solution described in the heat pump absorber 22.
  • the concentration heat exchanger 32 is connected to the heat exchanger 105 in the absorption reactor 101, and the absorption heat exchanger 26 is connected to the heat exchanger 106 in the regeneration reactor 102.
  • the heat of absorption generated in the absorption reactor 101 due to the absorption of carbon dioxide by the carbon dioxide absorbing solution can be supplied to the heat pump generator 21 for heating the first heat pump absorbing solution in the heat pump generator 21 to generate working fluid vapor.
  • the working fluid vapor enters the heat pump absorber through the steam passage 23, and the second heat pump absorption solution in the heat pump absorber 22 absorbs the working fluid vapor to generate heat of absorption, which is sent to the regeneration reactor 102.
  • the carbon dioxide absorbing solution is heated to decompose the carbon dioxide gas, and the carbon dioxide absorbing solution is regenerated.
  • the first heat pump absorption solution and the second heat pump absorption solution are composed of a working medium and an absorbent.
  • the concentration of the first heat pump absorption solution may be infinitesimal, that is, the first heat pump absorption solution may be composed only of the working medium.
  • the first heat pump absorption solution and the second heat pump absorption solution may use the same absorbent or different absorbents. When the first heat pump absorption solution and the second heat pump absorption solution use the same absorbent, the second heat pump absorption solution has a higher concentration of the absorbent than the first heat pump absorption solution.
  • the working fluid is one of water, ammonia, methanol and ethanol or a mixture of several substances;
  • the absorbent is LiBr, NaBr, KBr, NH 4 Br, MgBr 2 , CaBr 2 , Lil, Nal, KI , NH 4 I, Mgl 2 , Cal 2 , LiCl, NaCl, KC1, NH 4 C1, MgCl 2 , CaCl 2 , LiN0 3 , NaN0 3 , jump, NH 4 N0 3 , Mg (N0 3 ) 2 and Ca (N0 3 ) 2 one or a mixture of several substances.
  • the carbon dioxide compression system of the present embodiment can effectively utilize the absorption heat generated by each absorption process, thereby saving heat consumption and improving energy utilization efficiency.
  • the heat pump subsystem of the present embodiment can also be applied to the carbon dioxide compression system of Embodiment 2 or Embodiment 3, and the generating heat exchanger is connected to the respective stages of absorption by the same connection method as in Embodiment 4.
  • a heat exchanger in the reactor, the absorption heat exchanger being connected to a heat exchanger in the regeneration reactor of the stages.
  • the carbon dioxide separation and recovery system mainly comprises: a separation subsystem, a heat pump subsystem and a compression subsystem, wherein the separation subsystem is used for separating carbon dioxide gas from a carbon dioxide-containing feed gas such as combustion flue gas, and the compression subsystem is used for The carbon dioxide gas obtained by the separation subsystem is compressed to obtain high pressure carbon dioxide gas or carbon dioxide liquid, and the heat pump subsystem is used to supply heat to the separation subsystem and the compression subsystem.
  • the separation subsystem includes: an absorption tower 10 and a regeneration tower 40.
  • the absorption tower 10 is for absorbing carbon dioxide in a raw material gas containing carbon dioxide gas.
  • the absorption tower 10 includes: a bottom 11 for accommodating a carbon dioxide absorbing solution; a packing layer 12 disposed at a central portion within the absorbing tower 10, the function of which is to make the carbon dioxide absorbing solution and the gas entering the tower larger a contact interface; a gas supply port 16 disposed under the filler layer 12 for supplying a carbon dioxide-containing material gas into the absorption tower; and an exhaust port 15 disposed at the top of the absorption tower 10 for discharging carbon dioxide after separation
  • the gas spraying device 13 is disposed above the above-mentioned packing layer 12 for uniformly spraying the carbon dioxide absorbing solution.
  • the carbon dioxide absorbing solution is dripped from the top in the absorption tower, the gas flows from the bottom to the top, and the carbon dioxide absorbing solution contacts the carbon dioxide-containing gas (such as flue gas) entering the absorption tower, and absorbs therein.
  • Carbon dioxide and acid gas components such as S0x and NOx.
  • the absorption agent of the carbon dioxide absorbing solution of the separation subsystem may be potassium carbonate, monoethanolamine, diethanolamine, methyldiethanolamine, aminoacetic acid, propylene carbonate, polyethylene glycol dimethyl ether, or two or two of them. The above mixture.
  • the heat pump subsystem includes: a heat pump generator 21 and a heat pump absorber 22.
  • the heat pump generator 21 is provided with a first heat exchanger 31 and a second heat exchanger 25, and the heat pump generator 21 is filled with a low concentration of a first heat pump absorption solution, and the first heat pump absorbs The solution consists of a working fluid and an absorbent.
  • the heat pump generator functions to heat the low-concentration first heat pump absorbing solution in the heat pump generator to generate working fluid vapor.
  • the heat pump generator 21 is further provided with a generating heater 32 for heating the first heat pump absorbing solution in the heat pump generator to compensate for insufficient heat due to heat loss of the system and loss of crystallizer cooling.
  • the heat pump absorber 22 is filled with a second heat pump absorbing solution whose working fluid and absorbent species are the same as or different from the first absorbing solution in the heat pump generator 21, preferably, the absorbent concentration is high.
  • the concentration of the absorbent in the first absorption solution in the heat pump generator 21; preferably, the second heat pump absorption solution in the heat pump absorber 22 is a saturated solution (or a supersaturated solution, or a mixture of absorbent crystals).
  • the mass steam passage 23 is for causing the working fluid vapor generated in the heat pump generator 21 to enter the heat pump absorber 22.
  • An absorption heat exchanger 26 is provided in the heat pump absorber 22, and a reboiler 46 connected to the regeneration tower 40 is used to deliver heat generated in the heat pump absorber 22 to the reboiler 46.
  • the regeneration tower 40 is connected to a reboiler 46, and an upper portion thereof is provided with a shower device 43, and a carbon dioxide absorbing solution outlet connected to the bottom of the absorption tower 10.
  • a filling layer 42 is provided in the middle of the regeneration tower 40 for sufficiently regenerating the carbon dioxide absorbing solution.
  • the bottom of the regeneration tower is a bottom 41 for accommodating the carbon dioxide absorbing solution, and the top of the regeneration tower 40 is provided with an exhaust port 45.
  • the carbon dioxide absorbing solution at the bottom of the absorption tower 10 is sent to the regeneration tower through a pipe to regenerate the absorbing liquid to form two phases of gas and liquid.
  • the main component of the gas is carbon dioxide and water vapor
  • the main component of the liquid is a carbon dioxide absorbing solution, but the concentration of carbon dioxide contained in the liquid is greatly reduced due to regeneration.
  • the inlet of the first heat exchanger 31 is connected to the absorption liquid outlet at the bottom of the regeneration tower 40, and the outlet of the first heat exchanger 31 is connected to the shower device 13 of the absorption tower 10, so that the first occurrence occurs.
  • the carbon dioxide absorbing solution in the heat exchanger 31 after being subjected to heat exchange cooling is again introduced into the absorption tower.
  • the inlet of the second generation heat exchanger 25 is connected to the top exhaust port 45 of the regeneration tower 40 described above.
  • a gas-liquid separator 30 is connected to the outlet of the second generation heat exchanger 25 to obtain a carbon dioxide gas of higher purity.
  • the compression subsystem is configured to compress a high concentration of carbon dioxide gas obtained by the separation subsystem.
  • the compression subsystem comprises a plurality of stages of compression devices.
  • the number of compression devices can be set according to specific operating conditions. Generally, the greater the number of compression devices connected in series, the higher pressure carbon dioxide will be obtained.
  • the compression is three levels.
  • the device is connected in series as an example for explanation.
  • the present embodiment includes three-stage compression devices 100, 200, and 300.
  • the three-stage compression device has the same structure.
  • the compression device 100 will be described as an example.
  • the compression device 100 includes an absorption reactor 101, a regeneration reactor 102, a booster pump 103, and a throttle valve 104.
  • the absorption reactor 101 is connected to the separation subsystem to receive carbon dioxide gas.
  • the absorption reactor 101 is provided with a carbon dioxide absorbing solution, and the carbon dioxide gas entering the carbon dioxide gas is absorbed by the carbon dioxide absorbing solution.
  • the regeneration reactor 102 is configured to heat the carbon dioxide absorbing solution from the absorption reactor 101 to decompose the carbon dioxide gas, thereby regenerating the carbon dioxide absorbing solution.
  • the booster pump 103 is used to pressurize and deliver the carbon dioxide absorbing solution in the absorption reactor 101 to the regeneration reactor 103.
  • the internal pressure of the regeneration reactor is higher than the internal pressure of the absorption reactor.
  • a throttle valve 104 is disposed on the line from the regeneration reactor to the absorption reactor for controlling the pressure difference between the absorption reactor 101 and the regeneration reactor 103.
  • a heat exchanger is also provided in the absorption reactor 101 for outputting heat of absorption; a heat exchanger is provided in the regeneration reactor 103 for providing heat required for regeneration of the carbon dioxide absorption solution.
  • the compression device 200 includes an absorption reactor 201, a regeneration reactor 202, a booster pump 203, and a throttle valve 204; an absorption reactor 201 is coupled to the regeneration reactor 102 of the compression device 100; the compression device 300 includes an absorption reactor 301, regeneration Reactor 302, booster pump 303 and throttle valve 304; absorption reactor 301 is coupled to regeneration reactor 202 of compression unit 200.
  • the condenser 400 is connected to the regeneration reactor 302, receives carbon dioxide gas, and condenses the carbon dioxide gas into a liquid state.
  • the heat exchangers in the respective absorption reactors in the compression subsystem are connected to the heat exchangers 32 of the heat pump subsystem (since the connection relationship is the same as in Fig. 4, which is a simple drawing, and the connection relationship is not shown in Fig. 5)
  • the heat absorbed by the absorption of carbon dioxide is sent to the heat pump generator to heat the heat pump to absorb the solution to generate working fluid vapor, thereby saving the amount of external heat source.
  • the absorption heat exchanger 26 in the heat pump subsystem may also be connected to a heat exchanger in each of the regeneration reactors for heating the carbon dioxide absorption solution in the regeneration reactor (since the connection relationship is the same as in FIG. 4, for the sake of simplicity) In the face, the connection relationship is not shown in Figure 5.)
  • FIG. 6 there is shown a schematic diagram of a carbon dioxide separation and recovery system proposed in Embodiment 6 of the present invention.
  • the present embodiment adds a liquid supply pump 24, a carbon dioxide absorption solution from the heat exchanger 27, and an absorbent crystallizer 28, and functions to enable the heat pump generator 21 and the heat pump absorber.
  • the difference in concentration of the carbon dioxide absorbing solution in 22 remains relatively stable.
  • this embodiment also adds a carbon dioxide absorbing solution from the heat exchanger 44 in order to further improve the regeneration efficiency of the absorbing liquid.
  • the liquid supply pump 24 is connected to the heat pump generator 21 and the heat pump absorber 22 through a pipe for conveying a part of the carbon dioxide absorbing solution in the heat pump generator 21 and the heat pump absorber 22 to the absorbent crystallizer 28.
  • the absorbent crystallizer 28 includes: a crystallizer carbon dioxide absorbing solution inlet connected to the carbon dioxide absorbing solution outlet of the liquid feeding pump 24 through a pipe; a crystallizer dilute solution outlet connected to the carbon dioxide absorbing solution inlet of the heat pump generator 21 through a pipe; And a crystallization solution output port connected to the carbon dioxide absorbing solution inlet of the heat pump absorber 22 through a pipe.
  • the absorbent crystallizer 28 also has a refrigerant circulation device for supplying a cooling amount to the carbon dioxide absorbing solution in the absorbent crystallizer 28, so that the carbon dioxide in the absorbent crystallizer 28 absorbs the solution temperature. When it is lowered, when it reaches below the crystallization temperature of the absorbent, the precipitated crystals are precipitated. After the solid-liquid separation, the absorbent crystals are output from the output port containing the crystal solution to the heat pump absorber 22, and the diluted solution having the reduced concentration of the absorbent is supplied from the dilute solution outlet of the crystallizer to the heat pump generator 21.
  • the carbon dioxide absorbing solution is disposed from the heat exchanger 27 on the pipe to which the absorbent crystallizer 28 and the liquid feeding pump 24 are connected, for the carbon dioxide absorbing solution entering the absorbent crystallizer 28, and the thinning output from the absorbent crystallizer.
  • the solution is subjected to heat exchange with a crystal-containing solution output from the absorbent crystallizer.
  • the beneficial effect of the carbon dioxide absorbing solution from the heat exchanger 27 is that after the heat exchange, the temperature of the carbon dioxide absorbing solution entering the absorbent crystallizer 28 is lowered, which facilitates the formation of crystals, thereby saving the amount of cooling required for crystallization;
  • the temperature of the dilute solution of the generator 21 is increased to facilitate absorption of the evaporation of the circulating working medium;
  • the temperature of the output crystallization solution containing the absorbent is also increased, thereby facilitating the operation of the heat pump absorber 22 at a higher temperature. .
  • the carbon dioxide absorbing solution from the heat exchanger can also be used to exchange heat between the carbon dioxide absorbing solution from the heat pump absorber and the crystallization carbon dioxide absorbing solution from the absorbent crystallizer for the carbon dioxide absorbing solution from the heat pump absorber.
  • Heat exchange with absorbent crystals from an absorbent crystallizer or a carbon dioxide absorption solution containing absorbent crystals, and a carbon dioxide absorption solution from a heat pump absorber and a post-crystallization carbon dioxide absorption solution and absorbent from an absorbent crystallizer The crystallization or carbon dioxide absorbing solution containing the crystallization of the absorbent is subjected to heat exchange.
  • the carbon dioxide absorbing solution is supplied from the heat exchanger 44 to a pipe connecting the absorbing liquid outlet at the bottom of the absorption tower 10 and the absorbing liquid inlet at the upper portion of the regeneration tower 40 for transporting from the bottom 41 of the regeneration tower 40 to the first
  • the heat exchange between the carbon dioxide absorbing solution in which the heat exchanger 31 occurs and the carbon dioxide absorbing solution transported from the bottom of the absorption tower to the regeneration tower to increase the temperature of the carbon dioxide absorbing solution entering the regeneration tower 40, thereby further enhancing the regeneration tower 40 carbon dioxide absorption solution regeneration efficiency.
  • Embodiment 7 of the present invention also proposes a carbon dioxide compression method which is implemented by the compression device described in Embodiment 1.
  • the method includes the following steps:
  • the absorption reactor receives carbon dioxide gas, and the carbon dioxide absorption solution in the absorption reactor Absorbing carbon dioxide gas, carbon dioxide and carbon dioxide absorption solution adsorption, dissolution or chemical reaction.
  • the absorbent of the carbon dioxide absorbing solution is: potassium carbonate, monoethanolamine, diethanolamine, methyldiethanolamine, glycine, propylene carbonate, polyethylene glycol dimethyl ether, or a mixture of two or more thereof .
  • the absorbent is potassium carbonate
  • carbon dioxide and potassium carbonate react in the absorption reactor to produce potassium hydrogencarbonate.
  • the carbon dioxide-absorbing carbon dioxide absorption solution in the absorption reactor is pressurized and sent to the regeneration reactor;
  • the carbon dioxide absorbing solution from the absorption reactor is heated to form a carbon dioxide gas and a carbon dioxide absorbing solution;
  • the carbon dioxide absorbing solution generated in the regeneration reactor is sent to the absorption reactor.
  • the carbon dioxide compression method proposed in Embodiment 8 of the present invention is realized by the compression system described in Embodiment 2.
  • the method comprises a multi-stage series compression process, and the compression process of each stage is the same as that of the embodiment 6.
  • the carbon dioxide gas entering the absorption reactor is the regeneration of the previous compression process.
  • the carbon dioxide gas produced by the reactor is condensed to form a carbon dioxide liquid.
  • Embodiment 9 of the present invention also proposes a carbon dioxide compression method comprising the carbon dioxide compression method described in the foregoing Embodiment 7 or Embodiment 8, and further including a heat pump cycle process.
  • the heat pump cycle process includes: in the absorption reactor, the absorption heat released by the carbon dioxide gas absorbed by the carbon dioxide absorption solution is used to heat the first heat pump absorption solution. Producing working fluid vapor; and the working fluid vapor is sent to the heat pump absorber and absorbed by the second heat pump absorption solution in the heat pump absorber, releasing heat of absorption, which is transferred to the regeneration In the reactor, it is used to heat the carbon dioxide absorbing solution in the regeneration reactor.
  • the heat lost by the system is provided by an external heat source, but the heat pump cycle described above can reduce the amount of external heat source, thereby effectively utilizing heat and improving energy efficiency.
  • the heat generated by the absorption of carbon dioxide during the compression process of each stage can be used to heat the heat pump cycle, and the concentrated heat pump absorbs the solution and produces the working fluid.
  • the heat of absorption generated by the absorption of working fluid vapor can also be used in the regeneration process in the various stages of the regeneration reactor.
  • Embodiment 10 of the present invention also proposes a carbon dioxide separation and recovery method using the carbon dioxide separation and recovery system described in Embodiment 5.
  • the carbon dioxide separation and recovery method includes carbon dioxide Off process, carbon dioxide compression process and heat pump cycle process.
  • the carbon dioxide separation process comprises: contacting the combustion gas with the carbon dioxide absorption solution in the absorption tower, causing the carbon dioxide absorption solution to absorb the carbon dioxide in the flue gas and falling to the bottom of the absorption tower; and the carbon dioxide absorption solution after absorbing the carbon dioxide at the bottom of the tower It is output to the regeneration tower and heated to heat up, so that the absorption liquid that absorbs carbon dioxide is decomposed to form two phases of gas and liquid.
  • the gas is mainly carbon dioxide gas, and the carbon dioxide content in the liquid formed by regeneration is reduced due to the formation of a gaseous state due to a large amount of carbon dioxide. .
  • the carbon dioxide compression process comprises multi-stage compression, and each stage of the compression step comprises: absorbing the carbon dioxide absorbing solution of the reactor to absorb carbon dioxide; then the carbon dioxide absorbing solution is sent to the regeneration reactor, and is heated to decompose out gaseous carbon dioxide and regenerated carbon dioxide.
  • the solution is absorbed, the pressure of the regeneration reactor is higher than the pressure of the absorption reactor; the regenerated carbon dioxide absorption solution is sent back to the absorption reactor.
  • the carbon dioxide gas generated from the regeneration reactor is sent to the next stage of compression for compression; after multiple stages of compression, high pressure carbon dioxide gas can be obtained in a subsequent compression step; condensation of high pressure carbon dioxide gas is obtained.
  • High-pressure carbon dioxide liquid can be more conducive to the recovery, storage and transportation of carbon dioxide.
  • the heat pump cycle process includes: in the absorption reactor, the absorption heat released by the carbon dioxide gas absorbed by the carbon dioxide absorption solution is used to heat the first heat pump absorption solution to generate working fluid vapor; and the work
  • the mass of steam is delivered to the heat pump absorber and absorbed by the second heat pump absorption solution in the heat pump absorber, releasing heat of absorption, which is sent to the regeneration reactor for heating the regeneration reactor
  • the carbon dioxide absorption solution For the multi-stage compression, during the compression process of each stage, the heat generated by the absorption of carbon dioxide can be used to heat the heat pump cycle process, for concentrating the heat first pump to absorb the solution and produce the working fluid. Steam; In the heat pump cycle, the heat of absorption generated by the absorption of working fluid vapor can also be used in the regeneration process in the various stages of the regeneration reactor.
  • the carbon dioxide gas formed after the regeneration in the carbon dioxide separation process may be passed to the second heat exchanger of the heat pump generator, and the liquid formed after the regeneration is passed to the first heat exchanger of the heat pump generator. It is used for heating the carbon dioxide absorbing solution in the heat pump generator to form working fluid vapor; the above-mentioned working medium vapor enters the heat pump absorber through the steam passage, and is absorbed and absorbed by the second heat pump absorbing solution in the heat pump absorber, The heat of absorption is used to heat the carbon dioxide absorbing solution in the reboiler by heat exchange.
  • the second heat pump absorption solution in the heat pump absorber is in the heat pump generator
  • the difference between the molar fraction of the absorbent of the first heat pump absorption solution is greater than 0.1.
  • the greater the concentration difference is, the more favorable the temperature in the heat pump absorber is, thereby facilitating the regeneration of the carbon dioxide absorption solution; the output from the first heat exchanger is generated.
  • the liquid is returned to the top of the absorption tower for reusing the carbon dioxide in the flue gas; the gas of the second heat exchanger output is gas-liquid separated to obtain high-purity carbon dioxide.
  • the carbon dioxide separation and recovery method of the embodiment 10 can remove more than 80% of the carbon dioxide in the flue gas, and the purity of the separated carbon dioxide can reach 99% or more without the water vapor component (ie, the dry gas content), and after three After the stage compression and condensation, a carbon dioxide liquid of 2. 7 MPa, _10 ° C can be obtained.
  • Embodiment 11 of the present invention also proposes a carbon dioxide separation and recovery method, which is different from the separation and recovery method of Embodiment 10 in that it employs the separation system described in Embodiment 6.
  • This embodiment increases the circulation step of the heat pump absorption solution in the heat pump generator and the heat pump absorber compared to the embodiment 10, which comprises: absorbing a part of the second heat pump absorption solution in the heat pump absorber and a part of the first heat pump in the heat pump generator The solution is commonly introduced into the absorbent crystallizer, and the mixed heat pump absorption solution in the crystallizer is cooled, thereby forming the absorbent crystals, and then performing solid-liquid separation; the crystallization heat pump absorption solution obtained after the solid-liquid separation is introduced into the heat pump.
  • the crystallization of the absorbent after the solid-liquid separation is introduced into the heat pump absorber in such a manner as to contain the crystallization solution, so that the difference in the concentration of the solution in the heat pump absorber and the heat pump generator can be kept within a certain range.
  • the present invention can achieve continuity of the carbon dioxide separation process.
  • an external heat source can be passed to cool the mixed heat pump absorption solution in the crystallizer.
  • the heat pump absorber outputs the heat pump absorption solution after the crystallization.
  • the heat pump absorbs the solution for heat exchange.
  • the crystallization of the absorbent is transferred to the heat pump absorber, and the heat pump absorbing solution output by the heat pump absorber is cooled, the crystallization of the absorbing agent is performed with the heat pump absorbing solution output by the heat pump absorber. Heat exchange.
  • the heat pump absorber is before the crystallization heat pump absorption solution is sent to the heat pump generator before the crystallization of the absorber is sent to the heat pump absorber, and the heat pump absorber output heat pump absorbs the solution for cooling.
  • the output heat pump absorption solution exchanges heat with the absorbent crystallized and crystallized heat pump absorption solution.
  • the temperature of the heat pump absorption solution introduced into the heat pump absorber and the heat pump generator can be increased to maintain the operating temperature of the heat pump absorption solution in the heat pump absorber and the heat pump generator, and at the same time, the absorption into the absorbent crystallizer can be reduced.
  • the heat pump in the middle absorbs the temperature of the solution, thereby saving the amount of cold source.
  • heat exchange is performed between the carbon dioxide absorbing solution transported from the bottom of the regeneration tower to the first heat exchanger and the absorbing liquid transported from the bottom of the adsorption tower to the regeneration tower to enhance the carbon dioxide absorbing solution entering the regeneration tower.
  • the temperature further increases the regeneration efficiency of the carbon dioxide absorbing solution of the regeneration tower.
  • the carbon dioxide separation and recovery system proposed by the invention actually combines the carbon dioxide chemical absorption technology with the absorption heat pump circulation technology, and enhances the absorption heat of the lower grade released by the carbon dioxide absorption process by the action of the absorption heat pump cycle to be used for
  • the carbon dioxide absorption solution regenerates the higher grade regenerative heat, thereby achieving a substantial reduction or no need for external cooling water and externally driven heat sources.
  • the present invention employs an absorption compression process to compress the separated carbon dioxide, and the compression process can be carried out by using waste heat, thereby greatly eliminating power or other driving force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Description

二氧化碳压缩装置及方法、 二氧化碳分离回收系统及方法 本申请主张在中国申请的申请日为 2009 年 2 月 26 日, 申请号为 200910078363. 6的专利申请的优先权。 技术领域
本发明涉及一种化工以及环境工程领域的二氧化碳分离回收技术, 特 别涉及一种二氧化碳压缩装置及方法, 以及可有效脱除烟气中二氧化碳的 分离回收系统及方法。 背景技术
C02等温室气体的大量排放是造成全球气候变暧的一个重要原因。因此, C02的排放问题已经引起了国际社会的极大关注。 减少化石燃料燃烧的 C02 排放主要有两个途径:一是提高能源利用效率、二是从燃烧烟气中分离 co2, 并加以利用、 贮留或封存。
在 0)2的脱除技术中,用氨水喷淋火电站锅炉排烟烟气来吸收 C02,不仅 可以达到 C02减排的目的,还可以获得优质化肥。 但是, 由于在高于 60°C的 环境温度下碳酸氢铵会分解为氨气、 水和 co2, 造成 C02重新返回大气, 故 这种 C02减排方法的应用还需进一步研究。 C02的脱除技术还有 CaO碳酸化- 煅烧循环的 C02分离 (CCR)技术、 高分子膜脱除 C02、 02/C02循环燃烧技术及 化学链燃烧 (CLC)技术等。 但上述技术往往工业化实施成本较高。
在 C02的脱除技术中, 很重要的一种方法是采用溶液吸收法脱除 C02。 根据吸收剂性能的不同, 可分为两大类。 一类是物理吸收法, 如水洗法、 低温甲醇洗法 (Rectisol) , 聚乙二醇二甲醚法(Selexol) , 碳酸丙烯酯法。 另一类是化学吸收法, 如热钾碱法, 低热耗本菲尔法, 活化 MDEA法, MEA 法等。 上述 C02脱除技术都已十分成熟, 在化工领域早已实现了工业化。
有人提出了利用化学吸收法从火力发电厂的燃烧废气中分离回收二氧 化碳的方案 (请参照: 清原正高, 从发电用锅炉排气中回收 C02的试验, 能 源.资源, 能源.资源学会, 1993年, 第 14卷, 第 1其, 91-97页)。 根据 这一方案, 尽管随条件的不同而不同, 但二氧化碳的分离回收率能够达到
80%以上。 然而, 采用传统的化学吸收法从燃烧烟气中分离回收二氧化碳所 需的能耗高达 750〜900kcal/kg-C02, 因此分离回收的运行成本非常高。 而 气态二氧化碳的液化通常采用二级或者三级压缩之后冷凝的工艺。 由于该 工艺中二氧化碳的压缩是由压缩机来进行的, 因而电耗非常大。 发明内容
本发明的目的在于, 提供一种二氧化碳压缩装置及方法, 所解决的技 术问题是采用余热来对二氧化碳气体进行压缩, 从而可以有效利用余热, 提高能源的利用效率。
本发明的另一目的在于, 提供一种低能耗的二氧化碳分离回收系统以 及分离回收方法,所要解决的技术问题是其能脱除烟气中的二氧化碳, 减少 排放到大气中的二氧化碳量, 同时可以对分离的二氧化碳气体进行压缩, 得到高压的二氧化碳, 有利于二氧化碳的储存和运输, 从而有利于保护环 境。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 本发 明提出的一种二氧化碳压缩装置, 包括: 吸收反应器、 再生反应器、 增压 泵和节流阀, 所述的吸收反应器内充有二氧化碳吸收溶液, 用于吸收二氧 化碳气体; 所述的再生反应器用于使来自吸收反应器内的二氧化碳吸收溶 液分解出二氧化碳气体; 所述的增压泵用于将吸收反应器内的二氧化碳吸 收溶液增压并输送到再生反应器内; 节流阀设置在从再生反应器流向吸收 反应器的管道上, 用于控制吸收反应器和再生反应器之间的压力差; 在吸 收反应器内还设有换热器, 用于输出吸收反应的吸收热; 在再生反应器内 设有换热器, 用于提供再生反应的再生热。
本发明还提出一种二氧化碳压缩系统, 该系统包括多级串联的上述的 二氧化碳压缩装置, 其中, 后一级压缩装置的吸收反应器连接于前一级压 缩装置的再生反应器。 较佳的, 该系统还包括一冷凝器, 连接于最后一级 二氧化碳压缩装置的再生反应器, 用于冷凝来自该再生反应器的二氧化碳 气体。
本发明还提出了一种二氧化碳压缩系统, 其包括压缩子系统和热泵子 系统: 所述压缩子系统包括一级或者多级串联的压缩装置, 每级压缩装置 包括: 吸收反应器, 用于吸收二氧化碳气体; 再生反应器, 用于使来自吸 收反应器的吸收溶液分解出二氧化碳气体; 在压缩子系统中, 后一级压缩 装置的二氧化碳吸收反应器连接于前一级压缩装置的再生反应器; 最后一 级压缩装置的再生反应器连接于一个冷凝器; 所述热泵子系统包括: 热泵 发生器, 其内填充有第一热泵吸收溶液, 在该热泵发生器内设有发生换热 器用于接收来自上述的吸收反应器的吸收热; 热泵吸收器, 其内填充有第 二热泵吸收溶液, 在该热泵吸收器内设有吸收换热器用于向上述的再生反 应器供热; 蒸汽通道, 连通所述的热泵发生器和所述的热泵吸收器; 所述 的第一热泵吸收溶液和第二热泵吸收溶液由工质和吸收剂组成, 第一热泵 吸收溶液的吸收剂浓度可以为无穷小, 即第一热泵吸收溶液可以只由工质 组成; 第一热泵吸收溶液和第二热泵吸收溶液可以采用相同的吸收剂, 也 可以采用不同的吸收剂, 当第一热泵吸收溶液和第二热泵吸收溶液采用同 一吸收剂时, 第二热泵吸收溶液的吸收剂浓度高于第一热泵吸收溶液的吸 收剂浓度; 所述的工质为水、 氨、 甲醇和乙醇其中之一或几种物质的混合 物; 所述的吸收剂为 LiBr、 NaBr、 KBr、 丽 4Br、 MgBr2、 CaBr2、 Lil、 Nal、 KI、 NHJ、 Mgl2、 Cal2、 LiCl、 NaCl、 KC1、 NH4C1、 MgCl2、 CaCl2、 LiN03、 NaN03、 KN03、 NH4N03、 Mg (N03) ^P Ca (N03) 2其中之一或几种物质的混合物; 所述 发生换热器连接于上述各级吸收反应器内的换热器, 所述吸收换热器连接 于上述各级再生反应器内的换热器。
优选的, 本发明实施例提出的二氧化碳压缩系统, 还包括吸收剂结晶 器, 接收来自热泵吸收器和 /或热泵发生器的热泵吸收溶液并进行冷却, 形 成吸收剂结晶和结晶后热泵吸收溶液, 所述的结晶后热泵吸收溶液作为第 一热泵吸收溶液输送至热泵发生器, 含所述的吸收剂结晶的吸收溶液作为 第二热泵吸收溶液输送至热泵吸收器。
优选的, 本发明实施例提出的二氧化碳压缩系统, 还包括热泵吸收溶 液自换热器, 用于所述的来自热泵发生器的热泵吸收溶液和 /或来自热泵吸 收器的热泵吸收溶液, 与结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂结 晶的吸收溶液进行换热。
优选的, 本发明实施例提出的二氧化碳压缩系统, 所述热泵发生器内 还设有发生加热器, 用于加热热泵发生器内的第一热泵吸收溶液。
本发明还提出一种二氧化碳分离回收系统, 包括分离子系统、 压缩子 系统和热泵子系统: 所述分离子系统包括: 吸收塔, 用于从含二氧化碳气 体中吸收二氧化碳; 再生塔, 用于再生二氧化碳吸收溶液; 所述压缩子系 统包括一级或者多级串联的压缩装置, 每级压缩装置包括: 吸收反应器, 用于吸收来自分离子系统的二氧化碳气体; 再生反应器, 用于使来自吸收 反应器的吸收溶液分解出二氧化碳气体; 在压缩子系统中, 后一级压缩装 置的二氧化碳吸收反应器连接于前一级压缩装置的再生反应器; 第一级压 缩装置的二氧化碳吸收反应器连接于分离子系统, 用于接收二氧化碳气体; 最后一级压缩装置的再生反应器连接于一个冷凝器; 所述热泵子系统包括: 热泵发生器, 其内填充有第一热泵吸收溶液, 在该热泵发生器内设有第一 发生换热器和第二发生换热器, 用于接收来自上述的吸收塔和吸收反应器 的吸收热; 热泵吸收器, 其内填充有第二热泵吸收溶液, 在该热泵吸收器 内设有吸收换热器, 用于向上述的再生塔和再生反应器供热; 蒸汽通道, 连通所述的热泵发生器和所述的热泵吸收器; 所述第一发生换热器连接于 上述分离子系统中的吸收溶液换热器和上述压缩子系统中各级吸收反应器 内的换热器; 所述第二发生换热器的入口连接于上述分离子系统中再生塔 顶部的气体出口; 所述吸收换热器连接于上述分离子系统中再生塔的再沸 器和压缩子系统中各级再生反应器内的换热器。 较佳的, 还包括气液分离 器, 其入口连接于上述第二发生换热器的出口; 其上部出口连接于所述的 第一级压缩装置的吸收反应器。
前述的二氧化碳压缩系统, 在所述的吸收反应器内采用碳酸钾、 一乙 醇胺、 二乙醇胺、 甲基二乙醇胺、 氨基乙酸、 碳酸丙烯酯、 聚乙二醇二甲 醚、 或者其中两种或者两种以上的混合物来吸收二氧化碳。
本发明的目的及解决其技术问题还可以采用以下技术方案来实现。 本 发明还提出一种二氧化碳压缩方法, 包括以下步骤: 在吸收反应器中, 二 氧化碳气体与二氧化碳吸收溶液反应生成碳酸化合物; 将上述的碳酸化合 物增压并输送到再生反应器中; 在再生反应器中, 来自吸收反应器的碳酸 化合物被加热分解, 生成二氧化碳气体和二氧化碳吸收溶液; 以及将再生 反应器中生成的二氧化碳吸收溶液减压并输送到吸收反应器中。
本发明的目的及解决其技术问题还可以采用以下技术方案来实现。 本 发明还提出一种二氧化碳压缩方法, 包括多级串联的压缩过程, 每级压缩 过程包括: 在吸收反应器中, 二氧化碳气体被二氧化碳吸收溶液吸收; 将 上述吸收二氧化碳之后的二氧化碳吸收溶液增压并输送到再生反应器中; 在再生反应器中, 来自吸收反应器的二氧化碳吸收溶液被加热, 生成二氧 化碳气体和二氧化碳吸收溶液; 以及将再生反应器中生成的二氧化碳吸收 溶液减压并输送到吸收反应器中; 除第一压缩过程外, 其他的压缩过程中, 进入吸收反应器中的二氧化碳气体是前一级压缩过程的再生反应器所产生 的二氧化碳气体。 较佳的, 还包括对在最后一级压缩过程的在再生反应器 中产生的二氧化碳气体进行冷凝, 形成二氧化碳液体。
本发明的目的及解决其技术问题还可以采用以下技术方案来实现。 本 发明还提出一种二氧化碳压缩方法包括以下步骤: 在吸收反应器中, 二氧 化碳气体被二氧化碳吸收溶液所吸收; 将上述的吸收二氧化碳气体后的二 氧化碳吸收溶液输送到再生反应器中; 在再生反应器中, 来自吸收反应器 的二氧化碳吸收溶液被加热, 生成二氧化碳气体和再生二氧化碳吸收溶液; 以及将再生反应器中生成的再生二氧化碳吸收溶液输送到吸收反应器中。
本发明还提出一种二氧化碳压缩方法, 包括多级串联的压缩过程, 每 级压缩过程包括: 在吸收反应器中, 二氧化碳气体被二氧化碳吸收溶液吸 收; 将上述吸收二氧化碳之后的二氧化碳吸收溶液增压并输送到再生反应 器中; 在再生反应器中, 来自吸收反应器的二氧化碳吸收溶液被加热, 生 成二氧化碳气体和再生二氧化碳吸收溶液; 以及将再生反应器中生成的再 生二氧化碳吸收溶液减压并输送到吸收反应器中; 除第一级压缩过程外, 其他的压缩过程中, 进入吸收反应器中的二氧化碳气体是前一级压缩过程 的再生反应器所产生的二氧化碳气体。
优选的, 前述的二氧化碳压缩方法, 对在最后一级压缩过程的再生反 应器中产生的二氧化碳气体进行冷凝, 形成二氧化碳液体。
优选的, 前所述的二氧化碳压缩方法, 还包括: 热泵循环过程, 该热 泵循环过程包括: 在所述的吸收反应器中, 将二氧化碳气体被二氧化碳吸 收溶液所吸收释放出的吸收热用于加热第一热泵吸收溶液, 产生工质蒸汽; 及所述的工质蒸汽被输送到热泵吸收器中, 并被热泵吸收器中的第二热泵 吸收溶液所吸收, 释放出吸收热, 该吸收热被输送到所述的再生反应器中, 用于加热再生反应器中的二氧化碳吸收溶液。
本发明还提出一种二氧化碳分离回收方法, 用于从含二氧化碳的原料 气中分离回收二氧化碳, 该方法包括二氧化碳分离过程和二氧化碳压缩过 程; 所述的二氧化碳分离过程包括: 在吸收塔内用二氧化碳吸收溶液与原 料气接触, 使二氧化碳吸收溶液吸收原料气中的二氧化碳; 吸收二氧化碳 后的二氧化碳吸收溶液输出到再生塔中并被加热升温, 使吸收二氧化碳的 二氧化碳吸收液分解, 形成二氧化碳气体和吸收溶液两相; 所述的二氧化 碳压缩过程为前述的二氧化碳压缩方法, 对上述再生塔内形成的二氧化碳 气体进行压缩。
较佳的, 对进行二氧化碳压缩过程之前, 将再生塔内形成的二氧化碳 气体和吸收溶液先分别输送到热泵发生器内, 用于加热热泵发生器内的热 泵吸收溶液。 在热泵循环过程中, 热泵吸收器中产生的吸收热的一部分被 输送到再生塔中用于加热再生塔内的二氧化碳吸收溶液。
优选的, 对热泵发生器内的部分热泵吸收溶液和 /或热泵吸收器内的部 分热泵吸收溶液进行冷却, 形成吸收剂结晶和结晶后热泵吸收溶液; 将所 述的吸收剂结晶或者含吸收剂结晶的吸收溶液作为第二热泵吸收溶液输送 到热泵吸收器中, 将所述的结晶后热泵吸收溶液作为第一热泵吸收溶液输 送到热泵发生器中。
优选的, 所述的后一级吸收反应器内二氧化碳吸收溶液的吸收剂的转 化度比前一级吸收反应器内的二氧化碳吸收溶液的吸收剂的转化度大 0. 1 以上。 吸收剂的转化度是指吸收溶液中反应结合了二氧化碳的吸收剂的摩 尔浓度与吸收剂总摩尔浓度之比, 在再生温度一定且吸收剂种类和总摩尔 浓度相同的条件下, 再生反应生成的二氧化碳气体的平衡压力随着吸收剂 转化度的增大而升高。 本发明的二氧化碳气体压缩是通过降低吸收反应温 度的同时提高再生反应温度, 进而逐级提高再生反应器中吸收溶液的吸收 剂转化度来实现的。
本发明与现有技术相比具有明显的优点和有益效果。 二氧化碳的吸收 反应为强放热反应, 而二氧化碳吸收溶液的再生反应是二氧化碳吸收反应 的逆反应, 为强吸热反应。 如图 7所示的现有二氧化碳化学吸收技术, 为 了提高吸收液的 C02吸收能力,通常采用外部冷却水对进入吸收塔的二氧化 碳吸收溶液进行冷却, 以保证吸收塔在较低的温度下工作, 同时为了使吸 收液的再生更加彻底, 通常采用外部热源作为再生热对再生塔中的吸收液 进行加热以保证再生塔在高于吸收塔工作温度的温度下工作。 可见, 现有 的二氧化碳化学吸收技术一方面需要通过外部冷却水向环境排放大量的较 低品位的热量, 而在另一方面却需要投入较高品位的大量的外部驱动热源, 因而是一个既耗能又耗水的过程。 由以上技术方案可知,本发明提出的二氧 化碳分离回收系统实际上是将二氧化碳化学吸收技术与吸收式热泵循环技 术有机的结合起来, 通过吸收式热泵循环的作用将二氧化碳吸收过程放出 的较低品位的吸收热提升为可用于二氧化碳吸收溶液再生的较高品位的再 生热, 从而实现大幅度减少或者无需外部冷却水和外部驱动热源。 同时本 发明采用吸收式压缩过程, 对分离得到的二氧化碳进行压缩, 而该压缩过 程通过采用余热即可进行, 大幅度省去了电力或者其他的驱动力。 因此, 与现有的二氧化碳分离回收系统相比, 本发明提出的二氧化碳分离回收系 统具有低能耗、 低运行成本的优点。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图详细说明如后。 附图说明
图 1是本发明实施例 1的二^ :化碳压缩装置的示意图。
图 2是本发明实施例 2的二^:化碳压缩系统的示意图。
图 3是本发明实施例 3的二^:化碳压缩系统的示意图。
图 4是本发明实施例 4的二^:化碳压缩系统的示意图。
图 5是本发明实施例 5的二^:化碳分离回收系统的示意图
图 6是本发明实施例 6的二^:化碳分离回收系统的示意图
Figure imgf000009_0001
实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结合附图及较佳实施例, 对依据本发明提出的二氧化碳分离回收系统 其具体实施方式、 结构、 特征及其功效, 详细说明如后。
请参阅图 1所示, 是本发明实施例 1提出的二氧化碳压缩装置, 该装 置包括吸收反应器 101、 再生反应器 102、 增压泵 103和节流阀 104。 所述 的吸收反应器 101和再生反应器 102为耐压容器, 分别容纳有二氧化碳吸 收溶液。在吸收反应器 101内设有换热器 105, 用于将吸收反应器内产生的 热量输出, 在再生反应器 102内设有换热器 106, 用于向再生反应器内提供 热量。 所述的吸收反应器 101和再生反应器 102之间通过管道相连, 从而 使二氧化碳吸收溶液在吸收反应器 101和再生反应器 102之间进行循环。 所述的增压泵 103用于将吸收反应器 101 内的二氧化碳吸收溶液增压并输 送到再生反应器 103 内, 节流阀 104设置在从再生反应器流向吸收反应器 的管道上, 用于控制吸收反应器和再生反应器之间的压力差。 吸收反应器 和再生反应器内的二氧化碳吸收溶液的溶质为: 碳酸钾、 一乙醇胺、 二乙 醇胺、 甲基二乙醇胺、 氨基乙酸、 碳酸丙烯酯、 聚乙二醇二甲醚、 或者其 中两种或者两种以上的混合物。 二氧化碳吸收溶液的作用在于, 在吸收反 应器内二氧化碳气体与二氧化碳吸收溶液在较低的温度和压力下发生吸 附、 溶解或者进行化合, 从而使二氧化碳气体被吸收; 吸收二氧化碳后的 二氧化碳吸收溶液在再生反应器内被高温加热, 则发生与吸收反应器内相 反的逆过程, 如脱附、 析出或者进行分解, 从而产生二氧化碳气体和二氧 化碳吸收溶液, 在高温下得到的二氧化碳气体具有更高的压力, 从而实现 了二氧化碳气体的压缩。
请参阅图 2所示, 是本发明实施例 2提出的一种二氧化碳压缩系统, 该系统包括多级如实施例 1所述的二氧化碳压缩装置, 压缩装置 100、压缩 装置 200和压缩装置 300依次串联, 增压泵 103、 203、 303用于将吸收反 应器的二氧化碳吸收溶液增压并输送到再生反应器内, 节流阀 104、 204、 304用于控制压力差。其中, 后一压缩装置的吸收反应器连接于前一压缩装 置的再生反应器, 如吸收反应器 201连接于再生反应器 102, 接收来自再生 反应器 102的二氧化碳气体; 吸收反应器 301连接于再生反应器 202, 用于 接收来自再生反应器 202 的二氧化碳气体。 经过压缩装置 100、 压缩装置 200和压缩装置 300多级压缩,可以在再生反应器 302得到高压的二氧化碳 气体。 较佳的, 各级吸收反应器在同一个较低的温度下工作, 而各级再生 反应器在高于吸收反应器工作温度的同一个温度下工作。
请参阅图 3所示, 是本发明实施例 3提出的二氧化碳压缩系统, 其比 实施例 2增加了一个冷凝器 400, 连接于压缩装置 300的再生反应器 302, 用于接收再生反应器 302产生的二氧化碳气体。 在冷凝器 400内对进入的 二氧化碳气体进行冷却, 使二氧化碳气体冷凝形成二氧化碳液体。
请参阅图 4所示, 是本发明实施例 4提出的一种二氧化碳压缩系统, 该系统包括热泵子系统和前述实施例 1 所述的二氧化碳压缩装置。 所述热 泵子系统包括: 热泵发生器 21, 其内填充有第一热泵吸收溶液, 在该热泵 发生器 21 内设有发生换热器 32用于接收来自所述的吸收反应器 101的吸 收热; 热泵吸收器 22, 其内填充有第二热泵吸收溶液, 在该热泵吸收器 22 内设有吸收换热器 26用于向上述的再生反应器 102供热; 蒸汽通道 23, 连 通所述的热泵发生器 21和所述的热泵吸收器 22; 所述热泵发生器 21中所 述的第一热泵吸收溶液的吸收剂浓度低于热泵吸收器 22中所述的第二热泵 吸收溶液的吸收剂浓度; 所述发生换热器 32连接于上述吸收反应器 101内 的换热器 105, 所述吸收换热器 26连接于上述再生反应器 102内的换热器 106。 如此可以将吸收反应器 101内由于二氧化碳吸收溶液吸收二氧化碳时 产生的吸收热输送到热泵发生器 21 中, 用于加热热泵发生器 21 内的第一 热泵吸收溶液以产生工质蒸汽。 所述的工质蒸汽通过蒸汽通道 23进入热泵 吸收器内, 热泵吸收器 22内的第二热泵吸收溶液吸收所述的工质蒸汽产生 吸收热, 该吸收热被输送到再生反应器 102内用于加热二氧化碳吸收溶液, 从而分解出二氧化碳气体, 并对二氧化碳吸收溶液进行再生。 所述的第一 热泵吸收溶液和第二热泵吸收溶液由工质和吸收剂组成, 第一热泵吸收溶 液的吸收剂浓度可以为无穷小, 即第一热泵吸收溶液可以只由工质组成。 第一热泵吸收溶液和第二热泵吸收溶液可以采用相同的吸收剂, 也可以采 用不同的吸收剂。 当第一热泵吸收溶液和第二热泵吸收溶液采用同一吸收 剂时, 第二热泵吸收溶液的吸收剂浓度高于第一热泵吸收溶液的吸收剂浓 度。 所述的工质为水、 氨、 甲醇和乙醇其中之一或几种物质的混合物; 所 述的吸收剂为 LiBr、 NaBr、 KBr、 NH4Br、 MgBr2、 CaBr2、 Lil、 Nal、 KI、 NH4I、 Mgl2、 Cal2、 LiCl、 NaCl、 KC1、 NH4C1、 MgCl2、 CaCl2、 LiN03、 NaN03、 跳、 NH4N03、 Mg (N03) 2和 Ca (N03) 2其中之一或几种物质的混合物。 本实施例 的二氧化碳压缩系统, 可以有效利用各个吸收过程产生的吸收热, 从而节 约热量的消耗, 提高能源利用效率。
此外, 还可以将本实施例的热泵子系统应用于实施例 2 或者实施例 3 的二氧化碳压缩系统, 采用与实施例 4 的相同连接方式, 将所述发生换热 器连接于所述各级吸收反应器内的换热器, 所述吸收换热器连接于所述各 级再生反应器内的换热器。 从而可以使具有多级压缩装置的二氧化碳压缩 请参阅图 5所示,是本发明实施例 5提出的二氧化碳分离回收系统的示 意图。 该二氧化碳分离回收系统主要包括: 分离子系统、 热泵子系统和压 缩子系统, 分离子系统用于从燃烧烟气等含二氧化碳的原料气中分离出二 氧化碳气体, 所述的压缩子系统用于将由分离子系统得到的二氧化碳气体 进行压缩得到高压的二氧化碳气体或者二氧化碳液体, 所述的热泵子系统 用于向分离子系统和压缩子系统提供热量。
所述的分离子系统包括: 吸收塔 10和再生塔 40。 所述的吸收塔 10, 用于吸收含二氧化碳气体的原料气体中的二氧化碳。所述的吸收塔 10包括: 塔底 11, 用于容纳二氧化碳吸收溶液; 填料层 12, 设置在该吸收塔 10内 的中部位置, 其作用在于使二氧化碳吸收溶液与进入塔内的气体有更大的 接触界面; 供气口 16, 设置在上述填料层 12之下, 用于向吸收塔内提供含 二氧化碳的原料气体; 排气口 15, 设置在吸收塔 10的顶部, 用于排出二氧 化碳分离后的气体; 喷淋设备 13, 设置在上述填料层 12之上, 用于均匀喷 洒二氧化碳吸收溶液。 在该吸收塔内, 二氧化碳吸收溶液在吸收塔内自上 而下淋下, 气体自下而上流动, 二氧化碳吸收溶液与进入吸收塔内的含二 氧化碳气体 (如烟气)接触, 并吸收其中的二氧化碳以及 S0x、 NOx等酸性 气体成分。 所述分离子系统的二氧化碳吸收溶液的吸收剂可采用碳酸钾、 一乙醇胺、 二乙醇胺、 甲基二乙醇胺、 氨基乙酸、 碳酸丙烯酯、 聚乙二醇 二甲醚、 或者其中两种或者两种以上的混合物。
所述的热泵子系统包括: 热泵发生器 21和热泵吸收器 22。所述的热泵 发生器 21, 其内设有第一发生换热器 31和第二发生换热器 25, 该热泵发 生器 21内填充有低浓度的第一热泵吸收溶液, 该第一热泵吸收溶液由工质 和吸收剂组成。 该热泵发生器的作用在于, 在该热泵发生器内的低浓度的 第一热泵吸收溶液被加热, 从而产生工质蒸汽。 所述的热泵发生器 21, 其 内还设有发生加热器 32, 用于加热热泵发生器内的第一热泵吸收溶液, 以 补偿由于系统的散热损失和结晶器冷却损失引起的热量不足。
所述的热泵吸收器 22, 其内填充有第二热泵吸收溶液, 其工质和吸收 剂的种类与热泵发生器 21中的第一吸收溶液相同或者不同, 较佳的, 其吸 收剂浓度高于热泵发生器 21中第一吸收溶液的吸收剂浓度; 较佳的, 热泵 吸收器 22中的第二热泵吸收溶液为饱和溶液 (或者过饱和溶液, 或共存有 吸收剂结晶)。在所述的热泵发生器 21和所述的热泵吸收器 22之间设有工 质蒸汽通道 23, 用于使热泵发生器 21 内产生的工质蒸汽进入热泵吸收器 22内。 在该热泵吸收器 22内设有吸收换热器 26, 连接于所述再生塔 40的 再沸器 46, 用于将热泵吸收器 22内产生的热量输送到再沸器 46。
所述的再生塔 40, 连接有再沸器 46, 其上部设有喷淋设备 43, 连接于 所述吸收塔 10底部的二氧化碳吸收溶液出口。 在再生塔 40的中部设有填 料层 42, 用于使二氧化碳吸收溶液可以充分再生, 再生塔的底部为塔底 41 用于容纳二氧化碳吸收溶液, 再生塔 40顶部设有排气口 45。通过管道将吸 收塔 10底部的二氧化碳吸收溶液输送至再生塔进行吸收液的再生, 形成气 体和液体两相。 该气体的主要成分为二氧化碳和水蒸气, 所述液体的主要 成分为二氧化碳吸收溶液, 但是, 由于经过再生该液体中含有的二氧化碳 浓度大大降低。 所述第一发生换热器 31 的入口连接于上述再生塔 40底部 的吸收液出口, 所述第一发生换热器 31 的出口连接上述吸收塔 10的喷淋 设备 13,使在第一发生换热器 31中经过换热降温后的二氧化碳吸收溶液再 次进入到吸收塔内。 所述第二发生换热器 25 的入口连接于上述再生塔 40 的顶部排气口 45。 再生塔的排气经过换热后气体温度降低, 而部分水蒸气 发生冷凝。然后,从第二发生换热器 25的出口得到高浓度的二氧化碳气体。 较佳的, 在上述的第二发生换热器 25的出口连接有气液分离器 30以得到 纯度更高的二氧化碳气体。
所述的压缩子系统, 用于将所述分离子系统得到的高浓度的二氧化碳 气体进行压缩。 该压缩子系统包括多级串联的压缩装置, 压缩装置的数量 可以根据具体的工况设置, 一般来说串联的压缩装置数目越多将会得到压 力更高的二氧化碳, 本实施例以 3级压缩装置串联为例进行说明。 本实施 包括三级压缩装置 100、 200和 300, 三级压缩装置的结构相同, 以下以压 缩装置 100为例进行说明。该压缩装置 100包括吸收反应器 101、再生反应 器 102、 增压泵 103和节流阀 104。 吸收反应器 101其连接于所述分离子系 统, 接收二氧化碳气体。 所述的吸收反应器 101内设有二氧化碳吸收溶液, 进入其内的二氧化碳气体被二氧化碳吸收溶液所吸收。 所述的再生反应器 102用于将来自吸收反应器 101内的二氧化碳吸收溶液进行加热,使其分解 出二氧化碳气体, 从而使二氧化碳吸收溶液进行再生。 所述的增压泵 103 用于将吸收反应器 101内的二氧化碳吸收溶液增压并输送到再生反应器 103 内。 所述的再生反应器的内部压力高于吸收反应器的内部压力。 经过再生 后的二氧化碳吸收溶液再次被输送回吸收反应器内, 节流阀 104设置在从 再生反应器流向吸收反应器的管道上用于控制吸收反应器 101 和再生反应 器 103之间的压力差。 在吸收反应器 101 内还设有换热器, 用于输出吸收 热; 在再生反应器 103 内设有换热器, 用于提供二氧化碳吸收溶液再生所 需的热量。
压缩装置 200包括吸收反应器 201、 再生反应器 202、 增压泵 203和节 流阀 204; 其吸收反应器 201连接于压缩装置 100的再生反应器 102 ; 压缩 装置 300包括吸收反应器 301、再生反应器 302、增压泵 303和节流阀 304; 其吸收反应器 301连接于压缩装置 200的再生反应器 202。冷凝器 400连接 于再生反应器 302, 接收二氧化碳气体, 并将二氧化碳气体冷凝为液态。
在压缩子系统中的各个吸收反应器内的换热器连接于热泵子系统的发 生换热器 32 (由于连接关系与图 4相同, 为简洁图面, 在图 5中没有画出 连接关系), 用于将二氧化碳被吸收所产生的吸收热数送到热泵发生器中以 加热热泵吸收溶液来产生工质蒸汽, 从而可以节约外部热源的用量。 所述 的热泵子系统中的吸收换热器 26 还可以与各个再生反应器中的换热器相 连, 用于加热再生反应器中的二氧化碳吸收溶液 (由于连接关系与图 4相 同, 为简洁图面, 在图 5中没有画出连接关系)。
请参阅图 6所示, 是本发明实施例 6提出的二氧化碳分离回收系统的 示意图。 与上述的实施例 5 的分离回收系统相比, 本实施例增加了送液泵 24、二氧化碳吸收溶液自换热器 27以及吸收剂结晶器 28, 作用在于可以使 热泵发生器 21和热泵吸收器 22中的二氧化碳吸收溶液的浓度差保持相对 稳定的状态。 此外, 本实施例还增加了二氧化碳吸收溶液自换热器 44, 作 用在于可以使吸收液的再生效率得到进一步的提高。
所述的送液泵 24通过管道连接于所述的热泵发生器 21和热泵吸收器 22, 用于将热泵发生器 21和热泵吸收器 22 内的部分二氧化碳吸收溶液输 送到吸收剂结晶器 28。 该吸收剂结晶器 28, 包括: 结晶器二氧化碳吸收溶 液入口, 通过管道连接于送液泵 24的二氧化碳吸收溶液出口; 结晶器稀溶 液出口, 通过管道连接于热泵发生器 21的二氧化碳吸收溶液入口; 及含结 晶溶液输出口, 通过管道连接于热泵吸收器 22的二氧化碳吸收溶液入口。 该吸收剂结晶器 28还具有冷媒循环设备, 用于向吸收剂结晶器 28内的二 氧化碳吸收溶液提供冷量, 使吸收剂结晶器 28内的二氧化碳吸收溶液温度 降低, 当达到吸收剂的结晶温度以下时, 析出吸收剂结晶。 经固液分离后, 吸收剂结晶从含结晶溶液输出口输出到热泵吸收器 22中, 吸收剂浓度降低 了的稀溶液从结晶器稀溶液出口输送到热泵发生器 21内。
二氧化碳吸收溶液自换热器 27设置于所述的吸收剂结晶器 28与送液 泵 24连接的管道上, 用于对进入吸收剂结晶器 28的二氧化碳吸收溶液、 从吸收剂结晶器输出的稀溶液和从吸收剂结晶器输出的含结晶溶液进行热 交换。 二氧化碳吸收溶液自换热器 27 的有益作用在于, 经过热交换之后, 进入吸收剂结晶器 28 的二氧化碳吸收溶液温度降低, 有利于结晶的形成, 从而节约了结晶所需的冷量; 输出到热泵发生器 21的稀溶液的温度得到了 提高,有利于吸收循环工质的蒸发; 输出的含吸收剂结晶溶液的温度也得到 了提高,从而有利于保持热泵吸收器 22在较高的温度下工作。
所述的二氧化碳吸收溶液自换热器还可以用于将来自热泵吸收器的二 氧化碳吸收溶液与来自吸收剂结晶器的结晶后二氧化碳吸收溶液进行换 热、 用于将来自热泵吸收器的二氧化碳吸收溶液与来自吸收剂结晶器的吸 收剂结晶或者含吸收剂结晶的二氧化碳吸收溶液进行换热、 以及用于将来 自热泵吸收器的二氧化碳吸收溶液与来自吸收剂结晶器的结晶后二氧化碳 吸收溶液和吸收剂结晶或者含吸收剂结晶的二氧化碳吸收溶液进行换热。
所述的二氧化碳吸收溶液自换热器 44,设置在连接吸收塔 10底部的吸 收液出口和再生塔 40上部的吸收液入口的管道上, 用于对从再生塔 40的 塔底 41输送至第一发生换热器 31的二氧化碳吸收溶液与从吸收塔塔底 1 1 向再生塔输送的二氧化碳吸收溶液之间进行热交换, 以提高进入再生塔 40 的二氧化碳吸收溶液的温度, 从而进一步提高再生塔 40的二氧化碳吸收溶 液再生效率。
在上述各个实施例中, 仅描述了完成本发明技术方案的基本流程,对于 实现该流程的其他零件或者设备进行了省略, 例如, 保证各个物质流动方 向所需的泵或者阀门。 对于实现上述各个实施例所述的动力循环系统所需 要的其他设备或者零件, 本领域人员皆可在现有技术中找到对应的技术手 段, 本发明人在此不再赘述。
本发明的实施例 7还提出了一种二氧化碳压缩方法, 其采用实施例 1 所述的压缩装置来实现。 本方法包括以下步骤:
吸收反应器接收二氧化碳气体, 在吸收反应器中的二氧化碳吸收溶液 吸收二氧化碳气体, 二氧化碳与二氧化碳吸收溶液发生吸附、 溶解或者进 行化合反应。 所述的二氧化碳吸收溶液的吸收剂为: 碳酸钾、 一乙醇胺、 二乙醇胺、 甲基二乙醇胺、 氨基乙酸、 碳酸丙烯酯、 聚乙二醇二甲醚、 或 者其中两种或者两种以上的混合物。 例如, 当吸收剂为碳酸钾时, 在吸收 反应器内二氧化碳和碳酸钾发生反应生产碳酸氢钾。
将上述吸收反应器内的吸收了二氧化碳的二氧化碳吸收溶液增压并输 送到再生反应器中;
在再生反应器中, 来自吸收反应器的二氧化碳吸收溶液被加热, 生成 二氧化碳气体和二氧化碳吸收溶液; 以及
将再生反应器中生成的二氧化碳吸收溶液输送到吸收反应器中。
本发明的实施例 8提出的二氧化碳压缩方法, 采用实施例 2所述的压 缩系统来实现。该方法包括多级串联的压缩过程, 每级压缩过程与实施例 6 的过程相同, 除第一压缩过程外, 其他的压缩过程中, 进入吸收反应器中 的二氧化碳气体是前一压缩过程的再生反应器所产生的二氧化碳气体。 较 佳的, 对在最后一级压缩过程的在再生反应器中产生的二氧化碳气体进行 冷凝, 形成二氧化碳液体。
本发明的实施例 9还提出一种二氧化碳压缩方法,其包括前述实施例 7 或者实施例 8所述的二氧化碳压缩方法外, 还包括热泵循环过程。参照图 4 所示的二氧化碳压缩系统, 所述的热泵循环过程包括: 在所述的吸收反应 器中, 将二氧化碳气体被二氧化碳吸收溶液所吸收释放出的吸收热用于加 热第一热泵吸收溶液, 产生工质蒸汽; 及所述的工质蒸汽被输送到热泵吸 收器中, 并被热泵吸收器中的第二热泵吸收溶液所吸收, 释放出吸收热, 该吸收热被输送到所述的再生反应器中, 用于加热再生反应器中的二氧化 碳吸收溶液。 对于系统损失的热量, 是通过外部热源来提供, 但采用上述 的热泵循环过程可以减少外部热源的用量, 从而可以有效利用热量, 提高 能源利用效率。 对于实施例 8所述的多级压缩来说, 各级压缩过程中, 二 氧化碳被吸收所产生的热量皆可被用于加热热泵循环过程中的发生过程, 用于浓缩热泵吸收溶液并产生工质蒸汽; 而热泵循环中, 工质蒸汽被吸收 时所产生的吸收热也可被用于各级再生反应器中的再生过程。
本发明实施例 10还提出了一种二氧化碳分离回收方法, 其采用实施例 5所述的二氧化碳分离回收系统。该二氧化碳分离回收方法包括二氧化碳分 离过程、 二氧化碳压缩过程和热泵循环过程。
二氧化碳分离过程包括: 在吸收塔内用二氧化碳吸收溶液与燃烧烟气 接触, 使二氧化碳吸收溶液吸收烟气中的二氧化碳, 并降落到吸收塔的塔 底; 将塔底的吸收二氧化碳后的二氧化碳吸收溶液输出到再生塔中并被加 热升温, 使吸收二氧化碳的吸收液分解, 形成气体和液体两相, 该气体主 要为二氧化碳气体, 并由于大量的二氧化碳形成了气态, 再生形成的液体 中的二氧化碳含量降低。
二氧化碳的压缩过程包括多级压缩, 每级压缩步骤包括: 吸收反应器 的二氧化碳吸收溶液吸收二氧化碳; 然后该二氧化碳吸收溶液被输送到再 生反应器内, 被加热分解出出气态二氧化碳和再生后的二氧化碳吸收溶液, 再生反应器的压力高于吸收反应器的压力; 再生后的二氧化碳吸收溶液被 输送回吸收反应器中。 从再生反应器内产生的二氧化碳气体被输送到下一 级压缩过程中进行压缩; 经过多级的压缩可以在随后的压缩步骤中得到高 压的二氧化碳气体; 对高压的二氧化碳气体进行冷凝, 即可得到高压的二 氧化碳液体, 从而可以更有利于二氧化碳的回收、 储存和运输。
所述的热泵循环过程包括: 在所述的吸收反应器中, 将二氧化碳气体 被二氧化碳吸收溶液所吸收释放出的吸收热用于加热第一热泵吸收溶液, 产生工质蒸汽; 及所述的工质蒸汽被输送到热泵吸收器中, 并被热泵吸收 器中的第二热泵吸收溶液所吸收, 释放出吸收热, 该吸收热被输送到所述 的再生反应器中, 用于加热再生反应器中的二氧化碳吸收溶液。 对于所述 的多级压缩来说, 各级压缩过程中, 二氧化碳被吸收所产生的热量皆可被 用于加热热泵循环过程中的发生过程, 用于浓缩热第一泵吸收溶液并产生 工质蒸汽; 而热泵循环中, 工质蒸汽被吸收时所产生的吸收热也可被用于 各级再生反应器中的再生过程。
另外, 还可以将上述二氧化碳分离过程中的再生后形成的二氧化碳气 体通入热泵发生器的第二发生换热器, 并将再生后形成的液体通入热泵发 生器的第一发生换热器, 用于加热热泵发生器中的二氧化碳吸收溶液使其 形成工质蒸汽; 上述的工质蒸汽通过蒸汽通道进入到热泵吸收器中, 被热 泵吸收器中的第二热泵吸收溶液所吸收释放吸收热, 将该吸收热通过换热 方式用于加热再沸器内的二氧化碳吸收溶液。
其中所述的热泵吸收器中的第二热泵吸收溶液与所述的热泵发生器中 的第一热泵吸收溶液的吸收剂摩尔分数之差大于 0. 1,浓度差越大越有利于 提高热泵吸收器中的温度, 从而有利于二氧化碳吸收溶液的再生; 从第一 发生换热器输出的液体返回到吸收塔顶部再次用于吸收烟气中的二氧化 碳; 对上述的第二发生换热器输出的气体进行气液分离即可得到高纯度的 二氧化碳。
本实施例 10的二氧化碳分离回收方法可以脱除烟气中 80%以上的二氧 化碳, 分离得到的二氧化碳的纯度在不计水蒸气成分的条件下 (即干气含 量) 可达 99%以上, 而经过三级压缩和冷凝后可以得到 2. 7MPa、 _10°C的二 氧化碳液体。
本发明实施例 11 还提出了一种二氧化碳分离回收方法, 与实施例 10 的分离回收方法不同之处在于, 其采用实施例 6所述的分离系统。 本实施 例比实施例 10 增加了热泵发生器和热泵吸收器中热泵吸收溶液的循环步 骤, 其包括: 将热泵吸收器中的部分第二热泵吸收溶液和热泵发生器中的 部分第一热泵吸收溶液共同通入吸收剂结晶器中, 并对结晶器中的混合热 泵吸收溶液进行冷却, 从而可以形成吸收剂结晶, 然后进行固液分离; 固 液分离后得到的结晶后热泵吸收溶液导入热泵发生器中, 固液分离后的吸 收剂结晶以含结晶溶液的方式导入热泵吸收器中, 从而可以使热泵吸收器 和热泵发生器中的溶液浓度差保持在一定范围内。 本发明可以实现二氧化 碳分离过程的连续性。 在上述的吸收剂结晶器中可以通入外部冷源对对结 晶器中的混合热泵吸收溶液进行冷却。
较佳的, 在所述的结晶后热泵吸收溶液输送到热泵发生器之前, 且热 泵吸收器输出的热泵吸收溶液进行冷却之前, 所述的热泵吸收器输出的热 泵吸收溶液与所述的结晶后热泵吸收溶液进行换热。
较佳的, 在所述的吸收剂结晶输送到热泵吸收器之前, 且热泵吸收器 输出的热泵吸收溶液进行冷却之前, 所述的吸收剂结晶与所述的热泵吸收 器输出的热泵吸收溶液进行换热。
较佳的, 在所述的结晶后热泵吸收溶液输送到热泵发生器之前, 吸收 剂结晶输送到热泵吸收器之前, 且所述热泵吸收器输出的热泵吸收溶液进 行冷却之前, 所述热泵吸收器输出的热泵吸收溶液与所述的吸收剂结晶和 结晶后热泵吸收溶液进行换热。
较佳的, 在所述的结晶后热泵吸收溶液输送到热泵发生器之前, 吸收 剂结晶输送到热泵吸收器之前, 热泵吸收器输出的热泵吸收溶液进行冷却 之前, 且所述热泵发生器输出的热泵吸收溶液输送到热泵吸收器之前, 该 热泵发生器输出的吸收溶液与所述热泵吸收器输出的热泵吸收溶液混合形 成混合热泵吸收溶液, 该混合二热泵吸收溶液与所述的吸收剂结晶和结晶 后热泵吸收溶液进行换热。
经过该热交换步骤, 可以提高导入热泵吸收器和热泵发生器中的热泵 吸收溶液的温度从而可以保持热泵吸收器和热泵发生器中热泵吸收溶液的 工作温度, 同时可以降低进入到吸收剂结晶器中的热泵吸收溶液的温度, 从而可以节约冷源的用量。 较佳的, 从再生塔的塔底输送至第一发生换热 器的二氧化碳吸收溶液与从吸附塔塔底向再生塔输送的吸收液之间进行热 交换, 以提高进入再生塔的二氧化碳吸收溶液的温度, 从而进一步提高再 生塔的二氧化碳吸收溶液的再生效率。
为实现上述技术方案所必须的其他技术手段皆可采用现有技术中的技 术实现。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。 工业应用性
本发明提出的二氧化碳分离回收系统实际上是将二氧化碳化学吸收技 术与吸收式热泵循环技术有机的结合起来, 通过吸收式热泵循环的作用将 二氧化碳吸收过程放出的较低品位的吸收热提升为可用于二氧化碳吸收溶 液再生的较高品位的再生热, 从而实现大幅度减少或者无需外部冷却水和 外部驱动热源。 同时本发明采用吸收式压缩过程, 对分离得到的二氧化碳 进行压缩, 而该压缩过程通过采用余热即可进行, 大幅度省去了电力或者 其他的驱动力。

Claims

权 利 要 求
1、 一种二氧化碳压缩装置, 其特征在于该装置包括: 吸收反应器、 再 生反应器、 增压泵和节流阀,
所述的吸收反应器内充有二氧化碳吸收溶液, 用于吸收二氧化碳气体; 所述的再生反应器用于使来自吸收反应器的二氧化碳吸收溶液分解出 二氧化碳气体;
所述的增压泵用于将吸收反应器的二氧化碳吸收溶液输送到再生反应 器内;
节流阀设置在从再生反应器流向吸收反应器的管道上, 用于控制吸收 反应器和再生反应器之间的压力差;
在吸收反应器内还设有换热器, 用于输出吸收反应的吸收热; 在再生 反应器内设有换热器, 用于提供再生反应的再生热。
2、 一种二氧化碳压缩系统, 其特征在于, 该系统包括多级串联的如权 利要求 1 所述的二氧化碳压缩装置, 其中, 后一级压缩装置的吸收反应器 连接于前一级压缩装置的再生反应器。
3、 根据权利要求 2所述的二氧化碳压缩系统, 其特征在于还包括一冷 凝器, 连接于最后一级二氧化碳压缩装置的再生反应器, 用于冷凝来自该 再生反应器的二氧化碳。
4、 根据权利要求 2或 3所述的二氧化碳压缩系统, 其特征在于在所述 的吸收反应器内采用碳酸钾、 一乙醇胺、 二乙醇胺、 甲基二乙醇胺、 氨基 乙酸、 碳酸丙烯酯、 聚乙二醇二甲醚、 或者其中两种或者两种以上的混合 物来吸收二氧化碳。
5、 一种二氧化碳压缩系统, 其特征在于其包括压缩子系统和热泵子系 统:
所述压缩子系统包括一级或者多级串联的压缩装置, 每级压缩装置包 括:
吸收反应器, 用于吸收二氧化碳气体;
再生反应器, 用于使来自吸收反应器的吸收溶液分解出二氧化碳 气体; 在压缩子系统中, 后一级压缩装置的二氧化碳吸收反应器连接于前一 级压缩装置的再生反应器; 最后一级压缩装置的再生反应器连接于一个冷 凝器;
所述热泵子系统包括:
热泵发生器, 其内填充有第一热泵吸收溶液, 在该热泵发生器内设有 发生换热器用于接收来自上述的吸收反应器的吸收热;
热泵吸收器, 其内填充有第二热泵吸收溶液, 在该热泵吸收器内设有 吸收换热器用于向上述的再生反应器供热;
蒸汽通道, 连通所述的热泵发生器和所述的热泵吸收器;
所述发生换热器连接于上述各级吸收反应器内的换热器, 所述吸收换 热器连接于上述各级再生反应器内的换热器;
所述的热泵吸收溶液由工质和吸收剂组成, 所述的工质为水、 氨、 甲 醇和乙醇其中之一或几种物质的混合物;所述的吸收剂为 LiBr、 NaBr、 KBr、 NH4Br、 MgBr2、 CaBr2、 Lil、 Nal、 KI、 NHJ、 Mgl2、 Cal2、 LiCl、 NaCl、 KC1、 NH4C1、 MgCl2、 CaCl2、 LiN03、 NaN03、 KN03、 NH4N03§ 03) 2和 。& ( 3) 2其 中之一或几种物质的混合物。
6、 根据权利要求 5所述的二氧化碳压缩系统, 其特征在于其还包括吸 收剂结晶器, 接收来自热泵吸收器和 /或热泵发生器的热泵吸收溶液并进行 冷却, 形成吸收剂结晶和结晶后热泵吸收溶液, 所述的结晶后热泵吸收溶 液作为第一热泵吸收溶液输送至热泵发生器, 含所述吸收剂结晶的吸收溶 液作为第二热泵吸收溶液输送至热泵吸收器。
7、 根据权利要求 5或 6所述的二氧化碳压缩系统, 其特征在于其还包 括热泵吸收溶液自换热器, 用于所述的来自热泵发生器的热泵吸收溶液和 / 或来自热泵吸收器的热泵吸收溶液, 与结晶后吸收溶液和 /或吸收剂结晶或 者含吸收剂结晶的吸收溶液进行换热。
8、 根据权利要求 5-7任一项所述的二氧化碳压缩系统, 其特征在于所 述热泵发生器内还设有发生加热器, 用于加热热泵发生器内的第一热泵吸 收溶液。
9、 一种二氧化碳分离回收系统, 其特征在于其包括分离子系统、 压缩 子系统和热泵子系统:
所述分离子系统包括: 吸收塔, 用于从含二氧化碳气体中吸收二氧化碳;
再生塔, 用于再生二氧化碳吸收溶液;
所述压缩子系统包括一级或者多级串联的压缩装置, 每级压缩装置包 括:
吸收反应器, 用于吸收来自分离子系统的二氧化碳气体; 再生反应器, 用于使来自吸收反应器的吸收溶液分解出二氧化碳 气体;
在压缩子系统中, 后一级压缩装置的二氧化碳吸收反应器连接于前一 级压缩装置的再生反应器; 第一级压缩装置的二氧化碳吸收反应器连接于 分离子系统, 用于接收二氧化碳气体; 最后一级压缩装置的再生反应器连 接于一个冷凝器;
所述热泵子系统包括:
热泵发生器, 其内填充有第一热泵吸收溶液, 在该热泵发生器内设有 第一发生换热器和第二发生换热器, 用于接收来自上述的吸收塔和吸收反 应器的吸收热;
热泵吸收器, 其内填充有第二热泵吸收溶液, 在该热泵吸收器内设有 吸收换热器, 用于向上述的再生塔和再生反应器供热;
蒸汽通道, 连通所述的热泵发生器和所述的热泵吸收器;
所述第一发生换热器连接于上述分离子系统中的吸收溶液换热器和上 述压缩子系统中各级吸收反应器内的换热器; 所述第二发生换热器的入口 连接于上述分离子系统中再生塔顶部的气体出口;
所述吸收换热器连接于上述分离子系统中再生塔的再沸器和压缩子系 统中各级再生反应器内的换热器。
10、 根据权利要求 9所述的二氧化碳分离回收系统, 其特征在于其还 包括气液分离器, 其入口连接于上述第二发生换热器的出口; 其上部出口 连接于所述的第一级压缩装置的吸收反应器。
11、 一种二氧化碳压缩方法, 其特征在于包括以下步骤:
在吸收反应器中, 二氧化碳气体被二氧化碳吸收溶液所吸收; 将上述的吸收二氧化碳气体后的二氧化碳吸收溶液增压并输送到再生 反应器中;
在再生反应器中, 来自吸收反应器的二氧化碳吸收溶液被加热, 生成 二氧化碳气体和再生二氧化碳吸收溶液; 以及
将再生反应器中生成的再生二氧化碳吸收溶液减压并输送到吸收反应 器中。
12、 一种二氧化碳压缩方法, 其特征在于包括多级串联的压缩过程, 每级压缩过程包括:
在吸收反应器中, 二氧化碳气体被二氧化碳吸收溶液吸收;
将上述吸收二氧化碳之后的二氧化碳吸收溶液增压并输送到再生反应 器中;
在再生反应器中, 来自吸收反应器的二氧化碳吸收溶液被加热, 生成 二氧化碳气体和再生二氧化碳吸收溶液; 以及
将再生反应器中生成的再生二氧化碳吸收溶液减压并输送到吸收反应 器中;
除第一级压缩过程外, 其他的压缩过程中, 进入吸收反应器中的二氧 化碳气体是前一级压缩过程的再生反应器所产生的二氧化碳气体。
13、 根据权利要求 11所述的二氧化碳压缩方法, 其特征在于, 对在最 后一级压缩过程的再生反应器中产生的二氧化碳气体进行冷凝, 形成二氧 化碳液体。
14、 根据权利要求 11-13任一项所述的二氧化碳压缩方法, 其特征在 于还包括: 热泵循环过程, 该热泵循环过程包括:
在所述的吸收反应器中, 将二氧化碳气体被二氧化碳吸收溶液所吸收 释放出的吸收热用于加热第一热泵吸收溶液, 产生工质蒸汽; 及
所述的工质蒸汽被输送到热泵吸收器中, 并被热泵吸收器中的第二热 泵吸收溶液所吸收, 释放出吸收热, 该吸收热被输送到所述的再生反应器 中, 用于加热再生反应器中的二氧化碳吸收溶液。
15、 一种二氧化碳分离回收方法, 用于从含二氧化碳的原料气中分离 回收二氧化碳, 其特征在于该方法包括二氧化碳分离过程和二氧化碳压缩 过程;
所述的二氧化碳分离过程包括:
在吸收塔内用二氧化碳吸收溶液与原料气接触, 使二氧化碳吸收溶液 吸收原料气中的二氧化碳;
吸收二氧化碳后的二氧化碳吸收溶液输出到再生塔中并被加热升温, 使吸收二氧化碳的二氧化碳吸收液分解, 形成二氧化碳气体和吸收溶液两 相;
所述的二氧化碳压缩过程为权利要求 14所述的二氧化碳压缩方法, 对 上述再生塔内形成的二氧化碳气体进行压缩。
16、 根据权利要求 15所述的二氧化碳分离回收方法, 其特征在于: 在进行二氧化碳压缩过程之前, 将再生塔内形成的二氧化碳气体和吸收溶 液先分别输送到热泵发生器内, 用于加热热泵发生器内的热泵吸收溶液。
17、 根据权利要求 16所述的二氧化碳分离回收方法, 其特征在于, 在 热泵循环过程中, 热泵吸收器中产生的吸收热的一部分被输送到再生塔中 用于加热再生塔内的二氧化碳吸收溶液。
18、 根据权利要求 15所述的二氧化碳分离回收方法, 其特征在于, 对 热泵发生器内的部分热泵吸收溶液和 /或热泵吸收器内的部分热泵吸收溶 液进行冷却, 形成吸收剂结晶和结晶后热泵吸收溶液; 将所述的吸收剂结 晶或者含吸收剂结晶的吸收溶液作为第二热泵吸收溶液输送到热泵吸收器 中, 将所述的结晶后热泵吸收溶液作为第一热泵吸收溶液输送到热泵发生 器中。
19、 根据权利要求 15所述的二氧化碳分离回收方法, 其特征在于其中 所述的后一级吸收反应器内二氧化碳吸收溶液的吸收剂的转化度比前一级 吸收反应器内的二氧化碳吸收溶液的吸收剂的转化度大 0. 1以上。
PCT/CN2010/070755 2009-02-26 2010-02-25 二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法 WO2010097047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080018322.9A CN102413901B (zh) 2009-02-26 2010-02-25 二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910078363.6 2009-02-26
CN200910078363 2009-02-26

Publications (1)

Publication Number Publication Date
WO2010097047A1 true WO2010097047A1 (zh) 2010-09-02

Family

ID=42665020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070755 WO2010097047A1 (zh) 2009-02-26 2010-02-25 二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法

Country Status (2)

Country Link
CN (1) CN102413901B (zh)
WO (1) WO2010097047A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154686A (zh) * 2014-09-05 2014-11-19 哈尔滨工业大学 一种带蒸气疏导的液封式节流降压膨胀装置
CN113877365A (zh) * 2020-07-03 2022-01-04 中石化石油工程技术服务有限公司 Co2捕集系统及工艺
CN114272735A (zh) * 2021-12-27 2022-04-05 北京华源泰盟节能设备有限公司 一种烟气余热利用与碳捕集一体化系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258380B (zh) * 2015-10-26 2018-05-11 天津大学 利用混合工质通过热力驱动的紧凑型脱除co2的系统
CN105258141B (zh) * 2015-10-26 2018-03-09 天津大学 独立太阳能相变梯级蓄热间接热力驱动脱除co2的系统
CN105251316B (zh) * 2015-10-26 2018-01-05 天津大学 独立太阳能直接热力驱动利用混合工质脱除co2的系统
CN107677002B (zh) * 2017-09-18 2020-02-18 东南大学 低品位热驱动吸收式化学反应制冷热泵循环装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582020A (en) * 1994-11-23 1996-12-10 Mainstream Engineering Corporation Chemical/mechanical system and method using two-phase/two-component compression heat pump
US6883327B2 (en) * 2003-04-30 2005-04-26 Mitsubishi Heavy Industries, Ltd. Method and system for recovering carbon dioxide
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
CN101314102A (zh) * 2008-05-30 2008-12-03 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582020A (en) * 1994-11-23 1996-12-10 Mainstream Engineering Corporation Chemical/mechanical system and method using two-phase/two-component compression heat pump
US6883327B2 (en) * 2003-04-30 2005-04-26 Mitsubishi Heavy Industries, Ltd. Method and system for recovering carbon dioxide
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
CN101314102A (zh) * 2008-05-30 2008-12-03 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154686A (zh) * 2014-09-05 2014-11-19 哈尔滨工业大学 一种带蒸气疏导的液封式节流降压膨胀装置
CN113877365A (zh) * 2020-07-03 2022-01-04 中石化石油工程技术服务有限公司 Co2捕集系统及工艺
CN114272735A (zh) * 2021-12-27 2022-04-05 北京华源泰盟节能设备有限公司 一种烟气余热利用与碳捕集一体化系统

Also Published As

Publication number Publication date
CN102413901A (zh) 2012-04-11
CN102413901B (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
US8308849B2 (en) Ultra cleaning of combustion gas including the removal of CO2
WO2010097047A1 (zh) 二氧化碳压缩装置及方法、二氧化碳分离回收系统及方法
CN101298018B (zh) 一种以氨水吸收烟道气中co2的方法
CN201244430Y (zh) 燃煤电厂烟气中二氧化碳捕集装置
US9469547B2 (en) Integrated carbon dioxide removal and ammonia-soda process
WO2009155790A1 (zh) 二氧化碳分离系统以及分离方法
EA035832B1 (ru) Способ и установка для улавливания co
CN103857456A (zh) 从气体中脱除二氧化碳的方法
CN104607037A (zh) 一种利用pH摆动原理实现CO2捕集的方法及系统
CN109232161A (zh) 一种电厂烟气中二氧化碳回收与利用系统及方法
CN114011230A (zh) 一种基于液-固相分离的二氧化碳捕集系统
CN114963218A (zh) 一种耦合碳捕集的烟气余热回收装置及方法
CN107677002B (zh) 低品位热驱动吸收式化学反应制冷热泵循环装置及方法
US8512445B2 (en) Carbonate absorption system and process for carbon dioxide separation
CN116459651A (zh) 一种二氧化碳捕集系统
CN110756000A (zh) 一种结晶氨法碳捕集与制冷系统
US11865494B2 (en) Devices, systems, facilities and processes for bio fermentation based facilities
CN216799301U (zh) 一种分离混合气中二氧化碳的系统
CN216458004U (zh) 一种基于液-固相分离的二氧化碳捕集系统
CN220413278U (zh) 一种以化石能源为原料的co2捕集系统
CN113209779B (zh) 一种无需增压的溶剂/水合组合气体分离工艺
CN101749783B (zh) 供热系统以及供热方法
CA3233689A1 (en) Gas capture system comprising a heat pump using a liquid sorbent with combined temperature and pressure swings
CA3222776A1 (en) Use of hydroxide ions as a heat source
CN116989535A (zh) 基于废气蒸发冷却的热泵驱动直接空气碳捕集系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018322.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-12-2011 )

122 Ep: pct application non-entry in european phase

Ref document number: 10745831

Country of ref document: EP

Kind code of ref document: A1