WO2010095789A1 - Non-magnetic temperature controller and control method for same - Google Patents

Non-magnetic temperature controller and control method for same Download PDF

Info

Publication number
WO2010095789A1
WO2010095789A1 PCT/KR2009/003626 KR2009003626W WO2010095789A1 WO 2010095789 A1 WO2010095789 A1 WO 2010095789A1 KR 2009003626 W KR2009003626 W KR 2009003626W WO 2010095789 A1 WO2010095789 A1 WO 2010095789A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating wire
temperature
heating
cathode
temperature signal
Prior art date
Application number
PCT/KR2009/003626
Other languages
French (fr)
Korean (ko)
Inventor
길종진
Original Assignee
Kil Jong-Jin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kil Jong-Jin filed Critical Kil Jong-Jin
Publication of WO2010095789A1 publication Critical patent/WO2010095789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes

Definitions

  • the present invention relates to a magnetic field temperature controller, and more particularly, to a magnetic field temperature controller and a method for controlling the temperature of the heating line by the parallel heating line method rather than the series heating line method.
  • the bedside conditions such as temperature and humidity are important requirements.
  • electric beddings and heaters such as electric blankets, electric mattresses, and electric steamers in order to maintain the bed temperature properly. I use it.
  • the heat transfer bedding and the heater are built with a heating wire therein, and heat is generated when power is supplied to the heating wire. Therefore, it is essential to configure a temperature controller that senses the temperature around the heating wire and controls the power supply accordingly.
  • the conventional bedding heating wire has shorted one end of two metal heating wires arranged in parallel, and is equipped with a separate temperature sensing sensor separated from the heating wire to detect temperature.
  • the method of separating the temperature sensor and the heating wire has a problem that not only does not detect the temperature of the entire heating wire caused by a short circuit inside the heating wire, but also does not detect local overheating at an arbitrary position. Therefore, when the heating wire is locally overheated or short-circuit and disconnection, there is a problem that a fire and an electric shock may occur.
  • a method of detecting a temperature with a third electric wire by adding a separate temperature sensor to an outer circumferential surface or an inner center surface of which two ends are shorted among two metal heating wires arranged in parallel is used.
  • the temperature sensor layer and the third metal layer are added to the heating wire without the separation from the heating wire, the thickness of the non-magnetic heating wire is increased so that it cannot be used for thin bedding, and the heating wire is produced.
  • problems such as complicated process and rising production cost.
  • the above-mentioned conventional techniques all have a problem in controlling the temperature of the heating wire, or the thickness of the heating wire has a problem that the utility line is not practical, or does not block harmful electromagnetic waves due to voltage and current.
  • heating wire general non-magnetic heating wire that is used as a heating element in electric bedding, electric mattresses such as electric mattresses or electric mats, or heating mats, generally, a ventricle made of polyester thread or glass wool, spirally to the ventricles A heater coil to be wound, an inner insulator coated on the heater coil of the outer circumferential surface of the ventricle for insulation, a shield wired and grounded in the form of a conductor or a net on the outer circumferential surface of the inner insulator, and an outer insulator coated on the shield Etc.
  • the heater coil and the shield are electrically connected in series with each end connected to each other, and each of the leading ends thereof is a power input terminal respectively connected to the (+) (-) terminal of the power source.
  • Such a general magnetic field-free heating wire has a disadvantage that the thickness is very thick due to its internal insulator and weak in flexibility.
  • the above-described conventional bedding-free non-magnetic heating wire is thick because the internal insulator is softened due to the high heat of the heater coil during heat generation, and the insulation is sharply dropped, so the thickness of the internal insulator has to be thick to prevent the short circuit between the heater coil and the shield. Is very thick (at least 6 mm), when applied to electric mats, etc., is blown over the epidermis and exhausted to the user's body, and it is almost impossible to apply to thin beddings such as electric mattresses, blankets, and sheets because of thickness and stretchability. It was impossible.
  • the applicant has devised a heating line and a temperature controller as disclosed in Patent Publication No. 2004-87853 and Patent No. 10-0553815.
  • the improved heating wire reduces the thickness of the inner insulator by using a heating wire coated with an enamel layer, and at the same time, the lead wire is wound in a spiral structure on the outer surface of the inner insulator so that the performance does not decrease even when the bending stress is repeatedly received. It was to have. This makes it possible to completely solve the conventional problem that the thickness becomes too thick and the flexibility is poor.
  • the improved heating wire could not perform the function of detecting local overheating and controlling energization accordingly. If tens of meters of heating wire is locally overheated at a certain position or exceeds the reference temperature, it may cause a fire or burn, so the power supply should be cut off. In other words, in order to detect the temperature of the long heating wire, there is a cumbersome point in that a plurality of temperature detection devices must be additionally provided at an arbitrary position, and the temperature detection device is inconvenient for the user because it is configured to protrude out of the bedding. There is a problem that the temperature detection device can not be attached to the bedding.
  • FIG. 1 is a view showing the configuration of a general electromagnetic wave thermostat
  • Figure 2 is a view showing an equivalent circuit of the heating unit according to the positive (+) power of the AC input power of Figure 1
  • Figure 3 is an AC input power of Figure 1
  • FIG. 4 is a diagram illustrating an equivalent circuit of a heating unit according to a negative ( ⁇ ) power source
  • FIG. 4 is a diagram illustrating a temperature detection and heating operation and a magnetic field forming process according to a general AC input power source.
  • the magnetic field-free thermostat is composed of a heating unit 1 and a temperature control control unit 30.
  • the heating unit 1 includes a heating line 16, a rectifier 17 for detecting a temperature voltage, a rectifier 18 for a heating current u-turn, a control rectifier 19, and a trigger input unit 24.
  • the heating wire 16 surrounds the first heating wire 13 and the first heating wire 13 wound on the outer circumferential surface of the insulating core, and an NTC thermistor 14 which lowers the resistance value as the temperature increases. And an insulating coating surrounding the second heating wire 15 wound around the outer circumferential surface of the NTC thermistor 14 and the second heating wire 15.
  • the first heating wire 13 and the second heating wire 15 are arranged side by side or parallel to each other.
  • the present invention may further include a temperature voltage adjusting unit 31 for adjusting the temperature detection voltage applied to one end of the first heating wire 13.
  • the temperature voltage controller 31 includes a resistor 11 connected at one end to a power source, and a variable resistor 12 for temperature detection adjustment connected in series between the other end of the resistor 11 and one end of the first heating wire 13. .
  • the variable resistor 12 changes the voltage input to the NTC thermistor 14 to enable temperature control.
  • the rectifier 17 for detecting a temperature voltage is connected in series with the other end of the first heating wire 13 and passes the temperature voltage output from the other end of the first heating wire 13.
  • the rectifier 17 for detecting the temperature voltage is preferably a diode.
  • the half cycle of the AC cycle that is, the positive cycle
  • the temperature detection signal current passes through the first heating wire 13 and partially flows back from the NTC thermistor 14 to the second heating wire 15. At this time, since the temperature detection signal current flowing in the first heating wire 13 and the second heating wire 15 is opposite to each other, the magnetic field is canceled and the temperature detection signal current flows in the non-magnetic state.
  • Rectifier 17 for detecting the temperature voltage 17 is an equivalent circuit for explaining theoretically.
  • the temperature detection operation and the heating operation are separated by the positive power supply and the negative power supply of the AC input power. Since the power required by the temperature control controller 30 to accept the temperature signal voltage is a small signal power of several mW or less, the temperature signal voltage output value of the temperature voltage controller 31 also operates to several mW or less.
  • the setting of the own input signal amplification operating point of the temperature control controller 30 (particularly, when the SCR 90 is provided in the comparison detection unit 21, the +,-selection operation becomes possible) Only one of the signal or the + and-signals may be selected and randomly operated.
  • the rectifier is not necessary for small signals, or the rectifier 17 for temperature voltage detection is used logically to overlap the temperature voltage detection rectifier 17 under actual circuit configuration conditions such as selecting and using one signal. (17) may be omitted. That is, when the temperature signal voltage conversion power consumption of the NTC thermistor 14 is converted and detected by several mW or less, the NTC thermistor detection signal voltage can be selected as an AC voltage or a DC voltage, and the temperature control controller 30 detects the thermistor. The presence or absence of the rectifier 17 for temperature voltage detection can be selectively applied according to the condition for setting the input signal amplification operation point.
  • the control rectifier 19 causes the heating current to flow u-turn to the power supply side through the other end and one end of the first heating wire 13 from the opposite end of the second heating wire 15 connected to the power supply when conducting by the trigger signal.
  • the control rectifier includes a rectifier 18 for heating current U-turn and a control rectifier 19.
  • the rectifier 18 for the heating current U-turn has a cathode connected to the other end of the first heating wire 13 and an anode connected to the second heating wire 15 on the same side.
  • a diode is used.
  • control rectifier 19 has an anode connected in parallel with the temperature voltage control unit 31 at one end of the first heating wire 13 and a cathode connected to the power supply side, and is turned on by a trigger signal of the trigger input unit 24. .
  • SCR silicon-controlled rectifier
  • the temperature control controller 30 outputs a control signal when the temperature voltage output from the first heating wire is greater than the reference voltage.
  • the temperature control controller 30 includes a fixed reference voltage generator 20 for outputting a reference voltage, and a comparison detector 21 for outputting a driving signal when the temperature voltage is higher than the reference voltage by comparing the temperature voltage with the reference voltage. ), A trigger delay unit 22 driven by the drive signal of the comparison detector 21 to delay the trigger signal for a predetermined time, and a trigger output for outputting a trigger signal for a time delayed by the trigger delay unit 22. And a portion 23.
  • the trigger delay section 22 starts at the temperature detection cycle of the AC input power cycle and is maintained until the control rectifier 19 is turned on in the heating cycle. At this time, the control rectifier 19 is turned on at the zero point to control power. It is characteristic.
  • the magnetic field-free heating operation when the control rectifier 19 is turned on by the trigger signal output of the temperature control controller 30, the second heating wire 15, the rectifier for heating current U-turn 18, the first heating wire connected in series with the power supply A heating current flows through 13 and the control rectifier 19 to heat the heating wire.
  • the trigger signal may be implemented such that both the heating current u-turn rectifier 18 or the heating current u-turn rectifier 18 and the control rectifier 19 are turned on. At this time, it is preferable that both of the heating current u-turn rectifier 18 and the control rectifier 19 are SCR.
  • the first heating line 13 and the second heating line 15 are connected by the NTC thermistor 14 in the heating line heating process, a single heating line is formed.
  • the entire heating wire 16 does not operate, and thus there is a problem in that heat generation does not occur.
  • an object of the present invention is to detect the temperature of the heating wire and to adjust the temperature by the parallel heating wire method of connecting the first heating wire and the second heating wire in parallel, not the series heating wire method of connecting the first heating wire and the second heating wire in series. To provide a magneticless thermostat and a method of controlling the same.
  • a heating wire including a first heating wire, a thermistor surrounding the outer circumferential surface of the first heating wire, a second heating wire wound on the outer circumferential surface of the thermistor, and a coating for insulating the outer circumferential surface of the second heating wire, and a temperature signal output from the first heating wire.
  • a temperature signal voltage detector which detects and outputs a voltage
  • a temperature controller which receives a temperature signal voltage of the temperature signal voltage detector, and outputs a power control signal according to the temperature signal voltage, and a power control signal of the temperature controller
  • a conduction control unit for connecting the first heating wire and the second heating wire so that the first heating wire and the second heating wire are heated in parallel, respectively, and the heating current flowing in the first heating wire and the second heating wire is opposite to each other. It is characterized by.
  • the conduction control unit, the cathode of the thyristor is connected to one end of the AC power source, the trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate.
  • the first heating wire of the two parallel heating wires between the anode of the thyristor and the other end of the AC power source is connected to the thyristor anode at one end thereof, and the other end thereof is connected to the other end of the AC power source through the second rectifier cathode and the anode, and the second heating wire is made at the other end thereof.
  • One end is connected to the other end of the AC power source, characterized in that the first heating wire and the second heating wire performs a heating operation in parallel.
  • the conduction control unit, the anode of the thyristor is connected to one end of the AC power source and the trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate.
  • the first heating wire of the two parallel heating wires between the cathode of the thyristor and the other end of the AC power source is connected to the thyristor cathode at one end thereof, and the other end thereof is connected to the other end of the AC power source through the second rectifier anode and the cathode, and the second heating wire is made at the other end thereof.
  • the conduction controller may include a trigger input unit configured to receive a power control signal of a temperature control controller; A thyristor comprising a cathode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and an anode connected to one end of the first heating wire; A first rectifier including an anode of the thyristor and a cathode connected to one end of the first heating wire and an anode connected to the other end of the second heating wire; And a second rectifier comprising a cathode connected to the other end of the first heating wire and an anode connected to the other end of the AC power source.
  • the conduction controller may include a trigger input unit configured to receive a power control signal of a temperature control controller; A thyristor comprising an anode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and a cathode connected to one end of the first heating wire; A first rectifier including an anode connected to the cathode of the thyristor and one end of the first heating wire, and a cathode connected to the other end of the second heating wire; And a second rectifier comprising an anode connected to the other end of the first heating wire and a cathode connected to the other end of the AC power source.
  • the magnetic field-free thermostat further comprises a temperature signal supply unit having one end connected to one end of the AC input power and the other end connected to one end of the first heating wire.
  • the temperature control controller is characterized in that the microcontroller microcomputer chip.
  • the temperature signal detection of the temperature signal voltage detection unit may be detected between the cathode of the second rectifier connected to the other end of the first heating wire and the other end of the AC input power source.
  • the temperature signal detection of the temperature signal voltage detection unit may be detected between an anode to which one end of the first heating wire is connected and the other end of the AC power source.
  • the temperature signal detection of the temperature signal voltage detection unit may be detected between both ends of the temperature signal voltage supply unit to which one end of the first heating wire is connected.
  • the temperature signal voltage output of the temperature signal voltage detector is connected in series with a porter coupler light emitting diode to insulate and output the temperature signal voltage to the photocoupler light receiver.
  • the temperature signal voltage output of the temperature signal voltage detector is connected in series with a zener diode to output the temperature signal voltage by comparing with the zener potential.
  • the temperature control controller is connected in parallel with the temperature signal voltage detector.
  • Magnetic-free temperature control method of the present invention for achieving the above object;
  • a method of controlling a magnetic field temperature controller including a heating wire using an NTC thermistor as a filler between a first heating wire and a second heating wire, wherein the first heating wire and the second heating wire are connected in parallel to perform parallel heating operation in parallel without magnetic field.
  • the first heating wire and the second heating wire are characterized in that the temperature detection and the parallel heating operation alternately performs with a time difference.
  • the magnetic field-free thermostat of the present invention generates a heating wire by a double heating wire system in which the first heating wire and the second heating wire are connected in parallel, so that the heating wire is continuously generated by the other even if one of the first heating wire and the second heating wire is disconnected. Has the effect of generating heat.
  • 1 is a view showing the configuration of a general electromagnetic wave thermostat
  • FIG. 2 is a diagram illustrating an equivalent circuit of a heating unit according to a positive power supply of the AC input power supply of FIG. 1.
  • FIG. 3 is a diagram illustrating an equivalent circuit of a heating unit according to a negative power of the AC input power of FIG. 1.
  • FIG. 4 is a view illustrating a temperature detection and heating operation and a magnetic field forming process according to a general AC input power source.
  • FIG. 5 is a view showing the configuration of a heating unit of the magneticless temperature controller according to the first embodiment of the present invention
  • FIG. 6 is a diagram illustrating an equivalent circuit of a heating unit with respect to the constant power of the AC input power of FIG. 5.
  • FIG. 7 illustrates an equivalent circuit of a heating unit with respect to a negative power supply of the AC input power supply of FIG. 5.
  • FIG. 9 is a view illustrating a method of forming a magnetic field according to an AC input power source of the present invention.
  • FIG. 11 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a second embodiment of the present disclosure.
  • FIG. 12 is an equivalent circuit diagram of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a third embodiment of the present invention.
  • FIG. 13 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a third embodiment of the present disclosure.
  • FIG. 14 is a view showing a first application circuit of the magnetic field temperature controller to which the heating unit according to the present invention is applied;
  • FIG. 15 is a view showing a second application circuit of the magnetic field temperature controller to which the heating unit according to the present invention is applied;
  • controlled rectifier 113 first rectifier
  • FIG. 5 is a view showing the configuration of a heating unit of the magnetic field temperature controller according to the first embodiment of the present invention
  • Figure 6 is a view showing an equivalent circuit of the heating unit for the constant power of the AC input power of Figure 5
  • Figure 7 5 is a diagram illustrating an equivalent circuit of a heating unit with respect to a negative power supply of the AC input power source of FIG. 5
  • FIG. 8 is a view for explaining an operation of the heating unit according to the AC input power source of the present invention
  • FIG. 10 is a view for explaining a method of forming a magnetic field according to a power source
  • FIG. 10 is a view for explaining a structure of a heating wire applied to the present invention.
  • a description with reference to FIGS. 5 to 10 is as follows.
  • the magnetic field-free thermostat is a heating unit 150 for performing a heat generating operation for generating a heating wire by the temperature detection operation of the heating wire in a half cycle unit of the AC input power and a dual heating method (or "parallel heating method"). ) And the temperature control control unit 30.
  • the heating unit 150 includes a heating line 16, a temperature signal supply unit 31, and a conduction control unit 151 to detect the temperature of the heating line 16 during a line (positive) half cycle of AC input power.
  • the temperature signal is output to the temperature control controller 30, and a heating current is provided to each of the first heating wire 13 and the second heating wire 15 during the next (negative) half cycle of the AC input power to generate heat in parallel.
  • the heating line 16 includes a core 25, a first heating wire 13 wound around the core 25, and an NTC thermistor 14 surrounding the outer circumferential surface of the first heating wire 13. And a sheath 26 that wraps and insulates the second heating wire 15 so as to call the second heating wire 15 wound around the outer circumferential surface of the NTC thermistor 14 and the second heating wire 15.
  • One end of the first heating wire 13 is connected to one end of the AC input power supply unit, the other end is connected to the temperature control controller 30, and the second heating wire 15 is connected to the other end of the AC input power supply. The other end is connected to the other end of the AC input power source, i.e., grounded.
  • the temperature signal supply unit 31 receives an AC input power from the AC input power supply unit and receives a temperature signal (voltage or voltage) according to the temperature of the NTC thermistor 14 configured between the first heating wire 13 and the second heating wire 15. Current).
  • the temperature signal supply part 31 is a resistor 111.
  • the conduction controller 151 includes a trigger input unit 100, a control rectifier 112, a first rectifier 113, and a second rectifier 114.
  • the trigger input unit 100 has one end connected to one end of the AC input power unit and the temperature control controller 30 and the other end connected to the control rectifier 112, and receives the trigger output from the temperature control controller 30 to control it. Output to the rectifier 112.
  • the control rectifier 112 is a thyristor (SCT), the cathode is connected to one end of the AC input power, the anode is connected to one end of the first heating line 13, the gate is configured to be connected to the other end of the trigger input unit 100 Then, it is turned on / off by the trigger output from the trigger input unit 100.
  • SCT thyristor
  • the first rectifier 113 has a cathode connected to the anode of the control rectifier 112 and one end of the first heating line 13, and the anode is connected to the other end of the second heating line 114.
  • the cathode of the second rectifier 114 is connected to the other end of the first heating line 13, the anode is grounded.
  • the first rectifier 113 and the second rectifier 114 connect the first heating wire 13 to the temperature control controller 30 in an equivalent circuit during the line (positive) half period of the AC input power, and the second heating wire ( 15) is disconnected, and the first heating wire 13 and the second heating wire 15 are connected in parallel to the AC input power in an equivalent circuit during the subsequent (negative) half cycle of the AC input power.
  • the heating wire 13 and the second heating wire 15 are to generate heat respectively.
  • the first rectifier 113 connects the other end of the second heating line 15 to the anode of the control rectifier 112 with respect to the heating current, and the second rectifier 114 is connected to the other end of the first heating line 13.
  • One end of the second heating wire 15 is connected so that the first heating wire 13 and the second heating wire 15 are connected in parallel so that the heating current output from the AC input power source is transferred to the first heating wire 13 and the second heating wire ( 15) to distribute the current.
  • Each of the divided heating currents heats the first heating wire 13 and the second heating wire. Therefore, the magnetic field-less thermostat of the present invention may continuously generate heat through the heating line 16 even when one of the first heating wire 13 and the second heating wire is broken.
  • temperature control control part 30 is the same as the structure of the above-mentioned prior registration patent, and is explained in detail in the temperature control control part 30 of a prior registration patent, it demonstrates briefly.
  • the temperature control controller 30 receives a temperature signal based on a temperature detection current and a resistance value of the thermistor, measures a temperature, and outputs a trigger according to the measured temperature to the trigger input unit 100.
  • the first rectifier 114 is equivalently disconnected as shown in FIG. 6 during an AC input power, that is, a line cycle (positive period in FIG. 8) of the AC input power. do. Accordingly, the AC input power is supplied to the first heating wire 13, the NTC thermistor 14, and the second heating wire 15, and the AC input power and the first and second heating wires 13 and 15 of the NTC thermistor 14 are connected.
  • the temperature detection current according to the resistance value according to the temperature flows along the paths of the AC input power, the resistor 111, the first heating wire 13, the NTC thermistor 14, and the second heating wire 15. At this time, since the direction of the temperature detection current flowing through the first heating wire 13 and the second heating wire 15 is opposite, the magnetic field is canceled as shown in FIG. 9 to form a magnetic field.
  • the first rectifier 113 normally forms a path to generate a heating current by the AC input power, and the heating current is generated by the first heating wire ( 13) and second heating wire 15 are distributed and supplied.
  • the control rectifier 112 should be turned on by receiving a trigger through the trigger input unit 100.
  • the first heating wire 13 and the second heating wire 15 receiving the divided heating current generate heat by the distributed heating current. At this time, since the direction of current flowing through the first heating wire 13 and the second heating wire 15 is opposite, they are mutually offset as shown in FIG. 9 to form a magnetic field.
  • 11 and 12 are diagrams showing an equivalent circuit of a heating unit of a magnetic field temperature controller with respect to both power sources of the AC input power according to the second and third embodiments of the present invention.
  • 11 and 12 may be configured to further include a temperature signal adjusting unit 120 for adjusting the temperature signal of various forms.
  • the temperature signal controller 120 adjusts a temperature signal (voltage or current) generated by the temperature signal supply unit 120 to arbitrarily adjust a temperature and a temperature signal proportional relationship.
  • the temperature signal storage unit 120 may be configured as a variable resistor as shown in FIGS. 11 and 12, and may be configured in various forms as shown in FIGS. 11 and 12.
  • FIG. 13 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to both power sources of the AC input power according to the third embodiment of the present invention, and protects the temperature control controller 30 from the high voltage applied to the heating line 16.
  • the case further includes a photo coupler 122 to electrically insulate the heating unit 150 and the temperature control control unit 30.
  • a zener diode 121 further includes a cathode connected to the other end of the first heating wire 13 and an anode connected to the anode of the light emitting diode of the photo coupler 122. That is, the case where the temperature is detected by flowing the temperature detection current to the light emitting diode of the photocoupler 122 only when the breakdown voltage (Zener voltage) of the zener diode 121 is equal to or higher is shown.
  • FIG. 14 is a diagram illustrating a first application circuit of a magneto-less thermostat to which a heating unit is applied according to the present invention.
  • the second embodiment is applied to the magnetic-free thermostat and two resistors in which the trigger input unit 100 are connected in parallel. And a capacitor 34 connected between the two resistors 33 and 35 and the gate of the control rectifier 112.
  • FIG. 15 is a view illustrating a second application circuit of a magnetic field temperature controller to which a heating unit is applied according to a fourth embodiment of the present invention.
  • the first embodiment is applied to the magnetic field temperature controller, and the trigger input unit 100 is a capacitor 41.
  • the resistor 42 connected in series with the capacitor 41, a gate of the control rectifier 112 is connected between the capacitor 41 and the resistor 42, and the temperature control controller 30 is a microcomputer. (210) is shown.
  • the microcomputer 210 operates by receiving AC input power as a synchronous signal through the resistor 40 to operate in synchronization with the AC input power.
  • the microcomputer 210 operates in synchronization with the AC synchronization signal to detect the temperature of the heating line 16 through the light receiving unit of the photocoupler 122, and generates a trigger to adjust the temperature of the heating line 16 to the set temperature. Output to the trigger input unit 100.
  • the temperature controller since the temperature is controlled by the microcomputer 210 operating by a DC power source, the temperature controller according to the fourth embodiment includes a DC power supply unit 220 that generates and outputs a DC power by receiving an AC input power. It further includes a variable resistor 43 for adjusting the DC power output from the power supply unit 220 to the power required by the microcomputer 210.
  • the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art réelle who has this can easily understand it. If such improvement, change, substitution or addition is carried out within the scope of the appended claims, the technical spirit should also be regarded as belonging to the present invention.

Abstract

The present invention relates to a non-magnetic temperature controller, more specifically to a non-magnetic temperature controller and a method for controlling the same and for detecting the temperature of a heating line in a parallel heating line mode rather than a serial heating line mode. The present invention provides continuous heating of a 1st or 2nd heating line in case the other heating line is disconnected so that the 1st and 2nd heating lines are connected in parallel.

Description

무자계 온도 조절기 및 그 조절 방법Magneticless thermostat and its control method
본 발명은 무자계 온도 조절기에 관한 것으로, 보다 상세하게는 직렬 발열선 방식이 아닌 병렬 발열선 방식에 의해 발열선의 온도 검출 및 온도를 조절할 수 있는 무자계 온도 조절기 및 그 조절 방법에 관한 것이다.The present invention relates to a magnetic field temperature controller, and more particularly, to a magnetic field temperature controller and a method for controlling the temperature of the heating line by the parallel heating line method rather than the series heating line method.
인간의 숙면에는 온도와 습도 등의 침상 주변조건이 중요한 요건으로 작용하며, 일반 가정의 경우에 침상의 온도를 적정하게 유지하기 위하여 전기장판, 전기요, 전기 찜질기 등의 전열 침구류 및 온열기 등이 많이 사용하고 있다. 이러한 전열 침구류, 온열기에는 내부에 발열선이 내장되어 있어서, 발열선에 전원을 공급하면 열을 발생하게 된다. 따라서 발열선 주변의 온도를 감지하여 그에 상응하게 전원 공급을 제어하는 온도 조절기가 필수적으로 구성되어 있다.In human sleep, the bedside conditions such as temperature and humidity are important requirements.In the case of general homes, there are many electric beddings and heaters such as electric blankets, electric mattresses, and electric steamers in order to maintain the bed temperature properly. I use it. The heat transfer bedding and the heater are built with a heating wire therein, and heat is generated when power is supplied to the heating wire. Therefore, it is essential to configure a temperature controller that senses the temperature around the heating wire and controls the power supply accordingly.
종래의 침구류용 발열선은 평행하게 배열되어 있는 두 개의 금속 발열선 중 한쪽 끝단을 단락시키고, 발열선과 분리된 별도의 온도감지 센서를 장착하여 온도를 검출했다. 그러나, 온도센서와 발열선을 분리하는 방식은 발열선 내부의 단락으로 인해 발생하는 발열선 전체의 온도를 검출하지 못할 뿐만 아니라, 임의의 위치에서의 국부적인 과열도 검출하지 못하는 문제점을 가지고 있다. 따라서, 발열선이 국부적으로 과열하거나 단락 및 단선이 되면, 화재 및 감전사고가 발생할 수 있는 문제점이 있다.The conventional bedding heating wire has shorted one end of two metal heating wires arranged in parallel, and is equipped with a separate temperature sensing sensor separated from the heating wire to detect temperature. However, the method of separating the temperature sensor and the heating wire has a problem that not only does not detect the temperature of the entire heating wire caused by a short circuit inside the heating wire, but also does not detect local overheating at an arbitrary position. Therefore, when the heating wire is locally overheated or short-circuit and disconnection, there is a problem that a fire and an electric shock may occur.
또 다른 종래의 방법으로는, 평행하게 배열되어 있는 두 개의 금속 전열선 중 한쪽 끝단을 단락시킨 외주면 또는 내 중심면에 별도의 온도센서를 추가하여 제 3의 전선으로 온도를 검출하는 방법을 사용하였다. 그러나, 발열선과 분리하지 않고 제 3의 전선으로 온도를 검출하는 방법은 온도센서층과 제3의 금속층이 발열선에 추가되기 때문에, 무자계 전열선의 굵기가 커져서 얇은 침구류에는 사용하지 못하고, 발열선 생산공정이 복잡하며 생산원가가 상승하는 등의 문제점이 존재한다. 아울러, 위에 언급된 종래 기술들은 모두 발열선의 온도 제어에 문제가 있거나, 발열선의 굵기가 굵어져 실용선이 실용성이 떨어지거나, 전압, 전류로 인한 유해 전자파를 차단하지 못하는 문제점을 가지고 있다.As another conventional method, a method of detecting a temperature with a third electric wire by adding a separate temperature sensor to an outer circumferential surface or an inner center surface of which two ends are shorted among two metal heating wires arranged in parallel is used. However, since the temperature sensor layer and the third metal layer are added to the heating wire without the separation from the heating wire, the thickness of the non-magnetic heating wire is increased so that it cannot be used for thin bedding, and the heating wire is produced. There are problems such as complicated process and rising production cost. In addition, the above-mentioned conventional techniques all have a problem in controlling the temperature of the heating wire, or the thickness of the heating wire has a problem that the utility line is not practical, or does not block harmful electromagnetic waves due to voltage and current.
한편, 발열선과 관련하여, 전기장판, 전기요 또는 찜질매트와 같은 전열 침구류, 온열기 등에서 발열체로 사용되는 일반적인 무자계 발열선은 대체로, 폴리에스터 실(thread)이나 글라스 울로 이루어진 심실, 상기 심실에 나선형으로 권취되는 히터 코일, 상기 심실 외주면의 상기 히터 코일 위에 절연을 위하여 피복되는 내부절연체, 상기 내부절연체의 외주면에서 도선이나 그물 형태로 배선되어 접지되는 실드(shield), 그리고, 상기 실드 위에 피복되는 외부 절연체 등으로 이루어져 있다. 위 구성에서 상기 히터 코일과 실드는 각 끝단이 접속되어 전기적으로 직렬로 연결되며, 이들의 각 선단부는 전원의 (+)(-) 단자에 각각 연결되는 전원입력단자가 된다.On the other hand, in relation to the heating wire, general non-magnetic heating wire that is used as a heating element in electric bedding, electric mattresses such as electric mattresses or electric mats, or heating mats, generally, a ventricle made of polyester thread or glass wool, spirally to the ventricles A heater coil to be wound, an inner insulator coated on the heater coil of the outer circumferential surface of the ventricle for insulation, a shield wired and grounded in the form of a conductor or a net on the outer circumferential surface of the inner insulator, and an outer insulator coated on the shield Etc. In the above configuration, the heater coil and the shield are electrically connected in series with each end connected to each other, and each of the leading ends thereof is a power input terminal respectively connected to the (+) (-) terminal of the power source.
이러한 일반적인 무자계 발열선은 내부절연체를 구비함에 따라 그 두께로 인해 굵기가 매우 굵고 굴신성(屈伸性)이 취약하다는 단점이 있었다. 즉, 위 종래 침구류용 무자계 발열선은 발열시 히터 코일의 고열로 인해 내부절연체가 연화(軟化)되어 절연성 급격히 떨어지므로 히터 코일과 실드의 단락을 막기 위해서는 내부절연체의 두께가 두꺼워질 수밖에 없었기 때문에 굵기가 적어도 6 mm 이상으로 매우 굵어 전기 매트 등에 적용할 경우 표피 위로 불거져 사용자의 몸에 배기는 문제점이 있었으며, 전기요, 모포, 장판 등과 같이 얇은 침구류에는 굵기와 굴신성의 문제로 인해 적용하기가 거의 불가능하였다.Such a general magnetic field-free heating wire has a disadvantage that the thickness is very thick due to its internal insulator and weak in flexibility. In other words, the above-described conventional bedding-free non-magnetic heating wire is thick because the internal insulator is softened due to the high heat of the heater coil during heat generation, and the insulation is sharply dropped, so the thickness of the internal insulator has to be thick to prevent the short circuit between the heater coil and the shield. Is very thick (at least 6 mm), when applied to electric mats, etc., is blown over the epidermis and exhausted to the user's body, and it is almost impossible to apply to thin beddings such as electric mattresses, blankets, and sheets because of thickness and stretchability. It was impossible.
이러한 문제점을 해결하고자 본 출원인은 특허공개 제2004-87853호 및 등록특허 제10-0553815에 개시된 것과 같은 발열선 및 온도 조절기를 안출하게 되었다. 개선된 상기 발열선은 에나멜층이 코팅된 발열선을 사용하여 내부절연체의 두께를 감소시키는 동시에, 리드선을 내부절연체의 외면에 나선 구조로 감아서 굽힘응력을 반복적으로 받는 경우에도 성능이 떨어지지 않게 되는 효과를 갖는 것이었다. 이로써 두께가 너무 두꺼워지고, 굴신성이 취약하다는 종래의 문제점은 완전히 해결할 수 있게 되었다. In order to solve this problem, the applicant has devised a heating line and a temperature controller as disclosed in Patent Publication No. 2004-87853 and Patent No. 10-0553815. The improved heating wire reduces the thickness of the inner insulator by using a heating wire coated with an enamel layer, and at the same time, the lead wire is wound in a spiral structure on the outer surface of the inner insulator so that the performance does not decrease even when the bending stress is repeatedly received. It was to have. This makes it possible to completely solve the conventional problem that the thickness becomes too thick and the flexibility is poor.
다만, 상기 개선된 발열선은 국부적인 과열을 검출하고 이에 따라 통전을 조절하는 기능을 수행할 수 없었다. 수십 미터에 달하는 발열선이 임의의 위치에서 국부적으로 과열되거나 기준 온도를 넘게 되는 경우, 화재 또는 화상의 위험이 있으므로 전원을 차단하여야 하는데, 이를 위해서는 별도의 온도검출장치가 있어야 한다. 즉 긴 발열선의 온도 검출을 위해서는 임의의 위치에 다수의 온도검출장치를 추가로 구비하여야 하는 번거로운 점이 있었으며, 이러한 온도검출장치는 침구류 외측으로 돌출되는 형상으로 구성되므로 사용자에게 불편을 주며, 특히 얇은 침구류에는 온도검출장치를 부착할 수 없다는 문제점이 있다.However, the improved heating wire could not perform the function of detecting local overheating and controlling energization accordingly. If tens of meters of heating wire is locally overheated at a certain position or exceeds the reference temperature, it may cause a fire or burn, so the power supply should be cut off. In other words, in order to detect the temperature of the long heating wire, there is a cumbersome point in that a plurality of temperature detection devices must be additionally provided at an arbitrary position, and the temperature detection device is inconvenient for the user because it is configured to protrude out of the bedding. There is a problem that the temperature detection device can not be attached to the bedding.
이러한 문제점을 해결하고자 본 출원인은 등록특허 제10-0553815에 개시된 것과 같은 온도 조절기를 안출하게 되었다.In order to solve this problem, the applicant has come up with a temperature controller as disclosed in the registered patent No. 10-0553815.
상기 선행 등록 특허의 구성 및 동작을 도면을 참조하여 설명한다. The configuration and operation of the above registered patent will be described with reference to the drawings.
도 1은 일반적인 무전자파 온도 조절기의 구성을 나타낸 도면이고, 도 2는 도 1의 교류 입력전원의 정(+) 전원에 따른 가열부의 등가 회로를 나타낸 도면이며, 도 3은 도 1의 교류 입력전원의 부(-) 전원에 따른 가열부의 등가 회로를 나타낸 도면이고, 도 4는 일반적인 교류 입력전원에 따른 온도 검출 및 가열동작과 무자계 형성 과정을 설명하기 위한 도면이다.1 is a view showing the configuration of a general electromagnetic wave thermostat, Figure 2 is a view showing an equivalent circuit of the heating unit according to the positive (+) power of the AC input power of Figure 1, Figure 3 is an AC input power of Figure 1 FIG. 4 is a diagram illustrating an equivalent circuit of a heating unit according to a negative (−) power source, and FIG. 4 is a diagram illustrating a temperature detection and heating operation and a magnetic field forming process according to a general AC input power source.
무자계 온도 조절기는 가열부(1)와 온도조절 제어부(30)로 구성된다.The magnetic field-free thermostat is composed of a heating unit 1 and a temperature control control unit 30.
가열부(1)는 발열선(16)과 온도 전압 검출용 정류기(17)와 가열전류 유턴용 정류기(18)와 제어 정류기(19)와 트리거 입력부(24)로 구성된다.The heating unit 1 includes a heating line 16, a rectifier 17 for detecting a temperature voltage, a rectifier 18 for a heating current u-turn, a control rectifier 19, and a trigger input unit 24.
발열선(16)은 절연코어의 외주면에 권선되어 있는 제 1 전열선(13)과, 제 1 전열선(13)을 감싸고 있으며 온도가 상승할수록 저항값이 낮아지는 NTC 써미스터(Negative Temperature Coefficient thermistor)(14)와, NTC 써미스터(14)의 외주면에 권선되어 있는 제 2 전열선(15)과, 제 2 전열선(15)을 둘러싸는 절연피복으로 이루어져 있다. 제 1 전열선(13)과 제 2 전열선(15)은 서로 나란하게 또는 평행하게 배치되어 있다.The heating wire 16 surrounds the first heating wire 13 and the first heating wire 13 wound on the outer circumferential surface of the insulating core, and an NTC thermistor 14 which lowers the resistance value as the temperature increases. And an insulating coating surrounding the second heating wire 15 wound around the outer circumferential surface of the NTC thermistor 14 and the second heating wire 15. The first heating wire 13 and the second heating wire 15 are arranged side by side or parallel to each other.
그리고 본 발명은 제 1 전열선(13)의 일단에 인가되는 온도검출용 전압을 조절하기 위한 온도전압 조절부(31)를 더 포함할 수 있다. 온도전압 조절부(31)는 일단이 전원과 연결된 저항(11)과, 저항(11)의 타단 및 제 1 전열선(13)의 일단 사이에 직렬로 연결된 온도검출 조정용 가변저항(12)을 포함한다. 가변저항(12)은 NTC 써미스터(14)에 입력되는 전압을 가변시켜 온도조절을 가능하게 한다.The present invention may further include a temperature voltage adjusting unit 31 for adjusting the temperature detection voltage applied to one end of the first heating wire 13. The temperature voltage controller 31 includes a resistor 11 connected at one end to a power source, and a variable resistor 12 for temperature detection adjustment connected in series between the other end of the resistor 11 and one end of the first heating wire 13. . The variable resistor 12 changes the voltage input to the NTC thermistor 14 to enable temperature control.
온도전압 검출용 정류기(17)는 제 1 전열선(13)의 타단에 직렬로 연결되어 있으며, 제 1 전열선(13)의 타단에서 출력되는 온도전압을 통과시킨다. 본 실시례에서 온도전압 검출용 정류기(17)는 다이오드인 것이 바람직하다. 교류 입력전원이 온(on)되면, 교류 사이클 중 선 반주기, 즉 정(+) 전원인 반주기는 제 1 전열선(13)과 제 2 전열선(15) 사이의 NTC 써미스터(14)의 온도 저항값 변화를 온도전압 검출용 정류기(17)로 출력한다. 온도검출신호 전류는 제 1 전열선(13)을 지나 일부는 NTC 써미스터(14)에서 유턴하여 제 2 전열선(15)으로 되돌아 흘러나온다. 이 때 제 1 전열선(13)과 제 2 전열선(15)에서 흐르는 온도검출신호 전류는 상호 반대 방향이 되므로 자기장이 상쇄되어 무자계 상태로 온도검출신호 전류가 흐른다. The rectifier 17 for detecting a temperature voltage is connected in series with the other end of the first heating wire 13 and passes the temperature voltage output from the other end of the first heating wire 13. In the present embodiment, the rectifier 17 for detecting the temperature voltage is preferably a diode. When the AC input power is turned on, the half cycle of the AC cycle, that is, the positive cycle, is a change in the temperature resistance of the NTC thermistor 14 between the first heating wire 13 and the second heating wire 15. Is output to the rectifier 17 for temperature voltage detection. The temperature detection signal current passes through the first heating wire 13 and partially flows back from the NTC thermistor 14 to the second heating wire 15. At this time, since the temperature detection signal current flowing in the first heating wire 13 and the second heating wire 15 is opposite to each other, the magnetic field is canceled and the temperature detection signal current flows in the non-magnetic state.
상기 온도전압 검출용 정류기(17)는 이론적으로 설명하기 위한 등가회로 도 2 및 도 3에서는 온도검출동작과 가열동작이 교류 입력전원의 정(+) 전원과 부 전원(-)에 의해 분리된다. 온도신호전압을 받아들이는 온도조절제어부(30)에서 필요한 전력이 수mW 이하의 소신호 전력이면 족하므로, 온도전압조절부(31)의 온도신호전압 출력값도 수mW 이하로 동작하게 된다. 또한 온도조절제어부(30){특히, 비교검출부(21) 내에 SCR(90)을 구비하는 경우에는 +, - 선택동작이 가능하게 된다}의 자체 입력신호 증폭동작점의 설정에 따라 +, - 양파 신호 또는 +, - 신호 중 어느 한 쪽만을 선별하여 임의 동작할 수도 있게 된다. Rectifier 17 for detecting the temperature voltage 17 is an equivalent circuit for explaining theoretically. In FIGS. 2 and 3, the temperature detection operation and the heating operation are separated by the positive power supply and the negative power supply of the AC input power. Since the power required by the temperature control controller 30 to accept the temperature signal voltage is a small signal power of several mW or less, the temperature signal voltage output value of the temperature voltage controller 31 also operates to several mW or less. In addition, according to the setting of the own input signal amplification operating point of the temperature control controller 30 (particularly, when the SCR 90 is provided in the comparison detection unit 21, the +,-selection operation becomes possible) Only one of the signal or the + and-signals may be selected and randomly operated.
따라서 작은 신호에서는 정류가 불필요 하거나, + 신호 한 쪽 신호를 선택하여 사용하는 등의 실제 회로 구성 조건에서는 온도검출용의 온도전압 검출용 정류기(17)가 논리적으로 중첩 사용되게 되므로 온도전압 검출용 정류기(17)를 생략할 수도 있다. 즉, NTC 써미스터(14)의 온도신호전압 변환 소비전력을 수mW 이하로 변환 검출할 경우, NTC 써미스터 검출용 신호전압을 교류전압이나 직류전압으로 선택할 수 있고, 온도조절제어부(30)가 써미스터 검출 입력신호 증폭동작점을 설정하는 조건에 따라 온도전압 검출용 정류기(17)의 유무를 선택적으로 적용할 수 있다. Therefore, the rectifier is not necessary for small signals, or the rectifier 17 for temperature voltage detection is used logically to overlap the temperature voltage detection rectifier 17 under actual circuit configuration conditions such as selecting and using one signal. (17) may be omitted. That is, when the temperature signal voltage conversion power consumption of the NTC thermistor 14 is converted and detected by several mW or less, the NTC thermistor detection signal voltage can be selected as an AC voltage or a DC voltage, and the temperature control controller 30 detects the thermistor. The presence or absence of the rectifier 17 for temperature voltage detection can be selectively applied according to the condition for setting the input signal amplification operation point.
제어 정류기(19)는 트리거 신호에 의해서 도통될 때 전원과 연결된 제 2 전열선(15)의 반대편 단으로부터 제 1 전열선(13)의 타단과 일단을 통해 전원측으로 가열전류가 유턴하여 흐르도록 한다. 본 실시례에서 제어 정류기는 가열전류 유턴용 정류기(18)와 제어 정류기(19)를 포함하여 이루어져 있다.The control rectifier 19 causes the heating current to flow u-turn to the power supply side through the other end and one end of the first heating wire 13 from the opposite end of the second heating wire 15 connected to the power supply when conducting by the trigger signal. In the present embodiment, the control rectifier includes a rectifier 18 for heating current U-turn and a control rectifier 19.
가열전류 유턴용 정류기(18)는 제 1 전열선(13)의 타단에 캐소드가 연결되고 동일 측면의 제 2 전열선(15)에 애노드가 연결되어 있으며, 본 실시례에서는 다이오드를 사용하고 있다.The rectifier 18 for the heating current U-turn has a cathode connected to the other end of the first heating wire 13 and an anode connected to the second heating wire 15 on the same side. In this embodiment, a diode is used.
그리고, 제어 정류기(19)는 애노드가 제 1 전열선(13)의 일단에 온도전압 조절부(31)와 병렬로 연결되고 캐소드가 전원측에 연결되며, 트리거 입력부(24)의 트리거 신호에 의해 온 된다. 제어 정류기(19)로는 전력제어용 실리콘 제어 정류기(Silicon-Controlled Rectifier ; 이하 SCR)를 사용하는 것이 가장 바람직하다.In addition, the control rectifier 19 has an anode connected in parallel with the temperature voltage control unit 31 at one end of the first heating wire 13 and a cathode connected to the power supply side, and is turned on by a trigger signal of the trigger input unit 24. . As the control rectifier 19, it is most preferable to use a silicon-controlled rectifier (hereinafter referred to as SCR) for power control.
온도조절 제어부(30)는 제 1 전열선으로부터 출력된 온도전압이 기준전압 보다 크면 제어신호를 출력한다. 본 실시례에서 온도조절 제어부(30)는 기준전압을 출력하는 고정 기준전압 발생부(20)와, 온도전압을 기준전압과 비교하여 온도전압이 기준전압보다 높으면 구동신호를 출력하는 비교검출부(21)와, 비교검출부(21)의 구동신호에 의해 구동되며 트리거 신호를 일정시간 동안 지연하도록 하는 트리거 지연부(22)와, 트리거 지연부(22)가 지연시킨 시간동안 트리거 신호를 출력하는 트리거 출력부(23)를 포함한다.The temperature control controller 30 outputs a control signal when the temperature voltage output from the first heating wire is greater than the reference voltage. In the present exemplary embodiment, the temperature control controller 30 includes a fixed reference voltage generator 20 for outputting a reference voltage, and a comparison detector 21 for outputting a driving signal when the temperature voltage is higher than the reference voltage by comparing the temperature voltage with the reference voltage. ), A trigger delay unit 22 driven by the drive signal of the comparison detector 21 to delay the trigger signal for a predetermined time, and a trigger output for outputting a trigger signal for a time delayed by the trigger delay unit 22. And a portion 23.
트리거 지연부(22)는 교류 입력전원 사이클의 온도검출 주기에서 시작하여 가열 주기에서 제어 정류기(19)가 온 될 때까지 유지되며, 이 때 제어 정류기(19)가 제로점에서 온 되어 전력을 제어하는 것이 특징이다.The trigger delay section 22 starts at the temperature detection cycle of the AC input power cycle and is maintained until the control rectifier 19 is turned on in the heating cycle. At this time, the control rectifier 19 is turned on at the zero point to control power. It is characteristic.
무자계 가열동작은 온도조절 제어부(30)의 트리거 신호 출력에 의해서 제어 정류기(19)가 온 되면, 전원과 직렬로 연결된 제 2 전열선(15), 가열전류 유턴용 정류기(18), 제 1 전열선(13) 및 제어 정류기(19)에 가열전류가 흘러서 전열선이 가열된다.The magnetic field-free heating operation, when the control rectifier 19 is turned on by the trigger signal output of the temperature control controller 30, the second heating wire 15, the rectifier for heating current U-turn 18, the first heating wire connected in series with the power supply A heating current flows through 13 and the control rectifier 19 to heat the heating wire.
도면에 도시하지는 않았지만, 트리거 신호에 의해서 가열전류 유턴용 정류기(18) 또는 가열전류 유턴용 정류기(18)와 제어 정류기(19) 모두 온 되도록 구현할 수도 있다. 이 때, 가열전류 유턴용 정류기(18)와 제어 정류기(19)는 모두 SCR인 것이 바람직하다.Although not shown in the drawing, the trigger signal may be implemented such that both the heating current u-turn rectifier 18 or the heating current u-turn rectifier 18 and the control rectifier 19 are turned on. At this time, it is preferable that both of the heating current u-turn rectifier 18 and the control rectifier 19 are SCR.
상술한 실시 예 외에도 다수의 실시 예들이 상기 선행 등록 특허에 개재되어 있으나 상기 선행 등록 특허에 상세하게 개재되어 있으므로 그 설명을 생략한다.In addition to the above-described embodiments, a plurality of embodiments are disclosed in the preceding registered patents, but the description thereof will be omitted since they are included in detail in the preceding registered patents.
상술한 바와 같이 발열선 가열 과정에서 제1전열선(13)과 제2전열선(15)이 NTC 써미스터(14)에 의해 연결되므로 단일 발열선을 형성하게 된다. 이 경우 사용자의 부주의로 인한 제1전열선(13) 또는 제2전열선(15)이 단선되는 경우 발열선(16) 전체가 동작하지 않게 되므로 발열이 되지 않는 문제점이 있었다.As described above, since the first heating line 13 and the second heating line 15 are connected by the NTC thermistor 14 in the heating line heating process, a single heating line is formed. In this case, when the first heating wire 13 or the second heating wire 15 is disconnected due to user's carelessness, the entire heating wire 16 does not operate, and thus there is a problem in that heat generation does not occur.
따라서, 본 발명의 목적은 제1전열선과 제2전열선을 직렬로 연결하는 직렬 발열선 방식이 아닌 제1전열선과 제2전열선을 병렬로 연결하는 병렬 발열선 방식에 의해 발열선의 온도 검출 및 온도를 조절할 수 있는 무자계 온도 조절기 및 그 조절 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to detect the temperature of the heating wire and to adjust the temperature by the parallel heating wire method of connecting the first heating wire and the second heating wire in parallel, not the series heating wire method of connecting the first heating wire and the second heating wire in series. To provide a magneticless thermostat and a method of controlling the same.
상기와 같은 목적을 달성하기 위한 본 발명의 무자계 온도 조절기는; 제1전열선과, 상기 제1전열선 외주면을 둘러싸는 써미스터와 상기 써미스터 외주면에 권선되는 제2전열선과, 상기 제2전열선 외주면을 절연하는 피복을 포함하는 발열선과, 상기 제1전열선에서 출력되는 온도신호전압을 검출하여 출력하는 온도신호전압 검출부와, 상기 온도신호전압 검출부의 온도신호전압을 입력받고 상기 온도신호전압에 따른 전력제어신호를 출력하는 온도조절 제어부와, 상기 온도조절 제어부의 전력제어신호에 의하여 상기 제1전열선 및 제2전열선 이 병렬로 각각 가열동작 되도록 하며 상기 제1전열선 및 제2전열선에 흐르는 가열 전류방향이 서로 반대가 되도록 제1전열선과 제2전열선을 연결하는 도통제어부를 포함하는 것을 특징으로 한다.Magnetic field temperature controller of the present invention for achieving the above object; A heating wire including a first heating wire, a thermistor surrounding the outer circumferential surface of the first heating wire, a second heating wire wound on the outer circumferential surface of the thermistor, and a coating for insulating the outer circumferential surface of the second heating wire, and a temperature signal output from the first heating wire. A temperature signal voltage detector which detects and outputs a voltage, a temperature controller which receives a temperature signal voltage of the temperature signal voltage detector, and outputs a power control signal according to the temperature signal voltage, and a power control signal of the temperature controller And a conduction control unit for connecting the first heating wire and the second heating wire so that the first heating wire and the second heating wire are heated in parallel, respectively, and the heating current flowing in the first heating wire and the second heating wire is opposite to each other. It is characterized by.
상기 도통제어부는, 사이리스터의 캐소드가 교류전원 일단에 연결되고 게이트와 캐소드 사이에 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부가 상기 사이리스터 게이트에 연결되고. 상기 사이리스터의 애노드 와 교류전원 타단 사이의 2개의 병렬 전열선 중 제1전열선은 일단이 사이리스터 애노드에 연결되고 타단은 제2정류기 캐소드와 애노드를 통하여 교류전원 타단으로 연결되며, 제2전열선은 타단이 제1정류기 애노드와 캐소드를 통하여 상기 사이리스터 애노드에 연결되고. 일단이 교류전원 타단에 연결되어 상기 제1전열선과 상기 제2전열선이 병렬로 가열 동작을 수행하는 것을 특징으로 한다.The conduction control unit, the cathode of the thyristor is connected to one end of the AC power source, the trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate. The first heating wire of the two parallel heating wires between the anode of the thyristor and the other end of the AC power source is connected to the thyristor anode at one end thereof, and the other end thereof is connected to the other end of the AC power source through the second rectifier cathode and the anode, and the second heating wire is made at the other end thereof. And connected to the thyristor anode via a rectifier anode and a cathode. One end is connected to the other end of the AC power source, characterized in that the first heating wire and the second heating wire performs a heating operation in parallel.
상기 도통제어부는, 사이리스터의 애노드가 교류전원 일단에 연결되고 게이트와 캐소드사이 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부가 상기 사이리스터 게이트에 연결되고. 상기 사이리스터의 캐소드와 교류전원 타단 사이의 2개의 병렬 전열선 중 제1전열선은 일단이 사이리스터 캐소드에 연결되고 타단은 제2정류기 애노드와 캐소드를 통하여 교류전원 타단으로 연결되며, 제2전열선은 타단이 제1정류기 캐소드와 애노드를 통하여 상기 사이리스터 캐소드에 연결되고. 일단이 교류전원 타단에 연결되어 상기 제1전열선과 상기 제2전열선이 병렬로 가열 동작을 수행하는 것을 특징으로 한다.The conduction control unit, the anode of the thyristor is connected to one end of the AC power source and the trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate. The first heating wire of the two parallel heating wires between the cathode of the thyristor and the other end of the AC power source is connected to the thyristor cathode at one end thereof, and the other end thereof is connected to the other end of the AC power source through the second rectifier anode and the cathode, and the second heating wire is made at the other end thereof. And connected to the thyristor cathode via a rectifier cathode and an anode. One end is connected to the other end of the AC power source, characterized in that the first heating wire and the second heating wire performs a heating operation in parallel.
상기 도통제어부는, 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부와; 상기 교류입력전원의 일단에 연결되는 캐소드와, 상기 트리거 입력부의 출력단에 연결되는 게이트와, 상기 제1전열선 일단에 연결되는 애노드로 구성되는 사이리스터와; 상기 사이리스터의 애노드 및 제1전열선의 일단에 연결되는 캐소드와 상기 제2전열선의 타단에 연결되는 애노드로 구성되는 제1정류기와; 제1전열선의 타단에 연결되는 캐소드와, 교류전원 타단에 연결되는 애노드로 구성되는 제2정류기를 포함하는 것을 특징으로 한다.The conduction controller may include a trigger input unit configured to receive a power control signal of a temperature control controller; A thyristor comprising a cathode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and an anode connected to one end of the first heating wire; A first rectifier including an anode of the thyristor and a cathode connected to one end of the first heating wire and an anode connected to the other end of the second heating wire; And a second rectifier comprising a cathode connected to the other end of the first heating wire and an anode connected to the other end of the AC power source.
상기 도통제어부는, 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부와; 상기 교류입력전원의 일단에 연결되는 애노드와, 상기 트리거 입력부의 출력단에 연결되는 게이트와, 상기 제1전열선 일단에 연결되는 캐소드로 구성되는 사이리스터와; 상기 사이리스터의 캐소드 및 제1전열선의 일단에 연결되는 애노드와, 상기 제2전열선의 타단에 연결되는 캐소드로 구성되는 제1정류기와; 제1전열선의 타단에 연결되는 애노드와, 교류전원 타단에 연결되는 캐소드로 구성되는 제2정류기를 포함하는 것을 특징으로 한다.The conduction controller may include a trigger input unit configured to receive a power control signal of a temperature control controller; A thyristor comprising an anode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and a cathode connected to one end of the first heating wire; A first rectifier including an anode connected to the cathode of the thyristor and one end of the first heating wire, and a cathode connected to the other end of the second heating wire; And a second rectifier comprising an anode connected to the other end of the first heating wire and a cathode connected to the other end of the AC power source.
상기 무자계 온도 조절기는 일단이 상기 교류입력전원의 일단에 연결되고, 타단이 상기 제1전열선의 일단에 연결되는 온도신호 공급부를 더 포함하는 것을 특징으로 한다.The magnetic field-free thermostat further comprises a temperature signal supply unit having one end connected to one end of the AC input power and the other end connected to one end of the first heating wire.
상기 온도조절 제어부는 마이크로 컨트롤러인 마이컴칩인 것을 특징으로 한다.The temperature control controller is characterized in that the microcontroller microcomputer chip.
상기 온도신호전압 검출부의 온도신호검출은 제1전열선 타단에 연결 되어진 제2정류기의 캐소드와 교류 입력전원 타단 사이에서 검출하는 것을 특징으로 한다.The temperature signal detection of the temperature signal voltage detection unit may be detected between the cathode of the second rectifier connected to the other end of the first heating wire and the other end of the AC input power source.
상기 온도신호전압 검출부의 온도신호검출은 제1전열선 일단이 연결되어진 애노드와 교류전원 타단 사이에서 검출하는 것을 특징으로 한다.The temperature signal detection of the temperature signal voltage detection unit may be detected between an anode to which one end of the first heating wire is connected and the other end of the AC power source.
상기 온도신호전압 검출부의 온도신호검출은 제1전열선 일단이 연결되어진 온도신호전압 공급부의 양단 사이에서 검출하는 것을 특징으로 한다.The temperature signal detection of the temperature signal voltage detection unit may be detected between both ends of the temperature signal voltage supply unit to which one end of the first heating wire is connected.
상기 온도신호전압 검출부의 온도신호전압 출력은 포터커풀러 발광부 다이오드와 직렬로 연결되어 상기 온도신호전압을 포토커플러 수광부로 절연 출력하는 것을 특징으로 한다.The temperature signal voltage output of the temperature signal voltage detector is connected in series with a porter coupler light emitting diode to insulate and output the temperature signal voltage to the photocoupler light receiver.
상기 온도신호전압 검출부의 온도신호전압 출력은 제너다이오드와 직렬로 연결되어 상기 온도신호전압을 제너 전위 와 비교하여 출력하는 것을 특징으로 한다.The temperature signal voltage output of the temperature signal voltage detector is connected in series with a zener diode to output the temperature signal voltage by comparing with the zener potential.
상기 온도조절제어부는 상기 온도신호전압검출부와 병렬로 연결되는 것을 특징으로 한다.The temperature control controller is connected in parallel with the temperature signal voltage detector.
상기 목적을 달성하기 위한 본 발명의 무자계 온도 조절 방법은; 제1전열선과 제2전열선사이 충전물로 NTC 써미스터을 사용하는 발열선을 포함하는 무자계 온도 조절기의 조절방법에 있어서, 상기 제1전열선과 제2전열선을 병렬로 연결하여 무자계로 병렬 가열 동작 시키는 병렬식 역방향 가열전류 유도 과정과, 제1전열선과 제2전열선사이의 온도신호전압을 검출하는 온도 검출 과정과, 온도신호전압을 입력받아 자동으로 상기 전열선들의 온도를 단속조절하는 온도조절제어과정을 포함하되, 상기 제1전열선과 제2전열선이 시차를 두고 상기 온도검출과 병렬 가열 동작을 교번적으로 수행하는 것을 특징으로 한다.Magnetic-free temperature control method of the present invention for achieving the above object; A method of controlling a magnetic field temperature controller including a heating wire using an NTC thermistor as a filler between a first heating wire and a second heating wire, wherein the first heating wire and the second heating wire are connected in parallel to perform parallel heating operation in parallel without magnetic field. A heating current induction process, a temperature detection process for detecting a temperature signal voltage between the first heating wire and the second heating wire, and a temperature regulation control process for automatically controlling the temperature of the heating wires by receiving the temperature signal voltage, The first heating wire and the second heating wire are characterized in that the temperature detection and the parallel heating operation alternately performs with a time difference.
본 발명의 무자계 온도 조절기는 제1전열선과 제2전열선을 병렬로 연결하는 이중 발열선 방식에 의해 발열선을 발열시키므로 제1전열선 및 제2전열선 중 어느 하나가 단선되어도 다른 하나에 의해 지속적으로 발열선을 발열시킬 수 있는 효과를 가진다.The magnetic field-free thermostat of the present invention generates a heating wire by a double heating wire system in which the first heating wire and the second heating wire are connected in parallel, so that the heating wire is continuously generated by the other even if one of the first heating wire and the second heating wire is disconnected. Has the effect of generating heat.
도 1은 일반적인 무전자파 온도 조절기의 구성을 나타낸 도면1 is a view showing the configuration of a general electromagnetic wave thermostat
도 2는 도 1의 교류 입력전원의 정(+) 전원에 따른 가열부의 등가 회로를 나타낸 도면FIG. 2 is a diagram illustrating an equivalent circuit of a heating unit according to a positive power supply of the AC input power supply of FIG. 1.
도 3은 도 1의 교류 입력전원의 부(-) 전원에 따른 가열부의 등가 회로를 나타낸 도면3 is a diagram illustrating an equivalent circuit of a heating unit according to a negative power of the AC input power of FIG. 1.
도 4는 일반적인 교류 입력전원에 따른 온도 검출 및 가열동작과 무자계 형성 과정을 설명하기 위한 도면4 is a view illustrating a temperature detection and heating operation and a magnetic field forming process according to a general AC input power source.
도 5는 본 발명의 제1실시 예에 따른 무자계 온도 조절기의 가열부의 구성을 나타낸 도면5 is a view showing the configuration of a heating unit of the magneticless temperature controller according to the first embodiment of the present invention
도 6은 도 5의 교류 입력전원의 정 전원에 대한 가열부의 등가회로를 나타낸 도면FIG. 6 is a diagram illustrating an equivalent circuit of a heating unit with respect to the constant power of the AC input power of FIG. 5.
도 7은 도 5의 교류 입력전원의 부 전원에 대한 가열부의 등가회로를 나타낸 도면7 illustrates an equivalent circuit of a heating unit with respect to a negative power supply of the AC input power supply of FIG. 5.
도 8은 본 발명의 교류 입력전원에 따른 가열부의 동작을 설명하기 위한 도면8 is a view for explaining the operation of the heating unit according to the AC input power of the present invention
도 9는 본 발명의 교류 입력전원에 따른 무자계 형성 방법을 설명하기 위한 도면9 is a view illustrating a method of forming a magnetic field according to an AC input power source of the present invention.
도 10은 본 발명에 적용되는 발열선의 구조를 설명하기 위한 도면10 is a view for explaining the structure of the heating wire applied to the present invention
도 11은 본 발명의 제2실시 예에 따른 교류 입력전원의 정 전원에 대한 무자계 온도 조절기의 가열부의 등가 회로를 나타낸 도면FIG. 11 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a second embodiment of the present disclosure.
도 12는 본 발명의 제3실시 예에 따른 교류 입력전원의 정 전원에 대한 무자계 온도 조절기의 가열부의 등가 회로를 나타낸 도면12 is an equivalent circuit diagram of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a third embodiment of the present invention.
도 13은 본 발명의 제3실시 예에 따른 교류 입력전원의 정 전원에 대한 무자계 온도 조절기의 가열부의 등가 회로를 나타낸 도면FIG. 13 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to a constant power source of an AC input power source according to a third embodiment of the present disclosure.
도 14는 본 발명에 따른 가열부가 적용된 무자계 온도 조절기의 제1응용회로를 나타낸 도면14 is a view showing a first application circuit of the magnetic field temperature controller to which the heating unit according to the present invention is applied;
도 15는 본 발명에 따른 가열부가 적용된 무자계 온도 조절기의 제2응용회로를 나타낸 도면15 is a view showing a second application circuit of the magnetic field temperature controller to which the heating unit according to the present invention is applied;
※ 도면의 주요 부분에 대한 부호의 설명 ※ Explanation of codes for main parts of drawing
15: 발열선 100: 트리거신호 입력부15: heating wire 100: trigger signal input unit
112: 제어정류기 113: 제1정류기112: controlled rectifier 113: first rectifier
114: 제2정류기 200: 온도신호 검출 출력부114: second rectifier 200: temperature signal detection output unit
이하 도면을 참조하여 본 발명에 따른 무자계 온도조절기의 구성 및 동작을 설명한다.With reference to the drawings will be described the configuration and operation of the magnetic field temperature controller according to the present invention.
도 5는 본 발명의 제1실시 예에 따른 무자계 온도 조절기의 가열부의 구성을 나타낸 도면이고, 도 6은 도 5의 교류 입력전원의 정 전원에 대한 가열부의 등가회로를 나타낸 도면이며, 도 7은 도 5의 교류 입력전원의 부 전원에 대한 가열부의 등가회로를 나타낸 도면이며, 도 8은 본 발명의 교류 입력전원에 따른 가열부의 동작을 설명하기 위한 도면이고, 도 9는 본 발명의 교류 입력전원에 따른 무자계 형성 방법을 설명하기 위한 도면이며, 도 10은 본 발명에 적용되는 발열선의 구조를 설명하기 위한 도면이다. 이하 도 5 내지 도 10을 참조하여 설명한다.5 is a view showing the configuration of a heating unit of the magnetic field temperature controller according to the first embodiment of the present invention, Figure 6 is a view showing an equivalent circuit of the heating unit for the constant power of the AC input power of Figure 5, Figure 7 5 is a diagram illustrating an equivalent circuit of a heating unit with respect to a negative power supply of the AC input power source of FIG. 5, FIG. 8 is a view for explaining an operation of the heating unit according to the AC input power source of the present invention, and FIG. 10 is a view for explaining a method of forming a magnetic field according to a power source, and FIG. 10 is a view for explaining a structure of a heating wire applied to the present invention. A description with reference to FIGS. 5 to 10 is as follows.
본 발명에 따른 무자계 온도 조절기는 교류 입력전원의 반주기 단위로 발열선의 온도 검출 동작과 이중 발열 방식(또는 "병렬 발열 방식"이라 함)에 의해 발열선을 발열시키는 발열 동작을 수행하는 가열부(150)와 온도 조절 제어부(30)로 구성된다.The magnetic field-free thermostat according to the present invention is a heating unit 150 for performing a heat generating operation for generating a heating wire by the temperature detection operation of the heating wire in a half cycle unit of the AC input power and a dual heating method (or "parallel heating method"). ) And the temperature control control unit 30.
상기 가열부(150)는 발열선(16)과, 온도신호 공급부(31)와, 도통 제어부(151)를 포함하여, 교류 입력전원의 선(양) 반주기 동안 발열선(16)의 온도를 검출하기 위한 온도신호를 온도조절 제어부(30)로 출력하고, 교류 입력전원의 후(음) 반주기동안 제1전열선(13)과 제2전열선(15) 각각으로 가열전류를 제공하여 병렬로 각각 발열시킨다. The heating unit 150 includes a heating line 16, a temperature signal supply unit 31, and a conduction control unit 151 to detect the temperature of the heating line 16 during a line (positive) half cycle of AC input power. The temperature signal is output to the temperature control controller 30, and a heating current is provided to each of the first heating wire 13 and the second heating wire 15 during the next (negative) half cycle of the AC input power to generate heat in parallel.
발열선(16)은 도 10에서 보여지는 바와 같이 코어(25)와 상기 코어(25)에 권선되는 제1전열선(13)과, 상기 제1전열선(13)의 외주면을 둘러싸는 NTC 써미스터(14)와 상기 NTC 써미스터(14)의 외주면에 권선되는 제2전열선(15)과 상기 제2전열선(15)을 호보하기 위해 상기 제2전열선(15)을 감싸서 절연시키는 피복(26)으로 구성된다. 상기 제1전열선(13)의 일단은 교류 입력전원부의 일단에 연결되고, 타단은 온도조절 제어부(30)에 연결되며, 제2전열선(15)은 일단이 상기 교류 입력전원의 타단에 연결되고, 타단이 교류 입력전원의 타단에 연결, 즉 접지된다.As shown in FIG. 10, the heating line 16 includes a core 25, a first heating wire 13 wound around the core 25, and an NTC thermistor 14 surrounding the outer circumferential surface of the first heating wire 13. And a sheath 26 that wraps and insulates the second heating wire 15 so as to call the second heating wire 15 wound around the outer circumferential surface of the NTC thermistor 14 and the second heating wire 15. One end of the first heating wire 13 is connected to one end of the AC input power supply unit, the other end is connected to the temperature control controller 30, and the second heating wire 15 is connected to the other end of the AC input power supply. The other end is connected to the other end of the AC input power source, i.e., grounded.
온도신호 공급부(31)는 교류 입력전원부로부터 교류 입력전원을 인가받아 제1전열선(13)과 제2전열선(15) 사이에 구성되어 있는 NTC 써어미스터 (14)의 온도에 따른 온도신호(전압 또는 전류)을 출력한다. 상기 온도신호 공급부(31)는 저항(111)이다.The temperature signal supply unit 31 receives an AC input power from the AC input power supply unit and receives a temperature signal (voltage or voltage) according to the temperature of the NTC thermistor 14 configured between the first heating wire 13 and the second heating wire 15. Current). The temperature signal supply part 31 is a resistor 111.
상기 도통 제어부(151)는 트리거 입력부(100)와 제어 정류기(112)와 제1정류기(113)와 제2정류기(114)를 포함한다.The conduction controller 151 includes a trigger input unit 100, a control rectifier 112, a first rectifier 113, and a second rectifier 114.
상기 트리거 입력부(100)는 일단이 교류 입력전원부의 일단 및 온도조절제어부(30)에 연결되고 타단이 제어 정류기(112)에 연결되어, 상기 온도조절 제어부(30)에서 출력되는 트리거를 입력받아 제어 정류기(112)로 출력한다.The trigger input unit 100 has one end connected to one end of the AC input power unit and the temperature control controller 30 and the other end connected to the control rectifier 112, and receives the trigger output from the temperature control controller 30 to control it. Output to the rectifier 112.
제어 정류기(112)는 사이리스터(SCT)로서, 캐소드가 교류 입력전원의 일단에 연결되고, 애노드가 제1전열선(13)의 일단에 연결되며, 게이트가 트리거 입력부(100)의 타단에 연결되도록 구성되어, 상기 트리거 입력부(100)에서 출력되는 트리거에 의해 온/오프 된다.The control rectifier 112 is a thyristor (SCT), the cathode is connected to one end of the AC input power, the anode is connected to one end of the first heating line 13, the gate is configured to be connected to the other end of the trigger input unit 100 Then, it is turned on / off by the trigger output from the trigger input unit 100.
제1정류기(113)는 캐소드가 제어 정류기(112)의 애노드와 제1전열선(13)의 일단에 연결되고, 애노드가 제2전열선(114)의 타단에 연결된다.The first rectifier 113 has a cathode connected to the anode of the control rectifier 112 and one end of the first heating line 13, and the anode is connected to the other end of the second heating line 114.
그리고 제2정류기(114)는 캐소드가 제1전열선(13)의 타단에 연결되고, 애노드가 접지된다.And the cathode of the second rectifier 114 is connected to the other end of the first heating line 13, the anode is grounded.
상기 제1정류기(113)과 제2정류기(114)는 교류 입력전원의 선(양) 반주기동안 등가회로적으로 제1전열선(13)을 온도조절 제어부(30)에 연결하고, 제2전열선(15)의 일단이 단선되도록 하며, 교류 입력전원의 후(음) 반주기동안 등가회로적으로 제1전열선(13)과 제2전열선(15)이 교류 입력전원에 대해 병렬로 연결되도록 하여, 제1전열선(13)과 제2전열선(15)를 각각 발열시키도록 한다. 구체적으로, 제1정류기(113)는 가열전류에 대해 제2전열선(15)의 타단과 제어 정류기(112)의 애노드를 연결시키고, 제2정류기(114)는 제1전열선(13)의 타단과 제2전열선(15)의 일단을 연결시켜, 제1전열선(13)과 제2전열선(15)이 병렬 연결되도록 하여 교류 입력전원부로부터 출력되는 가열전류가 제1전열선(13)과 제2전열선(15)로 전류 분배되도록 한다. 분배된 각각의 가열전류는 제1전열선(13)과 제2전열선 각각을 발열시킨다. 따라서, 본 발명의 무자계 온도조절기는 가열 시 제1전열선(13) 또는 제2전열선 중 하나의 전열선이 끊어져도 발열선(16)을 통해 계속적으로 열을 발생시킬 수 있다.The first rectifier 113 and the second rectifier 114 connect the first heating wire 13 to the temperature control controller 30 in an equivalent circuit during the line (positive) half period of the AC input power, and the second heating wire ( 15) is disconnected, and the first heating wire 13 and the second heating wire 15 are connected in parallel to the AC input power in an equivalent circuit during the subsequent (negative) half cycle of the AC input power. The heating wire 13 and the second heating wire 15 are to generate heat respectively. Specifically, the first rectifier 113 connects the other end of the second heating line 15 to the anode of the control rectifier 112 with respect to the heating current, and the second rectifier 114 is connected to the other end of the first heating line 13. One end of the second heating wire 15 is connected so that the first heating wire 13 and the second heating wire 15 are connected in parallel so that the heating current output from the AC input power source is transferred to the first heating wire 13 and the second heating wire ( 15) to distribute the current. Each of the divided heating currents heats the first heating wire 13 and the second heating wire. Therefore, the magnetic field-less thermostat of the present invention may continuously generate heat through the heating line 16 even when one of the first heating wire 13 and the second heating wire is broken.
온도 조절 제어부(30)는 상술한 선행 등록 특허의 구성과 동일하고, 선행 등록 특허의 온도 조절 제어부(30)에 상세되어 있으므로 간단하게 설명한다.Since the temperature control control part 30 is the same as the structure of the above-mentioned prior registration patent, and is explained in detail in the temperature control control part 30 of a prior registration patent, it demonstrates briefly.
온도조절제어부(30)는 온도검출전류와 써미스터의 저항값에 의한 온도신호를 입력받아 온도를 측정하고 측정 온도에 따른 트리거를 상기 트리거 입력부(100)로 출력한다.The temperature control controller 30 receives a temperature signal based on a temperature detection current and a resistance value of the thermistor, measures a temperature, and outputs a trigger according to the measured temperature to the trigger input unit 100.
도 6 및 도 9을 참조하여 구체적으로 설명하면, 교류 입력전원, 즉 교류 입력전원의 선 반주기(도 8의 양(+) 주기) 동안에는 도 6과 같이 제1정류기(114)는 등가적으로 단선된다. 따라서 교류 입력전원은 제1전열선(13)과 NTC써미스터(14)와 제2전열선(15)에 공급되고, 교류 입력전원과 NTC 써미스터(14)의 제1 및 제2전열선(13, 15)의 온도에 따른 저항 값에 따른 온도 검출전류가 교류 입력전원, 저항(111), 제1전열선(13), NTC 써미스터(14) 및 제2전열선(15)의 경로를 따라 흐른다. 이때 제1전열선(13)과 제2전열선(15)를 흐르는 온도 검출 전류의 방향은 반대이므로 도 9와 같이 자계가 상쇄되어 무자계를 이룬다.Referring to FIGS. 6 and 9, the first rectifier 114 is equivalently disconnected as shown in FIG. 6 during an AC input power, that is, a line cycle (positive period in FIG. 8) of the AC input power. do. Accordingly, the AC input power is supplied to the first heating wire 13, the NTC thermistor 14, and the second heating wire 15, and the AC input power and the first and second heating wires 13 and 15 of the NTC thermistor 14 are connected. The temperature detection current according to the resistance value according to the temperature flows along the paths of the AC input power, the resistor 111, the first heating wire 13, the NTC thermistor 14, and the second heating wire 15. At this time, since the direction of the temperature detection current flowing through the first heating wire 13 and the second heating wire 15 is opposite, the magnetic field is canceled as shown in FIG. 9 to form a magnetic field.
그러나 교류 입력전원의 후 반주기(도 8의 음 주기) 동안에는 도 7과 같이 제1정류기(113)가 정상적으로 경로를 형성하여 교류 입력전원에 의한 가열전류가 생성되고, 상기 가열전류가 제1전열선(13)과 제2전열선(15)으로 각각 분배되어 공급된다. 이때, 제어 정류기(112)는 트리거 입력부(100)를 통해 트리거를 입력받아 턴온되어 있어야 한다.However, during the later half cycle of the AC input power (negative cycle of FIG. 8), as shown in FIG. 7, the first rectifier 113 normally forms a path to generate a heating current by the AC input power, and the heating current is generated by the first heating wire ( 13) and second heating wire 15 are distributed and supplied. In this case, the control rectifier 112 should be turned on by receiving a trigger through the trigger input unit 100.
상기 분배된 가열전류를 입력받은 제1전열선(13)과 제2전열선(15)은 상기 분배된 가열전류에 의해 발열한다. 이때, 제1전열선(13)과 제2전열선(15)을 흐르는 전류 방향은 반대이므로 도 9에서와 같이 상호 상쇄되어 무자계를 이룬다.The first heating wire 13 and the second heating wire 15 receiving the divided heating current generate heat by the distributed heating current. At this time, since the direction of current flowing through the first heating wire 13 and the second heating wire 15 is opposite, they are mutually offset as shown in FIG. 9 to form a magnetic field.
도 11 및 도 12는 본 발명의 제2실시 및 제3실시 예에 따른 교류 입력전원의 양 전원에 대한 무자계 온도 조절기의 가열부의 등가 회로를 나타낸 도면이다.11 and 12 are diagrams showing an equivalent circuit of a heating unit of a magnetic field temperature controller with respect to both power sources of the AC input power according to the second and third embodiments of the present invention.
도 11 및 도 12에서와 같이 다양한 형태의 온도신호를 조절하기 위한 온도 신호 조절부(120)를 더 포함하도록 구성할 수 있다.11 and 12 may be configured to further include a temperature signal adjusting unit 120 for adjusting the temperature signal of various forms.
온도신호 조절부(120)는 상기 온도신호 공급부(120)에 의해 생성되는 온도신호(전압 또는 전류)을 조절하는 것으로, 온도와 온도신호 비례관계를 임의로 조정하여 설정할 수 있도록 한다. 온도신호 저절부(120)는 도 11 및 도 12에서와 같이 가변저항기로 구성되며, 도 11 및 도 12와 같이 다양한 형태로 구성될 수 있다.The temperature signal controller 120 adjusts a temperature signal (voltage or current) generated by the temperature signal supply unit 120 to arbitrarily adjust a temperature and a temperature signal proportional relationship. The temperature signal storage unit 120 may be configured as a variable resistor as shown in FIGS. 11 and 12, and may be configured in various forms as shown in FIGS. 11 and 12.
도 13는 본 발명의 제3실시 예에 따른 교류 입력전원의 양 전원에 대한 무자계 온도 조절기의 가열부의 등가 회로를 나타낸 도면으로, 발열선(16)에 걸리는 고전압으로부터 온도조절 제어부(30)를 보호하기 위해 가열부(150)와 온도조절 제어부(30)를 전기적으로 절연하는 포토 커플러(122)를 더 포함한 경우를 나타낸 것이다.FIG. 13 is a diagram illustrating an equivalent circuit of a heating unit of a magneticless temperature controller with respect to both power sources of the AC input power according to the third embodiment of the present invention, and protects the temperature control controller 30 from the high voltage applied to the heating line 16. In order to show the case further includes a photo coupler 122 to electrically insulate the heating unit 150 and the temperature control control unit 30.
또한 도 13에서는 제1전열선(13)의 타단에 연결되는 캐소드와 포토 커플러(122)의 발광다이오드의 애노드에 연결되는 애노드로 구성되는 제너다이오드(121)를 더 구비하여 온도 검출 전압이 일정전압, 즉 제너다이오드(121)의 항복전압(제너전압) 이상일 경우에만 온도 검출 전류를 포토커플러(122)의 발광다이오드로 흘려 온도를 검출하는 경우를 나타내었다.In addition, in FIG. 13, a zener diode 121 further includes a cathode connected to the other end of the first heating wire 13 and an anode connected to the anode of the light emitting diode of the photo coupler 122. That is, the case where the temperature is detected by flowing the temperature detection current to the light emitting diode of the photocoupler 122 only when the breakdown voltage (Zener voltage) of the zener diode 121 is equal to or higher is shown.
도 14는 본 발명에 따른 가열부가 적용된 무자계 온도 조절기의 제1응용회로를 나타낸 도면으로, 상기 제2실시 예가 무자계 온도조절기에 적용되고, 트리거 입력부(100)가 병렬로 연결되는 두 개의 저항(33, 35)과 상기 두 저항 사이에 연결되고 제어정류기(112)의 게이트에 연결되는 커패시터(34)로 구성되는 경우를 나타낸 것이다.FIG. 14 is a diagram illustrating a first application circuit of a magneto-less thermostat to which a heating unit is applied according to the present invention. The second embodiment is applied to the magnetic-free thermostat and two resistors in which the trigger input unit 100 are connected in parallel. And a capacitor 34 connected between the two resistors 33 and 35 and the gate of the control rectifier 112.
도 15는 본 발명의 제4실시 예에 따른 가열부가 적용된 무자계 온도 조절기의 제2응용회로를 나타낸 도면으로, 제1실시 예가 무자계 온도 조절기에 적용되고, 트리거 입력부(100)가 커패시터(41)와 상기 커패시터(41)에 직렬로 연결되는 저항(42)으로 구성되고 상기 커패시터(41)와 저항(42) 사이에 제어정류기(112)의 게이트가 연결되고, 온도조절 제어부(30)가 마이컴(210)인 경우를 나타낸 것이다.FIG. 15 is a view illustrating a second application circuit of a magnetic field temperature controller to which a heating unit is applied according to a fourth embodiment of the present invention. The first embodiment is applied to the magnetic field temperature controller, and the trigger input unit 100 is a capacitor 41. ) And a resistor 42 connected in series with the capacitor 41, a gate of the control rectifier 112 is connected between the capacitor 41 and the resistor 42, and the temperature control controller 30 is a microcomputer. (210) is shown.
마이컴(210)은 교류 입력전원에 동기하여 동작하기 위해 저항(40)을 통해 교류 입력전원을 동기신호로서 입력받아 동작한다. 마이컴(210)은 상기 교류 동기신호에 동기하여 동작하여 포토커플러(122)의 수광부를 통해 발열선(16)의 온도를 검출하고, 설정된 온도로 발열선(16)의 온도를 조절하기 위해 트리거를 생성하여 트리거 입력부(100)로 출력한다. 직류전원에 의해 동작하는 마이컴(210)에 의해 온도 조절을 수행하므로 제4실시 예에 따른 온도 조절기는 교류 입력전원을 인가받아 직류전원을 생성하여 출력하는 DC 전원부(220)를 포함하며, 상기 DC 전원부(220)에서 출력되는 직류전원을 마이컴(210)에서 필요한 전원으로 조절하는 가변저항(43)을 더 포함한다.The microcomputer 210 operates by receiving AC input power as a synchronous signal through the resistor 40 to operate in synchronization with the AC input power. The microcomputer 210 operates in synchronization with the AC synchronization signal to detect the temperature of the heating line 16 through the light receiving unit of the photocoupler 122, and generates a trigger to adjust the temperature of the heating line 16 to the set temperature. Output to the trigger input unit 100. Since the temperature is controlled by the microcomputer 210 operating by a DC power source, the temperature controller according to the fourth embodiment includes a DC power supply unit 220 that generates and outputs a DC power by receiving an AC input power. It further includes a variable resistor 43 for adjusting the DC power output from the power supply unit 220 to the power required by the microcomputer 210.
한편, 본 발명은 전술한 전형적인 바람직한 실시예에만 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지로 개량, 변경, 대체 또는 부가하여 실시할 수 있는 것임은 당해 기술분야에서 통상의 지식을 가진 자라면 용이하게 이해할 수 있을 것이다. 이러한 개량, 변경, 대체 또는 부가에 의한 실시가 이하의 첨부된 특허청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described typical preferred embodiment, but can be carried out in various ways without departing from the gist of the present invention, various modifications, alterations, substitutions or additions in the art Anyone who has this can easily understand it. If such improvement, change, substitution or addition is carried out within the scope of the appended claims, the technical spirit should also be regarded as belonging to the present invention.

Claims (14)

  1. 제1전열선과, 상기 제1전열선 외주면을 둘러싸는 써미스터와 상기 써미스터 외주면에 권선되는 제2전열선과, 상기 제2전열선 외주면을 절연하는 피복을 포함하는 발열선과,A heating wire including a first heating wire, a thermistor surrounding the outer circumferential surface of the first heating wire, a second heating wire wound around the outer circumferential surface of the thermistor, and a coating for insulating the outer circumferential surface of the second heating wire;
    상기 제1전열선에서 출력되는 온도신호전압을 검출하여 출력하는 온도신호전압 검출부와,A temperature signal voltage detector for detecting and outputting a temperature signal voltage output from the first heating wire;
    상기 온도신호전압 검출부의 온도신호전압을 입력받고 상기 온도신호전압에 따른 전력제어신호를 출력하는 온도조절 제어부와,A temperature control controller which receives a temperature signal voltage of the temperature signal voltage detector and outputs a power control signal according to the temperature signal voltage;
    상기 온도조절 제어부의 전력제어신호에 의하여 상기 제1전열선 및 제2전열선 이 병렬로 각각 가열동작 되도록 하며 상기 제1전열선 및 제2전열선에 흐르는 가열 전류방향이 서로 반대가 되도록 제1전열선과 제2전열선을 연결하는 도통제어부를 포함하는 것을 특징으로 하는 무자계 온도 조절기.The first heating wire and the second heating wire are heated in parallel with each other by the power control signal of the temperature control controller, and the heating current directions flowing in the first heating wire and the second heating wire are opposite to each other. Magnetic field temperature regulator comprising a conduction control unit for connecting a heating wire.
  2. 제1항에 있어서,The method of claim 1,
    상기 도통제어부는,The conduction control unit,
    사이리스터의 캐소드가 교류전원 일단에 연결되고 게이트와 캐소드 사이에 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부가 상기 사이리스터 게이트에 연결되고.The cathode of the thyristor is connected to one end of the AC power source, and the trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate.
    상기 사이리스터의 애노드 와 교류전원 타단 사이의 2개의 병렬 전열선 중 제1전열선은 일단이 사이리스터 애노드에 연결되고 타단은 제2정류기 캐소드와 애노드를 통하여 교류전원 타단으로 연결되며,The first heating wire of the two parallel heating wires between the anode of the thyristor and the other end of the AC power source is connected to the thyristor anode and the other end thereof is connected to the other end of the AC power source through the second rectifier cathode and the anode.
    제2전열선은 타단이 제1정류기 애노드와 캐소드를 통하여 상기 사이리스터 애노드에 연결되고. 일단이 교류전원 타단에 연결되어 상기 제1전열선과 상기 제2전열선이 병렬로 가열 동작을 수행하는 것을 특징으로 하는 무자계 온도 조절기.The second heating wire is connected at the other end to the thyristor anode through the first rectifier anode and the cathode. One end is connected to the other end of the AC power source, characterized in that the first heating wire and the second heating wire performs a heating operation in parallel.
  3. 제1항에 있어서,The method of claim 1,
    상기 도통제어부는,The conduction control unit,
    사이리스터의 애노드가 교류전원 일단에 연결되고 게이트와 캐소드사이 온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부가 상기 사이리스터 게이트에 연결되고.An anode of the thyristor is connected to one end of the AC power source, and a trigger input unit for receiving the power control signal of the temperature control controller between the gate and the cathode is connected to the thyristor gate.
    상기 사이리스터의 캐소드와 교류전원 타단 사이의 2개의 병렬 전열선 중 제1전열선은 일단이 사이리스터 캐소드에 연결되고 타단은 제2정류기 애노드와 캐소드를 통하여 교류전원 타단으로 연결되며,The first heating wire of the two parallel heating wires between the cathode of the thyristor and the other end of the AC power source is connected to the thyristor cathode and the other end thereof is connected to the other end of the AC power source through the second rectifier anode and the cathode.
    제2전열선은 타단이 제1정류기 캐소드와 애노드를 통하여 상기 사이리스터 캐소드에 연결되고. 일단이 교류전원 타단에 연결되어 상기 제1전열선과 상기 제2전열선이 병렬로 가열 동작을 수행하는 것을 특징으로 하는 무자계 온도 조절기.The second heating wire is connected at the other end to the thyristor cathode through the first rectifier cathode and the anode. One end is connected to the other end of the AC power source, characterized in that the first heating wire and the second heating wire performs a heating operation in parallel.
  4. 제1항에 있어서,The method of claim 1,
    상기 도통제어부는,The conduction control unit,
    온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부와;A trigger input unit for receiving a power control signal of a temperature control controller;
    상기 교류입력전원의 일단에 연결되는 캐소드와, 상기 트리거 입력부의 출력단에 연결되는 게이트와, 상기 제1전열선 일단에 연결되는 애노드로 구성되는 사이리스터와;A thyristor comprising a cathode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and an anode connected to one end of the first heating wire;
    상기 사이리스터의 애노드 및 제1전열선의 일단에 연결되는 캐소드와 상기 제2전열선의 타단에 연결되는 애노드로 구성되는 제1정류기와;A first rectifier including an anode of the thyristor and a cathode connected to one end of the first heating wire and an anode connected to the other end of the second heating wire;
    제1전열선의 타단에 연결되는 캐소드와, 교류전원 타단에 연결되는 애노드로 구성되는 제2정류기를 포함하는 것을 특징으로 하는 무자계 온도 조절기.And a second rectifier comprising a cathode connected to the other end of the first heating wire and an anode connected to the other end of the AC power source.
  5. 제1항에 있어서,The method of claim 1,
    상기 도통제어부는,The conduction control unit,
    온도조절 제어부의 전력제어신호을 입력받는 트리거 입력부와;A trigger input unit for receiving a power control signal of a temperature control controller;
    상기 교류입력전원의 일단에 연결되는 애노드와, 상기 트리거 입력부의 출력단에 연결되는 게이트와, 상기 제1전열선 일단에 연결되는 캐소드로 구성되는 사이리스터와;A thyristor comprising an anode connected to one end of the AC input power, a gate connected to an output end of the trigger input unit, and a cathode connected to one end of the first heating wire;
    상기 사이리스터의 캐소드 및 제1전열선의 일단에 연결되는 애노드와, 상기 제2전열선의 타단에 연결되는 캐소드로 구성되는 제1정류기와;A first rectifier including an anode connected to the cathode of the thyristor and one end of the first heating wire, and a cathode connected to the other end of the second heating wire;
    제1전열선의 타단에 연결되는 애노드와, 교류전원 타단에 연결되는 캐소드로 구성되는 제2정류기를 포함하는 것을 특징으로 하는 무자계 온도 조절기.And a second rectifier comprising an anode connected to the other end of the first heating wire and a cathode connected to the other end of the AC power source.
  6. 제1항에 있어서,The method of claim 1,
    일단이 상기 교류입력전원의 일단에 연결되고, 타단이 상기 제1전열선의 일단에 연결되는 온도신호 공급부를 더 포함하는 것을 특징으로 하는 무자계 온도 조절기. And a temperature signal supply unit having one end connected to one end of the AC input power and the other end connected to one end of the first heating wire.
  7. 제1항에 있어서,The method of claim 1,
    온도조절 제어부는 마이크로 컨트롤러인 마이컴칩인 것을 특징으로 하는 무자계 온도 조절기.Temperature control controller is a magnetic controller, characterized in that the microcontroller microcomputer chip.
  8. 제1항에 있어서,The method of claim 1,
    상기 온도신호전압 검출부의 온도신호검출은 제1전열선 타단에 연결 되어진 제2정류기의 캐소드와 교류 입력전원 타단 사이에서 검출하는 것을 특징으로 하는 무자계 온도 조절기.And detecting the temperature signal of the temperature signal voltage detection unit between the cathode of the second rectifier connected to the other end of the first heating wire and the other end of the AC input power source.
  9. 제1항에 있어서,The method of claim 1,
    상기 온도신호전압 검출부의 온도신호검출은 제1전열선 일단이 연결되어진 애노드와 교류전원 타단 사이에서 검출하는 것을 특징으로 하는 무자계 온도 조절기.The temperature signal detection of the temperature signal voltage detector is detected between the anode and the other end of the AC power source is connected to one end of the first heating wire.
  10. 제1항에 있어서,The method of claim 1,
    상기 온도신호전압 검출부의 온도신호검출은 제1전열선 일단이 연결되어진 온도신호전압 공급부의 양단 사이에서 검출하는 것을 특징으로 하는 무자계 온도 조절기.And the temperature signal detection of the temperature signal voltage detector is detected between both ends of the temperature signal voltage supply unit to which one end of the first heating wire is connected.
  11. 제8항, 제9항 및 제10항 중 어느 한 항에 있어서,The method according to any one of claims 8, 9 and 10,
    상기 온도신호전압 검출부의 온도신호전압 출력은 포터커풀러 발광부 다이오드와 직렬로 연결되어 상기 온도신호전압을 포토커플러 수광부로 절연 출력하는 것을 특징으로 하는 무자계 온도 조절기.And the temperature signal voltage output of the temperature signal voltage detector is connected in series with a porter coupler light emitting diode to insulate and output the temperature signal voltage to the photocoupler light receiver.
  12. 제8항, 제9항 및 제10항 중 어느 한 항에 있어서,The method according to any one of claims 8, 9 and 10,
    상기 온도신호전압 검출부의 온도신호전압 출력은 제너다이오드와 직렬로 연결되어 상기 온도신호전압을 제너 전위 와 비교하여 출력하는 것을 특징으로 하는 무자계 온도 조절기The temperature signal voltage output of the temperature signal voltage detector is connected in series with a zener diode to output the temperature signal voltage by comparing with the zener potential.
  13. 제1항에 있어서,The method of claim 1,
    상기 온도조절제어부는 상기 온도신호전압검출부와 병렬로 연결되는 것을 특징으로 하는 무자계 온도 조절기.And the temperature control controller is connected in parallel with the temperature signal voltage detector.
  14. 제1전열선과 제2전열선사이 충전물로 NTC 써미스터을 사용하는 발열선을 포함하는 무자계 온도 조절기의 조절방법에 있어서,In the control method of the magnetic field-less thermostat comprising a heating wire using an NTC thermistor as a filler between the first heating wire and the second heating wire,
    상기 제1전열선과 제2전열선을 병렬로 연결하여 무자계로 병렬 가열 동작 시키는 병렬식 역방향 가열전류 유도 과정과,A parallel reverse heating current induction process of connecting the first heating wire and the second heating wire in parallel to operate in parallel without heating;
    제1전열선과 제2전열선사이의 온도신호전압을 검출하는 온도 검출 과정과,A temperature detection process of detecting a temperature signal voltage between the first heating wire and the second heating wire;
    온도신호전압을 입력받아 자동으로 상기 전열선들의 온도를 단속조절하는 온도조절제어과정을 포함하되,It includes a temperature control control process for receiving a temperature signal voltage and automatically controlling the temperature of the heating wires,
    상기 제1전열선과 제2전열선이 시차를 두고 상기 온도검출과 병렬 가열 동작을 교번적으로 수행하는 것을 특징으로 하는 방법.And the first heating wire and the second heating wire alternately perform the temperature detection and the parallel heating operation with a time difference.
PCT/KR2009/003626 2009-02-20 2009-07-02 Non-magnetic temperature controller and control method for same WO2010095789A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0014386 2009-02-20
KR1020090014386A KR20090058479A (en) 2009-02-20 2009-02-20 Temperature controller that do not have magnetic field
KR10-2009-0059690 2009-07-01
KR1020090059690A KR100941310B1 (en) 2009-02-20 2009-07-01 Temperature controller that do not have magnetic field and control method thereof

Publications (1)

Publication Number Publication Date
WO2010095789A1 true WO2010095789A1 (en) 2010-08-26

Family

ID=40988924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003626 WO2010095789A1 (en) 2009-02-20 2009-07-02 Non-magnetic temperature controller and control method for same

Country Status (2)

Country Link
KR (2) KR20090058479A (en)
WO (1) WO2010095789A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090058479A (en) * 2009-02-20 2009-06-09 길종진 Temperature controller that do not have magnetic field
CN102561492B (en) * 2012-02-17 2013-09-18 江苏省血吸虫病防治研究所 Electrothermal toilet bowl device capable of quickly killing eggs of schistosome or other parasites in feces
CN104582041B (en) * 2014-03-04 2016-06-15 湖南新韶光电器有限公司 What automatically power off anti-dry adds heat pipe
KR102119244B1 (en) * 2018-06-28 2020-06-05 바리아크주식회사 The electric heating apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279390A (en) * 1996-03-05 1996-10-22 Hitachi Home Tec Ltd Electric carpet
JP2006190638A (en) * 2005-01-03 2006-07-20 Jong-Jin Kil Non-electromagnetic wave thermoregulator for heating wire, its thermoregulation method, and heating wire used in it
KR20090058479A (en) * 2009-02-20 2009-06-09 길종진 Temperature controller that do not have magnetic field

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993983B1 (en) * 2010-03-10 2010-11-11 유영석 Collection device in comparison with discharge amount of garbage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279390A (en) * 1996-03-05 1996-10-22 Hitachi Home Tec Ltd Electric carpet
JP2006190638A (en) * 2005-01-03 2006-07-20 Jong-Jin Kil Non-electromagnetic wave thermoregulator for heating wire, its thermoregulation method, and heating wire used in it
KR20090058479A (en) * 2009-02-20 2009-06-09 길종진 Temperature controller that do not have magnetic field

Also Published As

Publication number Publication date
KR100941310B1 (en) 2010-02-11
KR20090079861A (en) 2009-07-22
KR20090058479A (en) 2009-06-09

Similar Documents

Publication Publication Date Title
WO2016080751A1 (en) Wireless power transfer apparatus and foreign object detection method thereof
WO2013119030A2 (en) Charging system and power failure device detecting power failure of led light
CN102414974B (en) Smart electronic switch for low-power loads
US8547035B2 (en) Dimmer adaptable to either two or three active wires
WO2010095789A1 (en) Non-magnetic temperature controller and control method for same
WO2010027144A2 (en) Electromagnetic wave-shielding temperature controller for a non-magnetic field heating wire
KR20150057184A (en) Heating mat havbing body movement detecting function and method for manufacture thereof
WO2021029611A1 (en) Cleaning device and aerosol-generating system including the same
KR101564441B1 (en) Detecting device of body motion and control appartus for electric heating mat using the same
WO2009064057A1 (en) Three-wire temperature detection and control circuit for electromagnetic shielding
WO2021080208A1 (en) Small home appliance, and method for performing communication in small home appliance
WO2014157844A2 (en) Wireless power reception apparatus capable of supplying power via cables to multiple external devices
KR101173990B1 (en) Apparatus for preventing fire in temperature controller
WO2015147447A1 (en) Solar inverter diagnostic system and method therefor
KR200395342Y1 (en) Temperature controller and heating wire therefor
WO2017095173A1 (en) Earthing test unit
WO2014014248A1 (en) Power supply circuit
KR100926227B1 (en) Apparatus for preventing fire in temperature controller
WO2012141446A2 (en) Controller of an ac-dc converter for led lighting
KR870001584B1 (en) The safety device for temperature control circuit
WO2021075754A1 (en) Electric kettle and operation method thereof
CN108391330B (en) Electric hot plate thermistor convenient to install and detach
WO2017141224A1 (en) An inductive coupling device and system
KR200261088Y1 (en) Electric blanket shielded from electromagnetic field
JP3911975B2 (en) Solid state relay and solid state relay terminal using this solid state relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840465

Country of ref document: EP

Kind code of ref document: A1