WO2010095468A1 - Wireless communication system, wireless communication method, wireless communication device, and program - Google Patents

Wireless communication system, wireless communication method, wireless communication device, and program Download PDF

Info

Publication number
WO2010095468A1
WO2010095468A1 PCT/JP2010/001178 JP2010001178W WO2010095468A1 WO 2010095468 A1 WO2010095468 A1 WO 2010095468A1 JP 2010001178 W JP2010001178 W JP 2010001178W WO 2010095468 A1 WO2010095468 A1 WO 2010095468A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
propagation path
antenna
reference signal
antennas
Prior art date
Application number
PCT/JP2010/001178
Other languages
French (fr)
Japanese (ja)
Inventor
後藤淳悟
浜口泰弘
横枕一成
中村理
高橋宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010095468A1 publication Critical patent/WO2010095468A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present invention relates to a wireless communication system, a wireless communication method, a wireless communication apparatus, and a program.
  • This application claims priority based on Japanese Patent Application No. 2009-039612 filed in Japan on February 23, 2009, the contents of which are incorporated herein by reference.
  • LTE Long Term Evolution
  • IMT-A Long Term Evolution-Advanced, IMT-A, etc.
  • the frequency band assigned to the apparatus and used for uplink data transmission is a discontinuous frequency band divided by PUCCH (see, for example, Non-Patent Document 1 and Non-Patent Document 2). Further, as an improvement in cell throughput, not only the frequency band to be used is widened, but LTE has a single transmission antenna, while LTE-A has been studied to have a plurality of transmission antennas.
  • the channel (frequency) used by each mobile station apparatus is determined by DMRS (DeModulation Reference Signal), which is a reference signal used for channel estimation for channel compensation. Signal) or information on propagation path characteristics measured by SRS (Sounding Reference Signal) used for propagation path characteristic measurement.
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the demodulation reference signal is used when demodulating the data transmitted by the mobile station apparatus in the base station apparatus, and is therefore disposed only in the region where the data to be transmitted is disposed.
  • the mobile station apparatus divides the reference signal for channel measurement over the entire frequency band excluding the PUCCH at once or multiple times, thereby acquiring the channel characteristics of each channel in the base station apparatus. It is possible.
  • the reference for propagation path measurement is similar to the LTE system. If an attempt is made to arrange a signal over the entire frequency band excluding the PUCCH, the frequency band that can be simultaneously arranged is limited due to the limitation of the transmission power in the mobile station apparatus, etc. It takes a long time to finish arranging the reference signal for propagation path measurement in the continuous frequency band in the -A system). There is a problem that the propagation path (frequency) to be used cannot be determined efficiently because the propagation path condition changes during this time.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to use a propagation path that has a plurality of transmission antennas and uses a plurality of discontinuous frequency bands that are discontinuous with each other.
  • An object of the present invention is to provide a wireless communication system, a wireless communication method, a wireless communication apparatus, and a program for transmitting a propagation path measurement reference signal so that (frequency) can be determined efficiently.
  • the present invention has been made to solve the above-described problems, and the wireless communication system according to the present invention transmits a signal using a frequency band composed of a plurality of LTE system frequency bands.
  • a wireless communication system comprising a wireless communication device and a second wireless communication device that receives a signal transmitted by the first wireless communication device, wherein each of the first wireless communication devices is the LTE system.
  • the wireless communication system of the present invention is the above-described wireless communication system, wherein the second wireless communication apparatus is configured such that the first wireless communication apparatus refers to the propagation path measurement from each of the antennas.
  • a frequency band and a transmission timing of the LTE system for transmitting a signal are determined and notified to the first wireless communication apparatus as control information, and the first wireless communication apparatus transmits the LTE notified by the control information.
  • the antenna is sequentially switched to transmit a channel measurement reference signal.
  • wireless communications system of this invention is the above-mentioned radio
  • the transmission timing of the said reference signal for propagation path measurement is transmission of transmission data among the antennas of a said 1st radio
  • wireless communications system of this invention is the above-mentioned radio
  • wireless communication apparatus carries out the frequency band of the said LTE system to each antenna of the said 1st radio
  • the antenna The frequency band of the LTE system to be allocated is changed.
  • wireless communications system of this invention is the above-mentioned radio
  • wireless communication apparatus transmits the frequency band and transmission timing of the said LTE system which transmit the said reference signal for propagation path measurement.
  • the frequency band of the LTE system that transmits the propagation path measurement reference signal is set to the same frequency for a plurality of antennas used for MIMO transmission. It is characterized by a band.
  • the wireless communication device of the present invention is a wireless communication device that transmits a signal using a frequency band composed of a plurality of LTE system frequency bands, and each of the frequency bands of the LTE system.
  • the wireless communication device of the present invention is transmitted from another wireless communication device including a plurality of antennas in the frequency band of the LTE system allocated to each of the antennas among the frequency bands of the plurality of LTE systems. And measuring the propagation path characteristics of the frequency band of the LTE system assigned to the antenna for each of the antennas using the reference signal for propagation path measurement.
  • the frequency band and transmission timing of the LTE system are switched so that the antennas are sequentially switched and a reference signal for propagation path measurement is arranged and transmitted. Determined, and notifying the other radio communication device as the control information.
  • the wireless communication method of the present invention includes a first wireless communication device that transmits a signal using a frequency band configured by a plurality of LTE system frequency bands, and the first wireless communication device transmits the signal.
  • a wireless communication method in a wireless communication system including a second wireless communication device that receives a received signal, wherein the first wireless communication device includes a plurality of antennas included in the device, each of which includes the LTE.
  • the program of the present invention includes a plurality of antennas and a wireless communication apparatus that transmits signals using a plurality of LTE system frequency bands, each of which is one of the LTE system frequency bands.
  • the antennas to which one is assigned are sequentially switched to function as means for arranging and transmitting a propagation path measurement reference signal.
  • the program of the present invention is a propagation transmitted from another radio communication apparatus having a plurality of antennas in the frequency band of the LTE system allocated to each of the antennas among the frequency bands of the plurality of LTE systems.
  • a path measurement reference signal is received, and the propagation path characteristic of the frequency band of the LTE system allocated to the antenna is measured for each of the antennas using the propagation path measurement reference signal.
  • a wireless communication device that determines a propagation path to be used for transmission of transmission data by the other wireless communication device, and the other wireless communication device transmits the propagation path measurement reference signal from each of the antennas.
  • the LTE system frequency band and transmission timing are switched by sequentially switching the antenna and transmitting a channel measurement reference signal for transmission. Determined to so that, to function as a means for notifying the other radio communication device as the control information.
  • the frequency to be used can be determined efficiently even in the case where communication is performed using a plurality of discontinuous frequency bands having a plurality of transmission antennas.
  • the wireless communication system in the following embodiments includes a terminal device (also referred to as a first wireless communication device) 10 and a base station device (also referred to as a second wireless communication device) 20.
  • the terminal device 10 has two antennas, and the frequency bands that can be used for data transmission from the terminal device 10 to the base station device 20 are two consecutive frequencies that are discontinuous with each other. An example is shown for the case of bands.
  • the two consecutive frequency bands that are discontinuous with each other are two 20 MHz frequency bands in which the frequency band for the control channel is arranged at both ends of each frequency band.
  • the frequency band with a bandwidth of 40 MHz is divided into two frequency bands each with a bandwidth of 20 MHz, and both ends of each frequency band are frequency bands for the control channel.
  • the frequency bands that can be used for data transmission to the station apparatus 20 are two frequency bands that are discontinuous with each other.
  • the present invention is not limited to this example, and satisfies the two conditions that the terminal device 10 has a plurality of antennas used for transmission and a plurality of continuous frequency bands that can be used for data transmission.
  • the present invention is applicable to any wireless communication system.
  • it is preferable that the number of antennas used for transmission by the terminal device 10 is smaller than or equal to the number of continuous frequency bands that can be used for data transmission.
  • FIG. 1 is a schematic block diagram showing the configuration of the terminal device 10.
  • the terminal device 10 includes an RS generation unit 100, a mapping unit 110, a transmission processing unit 101, a radio unit 102, an antenna 103, a transmission processing unit 111, a radio unit 112, an antenna 113, a radio unit 120, a reception processing unit 121, and an arrangement instruction unit. 122.
  • the RS generation unit 100 generates a propagation path measurement reference signal based on the RS data length information that is set in advance or notified from the base station apparatus 20 and is the code length of the propagation path measurement reference signal.
  • the RS generation unit 100 may generate a propagation path measurement reference signal by a predetermined calculation, or store a propagation path measurement reference signal of each RS data length, You may make it output the reference signal for propagation path measurement according to the input RS data length.
  • the reference signal for propagation path measurement uses an uplink signal-to-noise ratio (SNR), a signal, in order for the base station apparatus 20 to determine a band used by the terminal apparatus 10 for data transmission. This is a signal used by the base station apparatus 20 for measurement of uplink propagation path characteristics such as a signal-to-interference noise power ratio (SNIR; SignalSigntoInterference plus Noise power Ratio).
  • SNR uplink signal-to-noise ratio
  • a mapping unit 110 (also referred to as an arrangement unit) is generated from transmission data input from the outside in accordance with an instruction of an antenna and a propagation path (frequency) where a transmission data signal and a propagation path measurement reference signal are arranged by the arrangement instruction unit 122
  • the transmission data signal and the propagation path measurement reference signal input from the RS generation unit 100 are arranged at a corresponding frequency and output to the transmission processing units 101 and 111 for the corresponding antenna.
  • the transmission data signal is, for example, when the transmission data is transmitted by an OFDMA (Orthogonal Frequency ⁇ ⁇ Division Multiple Access) system, the bits of the transmission data are error-correction-encoded and then QPSK ( This is a signal composed of a modulation symbol modulated by a modulation method such as Quadrature Phase Shift Keying; 16QAM (16 Quadrature Amplitude Modulation) and a demodulation reference signal.
  • QPSK, 16QAM, etc. a signal composed of a discrete spectrum obtained by concatenating a plurality of modulation symbols in the time direction and Fourier-transformed and a demodulation reference signal.
  • the transmission processing unit 101 converts the input propagation path measurement reference signal and the transmission data signal into a transmission signal.
  • the radio unit 102 up-converts the transmission signal received from the transmission processing unit 101 to a radio frequency and transmits the radio signal from the antenna 103.
  • the transmission processing unit 111 converts the input channel measurement reference signal and the transmission data signal into a transmission signal.
  • the radio unit 112 up-converts the transmission signal received from the transmission processing unit 111 to a radio frequency and transmits the radio signal from the antenna 113.
  • the transmission processing unit 101 and the wireless unit 102 function as one transmission unit, and the transmission processing unit 111 and the wireless unit 112 function as another transmission unit. Also, these transmitters use the center frequency of the continuous frequency band assigned to the antenna connected to the radio unit, as the oscillation frequency of the variable frequency oscillator having the crystal oscillator included in each radio unit 111, 112. By setting to, the oscillation frequency is set as the center frequency, and the operation is performed for a continuous frequency band having a bandwidth of 20 MHz.
  • Antenna 103 is the antenna of antenna # 1.
  • Antenna 113 is the antenna of antenna # 2.
  • Radio section 120 receives a signal transmitted from base station apparatus 20 via antenna 113, and outputs a reception signal obtained by down-converting the signal to a baseband frequency to reception processing section 121.
  • the reception processing unit 121 detects reception data and control information from the reception signal, outputs the reception data to the outside, and outputs control information to the arrangement instruction unit 122.
  • Arrangement instructing unit 122 from the control information detected by reception processing unit 121, arrangement pattern information indicating the combination of the frequency and antenna for arranging the reference signal for propagation path measurement, the frequency and antenna for arranging the signal of the transmission data, The information indicating the combination of the two is extracted, and in accordance with the information, the mapping unit 110 is instructed on the combination of the frequency and the antenna where the reference signal for propagation path measurement and the transmission data are arranged.
  • FIG. 2 is a schematic block diagram showing the configuration of the transmission processing unit 101.
  • the transmission processing unit 101 includes an IFFT (Inverse / Fast / Fourier / Transform) unit 1003 and a CP (Cyclic / Prefix) insertion unit 1004.
  • the transmission processing unit 111 has the same configuration as the transmission processing unit 101 except that the signal input from the mapping unit 110 is a signal for the antenna 113 and outputs the generated transmission signal to the radio unit 112. Is omitted.
  • IFFT section 1003 receives propagation path estimation reference signals and transmission data signals arranged in each subcarrier from mapping section 110, and performs inverse fast Fourier transform on these input signals to generate a time signal. .
  • CP insertion section 1004 inserts a cyclic prefix into the time signal generated by IFFT section 1003 and outputs the result as a transmission signal to radio section 102.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 20.
  • the base station apparatus 20 includes a radio unit 202, a CP removal unit 203, an FFT unit 204, an RS extraction unit 205, a propagation path information acquisition unit 206, a transmission processing unit 209, and a radio unit 210 for the antenna 201 of the antenna # 1.
  • the antenna 221 of the antenna # 2 includes a radio unit 202, a CP removal unit 203, an FFT unit 204, an RS extraction unit 205, a propagation path information acquisition unit 206, a transmission processing unit 209, and a radio unit 210.
  • a propagation path determination unit 207, a MIMO separation unit 211, and a plurality of reception processing units 208 each corresponding to each antenna on the transmission side.
  • the radio unit 202 receives a signal transmitted from the terminal apparatus 10 via a connected antenna of the antenna 201 or 221 for a frequency band (system band) having a bandwidth of 40 MHz, and transmits the signal to the baseband. Output the received signal down-converted to frequency.
  • CP removing section 203 removes the cyclic prefix from the received signal output from radio section 202 and divides the received signal for each FFT interval.
  • the FFT unit 204 performs Fourier transform on the received signal divided into FFT sections to convert it into a frequency signal.
  • the RS extraction unit 205 is the information included in the control information input from the propagation path determination unit 207 and is based on the information indicating the arrangement pattern of the propagation path measurement reference signal on the propagation path from the frequency signal to the propagation path. Extract a reference signal for measurement. Details of the information indicating the arrangement pattern will be described later.
  • the propagation path information acquisition unit 206 also referred to as a propagation path characteristic measurement unit compares the extracted propagation path measurement reference signal with a known propagation path measurement reference signal (RS), and the antenna 103 of the terminal device 10. Alternatively, information on the propagation path of each subcarrier from 113 is obtained.
  • the propagation path information is a propagation path characteristic such as a signal-to-noise ratio (SNR), a signal-to-interference noise power ratio (SNIR), or a signal-to-interference-plus-noise-power ratio.
  • SNR signal-to-noise ratio
  • SNIR signal-to-interference noise power ratio
  • SNIR signal-to-interference noise power ratio
  • the propagation path determination unit 207 is based on the propagation path information acquired by each of the propagation path information acquisition units 206 from the reference signal for propagation path measurement in the reception signals received by the antenna 201 and the antenna 221 and the transmission source antenna.
  • a propagation path determined by the frequency, which is used for transmission of transmission data by the terminal device 10, is determined, and propagation path allocation information indicating the determined propagation path is generated.
  • the propagation path is determined by the antenna of the terminal device 10 serving as a transmission source and the frequency, specifically, a subcarrier as an example.
  • the propagation path determination unit 207 determines a propagation path pattern in which the terminal apparatus 10 arranges the propagation path measurement reference signal based on the propagation path information, and generates arrangement pattern information indicating the determined pattern.
  • the propagation path determination unit 207 generates and outputs control information including the generated propagation path allocation information and arrangement pattern information.
  • the propagation path determination unit 207 stores a plurality of pieces of arrangement pattern information in advance, and selects a propagation path measurement reference signal by selecting from among the arrangement patterns indicated by each of the stored arrangement pattern information. The pattern of the propagation path to be arranged is determined.
  • the MIMO separation unit 211 separates the frequency signal generated by each of the FFT units 204 into a signal for each antenna of the transmission source, and extracts a received data signal from each of the signals.
  • the MIMO separation unit 211 determines a propagation path (subcarrier) in which a signal of received data is arranged based on propagation path information included in the control information input from the propagation path determination unit 207, and determines the propagation path By extracting the frequency signal, the received data signal is extracted from the frequency signal. Further, when the known multi-input multi-output (MIMO) is not performed, the MIMO separation unit 211 can extract the received data signal from the frequency signal generated by any of the FFT units 204.
  • MIMO multi-input multi-output
  • the frequency signals generated by the plurality of FFT units 204 may be combined, and the received data signal may be extracted from the combined signals.
  • Each of the reception processing units 208 receives a reception data signal of a corresponding transmission source antenna from the MIMO separation unit 211, and outputs the reception data obtained by demodulation and decoding to the outside.
  • the transmission processing unit 209 generates a transmission signal that transmits the control information generated by the propagation path determination unit 207 and transmission data input from the outside.
  • the radio unit 210 up-converts the transmission signal generated by the transmission processing unit 209 to a radio frequency and transmits the radio signal to the terminal device 10 via the antenna 201.
  • FIG. 4 is a diagram showing a first arrangement pattern of propagation path measurement reference signals in the present embodiment.
  • the propagation path determination unit 207 of the base station apparatus 20 determines that the first arrangement pattern as illustrated in FIG. 4 is applied to the terminal apparatus 10, and the base station apparatus 20 determines the determined first arrangement.
  • Arrangement pattern information indicating a pattern is included in the control information and transmitted to the terminal device 10.
  • the reception processing unit 121 detects control information from the signal received from the base station device 20.
  • the arrangement instructing unit 122 controls the mapping unit 110 to arrange the reference signal for channel measurement according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. To do.
  • Reference numerals F1 to F10 denote frequency bands that can be used for data transmission of transmission data within the system band, that is, frequency bands that can be allocated.
  • the code C1 indicates a frequency band that cannot be assigned.
  • Reference numerals T1 to T10 are radio frames each having a predetermined time period. In the present embodiment, the codes T1 to T10 have been described as being radio frames, but may be a time zone having a predetermined length, and may be two radio frames or three radio frames.
  • the frequency bands F1 to F5 are continuous frequency bands that can be used for data transmission of transmission data out of the 20 MHz frequency band in which the frequency band for the control channel is arranged at both ends.
  • the frequency bands F6 to F10 are also continuous frequency bands that can be used for data transmission of transmission data, among the 20 MHz frequency bands in which the frequency band for the control channel is arranged at both ends.
  • the frequency band C1 between the frequency bands F1 to F5 and the frequency bands F6 to F10 is a frequency band for the control channel, that is, a frequency band that cannot be used for data transmission from the terminal apparatus 10 to the base station apparatus 20.
  • the frequency bands F1 to F5 and the frequency bands F6 to F10 are discontinuous, that is, two continuous frequency bands that are discontinuous with each other. Further, the bandwidths of signals transmitted from the radio units 102 and 112 of the terminal device 10 via the antennas 103 and 113 are 20 MHz, respectively. Therefore, the terminal device 10 uses only one of the antennas 103 and 113 with respect to the entire frequency band including the frequency bands F1 to F5 and the frequency bands F6 to F10, and the frequency bands F1 to F5. And transmission using any one of the frequency bands F6 to F10 is possible.
  • the terminal apparatus 10 uses the frequency band F2 in the time zone T1 from the antenna 103 of the antenna # 1, and uses the frequency band F2 for the channel measurement reference signal (of the antenna # 1).
  • RS signal RS signal
  • transmitting the propagation path measurement reference signal in a time zone such as the time zone T1 may be performed by arranging the transmission path measurement reference signal over the entire time zone.
  • the reference signal for channel measurement may be arranged and transmitted in a predetermined time zone such as the end of the time zone.
  • transmitting a channel measurement reference signal using a frequency band such as frequency band F2 means that the channel measurement reference signal is arranged and transmitted on all subcarriers constituting the frequency band.
  • a propagation path measurement reference signal may be arranged and transmitted on a predetermined part of the subcarriers constituting the frequency band, such as every other subcarrier.
  • the channel 113 reference signal (the RS signal of the antenna # 2) is transmitted from the antenna 113 of the antenna # 2 using the frequency band F7 in the time zone T2.
  • the reference signal for channel measurement is transmitted using the frequency band F4 from the antenna 103 of the antenna # 1 in the time zone T3 and further using the frequency band F9 from the antenna 113 of the antenna # 2 in the time zone T4.
  • the frequency band F1 from the antenna 103 of the antenna # 1 alternately in the time zone T5, the frequency band F6 from the antenna 113 of the antenna # 2 in the time zone T6, and the frequency band F5 from the antenna 103 of the antenna # 1 in the time zone T7.
  • the propagation path measurement is performed in the order of the frequency band F10 from the antenna 113 of the antenna # 2, the time band T9 from the antenna 103 of the antenna # 1 to the frequency band F3, and the time band T10 in order from the antenna 113 of the antenna # 2 to the frequency band F8.
  • a reference signal is transmitted.
  • the base station apparatus 20 transmits the propagation path measurement reference signals. From which frequency band is received, it is determined which frequency is used to transmit data from the antennas 103 and 113. In this way, by using the first arrangement pattern, the propagation path measurement reference signals are sequentially transmitted from the antennas # 1 and # 2 using the frequency bands F1 to F5 and F6 to F10, respectively. Compared to the case where the propagation path is determined later, the time from the start of transmission of the propagation path estimation reference signal to the determination of the propagation path can be halved.
  • the arrangement pattern information is, for example, information for each terminal device 10, and is an identification number indicating the arrangement pattern shown in FIG. 4 if the arrangement pattern information indicates the first arrangement pattern.
  • the arrangement instructing unit 122 has an arrangement pattern composed of a combination of an identification number (arrangement pattern information) indicating the arrangement pattern, information indicating the frequency at which the channel measurement reference signal is arranged for each time zone, and information indicating the antenna. The information is stored in association with each other, and the combination of the frequency and antenna for allocating the reference signal for propagation path measurement is mapped according to the information on the arrangement pattern stored in association with the arrangement pattern information extracted from the control information. To the unit 110.
  • the arrangement pattern information is, for example, information for each antenna of the terminal device 10, and the antenna number and consecutive frequency bands that can be allocated (frequency band F1 to F5 combined with the antenna # 1 in FIG. 4).
  • the transition pattern in the frequency direction of the position where the channel measurement reference signal is arranged in antenna # 1 in FIG. 4, the second highest frequency band (frequency band F2) among the assignable frequency bands)
  • Information indicating the time between them in FIG. 4, once every two radio frames
  • information indicating the time zone when the arrangement starts (antenna # 1 in FIG.
  • antenna # 2 is time zone T2
  • It may be a composed information may be information comprising a part of the information of these.
  • the arrangement pattern information is obtained from each antenna for each time zone, such as the frequency band F2 for the antenna # 1 and the frequency band F7 for the antenna # 2 in the time zone T2. It may be information indicating a position where a transmission path measurement reference signal to be transmitted is arranged.
  • the arrangement instructing unit 122 allocates information for identifying the transition pattern in the frequency direction at the position where the channel measurement reference signal is arranged, and the frequency band in which the channel measurement reference signal is arranged in each time zone. Information on transition patterns representing relative positions in possible continuous frequency bands is stored in association with each other.
  • the arrangement instructing unit 122 reads out information on an arrangement pattern associated with information for identifying a transition pattern included in the arrangement pattern information extracted from the control information, and information constituting the information and other arrangement pattern information Accordingly, the mapping unit 110 is instructed about the combination of the frequency and the antenna for arranging the reference signal for propagation path measurement.
  • the propagation path determination unit 207 includes the propagation path information acquisition unit 206 in these antennas.
  • the continuous frequency band assigned to the antenna is changed, and each of the antennas of the terminal device 10 is mutually connected.
  • a continuous frequency band to be assigned to each antenna is determined so that different continuous frequency bands are assigned.
  • the terminal device 10 uses the antenna 103 for the propagation path measurement to the frequency bands F1 to F5 from the antenna 103 and from the antenna 2 to the frequency bands F6 to F10.
  • the signal is arranged and transmitted.
  • the propagation path determination unit 207 determines that the propagation path characteristics of the antenna # 1 are in advance.
  • the antenna 103 of the antenna # 1 uses the frequency band F6 to F10 and the antenna 113 of the antenna # 2 uses the frequency band F1 to F5 to measure the propagation path.
  • Control information including arrangement pattern information for arranging and transmitting the reference signal is generated and transmitted to the terminal device 10. Further, the control information is generated and the arrangement pattern used by the terminal apparatus 10 may be changed after the channel measurement reference signal is transmitted to all frequencies within the assignable continuous band, or after the assignment. It may be after the propagation path measurement reference signal is transmitted to only a part of the possible continuous band.
  • the channel measurement reference signal when there are a plurality of assignable continuous frequency bands, the channel measurement reference signal is transmitted in units of the assignable continuous frequency bands. Data transmission overhead (extra time required for transmission) can be reduced.
  • the main antenna is an antenna preferentially used when data transmission of transmission data is performed from the terminal apparatus 10 to the base station apparatus 20.
  • the sub-antenna is an antenna that is used in place of the main antenna when the propagation characteristics of the main antenna are poor or that is used in addition to the main antenna when the main antenna alone does not satisfy the required throughput.
  • the antenna 103 of the antenna # 1 is a main antenna
  • the antenna 113 of the antenna # 2 is a sub antenna.
  • FIG. 5 is a diagram showing a second arrangement pattern of propagation path measurement reference signals in the present embodiment. That is, the propagation path determination unit 207 of the base station apparatus 20 determines that the second arrangement pattern as illustrated in FIG. 5 is applied to the terminal apparatus 10, and the base station apparatus 20 The arrangement pattern information indicating the arrangement pattern is included in the control information and transmitted to the terminal device 10.
  • the reception processing unit 121 detects control information from the signal received from the base station device 20.
  • the arrangement instructing unit 122 controls the mapping unit 110 so as to arrange the reference signal for channel measurement according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. To do.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • the symbols F1 to F10 and the symbol C1 are the same as those in FIG. 4, the symbols F1 to F10 indicate frequency bands that can be allocated within the system band, and the symbol C1 indicates a frequency band that cannot be allocated.
  • Reference numerals T1 to T15 are radio frames each having a predetermined time period.
  • the second arrangement pattern is that the propagation path determination reference signal for the propagation path determination unit 207 of the base station apparatus 20 determines the band to be used by the terminal apparatus 10 having the main antenna and the sub antenna for data transmission of transmission data.
  • different main frequency bands F1 to F5 and F6 to F10 are allocated to the main antenna and the sub antenna, respectively.
  • the propagation path measurement reference signals are alternately arranged and transmitted in the continuous frequency bands assigned to the antennas from these antennas.
  • the interval between the propagation path measurement reference signals transmitted from the main antenna and the sub antenna is different, and the propagation path measurement reference signal is transmitted from the main antenna to two time zones (for example, time zone T1).
  • the second arrangement pattern increases the frequency of arranging the propagation path measurement reference signal from the main antenna as compared with the propagation path measurement reference signal from the sub antenna.
  • the arrangement pattern is such that the transmission of the reference signal for path measurement is completed early.
  • the channel measurement reference signal (the RS signal of the main antenna).
  • the propagation path measurement reference signal may be arranged and transmitted over the entire time zone T1, or the end of the time zone or the like may be transmitted in advance.
  • the reference signal for propagation path measurement may be arranged and transmitted in a predetermined part of the time zone.
  • transmitting the channel measurement reference signal using the frequency band F2 may be performed by arranging the channel measurement reference signal on all the subcarriers constituting the frequency band F2.
  • a propagation path measurement reference signal may be arranged and transmitted on a part of subcarriers constituting the frequency band F2, such as every other subcarrier.
  • a channel measurement reference signal (RS signal of the main antenna) is transmitted from the main antenna using the frequency band F4 in the time zone T2. Further, a propagation path measurement reference signal (sub-antenna RS signal) is transmitted from the sub-antenna using the frequency band F7 in the time zone T3. Next, a channel measurement reference signal is transmitted from the main antenna using the frequency band F1 in the time zone T4 and the frequency band F5 in the time zone T5. Next, a propagation path measurement reference signal is transmitted from the sub-antenna using the frequency band F9 in the time band T6.
  • a channel measurement reference signal is transmitted from the main antenna using the frequency F3 in the time zone T7 and the frequency band F2 in the time zone T8, and the channel measurement is performed from the sub antenna using the frequency band F6 in the time zone T9.
  • a reference signal is transmitted.
  • a channel measurement reference signal is transmitted from the main antenna using the frequency band F4 in the time zone T10 and the frequency band F1 in the time zone T11, and propagated from the sub-antenna using the frequency band F10 in the time zone T12.
  • a reference signal for path measurement is transmitted.
  • a propagation path measurement reference signal is transmitted from the main antenna using the frequency band F2 in the time zone T13 and the frequency band F4 in the time zone T14, and the propagation path is transmitted from the sub-antenna using the frequency band F8 in the time zone T15. Send a measurement reference signal.
  • the propagation path determination unit 207 transmits transmission data from the main antenna of the terminal apparatus 10.
  • the propagation path (subcarrier) to be used can be determined from the frequency bands F1 to F5. Therefore, the time from the measurement of the propagation path characteristics to the determination of the propagation path to be used can be the combined length of the time zones T1 to T7 even in the longest frequency band. This is shorter by three time zones than the combined length of the time zones T1 to T10 of the first arrangement pattern.
  • propagation path determining section 207 determines a propagation path (subcarrier) to be used for transmission of transmission data from the sub-antenna from frequency bands F6 to F10.
  • the second arrangement pattern can determine the frequency band used for transmission from the main antenna more efficiently than the first arrangement pattern, and reduces overhead when data is transmitted from the main antenna. Can do.
  • the propagation path determining unit 207 determines the frequency bands F6 to F10 from the antenna # 1 and the frequency band from the antenna # 2. Arrangement pattern information for transmitting the reference signal for propagation path measurement is generated using F1 to F5 and transmitted to the terminal apparatus 10.
  • the second arrangement pattern shown in FIG. 5 is an arrangement pattern in which the channel measurement reference signal is transmitted from the main antenna in two time zones and then transmitted from the sub-antenna in one time zone. As long as the arrangement pattern is transmitted from the main antenna in more time zones than from the sub-antenna, the arrangement pattern may not be the same as this example.
  • the transmission interval of the reference signal for propagation path measurement from the main antenna and the sub antenna is constant, but after the frequency band used for transmission from the main antenna is determined, the first As in the arrangement pattern, the arrangement pattern may be changed such that the channel measurement reference signal is alternately transmitted from the main antenna and the sub antenna.
  • the channel characteristics can be measured more quickly, and when determining the channel to be used for transmission of transmission data Furthermore, it can be made less susceptible to the influence of time fluctuations in the propagation path. For this reason, even when the time variation of the propagation path such as the terminal device 10 is moving is large, the propagation path determination unit 207 of the base station apparatus 20 is based on more accurate propagation path characteristics for the main antenna.
  • a propagation path to be used for data transmission can be determined (scheduled). That is, since the overhead from the transmission of the reference signal for propagation path measurement to the data transmission is short, it is difficult to be affected by the time variation of the propagation path characteristics, and scheduling can be performed based on more accurate propagation path information.
  • This third arrangement pattern is the first arrangement pattern, that is, as shown in FIG. 4, using different consecutive frequency bands assigned to the respective antennas, the reference signals for channel measurement from a plurality of antennas. Used when switching between sending and receiving.
  • FIG. 6 and 7 are diagrams for explaining switching between the first arrangement pattern and the third arrangement pattern. 6 and 7, the horizontal axis represents frequency. 6 and 7, there are two frequency bands F11 and F12, which are the same frequency bands as the frequency bands F1 to F5 and the frequency bands F6 to F10 in FIG. . And the terminal device 10 cannot transmit simultaneously from one antenna with respect to these two frequency bands F11 and F12.
  • FIG. 6 is a diagram illustrating a case where a channel measurement reference signal is transmitted from the first arrangement pattern, that is, the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2 using mutually different continuous frequency bands. is there.
  • the terminal apparatus 10 also transmits transmission data using the frequency band F11 from the antenna 103 of the antenna # 1, and transmits using the frequency band F12 from the antenna 113 of the antenna # 2.
  • FIG. 7 is a diagram showing a case where a reference signal for channel measurement is transmitted from the third arrangement pattern, that is, the antenna 103 of antenna # 1 and the antenna 113 of antenna # 2 using the same continuous frequency band. is there.
  • the terminal apparatus 10 also transmits transmission data using both the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2 using the frequency band F11.
  • FIG. 8 shows a third arrangement pattern, which is an arrangement pattern of the channel measurement reference signal in the case where the frequency band is allocated and the channel measurement reference signal is transmitted from the antennas # 1 and # 2, as shown in FIG. FIG.
  • the propagation path determination unit 207 of the base station apparatus 20 applies either the first arrangement pattern as illustrated in FIG. 4 or the third arrangement pattern as illustrated in FIG. 8 to the terminal apparatus 10. Is determined, and the base station apparatus 20 includes the arrangement pattern information indicating the determined first arrangement pattern in the control information and transmits the information to the terminal apparatus 10.
  • the reception processing unit 121 detects control information from the signal received from the base station device 20.
  • the mapping unit 122 arranges the channel measurement reference signal according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. 4 or FIG. 110 is controlled.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • Reference numerals F1 to F10, C1, and T1 to T10 are the same as those in FIG.
  • the same continuous frequency bands F6 to F10 are allocated to the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2, and the time T1 to During T10, channel measurement reference signals are alternately transmitted from these antennas in the continuous frequency band assigned to each antenna and transmitted.
  • the terminal apparatus 10 uses the frequency band F7 in the time zone T1 from the antenna 103 of the antenna # 1, and uses the frequency band F7 for the channel measurement reference signal (of the antenna # 1). RS signal).
  • the propagation path measurement reference signal (RS signal of antenna # 2) is transmitted from antenna 113 of antenna # 2 using frequency band F7 in time band T2.
  • a reference signal for propagation path measurement is transmitted using the frequency band F9 from the antenna 103 of the antenna # 1 in the time zone T3 and further using the frequency band F9 from the antenna 113 of the antenna # 2 in the time zone T4. To do.
  • the frequency band F6 from the antenna 103 of the antenna # 1 alternately in the time zone T5, the frequency band F6 from the antenna 113 of the antenna # 2 in the time zone T6, and the frequency band F10 from the antenna 103 of the antenna # 1 in the time zone T7.
  • the propagation path measurement is performed in the order of the frequency band F10 from the antenna 113 of the antenna # 2, the time zone T9 from the antenna 103 of the antenna # 1 to the frequency band F8, and the time zone T10 in order from the antenna 113 of the antenna # 2 to the frequency band F8.
  • a reference signal is transmitted.
  • the switching of the usage method between the first arrangement pattern and the third arrangement pattern is performed by the propagation path determination unit 207 based on the propagation path characteristics (reception quality) measured by the propagation path information acquisition unit 206 of the base station apparatus 20. decide. Specifically, after the terminal apparatus 10 transmits a reference signal for propagation path measurement with a third arrangement pattern in accordance with an instruction from the base station apparatus 20, the propagation path information acquisition unit 206 of the base station apparatus 20 Measure the propagation path characteristics. At this time, if the propagation path determining unit 207 determines that the measured propagation path characteristics regarding the antenna 113 of the antenna # 2 do not satisfy the certain quality Q1, the propagation path determination unit 207 generates arrangement pattern information indicating the first arrangement pattern. To the terminal device 10. Thereby, the arrangement pattern used by the terminal apparatus 10 for transmission of the propagation path measurement reference signal is switched from the third arrangement pattern to the first arrangement pattern.
  • the propagation path determination unit 207 includes a propagation path information acquisition unit in the first arrangement pattern, that is, when the continuous frequency bands different from each other are assigned to the antennas of the terminal device 10.
  • the continuous frequency band assigned to the antenna is assigned to at least one antenna other than the antenna.
  • a continuous frequency band assigned to each antenna may be determined, that is, a third arrangement pattern may be determined.
  • MIMO multi-input multi-output
  • the propagation path determination unit 207 determines that the propagation path characteristics regarding the antenna 113 of the measured antenna # 2 satisfy a certain quality Q1.
  • arrangement pattern information indicating the third arrangement pattern is generated and transmitted to the terminal device 10.
  • the arrangement pattern used by the terminal apparatus 10 for transmission of the propagation path measurement reference signal is switched from the first arrangement pattern to the third arrangement pattern.
  • SNR Signal to Noise Power Ratio
  • the fact that the propagation path characteristics related to the antenna satisfy a certain quality Q1 means that, for example, the number of propagation paths that exceed a predetermined propagation path characteristic in a continuous frequency band assigned to the antenna is determined in advance.
  • the number of propagation paths that exceed a predetermined propagation path characteristic among the continuous frequency bands assigned to the antenna may be the amount of data transmitted from the terminal device 10. There may be more than the number determined according to this, but it is not limited to these.
  • a transmission apparatus having a plurality of antennas transmits a propagation path measurement reference signal, receives the propagation path measurement reference signal, and the reception apparatus measures the propagation path characteristics, and satisfies a certain quality
  • MIMO multiple input multiple output
  • a propagation path measurement reference signal is transmitted from a plurality of antennas using the same frequency band, and propagation using the propagation path measurement reference signal is performed. It is necessary to measure the road characteristics.
  • the reference signal for propagation path measurement is transmitted from antenna # 1 and antenna # 2 by the method of using the frequency band of FIG.
  • a plurality of antennas transmit a propagation path reference signal using the same usable continuous frequency band, receive the propagation path measurement reference signal, and measure the propagation path characteristics. As a result, a certain quality Q2 is obtained. If not, multi-input multi-output cannot be used, so switching is performed so that the channel # 1 and antenna # 2 transmit the propagation path measurement reference signal using the band usage method of FIG.
  • the terminal apparatus 10 transmits a reference signal for propagation path measurement using the same continuous frequency bands F6 to F10 from the plurality of antennas 103 and 113 using the third arrangement pattern.
  • the propagation path determination unit 207 outputs multiple inputs and multiple outputs for data transmission based on whether or not the result of measurement by the propagation path information acquisition unit 206 satisfies a certain quality Q2. Determine if it can be used.
  • the propagation pattern determination unit 207 determines the first arrangement pattern. Switch to the placement pattern.
  • the terminal apparatus 10 transmits the propagation path measurement reference signal from the antenna 103 using the frequency bands F1 to F5 and from the antenna 113 using the frequency bands F6 to F10. Therefore, in the base station apparatus 20 that has received them, the propagation path determination unit 207 can determine the propagation path to be used from a wider frequency band (F1 to F10).
  • the channel measurement reference signal is transmitted from a plurality of antennas to different continuous frequency bands and the channel characteristic of a specific antenna satisfies the certain quality Q1, the certain quality is reduced.
  • a channel measurement signal is transmitted from a plurality of antennas using the frequency band assigned to the antenna to be satisfied, and it is determined whether multiple inputs and multiple outputs can be used.
  • a program for realizing the functions of the information acquisition unit 206, the propagation path determination unit 207, the reception processing unit 208, and the transmission processing unit 209 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • DESCRIPTION OF SYMBOLS 10 ... Terminal device 100 ... RS production

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed is a wireless communication system equipped with a first wireless communication device, which transmits a signal using a multiplicity of continuous frequency bands that are not mutually continuous, and a second wireless communication device that receives the signal transmitted by the first wireless communication device. The first wireless communication device is equipped with a plurality of antennas and transmits by sequentially switching the antennas to arrange propagation path measurement reference signals in continuous frequency bands assigned to each antenna, and the second wireless communication device uses the propagation path measurement reference signals to measure the propagation path characteristics of the continuous frequency band assigned to the corresponding antenna for each antenna, and determines, based on said measurement results, the propagation path to be used by the first wireless communication device to transmit data from each of the antennas, whereby the propagation path measurement reference signals are transmitted so that the frequencies used can be efficiently determined.

Description

無線通信システム、無線通信方法、無線通信装置およびプログラムWireless communication system, wireless communication method, wireless communication apparatus, and program
 本発明は、無線通信システム、無線通信方法、無線通信装置およびプログラムに関する。
 本願は、2009年2月23日に、日本に出願された特願2009-039612号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wireless communication system, a wireless communication method, a wireless communication apparatus, and a program.
This application claims priority based on Japanese Patent Application No. 2009-039612 filed in Japan on February 23, 2009, the contents of which are incorporated herein by reference.
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution;長期進化)システムの標準化が収束し始め、最近ではLTEシステムをより発展させた第4世代の無線通信システムであるLTE-A(LTE-Advanced、IMT-Aなどとも称する)の標準化が開始された。 The standardization of LTE (Long Term Evolution), which is a wireless communication system for 3.9th generation mobile phones, has started to converge, and recently, LTE, which is a 4th generation wireless communication system that has further evolved the LTE system. -A (LTE-Advanced, IMT-A, etc.) standardization started.
 LTE-Aの上りリンクは、セルスループット(セル内の移動局の実効送信量の合計)を改善する為に、LTEで使用する帯域幅20MHzの周波数帯域より広い周波数帯域を使用することが検討されている。20MHzより広い帯域を使用する場合はLTEとの互換性を考慮し、LTEシステムで使用される20MHzの周波数帯域を複数使用することが提案されている。その為、20MHzを超える周波数帯域を確保する場合は、LTEシステムで使用される20MHzの周波数帯域には両端にPUCCH(Physical Uplink Control Channel;物理上りリンク制御チャネル)が存在することから、各移動局装置に割当てられ、上りリンクのデータの伝送に用いられる周波数帯域は、PUCCHで区切られた不連続な周波数帯域となる(例えば、非特許文献1、非特許文献2参照)。
 また、セルスループットの改善として、使用する周波数帯域を広げるだけでなく、LTEでは送信アンテナが1本であるのに対し、LTE-Aでは複数の送信アンテナを有する構成が検討されている。
In order to improve the cell throughput (the total effective transmission amount of mobile stations in the cell) in the LTE-A uplink, it is considered to use a frequency band wider than the frequency band of 20 MHz used in LTE. ing. In the case where a band wider than 20 MHz is used, it is proposed to use a plurality of 20 MHz frequency bands used in the LTE system in consideration of compatibility with LTE. Therefore, when a frequency band exceeding 20 MHz is secured, PUCCHs (Physical Uplink Control Channels) exist at both ends in the 20 MHz frequency band used in the LTE system. The frequency band assigned to the apparatus and used for uplink data transmission is a discontinuous frequency band divided by PUCCH (see, for example, Non-Patent Document 1 and Non-Patent Document 2).
Further, as an improvement in cell throughput, not only the frequency band to be used is widened, but LTE has a single transmission antenna, while LTE-A has been studied to have a plurality of transmission antennas.
 LTEシステムの上りリンクで、各移動局装置が使用する伝搬路(周波数)の決定は、伝搬路補償を行うための伝搬路推定にも用いられる参照信号であるDMRS(DeModulation Reference Signal;復調用参照信号)、もしくは、伝搬路特性測定に用いられるSRS(Sounding Reference Signal;伝搬路測定用参照信号)で測定した伝搬路特性の情報を基に行っている。これらの参照信号のうち、復調用参照信号は、移動局装置が伝送するデータを基地局装置において復調する際に用いられるので、伝送するデータが配置された領域のみに配置される。しかし、各移動局装置が使用する伝搬路(周波数)を決定するには、使用可能な周波数帯域全体、すなわちPUCCHを除いた周波数帯域全体の各伝搬路の伝搬路特性を取得する必要がある。LTEシステムでは、移動局装置が一度にあるいは複数回に分けて、伝搬路測定用参照信号をPUCCHを除いた周波数帯域全体にわたって配置することで、基地局装置において各伝搬路の伝搬路特性を取得可能としている。 In the uplink of the LTE system, the channel (frequency) used by each mobile station apparatus is determined by DMRS (DeModulation Reference Signal), which is a reference signal used for channel estimation for channel compensation. Signal) or information on propagation path characteristics measured by SRS (Sounding Reference Signal) used for propagation path characteristic measurement. Among these reference signals, the demodulation reference signal is used when demodulating the data transmitted by the mobile station apparatus in the base station apparatus, and is therefore disposed only in the region where the data to be transmitted is disposed. However, in order to determine a propagation path (frequency) used by each mobile station apparatus, it is necessary to acquire propagation path characteristics of each propagation path in the entire usable frequency band, that is, in the entire frequency band excluding PUCCH. In the LTE system, the mobile station apparatus divides the reference signal for channel measurement over the entire frequency band excluding the PUCCH at once or multiple times, thereby acquiring the channel characteristics of each channel in the base station apparatus. It is possible.
 しかしながら、複数の送信アンテナを有し、互いに不連続な複数の連続する周波数帯域を用いて通信するシステム、例えば、LTE-Aシステムにあっては、LTEシステムと同様にして、伝搬路測定用参照信号を、PUCCHを除いた周波数帯域全体にわたって配置しようとすると、移動局装置における送信電力の制限などのために同時に配置可能な周波数帯域幅が限られているため、複数の20MHzの周波数帯域(LTE-Aシステムにおける連続する周波数帯域)に伝搬路測定用参照信号を配置し終わるまでに長い時間を要してしまう。この間に伝搬路状況が変化してしまうなどの理由で、使用する伝搬路(周波数)の決定を効率的に行えないことがあるという問題がある。 However, in a system that has a plurality of transmission antennas and communicates using a plurality of continuous frequency bands that are discontinuous with each other, for example, in an LTE-A system, the reference for propagation path measurement is similar to the LTE system. If an attempt is made to arrange a signal over the entire frequency band excluding the PUCCH, the frequency band that can be simultaneously arranged is limited due to the limitation of the transmission power in the mobile station apparatus, etc. It takes a long time to finish arranging the reference signal for propagation path measurement in the continuous frequency band in the -A system). There is a problem that the propagation path (frequency) to be used cannot be determined efficiently because the propagation path condition changes during this time.
 本発明は、このような事情に鑑みてなされたもので、その目的は、複数の送信アンテナを有し、互いに不連続な複数の連続する周波数帯域を用いて通信する場合において、使用する伝搬路(周波数)の決定を効率的に行えるように伝搬路測定用参照信号を送信する無線通信システム、無線通信方法、無線通信装置およびプログラムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to use a propagation path that has a plurality of transmission antennas and uses a plurality of discontinuous frequency bands that are discontinuous with each other. An object of the present invention is to provide a wireless communication system, a wireless communication method, a wireless communication apparatus, and a program for transmitting a propagation path measurement reference signal so that (frequency) can be determined efficiently.
(1)この発明は上述した課題を解決するためになされたもので、本発明の無線通信システムは、複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する第1の無線通信装置と、前記第1の無線通信装置が送信した信号を受信する第2の無線通信装置とを具備する無線通信システムであって、 前記第1の無線通信装置は、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを備え、前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信し、前記第2の無線通信装置は、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記第1の無線通信装置による送信データの伝送に用いる伝搬路を決定することを特徴とする。 (1) The present invention has been made to solve the above-described problems, and the wireless communication system according to the present invention transmits a signal using a frequency band composed of a plurality of LTE system frequency bands. A wireless communication system comprising a wireless communication device and a second wireless communication device that receives a signal transmitted by the first wireless communication device, wherein each of the first wireless communication devices is the LTE system. A plurality of antennas to which any one of the frequency bands is assigned, sequentially switching the antennas, arranging and transmitting a reference signal for propagation path measurement, and the second wireless communication apparatus is configured to transmit the propagation path measurement Using the reference signal, for each of the antennas, the propagation path characteristic of the frequency band of the LTE system allocated to the antenna is measured, and based on the measurement result, the first And determining a channel to be used for transmission of the transmission data by the wireless communication device.
(2)また、本発明の無線通信システムは、上述の無線通信システムであって、前記第2の無線通信装置は、前記第1の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを決定し、制御情報として前記第1の無線通信装置に通知し、前記第1の無線通信装置は、前記制御情報で通知された前記LTEシステムの周波数帯域と送信タイミングとに従い、前記アンテナを順次切り替えて、伝搬路測定用参照信号を送信することを特徴とする。 (2) Further, the wireless communication system of the present invention is the above-described wireless communication system, wherein the second wireless communication apparatus is configured such that the first wireless communication apparatus refers to the propagation path measurement from each of the antennas. A frequency band and a transmission timing of the LTE system for transmitting a signal are determined and notified to the first wireless communication apparatus as control information, and the first wireless communication apparatus transmits the LTE notified by the control information. According to the frequency band of the system and the transmission timing, the antenna is sequentially switched to transmit a channel measurement reference signal.
(3)また、本発明の無線通信システムは、上述の無線通信システムであって、前記伝搬路測定用参照信号の送信タイミングは、前記第1の無線通信装置のアンテナのうち、送信データの伝送に優先して用いられるアンテナからの伝搬路測定用参照信号の送信が早く終えられる送信タイミングであることを特徴とする。 (3) Moreover, the radio | wireless communications system of this invention is the above-mentioned radio | wireless communications system, Comprising: The transmission timing of the said reference signal for propagation path measurement is transmission of transmission data among the antennas of a said 1st radio | wireless communication apparatus. It is a transmission timing at which transmission of the reference signal for propagation path measurement from the antenna used in preference to is completed early.
(4)また、本発明の無線通信システムは、上述の無線通信システムであって、前記第2の無線通信装置は、前記第1の無線通信装置のアンテナ各々に前記LTEシステムの周波数帯域のうちのいずれか1つが割当てられているときに、前記第1の無線通信装置のアンテナの中に伝搬路特性が予め設定された品質を超えていないアンテナがあると判定したときは、少なくとも該アンテナに割り当てられる前記LTEシステムの周波数帯域を変更することを特徴とする。 (4) Moreover, the radio | wireless communications system of this invention is the above-mentioned radio | wireless communications system, Comprising: The said 2nd radio | wireless communication apparatus carries out the frequency band of the said LTE system to each antenna of the said 1st radio | wireless communication apparatus. When it is determined that there is an antenna whose propagation path characteristics do not exceed a preset quality among the antennas of the first wireless communication device, at least the antenna The frequency band of the LTE system to be allocated is changed.
(5)また、本発明の無線通信システムは、上述の無線通信システムであって、前記第2の無線通信装置は、前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを決定する際に、前記第1の無線通信装置がMIMO伝送を行うときは、MIMO伝送に用いる複数のアンテナについて、前記伝搬路測定用参照信号を送信するLTEシステムの周波数帯域を同一の周波数帯域にすることを特徴とする。 (5) Moreover, the radio | wireless communications system of this invention is the above-mentioned radio | wireless communications system, Comprising: The said 2nd radio | wireless communication apparatus transmits the frequency band and transmission timing of the said LTE system which transmit the said reference signal for propagation path measurement. When the first wireless communication apparatus performs MIMO transmission, the frequency band of the LTE system that transmits the propagation path measurement reference signal is set to the same frequency for a plurality of antennas used for MIMO transmission. It is characterized by a band.
(6)また、本発明の無線通信装置は、複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する無線通信装置であって、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを備え、前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信することを特徴とする。 (6) In addition, the wireless communication device of the present invention is a wireless communication device that transmits a signal using a frequency band composed of a plurality of LTE system frequency bands, and each of the frequency bands of the LTE system. A plurality of antennas to which one of them is assigned, sequentially switching the antennas, and arranging and transmitting a reference signal for propagation path measurement.
(7)また、本発明の無線通信装置は、複数のアンテナを備える他の無線通信装置から、複数のLTEシステムの周波数帯域のうち各々の前記アンテナに割当てられたLTEシステムの周波数帯域で送信された伝搬路測定用参照信号を受信し、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記他の無線通信装置による送信データの伝送に用いる伝搬路を決定する無線通信装置であって、前記他の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを、前記アンテナを順次切り替えて伝搬路測定用参照信号を配置して送信するように決定し、制御情報として前記他の無線通信装置に通知することを特徴とする。 (7) In addition, the wireless communication device of the present invention is transmitted from another wireless communication device including a plurality of antennas in the frequency band of the LTE system allocated to each of the antennas among the frequency bands of the plurality of LTE systems. And measuring the propagation path characteristics of the frequency band of the LTE system assigned to the antenna for each of the antennas using the reference signal for propagation path measurement. A wireless communication device that determines a propagation path to be used for transmission of transmission data by the other wireless communication device based on a result, wherein the other wireless communication device transmits the propagation path measurement reference signal from each of the antennas. The frequency band and transmission timing of the LTE system are switched so that the antennas are sequentially switched and a reference signal for propagation path measurement is arranged and transmitted. Determined, and notifying the other radio communication device as the control information.
(8)また、本発明の無線通信方法は、複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する第1の無線通信装置と、前記第1の無線通信装置が送信した信号を受信する第2の無線通信装置とを具備する無線通信システムにおける無線通信方法であって、前記第1の無線通信装置が、自装置が備える複数のアンテナであって、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信する第1の過程と、前記第2の無線通信装置が、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記第1の無線通信装置による送信データの伝送に用いる伝搬路を決定する第2の過程とを有することを特徴とする。 (8) Moreover, the wireless communication method of the present invention includes a first wireless communication device that transmits a signal using a frequency band configured by a plurality of LTE system frequency bands, and the first wireless communication device transmits the signal. A wireless communication method in a wireless communication system including a second wireless communication device that receives a received signal, wherein the first wireless communication device includes a plurality of antennas included in the device, each of which includes the LTE. A first step of sequentially switching a plurality of antennas to which any one of the frequency bands of the system is allocated, and arranging and transmitting a reference signal for propagation path measurement; and the second wireless communication device includes the propagation path measurement For each of the antennas, the channel characteristics of the LTE system frequency band allocated to the antennas are measured using the reference signal for the first antenna, and the first And having a second process of determining a channel to be used for transmission of the transmission data by the line communication device.
(9)また、本発明のプログラムは、複数のアンテナを備え、複数のLTEシステムの周波数帯域を用いて信号を送信する無線通信装置のコンピュータを、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信する手段として機能させる。 (9) Further, the program of the present invention includes a plurality of antennas and a wireless communication apparatus that transmits signals using a plurality of LTE system frequency bands, each of which is one of the LTE system frequency bands. The antennas to which one is assigned are sequentially switched to function as means for arranging and transmitting a propagation path measurement reference signal.
(10)また、本発明のプログラムは、複数のアンテナを備える他の無線通信装置から、複数のLTEシステムの周波数帯域のうち各々の前記アンテナに割当てられたLTEシステムの周波数帯域で送信された伝搬路測定用参照信号を受信し、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記他の無線通信装置による送信データの伝送に用いる伝搬路を決定する無線通信装置のコンピュータを、前記他の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを、前記アンテナを順次切り替えて伝搬路測定用参照信号を配置して送信するように決定し、制御情報として前記他の無線通信装置に通知する手段として機能させる。 (10) Further, the program of the present invention is a propagation transmitted from another radio communication apparatus having a plurality of antennas in the frequency band of the LTE system allocated to each of the antennas among the frequency bands of the plurality of LTE systems. A path measurement reference signal is received, and the propagation path characteristic of the frequency band of the LTE system allocated to the antenna is measured for each of the antennas using the propagation path measurement reference signal. A wireless communication device that determines a propagation path to be used for transmission of transmission data by the other wireless communication device, and the other wireless communication device transmits the propagation path measurement reference signal from each of the antennas. The LTE system frequency band and transmission timing are switched by sequentially switching the antenna and transmitting a channel measurement reference signal for transmission. Determined to so that, to function as a means for notifying the other radio communication device as the control information.
 この発明によれば、複数の送信アンテナを有し、互いに不連続な複数の連続する周波数帯域を用いて通信する場合においても、使用する周波数の決定を効率的に行える。 According to the present invention, the frequency to be used can be determined efficiently even in the case where communication is performed using a plurality of discontinuous frequency bands having a plurality of transmission antennas.
この発明の一実施形態による端末装置10の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the terminal device 10 by one Embodiment of this invention. 同実施形態における送信処理部101の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the transmission process part 101 in the embodiment. 同実施形態における基地局装置20の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the base station apparatus 20 in the same embodiment. 同実施形態における伝搬路測定用参照信号の第1の配置パターンを示す図である。It is a figure which shows the 1st arrangement pattern of the reference signal for propagation path measurement in the embodiment. 同実施形態における伝搬路測定用参照信号の第2の配置パターンを示す図である。It is a figure which shows the 2nd arrangement pattern of the reference signal for propagation path measurement in the embodiment. 同実施形態における第1の配置パターンと第3の配置パターンの切り替えを説明する図である。It is a figure explaining switching of the 1st arrangement pattern and the 3rd arrangement pattern in the embodiment. 同実施形態における第1の配置パターンと第3の配置パターンの切り替えを説明する別の図である。It is another figure explaining switching of the 1st arrangement pattern and the 3rd arrangement pattern in the embodiment. 同実施形態における伝搬路測定用参照信号の第3の配置パターンを示す図である。It is a figure which shows the 3rd arrangement pattern of the reference signal for propagation path measurement in the embodiment.
 以下、図面を参照して、本発明の実施の形態について説明する。以下の実施形態における無線通信システムは、端末装置(第1の無線通信装置とも称する)10と基地局装置(第2の無線通信装置とも称する)20とを有する。また、以下の実施形態では、端末装置10の備えるアンテナが2本であり、端末装置10から基地局装置20へのデータの伝送に使用可能な周波数帯域が、互いに不連続な2つの連続する周波数帯域からなる場合について例を示す。以下の実施形態において、上述の互いに不連続な2つの連続する周波数帯域は、各々の周波数帯域の両端に制御チャネル用の周波数帯域が配置された2つの20MHzの周波数帯域である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The wireless communication system in the following embodiments includes a terminal device (also referred to as a first wireless communication device) 10 and a base station device (also referred to as a second wireless communication device) 20. Further, in the following embodiment, the terminal device 10 has two antennas, and the frequency bands that can be used for data transmission from the terminal device 10 to the base station device 20 are two consecutive frequencies that are discontinuous with each other. An example is shown for the case of bands. In the following embodiment, the two consecutive frequency bands that are discontinuous with each other are two 20 MHz frequency bands in which the frequency band for the control channel is arranged at both ends of each frequency band.
 具体的には、帯域幅40MHzの周波数帯域を、帯域幅20MHzずつの2つの周波数帯域に分割し、各々の周波数帯域の両端が制御チャネル用の周波数帯域となっているため、端末装置10から基地局装置20へのデータの伝送に使用可能な周波数帯域が互いに不連続な2つの周波数帯域となっている。ただし、この例に限らず、端末装置10が送信に用いるアンテナの本数が複数であることと、データの伝送に使用可能な連続する周波数帯域の数が複数であることという2つの条件を満たしている無線通信システムであれば、本発明を適用可能である。また、端末装置10が送信に用いるアンテナの本数がデータの伝送に使用可能な連続する周波数帯域の数よりも小さい、あるいは、同一であることが好ましい。 Specifically, the frequency band with a bandwidth of 40 MHz is divided into two frequency bands each with a bandwidth of 20 MHz, and both ends of each frequency band are frequency bands for the control channel. The frequency bands that can be used for data transmission to the station apparatus 20 are two frequency bands that are discontinuous with each other. However, the present invention is not limited to this example, and satisfies the two conditions that the terminal device 10 has a plurality of antennas used for transmission and a plurality of continuous frequency bands that can be used for data transmission. The present invention is applicable to any wireless communication system. Moreover, it is preferable that the number of antennas used for transmission by the terminal device 10 is smaller than or equal to the number of continuous frequency bands that can be used for data transmission.
 図1は、端末装置10の構成を示す概略ブロック図である。端末装置10は、RS生成部100、マッピング部110、送信処理部101、無線部102、アンテナ103、送信処理部111、無線部112、アンテナ113、無線部120、受信処理部121、配置指示部122を具備する。 FIG. 1 is a schematic block diagram showing the configuration of the terminal device 10. The terminal device 10 includes an RS generation unit 100, a mapping unit 110, a transmission processing unit 101, a radio unit 102, an antenna 103, a transmission processing unit 111, a radio unit 112, an antenna 113, a radio unit 120, a reception processing unit 121, and an arrangement instruction unit. 122.
 RS生成部100は、予め設定された、あるいは、基地局装置20から通知された伝搬路測定用参照信号の符号長であるRSデータ長の情報を基に伝搬路測定用参照信号を生成する。なお、RS生成部100による伝搬路測定用参照信号の生成方法は、予め決められた演算によって生成するようにしてもよいし、各RSデータ長の伝搬路測定用参照信号を記憶しておき、入力されたRSデータ長に応じた伝搬路測定用参照信号を出力するようにしてもよい。また、伝搬路測定用参照信号は、端末装置10がデータ伝送に使用する帯域を基地局装置20にて決定する為に、上りリンクの信号対雑音比(SNR;Signal to Noise Power Ratio)、信号対干渉雑音電力比(SNIR;Signal to Interference plus Noise power Ratio)などの上りリンクの伝搬路特性の測定に基地局装置20が用いる信号である。 The RS generation unit 100 generates a propagation path measurement reference signal based on the RS data length information that is set in advance or notified from the base station apparatus 20 and is the code length of the propagation path measurement reference signal. The RS generation unit 100 may generate a propagation path measurement reference signal by a predetermined calculation, or store a propagation path measurement reference signal of each RS data length, You may make it output the reference signal for propagation path measurement according to the input RS data length. Further, the reference signal for propagation path measurement uses an uplink signal-to-noise ratio (SNR), a signal, in order for the base station apparatus 20 to determine a band used by the terminal apparatus 10 for data transmission. This is a signal used by the base station apparatus 20 for measurement of uplink propagation path characteristics such as a signal-to-interference noise power ratio (SNIR; SignalSigntoInterference plus Noise power Ratio).
 マッピング部110(配置部とも称する)は、配置指示部122による送信データの信号および伝搬路測定用参照信号を配置するアンテナと伝搬路(周波数)の指示に従い、外部から入力された送信データから生成した送信データの信号と、RS生成部100から入力された伝搬路測定用参照信号とを、該当する周波数に配置し、該当するアンテナ用の送信処理部101、111に出力する。ここで、送信データの信号は、例えば、送信データをOFDMA(Orthogonal Frequency Division Multiple Access;直交周波数分割多元接続)方式で送信する場合は、送信データのビットを、誤り訂正符号化した後、QPSK(Quadrature Phase Shift Keying;四相位相偏移変調)、16QAM(16 Quadrature Amplitude Modulation;16直交振幅変調)などの変調方式で変調した変調シンボルと、復調用参照信号とからなる信号である。また、送信データをDFT-S-OFDM(Discrete Fourier Transform-Spread-OFDM;離散フーリエ変換拡散OFDM)方式で送信する場合は、送信データの信号は、送信データのビットを、誤り訂正符号化した後、QPSK、16QAMなどの変調方式で変調した変調シンボルを時間方向に複数連結した後、フーリエ変換した離散スペクトルと、復調用参照信号とからなる信号である。 A mapping unit 110 (also referred to as an arrangement unit) is generated from transmission data input from the outside in accordance with an instruction of an antenna and a propagation path (frequency) where a transmission data signal and a propagation path measurement reference signal are arranged by the arrangement instruction unit 122 The transmission data signal and the propagation path measurement reference signal input from the RS generation unit 100 are arranged at a corresponding frequency and output to the transmission processing units 101 and 111 for the corresponding antenna. Here, the transmission data signal is, for example, when the transmission data is transmitted by an OFDMA (Orthogonal Frequency 誤 り Division Multiple Access) system, the bits of the transmission data are error-correction-encoded and then QPSK ( This is a signal composed of a modulation symbol modulated by a modulation method such as Quadrature Phase Shift Keying; 16QAM (16 Quadrature Amplitude Modulation) and a demodulation reference signal. In addition, when transmission data is transmitted by DFT-S-OFDM (Discrete-Fourier-Transform-Spread-OFDM), the transmission data signal is obtained by error-correcting the bits of the transmission data. , QPSK, 16QAM, etc., a signal composed of a discrete spectrum obtained by concatenating a plurality of modulation symbols in the time direction and Fourier-transformed and a demodulation reference signal.
 送信処理部101は、入力された伝搬路測定用参照信号と送信データの信号とを、送信信号に変換する。無線部102は、送信処理部101から受けた送信信号を、無線周波数にアップコンバートし、アンテナ103から無線送信する。送信処理部111も、送信処理部101と同様に、入力された伝搬路測定用参照信号と送信データの信号とを、送信信号に変換する。無線部112は、送信処理部111から受けた送信信号を、無線周波数にアップコンバートし、アンテナ113から無線送信する。 The transmission processing unit 101 converts the input propagation path measurement reference signal and the transmission data signal into a transmission signal. The radio unit 102 up-converts the transmission signal received from the transmission processing unit 101 to a radio frequency and transmits the radio signal from the antenna 103. Similarly to the transmission processing unit 101, the transmission processing unit 111 converts the input channel measurement reference signal and the transmission data signal into a transmission signal. The radio unit 112 up-converts the transmission signal received from the transmission processing unit 111 to a radio frequency and transmits the radio signal from the antenna 113.
 なお、送信処理部101と、無線部102とで、1つの送信部、送信処理部111と、無線部112とで、もう1つの送信部として機能する。また、これらの送信部は、各々の無線部111、112が有する水晶発振子を有する可変周波数発振器の発振周波数を、当該無線部に接続されているアンテナに割当てられた連続する周波数帯域の中心周波数に設定することで、発振周波数を中心周波数とし、帯域幅が20MHzの連続する周波数帯域を対象として動作する。アンテナ103は、アンテナ#1のアンテナである。アンテナ113は、アンテナ#2のアンテナである。 The transmission processing unit 101 and the wireless unit 102 function as one transmission unit, and the transmission processing unit 111 and the wireless unit 112 function as another transmission unit. Also, these transmitters use the center frequency of the continuous frequency band assigned to the antenna connected to the radio unit, as the oscillation frequency of the variable frequency oscillator having the crystal oscillator included in each radio unit 111, 112. By setting to, the oscillation frequency is set as the center frequency, and the operation is performed for a continuous frequency band having a bandwidth of 20 MHz. Antenna 103 is the antenna of antenna # 1. Antenna 113 is the antenna of antenna # 2.
 無線部120は、アンテナ113を介して基地局装置20から送信された信号を受信し、該信号をベースバンド周波数にダウンコンバートした受信信号を受信処理部121に出力する。受信処理部121は、受信信号から受信データと制御情報とを検出し、受信データは外部に出力し、制御情報は配置指示部122に出力する。配置指示部122は、受信処理部121が検出した制御情報から、伝搬路測定用参照信号を配置する周波数とアンテナとの組み合わせを示す配置パターン情報と、送信データの信号を配置する周波数とアンテナとの組み合わせを示す情報とを抽出し、これらの情報に従い、伝搬路測定用参照信号並びに送信データを配置する周波数とアンテナとの組み合わせをマッピング部110に指示する。 Radio section 120 receives a signal transmitted from base station apparatus 20 via antenna 113, and outputs a reception signal obtained by down-converting the signal to a baseband frequency to reception processing section 121. The reception processing unit 121 detects reception data and control information from the reception signal, outputs the reception data to the outside, and outputs control information to the arrangement instruction unit 122. Arrangement instructing unit 122, from the control information detected by reception processing unit 121, arrangement pattern information indicating the combination of the frequency and antenna for arranging the reference signal for propagation path measurement, the frequency and antenna for arranging the signal of the transmission data, The information indicating the combination of the two is extracted, and in accordance with the information, the mapping unit 110 is instructed on the combination of the frequency and the antenna where the reference signal for propagation path measurement and the transmission data are arranged.
 図2は、送信処理部101の構成を示す概略ブロック図である。送信処理部101は、IFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)部1003、CP(Cyclic Prefix;サイクリックプレフィックス)挿入部1004を具備する。送信処理部111は、マッピング部110から入力される信号がアンテナ113用の信号であることと、生成した送信信号を無線部112に出力する以外は、送信処理部101と同一の構成なので、説明を省略する。 FIG. 2 is a schematic block diagram showing the configuration of the transmission processing unit 101. The transmission processing unit 101 includes an IFFT (Inverse / Fast / Fourier / Transform) unit 1003 and a CP (Cyclic / Prefix) insertion unit 1004. The transmission processing unit 111 has the same configuration as the transmission processing unit 101 except that the signal input from the mapping unit 110 is a signal for the antenna 113 and outputs the generated transmission signal to the radio unit 112. Is omitted.
 IFFT部1003は、各サブキャリアに配置された伝搬路推定用参照信号および送信データの信号をマッピング部110から入力され、入力されたこれらの信号を逆高速フーリエ変換して、時間信号を生成する。CP挿入部1004は、IFFT部1003が生成した時間信号にサイクリックプレフィックスを挿入し、送信信号として無線部102へ出力する。 IFFT section 1003 receives propagation path estimation reference signals and transmission data signals arranged in each subcarrier from mapping section 110, and performs inverse fast Fourier transform on these input signals to generate a time signal. . CP insertion section 1004 inserts a cyclic prefix into the time signal generated by IFFT section 1003 and outputs the result as a transmission signal to radio section 102.
 図3は、基地局装置20の構成を示す概略ブロック図である。基地局装置20は、アンテナ#1のアンテナ201に関して、無線部202、CP除去部203、FFT部204、RS抽出部205、伝搬路情報取得部206、送信処理部209、無線部210を具備し、アンテナ#2のアンテナ221に関しても同様に、無線部202、CP除去部203、FFT部204、RS抽出部205、伝搬路情報取得部206、送信処理部209、無線部210を具備し、さらに、伝搬路決定部207、MIMO分離部211、各々が送信側の各アンテナに対応する複数の受信処理部208を具備する。 FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 20. The base station apparatus 20 includes a radio unit 202, a CP removal unit 203, an FFT unit 204, an RS extraction unit 205, a propagation path information acquisition unit 206, a transmission processing unit 209, and a radio unit 210 for the antenna 201 of the antenna # 1. Similarly, the antenna 221 of the antenna # 2 includes a radio unit 202, a CP removal unit 203, an FFT unit 204, an RS extraction unit 205, a propagation path information acquisition unit 206, a transmission processing unit 209, and a radio unit 210. , A propagation path determination unit 207, a MIMO separation unit 211, and a plurality of reception processing units 208 each corresponding to each antenna on the transmission side.
 無線部202は、帯域幅40MHzの周波数帯域(システム帯域)を対象として、アンテナ201または221のうち接続されているアンテナを介して端末装置10から送信された信号を受信し、該信号をベースバンド周波数にダウンコンバートした受信信号を出力する。CP除去部203は、無線部202が出力した受信信号からサイクリックプレフィックスを除去し、FFT区間毎に受信信号を分割する。FFT部204は、FFT区間に分割された受信信号をフーリエ変換して、周波数信号に変換する。 The radio unit 202 receives a signal transmitted from the terminal apparatus 10 via a connected antenna of the antenna 201 or 221 for a frequency band (system band) having a bandwidth of 40 MHz, and transmits the signal to the baseband. Output the received signal down-converted to frequency. CP removing section 203 removes the cyclic prefix from the received signal output from radio section 202 and divides the received signal for each FFT interval. The FFT unit 204 performs Fourier transform on the received signal divided into FFT sections to convert it into a frequency signal.
 RS抽出部205は、伝搬路決定部207から入力された制御情報に含まれる情報であって、伝搬路測定用参照信号の伝搬路への配置パターンを示す情報を基に、周波数信号から伝搬路測定用参照信号を抽出する。なお、配置パターンを示す情報の詳細については、後述する。伝搬路情報取得部206(伝搬路特性測定部とも称する)は、抽出された伝搬路測定用参照信号と、既知の伝搬路測定用参照信号(RS)とを比較し、端末装置10のアンテナ103または113からの各サブキャリアの伝搬路の情報を得る。ここで、伝搬路の情報とは、信号対雑音比(SNR;Signal to Noise Power Ratio)、あるいは、信号対干渉雑音電力比(SNIR;Signal to Interference plus Noise power Ratio)などの伝搬路特性である。 The RS extraction unit 205 is the information included in the control information input from the propagation path determination unit 207 and is based on the information indicating the arrangement pattern of the propagation path measurement reference signal on the propagation path from the frequency signal to the propagation path. Extract a reference signal for measurement. Details of the information indicating the arrangement pattern will be described later. The propagation path information acquisition unit 206 (also referred to as a propagation path characteristic measurement unit) compares the extracted propagation path measurement reference signal with a known propagation path measurement reference signal (RS), and the antenna 103 of the terminal device 10. Alternatively, information on the propagation path of each subcarrier from 113 is obtained. Here, the propagation path information is a propagation path characteristic such as a signal-to-noise ratio (SNR), a signal-to-interference noise power ratio (SNIR), or a signal-to-interference-plus-noise-power ratio. .
 伝搬路決定部207は、アンテナ201、アンテナ221で受信された受信信号中の伝搬路測定用参照信号より伝搬路情報取得部206の各々が取得した伝搬路の情報に基づき、送信元のアンテナと周波数とにより決まる伝搬路であって、端末装置10による送信データの伝送に用いる伝搬路を決定し、決定した伝搬路を示す伝搬路割当情報を生成する。ここで、伝搬路とは、送信元となる端末装置10のアンテナと、周波数、具体的には一例としてサブキャリアとにより決まるものである。また、伝搬路決定部207は、伝搬路の情報に基づき、端末装置10が伝搬路測定用参照信号を配置する伝搬路のパターンを決定し、決定したパターンを指示する配置パターン情報を生成する。伝搬路決定部207は、生成した伝搬路割当情報と配置パターン情報とを含む制御情報を生成し、出力する。なお、伝搬路決定部207は、複数の配置パターン情報を予め記憶しており、これら記憶している配置パターン情報の各々が示す配置パターンの中から選択することで、伝搬路測定用参照信号を配置する伝搬路のパターンを決定する。 The propagation path determination unit 207 is based on the propagation path information acquired by each of the propagation path information acquisition units 206 from the reference signal for propagation path measurement in the reception signals received by the antenna 201 and the antenna 221 and the transmission source antenna. A propagation path determined by the frequency, which is used for transmission of transmission data by the terminal device 10, is determined, and propagation path allocation information indicating the determined propagation path is generated. Here, the propagation path is determined by the antenna of the terminal device 10 serving as a transmission source and the frequency, specifically, a subcarrier as an example. Also, the propagation path determination unit 207 determines a propagation path pattern in which the terminal apparatus 10 arranges the propagation path measurement reference signal based on the propagation path information, and generates arrangement pattern information indicating the determined pattern. The propagation path determination unit 207 generates and outputs control information including the generated propagation path allocation information and arrangement pattern information. The propagation path determination unit 207 stores a plurality of pieces of arrangement pattern information in advance, and selects a propagation path measurement reference signal by selecting from among the arrangement patterns indicated by each of the stored arrangement pattern information. The pattern of the propagation path to be arranged is determined.
 MIMO分離部211は、FFT部204の各々が生成した周波数信号を、送信元のアンテナ毎の信号に分離し、各々の該信号から受信データの信号を抽出する。なお、MIMO分離部211は、伝搬路決定部207から入力された制御情報に含まれる伝搬路情報に基づき、受信データの信号が配置された伝搬路(サブキャリア)を判定し、該伝搬路の周波数信号を抽出することで、周波数信号から受信データの信号を抽出する。また、MIMO分離部211は、公知の多入力多出力(MIMO;Multi Input Multi Output)を行っていないときは、FFT部204のいずれかが生成した周波数信号から受信データの信号を抽出してもよいし、複数のFFT部204が生成した周波数信号を合成し、該合成した信号から受信データの信号を抽出してもよい。受信処理部208の各々は対応する送信元アンテナの受信データの信号をMIMO分離部211から受けて、復調、復号して得た受信データを外部に出力する。 The MIMO separation unit 211 separates the frequency signal generated by each of the FFT units 204 into a signal for each antenna of the transmission source, and extracts a received data signal from each of the signals. The MIMO separation unit 211 determines a propagation path (subcarrier) in which a signal of received data is arranged based on propagation path information included in the control information input from the propagation path determination unit 207, and determines the propagation path By extracting the frequency signal, the received data signal is extracted from the frequency signal. Further, when the known multi-input multi-output (MIMO) is not performed, the MIMO separation unit 211 can extract the received data signal from the frequency signal generated by any of the FFT units 204. Alternatively, the frequency signals generated by the plurality of FFT units 204 may be combined, and the received data signal may be extracted from the combined signals. Each of the reception processing units 208 receives a reception data signal of a corresponding transmission source antenna from the MIMO separation unit 211, and outputs the reception data obtained by demodulation and decoding to the outside.
 送信処理部209は、伝搬路決定部207が生成した制御情報と、外部から入力された送信データとを送信する送信信号を生成する。無線部210は、送信処理部209が生成した送信信号を、無線周波数にアップコンバートし、アンテナ201を介して端末装置10に送信する。 The transmission processing unit 209 generates a transmission signal that transmits the control information generated by the propagation path determination unit 207 and transmission data input from the outside. The radio unit 210 up-converts the transmission signal generated by the transmission processing unit 209 to a radio frequency and transmits the radio signal to the terminal device 10 via the antenna 201.
[第1の配置パターン]
 次に、アンテナを順次切り替えて、各アンテナに割り当てられた連続する周波数帯域に、該アンテナから伝搬路測定用参照信号を送信する第1の配置パターンについて説明する。図4は、本実施形態における伝搬路測定用参照信号の第1の配置パターンを示す図である。図4が例示するような第1の配置パターンを、端末装置10に適用することを、基地局装置20の伝搬路決定部207が決定し、基地局装置20は、この決定した第1の配置パターンを示す配置パターン情報を制御情報に含めて端末装置10に送信する。端末装置10では、受信処理部121が、基地局装置20から受信した信号から、制御情報を検出する。次に、配置指示部122が、制御情報に含まれる配置パターン情報が示す配置パターン、すなわち図4が例示するような配置パターンに従い伝搬路測定用参照信号を配置するように、マッピング部110を制御する。
[First arrangement pattern]
Next, a description will be given of a first arrangement pattern in which antennas are sequentially switched and a propagation path measurement reference signal is transmitted from the antennas to continuous frequency bands assigned to the antennas. FIG. 4 is a diagram showing a first arrangement pattern of propagation path measurement reference signals in the present embodiment. The propagation path determination unit 207 of the base station apparatus 20 determines that the first arrangement pattern as illustrated in FIG. 4 is applied to the terminal apparatus 10, and the base station apparatus 20 determines the determined first arrangement. Arrangement pattern information indicating a pattern is included in the control information and transmitted to the terminal device 10. In the terminal device 10, the reception processing unit 121 detects control information from the signal received from the base station device 20. Next, the arrangement instructing unit 122 controls the mapping unit 110 to arrange the reference signal for channel measurement according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. To do.
 図4において、縦軸は周波数、横軸は時間を表す。また、符号F1~F10はシステム帯域内の送信データのデータ伝送に使用可能な周波数帯域、すなわち割当可能な周波数帯域を示す。符号C1は、割当不可能な周波数帯域を示す。符号T1~T10は、予め決められた長さの時間帯からなる無線フレームである。なお、本実施形態では、符号T1~T10は、無線フレームであるとして説明したが、予め決められた長さの時間帯であればよく、2無線フレームや、3無線フレームであってもよい。ここで、周波数帯域F1~F5は、両端に制御チャネル用の周波数帯域が配置された20MHzの周波数帯域のうち、送信データのデータ伝送に使用可能な連続する周波数帯域である。また、周波数帯域F6~F10も、両端に制御チャネル用の周波数帯域が配置された20MHzの周波数帯域のうち、送信データのデータ伝送に使用可能な連続する周波数帯域である。周波数帯域F1~F5と周波数帯域F6~F10との間にある周波数帯域C1は、制御チャネル用の周波数帯域、すなわち端末装置10から基地局装置20へのデータの伝送に使用できない周波数帯域である。 In FIG. 4, the vertical axis represents frequency and the horizontal axis represents time. Reference numerals F1 to F10 denote frequency bands that can be used for data transmission of transmission data within the system band, that is, frequency bands that can be allocated. The code C1 indicates a frequency band that cannot be assigned. Reference numerals T1 to T10 are radio frames each having a predetermined time period. In the present embodiment, the codes T1 to T10 have been described as being radio frames, but may be a time zone having a predetermined length, and may be two radio frames or three radio frames. Here, the frequency bands F1 to F5 are continuous frequency bands that can be used for data transmission of transmission data out of the 20 MHz frequency band in which the frequency band for the control channel is arranged at both ends. The frequency bands F6 to F10 are also continuous frequency bands that can be used for data transmission of transmission data, among the 20 MHz frequency bands in which the frequency band for the control channel is arranged at both ends. The frequency band C1 between the frequency bands F1 to F5 and the frequency bands F6 to F10 is a frequency band for the control channel, that is, a frequency band that cannot be used for data transmission from the terminal apparatus 10 to the base station apparatus 20.
 このため、周波数帯域F1~F5と周波数帯域F6~F10とは不連続、すなわち互いに不連続な2つの連続する周波数帯域である。
 また、端末装置10の無線部102、112がアンテナ103、113を介して送信する信号の帯域幅は、それぞれ20MHzである。このため、端末装置10は、周波数帯域F1~F5と周波数帯域F6~F10とを合わせた周波数帯域全体に対して、アンテナ103、113のうちのいずれか1つのアンテナのみから、周波数帯域F1~F5と周波数帯域F6~F10のいずれかの周波数帯域を用いた送信が可能である。
Therefore, the frequency bands F1 to F5 and the frequency bands F6 to F10 are discontinuous, that is, two continuous frequency bands that are discontinuous with each other.
Further, the bandwidths of signals transmitted from the radio units 102 and 112 of the terminal device 10 via the antennas 103 and 113 are 20 MHz, respectively. Therefore, the terminal device 10 uses only one of the antennas 103 and 113 with respect to the entire frequency band including the frequency bands F1 to F5 and the frequency bands F6 to F10, and the frequency bands F1 to F5. And transmission using any one of the frequency bands F6 to F10 is possible.
 第1の配置パターンでは、伝搬路測定用参照信号を送信する際に、アンテナ#1のアンテナ103、アンテナ#2のアンテナ113に、それぞれ異なる連続する周波数帯域F1~F5、F6~F10が割当てられ、時間T1~T10の間、これらのアンテナを順次切り替えて、伝搬路測定用参照信号を、各アンテナに割当てられた連続する周波数帯域に、伝搬路測定用参照信号を配置して送信する。 In the first arrangement pattern, when transmitting a channel measurement reference signal, different continuous frequency bands F1 to F5 and F6 to F10 are assigned to the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2. These antennas are sequentially switched during times T1 to T10, and the propagation path measurement reference signal is transmitted in the continuous frequency band assigned to each antenna.
 具体的には、図4に示すように、まず、端末装置10は、アンテナ#1のアンテナ103から、時間帯T1に周波数帯域F2を使用して、伝搬路測定用参照信号(アンテナ#1のRS信号)を送信する。なお、本実施形態において、時間帯T1などの時間帯に伝搬路測定用参照信号を送信するとは、当該時間帯全体にわたって伝搬路測定用参照信号を配置して送信するようにしてもよいし、当該時間帯の末尾など、予め決められた一部の時間帯に伝搬路測定用参照信号を配置して送信するようにしてもよい。また、周波数帯域F2などの周波数帯域を使用して、伝搬路測定用参照信号を送信するとは、当該周波数帯域を構成する全てのサブキャリアに伝搬路測定用参照信号を配置して送信するようにしてもよいし、1サブキャリアおきなど、当該周波数帯域を構成するサブキャリアの予め決められた一部に伝搬路測定用参照信号を配置して送信するようにしてもよい。 Specifically, as illustrated in FIG. 4, first, the terminal apparatus 10 uses the frequency band F2 in the time zone T1 from the antenna 103 of the antenna # 1, and uses the frequency band F2 for the channel measurement reference signal (of the antenna # 1). RS signal). In the present embodiment, transmitting the propagation path measurement reference signal in a time zone such as the time zone T1 may be performed by arranging the transmission path measurement reference signal over the entire time zone. The reference signal for channel measurement may be arranged and transmitted in a predetermined time zone such as the end of the time zone. In addition, transmitting a channel measurement reference signal using a frequency band such as frequency band F2 means that the channel measurement reference signal is arranged and transmitted on all subcarriers constituting the frequency band. Alternatively, a propagation path measurement reference signal may be arranged and transmitted on a predetermined part of the subcarriers constituting the frequency band, such as every other subcarrier.
 次に、アンテナ#2のアンテナ113から、時間帯T2に周波数帯域F7を使用して、伝搬路測定用参照信号(アンテナ#2のRS信号)を送信する。次に、時間帯T3にアンテナ#1のアンテナ103から周波数帯域F4を使用して、さらに時間帯T4にアンテナ#2のアンテナ113から周波数帯域F9を使用して、伝搬路測定用参照信号を送信する。その後も同様に交互に時間帯T5にアンテナ#1のアンテナ103から周波数帯域F1、時間帯T6にアンテナ#2のアンテナ113から周波数帯域F6、時間帯T7にアンテナ#1のアンテナ103から周波数帯域F5、時間帯T8にアンテナ#2のアンテナ113から周波数帯域F10、時間帯T9にアンテナ#1のアンテナ103から周波数帯域F3、時間帯T10にアンテナ#2のアンテナ113から周波数帯域F8の順に伝搬路測定用参照信号を送信する。 Next, the channel 113 reference signal (the RS signal of the antenna # 2) is transmitted from the antenna 113 of the antenna # 2 using the frequency band F7 in the time zone T2. Next, the reference signal for channel measurement is transmitted using the frequency band F4 from the antenna 103 of the antenna # 1 in the time zone T3 and further using the frequency band F9 from the antenna 113 of the antenna # 2 in the time zone T4. To do. Thereafter, in the same manner, the frequency band F1 from the antenna 103 of the antenna # 1 alternately in the time zone T5, the frequency band F6 from the antenna 113 of the antenna # 2 in the time zone T6, and the frequency band F5 from the antenna 103 of the antenna # 1 in the time zone T7. In the time band T8, the propagation path measurement is performed in the order of the frequency band F10 from the antenna 113 of the antenna # 2, the time band T9 from the antenna 103 of the antenna # 1 to the frequency band F3, and the time band T10 in order from the antenna 113 of the antenna # 2 to the frequency band F8. A reference signal is transmitted.
 端末装置10の各アンテナ103、113から使用可能な連続する帯域を用いた伝搬路測定用参照信号の送信が時間帯T1~T10で行われると、基地局装置20は、伝搬路測定用参照信号を受信した周波数帯域の中から、どの周波数を用いて各アンテナ103、113からデータ伝送を行うかを決定する。このように、第1の配置パターンを用いることで、アンテナ#1とアンテナ#2の各々のアンテナから周波数帯域F1~F5とF6~F10の各々を用いて伝搬路測定用参照信号を順次送信した後に伝搬路を決定した場合と比べ、伝搬路推定用参照信号の送信開始から伝搬路を決定するまでの時間を半分の時間にすることができる。 When transmission path measurement reference signals using continuous bands that can be used from the antennas 103 and 113 of the terminal apparatus 10 are transmitted in the time zones T1 to T10, the base station apparatus 20 transmits the propagation path measurement reference signals. From which frequency band is received, it is determined which frequency is used to transmit data from the antennas 103 and 113. In this way, by using the first arrangement pattern, the propagation path measurement reference signals are sequentially transmitted from the antennas # 1 and # 2 using the frequency bands F1 to F5 and F6 to F10, respectively. Compared to the case where the propagation path is determined later, the time from the start of transmission of the propagation path estimation reference signal to the determination of the propagation path can be halved.
 本実施形態において、配置パターン情報は、例えば、端末装置10毎の情報であり、第1の配置パターンを示す配置パターン情報であれば、図4に示す配置パターンを示す識別番号である。配置指示部122は、この配置パターンを示す識別番号(配置パターン情報)と、各時間帯について伝搬路測定用参照信号を配置する周波数を表す情報とアンテナを表す情報との組み合わせからなる配置パターンの情報とを対応付けて記憶しており、制御情報から抽出した配置パターン情報に対応付けて記憶している配置パターンの情報に従い、伝搬路測定用参照信号を配置する周波数とアンテナとの組み合わせをマッピング部110に指示する。 In the present embodiment, the arrangement pattern information is, for example, information for each terminal device 10, and is an identification number indicating the arrangement pattern shown in FIG. 4 if the arrangement pattern information indicates the first arrangement pattern. The arrangement instructing unit 122 has an arrangement pattern composed of a combination of an identification number (arrangement pattern information) indicating the arrangement pattern, information indicating the frequency at which the channel measurement reference signal is arranged for each time zone, and information indicating the antenna. The information is stored in association with each other, and the combination of the frequency and antenna for allocating the reference signal for propagation path measurement is mapped according to the information on the arrangement pattern stored in association with the arrangement pattern information extracted from the control information. To the unit 110.
 また、配置パターン情報は、例えば、端末装置10のアンテナ毎の情報であり、アンテナ番号と、割当可能な連続する周波数帯域(図4のアンテナ#1では周波数帯域F1~F5を合わせた周波数帯域)を示す情報と、伝搬路測定用参照信号を配置する位置の周波数方向の遷移パターン(図4のアンテナ#1では、割当可能な周波数帯域のうち周波数が大きい方から2番目(周波数帯域F2)の位置に配置したのちに4番目(周波数帯域F4)、1番目(周波数帯域F1)、5番目(周波数帯域F5)、3番目(周波数帯域F3)の順に配置)を識別する情報と、各配置の間の時間を示す情報(図4では、2無線フレームに1回)と、配置を開始する時間帯を示す情報(図4のアンテナ#1は時間帯T1、アンテナ#2は時間帯T2)とからなる情報であってもよいし、これらのうちの一部の情報からなる情報であってもよい。配置パターン情報は、例えば、時間帯T1には、アンテナ#1に対して周波数帯域F2、時間帯T2には、アンテナ#2に対して周波数帯域F7というように、時間帯毎に、各アンテナから送信する伝搬路測定用参照信号を配置する位置を表す情報であってもよい。 In addition, the arrangement pattern information is, for example, information for each antenna of the terminal device 10, and the antenna number and consecutive frequency bands that can be allocated (frequency band F1 to F5 combined with the antenna # 1 in FIG. 4). And the transition pattern in the frequency direction of the position where the channel measurement reference signal is arranged (in antenna # 1 in FIG. 4, the second highest frequency band (frequency band F2) among the assignable frequency bands) Information for identifying the fourth (frequency band F4), first (frequency band F1), fifth (frequency band F5), and third (frequency band F3) in order after being arranged at the position, Information indicating the time between them (in FIG. 4, once every two radio frames) and information indicating the time zone when the arrangement starts (antenna # 1 in FIG. 4 is time zone T1, and antenna # 2 is time zone T2). It may be a composed information may be information comprising a part of the information of these. For example, in the time zone T1, the arrangement pattern information is obtained from each antenna for each time zone, such as the frequency band F2 for the antenna # 1 and the frequency band F7 for the antenna # 2 in the time zone T2. It may be information indicating a position where a transmission path measurement reference signal to be transmitted is arranged.
 この場合、配置指示部122は、この伝搬路測定用参照信号を配置する位置の周波数方向の遷移パターンを識別する情報と、各時間帯において伝搬路測定用参照信号を配置する周波数帯域の、割当可能な連続する周波数帯域内での相対的な位置を表す遷移パターンの情報とを対応付けて記憶している。配置指示部122は、制御情報から抽出した配置パターン情報に含まれている遷移パターンを識別する情報に対応付けられた配置パターンの情報を読み出して、該情報およびその他の配置パターン情報を構成する情報に従い、伝搬路測定用参照信号を配置する周波数とアンテナとの組み合わせをマッピング部110に指示する。 In this case, the arrangement instructing unit 122 allocates information for identifying the transition pattern in the frequency direction at the position where the channel measurement reference signal is arranged, and the frequency band in which the channel measurement reference signal is arranged in each time zone. Information on transition patterns representing relative positions in possible continuous frequency bands is stored in association with each other. The arrangement instructing unit 122 reads out information on an arrangement pattern associated with information for identifying a transition pattern included in the arrangement pattern information extracted from the control information, and information constituting the information and other arrangement pattern information Accordingly, the mapping unit 110 is instructed about the combination of the frequency and the antenna for arranging the reference signal for propagation path measurement.
 伝搬路決定部207は、第1の配置パターンのように、端末装置10のアンテナ各々に互いに異なる連続する周波数帯域が割当てられているときに、これらアンテナの中に、伝搬路情報取得部206の測定結果が予め設定された伝搬路特性を超えていないアンテナがあると判定したときは、少なくとも該アンテナに割り当てられる連続する周波数帯域が変更されるように、かつ、端末装置10のアンテナ各々に互いに異なる連続する周波数帯域が割当てられるように、アンテナ各々に割り当てる連続する周波数帯域を決定する。 When a different continuous frequency band is assigned to each of the antennas of the terminal device 10 as in the first arrangement pattern, the propagation path determination unit 207 includes the propagation path information acquisition unit 206 in these antennas. When it is determined that there is an antenna whose measurement result does not exceed the preset propagation path characteristics, at least the continuous frequency band assigned to the antenna is changed, and each of the antennas of the terminal device 10 is mutually connected. A continuous frequency band to be assigned to each antenna is determined so that different continuous frequency bands are assigned.
 例えば、図4、すなわち第1の配置パターンでは、端末装置10が、アンテナ#1のアンテナ103からは、周波数帯域F1~F5に、アンテナ2からは、周波数帯域F6~F10に伝搬路測定用参照信号を配置して送信している。しかし、基地局装置20の伝搬路情報取得部206が、受信した伝搬路測定用参照信号を用いて伝搬路特性を計測した結果、伝搬路決定部207が、アンテナ#1の伝搬路特性が予め設定された伝搬路特性を超えていないと判定したときは、アンテナ#1のアンテナ103からは、周波数帯域F6~F10、アンテナ#2のアンテナ113からは、周波数帯域F1~F5に伝搬路測定用参照信号を配置して送信させる配置パターン情報を含む制御情報を生成し、端末装置10に送信する。また、この制御情報を生成して端末装置10が使用する配置パターンを変更するのは、割当可能な連続帯域内の全ての周波数に伝搬路測定用参照信号を送信した後としてもよいし、割当可能な連続帯域の一部のみに伝搬路測定用参照信号を送信した後としてもよい。 For example, in FIG. 4, that is, in the first arrangement pattern, the terminal device 10 uses the antenna 103 for the propagation path measurement to the frequency bands F1 to F5 from the antenna 103 and from the antenna 2 to the frequency bands F6 to F10. The signal is arranged and transmitted. However, as a result of the propagation path information acquisition unit 206 of the base station apparatus 20 measuring the propagation path characteristics using the received reference signal for propagation path measurement, the propagation path determination unit 207 determines that the propagation path characteristics of the antenna # 1 are in advance. When it is determined that the set propagation path characteristics are not exceeded, the antenna 103 of the antenna # 1 uses the frequency band F6 to F10 and the antenna 113 of the antenna # 2 uses the frequency band F1 to F5 to measure the propagation path. Control information including arrangement pattern information for arranging and transmitting the reference signal is generated and transmitted to the terminal device 10. Further, the control information is generated and the arrangement pattern used by the terminal apparatus 10 may be changed after the channel measurement reference signal is transmitted to all frequencies within the assignable continuous band, or after the assignment. It may be after the propagation path measurement reference signal is transmitted to only a part of the possible continuous band.
 第1の配置パターンでは、割当可能な連続する周波数帯域が複数存在した場合において、割当可能な連続する周波数帯域の単位で伝搬路測定用参照信号を送信する為、効率的に使用する帯域を決定することができ、データ送信のオーバーヘッド(送信に要する余分な時間)が減らせる。 In the first arrangement pattern, when there are a plurality of assignable continuous frequency bands, the channel measurement reference signal is transmitted in units of the assignable continuous frequency bands. Data transmission overhead (extra time required for transmission) can be reduced.
[第2の配置パターン]
 次に、端末装置10のアンテナ数と割当可能な連続する周波数帯域の数が同一の場合、あるいは、端末装置10のアンテナの数よりも割当可能な連続する周波数帯域の数が多い場合であり、かつ、メインアンテナ、サブアンテナが存在する場合に、伝搬路測定用参照信号の送信間隔を、メインアンテナとサブアンテナとの間で変えて送信する第2の配置パターンについて説明する。ここで、メインアンテナとは、端末装置10から基地局装置20へ送信データのデータ伝送を行なう際に優先的に使用するアンテナである。サブアンテナとはメインアンテナの伝搬路特性が悪い場合に、メインアンテナに代えて使用する、あるいは、メインアンテナのみでは必要とするスループットを満たさない場合に、メインアンテナに加えて使用するアンテナである。本実施形態では、アンテナ#1のアンテナ103がメインアンテナであり、アンテナ#2のアンテナ113がサブアンテナである。
[Second arrangement pattern]
Next, when the number of antennas of the terminal device 10 and the number of consecutive frequency bands that can be allocated are the same, or when the number of consecutive frequency bands that can be allocated is larger than the number of antennas of the terminal device 10, In addition, a description will be given of a second arrangement pattern in which the transmission interval of the reference signal for propagation path measurement is changed between the main antenna and the sub antenna when the main antenna and the sub antenna exist. Here, the main antenna is an antenna preferentially used when data transmission of transmission data is performed from the terminal apparatus 10 to the base station apparatus 20. The sub-antenna is an antenna that is used in place of the main antenna when the propagation characteristics of the main antenna are poor or that is used in addition to the main antenna when the main antenna alone does not satisfy the required throughput. In this embodiment, the antenna 103 of the antenna # 1 is a main antenna, and the antenna 113 of the antenna # 2 is a sub antenna.
 図5は、本実施形態における伝搬路測定用参照信号の第2の配置パターンを示す図である。すなわち、図5が例示するような第2の配置パターンを、端末装置10に適用することを、基地局装置20の伝搬路決定部207が決定し、基地局装置20は、この決定した第2の配置パターンを示す配置パターン情報を制御情報に含めて端末装置10に送信する。端末装置10では、受信処理部121が、基地局装置20から受信した信号から、制御情報を検出する。次に、配置指示部122が、制御情報に含まれる配置パターン情報が示す配置パターン、すなわち図5が例示するような配置パターンに従い伝搬路測定用参照信号を配置するように、マッピング部110を制御する。 FIG. 5 is a diagram showing a second arrangement pattern of propagation path measurement reference signals in the present embodiment. That is, the propagation path determination unit 207 of the base station apparatus 20 determines that the second arrangement pattern as illustrated in FIG. 5 is applied to the terminal apparatus 10, and the base station apparatus 20 The arrangement pattern information indicating the arrangement pattern is included in the control information and transmitted to the terminal device 10. In the terminal device 10, the reception processing unit 121 detects control information from the signal received from the base station device 20. Next, the arrangement instructing unit 122 controls the mapping unit 110 so as to arrange the reference signal for channel measurement according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. To do.
 図5において、縦軸は周波数、横軸は時間を表す。符号F1~F10および符号C1は、図4と同様であり、符号F1~F10は、システム帯域内の割当可能な周波数帯域を示し、符号C1は、割当不可能な周波数帯域を示す。符号T1~T15は、予め決められた長さの時間帯からなる無線フレームである。 In FIG. 5, the vertical axis represents frequency and the horizontal axis represents time. The symbols F1 to F10 and the symbol C1 are the same as those in FIG. 4, the symbols F1 to F10 indicate frequency bands that can be allocated within the system band, and the symbol C1 indicates a frequency band that cannot be allocated. Reference numerals T1 to T15 are radio frames each having a predetermined time period.
 第2の配置パターンは、メインアンテナ、サブアンテナを有する端末装置10が送信データのデータ伝送に使用する帯域を基地局装置20の伝搬路決定部207が決定する為に、伝搬路測定用参照信号の送信をする際、メインアンテナ、サブアンテナに、それぞれ異なる連続する周波数帯域F1~F5、F6~F10が割当てられる。時間帯T1~T15の間に、これらのアンテナから交互に伝搬路測定用参照信号を、各アンテナに割当てられた連続する周波数帯域に繰り返し配置して送信する。しかし、第1の配置パターンとは異なり、メインアンテナとサブアンテナから送信する伝搬路測定用参照信号の間隔が異なり、メインアンテナから伝搬路測定用参照信号を2つの時間帯(例えば、時間帯T1とT2)に配置して送信し、サブアンテナから1つの時間帯(例えば、時間帯T3)に配置して送信することを繰り返す。このように、第2の配置パターンは、メインアンテナからの伝搬路測定用参照信号を配置する頻度を、サブアンテナからの伝搬路測定用参照信号に比べて多くすることで、メインアンテナからの伝搬路測定用参照信号の送信が早く終えられる配置パターンとしている。 The second arrangement pattern is that the propagation path determination reference signal for the propagation path determination unit 207 of the base station apparatus 20 determines the band to be used by the terminal apparatus 10 having the main antenna and the sub antenna for data transmission of transmission data. When transmitting, different main frequency bands F1 to F5 and F6 to F10 are allocated to the main antenna and the sub antenna, respectively. During the time periods T1 to T15, the propagation path measurement reference signals are alternately arranged and transmitted in the continuous frequency bands assigned to the antennas from these antennas. However, unlike the first arrangement pattern, the interval between the propagation path measurement reference signals transmitted from the main antenna and the sub antenna is different, and the propagation path measurement reference signal is transmitted from the main antenna to two time zones (for example, time zone T1). And T2), and the transmission is repeated from the sub-antenna in one time zone (for example, time zone T3). As described above, the second arrangement pattern increases the frequency of arranging the propagation path measurement reference signal from the main antenna as compared with the propagation path measurement reference signal from the sub antenna. The arrangement pattern is such that the transmission of the reference signal for path measurement is completed early.
 具体的には、図5に示すように、最初にメインアンテナ(アンテナ#1のアンテナ103)から、時間帯T1に周波数帯域F2を使用して、伝搬路測定用参照信号(メインアンテナのRS信号)を送信する。ここで、時間帯T1に伝搬路測定用参照信号を送信するとは、時間帯T1全体にわたって伝搬路測定用参照信号を配置して送信するようにしてもよいし、該時間帯の末尾など、予め決められた一部の時間帯に伝搬路測定用参照信号を配置して送信するようにしてもよい。また、周波数帯域F2を使用して、伝搬路測定用参照信号を送信するとは、周波数帯域F2を構成する全てのサブキャリアに伝搬路測定用参照信号を配置して送信するようにしてもよいし、1サブキャリアおきなど、周波数帯域F2を構成するサブキャリアの一部に伝搬路測定用参照信号を配置して送信するようにしてもよい。 Specifically, as shown in FIG. 5, first, from the main antenna (antenna 103 of antenna # 1), using the frequency band F2 in the time zone T1, the channel measurement reference signal (the RS signal of the main antenna). ). Here, to transmit the propagation path measurement reference signal in the time zone T1, the propagation path measurement reference signal may be arranged and transmitted over the entire time zone T1, or the end of the time zone or the like may be transmitted in advance. The reference signal for propagation path measurement may be arranged and transmitted in a predetermined part of the time zone. Also, transmitting the channel measurement reference signal using the frequency band F2 may be performed by arranging the channel measurement reference signal on all the subcarriers constituting the frequency band F2. Alternatively, a propagation path measurement reference signal may be arranged and transmitted on a part of subcarriers constituting the frequency band F2, such as every other subcarrier.
 次に、メインアンテナから、時間帯T2に周波数帯域F4を使用して、伝搬路測定用参照信号(メインアンテナのRS信号)を送信する。さらに、サブアンテナから、時間帯T3に周波数帯域F7を使用して、伝搬路測定用参照信号(サブアンテナのRS信号)を送信する。次に、メインアンテナから時間帯T4に周波数帯域F1、時間帯T5に周波数帯域F5を使用して、伝搬路測定用参照信号を送信する。次に、サブアンテナから、時間帯T6に周波数帯域F9を使用して、伝搬路測定用参照信号を送信する。 Next, a channel measurement reference signal (RS signal of the main antenna) is transmitted from the main antenna using the frequency band F4 in the time zone T2. Further, a propagation path measurement reference signal (sub-antenna RS signal) is transmitted from the sub-antenna using the frequency band F7 in the time zone T3. Next, a channel measurement reference signal is transmitted from the main antenna using the frequency band F1 in the time zone T4 and the frequency band F5 in the time zone T5. Next, a propagation path measurement reference signal is transmitted from the sub-antenna using the frequency band F9 in the time band T6.
 以降は、同様に2つの時間帯でメインアンテナから送信し、1つの時間帯でサブアンテナから送信することを、次のように繰り返す。すなわち、メインアンテナから時間帯T7に周波数F3、時間帯T8に周波数帯域F2を使用して伝搬路測定用参照信号を送信し、サブアンテナから時間帯T9に周波数帯域F6を使用して伝搬路測定用参照信号を送信する。次に、メインアンテナから時間帯T10に周波数帯域F4、時間帯T11に周波数帯域F1を使用して伝搬路測定用参照信号を送信し、サブアンテナから時間帯T12に周波数帯域F10を使用して伝搬路測定用参照信号を送信する。さらに、メインアンテナから時間帯T13に周波数帯域F2、時間帯T14に周波数帯域F4を使用して伝搬路測定用参照信号を送信し、サブアンテナから時間帯T15に周波数帯域F8を使用して伝搬路測定用参照信号を送信する。 Thereafter, transmission from the main antenna in two time zones and transmission from the sub-antenna in one time zone are repeated as follows. That is, a channel measurement reference signal is transmitted from the main antenna using the frequency F3 in the time zone T7 and the frequency band F2 in the time zone T8, and the channel measurement is performed from the sub antenna using the frequency band F6 in the time zone T9. A reference signal is transmitted. Next, a channel measurement reference signal is transmitted from the main antenna using the frequency band F4 in the time zone T10 and the frequency band F1 in the time zone T11, and propagated from the sub-antenna using the frequency band F10 in the time zone T12. A reference signal for path measurement is transmitted. Further, a propagation path measurement reference signal is transmitted from the main antenna using the frequency band F2 in the time zone T13 and the frequency band F4 in the time zone T14, and the propagation path is transmitted from the sub-antenna using the frequency band F8 in the time zone T15. Send a measurement reference signal.
 メインアンテナについては、時間帯T7の終了時点で、割当てられた連続する周波数帯域を構成する周波数帯域F1~F5各々での、伝搬路測定用参照信号の送信が完了する。このため、基地局装置20では、時間帯T7の端末装置10から送信された伝搬路測定用参照信号の受信後に、伝搬路決定部207が、端末装置10のメインアンテナからの送信データの送信に使用する伝搬路(サブキャリア)を、周波数帯域F1~F5の中から決定することができる。従って、伝搬路特性の測定から使用する伝搬路の決定までの時間は、最も長い周波数帯域でも時間帯T1からT7を合わせた長さとすることができる。これは、第1の配置パターンの時間帯T1からT10を合わせた長さよりも、3つの時間帯分だけ短い。 For the main antenna, at the end of the time zone T7, transmission of the reference signal for propagation path measurement is completed in each of the frequency bands F1 to F5 constituting the assigned continuous frequency band. For this reason, in the base station apparatus 20, after receiving the propagation path measurement reference signal transmitted from the terminal apparatus 10 in the time zone T7, the propagation path determination unit 207 transmits transmission data from the main antenna of the terminal apparatus 10. The propagation path (subcarrier) to be used can be determined from the frequency bands F1 to F5. Therefore, the time from the measurement of the propagation path characteristics to the determination of the propagation path to be used can be the combined length of the time zones T1 to T7 even in the longest frequency band. This is shorter by three time zones than the combined length of the time zones T1 to T10 of the first arrangement pattern.
 一方、サブアンテナについては、時間帯T15の終了時点で、割当てられた連続する周波数帯域を構成する周波数帯域F6~F10各々での、伝搬路測定用参照信号の送信が完了する。この後、伝搬路決定部207が、サブアンテナからの送信データの送信に使用する伝搬路(サブキャリア)を周波数帯域F6~F10の中から決定する。
 このように、第2の配置パターンは、第1の配置パターンと比べ、メインアンテナからの送信に使用する周波数帯域をより効率的に決定でき、メインアンテナからデータを伝送する時のオーバーヘッドを減らすことができる。
On the other hand, for the sub-antenna, transmission of the reference signal for propagation path measurement is completed in each of the frequency bands F6 to F10 constituting the assigned continuous frequency band at the end of the time zone T15. Thereafter, propagation path determining section 207 determines a propagation path (subcarrier) to be used for transmission of transmission data from the sub-antenna from frequency bands F6 to F10.
As described above, the second arrangement pattern can determine the frequency band used for transmission from the main antenna more efficiently than the first arrangement pattern, and reduces overhead when data is transmitted from the main antenna. Can do.
 図5の例では、アンテナ#1からは周波数帯域F1~F5、アンテナ#2からは周波数帯域F6~F10を用いて伝搬路測定用参照信号を送信する例を示したが、基地局装置20が伝搬路測定用参照信号を受信し、測定した結果、伝搬路特性が悪いと判定した場合は、伝搬路決定部207は、アンテナ#1からは周波数帯域F6~F10、アンテナ#2からは周波数帯域F1~F5を用いて伝搬路測定用参照信号を送信させる配置パターン情報を生成し、端末装置10に送信する。 In the example of FIG. 5, the example in which the reference signal for propagation path measurement is transmitted using the frequency bands F1 to F5 from the antenna # 1 and the frequency bands F6 to F10 from the antenna # 2 is shown. When it is determined that the propagation path characteristics are poor as a result of receiving and measuring the propagation path measurement reference signal, the propagation path determining unit 207 determines the frequency bands F6 to F10 from the antenna # 1 and the frequency band from the antenna # 2. Arrangement pattern information for transmitting the reference signal for propagation path measurement is generated using F1 to F5 and transmitted to the terminal apparatus 10.
 また、図5に示す第2の配置パターンの例は、メインアンテナから伝搬路測定用参照信号を2つの時間帯にて送信した後、サブアンテナから1つの時間帯に送信する配置パターンとしたが、メインアンテナからの方がサブアンテナからより、多い時間帯に送信する配置パターンであれば、本例と同一の配置パターンでなくても良い。なお、図5の例は、メインアンテナとサブアンテナからの伝搬路測定用参照信号の送信の間隔を一定としているが、メインアンテナからの送信に使用する周波数帯域を決定した後は、第1の配置パターンのようにメインアンテナとサブアンテナから伝搬路測定用参照信号を交互に送信する等の配置パターンに変更しても良い。 The second arrangement pattern shown in FIG. 5 is an arrangement pattern in which the channel measurement reference signal is transmitted from the main antenna in two time zones and then transmitted from the sub-antenna in one time zone. As long as the arrangement pattern is transmitted from the main antenna in more time zones than from the sub-antenna, the arrangement pattern may not be the same as this example. In the example of FIG. 5, the transmission interval of the reference signal for propagation path measurement from the main antenna and the sub antenna is constant, but after the frequency band used for transmission from the main antenna is determined, the first As in the arrangement pattern, the arrangement pattern may be changed such that the channel measurement reference signal is alternately transmitted from the main antenna and the sub antenna.
 このように、メインアンテナからは、サブアンテナより短い間隔で伝搬路測定用参照信号を送信することで、より早く伝搬路特性の測定ができ、送信データの伝送に使用する伝搬路を決定する際に、伝搬路の時間変動の影響を受け難くすることができる。このため、端末装置10が移動している等の伝搬路の時間変動が大きい場合でも、メインアンテナに対してはより正確な伝搬路特性に基づき、基地局装置20の伝搬路決定部207は、データの伝送に使用する伝搬路を決定(スケジューリング)することができる。すなわち、伝搬路測定用参照信号の送信からデータ伝送までのオーバーヘッドが短いので、伝搬路特性の時間変動の影響を受け難くなり、より正確な伝搬路情報に基づきスケジューリングが行える。 In this way, by transmitting a channel measurement reference signal from the main antenna at shorter intervals than the sub-antenna, the channel characteristics can be measured more quickly, and when determining the channel to be used for transmission of transmission data Furthermore, it can be made less susceptible to the influence of time fluctuations in the propagation path. For this reason, even when the time variation of the propagation path such as the terminal device 10 is moving is large, the propagation path determination unit 207 of the base station apparatus 20 is based on more accurate propagation path characteristics for the main antenna. A propagation path to be used for data transmission can be determined (scheduled). That is, since the overhead from the transmission of the reference signal for propagation path measurement to the data transmission is short, it is difficult to be affected by the time variation of the propagation path characteristics, and scheduling can be performed based on more accurate propagation path information.
[第3の配置パターン]
 次に、第3の配置パターンとして、複数のアンテナから、同一の連続する周波数帯域を用いて、伝搬路測定用参照信号を送信する場合について説明する。この第3の配置パターンは、第1の配置パターン、すなわち図4に示したように、各々のアンテナに割当てられた互いに異なる連続する周波数帯域を用いて、複数のアンテナから伝搬路測定用参照信号を送信する場合と切り替えて用いられる。
[Third arrangement pattern]
Next, a case where a propagation path measurement reference signal is transmitted from a plurality of antennas using the same continuous frequency band will be described as a third arrangement pattern. This third arrangement pattern is the first arrangement pattern, that is, as shown in FIG. 4, using different consecutive frequency bands assigned to the respective antennas, the reference signals for channel measurement from a plurality of antennas. Used when switching between sending and receiving.
 図6、図7は、第1の配置パターンと第3の配置パターンの切り替えを説明する図である。図6、図7において、横軸は周波数である。図6、図7においては、図4の周波数帯域F1~F5と周波数帯域F6~F10の2つと同様な周波数帯域、すなわち割当可能な連続する周波数帯域が、周波数帯域F11とF12の2つ存在する。そして、端末装置10は、これら2つの周波数帯域F11とF12に対して、1本のアンテナから同時に送信できない。図6は、第1の配置パターン、すなわちアンテナ#1のアンテナ103とアンテナ#2のアンテナ113から、互いに異なる連続する周波数帯域を用いて、伝搬路測定用参照信号を送信する場合を示す図である。 6 and 7 are diagrams for explaining switching between the first arrangement pattern and the third arrangement pattern. 6 and 7, the horizontal axis represents frequency. 6 and 7, there are two frequency bands F11 and F12, which are the same frequency bands as the frequency bands F1 to F5 and the frequency bands F6 to F10 in FIG. . And the terminal device 10 cannot transmit simultaneously from one antenna with respect to these two frequency bands F11 and F12. FIG. 6 is a diagram illustrating a case where a channel measurement reference signal is transmitted from the first arrangement pattern, that is, the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2 using mutually different continuous frequency bands. is there.
 このとき、端末装置10は、送信データの伝送についても、アンテナ#1のアンテナ103からは周波数帯域F11を用いて送信し、アンテナ#2のアンテナ113からは周波数帯域F12を用いて送信する。図7は、第3の配置パターン、すなわちアンテナ#1のアンテナ103とアンテナ#2のアンテナ113から、同一の連続する周波数帯域を用いて、伝搬路測定用参照信号を送信する場合を示す図である。このとき、端末装置10は、送信データの伝送についても、アンテナ#1のアンテナ103、アンテナ#2のアンテナ113の両方から周波数帯域F11を用いて送信する。 At this time, the terminal apparatus 10 also transmits transmission data using the frequency band F11 from the antenna 103 of the antenna # 1, and transmits using the frequency band F12 from the antenna 113 of the antenna # 2. FIG. 7 is a diagram showing a case where a reference signal for channel measurement is transmitted from the third arrangement pattern, that is, the antenna 103 of antenna # 1 and the antenna 113 of antenna # 2 using the same continuous frequency band. is there. At this time, the terminal apparatus 10 also transmits transmission data using both the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2 using the frequency band F11.
 図6に示すように周波数帯域を割り当ててアンテナ#1、#2から伝搬路測定用参照信号を送信する場合は、端末装置10は、具体的には、例えば、図4に示すように伝搬路測定用参照信号を配置して送信する。図8は、図7に示すように周波数帯域を割り当ててアンテナ#1、#2から伝搬路測定用参照信号を送信する場合における伝搬路測定用参照信号の配置パターンである第3の配置パターンを示す図である。図4が例示するような第1の配置パターンと図8が例示するような第3の配置パターンとのいずれかを、端末装置10に適用することを、基地局装置20の伝搬路決定部207が決定し、基地局装置20は、この決定した第1の配置パターンを示す配置パターン情報を制御情報に含めて端末装置10に送信する。端末装置10では、受信処理部121が、基地局装置20から受信した信号から、制御情報を検出する。次に、配置指示部122が、制御情報に含まれる配置パターン情報が示す配置パターン、すなわち図4または図8が例示するような配置パターンに従い伝搬路測定用参照信号を配置するように、マッピング部110を制御する。 When the frequency band is allocated as shown in FIG. 6 and the reference signal for propagation path measurement is transmitted from the antennas # 1 and # 2, the terminal apparatus 10 specifically, for example, as shown in FIG. A measurement reference signal is arranged and transmitted. FIG. 8 shows a third arrangement pattern, which is an arrangement pattern of the channel measurement reference signal in the case where the frequency band is allocated and the channel measurement reference signal is transmitted from the antennas # 1 and # 2, as shown in FIG. FIG. The propagation path determination unit 207 of the base station apparatus 20 applies either the first arrangement pattern as illustrated in FIG. 4 or the third arrangement pattern as illustrated in FIG. 8 to the terminal apparatus 10. Is determined, and the base station apparatus 20 includes the arrangement pattern information indicating the determined first arrangement pattern in the control information and transmits the information to the terminal apparatus 10. In the terminal device 10, the reception processing unit 121 detects control information from the signal received from the base station device 20. Next, the mapping unit 122 arranges the channel measurement reference signal according to the arrangement pattern indicated by the arrangement pattern information included in the control information, that is, the arrangement pattern as illustrated in FIG. 4 or FIG. 110 is controlled.
 図8において、縦軸は周波数、横軸は時間を表す。また、符号F1~F10、C1、T1~T10は、図4と同様であるので、説明を省略する。
 第3の配置パターンでは、伝搬路測定用参照信号を送信する際に、アンテナ#1のアンテナ103、アンテナ#2のアンテナ113に、同一の連続する周波数帯域F6~F10が割当てられ、時間T1~T10の間、これらのアンテナから交互に伝搬路測定用参照信号を、各アンテナに割当てられた連続する周波数帯域に繰り返し配置して送信する。
In FIG. 8, the vertical axis represents frequency and the horizontal axis represents time. Reference numerals F1 to F10, C1, and T1 to T10 are the same as those in FIG.
In the third arrangement pattern, when transmitting the propagation path measurement reference signal, the same continuous frequency bands F6 to F10 are allocated to the antenna 103 of the antenna # 1 and the antenna 113 of the antenna # 2, and the time T1 to During T10, channel measurement reference signals are alternately transmitted from these antennas in the continuous frequency band assigned to each antenna and transmitted.
 具体的には、図8に示すように、まず、端末装置10は、アンテナ#1のアンテナ103から、時間帯T1に周波数帯域F7を使用して、伝搬路測定用参照信号(アンテナ#1のRS信号)を送信する。次に、アンテナ#2のアンテナ113から、時間帯T2に周波数帯域F7を使用して、伝搬路測定用参照信号(アンテナ#2のRS信号)を送信する。次に、時間帯T3にアンテナ#1のアンテナ103から周波数帯域F9を使用して、さらに時間帯T4にアンテナ#2のアンテナ113から周波数帯域F9を使用して、伝搬路測定用参照信号を送信する。その後も同様に交互に時間帯T5にアンテナ#1のアンテナ103から周波数帯域F6、時間帯T6にアンテナ#2のアンテナ113から周波数帯域F6、時間帯T7にアンテナ#1のアンテナ103から周波数帯域F10、時間帯T8にアンテナ#2のアンテナ113から周波数帯域F10、時間帯T9にアンテナ#1のアンテナ103から周波数帯域F8、時間帯T10にアンテナ#2のアンテナ113から周波数帯域F8の順に伝搬路測定用参照信号を送信する。 Specifically, as illustrated in FIG. 8, first, the terminal apparatus 10 uses the frequency band F7 in the time zone T1 from the antenna 103 of the antenna # 1, and uses the frequency band F7 for the channel measurement reference signal (of the antenna # 1). RS signal). Next, the propagation path measurement reference signal (RS signal of antenna # 2) is transmitted from antenna 113 of antenna # 2 using frequency band F7 in time band T2. Next, a reference signal for propagation path measurement is transmitted using the frequency band F9 from the antenna 103 of the antenna # 1 in the time zone T3 and further using the frequency band F9 from the antenna 113 of the antenna # 2 in the time zone T4. To do. Thereafter, in the same manner, the frequency band F6 from the antenna 103 of the antenna # 1 alternately in the time zone T5, the frequency band F6 from the antenna 113 of the antenna # 2 in the time zone T6, and the frequency band F10 from the antenna 103 of the antenna # 1 in the time zone T7. In the time zone T8, the propagation path measurement is performed in the order of the frequency band F10 from the antenna 113 of the antenna # 2, the time zone T9 from the antenna 103 of the antenna # 1 to the frequency band F8, and the time zone T10 in order from the antenna 113 of the antenna # 2 to the frequency band F8. A reference signal is transmitted.
 この第1の配置パターンと第3の配置パターンとの使用方法の切り替えは、基地局装置20の伝搬路情報取得部206が測定する伝搬路特性(受信品質)に基づき、伝搬路決定部207が決定する。具体的には、端末装置10が、基地局装置20からの指示に従い、第3の配置パターンで伝搬路測定用参照信号を送信した後、基地局装置20の伝搬路情報取得部206が各アンテナに関する伝搬路特性を測定する。このとき、伝搬路決定部207は、測定したアンテナ#2のアンテナ113に関する伝搬路特性が一定の品質Q1を満たしていないと判定したときは、第1の配置パターンを示す配置パターン情報を生成し、端末装置10に送信する。これにより、端末装置10が伝搬路測定用参照信号の送信に用いる配置パターンを、第3の配置パターンから第1の配置パターンに切り替える。 The switching of the usage method between the first arrangement pattern and the third arrangement pattern is performed by the propagation path determination unit 207 based on the propagation path characteristics (reception quality) measured by the propagation path information acquisition unit 206 of the base station apparatus 20. decide. Specifically, after the terminal apparatus 10 transmits a reference signal for propagation path measurement with a third arrangement pattern in accordance with an instruction from the base station apparatus 20, the propagation path information acquisition unit 206 of the base station apparatus 20 Measure the propagation path characteristics. At this time, if the propagation path determining unit 207 determines that the measured propagation path characteristics regarding the antenna 113 of the antenna # 2 do not satisfy the certain quality Q1, the propagation path determination unit 207 generates arrangement pattern information indicating the first arrangement pattern. To the terminal device 10. Thereby, the arrangement pattern used by the terminal apparatus 10 for transmission of the propagation path measurement reference signal is switched from the third arrangement pattern to the first arrangement pattern.
 さらに、伝搬路決定部207は、第1の配置パターン、すなわち端末装置10のアンテナ各々に互いに異なる前記連続する周波数帯域が割当てられているときに、これらのアンテナの中に、伝搬路情報取得部206の測定結果が予め設定された一定の品質Q2を超えているアンテナがあると判定したときは、該アンテナに割り当てられた連続する周波数帯域が、該アンテナ以外の少なくとも一つのアンテナに割り当てられるように、アンテナ各々に割り当てる連続する周波数帯域を決定する、すなわち第3の配置パターンに決定するようにしてもよい。これにより、公知の多入力多出力(MIMO)を用いてデータ送信を行うこと可能である。このとき、予め設定された一定の品質Q2は、先の一定の品質Q1と同じ伝搬路特性であっても良いし、異なっていても良い。 Further, the propagation path determination unit 207 includes a propagation path information acquisition unit in the first arrangement pattern, that is, when the continuous frequency bands different from each other are assigned to the antennas of the terminal device 10. When it is determined that there is an antenna whose measurement result of 206 exceeds a preset constant quality Q2, the continuous frequency band assigned to the antenna is assigned to at least one antenna other than the antenna. In addition, a continuous frequency band assigned to each antenna may be determined, that is, a third arrangement pattern may be determined. Thereby, it is possible to perform data transmission using a known multi-input multi-output (MIMO). At this time, the predetermined constant quality Q2 may be the same propagation path characteristic as the previous constant quality Q1, or may be different.
 例えば、第1の配置パターンで伝搬路測定用参照信号を送信した後、伝搬路決定部207は、測定したアンテナ#2のアンテナ113に関する伝搬路特性が一定の品質Q1を満たしていると判定したときは、第3の配置パターンを示す配置パターン情報を生成し、端末装置10に送信する。これにより、端末装置10が伝搬路測定用参照信号の送信に用いる配置パターンを、第1の配置パターンから第3の配置パターンに切り替える。ここで、伝搬路特性としては、SNR(Signal to Noise Power Ratio;信号対雑音比)等を用いる。また、アンテナに関する伝搬路特性が一定の品質Q1を満たすとは、例えば、該アンテナに割り当てられた連続する周波数帯域のうち、予め決められた伝搬路特性を超える伝搬路の数が、予め決められた数より多いことであってもよいし、該アンテナに割り当てられた連続する周波数帯域のうち、予め決められた伝搬路特性を超える伝搬路の数が、端末装置10から送信するデータの量に応じて決められる数より多いことなどであってもよいが、これらに限定されない。 For example, after transmitting the reference signal for propagation path measurement with the first arrangement pattern, the propagation path determination unit 207 determines that the propagation path characteristics regarding the antenna 113 of the measured antenna # 2 satisfy a certain quality Q1. At this time, arrangement pattern information indicating the third arrangement pattern is generated and transmitted to the terminal device 10. As a result, the arrangement pattern used by the terminal apparatus 10 for transmission of the propagation path measurement reference signal is switched from the first arrangement pattern to the third arrangement pattern. Here, SNR (Signal to Noise Power Ratio) is used as the propagation path characteristic. Also, the fact that the propagation path characteristics related to the antenna satisfy a certain quality Q1 means that, for example, the number of propagation paths that exceed a predetermined propagation path characteristic in a continuous frequency band assigned to the antenna is determined in advance. The number of propagation paths that exceed a predetermined propagation path characteristic among the continuous frequency bands assigned to the antenna may be the amount of data transmitted from the terminal device 10. There may be more than the number determined according to this, but it is not limited to these.
 複数のアンテナを有する送信装置が伝搬路測定用参照信号を送信し、該伝搬路測定用参照信号を受信して受信装置が伝搬路特性を測定した結果、一定の品質を満たしている場合は、多入力多出力(MIMO)でのデータ伝送を行うことが可能であると判定し、複数のアンテナから同一の周波数帯域を用いてデータ伝送を行うことができる。その為、一定の品質を満たしていることを検出するためには、同一の周波数帯域を用いて複数のアンテナから伝搬路測定用参照信号を送信し、該伝搬路測定用参照信号を用いた伝搬路特性の測定が必要である。このような場合に、図7の周波数帯域の使用方法でアンテナ#1とアンテナ#2から伝搬路測定用参照信号を送信する。
 複数のアンテナが同一の使用可能な連続する周波数帯域を用いて伝搬路測定用参照信号を送信し、該伝搬路測定用参照信号を受信して伝搬路特性を測定した結果、一定の品質Q2を満たさない場合は、多入力多出力が使用できない為、図6の帯域の使用方法でアンテナ#1とアンテナ#2から伝搬路測定用参照信号を送信するように切り替えを行う。
When a transmission apparatus having a plurality of antennas transmits a propagation path measurement reference signal, receives the propagation path measurement reference signal, and the reception apparatus measures the propagation path characteristics, and satisfies a certain quality, It is determined that data transmission by multiple input multiple output (MIMO) is possible, and data transmission can be performed from a plurality of antennas using the same frequency band. Therefore, in order to detect that a certain quality is satisfied, a propagation path measurement reference signal is transmitted from a plurality of antennas using the same frequency band, and propagation using the propagation path measurement reference signal is performed. It is necessary to measure the road characteristics. In such a case, the reference signal for propagation path measurement is transmitted from antenna # 1 and antenna # 2 by the method of using the frequency band of FIG.
A plurality of antennas transmit a propagation path reference signal using the same usable continuous frequency band, receive the propagation path measurement reference signal, and measure the propagation path characteristics. As a result, a certain quality Q2 is obtained. If not, multi-input multi-output cannot be used, so switching is performed so that the channel # 1 and antenna # 2 transmit the propagation path measurement reference signal using the band usage method of FIG.
 本実施形態においては、端末装置10が、第3の配置パターンを用いて、複数のアンテナ103、113から同一の連続する周波数帯域F6~F10を用いて伝搬路測定用参照信号を送信し、これらを受信した基地局装置20では、伝搬路決定部207が、伝搬路情報取得部206での測定の結果が、一定の品質Q2を満たしているか否かに基づき、データ伝送に多入力多出力を使用可能であるかを判断する。また、伝搬路決定部207は、伝搬路情報取得部206での測定の結果が、一定の品質Q2を満たしておらず、他入力他出力を使用できないと判断したときは、配置パターンを第1の配置パターンに切り替える。このように第1の配置パターンに切り替えると、端末装置10は、アンテナ103からは周波数帯域F1~F5を用いて、アンテナ113からは周波数帯域F6~F10を用いて伝搬路測定用参照信号を送信するので、これらを受信した基地局装置20では、伝搬路決定部207が、より広い周波数帯域(F1~F10)から使用する伝搬路を決定することができる。
 このように、複数のアンテナから異なる連続する周波数帯域へ伝搬路測定用参照信号を送信しているときに、特定のアンテナの伝搬路特性が一定の品質Q1を満たすときは、その一定の品質を満たすアンテナに割り当てられた周波数帯域を用いて複数のアンテナから伝搬路測定用信号を送信し、多入力多出力が使用可能かを判断する。
In the present embodiment, the terminal apparatus 10 transmits a reference signal for propagation path measurement using the same continuous frequency bands F6 to F10 from the plurality of antennas 103 and 113 using the third arrangement pattern. In the base station apparatus 20 that has received the signal, the propagation path determination unit 207 outputs multiple inputs and multiple outputs for data transmission based on whether or not the result of measurement by the propagation path information acquisition unit 206 satisfies a certain quality Q2. Determine if it can be used. When the propagation path determination unit 207 determines that the measurement result of the propagation path information acquisition unit 206 does not satisfy the certain quality Q2 and the other input and other outputs cannot be used, the propagation pattern determination unit 207 determines the first arrangement pattern. Switch to the placement pattern. When switching to the first arrangement pattern in this way, the terminal apparatus 10 transmits the propagation path measurement reference signal from the antenna 103 using the frequency bands F1 to F5 and from the antenna 113 using the frequency bands F6 to F10. Therefore, in the base station apparatus 20 that has received them, the propagation path determination unit 207 can determine the propagation path to be used from a wider frequency band (F1 to F10).
As described above, when the channel measurement reference signal is transmitted from a plurality of antennas to different continuous frequency bands and the channel characteristic of a specific antenna satisfies the certain quality Q1, the certain quality is reduced. A channel measurement signal is transmitted from a plurality of antennas using the frequency band assigned to the antenna to be satisfied, and it is determined whether multiple inputs and multiple outputs can be used.
 また、図1におけるRS生成部100、マッピング部110、送信処理部101、111、受信処理部121、配置指示部122、図3におけるCP除去部203、FFT部204、RS抽出部205、伝搬路情報取得部206、伝搬路決定部207、受信処理部208、送信処理部209の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、これらの処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 In addition, the RS generation unit 100, the mapping unit 110, the transmission processing units 101 and 111, the reception processing unit 121, the arrangement instruction unit 122 in FIG. 1, the CP removal unit 203, the FFT unit 204, the RS extraction unit 205, the propagation path in FIG. A program for realizing the functions of the information acquisition unit 206, the propagation path determination unit 207, the reception processing unit 208, and the transmission processing unit 209 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer. These processes may be performed by causing the system to read and execute. Here, the “computer system” includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case is also used to hold a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 10…端末装置
 100…RS生成部
 110…マッピング部
 101、111…送信処理
 102、112…無線部
 103、113…アンテナ
 120…無線部
 121…受信処理部
 122…配置指示部
 1003…IFFT部
 1004…CP挿入部
 20…基地局装置
 201…アンテナ
 202…無線部
 203…CP除去部
 204…FFT部
 205…RS抽出部
 206…伝搬路情報取得部
 207…伝搬路決定部
 208…受信処理部
 209…送信処理部
 210…無線部
 211…MIMO分離部
DESCRIPTION OF SYMBOLS 10 ... Terminal device 100 ... RS production | generation part 110 ... Mapping part 101, 111 ... Transmission process 102, 112 ... Radio | wireless part 103, 113 ... Antenna 120 ... Radio | wireless part 121 ... Reception process part 122 ... Arrangement | positioning instruction | indication part 1003 ... IFFT part 1004 ... CP insertion section 20 ... base station apparatus 201 ... antenna 202 ... radio section 203 ... CP removal section 204 ... FFT section 205 ... RS extraction section 206 ... propagation path information acquisition section 207 ... propagation path determination section 208 ... reception processing section 209 ... transmission Processing unit 210 ... Radio unit 211 ... MIMO separation unit

Claims (10)

  1.  複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する第1の無線通信装置と、前記第1の無線通信装置が送信した信号を受信する第2の無線通信装置とを具備する無線通信システムであって、
     前記第1の無線通信装置は、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを備え、前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信し、
     前記第2の無線通信装置は、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記第1の無線通信装置による送信データの伝送に用いる伝搬路を決定すること
     を特徴とする無線通信システム。
    A first wireless communication apparatus that transmits a signal using a frequency band configured from a plurality of LTE system frequency bands; and a second wireless communication apparatus that receives a signal transmitted by the first wireless communication apparatus. A wireless communication system comprising:
    The first wireless communication apparatus includes a plurality of antennas each assigned with any one of the frequency bands of the LTE system, sequentially switches the antennas, arranges and transmits a reference signal for propagation path measurement,
    The second wireless communication apparatus measures the propagation path characteristic of the frequency band of the LTE system assigned to the antenna for each of the antennas using the propagation path measurement reference signal, And determining a propagation path used for transmission of transmission data by the first wireless communication apparatus.
  2.  前記第2の無線通信装置は、前記第1の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを決定し、制御情報として前記第1の無線通信装置に通知し、
     前記第1の無線通信装置は、前記制御情報で通知された前記LTEシステムの周波数帯域と送信タイミングとに従い、前記アンテナを順次切り替えて、伝搬路測定用参照信号を送信すること
     を特徴とする請求項1に記載の無線通信システム。
    The second wireless communication apparatus determines a frequency band and a transmission timing of the LTE system in which the first wireless communication apparatus transmits the propagation path measurement reference signal from each of the antennas, Notify the first wireless communication device;
    The first wireless communication apparatus transmits a reference signal for propagation path measurement by sequentially switching the antennas according to the frequency band and transmission timing of the LTE system notified by the control information. Item 2. The wireless communication system according to Item 1.
  3.  前記伝搬路測定用参照信号の送信タイミングは、前記第1の無線通信装置のアンテナのうち、送信データの伝送に優先して用いられるアンテナからの伝搬路測定用参照信号の送信が早く終えられる送信タイミングであることを特徴とする請求項2に記載の無線通信システム。 The transmission timing of the reference signal for propagation path measurement is such that transmission of the reference signal for measurement of propagation path from the antenna of the first wireless communication apparatus used preferentially for transmission of transmission data is finished early. The wireless communication system according to claim 2, wherein the timing is timing.
  4.  前記第2の無線通信装置は、前記第1の無線通信装置のアンテナ各々に前記LTEシステムの周波数帯域のうちのいずれか1つが割当てられているときに、前記第1の無線通信装置のアンテナの中に伝搬路特性が予め設定された品質を超えていないアンテナがあると判定したときは、少なくとも該アンテナに割り当てられる前記LTEシステムの周波数帯域を変更することを特徴とする請求項2に記載の無線通信システム。 The second wireless communication device is configured such that when one of the frequency bands of the LTE system is allocated to each antenna of the first wireless communication device, the antenna of the first wireless communication device 3. When it is determined that there is an antenna whose propagation path characteristic does not exceed a preset quality, at least a frequency band of the LTE system assigned to the antenna is changed. Wireless communication system.
  5.  前記第2の無線通信装置は、前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを決定する際に、前記第1の無線通信装置がMIMO伝送を行うときは、MIMO伝送に用いる複数のアンテナについて、前記伝搬路測定用参照信号を送信するLTEシステムの周波数帯域を同一の周波数帯域にすることを特徴とする請求項2に記載の無線通信システム。 When determining the frequency band and transmission timing of the LTE system that transmits the propagation path measurement reference signal, the second wireless communication device performs MIMO transmission when the first wireless communication device performs MIMO transmission. The radio communication system according to claim 2, wherein the frequency band of the LTE system that transmits the reference signal for propagation path measurement is set to the same frequency band for a plurality of antennas used for MIMO transmission.
  6.  複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する無線通信装置であって、
     各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを備え、前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信することを特徴とする無線通信装置。
    A wireless communication apparatus that transmits a signal using a frequency band configured from a plurality of LTE system frequency bands,
    A wireless communication apparatus comprising: a plurality of antennas each assigned with any one of the frequency bands of the LTE system, wherein the antennas are sequentially switched and a propagation path measurement reference signal is arranged and transmitted.
  7.  複数のアンテナを備える他の無線通信装置から、複数のLTEシステムの周波数帯域のうち各々の前記アンテナに割当てられたLTEシステムの周波数帯域で送信された伝搬路測定用参照信号を受信し、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記他の無線通信装置による送信データの伝送に用いる伝搬路を決定する無線通信装置であって、
     前記他の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを、前記アンテナを順次切り替えて伝搬路測定用参照信号を配置して送信するように決定し、制御情報として前記他の無線通信装置に通知すること
     を特徴とする無線通信装置。
    Receiving a propagation path measurement reference signal transmitted in a frequency band of the LTE system assigned to each of the antennas among a plurality of frequency bands of the LTE system from another wireless communication apparatus having a plurality of antennas; For each of the antennas, a channel characteristic of the frequency band of the LTE system allocated to the antenna is measured using a path measurement reference signal, and based on the measurement result, transmission data by the other wireless communication device A wireless communication device for determining a propagation path to be used for transmission,
    The other wireless communication device transmits the propagation path measurement reference signal from each of the antennas, and arranges the propagation path measurement reference signal by sequentially switching the antenna between the frequency band and the transmission timing of the LTE system. A wireless communication device that determines to transmit and notifies the other wireless communication device as control information.
  8.  複数のLTEシステムの周波数帯域から構成される周波数帯域を用いて信号を送信する第1の無線通信装置と、前記第1の無線通信装置が送信した信号を受信する第2の無線通信装置とを具備する無線通信システムにおける無線通信方法であって、
     前記第1の無線通信装置が、自装置が備える複数のアンテナであって、各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる複数のアンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信する第1の過程と、
     前記第2の無線通信装置が、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記第1の無線通信装置による送信データの伝送に用いる伝搬路を決定する第2の過程と
     を有することを特徴とする無線通信方法。
    A first wireless communication apparatus that transmits a signal using a frequency band configured from a plurality of LTE system frequency bands; and a second wireless communication apparatus that receives a signal transmitted by the first wireless communication apparatus. A wireless communication method in a wireless communication system comprising:
    The first wireless communication apparatus is a plurality of antennas included in the first apparatus, and sequentially switches a plurality of antennas to which any one of the frequency bands of the LTE system is assigned, and transmits a reference signal for propagation path measurement. A first process of arranging and transmitting;
    The second wireless communication apparatus measures, for each of the antennas, the propagation path characteristic of the frequency band of the LTE system allocated to the antenna, using the propagation path measurement reference signal. And a second step of determining a propagation path used for transmission of transmission data by the first wireless communication device.
  9.  複数のアンテナを備え、複数のLTEシステムの周波数帯域を用いて信号を送信する無線通信装置のコンピュータを、
     各々に前記LTEシステムの周波数帯域のいずれか1つが割当てられる前記アンテナを順次切り替えて、伝搬路測定用参照信号を配置して送信する手段
     として機能させるためのプログラム。
    A wireless communication device computer comprising a plurality of antennas and transmitting signals using frequency bands of a plurality of LTE systems,
    A program for functioning as means for sequentially switching the antennas to which any one of the frequency bands of the LTE system is assigned and arranging and transmitting a reference signal for propagation path measurement.
  10.  複数のアンテナを備える他の無線通信装置から、複数のLTEシステムの周波数帯域のうち各々の前記アンテナに割当てられたLTEシステムの周波数帯域で送信された伝搬路測定用参照信号を受信し、前記伝搬路測定用参照信号を用いて、各々の前記アンテナについて、当該アンテナに割当てられた前記LTEシステムの周波数帯域の伝搬路特性を測定し、該測定結果に基づき、前記他の無線通信装置による送信データの伝送に用いる伝搬路を決定する無線通信装置のコンピュータを、
     前記他の無線通信装置が前記アンテナの各々から前記伝搬路測定用参照信号を送信する前記LTEシステムの周波数帯域と送信タイミングとを、前記アンテナを順次切り替えて伝搬路測定用参照信号を配置して送信するように決定し、制御情報として前記他の無線通信装置に通知する手段
     として機能させるためのプログラム。
    Receiving a propagation path measurement reference signal transmitted in a frequency band of the LTE system assigned to each of the antennas among a plurality of frequency bands of the LTE system from another wireless communication apparatus having a plurality of antennas; For each of the antennas, a channel characteristic of the frequency band of the LTE system allocated to the antenna is measured using a path measurement reference signal, and based on the measurement result, transmission data by the other wireless communication device A wireless communication device computer for determining a propagation path used for transmission of
    The other wireless communication device transmits the propagation path measurement reference signal from each of the antennas, and arranges the propagation path measurement reference signal by sequentially switching the antenna between the frequency band and the transmission timing of the LTE system. A program for deciding to transmit and functioning as means for notifying the other wireless communication device as control information.
PCT/JP2010/001178 2009-02-23 2010-02-23 Wireless communication system, wireless communication method, wireless communication device, and program WO2010095468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-039612 2009-02-23
JP2009039612 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095468A1 true WO2010095468A1 (en) 2010-08-26

Family

ID=42633755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001178 WO2010095468A1 (en) 2009-02-23 2010-02-23 Wireless communication system, wireless communication method, wireless communication device, and program

Country Status (1)

Country Link
WO (1) WO2010095468A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #58, R1-093189 [online], 2009.08.24", article SHARP: "SRS Options for LTE-A UL multi-antenna transmission" *
SAMSUNG: "SRS Transmission Issues for LTE-A", 3GPP TSG RAN WG1 #56, R1-090617, 9 February 2009 (2009-02-09), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_56/Docs/R1-090617.zip> [retrieved on 20100513] *

Similar Documents

Publication Publication Date Title
EP3410772B1 (en) Base station, terminal, and communication method
US10965415B2 (en) Method for assigning PTRS for phase noise removal in wireless communication system, and device therefor
US10397917B2 (en) Method and arrangement for configuring CSI measurements
US10517081B2 (en) Initializing reference signal generation in wireless networks
CN108282324B (en) Method and node in a wireless communication system
RU2419232C2 (en) Signal detection for wireless communication systems
US11329761B2 (en) Base station apparatus, terminal apparatus, and communication method
RU2721169C2 (en) Harmonization methods between transmission modes based on crs and dm-rs, in unlicensed spectrum
US9178680B2 (en) Control signaling for downlink coordinated multipoint wireless communication
CN110050452B (en) Base station device, terminal device, communication method, and integrated circuit
CN102754502B (en) Mobile station apparatus, communication means, integrated circuit and wireless communication system
CN110603873A (en) Base station device, terminal device, communication method, and integrated circuit
CN110574418A (en) Base station device, terminal device, communication method, and integrated circuit
EP3484064A2 (en) Base station device, terminal device, and communication method
JP6251754B2 (en) Method of selecting a virtual carrier for machine type communication based on mobile communication terminal device and channel state measurement
CN109792723B (en) Transmitting radio device, receiving radio device and corresponding methods for communication using reference signals
WO2012150687A1 (en) User terminal, wireless base station, downlink control channel reception method, and mobile communication system
EP3639443B1 (en) Transmission or reception of a reference signal in a wireless communication system
CN109964466B (en) Parameter set dependent downlink control channel mapping
US8543149B2 (en) Message-based approach for improved interference power estimation
WO2014077742A1 (en) Methods and apparatus for reference signal antenna mapping configuration
CN110999364A (en) Communication device and communication method
CN110999242A (en) Base station device and communication method
WO2010095468A1 (en) Wireless communication system, wireless communication method, wireless communication device, and program
US20220141071A1 (en) Terminal apparatus, base station apparatus, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743597

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP