WO2010095398A1 - Corona discharge detection system by means of artificial satellite images and image analysis device thereof - Google Patents

Corona discharge detection system by means of artificial satellite images and image analysis device thereof Download PDF

Info

Publication number
WO2010095398A1
WO2010095398A1 PCT/JP2010/000832 JP2010000832W WO2010095398A1 WO 2010095398 A1 WO2010095398 A1 WO 2010095398A1 JP 2010000832 W JP2010000832 W JP 2010000832W WO 2010095398 A1 WO2010095398 A1 WO 2010095398A1
Authority
WO
WIPO (PCT)
Prior art keywords
corona discharge
corona
artificial satellite
detection means
ultraviolet rays
Prior art date
Application number
PCT/JP2010/000832
Other languages
French (fr)
Japanese (ja)
Inventor
園部武雄
鈴木康介
Original Assignee
一般社団法人つくば電磁界研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人つくば電磁界研究機構 filed Critical 一般社団法人つくば電磁界研究機構
Publication of WO2010095398A1 publication Critical patent/WO2010095398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1218Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using optical methods; using charged particle, e.g. electron, beams or X-rays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the present invention relates to a corona discharge detection system based on an artificial satellite image and an image analysis apparatus therefor, and more particularly to a corona discharge detection system that analyzes a satellite image and identifies a location where a corona discharge has occurred in a transmission line network.
  • FIG. 6 is a basic configuration diagram of a large-scale power system.
  • a large-scale power system is basically composed of facilities having functions of generating, transporting and distributing power.
  • the power system system has a distribution facility consisting of a power plant and transmission lines, substations, distribution lines, etc. as its main components, and power supply / communication equipment corresponding to the neural system for maintaining normal operating conditions, protection / A control device is provided (see Non-Patent Document 1, etc.).
  • the power system includes power plants G1, G2,..., Gn, power transmission lines H1, H2,..., Hk, substations T1, T2,. , Cj, transmission lines D1, D2,..., Dh to the distribution system, and distribution systems U1, U2,.
  • the power plants G1, G2,..., Gn are composed of nuclear power plants, hydroelectric power plants, thermal power plants, and the like. These power plants will be built away from the large cities that are in demand because of the difficulty of location.
  • the generated electric power is transformed into a high voltage (500 KV, 275 KV, 220 KV, 187 KV, etc.) in order to reduce transmission loss, and is transmitted to the suburbs of large cities by power transmission lines H1, H2,.
  • the electric power transmitted to the suburbs of large cities is integrally linked by substations T1, T2,..., Tm, and transmission lines C1, C2,. This is to eliminate the imbalance in supply and demand in each region and to supply economically stable power by integrating with various power sources in the system.
  • the integrated power is transformed into a low voltage (154 KV to 22 KV) via the substations T1, T2,..., Tm, and the distribution system at the transmission lines D1, D2,. Power is transmitted to U1, U2,..., Ua and supplied to each consumer.
  • the insulators of electric power facilities ensure safety against ground faults by determining the number and the number of insulators on the assumption of the amount of salt from the coast according to the installation location.
  • corona discharge occurs due to weather conditions. Further, corona discharge is characterized in that the electric field voltage is lowered when the discharge starts, and it lasts for a long time.
  • corona discharge occurs from electrical equipment such as wires and insulators to which high voltage is applied, noise and radio wave interference and ultraviolet rays generated by corona discharge not only affect the living environment but also hinder the efficiency of power transportation. To do. Prevention and reduction of such corona discharge is an important issue for electric power companies.
  • Corona discharge is a discharge phenomenon induced by a strong electric field in the vicinity of the surface of a high-voltage power applying body such as an electric wire or insulator, and generates electromagnetic waves including ultraviolet rays in a wide frequency band and generates sound waves.
  • the inventor has proposed to detect the occurrence of corona discharge in a power transmission line by installing an ultraviolet detection element in the vicinity of a person's residence (see Patent Document 1, etc.).
  • Non-Patent Document 1 The Institute of Electrical Engineers of Japan "Electrical Engineering Handbook 6th Edition” 485 to 486 pages, 1005 to 1023 pages, 1225 to 1226 pages.
  • Non-Patent Document 2 The Institute of Electrical Engineers of Japan, “Ionized Gas Theory”, pages 28-51, pages 103-114.
  • the power system is distributed over a very wide range. It is very difficult to monitor all the power facilities that constitute the power system. It was also difficult to monitor where and when corona discharge occurred during the entire operation of the power system.
  • An artificial satellite having a device for photographing a power facility network on the surface of the earth and transmitting the captured image through a communication line, and a corona discharge capable of identifying from the artificial satellite where the corona discharge has occurred in the power facility network
  • a corona discharge detection system comprising: a detection unit; and an image analysis device that receives and analyzes an image transmitted from the artificial satellite for information on a location where the corona discharge specified by the corona discharge detection unit occurs.
  • the power equipment network on the surface of the earth is photographed by an artificial satellite, and the photographed image is transmitted through a communication line.
  • the location where the corona discharge occurs in the power equipment network can be identified from the artificial satellite by the corona discharge detection means.
  • Information on the location where the corona discharge specified by the corona discharge detection means is transmitted from the artificial satellite as part of the image information.
  • the power equipment network spans a wide area, and it is very difficult to always observe all areas. Since various types of earth observation satellites are currently operating and the return cycle is from one day to several days, artificial satellites can monitor a power facility network in a wide area in a short time.
  • ultraviolet rays due to corona discharge are generated because the insulation is partially destroyed in the atmosphere.
  • the dielectric breakdown causes separation of electrons and cations, which are accelerated by high voltage and collide with molecules in the atmosphere to emit ultraviolet rays. The phenomenon may occur in a very fine part.
  • corona discharge detection means is provided to detect corona discharge indirectly.
  • Various types of corona discharge detection means can be employed as described below.
  • the ultraviolet rays generated by the corona discharge according to the present invention are UVC and have a wavelength of 195 nm to 280 nm. This is because ultraviolet rays derived from sunlight are blocked by the ozone layer or the like and do not reach the surface of the earth, so that ultraviolet rays caused by corona discharge can be distinguished from ultraviolet rays caused by sunlight.
  • corona detection means includes an appliance that emits fluorescence or phosphorescence when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  • the invention described in (2) is a corona detection means in which a coating that emits fluorescence or phosphorescence is applied when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  • the invention described in (3) An instrument that emits fluorescence or phosphorescence when attached with ultraviolet rays generated by electric discharge is attached.
  • a paint that emits fluorescence when irradiated with ultraviolet rays generated by corona discharge it may emit white light such as calcium halophosphate and calcium zinc phosphate used in fluorescent lamps.
  • Eurobium-activated yttrium oxide having a fluorescent color of orange-red or magnesium fluoride germanate having a fluorescent color of deep red is preferable, but is not limited thereto.
  • benzophenone can be used as the phosphorescent paint.
  • the object to be applied is preferably a transmission tower, insulator, substation equipment, etc. that can secure a size that can be identified from an artificial satellite and that may cause corona discharge.
  • a device that emits fluorescence or phosphorescence when irradiated with ultraviolet rays generated by corona discharge is attached to the power facility with a configuration that does not supply power, for example, a device that has substantially the same appearance as a commercially available fluorescent lamp. It is economical to be a thing.
  • a fluorescent tube coated with europium-activated yttrium oxide whose fluorescent color is orange-red or magnesium fluoride germanate whose fluorescent color is deep red is desirable so that it can be distinguished from other light when observed at night. It is not limited to this. It is desirable to make a specific shape of the fluorescent tube by combining a plurality of ring-shaped and rod-shaped tubes so that they can be easily identified from an artificial satellite.
  • corona discharge detection system wherein the corona detection means is applied with a paint that changes color when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  • the corona detection means is a power facility coated with a photocatalyst.
  • the inventions described in (4) to (6) are obtained by applying a paint that changes color when the power equipment is irradiated with ultraviolet rays generated by corona discharge. Since corona discharge often occurs when humidity is high, it is often impossible to observe from an artificial satellite because it is blocked by clouds. If a coating with a coating that changes color when irradiated with ultraviolet rays is used, corona discharge often occurs and the location to be maintained can be specified.
  • the corona detection means is a power facility coated with a photocatalyst.
  • the photocatalyst is coated on the electric power equipment, the spot exposed to the light is removed due to the self-cleaning effect of the photocatalyst, so that it is possible to grasp the place where the light is surely received from a distance.
  • the photocatalyst that reacts with visible light has an effect of preventing the occurrence of corona discharge by applying contamination to an insulator or the like, so that a portion contaminated by salt damage is cleaned.
  • titanium oxide which is often used for photocatalysts, produces a photocatalytic effect with so-called black light which is ultraviolet light of 410 nm or less. Research has been done on imparting visible light responsiveness of titanium oxide by doping various transition metals so that it can react even with visible light. See page 14 of the company).
  • the present invention it is necessary to distinguish between the ultraviolet rays caused by corona discharge observed from an artificial satellite and the ultraviolet rays caused by sunlight, which have been stained and discolored. Therefore, by using a photocatalyst that reacts with ultraviolet rays generated by corona discharge, if the contamination is removed by ultraviolet rays due to corona discharge, the difference can be detected by detecting the difference.
  • a photocatalyst that reacts with ultraviolet rays generated by corona discharge a photocatalyst having a band gap from a valence band to a conduction band of 3.0 eV or more is desirable. Titanium oxide (TiO 2 ) is specifically desirable, but is not limited thereto.
  • corona discharge detection system wherein the corona detection means has planted a plant that changes color when irradiated with ultraviolet rays generated by corona discharge, in the vicinity of the power equipment network.
  • a plant that changes color when irradiated with ultraviolet rays generated by corona discharge is planted in the vicinity of the power equipment network, and it is detected from an image from an artificial satellite that the plant has changed color. Detect what is happening.
  • An image analysis device used in a corona discharge detection system based on an artificial satellite image the artificial satellite having a device for photographing a power facility network on the surface of the earth and transmitting the photographed image through a communication line, and the power facility Corona discharge detection means that can identify from the satellite where the corona discharge has occurred on the network, and an image transmitted from the artificial satellite that receives information on the location of the corona discharge identified by the corona discharge detection means
  • An image analysis device that performs analysis.
  • the invention described in (8) is an image analysis device used for a corona discharge detection system based on an artificial satellite image.
  • the image analysis apparatus of the present invention for the image analysis apparatuses (1) to (7), the same effects as described above can be exhibited.
  • the power equipment network extends over a wide area, and it is very difficult to always observe all areas. Since various types of earth observation satellites are currently operating and the return cycle is from one day to several days, artificial satellites can monitor a power facility network in a wide area in a short time.
  • ultraviolet rays due to corona discharge are generated because the insulation is partially destroyed in the atmosphere. In many cases, the dielectric breakdown causes separation of electrons and cations, which are accelerated by high voltage and collide with molecules in the atmosphere to emit ultraviolet rays. The phenomenon may occur in a very fine part. Since the resolution of the image analysis by the earth observation satellite currently in practical use is about 0.5 m, it is difficult to directly detect the corona discharge. Therefore, by providing corona discharge detection means and indirectly detecting the corona discharge, it is possible to monitor the state of occurrence of the corona discharge in the power equipment network extending over a wide area.
  • FIG. 1 It is a system configuration figure of an embodiment of a corona discharge detection system by an artificial satellite image of the present invention. It is a figure which shows the corona detection means by application
  • FIG. 1 is a system configuration diagram of an embodiment of a corona discharge detection system using artificial satellite images according to the present invention.
  • FIG. 2 is a diagram showing a corona detection means by applying the paint of the present invention.
  • a corona discharge occurred in the artificial satellite 110 having a device for photographing the power equipment network 152 on the earth surface 150 and transmitting the photographed image through a communication line, and the power equipment network 152.
  • Corona discharge detection means 156 that can identify the location from the artificial satellite 110, an antenna 120 that receives an image transmitted from the artificial satellite 110, and information on the location of the corona discharge identified by the corona discharge detection means 156, and a base station And 130, and an image analysis device 140 for analyzing the received image.
  • the earth observation satellite WorldView-1 currently in operation can be used.
  • an image analysis system of Vision Tech Co., Ltd. can be used as the image analysis device 140. This is because the regression period is 1.7 days and the resolution is 1 m or less.
  • FIG. 2 shows an example of corona detection means by applying paint to a steel tower 153 for a high-voltage power transmission line that is a part of the power equipment network 152.
  • the high-voltage power transmission tower 153 is vertically arranged in an overhead ground wire 159 and a two-line transmission circuit for transmitting three-phase alternating current, and 154U1, 154V1, 154W1, 154U2, 154V2, and 154W2. It is usual that power is transmitted through a wire.
  • Each transmission line is often suspended by a suspension insulator 158.
  • the length of the column that divides the two lines and suspends each transmission line is 4.8 to 6.3 m.
  • a paint that emits fluorescence when irradiated with ultraviolet rays generated by corona discharge it may emit white light such as calcium halophosphate and calcium zinc phosphate used in fluorescent lamps.
  • Eurobium-activated yttrium oxide having a fluorescent color of orange-red or magnesium fluoride germanate having a fluorescent color of deep red is preferable, but is not limited thereto.
  • benzophenone can be used as the phosphorescent paint.
  • the equipment that emits fluorescence or phosphorescence when irradiated with ultraviolet rays generated by corona discharge is attached to the power equipment in a configuration that does not supply power with the same appearance as a commercially available fluorescent lamp. It is economical to be a thing.
  • a fluorescent tube coated with europium-activated yttrium oxide whose fluorescent color is orange-red or magnesium fluoride germanate whose fluorescent color is deep red is desirable so that it can be distinguished from other light when observed at night. It is not limited to this. It is desirable to make a specific shape of the fluorescent tube by combining a plurality of ring-shaped and rod-shaped tubes so that they can be easily identified from an artificial satellite.
  • the location where the corona discharge from the artificial satellite is generated can be identified. Identify where the corona discharge occurred and provide information to the utility. The power company that is provided with the information can systematically investigate the site and eliminate the cause of corona discharge.
  • Example 2 is an example in which discoloration due to ultraviolet rays due to corona discharge is detected from an image from an artificial satellite in a power facility or the like. In particular, it can be detected effectively by utilizing a photocatalyst developed in recent years. This embodiment is advantageous in that it can detect that a corona discharge has occurred when the weather conditions change even when the satellite cannot be observed due to clouds or the like.
  • FIG. 3 is a diagram showing the corona detection means using the photocatalyst of the present invention
  • FIG. 4 is a diagram for explaining the principle of the photocatalyst.
  • the corona detection means using the photocatalyst according to the present invention has a high-voltage transmission line 254U2 suspended from a long tube insulator 258A, 258B, 258C and a long tube insulator 258D, 258E, 258F. It is effective in the case.
  • the photocatalyst that has made remarkable progress in recent years is that, when titanium oxide, an oxide semiconductor, absorbs light, electrons in the valence band are excited to the conduction band, and some of the holes and conduction electrons are combined. Although generating heat, these carriers other than the recombination process diffuse and reach the surface where they cause a chemical reaction.
  • titanium oxide it is known that this photoexcitation is a transition from the oxygen 2p orbital to the titanium 3d orbital, and its band gap is 3.2 eV, an anatase type often used as a photocatalyst, and a high temperature stable phase rutile.
  • the mold is 3.0 eV.
  • Ultraviolet rays from corona discharge include short ultraviolet rays that are not included in the ultraviolet rays when sunlight reaches the earth's surface.
  • titanium oxide is doped with a small amount of impurities so that it reacts with ordinary sunlight.
  • the photocatalyst used in the present invention needs to be distinguished as to whether it has been stained and discolored by ultraviolet rays due to corona discharge observed from an artificial satellite or ultraviolet rays due to sunlight. Therefore, by using a photocatalyst that reacts with ultraviolet rays generated by corona discharge, if the contamination is removed by ultraviolet rays due to corona discharge, the difference can be detected by detecting the difference.
  • a photocatalyst that reacts with ultraviolet rays generated by corona discharge As a photocatalyst that reacts with ultraviolet rays generated by corona discharge, a photocatalyst that has a band gap from a valence band to a conduction band of 3.0 eV or more and reacts with dark ultraviolet rays is a long tube, and 258A, 258B, 258C, 258D, 258E 258F, etc.
  • the photocatalyst reacts to remove contaminants on the surfaces of the long tube insulators 258A, 258B, 258C and the long tube insulators 258D, 258E, 258F, and becomes white and clean. Therefore, it is possible to detect even an image from an artificial satellite.
  • corona discharge often occurs due to salt damage in which salt is attached to the insulator.
  • a photocatalyst that reacts to sunlight is coated on long insulators 258C and 258D that are close to the transmission line where creeping discharge is likely to occur, and a photocatalyst that reacts to corona discharge on other insulators. Can be coated. Even in this case, it can be detected that a corona discharge has occurred from an image observed from an artificial satellite.
  • Example 3 is an example in which a plant discoloration due to ultraviolet rays due to corona discharge is detected from an image from an artificial satellite in a power facility or the like.
  • a plant discoloration due to ultraviolet rays due to corona discharge is detected from an image from an artificial satellite in a power facility or the like.
  • research on UV-resistant plants has been progressing in recent years, and it can be detected from artificial satellites due to the shape of letters to be planted by mixing B region UV-resistant mutant plants with other plants (special characteristics). Open 2007-228922 etc.). Even in this embodiment, it is advantageous that it is possible to detect that a corona discharge has occurred when the weather conditions change even when observation from an artificial satellite is not possible due to clouds or the like.
  • FIG. 5 is a diagram showing corona detection means by the plant of the present invention.
  • a B region ultraviolet resistant mutant plant group 310 and a plant group 320 weak to B region ultraviolet light are planted on the land serving as the foundation of the high-voltage power transmission line.
  • the plant group 320 that is sensitive to B region ultraviolet rays changes color, so it is possible to detect that corona discharge has occurred even from an image from an artificial satellite.
  • a plant group 340 that is vulnerable to B region ultraviolet rays in the shape of letters may be planted in the B region ultraviolet resistant mutant plant group 330.
  • an Arabidopsis B region ultraviolet resistant mutant plant can be employed (see JP2007-228922).
  • other B region ultraviolet resistant mutant plants such as rice may be used.
  • the technical scope of this invention is not limited to the range as described in the said embodiment.
  • the corona discharge detection means has been described in the example of the fluorescent paint, the photocatalyst, and the plant planted in the vicinity, but other means may be used as long as it can be detected from the satellite image.
  • Various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

Abstract

Provided is a corona discharge detection system and image analysis device thereof which monitors an electric power system distributed over a wide area, identifies equipment which is generating corona discharge, and provides information for appropriate electric power system inspection. The corona discharge detection system is equipped with an artificial satellite (110) which images an electric power system network (152) on the surface of the earth (150) and which possesses a device which transmits imaged images via a communication link, a corona discharge detection means which can detect from the artificial satellite (110) the locations in the electric power system network (152) where corona discharge is generated, and an image analysis device (140) which receives the images transmitted by the artificial satellite (110) and analyzes the information on the locations where corona discharge is generated as detected by the corona discharge detection means.

Description

人工衛星画像によるコロナ放電検出システム及びその画像解析装置Corona discharge detection system using satellite image and image analysis device
 本発明は、人工衛星画像によるコロナ放電検出システム及びその画像解析装置に関し、より詳しくは人工衛星画像を解析して送電線網におけるコロナ放電が発生した箇所を特定するコロナ放電検出システムに関する。 The present invention relates to a corona discharge detection system based on an artificial satellite image and an image analysis apparatus therefor, and more particularly to a corona discharge detection system that analyzes a satellite image and identifies a location where a corona discharge has occurred in a transmission line network.
図6は、大規模な電力系統システムの基本構成図である。図6に示すように、大規模な電力系統システムは、基本的には電力の発生、輸送と分配機能を持つ設備から構成される。すなわち、電力系統システムは発電所と送電線・変電所・配電線等から成る流通設備を主構成要素として、それに正常な運転状態を維持するための神経系統に相当する給電・通信装置、保護・制御装置などを備えている(非特許文献1等参照)。 FIG. 6 is a basic configuration diagram of a large-scale power system. As shown in FIG. 6, a large-scale power system is basically composed of facilities having functions of generating, transporting and distributing power. In other words, the power system system has a distribution facility consisting of a power plant and transmission lines, substations, distribution lines, etc. as its main components, and power supply / communication equipment corresponding to the neural system for maintaining normal operating conditions, protection / A control device is provided (see Non-Patent Document 1, etc.).
図6に示すように、電力系統システムは発電所G1、G2、・・・、Gn、電源系統の送電線H1、H2、・・・、Hk、変電所T1、T2、・・・、Tm,連係系統の送電線C1、C2、・・・、Cj、配電系統への送電線D1、D2、・・・、Dh、配電系統U1、U2、・・・、Uaを主要構成要素とする。発電所G1、G2、・・・、Gnは原子力発電所、水力発電所、火力発電所等で構成される。これらの発電所は立地難のため需要地である大都市から遠くなれたところに建設される。発電された電力は送電損失を少なくするため高電圧(500KV,275KV,220KV,187KV等)に変電され電源系統の送電線H1、H2、・・・、Hkによって大都市近郊まで送電される。大都市近郊まで送電された電力は変電所T1、T2、・・・、Tm,連係系統の送電線C1、C2、・・・、Cj、により一体的に連係される。各地域の需給の不均衡を解消するとともに、系統内の各種電源と統合して経済的に安定した電力を供給するためである。一体化された電力は変電所T1、T2、・・・、Tm,を経て低い電圧に変電されて(154KV~22KV)配電系統への送電線D1、D2、・・・、Dhにて配電系統U1、U2、・・・、Uaに送電され各需要家に供給される。 As shown in FIG. 6, the power system includes power plants G1, G2,..., Gn, power transmission lines H1, H2,..., Hk, substations T1, T2,. , Cj, transmission lines D1, D2,..., Dh to the distribution system, and distribution systems U1, U2,. The power plants G1, G2,..., Gn are composed of nuclear power plants, hydroelectric power plants, thermal power plants, and the like. These power plants will be built away from the large cities that are in demand because of the difficulty of location. The generated electric power is transformed into a high voltage (500 KV, 275 KV, 220 KV, 187 KV, etc.) in order to reduce transmission loss, and is transmitted to the suburbs of large cities by power transmission lines H1, H2,. The electric power transmitted to the suburbs of large cities is integrally linked by substations T1, T2,..., Tm, and transmission lines C1, C2,. This is to eliminate the imbalance in supply and demand in each region and to supply economically stable power by integrating with various power sources in the system. The integrated power is transformed into a low voltage (154 KV to 22 KV) via the substations T1, T2,..., Tm, and the distribution system at the transmission lines D1, D2,. Power is transmitted to U1, U2,..., Ua and supplied to each consumer.
電力系統システムについては永年研究がなされ、安定した電力の供給がなされて、今日の文明社会の重要な基盤となっている。高電圧で電力を送配電する場合に発生するコロナ放電についても研究がなされ、実用化されている送配電システムではコロナ放電の発生は通常の気象条件では発生しないよう配慮されている。 Electric power system systems have been studied for many years, and a stable supply of electric power has become an important foundation for today's civilized society. Research has also been conducted on corona discharge that occurs when power is transmitted and distributed at a high voltage. In practical power transmission and distribution systems, consideration is given to preventing corona discharge from occurring under normal weather conditions.
また、電力電気設備のがいしは、設置場所に応じて海岸からの飛来塩分量を想定してがいし装置の個数及び連数等を定めることで、地絡障害に対して安全を確保している。 In addition, the insulators of electric power facilities ensure safety against ground faults by determining the number and the number of insulators on the assumption of the amount of salt from the coast according to the installation location.
がいし装置に飛来塩分が付着して汚損が蓄積すると、がいし装置の表面でストリーマ(気中コロナ)及び沿面コロナ等の放電が誘発されやすくなり、最悪の場合、局部アークががいし連全体に繋がり、絶縁不良が発生し、地絡障害につながることがある。 When flying salt adheres to the insulator device and accumulates fouling, discharge of streamers (air corona) and creeping corona tends to be induced on the surface of the insulator device, and in the worst case, a local arc is generated and connected to the whole series. Insulation failure may occur and lead to ground fault.
 このため、がいし装置に付着している塩分量を監視する必要がある。高電圧電線への接近や高所作業は危険性を伴い、また、多数のがいしを点検する必要があることから、多くの人員と時間を必要とする。とくに、台風の襲来や接近には、強風のために広範囲に飛来塩分が増大することから、短時間に集中して点検作業を行なう必要がある。作業が一時的に輻輳するので、効率的な点検作業方法の開発が求められてきた。 For this reason, it is necessary to monitor the amount of salt adhering to the insulator device. Access to high-voltage wires and work at high places are dangerous, and many insulators need to be inspected, which requires a lot of personnel and time. In particular, when a typhoon strikes and approaches, the amount of incoming salt increases over a wide area due to strong winds, so it is necessary to concentrate on the inspection work in a short time. Since work is temporarily congested, the development of efficient inspection work methods has been sought.
 一方、送電線が永年の使用により表面が劣化した場合、気象条件によりコロナ放電が発生する。また、コロナ放電は放電が開始することにより電界電圧が下がることに特徴があり長い時間持続する。 On the other hand, when the surface of the transmission line deteriorates due to long-term use, corona discharge occurs due to weather conditions. Further, corona discharge is characterized in that the electric field voltage is lowered when the discharge starts, and it lasts for a long time.
 高電圧が印加されている電線及びがいし等の電気設備からコロナ放電が発生すると、騒音障害及び電波障害並びにコロナ放電により発生する紫外線により生活環境へ影響を及ぼすばかりでなく、電力輸送の効率を阻害する。このようなコロナ放電の防止及び軽減は、電力事業者にとって重要な課題となっている。 When corona discharge occurs from electrical equipment such as wires and insulators to which high voltage is applied, noise and radio wave interference and ultraviolet rays generated by corona discharge not only affect the living environment but also hinder the efficiency of power transportation. To do. Prevention and reduction of such corona discharge is an important issue for electric power companies.
 コロナ放電は、電線やがいし装置などの高圧課電体の表面付近における強い電界が誘導する放電現象であり、広い周波数帯域の紫外線を含む電磁波を発生し、また、音波を発生する。 Corona discharge is a discharge phenomenon induced by a strong electric field in the vicinity of the surface of a high-voltage power applying body such as an electric wire or insulator, and generates electromagnetic waves including ultraviolet rays in a wide frequency band and generates sound waves.
 こうした性質を利用し、電波受信機又は超音波検知器を用いた観測及び可視カメラによる撮影などが行われてきた。従来の超音波検出法では、コロナ放電発生部位が特定しにくいこと、また、可視カメラによる方法では、昼間は太陽からの光が強く発生部位が視認できず、夜間撮影に限られるなどの問題があった。 Taking advantage of these properties, observations using radio wave receivers or ultrasonic detectors and photographing with a visible camera have been performed. In conventional ultrasonic detection methods, it is difficult to identify the location where the corona discharge occurs, and in the method using a visible camera, the light from the sun is strong during the day and the location is not visible. there were.
 発明者は、人の居住する近くに紫外線検出素子を設置して、送電線においてコロナ放電が発生したことを検出することを提案した(特許文献1等参照)。 The inventor has proposed to detect the occurrence of corona discharge in a power transmission line by installing an ultraviolet detection element in the vicinity of a person's residence (see Patent Document 1, etc.).
 また、電気設備の汚損・不良箇所とその程度を定量的に判定できる提案もなされている(特許文献2等参照)。 In addition, proposals have been made that can quantitatively determine the degree of contamination / defects in electrical equipment and their extent (see Patent Document 2, etc.).
WO2005/043708号公報WO2005 / 043708 特開2006-10365号公報JP 2006-10365 A
 非特許文献1:電気学会「電気工学ハンドブック 第6版」
485~486ページ、1005~1023ページ、1225~1226ページ。
 非特許文献2:電気学会「電離気体論」 28~51ページ、103~114ページ。
Non-Patent Document 1: The Institute of Electrical Engineers of Japan "Electrical Engineering Handbook 6th Edition"
485 to 486 pages, 1005 to 1023 pages, 1225 to 1226 pages.
Non-Patent Document 2: The Institute of Electrical Engineers of Japan, “Ionized Gas Theory”, pages 28-51, pages 103-114.
 しかし、電力系統システムは非常に広い範囲に分散している。電力系統システムを構成するすべての電力設備等を監視することは非常に難しい。また、どこでいつコロナ放電が発生しているか電力系統システムを運用している全時間中監視することも至難の業であった。 However, the power system is distributed over a very wide range. It is very difficult to monitor all the power facilities that constitute the power system. It was also difficult to monitor where and when corona discharge occurred during the entire operation of the power system.
 本発明は、広範囲に分散する電力設備等を監視して、コロナ放電を発生している設備を特定し、電力設備点検を適切に行う情報を提供するコロナ放電検出システムを提供することを目的とする。 It is an object of the present invention to provide a corona discharge detection system that monitors power facilities and the like that are widely distributed, identifies facilities that generate corona discharge, and provides information for appropriately performing power facility inspections. To do.
上述した課題を解決するため、発明者らは鋭意検討した結果、人工衛星より送信される画像を解析することの有用性に着目して、以下の発明を完成するに至った。 In order to solve the above-described problems, the inventors have intensively studied and, as a result, paid attention to the usefulness of analyzing an image transmitted from an artificial satellite, and have completed the following invention.
(1) 地球表面の電力設備網を撮影し、撮影した画像を通信回線により送信する装置を有する人工衛星と、前記電力設備網にてコロナ放電が発生した場所を前記人工衛星から特定できるコロナ放電検出手段と、前記コロナ放電検出手段によって特定されたコロナ放電が発生した場所の情報を前記人工衛星から送信された画像を受信して解析する画像解析装置と、を備えたコロナ放電検出システム。 (1) An artificial satellite having a device for photographing a power facility network on the surface of the earth and transmitting the captured image through a communication line, and a corona discharge capable of identifying from the artificial satellite where the corona discharge has occurred in the power facility network A corona discharge detection system comprising: a detection unit; and an image analysis device that receives and analyzes an image transmitted from the artificial satellite for information on a location where the corona discharge specified by the corona discharge detection unit occurs.
 (1)に記載の発明によれば、人工衛星により地球表面の電力設備網を撮影し、撮影した画像を通信回線により送信する。電力設備網にてコロナ放電が発生した場所は、コロナ放電検出手段により人工衛星から特定できる。コロナ放電検出手段によって特定されたコロナ放電が発生した場所の情報は画像情報の一部として人工衛星から送信される。人工衛星から送信された画像を受信して画像解析手段により解析することにより、どこの電力設備にてコロナ放電が検出されたかを特定することができる。 According to the invention described in (1), the power equipment network on the surface of the earth is photographed by an artificial satellite, and the photographed image is transmitted through a communication line. The location where the corona discharge occurs in the power equipment network can be identified from the artificial satellite by the corona discharge detection means. Information on the location where the corona discharge specified by the corona discharge detection means is transmitted from the artificial satellite as part of the image information. By receiving the image transmitted from the artificial satellite and analyzing it by the image analysis means, it is possible to identify in which power facility the corona discharge is detected.
 上述したように、電力設備網は広域にまたがっておりすべての地域を常に観測することは非常に大変である。人工衛星は、現在各種の地球観測衛星が稼働しており、回帰周期が一日から数日であるので、短期間に広域にある電力設備網を監視することができる。 As mentioned above, the power equipment network spans a wide area, and it is very difficult to always observe all areas. Since various types of earth observation satellites are currently operating and the return cycle is from one day to several days, artificial satellites can monitor a power facility network in a wide area in a short time.
 一方、コロナ放電による紫外線は、大気に絶縁が部分的に破壊されるために発生する。絶縁破壊されたことにより電子と陽イオンとに分離され、これが高電圧化で加速されて大気中の分子と衝突して紫外線を放射することが多い。現象的に非常に微細な部分で発生する場合がある。 On the other hand, ultraviolet rays due to corona discharge are generated because the insulation is partially destroyed in the atmosphere. In many cases, the dielectric breakdown causes separation of electrons and cations, which are accelerated by high voltage and collide with molecules in the atmosphere to emit ultraviolet rays. The phenomenon may occur in a very fine part.
 現在の実用化されている地球観測衛星による画像解析では解像度が0.5m程度であるので、直接コロナ放電を検出することは難しい。そこで、コロナ放電検出手段を設けて、間接的にコロナ放電を検出する。コロナ放電検出手段は、下記のように各種のものを採用することができる。 In the image analysis by the earth observation satellite that is currently put into practical use, since the resolution is about 0.5 m, it is difficult to directly detect the corona discharge. Therefore, corona discharge detection means is provided to detect corona discharge indirectly. Various types of corona discharge detection means can be employed as described below.
 なお、本発明にかかるコロナ放電により発生する紫外線とは、UVCであり波長が195nmから280nmである。太陽光に由来する紫外線は、オゾン層などにより遮られて地表には到達しないので、コロナ放電による紫外線と太陽光による紫外線を区別することができるからである。 In addition, the ultraviolet rays generated by the corona discharge according to the present invention are UVC and have a wavelength of 195 nm to 280 nm. This is because ultraviolet rays derived from sunlight are blocked by the ozone layer or the like and do not reach the surface of the earth, so that ultraviolet rays caused by corona discharge can be distinguished from ultraviolet rays caused by sunlight.
(2) 前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する塗料を塗布したことを特徴とする(1)に記載のコロナ放電検出システム。 (2) The corona discharge detection system according to (1), wherein the corona detection means is coated with a paint that emits fluorescence or phosphorescence when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
(3) 前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する器具を付属させたことを特徴とする(1)に記載のコロナ放電検出システム。 (3) The corona discharge detection system according to (1), wherein the corona detection means includes an appliance that emits fluorescence or phosphorescence when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
 (2)に記載の発明は、電力設備にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する塗料を塗布したコロナ検出手段であり、(3)に記載の発明は、電力設備にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する器具を付属させたものである。 The invention described in (2) is a corona detection means in which a coating that emits fluorescence or phosphorescence is applied when the power equipment is irradiated with ultraviolet rays generated by corona discharge. The invention described in (3) An instrument that emits fluorescence or phosphorescence when attached with ultraviolet rays generated by electric discharge is attached.
 コロナ放電により発生する紫外線を照射すると蛍光を発する塗料としては、蛍光ランプに使用されているハロ燐酸カルシウム、燐酸カルシウム亜鉛等の白色の光を発するものでもよいが、夜間で観測した際にほかの光と区別できるように蛍光の色が橙赤であるユーロビウム付活酸化イットリウムまたは蛍光の色が深赤であるフッ化ゲルマニウム酸マグネシウムが望ましいが、これに限られるものではない。また、りん光を発する塗料としては例えば、ベンゾフェノンを使うことができる。塗布する対象は、人工衛星から識別できる大きさを確保でき、コロナ放電が発生する恐れがある送電線の鉄塔、がいし、変電所設備等であることが望ましい。 As a paint that emits fluorescence when irradiated with ultraviolet rays generated by corona discharge, it may emit white light such as calcium halophosphate and calcium zinc phosphate used in fluorescent lamps. Eurobium-activated yttrium oxide having a fluorescent color of orange-red or magnesium fluoride germanate having a fluorescent color of deep red is preferable, but is not limited thereto. Further, for example, benzophenone can be used as the phosphorescent paint. The object to be applied is preferably a transmission tower, insulator, substation equipment, etc. that can secure a size that can be identified from an artificial satellite and that may cause corona discharge.
 電力設備にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する器具は、例えば、市販されている蛍光灯と略同一の外観の器具を、電源を供給しない構成で電力設備に付属させたものであることが経済的である。夜間で観測した際にほかの光と区別できるように蛍光の色が橙赤であるユーロビウム付活酸化イットリウムまたは蛍光の色が深赤であるフッ化ゲルマニウム酸マグネシウムを塗布した蛍光管が望ましいが、これに限られるものではない。蛍光管は、リング状のもの、棒状のものを複数組み合わせて、人工衛星から識別しやすいように特定の形状を作ることが望ましい。 A device that emits fluorescence or phosphorescence when irradiated with ultraviolet rays generated by corona discharge is attached to the power facility with a configuration that does not supply power, for example, a device that has substantially the same appearance as a commercially available fluorescent lamp. It is economical to be a thing. A fluorescent tube coated with europium-activated yttrium oxide whose fluorescent color is orange-red or magnesium fluoride germanate whose fluorescent color is deep red is desirable so that it can be distinguished from other light when observed at night. It is not limited to this. It is desirable to make a specific shape of the fluorescent tube by combining a plurality of ring-shaped and rod-shaped tubes so that they can be easily identified from an artificial satellite.
 (4) 前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射すると変色する塗料を塗布したことを特徴とする(1)に記載のコロナ放電検出システム。
(5) 前記コロナ検出手段は、電力設備に光触媒をコーティングしたことを特徴とする(1)に記載のコロナ放電検出システム。
(4) The corona discharge detection system according to (1), wherein the corona detection means is applied with a paint that changes color when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
(5) The corona discharge detection system according to (1), wherein the corona detection means is a power facility coated with a photocatalyst.
 (6)前記光触媒はコロナ放電により発生する紫外線に反応することを特徴とする(5)に記載のコロナ放電検出システム。 (6) The corona discharge detection system according to (5), wherein the photocatalyst reacts with ultraviolet rays generated by corona discharge.
 (4)から(6)に記載の発明は、電力設備にコロナ放電により発生する紫外線を照射すると変色する塗料を塗布したものである。コロナ放電は、湿度の高い場合に発生することが多いので、人工衛星からは雲にさえぎられて観測できないことが多い。紫外線を照射すると変色する塗料を塗布したものを用いれば、コロナ放電がしばしば発生して保守すべき箇所を特定することができる。 The inventions described in (4) to (6) are obtained by applying a paint that changes color when the power equipment is irradiated with ultraviolet rays generated by corona discharge. Since corona discharge often occurs when humidity is high, it is often impossible to observe from an artificial satellite because it is blocked by clouds. If a coating with a coating that changes color when irradiated with ultraviolet rays is used, corona discharge often occurs and the location to be maintained can be specified.
 また、コロナ検出手段に電力設備に光触媒をコーティングしたものである。電力設備に光触媒をコーティングすると、光触媒のセルフクリーニング効果により光があたった箇所の汚れが取れるため、遠方から見て変化を確実に光があたったところが、把握することができる。 Also, the corona detection means is a power facility coated with a photocatalyst. When the photocatalyst is coated on the electric power equipment, the spot exposed to the light is removed due to the self-cleaning effect of the photocatalyst, so that it is possible to grasp the place where the light is surely received from a distance.
 光触媒には、可視光で反応するように技術開発がなされている。可視光で反応する光触媒は、碍子等に塗布することにより、塩害などで汚染された箇所がクリーニングされるので汚染を防止してコロナ放電が発生しないようにする効果がある。 Technology has been developed for photocatalysts to react with visible light. The photocatalyst that reacts with visible light has an effect of preventing the occurrence of corona discharge by applying contamination to an insulator or the like, so that a portion contaminated by salt damage is cleaned.
 一方、光触媒によく採用される酸化チタン(TiO)は、410nm以下の紫外線であるいわゆるブラックライトで光触媒効果が発生する。これを可視光でも反応するように各種の遷移金属をドーピングすることで酸化チタンの可視光応答性の付与の研究がなされている(藤島昭責任編集「実力養成化学スクール」日本化学会編 丸善株式会社14ページ参照)。 On the other hand, titanium oxide (TiO 2 ), which is often used for photocatalysts, produces a photocatalytic effect with so-called black light which is ultraviolet light of 410 nm or less. Research has been done on imparting visible light responsiveness of titanium oxide by doping various transition metals so that it can react even with visible light. See page 14 of the company).
 本発明では、人工衛星から観測したコロナ放電による紫外線と太陽光による紫外線のどちらで汚れが取れて変色したのか区別する必要がある。したがって、コロナ放電により発生する紫外線に反応する光触媒を用いることにより、コロナ放電による紫外線によりより汚れが取れれば、その差を検出することにより区別することができる。コロナ放電により発生する紫外線に反応する光触媒としては、価電子帯から伝導帯へのバンドギャップが3.0eV以上のものが望ましい。酸化チタン(TiO)が具体的には望ましいが、これに限られるものではない。 In the present invention, it is necessary to distinguish between the ultraviolet rays caused by corona discharge observed from an artificial satellite and the ultraviolet rays caused by sunlight, which have been stained and discolored. Therefore, by using a photocatalyst that reacts with ultraviolet rays generated by corona discharge, if the contamination is removed by ultraviolet rays due to corona discharge, the difference can be detected by detecting the difference. As a photocatalyst that reacts with ultraviolet rays generated by corona discharge, a photocatalyst having a band gap from a valence band to a conduction band of 3.0 eV or more is desirable. Titanium oxide (TiO 2 ) is specifically desirable, but is not limited thereto.
 (7) 前記コロナ検出手段は、コロナ放電により発生する紫外線を照射すると変色する植物を前記電力設備網の近傍に植え付けたことを特徴とする(1)に記載のコロナ放電検出システム。 (7) The corona discharge detection system according to (1), wherein the corona detection means has planted a plant that changes color when irradiated with ultraviolet rays generated by corona discharge, in the vicinity of the power equipment network.
 (7)に記載の発明は、電力設備網の近傍にコロナ放電により発生する紫外線を照射すると変色する植物を植え付けて、植物が変色したことを人工衛星からの画像で検出して、コロナ放電が発生していることを検出する。 In the invention described in (7), a plant that changes color when irradiated with ultraviolet rays generated by corona discharge is planted in the vicinity of the power equipment network, and it is detected from an image from an artificial satellite that the plant has changed color. Detect what is happening.
 電力設備網の近傍には、電力事業者の所有する土地があるので、その土地の上にコロナ放電により発生する紫外線を照射すると変色する植物を植え付けて、植物が変色したことを人工衛星からの画像で検出することができる。植物は電力設備網の所在する気候にも関係するが、現在紫外線抵抗植物の研究がおこなわれており、B領域紫外線抵抗性変位体植物とそれ以外の植物を混合して植えつけることにより、人工衛星から検出することができる(特開2007-228922等参照)。 Since there is a land owned by a power company near the power equipment network, a plant that changes color when irradiated with ultraviolet rays generated by corona discharge is planted on the land, and the plant has changed color from the satellite. It can be detected with an image. Plants are also related to the climate where the power equipment network is located, but research on UV-resistant plants is currently underway. By planting a mixture of B-region UV-resistant displacement plants and other plants, It can be detected from a satellite (see JP 2007-228922 A).
 (8) 人工衛星画像によるコロナ放電検出システムに用いられる画像解析装置であって、地球表面の電力設備網を撮影し、撮影した画像を通信回線により送信する装置を有する人工衛星と、前記電力設備網にてコロナ放電が発生した場所を前記人工衛星から特定できるコロナ放電検出手段と、前記コロナ放電検出手段によって特定されたコロナ放電が発生した場所の情報を前記人工衛星から送信された画像を受信して解析する画像解析装置。 (8) An image analysis device used in a corona discharge detection system based on an artificial satellite image, the artificial satellite having a device for photographing a power facility network on the surface of the earth and transmitting the photographed image through a communication line, and the power facility Corona discharge detection means that can identify from the satellite where the corona discharge has occurred on the network, and an image transmitted from the artificial satellite that receives information on the location of the corona discharge identified by the corona discharge detection means An image analysis device that performs analysis.
 (8)に記載の発明は、人工衛星画像によるコロナ放電検出システムに用いられる画像解析装置である。本発明の画像解析装置を(1)から(7)の画像解析装置に用いることにより、上記で説明したのと同様な効果を発揮することができる。 The invention described in (8) is an image analysis device used for a corona discharge detection system based on an artificial satellite image. By using the image analysis apparatus of the present invention for the image analysis apparatuses (1) to (7), the same effects as described above can be exhibited.
 本発明によれば、電力設備網は広域にまたがっておりすべての地域を常に観測することは非常に大変である。人工衛星は、現在各種の地球観測衛星が稼働しており、回帰周期が一日から数日であるので、短期間に広域にある電力設備網を監視することができる。一方、コロナ放電による紫外線は、大気に絶縁が部分的に破壊されるために発生する。絶縁破壊されたことにより電子と陽イオンとに分離され、これが高電圧化で加速されて大気中の分子と衝突して紫外線を放射することが多い。現象的に非常に微細な部分で発生する場合がある。現在の実用化されている地球観測衛星による画像解析では解像度が0.5m程度であるので、直接コロナ放電を検出することは難しい。そこで、コロナ放電検出手段を設けて、間接的にコロナ放電を検出することにより広域にまたがる電力設備網においてコロナ放電の発生状況を監視することができる。 According to the present invention, the power equipment network extends over a wide area, and it is very difficult to always observe all areas. Since various types of earth observation satellites are currently operating and the return cycle is from one day to several days, artificial satellites can monitor a power facility network in a wide area in a short time. On the other hand, ultraviolet rays due to corona discharge are generated because the insulation is partially destroyed in the atmosphere. In many cases, the dielectric breakdown causes separation of electrons and cations, which are accelerated by high voltage and collide with molecules in the atmosphere to emit ultraviolet rays. The phenomenon may occur in a very fine part. Since the resolution of the image analysis by the earth observation satellite currently in practical use is about 0.5 m, it is difficult to directly detect the corona discharge. Therefore, by providing corona discharge detection means and indirectly detecting the corona discharge, it is possible to monitor the state of occurrence of the corona discharge in the power equipment network extending over a wide area.
本発明の人工衛星画像によるコロナ放電検出システムの実施形態のシステム構成図である。It is a system configuration figure of an embodiment of a corona discharge detection system by an artificial satellite image of the present invention. 本発明の塗料を塗布によるコロナ検出手段を示す図である。It is a figure which shows the corona detection means by application | coating of the coating material of this invention. 本発明の光触媒によるコロナ検出手段を示す図である。It is a figure which shows the corona detection means by the photocatalyst of this invention. 光触媒の原理を説明する図である。It is a figure explaining the principle of a photocatalyst. 本発明の植物によるコロナ検出手段を示す図である。It is a figure which shows the corona detection means by the plant of this invention. 電力系統システムを説明する図である。It is a figure explaining an electric power grid system.
  110 人口衛星
  120 受信アンテナ
  130 基地局
  140 画像解析装置
  150 電力設備網
  152 電力設備
  156 コロナ放電検出手段
DESCRIPTION OF SYMBOLS 110 Artificial satellite 120 Reception antenna 130 Base station 140 Image analysis apparatus 150 Power equipment network 152 Power equipment 156 Corona discharge detection means
 以下、本発明を実施するための最良の形態について、図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. This is merely an example, and the technical scope of the present invention is not limited to this.
 図1は、本発明の人工衛星画像によるコロナ放電検出システムの実施形態のシステム構成図である。図2は、本発明の塗料を塗布によるコロナ検出手段を示す図である。図1及び図2に示すように、地球表面150の電力設備網152を撮影し、撮影した画像を通信回線により送信する装置を有する人工衛星110と、電力設備網152にてコロナ放電が発生した場所を人工衛星110から特定できるコロナ放電検出手段156と、コロナ放電検出手段156によって特定されたコロナ放電が発生した場所の情報を人工衛星110から送信された画像を受信するアンテナ120と、基地局と130と、受信した画像を解析する画像解析装置140と、を有する。 FIG. 1 is a system configuration diagram of an embodiment of a corona discharge detection system using artificial satellite images according to the present invention. FIG. 2 is a diagram showing a corona detection means by applying the paint of the present invention. As shown in FIGS. 1 and 2, a corona discharge occurred in the artificial satellite 110 having a device for photographing the power equipment network 152 on the earth surface 150 and transmitting the photographed image through a communication line, and the power equipment network 152. Corona discharge detection means 156 that can identify the location from the artificial satellite 110, an antenna 120 that receives an image transmitted from the artificial satellite 110, and information on the location of the corona discharge identified by the corona discharge detection means 156, and a base station And 130, and an image analysis device 140 for analyzing the received image.
 人口衛星110は、現在営業されている地球観測衛星WorldView-1を使うことができる。この衛星を使用したシステムとして、例えば、株式会社ビジョンテックの画像解析システムを画像解析装置140として使用することができる。回帰周期が1.7日で1m以下の解像度があるからである。  As the artificial satellite 110, the earth observation satellite WorldView-1 currently in operation can be used. As a system using this satellite, for example, an image analysis system of Vision Tech Co., Ltd. can be used as the image analysis device 140. This is because the regression period is 1.7 days and the resolution is 1 m or less. *
 図2は、電力設備網152の一部である高圧送電線用の鉄塔153に塗料を塗布によるコロナ検出手段の実施例である。図2に示すように、高圧送電線用の鉄塔153は、架空地線159と、3相交流を送電する2回線垂直配列化されており、154U1、154V1、154W1と154U2、154V2、154W2の6本の電線で送電されることが通常行われている。各送電線は、懸垂碍子158で吊下げられていることが多い。2回線を隔て、かつ各送電線をつりさげる支柱の長さ4.8mから6.3mである。したがって、図2の各相の支柱である、156U、156V、156Wにコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する塗料を塗布することにより、人工衛星から観測してもコロナ放電が出ている送電設備を識別することができる。 FIG. 2 shows an example of corona detection means by applying paint to a steel tower 153 for a high-voltage power transmission line that is a part of the power equipment network 152. As shown in FIG. 2, the high-voltage power transmission tower 153 is vertically arranged in an overhead ground wire 159 and a two-line transmission circuit for transmitting three-phase alternating current, and 154U1, 154V1, 154W1, 154U2, 154V2, and 154W2. It is usual that power is transmitted through a wire. Each transmission line is often suspended by a suspension insulator 158. The length of the column that divides the two lines and suspends each transmission line is 4.8 to 6.3 m. Therefore, by irradiating ultraviolet rays generated by corona discharge to the struts 156U, 156V, and 156W of each phase in FIG. 2, by applying a coating that emits fluorescence or phosphorescence, corona discharge is observed even when observed from an artificial satellite. It is possible to identify the power transmission facilities that are out.
 コロナ放電により発生する紫外線を照射すると蛍光を発する塗料としては、蛍光ランプに使用されているハロ燐酸カルシウム、燐酸カルシウム亜鉛等の白色の光を発するものでもよいが、夜間で観測した際にほかの光と区別できるように蛍光の色が橙赤であるユーロビウム付活酸化イットリウムまたは蛍光の色が深赤であるフッ化ゲルマニウム酸マグネシウムが望ましいが、これに限られるものではない。また、りん光を発する塗料としては例えば、ベンゾフェノンを使うことができる。 As a paint that emits fluorescence when irradiated with ultraviolet rays generated by corona discharge, it may emit white light such as calcium halophosphate and calcium zinc phosphate used in fluorescent lamps. Eurobium-activated yttrium oxide having a fluorescent color of orange-red or magnesium fluoride germanate having a fluorescent color of deep red is preferable, but is not limited thereto. Further, for example, benzophenone can be used as the phosphorescent paint.
 また、電力設備等にコロナ放電により発生する紫外線を照射すると蛍光又はりん光を発する器具は、外観が市販されている蛍光灯と同じ形状のもので電源を供給しない構成で電力設備に付属させたものであることが経済的である。夜間で観測した際にほかの光と区別できるように蛍光の色が橙赤であるユーロビウム付活酸化イットリウムまたは蛍光の色が深赤であるフッ化ゲルマニウム酸マグネシウムを塗布した蛍光管が望ましいが、これに限られるものではない。蛍光管は、リング状のもの、棒状のものを複数組み合わせて、人工衛星から識別しやすいように特定の形状を作ることが望ましい。 In addition, the equipment that emits fluorescence or phosphorescence when irradiated with ultraviolet rays generated by corona discharge is attached to the power equipment in a configuration that does not supply power with the same appearance as a commercially available fluorescent lamp. It is economical to be a thing. A fluorescent tube coated with europium-activated yttrium oxide whose fluorescent color is orange-red or magnesium fluoride germanate whose fluorescent color is deep red is desirable so that it can be distinguished from other light when observed at night. It is not limited to this. It is desirable to make a specific shape of the fluorescent tube by combining a plurality of ring-shaped and rod-shaped tubes so that they can be easily identified from an artificial satellite.
 このようにして、人工衛星によるコロナ放電が、発生している場所を特定することができる。コロナ放電が発生した場所を特定して、電力事業者にその情報を提供する。情報を提供された電力事業者は、計画的に現地を調査し、コロナ放電が発生する原因を取り除くことができる。 In this way, the location where the corona discharge from the artificial satellite is generated can be identified. Identify where the corona discharge occurred and provide information to the utility. The power company that is provided with the information can systematically investigate the site and eliminate the cause of corona discharge.
 実施例2は、電力設備等にコロナ放電による紫外線による変色を人工衛星からの画像により検出する例である。特に、近年発達した光触媒を活用することにより、効果的に検出することができる。この実施例では、雲などにより人工衛星から観測できない場合も、気象条件が変化した際にコロナ放電が発生したことを検出できる点が有利である。 Example 2 is an example in which discoloration due to ultraviolet rays due to corona discharge is detected from an image from an artificial satellite in a power facility or the like. In particular, it can be detected effectively by utilizing a photocatalyst developed in recent years. This embodiment is advantageous in that it can detect that a corona discharge has occurred when the weather conditions change even when the satellite cannot be observed due to clouds or the like.
 図3は、本発明の光触媒によるコロナ検出手段を示す図であり、図4は、光触媒の原理を説明する図である。以下これらの図を参照して説明をする。 FIG. 3 is a diagram showing the corona detection means using the photocatalyst of the present invention, and FIG. 4 is a diagram for explaining the principle of the photocatalyst. Hereinafter, description will be made with reference to these drawings.
 本発明による光触媒によるコロナ検出手段は、図3に示すように、高圧送電線254U2を長管がいし258A、258B、258Cと長管がいし258D、258E、258Fとにより送電線254Uが吊り下げられている場合に有効である。 As shown in FIG. 3, the corona detection means using the photocatalyst according to the present invention has a high-voltage transmission line 254U2 suspended from a long tube insulator 258A, 258B, 258C and a long tube insulator 258D, 258E, 258F. It is effective in the case.
 近年目覚ましいし進歩を遂げてきた光触媒は、酸化物半導体である酸化チタンが光を吸収すると、荷電子帯にあった電子が伝導帯に励起され、正孔と伝導電子の一部は結合して熱を発生するが、再結合過程以外のこれらのキャリアは拡散して表面に達し、そこで化学反応を引き起こす。酸化チタンの場合、この光励起は酸素2p軌道からチタン3d軌道への遷移であることが知られており、そのバンドギャップは、光触媒としてよく利用されるアナターゼ型で3.2eV、高温安定相のルチル型で3.0eVである。光の波長に換算すると388nm、413nmである。したがって光触媒反応を起こすためには、これよりも短い波長の紫外線が必要となる(上記藤島昭「光触媒」参照)。 The photocatalyst that has made remarkable progress in recent years is that, when titanium oxide, an oxide semiconductor, absorbs light, electrons in the valence band are excited to the conduction band, and some of the holes and conduction electrons are combined. Although generating heat, these carriers other than the recombination process diffuse and reach the surface where they cause a chemical reaction. In the case of titanium oxide, it is known that this photoexcitation is a transition from the oxygen 2p orbital to the titanium 3d orbital, and its band gap is 3.2 eV, an anatase type often used as a photocatalyst, and a high temperature stable phase rutile. The mold is 3.0 eV. In terms of the wavelength of light, they are 388 nm and 413 nm. Therefore, in order to cause the photocatalytic reaction, ultraviolet rays having a shorter wavelength than this are required (see “Photocatalyst” by Akira Fujishima).
 コロナ放電による紫外線は、太陽光が地表に到達した紫外線には含まれない短い紫外線が含まれている。通常の光触媒は、通常の太陽光で反応するように酸化チタンに微量の不純物をドーピングしている。本発明に用いる光触媒は、人工衛星から観測したコロナ放電による紫外線と太陽光による紫外線のどちらで汚れが取れて変色したのか区別する必要がある。したがって、コロナ放電により発生する紫外線に反応する光触媒を用いることにより、コロナ放電による紫外線により汚れが取れれば、その差を検出することにより区別することができる。コロナ放電により発生する紫外線に反応する光触媒としては、価電子帯から伝導帯へのバンドギャップが3.0eV以上のもので暗紫外線で反応する光触媒を長管がいし258A、258B、258C、258D、258E、258F等にコーティングする。このように構成することによって、コロナ放電が発生した場合に、光触媒が反応して、長管がいし258A、258B、258Cと長管がいし258D、258E、258Fの表面の汚染物がとれ、白くきれいになるので人工衛星による画像でも検出することができる。 ∙ Ultraviolet rays from corona discharge include short ultraviolet rays that are not included in the ultraviolet rays when sunlight reaches the earth's surface. In ordinary photocatalysts, titanium oxide is doped with a small amount of impurities so that it reacts with ordinary sunlight. The photocatalyst used in the present invention needs to be distinguished as to whether it has been stained and discolored by ultraviolet rays due to corona discharge observed from an artificial satellite or ultraviolet rays due to sunlight. Therefore, by using a photocatalyst that reacts with ultraviolet rays generated by corona discharge, if the contamination is removed by ultraviolet rays due to corona discharge, the difference can be detected by detecting the difference. As a photocatalyst that reacts with ultraviolet rays generated by corona discharge, a photocatalyst that has a band gap from a valence band to a conduction band of 3.0 eV or more and reacts with dark ultraviolet rays is a long tube, and 258A, 258B, 258C, 258D, 258E 258F, etc. With this configuration, when a corona discharge occurs, the photocatalyst reacts to remove contaminants on the surfaces of the long tube insulators 258A, 258B, 258C and the long tube insulators 258D, 258E, 258F, and becomes white and clean. Therefore, it is possible to detect even an image from an artificial satellite.
 一方、コロナ放電はがいしに塩分が付着する塩害により発生することが多い。この場合は、通常の太陽光に反応する光触媒を用いて、がいしを洗浄することが望ましい。その場合は、図3に示すように、沿面放電の起きやすい送電線の近い258Cと258Dの長管がいしに太陽光に反応する光触媒をコーティングし、その他の長管がいしにコロナ放電に反応する光触媒をコーティングすることができる。このようにしても、人工衛星より観測される画像からコロナ放電が発生したことが検出することができる。 On the other hand, corona discharge often occurs due to salt damage in which salt is attached to the insulator. In this case, it is desirable to wash the insulator using a photocatalyst that reacts with ordinary sunlight. In that case, as shown in FIG. 3, a photocatalyst that reacts to sunlight is coated on long insulators 258C and 258D that are close to the transmission line where creeping discharge is likely to occur, and a photocatalyst that reacts to corona discharge on other insulators. Can be coated. Even in this case, it can be detected that a corona discharge has occurred from an image observed from an artificial satellite.
 実施例3は、電力設備等にコロナ放電による紫外線による植物の変色を人工衛星からの画像により検出する例である。特に、近年紫外線抵抗植物の研究が進んでおり、B領域紫外線抵抗性変異体植物とそれ以外の植物を混合して植えつける文字の形をしたとにより、人工衛星から検出することができる(特開2007-228922等参照)。この実施例でも、雲などにより人工衛星から観測できない場合も、気象条件が変化した際にコロナ放電が発生したことを検出できる点が有利である。 Example 3 is an example in which a plant discoloration due to ultraviolet rays due to corona discharge is detected from an image from an artificial satellite in a power facility or the like. In particular, research on UV-resistant plants has been progressing in recent years, and it can be detected from artificial satellites due to the shape of letters to be planted by mixing B region UV-resistant mutant plants with other plants (special characteristics). Open 2007-228922 etc.). Even in this embodiment, it is advantageous that it is possible to detect that a corona discharge has occurred when the weather conditions change even when observation from an artificial satellite is not possible due to clouds or the like.
 図5は、本発明の植物によるコロナ検出手段を示す図である。図5(A)に示すように、高圧送電線の土台となる土地にB領域紫外線抵抗性変異体植物群310とB領域紫外線に弱い植物群320とを植え付ける。コロナ放電が発生した際はB領域紫外線に弱い植物群320が変色するので人工衛星からの画像でもコロナ放電が発生したことを検出することができる。また、5図(B)に示すように、B領域紫外線抵抗性変異体植物群330の中に、文字の形状をしたB領域紫外線に弱い植物群340を植え付けることでもよい。 FIG. 5 is a diagram showing corona detection means by the plant of the present invention. As shown in FIG. 5 (A), a B region ultraviolet resistant mutant plant group 310 and a plant group 320 weak to B region ultraviolet light are planted on the land serving as the foundation of the high-voltage power transmission line. When corona discharge is generated, the plant group 320 that is sensitive to B region ultraviolet rays changes color, so it is possible to detect that corona discharge has occurred even from an image from an artificial satellite. Moreover, as shown in FIG. 5 (B), a plant group 340 that is vulnerable to B region ultraviolet rays in the shape of letters may be planted in the B region ultraviolet resistant mutant plant group 330.
 B領域紫外線抵抗性変異体植物の一例としては、シロイヌナズナ(Arabidopsis)B領域紫外線抵抗性変異体植物を採用することができる(特開2007-228922参照)。例えば、イネなど他のB領域紫外線抵抗性変異体植物でもよい。 As an example of the B region ultraviolet resistant mutant plant, an Arabidopsis B region ultraviolet resistant mutant plant can be employed (see JP2007-228922). For example, other B region ultraviolet resistant mutant plants such as rice may be used.
 以上、本発明について具体的な実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。例えば、コロナ放電検出手段については、蛍光塗料、光触媒、近傍に植え付けた植物の例で説明したが、人工衛星画像から検出できる手段であれば、他の手段でもよい。上記実施形態は、多様な変更又は改良を加えることができる。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using specific embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. For example, the corona discharge detection means has been described in the example of the fluorescent paint, the photocatalyst, and the plant planted in the vicinity, but other means may be used as long as it can be detected from the satellite image. Various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

Claims (8)

  1.  地球表面の電力設備網を撮影し、撮影した画像を通信回線により送信する装置を有する人工衛星と、
    前記電力設備網にてコロナ放電が発生した場所を前記人工衛星から特定できるコロナ放電検出手段と、
    前記コロナ放電検出手段によって特定されたコロナ放電が発生した場所の情報を前記人工衛星から送信された画像を受信して解析する画像解析装置と、
     を備えたコロナ放電検出システム。
    An artificial satellite having a device for photographing a power facility network on the surface of the earth and transmitting the photographed image through a communication line;
    Corona discharge detection means that can identify from the satellite where the corona discharge occurred in the power equipment network,
    An image analysis device that receives and analyzes information transmitted from the artificial satellite for information on the location where the corona discharge specified by the corona discharge detection means has occurred;
    Corona discharge detection system.
  2.  前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射するとけい光又はりん光を発する塗料を塗布したことを特徴とする請求項1に記載のコロナ放電検出システム。 The corona discharge detection system according to claim 1, wherein the corona detection means is coated with a paint that emits fluorescence or phosphorescence when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  3.  前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射するとけい光又はりん光を発する器具を付属させたことを特徴とする請求項1に記載のコロナ放電検出システム。 The corona discharge detection system according to claim 1, wherein the corona detection means includes a device that emits fluorescence or phosphorescence when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  4.  前記コロナ検出手段は、電力設備にコロナ放電により発生する紫外線を照射すると変色する塗料を塗布したことを特徴とする請求項1に記載のコロナ放電検出システム。 2. The corona discharge detection system according to claim 1, wherein the corona detection means is applied with a paint that changes color when the power equipment is irradiated with ultraviolet rays generated by corona discharge.
  5.  前記コロナ検出手段は、電力設備に光触媒をコーティングしたことを特徴とする請求項1に記載のコロナ放電検出システム。 The corona discharge detection system according to claim 1, wherein the corona detection means is a power facility coated with a photocatalyst.
  6.  前記光触媒はコロナ放電により発生する紫外線に反応することを特徴とする請求項5に記載のコロナ放電検出システム。 6. The corona discharge detection system according to claim 5, wherein the photocatalyst reacts with ultraviolet rays generated by corona discharge.
  7.  前記コロナ検出手段は、紫外線を照射すると変色する植物を前記電力設備網の近傍に植え付けたことを特徴とする請求項1に記載のコロナ放電検出システム。 The corona discharge detection system according to claim 1, wherein the corona detection means has planted a plant that changes color when irradiated with ultraviolet rays in the vicinity of the power equipment network.
  8.  人工衛星画像によるコロナ放電検出システムに用いられる画像解析装置であって、
     地球表面の電力設備網を撮影し、撮影した画像を通信回線により送信する装置を有する人工衛星と、前記電力設備網にてコロナ放電が発生した場所を前記人工衛星から特定できるコロナ放電検出手段と、前記コロナ放電検出手段によって特定されたコロナ放電が発生した場所の情報を前記人工衛星から送信された画像を受信して解析する画像解析装置。
    An image analysis device used in a corona discharge detection system using satellite images,
    An artificial satellite having a device for photographing a power equipment network on the surface of the earth and transmitting the photographed image through a communication line; and a corona discharge detecting means capable of identifying from the artificial satellite a location where a corona discharge has occurred in the power equipment network. An image analysis apparatus for receiving and analyzing information transmitted from the artificial satellite for information on the location where the corona discharge specified by the corona discharge detection means has occurred.
PCT/JP2010/000832 2009-02-20 2010-02-10 Corona discharge detection system by means of artificial satellite images and image analysis device thereof WO2010095398A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009038590A JP2012095367A (en) 2009-02-20 2009-02-20 Corona discharge detection system using artificial satellite image
JP2009-038590 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095398A1 true WO2010095398A1 (en) 2010-08-26

Family

ID=42633688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000832 WO2010095398A1 (en) 2009-02-20 2010-02-10 Corona discharge detection system by means of artificial satellite images and image analysis device thereof

Country Status (2)

Country Link
JP (1) JP2012095367A (en)
WO (1) WO2010095398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406448A (en) * 2021-06-15 2021-09-17 中国铁道科学研究院集团有限公司基础设施检测研究所 Method and device for detecting electrical state of railway insulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149991A (en) * 1991-11-29 1993-06-15 Sumitomo Electric Ind Ltd Detecting method for steel tower in accident
JPH0882649A (en) * 1994-09-13 1996-03-26 Central Res Inst Of Electric Power Ind Multiplexing system of self-emission type light sensors
JP2009008448A (en) * 2007-06-26 2009-01-15 Chugoku Electric Power Co Inc:The Ground fault point locating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149991A (en) * 1991-11-29 1993-06-15 Sumitomo Electric Ind Ltd Detecting method for steel tower in accident
JPH0882649A (en) * 1994-09-13 1996-03-26 Central Res Inst Of Electric Power Ind Multiplexing system of self-emission type light sensors
JP2009008448A (en) * 2007-06-26 2009-01-15 Chugoku Electric Power Co Inc:The Ground fault point locating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406448A (en) * 2021-06-15 2021-09-17 中国铁道科学研究院集团有限公司基础设施检测研究所 Method and device for detecting electrical state of railway insulator

Also Published As

Publication number Publication date
JP2012095367A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Santhakumari et al. A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques
Boteler Space weather effects on power systems
Aggarwal et al. An overview of the condition monitoring of overhead lines
de Santos et al. Research on the pollution performance and degradation of superhydrophobic nano-coatings for toughened glass insulators
CN102574166B (en) Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
Hernandez et al. Lightning and surge protection in photovoltaic installations
Velásquez Insulation failure caused by special pollution around industrial environments
Ramirez et al. Measurement of leakage current for monitoring the performance of outdoor insulators in polluted environments
de Santos et al. A cumulative pollution index for the estimation of the leakage current on insulator strings
CN102928752A (en) System and method for monitoring and analyzing insulation states of high-voltage device
Suzuki et al. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules
WO2010095398A1 (en) Corona discharge detection system by means of artificial satellite images and image analysis device thereof
Ahmed et al. Online condition monitoring and leakage current effect based on local area environment
JP2011222364A (en) Cable
Abubakar et al. A review of solar photovoltaic system maintenance strategies
Zhou et al. Contamination performance of outer-rib type suspension insulators
Wright et al. Air ion mobility spectra and concentrations upwind and downwind of overhead AC high voltage power lines
US20070144766A1 (en) Electrical power system suppressing corona discharge from viewpoint of environment
Chen et al. Detection and analysis of ultraviolet corona discharge for earth switch grading ring
Schmidt et al. HVDC transmission and the environment
Oliveira et al. Leakage current activity on glass-type insulators of overhead transmission lines in the northeast region of Brazil
Ye et al. The application situation of the non-contact on-line detection technology on overhead equipment in distribution network
Radermacher et al. Sustainable and safe in exploitation of gas networks. Part 2. Stress factors of metallic pipelines
Żakowski et al. Stray currents and pollution of the environment
Seymenliyski et al. Modern technological solutions in electricity supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP