WO2010093368A1 - A polyolefin and ceramic battery separator for non-aqueous battery applications - Google Patents

A polyolefin and ceramic battery separator for non-aqueous battery applications Download PDF

Info

Publication number
WO2010093368A1
WO2010093368A1 PCT/US2009/034192 US2009034192W WO2010093368A1 WO 2010093368 A1 WO2010093368 A1 WO 2010093368A1 US 2009034192 W US2009034192 W US 2009034192W WO 2010093368 A1 WO2010093368 A1 WO 2010093368A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery separator
weight
less
battery
separator
Prior art date
Application number
PCT/US2009/034192
Other languages
French (fr)
Inventor
Garrin Samii
David Veno
Banafsheh Behnam
Abbas Samii
Original Assignee
Garrin Samii
David Veno
Banafsheh Behnam
Abbas Samii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garrin Samii, David Veno, Banafsheh Behnam, Abbas Samii filed Critical Garrin Samii
Priority to KR1020117021502A priority Critical patent/KR20120046101A/en
Priority to PCT/US2009/034192 priority patent/WO2010093368A1/en
Priority to CA2751752A priority patent/CA2751752A1/en
Publication of WO2010093368A1 publication Critical patent/WO2010093368A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a separator that can improve the safety issues associated with LIBs and also meets assembly and cell performance requirements as well as the cost criteria is needed for the HEV applications. This invention describes and claims such an improved separator.
  • this invention replaces Al 2 Oj and SiO 2 with kaolin (a low cost clay mineral filler consists of Al 2 O 3 and SiO 2 ) , and utilizes a low cost process.
  • the current invention does not require a nonwoven material and subsequently conversion to a microporous membrane using an expensive phase inversion method.
  • the wet process used in the current invention has proven track records; it is simple and has been used in the production of low cost lead acid PE separators for decades.
  • One aspect of the current invention provides a high performance low cost ceramic-like microporous separator high in air permeability of less than 200 sec/10cc, preferably less than 10 sec/10cc, and with a shutdown temperature between 130-150 0 C.
  • This invention also provides a method for producing the same for consumer LIB applications.
  • Another aspect of the current invention provides a non-shutdown polyolefm ceramic type microporous separator with high abuse tolerance but with relatively low cost that meets both the safety and cost requirements of LIBs for EV/HEV applications.
  • microporous membranes of current invention will have applications m air filtration, water purification (a filter for separating microorganisms and viruses from water) , size exclusion, sanitary napkins, breathable closing and house wrap.
  • Inert fillers are also used in the production of battery separators, primarily for achieving better pore structures (added tortousity) and increased porosity. However, fillers can also add properties such as structural integrity (high puncture resistance) , reduced shrinkage, improved thermal stability, and fire retardation. They also keep the battery electrodes separated at high temperatures . Examples of polymeric sheets with inert fillers include those described in U.S. Pat. Nos. 3,351,495,
  • TiO 2 filler is used to improve the high temperature resistance of the separator. Addition of TiO 2 to the formulation did indeed improve the thermal resistance of the separator, however, TiO? is a heavy mineral (has a density of about 4.2 gr/cm 3 ) and is also very expensive and not particularly affordable to be used abundantly in commercially priced separators for lithium ion batteries. Kaolin clay, in contrast, has lower density (density of 2.6 gr/cm ) , is very stable in the lithium ion battery environment and is relatively inexpensive.
  • kaolin clay has the capability to absorb significantly more oil than TiO 2 (it creates more air permeability) that leads to higher ionic conductivity of the separator.
  • Silica has also been used as a low-cost filler in battery separator applications for decades. However for use m lithium ion battery applications silica alone, without the presence of the aluminum oxide, may not improve the high temperature performance of the separator. In addition, due to silica filler's high moisture content, it may not be suitable for lithium ion batteries.
  • Kaolin clay is an abundant mineral and is a common constituent of the earth's crust. Clay occurs in many different forms, but kaolin or china clay is the purest and most versatile. Kaolin clays contain Al 2 O ⁇ and S1O2 with similar high heat resistance property as the ceramic material used in the Sepa ⁇ on separator, but cost significantly less. That is why Kaolin clays are commonly used in paints, paper, plastics, rubber, ink, pigments, fiber glass, cosmetics, cement and concrete, adhesive and sealants, cable and wire. They further have advantageous properties of hardness, opacity, abrasion resistance, high brightness, and particle size. They promote flattening and easy dispersion.
  • Calcined Kaolin another inert filler appropriate for use in the present invention, is an anhydrous aluminum silicate produced by heating ultrafine natural kaolin to high temperatures in a kiln. The calcination process increases whiteness and hardness, improves electrical properties, and alters the size and shape of the kaolin particles .
  • Clean kaolins are calcined by firing the powder in a rotary calcining kiln to a temperature high enough to effect loss of crystal water (and accompanying mineral change) .
  • Calcined kaolin normally converts to mullite during this process. Based on where kaolin has been mined, the above chemical properties could slightly vary in the composition of their trace elements.
  • the current invention uses between 5% to 80% by weight kaolin, more preferably calcined kaolin as property enhancing filler (to achieve high heat resistance) in the microporous membrane's formulations.
  • kaolin clay can be replaced with materials consisting AI2O3 and S1O2.
  • AI2O3 and S1O2 may not be as economical as kaolin m this applicaiton.
  • Polymers used in the current invention are selected from ultra high molecular weight polyethylene
  • UHMWPE with molecular weight more than 1 million
  • PP polypropylene
  • HDPE high-density polyethylene
  • the current invention uses UHMWPE, with molecular weight more than 1 million, and PP or a mixture thereof without HDPE.
  • the current invention basically utilizes a commonly used prior art method widely used for producing battery separators for lead acid, alkaline and lithium ion cells.
  • This process starts by mixing and extruding polymers, filler (m this case, kaolin, calcined kaolin or a mixture of AI2O3 and S1O2) , with a plasticizer (oil) at high temperatures and pressure through a film die, casting the sheet, and wet stretching, either uni-axial or biaxial.
  • the wet stretching is removed by solvent extraction and heat setting, creating a microporous sheet. To achieve higher air permeability, the stretching should be done after the extraction step.
  • microporous articles especially suitable for use as battery separators and which possess improved properties with regard to their intended use in lithium ion cells.
  • thermal runaway is avoided.
  • adequate shutdown behavior is provided.
  • battery separator is comprised of a mixture of kaolin clay and polyolefm.
  • the battery separator has a thickness of 5 to 250 ⁇ m and air permeability of 1 to 200 sec/lOcc.
  • the kaolin clay further comprises calcined kaolin.
  • the polyolefm further comprises an ulthira high molecular weight polyethylene (UHMWPE) having a minimum average molecular weight of 1x10 .
  • UHMWPE ulthira high molecular weight polyethylene
  • the polyolefm is a mixture of UHMWPE having a minimum average molecular weight of lxlO B and a polypropylene (PP) having a melt index of 2 or less, and wherein the weight ratio of UHMWPE to PP is 50% or more.
  • the weight percentage ratio of the kaolin clay in the mix is between 20 to 80%, and wherein the separator is not subject to shutdown, regardless of temperature.
  • the microporous membrane has a melt integrity of 150 0 C or higher .
  • the polyolefin comprises a mixture of 10% to 50% by weight of UHMWPE having minimum average molecular weight of IxIO 6 ' and 40% to 70% by weight of a high density polyethylene having an average molecular weight between 300,000 to 800,000.
  • the weight percent of calcined kaolin in the mixture is between 5% and 20%.
  • the battery separator has shutdown activation between 130 0 C and 150 0 C.
  • the melt integrity of the battery separator is 150 0 C or higher.
  • the battery separator is comprised of between 20% and 80% by weight of synthetic AI 2 O 3 and between 20° o and 80°o by weight of S1O2, and polyolefm, the battery separator having a thickness of 5 to 250 ⁇ m and an air permeability of 1 to 200 sec/lOcc.
  • a microporous battery separator made by wet process comprised of polyolefm and kaolin filler.
  • Kaolin a mineral consisting of AI2O3 and S1O2, is found extensively in Kaolin clay. More preferably calcined kaolin may be used.
  • the polyolefm can be selected from ultra high molecular weight polyethylene (UHMWPE) having an average molecular weight of IxIO 6 or higher, polypropylene with melt index of less than 2 and high-density polyethylene with average molecular weight of 300,000-900,000 and the mixture thereof.
  • UHMWPE ultra high molecular weight polyethylene
  • the wet process starts by mixing and extruding a polymer and filler, in this case kaolin, with a plasticizer
  • the process by which the proposed separators are made is broadly comprised of making a microporous membrane by forming a homogeneous admixture of one or more polyolefm polymers, including a suitable plastisizer (oil) for the polyolefm and including a particulate filler, as described herein below.
  • the components of the admixture are: an ultra high molecular weight polyethylene (UHMWPE) having an average molecular weight of IxIO 6 or more and a kaolin or calcined kaolin.
  • UHMWPE ultra high molecular weight polyethylene
  • the formulation will consist of a UHMWPE having an average molecular weight of 1x10 or more as a frame polymer, and a shutdown polyethylene having an average molecular weight between 300,000 to 900,000 and kaolin or calcined kaolin (or a mixture of AI2O3 and S1O2) filler.
  • Dry blend composition for high temperature resistance and no shutdown is based on required properties such as tensile and puncture strength. Therefore, the amount of calcined kaolin m the separator formulation could be between 20 and 80 percent by weight. More preferably, this amount should be between 30 and 50 percent by weight.
  • the amount of calcined kaolin should be less than 20 percent by weight in the dry blend. More preferably this amount should be between 5 and 15 percent by weight.
  • the present invention also provides a method for producing microporous polyolefin membranes which are comprised of some general steps of (a) preparing the above dry blend and (b) extruding the dry blend with from 30 to 90 percent by weight of suitable plasticizer, typically oil, through a film die, and (c) casting/calendering the gel-like extrudate (d) removing the plasticizer using a solvent extraction method (e) based on the formulation, stretching and heat setting the extracted material m both directions at 115 to 140 degrees C.
  • suitable plasticizer typically oil
  • e solvent extraction method
  • Other minor additives such as carbon black, most commonly used in prior art for different reasons such as increasing the surface area or general appearance, can also be incorporated in the formulation.
  • Carbon black pellets made from a mixture of carbon black and high density or low density polyethylene are generally commercially available.
  • conventional stabilizers or antioxidants may be employed in the compositions of the present invention to prevent thermal and oxidative degradation of the polyolefin component.
  • Representatives of the stabilizers are 4,4 thiobis (6-tert- butyl-m-cresol) ( “Santonox” ) , and 2 , 6-di-tert-butyl-4- methylphenol (“Ionol”) .
  • the microporous sheet material made by this method should be a film that is less than 250 microns and preferably less than 25 microns in thickness.
  • the air permeability of the microporous membrane of the present invention is between 1 to 200 Gurley seconds (sec/10 cc) , preferably between 1 to 50 Gurley seconds and, and a heat resistance of more than 150 0 C, preferably between 165 to
  • Thickness - Thickness (mil or micron)- is determined using a precision micrometer.
  • Air permeability - measured by using a Gurley densometer (Model 4120), ASTM-D726 (B) - Gurley is the time in seconds required to pass 10 cc of air through one square inch of product under a pressure of 12.2 inches of water.
  • Puncture resistance measured by pressing a cylindrical pin (2 mm diameter) with a hemispherical tip through a sample. The maximum load occurring is a measure of the puncture resistance.
  • kaolin can be replaced by its main constituent metal oxides, a mixture of Al 2 O 3 and SiO 2 (20 to 80 percentage by weight Al 2 Oj and 20 to 80 percentage by weight of SiO 2 ) .
  • the kaolin, particularly m the form of kaolin clay, is clearly more cost competitive than the other forms of this chemical compound.
  • a dry-blend consisting of 50% by weight of a UHMW polyethylene having Mw of 1x10 , 50% by weight of kaolin with density of 2.6 was prepared. The mixture was fed into an extruder. The dry blend mixture was melt-kneaded in the extruder while feeding 60% by weight of liquid paraffin making a solution.
  • the above solution was extruded from a film die into the form of a sheet. Using a two-roll casting roll, the gel sheet was subsequently cooled down producing a 2 to 4 mil thick gel sheet. The liquid paraffin m the gel sheet was extracted by solvent and dried. The dried microporous sheet was subsequently stretched in both directions at 125 0 C for 100 % and also heat set at 120 0 C, producing a 25 microns thrck microporous membrane.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resrstance.
  • Gurley number was less than 10 seconds, the sample did not shut down, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, and puncture resistance of more than 400 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thrck material was measured and it was less than 200 seconds .
  • Example 1 Except by replacing kaolin with calcined kaolin, the same formulation and procedures of Example 1 were repeated to obtain a microporous membrane.
  • Example 1 Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of IxIO 6 , 10% by weight of a UHMW polyethylene having Mw of 3xlO 6 and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 480 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds.
  • Example 1 Except for using a dry blend mixture of 20% by weight of a UHMW polyethylene having Mw of 1x10 , and 80% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 200 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • Example 1 Except for using a dry blend mixture of 80-s by weight of a UHMW polyethylene having Mw of IxIO 6 , and 20% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 800 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • EXAMPLE 6 Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of IxIO 6 , 20% PP with melt index of less than 2 and 40% by weight calcined kaolin, the same procedures of Example 1 were repeated with a different process conditions. The dried microporous sheet was subsequently stretched in both directions at 14O 0 C for 100 % and also heat set at 135 0 C, producing a 25 microns thick microporous membrane.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 550 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • EXAMPLE 7 Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 3xlO F , and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • Example 9 Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 5xlO 6 , and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • the Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5°o, tensile strength of less than 2% offset, puncture resistance of more than 600 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds.
  • Example 1 Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 5xlO 6 , 40% by weight of a UHMW polyethylene having Mw of about 800,000 and 10% by weight calcined kaolin, the same procedures of Example 1 were repeated.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds
  • the sample shutdown at 146°C had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 550 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • Example 1 Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of 5x10 , 40% by weight of a UHMW polyethylene having Mw of about 300,000 and 20% by weight calcined kaolin, the same procedures of Example 1 were repeated.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • Gurley number was less than 10 seconds
  • the sample shutdown at 135°C had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • EXAMPLE 11 Except for using a dry blend mixture of 25% by weight of a UHMW polyethylene having Mw of 5xlO 6 , 70% by weight of a UHMW polyethylene having Mw of about 300,000 and 5% by weight calcined kaolin, the same procedures of Example 1 were repeated.
  • the sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance.
  • the Gurley number was less than 10 seconds, the sample shutdown at 131°C, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams.
  • the Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
  • the ultra high molecular weight polyethylene can be replaced with a high-density polyethylene or a mixture of two or three ultra high molecular weight polyethylene and high-density polyethylene or other polyolefms, polyolefm copolymers or derivatives thereof and the kaolin filler or the mixture of AI2O3 and SiO? can be replaced by other suitable and property enhancing stable fillers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A ceramic microporous polyolefin battery separator membrane, high in air permeability, low in shrinkage and improved temperature resistance addresses the safety requirements of lithium ion batteries. The separators made by the current invention consists of one or more polyolefin polymers and kaolin fillers comprised of aluminum oxide and silicon oxide. The membranes of current invention have a thickness of 5-200 microns, air permeability of 1-200 sec/10cc (Gurley seconds), and average pore diameter of less than 1 micron.

Description

A POLYOLEFIN AND CERAMIC BATTERY SEPARATOR FOR NON-AQUEOUS
BATTERY APPLICATIONS
BACKGROUND OF THE INVENTION
Safety is a major concern when using lithium ion batteries (LIB) in hybrid electric vehicles (HEVs), pluggable HEVs and EVs . A separator that can improve the safety issues associated with LIBs and also meets assembly and cell performance requirements as well as the cost criteria is needed for the HEV applications. This invention describes and claims such an improved separator.
Currently there are two types of secondary lithium ion batteries:
1. Those with cathode containing cobalt for high energy density batteries used in cell phones, notebook PCs and consumer electronics, which require a shutdown temperature activation of 130-1500C and melt integrity of more than 15O0C; and
2. Those with a non-cobalt cathode (mostly phosphate based) for high power batteries, which do not require a shutdown temperature capability, but must have a separator with high temperature resistance. Lithium-ion cells have two to three times higher energy density than nickel metal hydride batteries used in the current HEVs. Due to this high energy density of lithium ion batteries, automakers are eager to replace the currently used nickel metal hydride battery packs in HEVs with a high power and high density lithium ion battery pack. Thus far, the safety issue (due to potential thermal run away of lithium ion batteries) has been a major problem, preventing the use of lithium ion batteries m the HEV applications. Among all of the commercially available polyolefm separators for LIB applications, none could pass the safety requirements for HEV applications. The only battery separator that is commercially available and has proven that it meets the safety requirements of HEVs is a ceramic separator called Sepeπon® from Deggusa, the international chemical company headquartered in Dusseldorf, Germany. Sepeπon is produced by a non-woven polyethylene terephthalate (PET) precursor impregnated on both sides with ceramics containing nano particles of Al?0s and SiO?. Safety tests done by Deggusa, Sandia National Labs and the US Army Research Labs have proven that indeed Sepeπon does improve the safety problems associated with LIBs. Zhang et al . reported:
"In nail penetration test on the 8 Ah Li-ion pouch cells, it was shown that the maximum temperature of the cell using Sepaπon separators was only 58° C with a weight loss of 0.5°o after nail penetration test, while that of the control cell using PE separators reached over 500° C with a weight loss as high as 56.1°o. Since the maximum temperature
(58° C) in the nail penetration test is far from the melting point of the PE materials, one may assume that the exceptional safety behavior of the Sepaπon separator is more related to the nano-size ceramic materials, instead of
PET non-woven matrix." S. S. Zhang, et al . " Journal of
Power Sources 164 (2007) pp. 351-364.
However, due to a complicated phase inversion manufacturing process that has been used in the production of the Sepaπon separator, it has not been produced at a low cost, and therefore, it does not meet the cost criteria of lithium ion batteries in general and HEV/EVs m particular. In the current invention, in addition to offering comparable safety features, this invention replaces Al2Oj and SiO2 with kaolin (a low cost clay mineral filler consists of Al2O3 and SiO2) , and utilizes a low cost process. The current invention does not require a nonwoven material and subsequently conversion to a microporous membrane using an expensive phase inversion method. The wet process used in the current invention has proven track records; it is simple and has been used in the production of low cost lead acid PE separators for decades.
One aspect of the current invention provides a high performance low cost ceramic-like microporous separator high in air permeability of less than 200 sec/10cc, preferably less than 10 sec/10cc, and with a shutdown temperature between 130-1500C. This invention also provides a method for producing the same for consumer LIB applications.
Another aspect of the current invention provides a non-shutdown polyolefm ceramic type microporous separator with high abuse tolerance but with relatively low cost that meets both the safety and cost requirements of LIBs for EV/HEV applications.
The microporous membranes of current invention will have applications m air filtration, water purification (a filter for separating microorganisms and viruses from water) , size exclusion, sanitary napkins, breathable closing and house wrap.
Inert fillers are also used in the production of battery separators, primarily for achieving better pore structures (added tortousity) and increased porosity. However, fillers can also add properties such as structural integrity (high puncture resistance) , reduced shrinkage, improved thermal stability, and fire retardation. They also keep the battery electrodes separated at high temperatures . Examples of polymeric sheets with inert fillers include those described in U.S. Pat. Nos. 3,351,495,
4,287,276, and U.S. patent Nos. 6,372,379 and 6,949,315 (by current authors) , m which, the electrolyte is capable of passing through the separator through microporous channels.
In U.S. Patent No. 6,949,315 by the current inventors, TiO2 filler is used to improve the high temperature resistance of the separator. Addition of TiO2 to the formulation did indeed improve the thermal resistance of the separator, however, TiO? is a heavy mineral (has a density of about 4.2 gr/cm3) and is also very expensive and not particularly affordable to be used abundantly in commercially priced separators for lithium ion batteries. Kaolin clay, in contrast, has lower density (density of 2.6 gr/cm ) , is very stable in the lithium ion battery environment and is relatively inexpensive. In addition, kaolin clay has the capability to absorb significantly more oil than TiO2 (it creates more air permeability) that leads to higher ionic conductivity of the separator. Silica has also been used as a low-cost filler in battery separator applications for decades. However for use m lithium ion battery applications silica alone, without the presence of the aluminum oxide, may not improve the high temperature performance of the separator. In addition, due to silica filler's high moisture content, it may not be suitable for lithium ion batteries.
Kaolin clay is an abundant mineral and is a common constituent of the earth's crust. Clay occurs in many different forms, but kaolin or china clay is the purest and most versatile. Kaolin clays contain Al2O^ and S1O2 with similar high heat resistance property as the ceramic material used in the Sepaπon separator, but cost significantly less. That is why Kaolin clays are commonly used in paints, paper, plastics, rubber, ink, pigments, fiber glass, cosmetics, cement and concrete, adhesive and sealants, cable and wire. They further have advantageous properties of hardness, opacity, abrasion resistance, high brightness, and particle size. They promote flattening and easy dispersion.
Calcined Kaolin, another inert filler appropriate for use in the present invention, is an anhydrous aluminum silicate produced by heating ultrafine natural kaolin to high temperatures in a kiln. The calcination process increases whiteness and hardness, improves electrical properties, and alters the size and shape of the kaolin particles .
Kaolin clay' s nominal chemical properties are generally described as follows: Silicon dioxide (wt%)= 56.91, Iron oxide= 0.93, Aluminum oxide= 39.68, Titanium dioxide= 0.54, Calcium oxide= 0.16, Magnesium oxide= 0.16, Sodium oxide= 0.60, and Potassium oxide= 0.60
Clean kaolins are calcined by firing the powder in a rotary calcining kiln to a temperature high enough to effect loss of crystal water (and accompanying mineral change) . Calcined kaolin normally converts to mullite during this process. Based on where kaolin has been mined, the above chemical properties could slightly vary in the composition of their trace elements.
For both shutdown and non-shutdown separators, the current invention uses between 5% to 80% by weight kaolin, more preferably calcined kaolin as property enhancing filler (to achieve high heat resistance) in the microporous membrane's formulations. In another version of this invention, kaolin clay can be replaced with materials consisting AI2O3 and S1O2. However, AI2O3 and S1O2 may not be as economical as kaolin m this applicaiton.
Different polyolefm polymers have been used in prior arts for making battery separators used in different applications, including lead acid, alkaline and lithium ion batteries. Polymers used in the current invention are selected from ultra high molecular weight polyethylene
(UHMWPE with molecular weight more than 1 million) and polypropylene (PP with a melt index of less than 2) or a mixture thereof as frame polymers and a high-density polyethylene (HDPE) having molecular weight between 300,000 to 900,000 for achieving shutdown behavior between 130- 15O0C. For heat resistance separators (non-shutdown), the current invention uses UHMWPE, with molecular weight more than 1 million, and PP or a mixture thereof without HDPE.
The current invention basically utilizes a commonly used prior art method widely used for producing battery separators for lead acid, alkaline and lithium ion cells. This process starts by mixing and extruding polymers, filler (m this case, kaolin, calcined kaolin or a mixture of AI2O3 and S1O2) , with a plasticizer (oil) at high temperatures and pressure through a film die, casting the sheet, and wet stretching, either uni-axial or biaxial. Followed the wet stretching the oil is removed by solvent extraction and heat setting, creating a microporous sheet. To achieve higher air permeability, the stretching should be done after the extraction step. OBJECTS OF THE INVENTION
Against the foregoing background, it is a principal object of the present invention to provide microporous articles especially suitable for use as battery separators and which possess improved properties with regard to their intended use in lithium ion cells.
It is another object of the present invention to provide such microporous articles which possess improved air permeability, and which are low in electrical impedance .
It is yet another object of the present invention to provide such microporous articles which possess high thermal resistance. It is yet another object of the present invention is to produce battery separators having improved safety features for use in lithium ion cells.
In yet another object of the present invention thermal runaway is avoided. In yet another object of the present invention adequate shutdown behavior is provided.
In yet another object of the present invention high thermal resistance is provided.
It is yet another object of the present invention to provide an enhanced holding capacity and a uniform surface appearance when wound on a winding tube is provided for spiral wound separators.
It is yet another object of the present invention to provide an enhanced holding capacity and a uniform surface appearance when used in enveloping by an enveloping machine for prismatic cells, therefore increasing the electrolyte retention, wicking action and ease of assembly.
It is yet another object of the present invention to provide battery separators that have lower material costs and can also be mass-produced at relatively low costs. SUMMARY OF THE INVENTION
In accordance with one aspect of the current invention battery separator is comprised of a mixture of kaolin clay and polyolefm.
In accordance with a second aspect of the invention, the battery separator has a thickness of 5 to 250μm and air permeability of 1 to 200 sec/lOcc.
In accordance with a third aspect of the invention the kaolin clay further comprises calcined kaolin.
In accordance with a fourth aspect of the invention the polyolefm further comprises an ulthira high molecular weight polyethylene (UHMWPE) having a minimum average molecular weight of 1x10 . In accordance with a fifth aspect of the invention the polyolefm is a mixture of UHMWPE having a minimum average molecular weight of lxlOB and a polypropylene (PP) having a melt index of 2 or less, and wherein the weight ratio of UHMWPE to PP is 50% or more. In accordance with a sixth aspect of the invention the weight percentage ratio of the kaolin clay in the mix is between 20 to 80%, and wherein the separator is not subject to shutdown, regardless of temperature. In accordance with a seventh aspect of the invention the microporous membrane has a melt integrity of 1500C or higher .
In accordance with an eighth aspect of the invention the polyolefin comprises a mixture of 10% to 50% by weight of UHMWPE having minimum average molecular weight of IxIO6' and 40% to 70% by weight of a high density polyethylene having an average molecular weight between 300,000 to 800,000.
In accordance with a ninth aspect of the invention the weight percent of calcined kaolin in the mixture is between 5% and 20%.
In accordance with a tenth aspect of the invention the battery separator has shutdown activation between 1300C and 1500C. In accordance with an eleventh aspect of the invention the melt integrity of the battery separator is 150 0C or higher.
In accordance with a twelfth aspect of the invention the battery separator is comprised of between 20% and 80% by weight of synthetic AI2O3 and between 20°o and 80°o by weight of S1O2, and polyolefm, the battery separator having a thickness of 5 to 250μm and an air permeability of 1 to 200 sec/lOcc.
DETAILED DESCRIPTION OF THE INVENTION
A microporous battery separator made by wet process comprised of polyolefm and kaolin filler. Kaolin, a mineral consisting of AI2O3 and S1O2, is found extensively in Kaolin clay. More preferably calcined kaolin may be used.
The polyolefm can be selected from ultra high molecular weight polyethylene (UHMWPE) having an average molecular weight of IxIO6 or higher, polypropylene with melt index of less than 2 and high-density polyethylene with average molecular weight of 300,000-900,000 and the mixture thereof.
The wet process starts by mixing and extruding a polymer and filler, in this case kaolin, with a plasticizer
(oil) through a sheet die, calendaring/casting the sheet, followed by solvent extraction and then dry stretching/heat setting. Due to high oil absorbency of kaolin the microporous membranes produced with this method will have very high air permeability (low Gurley number) . The presence of kaolin in the separator of the current invention will contribute to its high heat resistance properties and will stop thermal runaway in LIB cells.
The process by which the proposed separators are made is broadly comprised of making a microporous membrane by forming a homogeneous admixture of one or more polyolefm polymers, including a suitable plastisizer (oil) for the polyolefm and including a particulate filler, as described herein below.
The specific methods for making these membrane sheets are well known m prior art. By way of non-limiting examples, the following references use the similar wet technology, U.S. Pat. Nos. 3,351,495; 4,287,276 and those from the same inventors, 6,372,379 and 6,949,315.
Regarding the preferred method for making the membrane with high heat resistance, the components of the admixture are: an ultra high molecular weight polyethylene (UHMWPE) having an average molecular weight of IxIO6 or more and a kaolin or calcined kaolin.
Alternatively a mixture of ultra high molecular weight polyethylene having an average molecular weight of IxIO6 and PP with melt index of less than 2 with same fillers are used.
For making a membrane with shutdown behavior, the formulation will consist of a UHMWPE having an average molecular weight of 1x10 or more as a frame polymer, and a shutdown polyethylene having an average molecular weight between 300,000 to 900,000 and kaolin or calcined kaolin (or a mixture of AI2O3 and S1O2) filler. Dry blend composition for high temperature resistance and no shutdown is based on required properties such as tensile and puncture strength. Therefore, the amount of calcined kaolin m the separator formulation could be between 20 and 80 percent by weight. More preferably, this amount should be between 30 and 50 percent by weight. For a shutdown separator, the amount of calcined kaolin should be less than 20 percent by weight in the dry blend. More preferably this amount should be between 5 and 15 percent by weight. The present invention also provides a method for producing microporous polyolefin membranes which are comprised of some general steps of (a) preparing the above dry blend and (b) extruding the dry blend with from 30 to 90 percent by weight of suitable plasticizer, typically oil, through a film die, and (c) casting/calendering the gel-like extrudate (d) removing the plasticizer using a solvent extraction method (e) based on the formulation, stretching and heat setting the extracted material m both directions at 115 to 140 degrees C. Other minor additives such as carbon black, most commonly used in prior art for different reasons such as increasing the surface area or general appearance, can also be incorporated in the formulation. Carbon black pellets made from a mixture of carbon black and high density or low density polyethylene are generally commercially available.
In accordance with the prior art, conventional stabilizers or antioxidants may be employed in the compositions of the present invention to prevent thermal and oxidative degradation of the polyolefin component. Representatives of the stabilizers are 4,4 thiobis (6-tert- butyl-m-cresol) ( "Santonox" ) , and 2 , 6-di-tert-butyl-4- methylphenol ("Ionol") .
The microporous sheet material made by this method should be a film that is less than 250 microns and preferably less than 25 microns in thickness. The air permeability of the microporous membrane of the present invention is between 1 to 200 Gurley seconds (sec/10 cc) , preferably between 1 to 50 Gurley seconds and, and a heat resistance of more than 150 0C, preferably between 165 to
2000C.
The following test methods were used for measurements: (1) Thickness - Thickness (mil or micron)- is determined using a precision micrometer. (2) Air permeability - measured by using a Gurley densometer (Model 4120), ASTM-D726 (B) - Gurley is the time in seconds required to pass 10 cc of air through one square inch of product under a pressure of 12.2 inches of water.
(3) Shutdown - measured using the method described by Spotnitz, et al . R. Spotnitz,, et al. "Shutdown Battery Separators", The 12th Intl. Sem. Primary & Secondary Battery Technology and Applications, 1995. (4) Melt integrity - measured using thermal mechanical analysis (TMA) , it is a the temperature that a strip of 1 mil thick membrane (I" width and 6" length) can no longer hold a 5 gram weight
(5) Shrinkage - measured in both directions after 60 mm at 90° C
(6) Tensile strength - calculated in machine direction by measuring percent offset at 1000 psi
(7) Puncture resistance - measured by pressing a cylindrical pin (2 mm diameter) with a hemispherical tip through a sample. The maximum load occurring is a measure of the puncture resistance.
The invention will be explained m more detail by reference to the following Examples, but the invention should not be construed as being limited by these Examples in any way.
This invention primarily based on using kaolin or Calcined kaolin with a polyolefin to construct mircroporous membranes, however, kaolin can be replaced by its main constituent metal oxides, a mixture of Al2O3 and SiO2 (20 to 80 percentage by weight Al2Oj and 20 to 80 percentage by weight of SiO2) . The kaolin, particularly m the form of kaolin clay, is clearly more cost competitive than the other forms of this chemical compound. EXAMPLE 1
A dry-blend consisting of 50% by weight of a UHMW polyethylene having Mw of 1x10 , 50% by weight of kaolin with density of 2.6 was prepared. The mixture was fed into an extruder. The dry blend mixture was melt-kneaded in the extruder while feeding 60% by weight of liquid paraffin making a solution.
The above solution was extruded from a film die into the form of a sheet. Using a two-roll casting roll, the gel sheet was subsequently cooled down producing a 2 to 4 mil thick gel sheet. The liquid paraffin m the gel sheet was extracted by solvent and dried. The dried microporous sheet was subsequently stretched in both directions at 1250C for 100 % and also heat set at 1200C, producing a 25 microns thrck microporous membrane.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resrstance. The Gurley number was less than 10 seconds, the sample did not shut down, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, and puncture resistance of more than 400 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thrck material was measured and it was less than 200 seconds . EXAMPLE 2
Except by replacing kaolin with calcined kaolin, the same formulation and procedures of Example 1 were repeated to obtain a microporous membrane.
We noticed that the oil dispersion of calcined kaolin rs better than kaolrn. The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2 o offset, puncture resistance of more than 450 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds. EXAMPLE 3
Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of IxIO6, 10% by weight of a UHMW polyethylene having Mw of 3xlO6 and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 480 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds. EXAMPLE 4
Except for using a dry blend mixture of 20% by weight of a UHMW polyethylene having Mw of 1x10 , and 80% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 200 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 5
Except for using a dry blend mixture of 80-s by weight of a UHMW polyethylene having Mw of IxIO6, and 20% by weight calcined kaolin, the same procedures of Example 1 were repeated to obtain a microporous membrane.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 800 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 6 Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of IxIO6, 20% PP with melt index of less than 2 and 40% by weight calcined kaolin, the same procedures of Example 1 were repeated with a different process conditions. The dried microporous sheet was subsequently stretched in both directions at 14O0C for 100 % and also heat set at 1350C, producing a 25 microns thick microporous membrane.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 550 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 7 Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 3xlOF, and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated. The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 8
Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 5xlO6, and 50% by weight calcined kaolin, the same procedures of Example 1 were repeated. The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample did not shutdown, had a melt integrity more than 190 ° C, shrinkage of less than 5°o, tensile strength of less than 2% offset, puncture resistance of more than 600 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds. EXAMPLE 9
Except for using a dry blend mixture of 50% by weight of a UHMW polyethylene having Mw of 5xlO6, 40% by weight of a UHMW polyethylene having Mw of about 800,000 and 10% by weight calcined kaolin, the same procedures of Example 1 were repeated.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample shutdown at 146°C, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 550 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 10
Except for using a dry blend mixture of 40% by weight of a UHMW polyethylene having Mw of 5x10 , 40% by weight of a UHMW polyethylene having Mw of about 300,000 and 20% by weight calcined kaolin, the same procedures of Example 1 were repeated.
The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample shutdown at 135°C, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds . EXAMPLE 11 Except for using a dry blend mixture of 25% by weight of a UHMW polyethylene having Mw of 5xlO6, 70% by weight of a UHMW polyethylene having Mw of about 300,000 and 5% by weight calcined kaolin, the same procedures of Example 1 were repeated. The sample produced above was tested for air permeability (Gurley number) , shutdown and melt integrity, shrinkage, tensile strength, and puncture resistance. The Gurley number was less than 10 seconds, the sample shutdown at 131°C, had a melt integrity more than 190 ° C, shrinkage of less than 5%, tensile strength of less than 2% offset, puncture resistance of more than 500 grams. The Gurley number prior to stretching of 2-4 mil (50-200 microns) thick material was measured and it was less than 200 seconds .
These examples are summarized in the table appearing below.
Figure imgf000026_0001
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. To cite only one of many possible examples, the ultra high molecular weight polyethylene can be replaced with a high-density polyethylene or a mixture of two or three ultra high molecular weight polyethylene and high-density polyethylene or other polyolefms, polyolefm copolymers or derivatives thereof and the kaolin filler or the mixture of AI2O3 and SiO? can be replaced by other suitable and property enhancing stable fillers.

Claims

CLAIMSWhat is claimed is:
1. A battery separator comprised of a mixture of kaolin clay and polyolefin, the battery separator having a thickness of 5 to 250μm and air permeability of 1 to 200 sec/lOcc.
2. The battery separator of claim 1 wherein the kaolin clay further comprises calcined kaolin.
3. The battery separator of claim 2 wherein the polyolefm further comprises an ulthira high molecular weight polyethylene (UHMWPE) having a minimum average molecular weight of IxIO6.
4. The battery separator in accordance with claim 2, wherein the polyolefm is a mixture of UHMWPE having a minimum average molecular weight of IxIO6 and a polypropylene (PP) having a melt index of 2 or less, and wherein the weight ratio of UHMWPE to PP is 50% or more .
5. The battery separator of claims 1, or 2, or 3 or 4 wherein the weight percentage ratio of the kaolin clay in the mix is between 20% and 80%, and wherein the separator is not subject to shutdown, regardless of temperature .
6. The battery separator in accordance with claims 1, or 2, or 3, or 4, wherein said microporous membrane has a melt rntegrrty of 150 0C or hrgher.
7. The battery separator in accordance with claim 2 wherein the weight percent of calcined kaolin in the mixture is between 5% and 20%, and wherein the polyolefin comprises a mixture of 10% to 50% by weight of UHMWPE having minimum average molecular weight of 1 million and 40% to 70% by weight of high density polyethylene having an average an average molecular weight of between 300,000 and 800,000.
8. The battery separator of claim 7 that has shutdown activation between 1300C and 1500C.
9. The battery separator of claim 7, wherein its melt integrity is 150 0C or higher.
10. A battery separator comprised of between 20% and 80% by weight of Al2O3 and between 20% and 80% by weight of SiO2, and polyolefin, the battery separator having a thickness of 5μm to 250μm and an air permeability of 1 to 200 sec/lOcc.
11. A lithium ion battery comprising a battery separator in accordance with claim 1, or claim 2, or claim 3, or claim 4, or claim 7, or claim 8, or claim 9, or claim 10.
12. A lithium ion battery comprising a battery separator in accordance with claim 5.
13. A lithium ion battery comprising a battery separator in accordance with claim 6.
14. The battery separator in accordance with claim 5, wherein said microporous membrane has a melt integrity of 150 0C or higher.
PCT/US2009/034192 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications WO2010093368A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117021502A KR20120046101A (en) 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications
PCT/US2009/034192 WO2010093368A1 (en) 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications
CA2751752A CA2751752A1 (en) 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/034192 WO2010093368A1 (en) 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications

Publications (1)

Publication Number Publication Date
WO2010093368A1 true WO2010093368A1 (en) 2010-08-19

Family

ID=42562007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/034192 WO2010093368A1 (en) 2009-02-16 2009-02-16 A polyolefin and ceramic battery separator for non-aqueous battery applications

Country Status (3)

Country Link
KR (1) KR20120046101A (en)
CA (1) CA2751752A1 (en)
WO (1) WO2010093368A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088060A2 (en) 2010-01-12 2011-07-21 Greenrock, Ltd. Paper-like film and process for making it
CN103378332A (en) * 2012-04-28 2013-10-30 苏州纳新新能源科技有限公司 Composite film for battery
JP2013258069A (en) * 2012-06-13 2013-12-26 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator, and lithium ion battery separator
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same
US10411238B2 (en) 2015-01-09 2019-09-10 Applied Materials, Inc. Battery separator with dielectric coating
US11588209B2 (en) 2018-08-21 2023-02-21 Applied Materials, Inc. Ultra-thin ceramic coating on separator for batteries

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611229B1 (en) 2013-01-31 2016-04-11 제일모직 주식회사 Method for manufacturing separator, the separator, and battery using the separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335193A (en) * 1975-06-18 1982-06-15 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film, particularly battery separator, and method of making
US5514494A (en) * 1995-06-19 1996-05-07 Corning Incorporated Battery separator
US6372379B1 (en) * 2000-02-25 2002-04-16 Abbas M. Samii Microporous membrane battery separator for silver zinc batteries
US6949315B1 (en) * 2004-05-12 2005-09-27 Garrin Samii Shutdown separators with improved properties
US20080057388A1 (en) * 2006-08-31 2008-03-06 Koichi Kono Multi-layer, microporous membrane, battery separator and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335193A (en) * 1975-06-18 1982-06-15 Asahi Kasei Kogyo Kabushiki Kaisha Microporous film, particularly battery separator, and method of making
US5514494A (en) * 1995-06-19 1996-05-07 Corning Incorporated Battery separator
US6372379B1 (en) * 2000-02-25 2002-04-16 Abbas M. Samii Microporous membrane battery separator for silver zinc batteries
US6949315B1 (en) * 2004-05-12 2005-09-27 Garrin Samii Shutdown separators with improved properties
US20080057388A1 (en) * 2006-08-31 2008-03-06 Koichi Kono Multi-layer, microporous membrane, battery separator and battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105330876B (en) * 2010-01-12 2018-04-10 绿岩有限责任公司 Imitative paper membrane and its preparation method
EP2523994A4 (en) * 2010-01-12 2015-09-02 Greenrock Ltd Paper-like film and process for making it
CN105330876A (en) * 2010-01-12 2016-02-17 绿岩有限责任公司 Paper-like film and process for making the same
US9676131B2 (en) 2010-01-12 2017-06-13 Greenrock, Ltd. Paper-like film and process for making it
WO2011088060A2 (en) 2010-01-12 2011-07-21 Greenrock, Ltd. Paper-like film and process for making it
US10011063B2 (en) 2010-01-12 2018-07-03 Greenrock, Ltd. Paper-like film and method for making it
CN103378332A (en) * 2012-04-28 2013-10-30 苏州纳新新能源科技有限公司 Composite film for battery
JP2013258069A (en) * 2012-06-13 2013-12-26 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator, and lithium ion battery separator
US10177359B2 (en) 2013-03-20 2019-01-08 Lg Chem, Ltd. Separator for electrochemical device and method for manufacturing the same
US10411238B2 (en) 2015-01-09 2019-09-10 Applied Materials, Inc. Battery separator with dielectric coating
US10461298B2 (en) 2015-01-09 2019-10-29 Applied Materials, Inc. Battery separator with dielectric coating
US11688851B2 (en) 2015-01-09 2023-06-27 Applied Materials, Inc. Method of forming an anode structure with dielectric coating
US11588209B2 (en) 2018-08-21 2023-02-21 Applied Materials, Inc. Ultra-thin ceramic coating on separator for batteries

Also Published As

Publication number Publication date
CA2751752A1 (en) 2010-08-19
KR20120046101A (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US8304113B2 (en) Polyolefin and ceramic battery separator for non-aqueous battery applications
EP2549566B1 (en) Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
KR101434379B1 (en) Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
EP2108675B1 (en) Microporous polyolefin membrane
KR101716907B1 (en) Separator for nonaqueous secondary battery
TWI390786B (en) A separator having porous coating layer and electrochemical device containing the same
WO2010093368A1 (en) A polyolefin and ceramic battery separator for non-aqueous battery applications
KR101103163B1 (en) Polyolefin microporous membrane
WO2014025868A1 (en) Improved separator membranes for lithium ion batteries and related methods
WO2005114763A1 (en) Shutdown separators with improved properties
US11205822B2 (en) Non-porous separator and use thereof
CN114024100B (en) Separator for nonaqueous electrolyte lithium secondary battery and nonaqueous electrolyte lithium secondary battery
JP2010212046A (en) Nonaqueous secondary battery and adsorbent for nonaqueous secondary battery
KR20200028505A (en) Separator for electricity storage devices, and electricity storage device
JP2011249240A (en) Inorganic particulate containing polyolefin microporous membrane and nonaqueous electrolyte battery separator
CN110461925A (en) The manufacturing method of polyolefin micro porous polyolefin membrane and polyolefin micro porous polyolefin membrane
EP3624224A2 (en) Separator without separator substrate and electrochemical device comprising same
JP2008266457A (en) Polyolefin micro-porous film
JP5649210B2 (en) Polyolefin microporous membrane
EP4277006A1 (en) Separator and electrochemical device comprising same
JP5491137B2 (en) Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP2022089292A (en) Cell separator
US11837751B2 (en) Polyolefin micro-porous film and power-storage device
EP3940840A1 (en) Nano-composite polymer separator with enhanced safety performance and preparation method thereof
KR20220130146A (en) Coated Separator, Electrochemical Cell Containing Coated Separator, and Method of Making Coated Separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2751752

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117021502

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09840146

Country of ref document: EP

Kind code of ref document: A1