WO2010092813A1 - Scroll-type fluid machine - Google Patents

Scroll-type fluid machine Download PDF

Info

Publication number
WO2010092813A1
WO2010092813A1 PCT/JP2010/000852 JP2010000852W WO2010092813A1 WO 2010092813 A1 WO2010092813 A1 WO 2010092813A1 JP 2010000852 W JP2010000852 W JP 2010000852W WO 2010092813 A1 WO2010092813 A1 WO 2010092813A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
chamber
pressure
scroll
oil
Prior art date
Application number
PCT/JP2010/000852
Other languages
French (fr)
Japanese (ja)
Inventor
高部哲也
大谷尚史
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2010092813A1 publication Critical patent/WO2010092813A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/04Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication

Definitions

  • the present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine suitable for being incorporated in a refrigeration cycle.
  • This type of scroll type fluid machine includes a drive shaft extending in the sealed container, a fixed scroll fixed to the sealed container, a movable scroll coupled to the drive shaft and revolved around the axis of the fixed scroll. Cooperates with each other to form an expansion chamber (working space) for refrigerant as a working fluid, discharges the refrigerant in the expansion chamber through a discharge port, and is fixed in a sealed container so that the drive shaft can rotate freely. And a frame that supports the movable scroll so as to be capable of revolving and revolving, a lubricating oil chamber that is provided in a sealed container and stores lubricating oil, and is formed between the frame and the back of the movable scroll.
  • a back pressure chamber that presses the movable scroll against the fixed scroll by a back pressure generated by the supply of lubricating oil in the chamber, and an oil discharge portion that discharges the lubricating oil from the back pressure chamber.
  • Scroll type expander has been known (for example, see Patent Document 1).
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a scroll type fluid machine that can improve the heat exchange efficiency of the refrigeration cycle by a simple and highly efficient lubricating oil circulation means. .
  • a scroll type fluid machine includes a drive shaft extending through the sealed container, a fixed scroll fixed to the sealed container, and one end of the drive shaft coupled to each other.
  • a movable scroll that revolves around the core forms a working space for the working fluid in cooperation with each other.
  • the scroll unit discharges the working fluid in the working space through the discharge port, and is fixed to the sealed container and driven.
  • a frame that rotatably supports the shaft and supports the movable scroll so as to be capable of revolving, and a lubricating oil that is provided on the other end side of the drive shaft in the hermetic container and that acts on the high pressure side pressure of the working fluid is stored.
  • a valve chamber communicating with the back pressure chamber, a lubricating oil circulation means having a circulation path communicating between the valve chamber and the lubricating oil chamber, and provided in the valve chamber, And a valve mechanism that opens and closes the circulation path according to the pressure in the back pressure chamber.
  • the fixed scroll is formed on a sliding surface of the fixed scroll on which the movable scroll is slid in accordance with the revolving orbiting motion of the movable scroll, and the central portion of the fixed scroll is formed.
  • the valve chamber is communicated with the back pressure chamber through the annular groove.
  • the lubricating oil circulation means is inserted in the circulation path and temporarily stores the lubricating oil passing through the valve chamber, and the lubricating oil stored in the oil chamber And a pressure raising means for raising the pressure to the high pressure side pressure of the working fluid and delivering the pressure to the lubricating oil chamber side.
  • the oil chamber is provided with a high-pressure supply path for introducing the high-pressure side pressure of the working fluid
  • the boosting means communicates the high-pressure supply path with the oil chamber.
  • the lubricating oil stored in is increased to the high pressure side pressure of the working fluid.
  • the pump in the third aspect of the present invention, includes a pump inserted in a circulation path between the oil chamber and the lubricating oil chamber, and the boosting means is stored in the oil chamber by driving the pump. It is characterized in that the lubricating oil is increased to the high pressure side pressure of the working fluid.
  • any one of claims 3 to 5 it comprises first oil level detection means for detecting the oil level of the lubricating oil stored in the oil chamber.
  • first oil level detection means for detecting the oil level of the lubricating oil stored in the oil chamber.
  • a second oil level detecting means for detecting the oil level of the lubricating oil stored in the lubricating oil chamber.
  • the invention according to claim 8 is the invention according to any one of claims 3 to 5, further comprising oil recovery time detection means for detecting the recovery time of the lubricating oil recovered in the oil chamber, wherein the boosting means is the oil recovery time detection means.
  • the recovery time of the lubricating oil detected at is equal to or longer than a predetermined recovery time, the lubricating oil stored in the oil chamber is raised to the high pressure side pressure of the working fluid.
  • the invention of claim 9 is characterized in that, in any of claims 3 to 8, the oil chamber is provided in a sealed container.
  • the drive shaft is disposed in the vertical direction in the vertical direction and connected to the upper end side of the drive shaft, and the lower end of the drive shaft.
  • the scroll-type fluid machine of the vertical type comprising a compressor connected to the side, wherein the scroll unit is an expander, and the lubricating oil chamber stores lubricating oil for lubricating the expander and the compressor. It is characterized by being.
  • the drive shaft has a longitudinal direction arranged in a vertical direction and is connected to an upper end side of the drive shaft, and a lower end side of the drive shaft.
  • a scroll-type fluid machine of a vertical type comprising a compressor connected to the compressor, wherein the scroll unit is an expander and prevents rotation of the drive shaft between the expander side and the compressor side in the sealed container.
  • a partition wall is provided, and the lubricating oil chamber is formed on the upper side of the partition wall and stores lubricating oil for lubricating the expander.
  • a valve chamber communicating with the back pressure chamber, and a lubricating oil circulation means having a circulation path communicating the valve chamber and the lubricating oil chamber. And a valve mechanism that opens and closes the circulation path according to the pressure in the back pressure chamber.
  • the lubricating oil in the back pressure chamber is recovered in the lubricating oil chamber according to the pressure in the back pressure chamber independently of the working fluid discharged through the discharge port of the scroll unit, and is supplied to the back pressure chamber again. can do.
  • the fixed scroll is formed on the sliding surface of the fixed scroll on which the movable scroll is slid along with the revolving turning motion of the movable scroll, and the center of the fixed scroll is the center.
  • the valve chamber is communicated with the back pressure chamber via the annular groove.
  • the lubricating oil supplied from the back pressure chamber to the sliding surface along with the revolving orbiting motion of the movable scroll can be efficiently recovered by receiving it once in the annular groove, so that the heat exchange efficiency of the refrigeration cycle Can be further improved.
  • the lubricating oil circulation means is inserted in the circulation path and temporarily stores the lubricating oil that has passed through the valve chamber, and the lubricating oil stored in the oil chamber is used as the working fluid.
  • Pressure increasing means for increasing the pressure to the high pressure side pressure and sending the pressure to the lubricating oil chamber side.
  • the oil chamber is provided with a high-pressure supply path for introducing the high-pressure side pressure of the working fluid
  • the boosting means is stored in the oil chamber by communicating the high-pressure supply path with the oil chamber.
  • the pressure of the lubricating oil is increased to the high pressure side pressure of the working fluid. Accordingly, the pressure of the lubricating oil can be increased using the high-pressure side pressure of the working fluid, so that the lubricating oil circulation means can be configured more simply.
  • the pump includes a pump inserted in the circulation path between the oil chamber and the lubricating oil chamber, and the boosting means supplies the lubricating oil stored in the oil chamber by driving the pump. Increase the pressure to the high pressure side of the working fluid. Thereby, since it is possible to reliably raise the pressure of the lubricating oil without depending on the fluctuation of the high pressure side pressure of the working fluid, it is possible to reliably improve the heat exchange efficiency of the refrigeration cycle.
  • the boosting means is configured such that when the oil level of the lubricating oil detected by the oil level detecting means is equal to or higher than a predetermined oil level (invention 6), or When the lubricant recovery time detected by the oil recovery time detection means is equal to or longer than a predetermined recovery time (Claim 8), the lubricant stored in the oil chamber is increased to the high pressure of the working fluid. As a result, the pressure can be raised after a predetermined amount of lubricating oil is stored in the oil chamber, so that the lubricating oil can be collected more smoothly into the lubricating oil chamber, and the heat exchange efficiency of the refrigeration cycle can be further improved. Can do.
  • the second oil level detecting means for detecting the oil level of the lubricating oil stored in the lubricating oil chamber
  • the boosting means has the second oil level detecting.
  • the lubricating oil circulating means can be further simplified.
  • the drive shaft is arranged in the vertical direction in the longitudinal direction, and is connected to the upper end side of the drive shaft and the compressor connected to the lower end side of the drive shaft.
  • a scroll unit is an expander, and a lubricating oil chamber is formed on the upper side of the partition wall and stores lubricating oil for lubricating the expander and the compressor. Is done.
  • the lubricating oil chamber is formed on the upper side of the partition wall and lubricates the expander. Lubricating oil is stored.
  • FIG. 1 shows a longitudinal sectional view of a scroll type fluid machine 1 according to the present embodiment.
  • the fluid machine 1 is a vertically-placed, for example, compressor-integrated expander, and a two-stage compression in which a later-described compressor 12 constituting the fluid machine 1 serves as a low-stage compressor.
  • the refrigeration cycle is incorporated in a refrigeration air conditioner, a heat pump type hot water heater, or the like. In this refrigeration cycle, the expansion energy of the refrigerant is converted into motive power by an expander 8 which will be described later, and the compressor 12 is rotated.
  • the compressor 12 drives a high-stage compressor (not shown) constituting the two-stage compressor. Assisting.
  • the fluid machine 1 includes a housing (sealed container) 2, and a drive shaft 4 that drives the fluid machine 1 is extended in the housing 2 with the longitudinal direction thereof being arranged in the vertical direction.
  • An upper eccentric shaft portion (one end portion) 6 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the upper end of the drive shaft 4, and an expander ( A scroll unit 8 is connected.
  • a lower eccentric shaft portion (lower end portion) 10 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the lower end of the drive shaft 4, and the lower eccentric shaft portion 10 is interposed via a bearing portion 11.
  • the compressor 12 is connected.
  • the housing 2 includes a center shell 14 that forms a cylindrical body portion of the fluid machine 1, an upper frame 16 that rotatably supports the upper end side of the drive shaft 4 via a bearing portion 15, and an upper portion of the fluid machine 1.
  • the cap-shaped top shell 18 to cover, the lower frame 20 which rotatably supports the lower end side of the drive shaft 4 via the bearing portion 19, and the cap-shaped bottom shell 22 which covers the lower part of the fluid machine 1 are configured. ing.
  • the housing 2 is sealed by the shells 14, 18, 22 and the frames 16, 20, and the pressure of the refrigerant as the working fluid of the fluid machine 1 taken in from the external circuit is applied to the inside of the housing 2.
  • the top shell 18 is connected to a suction pipe 24 that sucks the refrigerant taken in from an external circuit, and a suction chamber 26 in which the suction pipe 24 is opened is formed inside the top shell 18.
  • the upper frame 16 is connected to a discharge pipe 28 that discharges the refrigerant that has passed through the suction pipe 24, the suction chamber 26, and the expander 8 to the outside of the housing 2.
  • the lower frame 20 is connected to a suction pipe 30 that sucks the refrigerant taken in from the external circuit, and the bottom shell 22 is supplied with the refrigerant sucked from the suction pipe 30 and passed through the compressor 12 to the outside of the housing 2.
  • a discharge pipe 32 for discharging is connected, and the discharge pipe 32 is opened to a discharge chamber 34 formed inside the bottom shell 22.
  • the inside of the center shell 14 is partitioned by a partition wall 36 into a space 38 on the expander 8 side and a space 40 on the compressor 12 side, and a mechanical seal 42 is mounted at a position where the partition shaft 36 penetrates the drive shaft 4. 42 hermetically seals the space 38 and the space 40 without hindering driving of the drive shaft 4.
  • the expander 8 includes a movable scroll 44 and a fixed scroll 46, and spiral wraps are erected on the scrolls 44 and 46 so as to face each other.
  • the movable scroll 44 is supported by the pedestal portion of the upper frame 16 so as to be capable of revolving without rotating, and a boss portion 48 is projected on the surface opposite to the standing surface of the wrap of the movable scroll 44.
  • a boss portion 48 is projected on the surface opposite to the standing surface of the wrap of the movable scroll 44.
  • the fixed scroll 46 is fixed to the upper frame 16, and a suction hole 50 opened to the suction chamber 26 is formed through the center of the fixed scroll 46.
  • a discharge pipe 28 is connected to the outer periphery of the fixed scroll 46.
  • a discharge chamber (discharge port) 52 is formed.
  • the drive shaft 4 is rotationally driven in accordance with the orbiting orbiting motion of the movable scroll 44, and the refrigerant used for the orbiting orbiting motion of the movable scroll 44 and thus generating the driving force of the driving shaft 4 is discharged inside the outer periphery of the fixed scroll 46. It is sent to an external circuit outside the housing 2 via the discharge pipe 28 via the discharge chamber 52 to which the reference numeral 28 is connected.
  • the compressor 12 includes a movable scroll 54 and a fixed scroll 56, and spiral wraps are erected on the scrolls 54 and 56 so as to face each other.
  • the movable scroll 54 is supported on the pedestal portion of the lower frame 20 so as to be capable of revolving without rotating, and a boss portion 58 projects from the back surface opposite to the standing surface of the wrap.
  • the side eccentric shaft part 10 is connected.
  • the fixed scroll 56 is fixed to the lower frame 20, and a discharge hole 60 opened to the discharge chamber 34 is formed through the center of the fixed scroll 56, and the suction pipe 30 is connected to the outer periphery of the fixed scroll 56.
  • a suction chamber 62 is formed.
  • the compressor 12 described above the refrigerant sucked from the suction pipe 30 is taken into the compressor 12 through the suction chamber 62, and the movable and fixed scrolls 54 and 56 cooperate with each other so that the scrolls 54 and 56. Compressed in a compression chamber formed between the laps. The volume of the compression chamber is increased while the movable scroll 54 revolves around the axis of the fixed scroll 56 by the rotation of the drive shaft 4 via the boss portion 58 and moves toward the center of each scroll 54, 56. Will be reduced.
  • the refrigerant whose pressure has been increased with the decrease in the volume of the compression chamber passes through the discharge hole 60 and the discharge chamber 34 and is sent to the external circuit outside the housing 2 through the discharge pipe 32.
  • the upper lubricating oil chamber in which lubricating oil for lubricating the scrolls 44 and 46 of the expander 8 and the scrolls 54 and 56 of the compressor 12 is stored, respectively.
  • (Lubricating oil chamber) 64 and a lower lubricating oil chamber 66 are formed.
  • oil passages 68 and 70 that open to the upper end and the lower end thereof are drilled along the axial direction of the drive shaft 4, and the oil passages 68 and 70 are respectively in the radial direction of the drive shaft 4.
  • the lubricating oil stored in the lower lubricating oil chamber 66 is discharged from the lower end of the drive shaft 4 through the oil supply hole 74 and the oil passage 70 and fills the accommodating portion 82 of the boss portion 58 of the lower frame 20.
  • the lubricating oil filled in the accommodating portion 82 is supplied to the sliding surface 86 of the movable scroll 54 with respect to the fixed scroll 56 through the space 84 outside the movable scroll 54 and contributes to lubrication between the scrolls 54 and 56.
  • the lubricating oil stored in the upper lubricating oil chamber 64 is discharged from the upper end of the drive shaft 4 through the oil supply hole 72 and the oil passage 68 and fills the accommodating portion 76 of the boss portion 48 of the upper frame 16.
  • the lubricating oil filled in the housing portion 76 flows down to the upper lubricating oil chamber 64 along the drive shaft 4 while lubricating the bearing portion 15, while passing through the space 78 outside the movable scroll 44 to the fixed scroll 46. It is supplied to the sliding surface 80 of the movable scroll 44 and contributes to lubrication between the scrolls 44 and 46.
  • a back pressure chamber 88 of the movable scroll 44 is formed between the upper frame 16 and the back surface 44 a of the movable scroll 44, and the back pressure chamber 88 is the lubricating oil in the upper lubricating oil chamber 64.
  • the movable scroll 44 is pressed against the fixed scroll 46 by the back pressure generated by the supply of.
  • the back pressure chamber 88 is partitioned by an annular seal ring member 89 centering on the center of the movable scroll 44, and the low pressure side pressure of the refrigerant acting on the discharge chamber 52 by the seal ring member 89 or a back pressure adjusting mechanism (not shown).
  • the back pressure is set to a higher pressure than the high pressure side pressure of the refrigerant acting on the suction chamber 26 or to an intermediate pressure that is slightly lower than the high pressure side pressure of the refrigerant.
  • the lubricating oil is delivered to the outer space 78.
  • a similar back pressure chamber 90 is also formed in the compressor 12.
  • the lubricating oil that has passed through the space 84 from the back pressure chamber 90 moves toward the center of the scrolls 54 and 56 that form the compression chamber by the rotational force obtained from the expander 8 through the suction chamber 62. While being discharged from the discharge pipe 32 through the discharge hole 60 together with the refrigerant.
  • the refrigerant sent from the discharge pipe 32 is separated from the lubricating oil contained in the refrigerant by an oil separator (not shown) provided outside the fluid machine 1, and the separated lubricating oil is separated from the partition wall 36 of the center shell 14. Also, it is supplied from the lubricating oil supply pipe 92 connected to the lower side to the lower lubricating oil chamber 66, and again contributes to the lubrication of each sliding portion described above.
  • the lubricating oil that has passed through the space 78 from the back pressure chamber 88 moves toward the outer peripheral side of each scroll 44, 46 due to the back pressure, and is collected independently with little mixing with the refrigerant. Is done.
  • a lubricating oil recovery pipe 94 is connected inside the outer periphery of the fixed scroll 46, while a lubricating oil supply pipe 96 is connected above the partition wall 36 of the center shell 14. These pipes 94 and 96 are connected to a lubricating oil circulation circuit (lubricating oil circulation means) 98.
  • a three-way valve 102, an oil chamber 104, and a check valve 106 are inserted into a circulating oil pipe (circulation path) 100 to which the pipes 94 and 96 are connected in order from the flow direction of the lubricating oil. It is configured.
  • the three-way valve 102 is introduced with the high-pressure side pressure of the refrigerant circulating in the refrigeration cycle in which the fluid machine 1 is incorporated, that is, the discharge pressure of a high-stage side compressor (not shown) or the pressure immediately before flowing into the expander 8.
  • a high-pressure pipe (high-pressure supply path) 108 is connected.
  • the three-way valve 102 is electrically connected to a control device 110 that controls the operation of the fluid machine 1 and thus the refrigeration cycle.
  • the oil chamber 104 temporarily stores the lubricating oil that has passed through the three-way valve 102 and sends it to the check valve 106 side.
  • the oil chamber 104 is equipped with a level sensor (first oil level detecting means) 112 for detecting the oil level of the lubricating oil stored in the oil chamber 104, and the level sensor 112 is electrically connected to the control device 110. Connected.
  • a pressure equalizing pipe 113 is connected to the oil chamber 104, and the pressure equalizing pipe 113 releases the pressure in the oil chamber 104, thereby reducing the pressure on the low pressure side in the refrigeration cycle so that the lubricating oil flows smoothly into the oil chamber 104.
  • it is connected to the discharge pipe 28 or the like, and is appropriately communicated by a valve (not shown).
  • the check valve 106 is a mechanical on-off valve that prevents backflow of the lubricating oil from the lubricating oil supply pipe 96 to the oil chamber 104.
  • FIG. 2 is an enlarged cross-sectional view of the portion A in FIG. 1 as viewed from the discharge pipe 28 side in FIG.
  • the sliding surface 114 of the fixed scroll 46 with respect to the movable scroll 44 (OK at 114) has an annular shape centered on the center of the fixed scroll 46 at a position facing the space 78.
  • An annular groove 116 is formed.
  • a valve chamber 118 penetrating the fixed scroll 46 is formed in the annular groove 116, and the valve chamber 118 is formed with an oil passage 120 formed on the side opened to the annular groove 116, and the diameter thereof is increased from the oil passage 120.
  • the valve accommodating part 122 and the oil path 124 which connects the valve accommodating part 122 and the lubricating oil recovery pipe
  • a valve seat 122 a is formed on the inner surface of the valve housing portion 122 by expanding the diameter from the oil passage 120.
  • the valve accommodating portion 122 accommodates a valve mechanism 126.
  • the valve mechanism 126 includes a ball member 126a made of a steel ball or the like, a spring member 126b that presses the ball member 126a against the valve seat portion 122a, and a spring member 126b. It is comprised from the spring pressing member 126c to support.
  • the spring holding member 126c is fixed to the inside of the valve housing portion 122, and the ball 126a is pressed against the valve seat portion 122a by a predetermined elastic force of the spring member 126b, and the oil passage 120 side, the oil passage 122 side, Is hermetically sealed.
  • the ball member 126a is lifted away from the valve seat 122a, and the oil passage 120 side and the oil passage 124 side are lifted. And communicated with each other.
  • the spring member 126b does not lift the ball member 126a away from the valve seat portion 122a depending on the low pressure side pressure of the refrigerant acting on the discharge chamber 52, and the low pressure side pressure of the refrigerant acting on the back pressure chamber 88.
  • the ball member 126a is formed by a member having a predetermined elastic force that lifts the ball member 126a away from the valve seat portion 122a when the pressure is equal to or higher than the intermediate pressure between the pressure and the high pressure side pressure.
  • valve chamber 118 and the back pressure chamber 88 are communicated with each other via the annular groove 116, and the valve chamber 118 and the upper lubricating oil chamber 64 are disposed via the circulating oil pipe 100.
  • the valve mechanism 126 opens and closes the circulating oil pipe 100 in accordance with the pressure in the back pressure chamber 88 to recover the lubricating oil that changes from a predetermined low pressure to an intermediate pressure.
  • valve drive control of the three-way valve 102 is executed in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64 by the lubricating oil circulation circuit 98.
  • the valve body of the three-way valve 102 is switched to a direction in which only the circulating oil pipe 100 is communicated, and is first detected by the level sensor 112 in a state where the lubricating oil is being collected. It is determined whether or not the oil level of the lubricating oil in the oil chamber 104 is equal to or higher than a predetermined oil level.
  • the high pressure pipe 108 is connected to the oil chamber by switching the valve body of the three-way valve 102 from the circulating oil pipe 100 side to the high pressure pipe 108 side.
  • the high pressure side pressure is supplied to the oil chamber 104.
  • the lubricating oil whose pressure has been increased to a predetermined high pressure by the high pressure side of the refrigerant passes through the check valve 106 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant acts (pressure increasing means). .
  • the lubricating oil in the back pressure chamber 88 is independent of the refrigerant discharged through the discharge pipe 28 of the expander 8. Then, it can be recovered in the upper lubricating oil chamber 64 according to the pressure in the back pressure chamber 88 and supplied to the back pressure chamber 88 again. Therefore, without using an oil separator or the like, it is possible to prevent the lubricating oil from being excessively contained in the refrigerant and flowing out into the refrigeration cycle in which the fluid machine 1 is incorporated, thereby simplifying the heat exchange efficiency of the refrigeration cycle. Can be improved.
  • the lubricating oil stored in the oil chamber 104 can be approximately equalized with the upper lubricating oil chamber 64 where the high-pressure side pressure of the refrigerant acts, so that the lubricating oil is lubricated to the upper side.
  • the oil chamber 64 can be recovered more smoothly, and the heat exchange efficiency of the refrigeration cycle can be further improved.
  • the lubricating oil can be boosted using the high-pressure side pressure of the refrigerant in the refrigeration cycle, so that the lubricating oil circulation circuit 98 can be configured more simply.
  • the pressure can be increased after a predetermined amount of lubricating oil is stored in the oil chamber 104, so that the lubricating oil can be more smoothly collected in the upper lubricating oil chamber 64, and the refrigeration cycle can be recovered.
  • the heat exchange efficiency can be further improved.
  • FIG. 3 shows a lubricating oil circulation circuit (lubricating oil circulation means) 128 having a configuration different from that of the first embodiment, and the other configuration is substantially the same as that of the first embodiment.
  • the oil circulation circuit 128 will be described.
  • the lubricating oil circulation circuit 128 is provided.
  • the drive units of the inlet valve 130, the outlet valve 132, and the pump 134 are electrically connected to the control device 110.
  • the control device 110 in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64, the inlet valve 130, Valve / pump drive control of the outlet valve 132 and the pump 134 is executed.
  • the level sensor is first opened in a state where the inlet valve 130 is opened, the outlet valve 132 is closed, the pump 134 is stopped, and the lubricating oil is collected. It is determined whether or not the oil level in the oil chamber 104 detected at 112 is greater than or equal to a predetermined oil level. Next, when it is determined that the oil level is equal to or higher than the predetermined oil level, the inlet valve 130 is closed, the outlet valve 132 is opened, and the pump 134 is further driven, whereby the oil chamber The lubricating oil stored in 104 is increased to a predetermined high pressure that is about the high pressure side pressure of the refrigerant.
  • the lubricating oil whose pressure has been increased to a predetermined high pressure about the high pressure side pressure of the refrigerant passes through the check valve 106 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant similarly acts (pressure increasing means). ).
  • the heat exchange efficiency of the refrigeration cycle can be improved efficiently by the simple and highly efficient lubricating oil circulation circuit 128.
  • the pump 134 is used as a means for boosting the lubricating oil, and the pump 134 is driven at a predetermined rotational speed at which the high pressure side pressure of the refrigerant can be obtained. Since the pressure of the lubricating oil can be reliably increased regardless of fluctuations, the heat exchange efficiency of the refrigeration cycle can be reliably improved.
  • FIG. 4 shows a lubricating oil circulation circuit (lubricating oil circulation means) 136 having a configuration different from those of the above embodiments only on the expander 8 side of the fluid machine 1.
  • the oil chamber 138 is provided in the vicinity of the upper lubricating oil chamber 64 in the housing 2, and the rest of the configuration is substantially the same as that of the first embodiment.
  • the oil chamber 138 is open to the back pressure chamber 88 in the pedestal portion of the upper frame 16 and is formed so as to penetrate toward the upper lubricating oil chamber 64 side.
  • a check valve 142 for preventing backflow of lubricating oil from the oil chamber 138 to the back pressure chamber 88 is inserted in the oil passage 140, and further, the bottom of the oil chamber 138 can communicate with the upper lubricating oil chamber 64.
  • a check valve 144 is provided, and the check valve 144 prevents backflow of lubricating oil from the upper lubricating oil chamber 64 to the oil chamber 138.
  • the oil chamber 138 is provided in the vicinity of the center shell 14, and the high pressure pipe 108 is connected via the center shell 14.
  • a three-way valve 102 is inserted in the high-pressure pipe 108, and a pressure equalizing pipe 113 is connected to the other port of the three-way valve 102.
  • the control device 110 executes valve drive control of the three-way valve 102 in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant acts. Is done.
  • the valve body of the three-way valve 102 is switched to a direction in which only the pressure equalizing pipe 113 is communicated, and is first detected by the level sensor 112 in a state where the lubricating oil is being collected. It is determined whether or not the oil level of the lubricating oil in the oil chamber 138 is equal to or higher than a predetermined oil level. Next, when it is determined that the oil level is equal to or higher than the predetermined oil level, the high pressure pipe 108 is connected to the oil chamber by switching the valve body of the three-way valve 102 from the pressure equalizing pipe 113 side to the high pressure pipe 108 side. The oil chamber 138 is supplied with a high-pressure side pressure.
  • the lubricating oil whose pressure has been increased to a predetermined high pressure by the high pressure side of the refrigerant passes through the check valve 144 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant similarly acts (pressure increasing means). .
  • the heat exchange efficiency of the refrigeration cycle can be efficiently improved by the simple and highly efficient lubricating oil circulation circuit 136.
  • the lubricating oil circulation circuit 136 can be further simplified.
  • the description of one embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the pressure of the lubricating oil is increased according to the oil level of the lubricating oil detected by the level sensor 112.
  • the present invention is not limited to this.
  • the oil chamber The stored lubricating oil may be boosted to a predetermined high pressure. Also in this case, as in the case of each of the above embodiments, the pressure can be increased after a predetermined amount of lubricating oil is stored in the oil chamber, so that the lubricating oil can be smoothly collected in the upper lubricating oil chamber 64. it can.
  • valves 130 and 132 may be removed, and the pressure of the lubricating oil may be controlled only by the pump 134, or a check valve (not shown) may be provided on the outlet side of the pump 134. You may make it prevent the reverse flow of the refrigerant
  • FIG. 5 a high pressure pipe 108 and a pressure equalizing pipe 113 are connected to the three-way valve 102, thereby leading directly to the oil chamber 104 via the three-way valve 102.
  • the lubricating oil circulation circuit 98 may be configured by inserting the check valve 106, the oil chamber 104, and the check valve 106 into the circulating oil pipe 100 in order from the flow direction of the lubricating oil.
  • a level sensor (second oil level detecting means) (not shown) that detects the oil level of the lubricating oil stored in the upper lubricating oil chamber 64 is provided instead of the level sensor 112,
  • the lubricating oil stored in the oil chamber may be increased to a predetermined high pressure.
  • an appropriate back pressure is applied to the movable scroll 44 with the supplied high-pressure lubricating oil, so that the fluid machine 1 is It can be operated appropriately and efficiently.
  • the partition wall 36 that partitions the expander 8 side and the compressor 12 side in the housing 2 is provided.
  • the partition wall 36 is excluded to lubricate the expander 8 and the compressor 12.
  • One common lubricating oil chamber for storing lubricating oil for the purpose may be formed.
  • the partition wall 36 not only the partition wall 36 but also the mechanical seal 42 attached to the partition wall 36 is not necessary, so that the fluid machine 1 is more simplified and preferable.
  • the drive side scroll unit is the expander 8 and the driven side scroll unit is the compressor 12 provided on the lower side of the expander 8, but either one of the two scroll units is used.
  • a refrigeration cycle such as a heat pump or a refrigeration circuit, it is possible to simplify the configuration and improve the efficiency of a hot water supply device or an air conditioner mounted with the heat pump or refrigeration circuit preferable.
  • the present invention can be applied to not only a compressor-integrated expander but also a scroll fluid machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Disclosed is a scroll type fluid machine which can efficiently raise the heat-exchange efficiency of a refrigeration cycle through a simple and efficient lubricating oil circulation means. The machine is provided with a scroll unit (8); a frame (16), which is fixed to a sealed container (2), and which supports a drive shaft (4) such that said drive shaft (4) is rotatable, and which also supports a mobile scroll (44) such that said mobile scroll (44) may move in an orbiting fashion; a lubricating oil chamber (64) provided in the sealed container (2) at an end of the drive shaft (4), and where lubricating oil acted on by the high pressure side pressure of the working fluid accumulates; a back pressure chamber (88) formed between the frame and the back surface (44a) of the mobile scroll, and which presses the mobile scroll against a fixed scroll (46) through back pressure generated by means of lubricating oil being supplied from the lubricating oil chamber; a valve chamber (122) provided on the fixed scroll, and which is connected to the back pressure chamber; a lubricating oil circulation means (98), which has a circulation path (100) connecting the valve chamber to the lubricating oil chamber; and a valve mechanism (126) provided in the valve chamber, and which opens and closes the circulation path in response to the pressure in the back pressure chamber.

Description

スクロール型流体機械Scroll type fluid machinery
 本発明は、スクロール型流体機械に係り、詳しくは、冷凍サイクルに組み込まれて好適なスクロール型流体機械に関する。 The present invention relates to a scroll type fluid machine, and more particularly to a scroll type fluid machine suitable for being incorporated in a refrigeration cycle.
 この種のスクロール型流体機械には、密閉容器内を延びる駆動軸と、密閉容器に固定される固定スクロールと、駆動軸が連結されて固定スクロールの軸心周りに公転旋回運動される可動スクロールとが互いに協働して作動流体としての冷媒の膨張室(作動空間)を形成し、膨張室の冷媒を吐出ポートを介して吐出するスクロールユニットと、密閉容器内に固定されて駆動軸を回転自在に支持し且つ可動スクロールを公転旋回運動可能に支持するフレームと、密閉容器内に設けられ、潤滑油が貯留される潤滑油室と、フレームと可動スクロールの背面との間に形成され、潤滑油室の潤滑油が供給されることにより発生する背圧によって可動スクロールを固定スクロールに対して押圧する背圧室と、背圧室から潤滑油を排出する排油部とを備えたスクロール型膨張機が知られている(例えば特許文献1参照)。 This type of scroll type fluid machine includes a drive shaft extending in the sealed container, a fixed scroll fixed to the sealed container, a movable scroll coupled to the drive shaft and revolved around the axis of the fixed scroll. Cooperates with each other to form an expansion chamber (working space) for refrigerant as a working fluid, discharges the refrigerant in the expansion chamber through a discharge port, and is fixed in a sealed container so that the drive shaft can rotate freely. And a frame that supports the movable scroll so as to be capable of revolving and revolving, a lubricating oil chamber that is provided in a sealed container and stores lubricating oil, and is formed between the frame and the back of the movable scroll. A back pressure chamber that presses the movable scroll against the fixed scroll by a back pressure generated by the supply of lubricating oil in the chamber, and an oil discharge portion that discharges the lubricating oil from the back pressure chamber. Scroll type expander has been known (for example, see Patent Document 1).
特開2008-88854号公報JP 2008-88854 A
 しかしながら、上記従来技術では、上記膨張機を潤滑する潤滑油を潤滑油室に円滑に戻す潤滑油循環手段については格別な配慮がなされておらず、スクロール型流体機械の組み込まれる冷凍サイクルを循環する作動流体中に潤滑油が過度に含まれて冷凍サイクル中に流出されることにより、冷凍サイクルの熱交換効率が低下するとの問題がある。
 また、上記従来技術では、作動流体中に潤滑油が過度に含まれて冷凍サイクル中に流出されることにより、膨張機が貧潤滑となって焼き付くおそれもある。
However, in the above prior art, no special consideration is given to the lubricating oil circulation means for smoothly returning the lubricating oil for lubricating the expander to the lubricating oil chamber, and the circulating oil is circulated through the refrigeration cycle in which the scroll type fluid machine is incorporated. There is a problem that the heat exchange efficiency of the refrigeration cycle is lowered by excessively containing lubricating oil in the working fluid and flowing out into the refrigeration cycle.
Moreover, in the said prior art, there exists a possibility that an expander may become poor lubrication and may be seized by having lubricating oil contained excessively in a working fluid and flowing out into a refrigerating cycle.
 一方、上記潤滑油循環手段を構成するには、一般に、冷媒から潤滑油を分離するためのオイルセパレータが必要となり、潤滑油循環手段、スクロール型流体機械が巨大化及び複雑化するとの問題がある。
 また、潤滑油が上記ポンプ機構を経由することにより、潤滑油循環手段のシステム全体の機械的な損失が発生し、流体機械を適正に且つ効率良く稼動させることができないとの問題もある。
On the other hand, in order to configure the lubricating oil circulation means, an oil separator for separating the lubricating oil from the refrigerant is generally required, and there is a problem that the lubricating oil circulation means and the scroll type fluid machine are enlarged and complicated. .
Further, since the lubricating oil passes through the pump mechanism, a mechanical loss of the whole system of the lubricating oil circulating means occurs, and there is a problem that the fluid machine cannot be operated properly and efficiently.
 本発明は、このような課題に鑑みてなされたもので、簡素且つ高効率な潤滑油循環手段によって冷凍サイクルの熱交換効率を向上することができるスクロール型流体機械を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a scroll type fluid machine that can improve the heat exchange efficiency of the refrigeration cycle by a simple and highly efficient lubricating oil circulation means. .
 上記の目的を達成するべく、請求項1のスクロール型流体機械は、密閉容器内を延びる駆動軸と、密閉容器に固定される固定スクロールと、駆動軸の一端部が連結されて固定スクロールの軸心周りに公転旋回運動される可動スクロールとが互いに協働して作動流体の作動空間を形成し、作動空間の作動流体を吐出ポートを介して吐出するスクロールユニットと、密閉容器に固定されて駆動軸を回転自在に支持し且つ可動スクロールを公転旋回運動可能に支持するフレームと、密閉容器内の駆動軸の他端側に設けられ、作動流体の高圧側圧力が作用する潤滑油が貯留される潤滑油室と、フレームと可動スクロールの背面との間に形成され、潤滑油室の潤滑油が供給されることにより発生する背圧によって可動スクロールを固定スクロールに対して押圧する背圧室と、固定スクロールに設けられ、背圧室と連通する弁室と、弁室と潤滑油室とを連通する循環路を有する潤滑油循環手段と、弁室内に設けられ、背圧室内の圧力に応じて循環路を開閉する弁機構とを備えることを特徴としている。 In order to achieve the above object, a scroll type fluid machine according to a first aspect of the present invention includes a drive shaft extending through the sealed container, a fixed scroll fixed to the sealed container, and one end of the drive shaft coupled to each other. A movable scroll that revolves around the core forms a working space for the working fluid in cooperation with each other. The scroll unit discharges the working fluid in the working space through the discharge port, and is fixed to the sealed container and driven. A frame that rotatably supports the shaft and supports the movable scroll so as to be capable of revolving, and a lubricating oil that is provided on the other end side of the drive shaft in the hermetic container and that acts on the high pressure side pressure of the working fluid is stored. It is formed between the lubricating oil chamber and the frame and the back of the movable scroll, and the movable scroll is fixed to the fixed scroll by the back pressure generated when the lubricating oil in the lubricating oil chamber is supplied. Provided in the fixed scroll, a valve chamber communicating with the back pressure chamber, a lubricating oil circulation means having a circulation path communicating between the valve chamber and the lubricating oil chamber, and provided in the valve chamber, And a valve mechanism that opens and closes the circulation path according to the pressure in the back pressure chamber.
 また、請求項2の発明では、請求項1において、固定スクロールは、可動スクロールの公転旋回運動に伴って可動スクロールが摺動される固定スクロールの摺動面に形成され、固定スクロールの中心部を中心とした円環状の環状溝を有し、弁室は、環状溝を介して背圧室と連通されることを特徴としている。
 更に、請求項3の発明では、請求項2において、潤滑油循環手段は、循環路に介挿され、弁室を経由した潤滑油を一旦貯留するオイルチャンバと、オイルチャンバに貯留された潤滑油を作動流体の高圧側圧力まで昇圧させて潤滑油室側に送出する昇圧手段とを備えることを特徴としている。
According to a second aspect of the present invention, in the first aspect, the fixed scroll is formed on a sliding surface of the fixed scroll on which the movable scroll is slid in accordance with the revolving orbiting motion of the movable scroll, and the central portion of the fixed scroll is formed. The valve chamber is communicated with the back pressure chamber through the annular groove.
Furthermore, in the invention of claim 3, in claim 2, the lubricating oil circulation means is inserted in the circulation path and temporarily stores the lubricating oil passing through the valve chamber, and the lubricating oil stored in the oil chamber And a pressure raising means for raising the pressure to the high pressure side pressure of the working fluid and delivering the pressure to the lubricating oil chamber side.
 更にまた、請求項4の発明では、請求項3において、オイルチャンバに作動流体の高圧側圧力を導圧する高圧供給路を備え、昇圧手段は、高圧供給路をオイルチャンバに連通させることによりオイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させることを特徴としている。
 また、請求項5の発明では、請求項3において、オイルチャンバと潤滑油室との間の循環路に介挿されるポンプを備え、昇圧手段は、ポンプを駆動することによりオイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させることを特徴としている。
Furthermore, in the invention of claim 4, in claim 3, the oil chamber is provided with a high-pressure supply path for introducing the high-pressure side pressure of the working fluid, and the boosting means communicates the high-pressure supply path with the oil chamber. The lubricating oil stored in is increased to the high pressure side pressure of the working fluid.
According to a fifth aspect of the present invention, in the third aspect of the present invention, the pump includes a pump inserted in a circulation path between the oil chamber and the lubricating oil chamber, and the boosting means is stored in the oil chamber by driving the pump. It is characterized in that the lubricating oil is increased to the high pressure side pressure of the working fluid.
 更に、請求項6の発明では、請求項3乃至5の何れかにおいて、オイルチャンバに貯留される潤滑油の油面レベルを検出する第1の油面レベル検出手段を備え、昇圧手段は、油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル以上になるとき、オイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させることを特徴としている。 Furthermore, in the invention of claim 6, in any one of claims 3 to 5, it comprises first oil level detection means for detecting the oil level of the lubricating oil stored in the oil chamber. When the oil level of the lubricating oil detected by the surface level detecting means is equal to or higher than a predetermined oil level, the lubricating oil stored in the oil chamber is increased to the high pressure side pressure of the working fluid.
 更にまた、請求項7の発明では、請求項3乃至6の何れかにおいて、潤滑油室に貯留される潤滑油の油面レベルを検出する第2の油面レベル検出手段を備え、昇圧手段は、第2の油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル未満になるとき、オイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させることを特徴としている。 Furthermore, in the invention of claim 7, in any one of claims 3 to 6, there is provided a second oil level detecting means for detecting the oil level of the lubricating oil stored in the lubricating oil chamber. When the lubricating oil level detected by the second oil level detecting means is less than a predetermined oil level, the lubricating oil stored in the oil chamber is increased to the high pressure side pressure of the working fluid. It is characterized by.
 また、請求項8の発明では、請求項3乃至5の何れかにおいて、オイルチャンバに回収される潤滑油の回収時間を検出する油回収時間検出手段を備え、昇圧手段は、油回収時間検出手段にて検出される潤滑油の回収時間が所定の回収時間以上になるとき、オイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させることを特徴としている。
 更に、請求項9の発明では、請求項3乃至8の何れかにおいて、オイルチャンバは、密閉容器内に設けられることを特徴としている。
The invention according to claim 8 is the invention according to any one of claims 3 to 5, further comprising oil recovery time detection means for detecting the recovery time of the lubricating oil recovered in the oil chamber, wherein the boosting means is the oil recovery time detection means. When the recovery time of the lubricating oil detected at is equal to or longer than a predetermined recovery time, the lubricating oil stored in the oil chamber is raised to the high pressure side pressure of the working fluid.
Furthermore, the invention of claim 9 is characterized in that, in any of claims 3 to 8, the oil chamber is provided in a sealed container.
 更にまた、請求項10の発明では、請求項1乃至9の何れかにおいて、駆動軸は、長手方向が鉛直方向に配され、駆動軸の上端側に連結される膨張機と、駆動軸の下端側に連結される圧縮機とからなる縦置き型のスクロール型流体機械であって、スクロールユニットは、膨張機であり、潤滑油室は、膨張機及び圧縮機を潤滑するための潤滑油が貯留されることを特徴としている。 Furthermore, in the invention of claim 10, in any one of claims 1 to 9, the drive shaft is disposed in the vertical direction in the vertical direction and connected to the upper end side of the drive shaft, and the lower end of the drive shaft. The scroll-type fluid machine of the vertical type comprising a compressor connected to the side, wherein the scroll unit is an expander, and the lubricating oil chamber stores lubricating oil for lubricating the expander and the compressor. It is characterized by being.
 また、請求項11の発明では、請求項1乃至9の何れかにおいて、駆動軸は、長手方向が鉛直方向に配され、駆動軸の上端側に連結される膨張機と、駆動軸の下端側に連結される圧縮機とからなる縦置き型のスクロール型流体機械であって、スクロールユニットは、膨張機であり、密閉容器内の膨張機側と圧縮機側とを駆動軸の回転を妨げることなく仕切る隔壁を備え、潤滑油室は、隔壁の上側に形成され、膨張機を潤滑するための潤滑油が貯留されることを特徴としている。 According to an eleventh aspect of the present invention, in any one of the first to ninth aspects, the drive shaft has a longitudinal direction arranged in a vertical direction and is connected to an upper end side of the drive shaft, and a lower end side of the drive shaft. A scroll-type fluid machine of a vertical type comprising a compressor connected to the compressor, wherein the scroll unit is an expander and prevents rotation of the drive shaft between the expander side and the compressor side in the sealed container. A partition wall is provided, and the lubricating oil chamber is formed on the upper side of the partition wall and stores lubricating oil for lubricating the expander.
 請求項1の本発明のスクロール型流体機械によれば、固定スクロールに設けられ、背圧室と連通する弁室と、弁室と潤滑油室とを連通する循環路を有する潤滑油循環手段と、弁室内に設けられ、背圧室内の圧力に応じて循環路を開閉する弁機構とを備える。これにより、背圧室の潤滑油をスクロールユニットの吐出ポートを介して吐出される作動流体とは独立して、背圧室内の圧力に応じて潤滑油室に回収し、再び背圧室に供給することができる。従って、オイルセパレータなどを用いなくとも、潤滑油が作動流体に過度に含まれスクロール型流体機械の組み込まれる冷凍サイクル中に流出されることを防止することができ、冷凍サイクルの熱交換効率を簡易にして向上することができる。
 また、請求項2の発明によれば、固定スクロールは、可動スクロールの公転旋回運動に伴って可動スクロールが摺動される固定スクロールの摺動面に形成され、固定スクロールの中心部を中心とした円環状の環状溝を有し、弁室は、環状溝を介して背圧室と連通される。これにより、可動スクロールの公転旋回運動に伴って背圧室から摺動面に供給される潤滑油を環状溝にて一旦受けることによって効率的に回収することができるため、冷凍サイクルの熱交換効率を更に向上することができる。
According to the scroll type fluid machine of the present invention of claim 1, provided in the fixed scroll is a valve chamber communicating with the back pressure chamber, and a lubricating oil circulation means having a circulation path communicating the valve chamber and the lubricating oil chamber. And a valve mechanism that opens and closes the circulation path according to the pressure in the back pressure chamber. As a result, the lubricating oil in the back pressure chamber is recovered in the lubricating oil chamber according to the pressure in the back pressure chamber independently of the working fluid discharged through the discharge port of the scroll unit, and is supplied to the back pressure chamber again. can do. Therefore, it is possible to prevent the lubricating oil from being excessively contained in the working fluid and flowing out into the refrigeration cycle in which the scroll type fluid machine is incorporated without using an oil separator or the like, and simplify the heat exchange efficiency of the refrigeration cycle. Can be improved.
According to the second aspect of the present invention, the fixed scroll is formed on the sliding surface of the fixed scroll on which the movable scroll is slid along with the revolving turning motion of the movable scroll, and the center of the fixed scroll is the center. The valve chamber is communicated with the back pressure chamber via the annular groove. As a result, the lubricating oil supplied from the back pressure chamber to the sliding surface along with the revolving orbiting motion of the movable scroll can be efficiently recovered by receiving it once in the annular groove, so that the heat exchange efficiency of the refrigeration cycle Can be further improved.
 更に、請求項3の発明によれば、潤滑油循環手段は、循環路に介挿され、弁室を経由した潤滑油を一旦貯留するオイルチャンバと、オイルチャンバに貯留された潤滑油を作動流体の高圧側圧力まで昇圧させて潤滑油室側に送出する昇圧手段とを備える。これにより、オイルチャンバに貯留された潤滑油を作動流体の高圧側圧力が作用する潤滑油室と略均圧にすることができるため、潤滑油を潤滑油室に更に円滑に回収することができ、冷凍サイクルの熱交換効率をより一層向上することができる。 Furthermore, according to the invention of claim 3, the lubricating oil circulation means is inserted in the circulation path and temporarily stores the lubricating oil that has passed through the valve chamber, and the lubricating oil stored in the oil chamber is used as the working fluid. Pressure increasing means for increasing the pressure to the high pressure side pressure and sending the pressure to the lubricating oil chamber side. As a result, the lubricating oil stored in the oil chamber can be substantially equalized with the lubricating oil chamber where the high-pressure side pressure of the working fluid acts, so that the lubricating oil can be more smoothly collected in the lubricating oil chamber. The heat exchange efficiency of the refrigeration cycle can be further improved.
 更にまた、請求項4の発明によれば、オイルチャンバに作動流体の高圧側圧力を導圧する高圧供給路を備え、昇圧手段は、高圧供給路をオイルチャンバに連通させることによりオイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させる。これにより、作動流体の高圧側圧力を利用して潤滑油を昇圧させることができるため、潤滑油循環手段を更に簡易に構成することができる。 Furthermore, according to the invention of claim 4, the oil chamber is provided with a high-pressure supply path for introducing the high-pressure side pressure of the working fluid, and the boosting means is stored in the oil chamber by communicating the high-pressure supply path with the oil chamber. The pressure of the lubricating oil is increased to the high pressure side pressure of the working fluid. Accordingly, the pressure of the lubricating oil can be increased using the high-pressure side pressure of the working fluid, so that the lubricating oil circulation means can be configured more simply.
 また、請求項5の発明によれば、オイルチャンバと潤滑油室との間の循環路に介挿されるポンプを備え、昇圧手段は、ポンプを駆動することによりオイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させる。これにより、作動流体の高圧側圧力の変動によらないで潤滑油を確実に昇圧させることができるため、冷凍サイクルの熱交換効率を確実に向上することができる。 According to a fifth aspect of the present invention, the pump includes a pump inserted in the circulation path between the oil chamber and the lubricating oil chamber, and the boosting means supplies the lubricating oil stored in the oil chamber by driving the pump. Increase the pressure to the high pressure side of the working fluid. Thereby, since it is possible to reliably raise the pressure of the lubricating oil without depending on the fluctuation of the high pressure side pressure of the working fluid, it is possible to reliably improve the heat exchange efficiency of the refrigeration cycle.
 更に、請求項6及び8の発明によれば、昇圧手段は、油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル以上になるとき(請求項6)、または、油回収時間検出手段にて検出される潤滑油の回収時間が所定の回収時間以上になるとき(請求項8)、オイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させる。これにより、オイルチャンバに所定量の潤滑油が貯留された後に昇圧させることができるため、潤滑油を潤滑油室に更に円滑に回収することができ、冷凍サイクルの熱交換効率を更に向上することができる。 Further, according to the inventions of claims 6 and 8, the boosting means is configured such that when the oil level of the lubricating oil detected by the oil level detecting means is equal to or higher than a predetermined oil level (invention 6), or When the lubricant recovery time detected by the oil recovery time detection means is equal to or longer than a predetermined recovery time (Claim 8), the lubricant stored in the oil chamber is increased to the high pressure of the working fluid. As a result, the pressure can be raised after a predetermined amount of lubricating oil is stored in the oil chamber, so that the lubricating oil can be collected more smoothly into the lubricating oil chamber, and the heat exchange efficiency of the refrigeration cycle can be further improved. Can do.
 更にまた、請求項7の発明によれば、潤滑油室に貯留される潤滑油の油面レベルを検出する第2の油面レベル検出手段を備え、昇圧手段は、第2の油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル未満になるとき、オイルチャンバに貯留される潤滑油を作動流体の高圧側圧力まで昇圧させる。これにより、潤滑油を途切れさせることなく連続的にスクロールユニットに供給することができるため、供給される高圧の潤滑油で可動スクロールに適正な背圧を付与して流体機械を適正に且つ効率良く稼動させることができる。 Furthermore, according to the invention of claim 7, the second oil level detecting means for detecting the oil level of the lubricating oil stored in the lubricating oil chamber is provided, and the boosting means has the second oil level detecting. When the oil level detected by the means becomes less than a predetermined oil level, the lubricating oil stored in the oil chamber is increased to the high pressure side pressure of the working fluid. As a result, the lubricating oil can be continuously supplied to the scroll unit without being interrupted, so that the hydraulic machine is appropriately and efficiently applied by applying an appropriate back pressure to the movable scroll with the supplied high-pressure lubricating oil. It can be operated.
 また、請求項9の発明によれば、オイルチャンバが密閉容器内に設けられることにより、潤滑油循環手段の更なる簡素化を図ることができる。
 更に、請求項10及び11の発明によれば、駆動軸は、長手方向が鉛直方向に配され、駆動軸の上端側に連結される膨張機と、駆動軸の下端側に連結される圧縮機とからなる縦置き型のスクロール型流体機械であって、スクロールユニットは、膨張機であり、潤滑油室は、隔壁の上側に形成され、膨張機及び圧縮機を潤滑するための潤滑油が貯留される。一方、密閉容器内の膨張機側と圧縮機側とを駆動軸の回転を妨げることなく仕切る隔壁を備える場合には、潤滑油室は、隔壁の上側に形成され、膨張機を潤滑するための潤滑油が貯留される。これらにより、圧縮機一体型膨張機を構成することができるため、この圧縮機一体型膨張機を例えばヒートポンプや冷凍回路に組み込むことによって、ヒートポンプや冷凍回路が搭載される給湯装置や空調装置等の構成の簡素化及び効率向上を図ることができる。
According to the ninth aspect of the present invention, since the oil chamber is provided in the sealed container, the lubricating oil circulating means can be further simplified.
Further, according to the inventions of claims 10 and 11, the drive shaft is arranged in the vertical direction in the longitudinal direction, and is connected to the upper end side of the drive shaft and the compressor connected to the lower end side of the drive shaft. And a scroll unit is an expander, and a lubricating oil chamber is formed on the upper side of the partition wall and stores lubricating oil for lubricating the expander and the compressor. Is done. On the other hand, in the case of including a partition wall that partitions the expander side and the compressor side in the sealed container without hindering the rotation of the drive shaft, the lubricating oil chamber is formed on the upper side of the partition wall and lubricates the expander. Lubricating oil is stored. By these, since the compressor-integrated expander can be configured, by incorporating this compressor-integrated expander into, for example, a heat pump or a refrigeration circuit, a water heater, an air conditioner, or the like on which the heat pump or refrigeration circuit is mounted The configuration can be simplified and the efficiency can be improved.
本発明の第1実施形態に係るスクロール型流体機械を示した縦断面図である。It is the longitudinal section showing the scroll type fluid machine concerning a 1st embodiment of the present invention. 図1のA部を図1中の吐出管側からみた拡大断面図である。It is the expanded sectional view which looked at the A section of FIG. 1 from the discharge pipe side in FIG. 本発明の第2実施形態に係る潤滑油循環回路を示した模式図である。It is the schematic diagram which showed the lubricating oil circulation circuit which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る潤滑油循環回路をスクロール型流体機械の膨張機側のみにて示した縦断面図である。It is the longitudinal cross-sectional view which showed the lubricating oil circulation circuit which concerns on 3rd Embodiment of this invention only by the expander side of a scroll type fluid machine. 本発明の第1実施形態に係る潤滑油循環回路の変形例を示した模式図である。It is the schematic diagram which showed the modification of the lubricating oil circulation circuit which concerns on 1st Embodiment of this invention.
 以下、図面により本発明の一実施形態について先ず第1実施形態から説明する。
 図1は、本実施形態に係るスクロール型流体機械1の縦断面図を示している。
 図1に示されるように、流体機械1は、縦置き型の例えば圧縮機一体型膨張機であって、流体機械1を構成する後述の圧縮機12が低段側圧縮機となる2段圧縮機を構成し、超臨界となる二酸化炭素冷媒が循環するヒートポンプ等の冷凍サイクルに介挿され、当該冷凍サイクルは冷凍空調機やヒートポンプ式給湯機等に組み込まれている。この冷凍サイクルは、後述の膨張機8により冷媒の膨張エネルギーを動力に変換して圧縮機12を回転させ、圧縮機12は上記2段圧縮機を構成する図示しない高段側圧縮機の駆動をアシストしている。
Hereinafter, an embodiment of the present invention will be described first from the first embodiment with reference to the drawings.
FIG. 1 shows a longitudinal sectional view of a scroll type fluid machine 1 according to the present embodiment.
As shown in FIG. 1, the fluid machine 1 is a vertically-placed, for example, compressor-integrated expander, and a two-stage compression in which a later-described compressor 12 constituting the fluid machine 1 serves as a low-stage compressor. The refrigeration cycle is incorporated in a refrigeration air conditioner, a heat pump type hot water heater, or the like. In this refrigeration cycle, the expansion energy of the refrigerant is converted into motive power by an expander 8 which will be described later, and the compressor 12 is rotated. The compressor 12 drives a high-stage compressor (not shown) constituting the two-stage compressor. Assisting.
 流体機械1は、ハウジング(密閉容器)2を備え、ハウジング2には、流体機械1を駆動する駆動軸4がその長手方向を鉛直方向に配して延設されている。
 駆動軸4の上端には、駆動軸4の軸心から偏心される上側偏心軸部(一端部)6が一体に形成され、上側偏心軸部6には、軸受部7を介して膨張機(スクロールユニット)8が連結されている。
The fluid machine 1 includes a housing (sealed container) 2, and a drive shaft 4 that drives the fluid machine 1 is extended in the housing 2 with the longitudinal direction thereof being arranged in the vertical direction.
An upper eccentric shaft portion (one end portion) 6 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the upper end of the drive shaft 4, and an expander ( A scroll unit 8 is connected.
 一方、駆動軸4の下端には、駆動軸4の軸心から偏心される下側偏心軸部(下端部)10が一体に形成され、下側偏心軸部10には軸受部11を介して圧縮機12が連結されており、換言すると、ハウジング2には、上から順に、共通の駆動軸4が連結された膨張機8、圧縮機12が鉛直方向に収容されている。
 ハウジング2は、流体機械1の円筒胴部をなすセンターシェル14と、駆動軸4の上端側を軸受部15を介して回転自在に支持する上側フレーム(フレーム)16と、流体機械1の上部を覆うキャップ状のトップシェル18と、駆動軸4の下端側を軸受部19を介して回転自在に支持する下側フレーム20と、流体機械1の下部を覆うキャップ状のボトムシェル22とから構成されている。
On the other hand, a lower eccentric shaft portion (lower end portion) 10 that is eccentric from the shaft center of the drive shaft 4 is integrally formed at the lower end of the drive shaft 4, and the lower eccentric shaft portion 10 is interposed via a bearing portion 11. The compressor 12 is connected. In other words, the expander 8 and the compressor 12 to which the common drive shaft 4 is connected are accommodated in the housing 2 in the vertical direction in order from the top.
The housing 2 includes a center shell 14 that forms a cylindrical body portion of the fluid machine 1, an upper frame 16 that rotatably supports the upper end side of the drive shaft 4 via a bearing portion 15, and an upper portion of the fluid machine 1. The cap-shaped top shell 18 to cover, the lower frame 20 which rotatably supports the lower end side of the drive shaft 4 via the bearing portion 19, and the cap-shaped bottom shell 22 which covers the lower part of the fluid machine 1 are configured. ing.
 ハウジング2は、これらシェル14,18,22、及びフレーム16,20によって密閉され、その内部に上記外部回路から取り込んだ流体機械1の作動流体としての冷媒の圧力が作用している。
 詳しくは、トップシェル18には、外部回路から取り込んだ冷媒を吸入する吸入管24が接続され、トップシェル18の内側には吸入管24が開口される吸入室26が形成されている。また、上側フレーム16には、吸入管24、吸入室26、膨張機8を順次経由した冷媒をハウジング2の外部へ吐出する吐出管28が接続されている。
The housing 2 is sealed by the shells 14, 18, 22 and the frames 16, 20, and the pressure of the refrigerant as the working fluid of the fluid machine 1 taken in from the external circuit is applied to the inside of the housing 2.
Specifically, the top shell 18 is connected to a suction pipe 24 that sucks the refrigerant taken in from an external circuit, and a suction chamber 26 in which the suction pipe 24 is opened is formed inside the top shell 18. The upper frame 16 is connected to a discharge pipe 28 that discharges the refrigerant that has passed through the suction pipe 24, the suction chamber 26, and the expander 8 to the outside of the housing 2.
 一方、下側フレーム20には、外部回路から取り込んだ冷媒を吸入する吸入管30が接続され、ボトムシェル22には、吸入管30から吸入され圧縮機12を経由した冷媒をハウジング2の外部へ吐出する吐出管32が接続され、吐出管32はボトムシェル22の内側に形成された吐出室34に開口されている。
 センターシェル14の内部は、隔壁36によって膨張機8側の空間38と圧縮機12側の空間40とに仕切られ、隔壁36の駆動軸4の貫通位置にはメカニカルシール42が装着され、メカニカルシール42は駆動軸4の駆動を妨げることなく空間38と空間40との間を気密にシールしている。
On the other hand, the lower frame 20 is connected to a suction pipe 30 that sucks the refrigerant taken in from the external circuit, and the bottom shell 22 is supplied with the refrigerant sucked from the suction pipe 30 and passed through the compressor 12 to the outside of the housing 2. A discharge pipe 32 for discharging is connected, and the discharge pipe 32 is opened to a discharge chamber 34 formed inside the bottom shell 22.
The inside of the center shell 14 is partitioned by a partition wall 36 into a space 38 on the expander 8 side and a space 40 on the compressor 12 side, and a mechanical seal 42 is mounted at a position where the partition shaft 36 penetrates the drive shaft 4. 42 hermetically seals the space 38 and the space 40 without hindering driving of the drive shaft 4.
 膨張機8は、可動スクロール44及び固定スクロール46から構成され、各スクロール44,46には渦巻き状のラップが対向して立設されている。
 可動スクロール44は上側フレーム16の台座部に自転することなく公転旋回運動可能に支持され、可動スクロール44のラップの立設面と反対側の面にボス部48が突設され、ボス部48には上側偏心軸部6が連結される。
The expander 8 includes a movable scroll 44 and a fixed scroll 46, and spiral wraps are erected on the scrolls 44 and 46 so as to face each other.
The movable scroll 44 is supported by the pedestal portion of the upper frame 16 so as to be capable of revolving without rotating, and a boss portion 48 is projected on the surface opposite to the standing surface of the wrap of the movable scroll 44. Are connected to the upper eccentric shaft portion 6.
 固定スクロール46は上側フレーム16に固定され、固定スクロール46の中央部には吸入室26に開口した吸入孔50が貫通して形成され、固定スクロール46の外周内部には吐出管28が接続された吐出室(吐出ポート)52が形成されている。
 上述した膨張機8によれば、吸入管24から吸入された冷媒は、吸入室26、吸入孔50を経て膨張機8に取り込まれ、可動及び固定スクロール44,46が互いに協働することによって各スクロール44,46のラップ間に形成された膨張室(作動空間)にて膨張される。膨張室は、各スクロール44,46の外周側に向けて移動しながらその容積が増大され、これに伴い可動スクロール44が固定スクロール46の軸心周りに公転旋回運動される。
The fixed scroll 46 is fixed to the upper frame 16, and a suction hole 50 opened to the suction chamber 26 is formed through the center of the fixed scroll 46. A discharge pipe 28 is connected to the outer periphery of the fixed scroll 46. A discharge chamber (discharge port) 52 is formed.
According to the expander 8 described above, the refrigerant sucked from the suction pipe 24 is taken into the expander 8 through the suction chamber 26 and the suction hole 50, and the movable and fixed scrolls 44 and 46 cooperate with each other. It is expanded in an expansion chamber (working space) formed between the wraps of the scrolls 44 and 46. The volume of the expansion chamber is increased while moving toward the outer peripheral side of each of the scrolls 44 and 46, and accordingly, the movable scroll 44 is revolved around the axis of the fixed scroll 46.
 駆動軸4は、可動スクロール44の公転旋回運動に伴って回転駆動され、可動スクロール44の公転旋回運動、ひいては駆動軸4の駆動力発生に供した冷媒は、固定スクロール46の外周内部において吐出管28が接続される吐出室52を経て吐出管28を介しハウジング2外の外部回路へ送出される。
 一方、圧縮機12は、可動スクロール54及び固定スクロール56から構成され、各スクロール54,56には渦巻き状のラップが対向して立設されている。
The drive shaft 4 is rotationally driven in accordance with the orbiting orbiting motion of the movable scroll 44, and the refrigerant used for the orbiting orbiting motion of the movable scroll 44 and thus generating the driving force of the driving shaft 4 is discharged inside the outer periphery of the fixed scroll 46. It is sent to an external circuit outside the housing 2 via the discharge pipe 28 via the discharge chamber 52 to which the reference numeral 28 is connected.
On the other hand, the compressor 12 includes a movable scroll 54 and a fixed scroll 56, and spiral wraps are erected on the scrolls 54 and 56 so as to face each other.
 可動スクロール54は下側フレーム20の台座部に自転することなく公転旋回運動可能に支持され、そのラップの立設面と反対側の背面にボス部58が突設され、ボス部58には下側偏心軸部10が連結される。
 固定スクロール56は下側フレーム20に固定され、固定スクロール56の中央部には吐出室34に開口した吐出孔60が貫通して形成され、固定スクロール56の外周内部には吸入管30が接続された吸入室62が形成されている。
The movable scroll 54 is supported on the pedestal portion of the lower frame 20 so as to be capable of revolving without rotating, and a boss portion 58 projects from the back surface opposite to the standing surface of the wrap. The side eccentric shaft part 10 is connected.
The fixed scroll 56 is fixed to the lower frame 20, and a discharge hole 60 opened to the discharge chamber 34 is formed through the center of the fixed scroll 56, and the suction pipe 30 is connected to the outer periphery of the fixed scroll 56. A suction chamber 62 is formed.
 上述した圧縮機12によれば、吸入管30から吸入された冷媒は、吸入室62を経て圧縮機12に取り込まれ、可動及び固定スクロール54,56が互いに協働することによって各スクロール54,56のラップ間に形成された圧縮室にて圧縮される。圧縮室は、ボス部58を介する駆動軸4の回転によって可動スクロール54が固定スクロール56の軸心周りに公転旋回運動することにより、各スクロール54,56の中心に向けて移動しながらその容積が減少される。 According to the compressor 12 described above, the refrigerant sucked from the suction pipe 30 is taken into the compressor 12 through the suction chamber 62, and the movable and fixed scrolls 54 and 56 cooperate with each other so that the scrolls 54 and 56. Compressed in a compression chamber formed between the laps. The volume of the compression chamber is increased while the movable scroll 54 revolves around the axis of the fixed scroll 56 by the rotation of the drive shaft 4 via the boss portion 58 and moves toward the center of each scroll 54, 56. Will be reduced.
 そして、圧縮室の容積の減少に伴い高圧にされた冷媒は、吐出孔60、吐出室34を経て吐出管32を介しハウジング2外の外部回路へ送出される。
 一方、隔壁36の上下側の空間38,40には、それぞれ膨張機8の各スクロール44,46、圧縮機12の各スクロール54,56を潤滑するための潤滑油が貯留される上側潤滑油室(潤滑油室)64及び下側潤滑油室66が形成されている。
Then, the refrigerant whose pressure has been increased with the decrease in the volume of the compression chamber passes through the discharge hole 60 and the discharge chamber 34 and is sent to the external circuit outside the housing 2 through the discharge pipe 32.
On the other hand, in the upper and lower spaces 38 and 40 of the partition wall 36, the upper lubricating oil chamber in which lubricating oil for lubricating the scrolls 44 and 46 of the expander 8 and the scrolls 54 and 56 of the compressor 12 is stored, respectively. (Lubricating oil chamber) 64 and a lower lubricating oil chamber 66 are formed.
 詳しくは、駆動軸4内には、その上端、下端にそれぞれ開口する油路68,70が駆動軸4の軸線方向に沿って穿孔され、油路68,70は、それぞれ駆動軸4の径方向に沿って穿孔された給油孔72,74によって各潤滑油室64,66に連通されている。
 下側潤滑油室66に貯留される潤滑油は、給油孔74、油路70を経て駆動軸4の下端から吐出され、下側フレーム20のボス部58の収容部82を満たす。この収容部82に満たされた潤滑油は、可動スクロール54の外側の空間84を経て固定スクロール56に対する可動スクロール54の摺動面86に供給され、各スクロール54,56同士の潤滑に寄与する。
Specifically, in the drive shaft 4, oil passages 68 and 70 that open to the upper end and the lower end thereof are drilled along the axial direction of the drive shaft 4, and the oil passages 68 and 70 are respectively in the radial direction of the drive shaft 4. Are connected to the respective lubricating oil chambers 64 and 66 by oil supply holes 72 and 74 drilled along the lines.
The lubricating oil stored in the lower lubricating oil chamber 66 is discharged from the lower end of the drive shaft 4 through the oil supply hole 74 and the oil passage 70 and fills the accommodating portion 82 of the boss portion 58 of the lower frame 20. The lubricating oil filled in the accommodating portion 82 is supplied to the sliding surface 86 of the movable scroll 54 with respect to the fixed scroll 56 through the space 84 outside the movable scroll 54 and contributes to lubrication between the scrolls 54 and 56.
 一方、上側潤滑油室64に貯留される潤滑油は、給油孔72、油路68を経て駆動軸4の上端から吐出され、上側フレーム16のボス部48の収容部76を満たす。この収容部76に満たされた潤滑油は、軸受部15を潤滑しながら駆動軸4に沿って上側潤滑油室64に流下される一方、可動スクロール44の外側の空間78を経て固定スクロール46に対する可動スクロール44の摺動面80に供給され、各スクロール44,46同士の潤滑に寄与する。 On the other hand, the lubricating oil stored in the upper lubricating oil chamber 64 is discharged from the upper end of the drive shaft 4 through the oil supply hole 72 and the oil passage 68 and fills the accommodating portion 76 of the boss portion 48 of the upper frame 16. The lubricating oil filled in the housing portion 76 flows down to the upper lubricating oil chamber 64 along the drive shaft 4 while lubricating the bearing portion 15, while passing through the space 78 outside the movable scroll 44 to the fixed scroll 46. It is supplied to the sliding surface 80 of the movable scroll 44 and contributes to lubrication between the scrolls 44 and 46.
 ここで、膨張機8では、上側フレーム16と可動スクロール44の背面44aとの間には、可動スクロール44の背圧室88が形成され、背圧室88は、上側潤滑油室64の潤滑油が供給されることにより発生する背圧によって可動スクロール44を固定スクロール46に対して押圧している。
 背圧室88は、可動スクロール44の中心部を中心とした円環状のシールリング部材89によって仕切られ、シールリング部材89や図示しない背圧調整機構により吐出室52に作用する冷媒の低圧側圧力よりも高圧で且つ吸入室26に作用する冷媒の高圧側圧力と同等乃至は冷媒の高圧側圧力よりもやや低圧となる中間圧に減圧された背圧に設定されており、この中間圧にされた潤滑油が外側の空間78に送出される。なお、圧縮機12においても同様の背圧室90が形成されている。
Here, in the expander 8, a back pressure chamber 88 of the movable scroll 44 is formed between the upper frame 16 and the back surface 44 a of the movable scroll 44, and the back pressure chamber 88 is the lubricating oil in the upper lubricating oil chamber 64. The movable scroll 44 is pressed against the fixed scroll 46 by the back pressure generated by the supply of.
The back pressure chamber 88 is partitioned by an annular seal ring member 89 centering on the center of the movable scroll 44, and the low pressure side pressure of the refrigerant acting on the discharge chamber 52 by the seal ring member 89 or a back pressure adjusting mechanism (not shown). The back pressure is set to a higher pressure than the high pressure side pressure of the refrigerant acting on the suction chamber 26 or to an intermediate pressure that is slightly lower than the high pressure side pressure of the refrigerant. The lubricating oil is delivered to the outer space 78. A similar back pressure chamber 90 is also formed in the compressor 12.
 圧縮機12では、背圧室90から空間84を経た潤滑油は、吸入室62を経て膨張機8から得られた回転力によって圧縮室を形成する各スクロール54,56の中心部に向けて移動しながら冷媒と共に吐出孔60を経て吐出管32から送出される。
 吐出管32から送出された冷媒は、流体機械1の外部に設けられた図示しないオイルセパレータなどによって冷媒に含まれた潤滑油が分離され、分離された潤滑油は、センターシェル14の隔壁36よりも下側に接続された潤滑油供給管92から下側潤滑油室66に供給され、再び上記した各摺動部の潤滑に寄与する。
In the compressor 12, the lubricating oil that has passed through the space 84 from the back pressure chamber 90 moves toward the center of the scrolls 54 and 56 that form the compression chamber by the rotational force obtained from the expander 8 through the suction chamber 62. While being discharged from the discharge pipe 32 through the discharge hole 60 together with the refrigerant.
The refrigerant sent from the discharge pipe 32 is separated from the lubricating oil contained in the refrigerant by an oil separator (not shown) provided outside the fluid machine 1, and the separated lubricating oil is separated from the partition wall 36 of the center shell 14. Also, it is supplied from the lubricating oil supply pipe 92 connected to the lower side to the lower lubricating oil chamber 66, and again contributes to the lubrication of each sliding portion described above.
 これに対し、膨張機8では、背圧室88から空間78を経た潤滑油は、背圧によって各スクロール44,46の外周側に向けて移動し、冷媒とほとんど混合することなく独立して回収される。
 詳しくは、固定スクロール46の外周内部には、冷媒の吐出管28とは別に、潤滑油回収管94が接続され、一方、センターシェル14の隔壁36よりも上側には潤滑油供給管96が接続されており、これら管94,96は潤滑油循環回路(潤滑油循環手段)98に接続されている。
On the other hand, in the expander 8, the lubricating oil that has passed through the space 78 from the back pressure chamber 88 moves toward the outer peripheral side of each scroll 44, 46 due to the back pressure, and is collected independently with little mixing with the refrigerant. Is done.
Specifically, in addition to the refrigerant discharge pipe 28, a lubricating oil recovery pipe 94 is connected inside the outer periphery of the fixed scroll 46, while a lubricating oil supply pipe 96 is connected above the partition wall 36 of the center shell 14. These pipes 94 and 96 are connected to a lubricating oil circulation circuit (lubricating oil circulation means) 98.
 潤滑油循環回路98は、各管94,96が接続される循環油管(循環路)100に、潤滑油の流れ方向から順に、三方弁102、オイルチャンバ104、逆止弁106が介挿されて構成されている。
 三方弁102には、流体機械1が組み込まれる冷凍サイクルを循環する冷媒の高圧側圧力、即ち、図示しない高段側圧縮機の吐出圧力、或いは膨張機8に流入する直前の圧力が導入される高圧管(高圧供給路)108が接続されている。
In the lubricating oil circulation circuit 98, a three-way valve 102, an oil chamber 104, and a check valve 106 are inserted into a circulating oil pipe (circulation path) 100 to which the pipes 94 and 96 are connected in order from the flow direction of the lubricating oil. It is configured.
The three-way valve 102 is introduced with the high-pressure side pressure of the refrigerant circulating in the refrigeration cycle in which the fluid machine 1 is incorporated, that is, the discharge pressure of a high-stage side compressor (not shown) or the pressure immediately before flowing into the expander 8. A high-pressure pipe (high-pressure supply path) 108 is connected.
 また、三方弁102は、その駆動部が流体機械1、ひいては上記冷凍サイクルの作動を制御する制御装置110に電気的に接続されている。
 オイルチャンバ104は、三方弁102を経由した潤滑油を一旦貯留し、逆止弁106側に送出する。また、オイルチャンバ104には、オイルチャンバ104に貯留される潤滑油の油面レベルを検出するレベルセンサ(第1の油面レベル検出手段)112が装着され、レベルセンサ112は制御装置110に電気的に接続されている。
The three-way valve 102 is electrically connected to a control device 110 that controls the operation of the fluid machine 1 and thus the refrigeration cycle.
The oil chamber 104 temporarily stores the lubricating oil that has passed through the three-way valve 102 and sends it to the check valve 106 side. Further, the oil chamber 104 is equipped with a level sensor (first oil level detecting means) 112 for detecting the oil level of the lubricating oil stored in the oil chamber 104, and the level sensor 112 is electrically connected to the control device 110. Connected.
 更に、オイルチャンバ104には、均圧管113が接続され、均圧管113は、オイルチャンバ104内の圧力を開放することによりオイルチャンバ104に潤滑油を円滑に流入させるべく冷凍サイクルにおいて低圧側圧力を帯びる冷媒が存在する、例えば吐出管28などに接続され、図示しない弁などにより適宜連通される。
 逆止弁106は、潤滑油供給管96からオイルチャンバ104への潤滑油の逆流を阻止する機械的な開閉弁である。
Further, a pressure equalizing pipe 113 is connected to the oil chamber 104, and the pressure equalizing pipe 113 releases the pressure in the oil chamber 104, thereby reducing the pressure on the low pressure side in the refrigeration cycle so that the lubricating oil flows smoothly into the oil chamber 104. For example, it is connected to the discharge pipe 28 or the like, and is appropriately communicated by a valve (not shown).
The check valve 106 is a mechanical on-off valve that prevents backflow of the lubricating oil from the lubricating oil supply pipe 96 to the oil chamber 104.
 図2は、図1のA部を図1中の吐出管28側からみた拡大断面図である。
 図2に示されるように、固定スクロール46の可動スクロール44に対する摺動面114(114でOKでした)には、空間78に面する位置に、固定スクロール46の中心部を中心とした円環状の環状溝116が形成されている。
 環状溝116には、固定スクロール46を貫通する弁室118が開口して形成され、弁室118は、環状溝116に開口する側に形成される油路120と、油路120から拡径された弁収容部122と、弁収容部122と潤滑油回収管94とを連通する油路124とから構成されている。
2 is an enlarged cross-sectional view of the portion A in FIG. 1 as viewed from the discharge pipe 28 side in FIG.
As shown in FIG. 2, the sliding surface 114 of the fixed scroll 46 with respect to the movable scroll 44 (OK at 114) has an annular shape centered on the center of the fixed scroll 46 at a position facing the space 78. An annular groove 116 is formed.
A valve chamber 118 penetrating the fixed scroll 46 is formed in the annular groove 116, and the valve chamber 118 is formed with an oil passage 120 formed on the side opened to the annular groove 116, and the diameter thereof is increased from the oil passage 120. The valve accommodating part 122 and the oil path 124 which connects the valve accommodating part 122 and the lubricating oil recovery pipe | tube 94 are comprised.
 弁収容部122には、油路120からの拡径によってその内面に弁座部122aが形成されている。また、弁収容部122には、弁機構126が収容され、弁機構126は鋼球などからなるボール部材126a、ボール部材126aを弁座部122aに対して押圧するばね部材126b、ばね部材126bを支持するばね押さえ部材126cから構成されている。 A valve seat 122 a is formed on the inner surface of the valve housing portion 122 by expanding the diameter from the oil passage 120. In addition, the valve accommodating portion 122 accommodates a valve mechanism 126. The valve mechanism 126 includes a ball member 126a made of a steel ball or the like, a spring member 126b that presses the ball member 126a against the valve seat portion 122a, and a spring member 126b. It is comprised from the spring pressing member 126c to support.
 そして、ばね押さえ部材126cは弁収容部122の内側などに固定されており、ばね部材126bの所定の弾性力によりボール126aは弁座部122aに押圧され、油路120側と油路122側とが気密にシールされる。
 一方、背圧室88の圧力がばね部材126bの所定の弾性力に抗して上昇することにより、ボール部材126aが弁座部122aから離間してリフトされ、油路120側と油路124側とが連通される。
The spring holding member 126c is fixed to the inside of the valve housing portion 122, and the ball 126a is pressed against the valve seat portion 122a by a predetermined elastic force of the spring member 126b, and the oil passage 120 side, the oil passage 122 side, Is hermetically sealed.
On the other hand, when the pressure in the back pressure chamber 88 rises against a predetermined elastic force of the spring member 126b, the ball member 126a is lifted away from the valve seat 122a, and the oil passage 120 side and the oil passage 124 side are lifted. And communicated with each other.
 ここで、ばね部材126bは、吐出室52に作用する冷媒の低圧側圧力によってはボール部材126aを弁座部122aから離間してリフトさせず、且つ背圧室88に作用する冷媒の低圧側圧力と高圧側圧力との中間圧以上となるときにボール部材126aを弁座部122aから離間してリフトさせる所定の弾性力を有する部材によって形成されている。
 このように構成される潤滑油循環回路98では、弁室118と背圧室88とは環状溝116を介して連通され、また、弁室118と上側潤滑油室64とは循環油管100を介して連通され、弁機構126は背圧室88内の圧力に応じて循環油管100を開閉することにより、所定の低圧から中間圧となる潤滑油を回収する。
Here, the spring member 126b does not lift the ball member 126a away from the valve seat portion 122a depending on the low pressure side pressure of the refrigerant acting on the discharge chamber 52, and the low pressure side pressure of the refrigerant acting on the back pressure chamber 88. The ball member 126a is formed by a member having a predetermined elastic force that lifts the ball member 126a away from the valve seat portion 122a when the pressure is equal to or higher than the intermediate pressure between the pressure and the high pressure side pressure.
In the lubricating oil circulation circuit 98 configured as described above, the valve chamber 118 and the back pressure chamber 88 are communicated with each other via the annular groove 116, and the valve chamber 118 and the upper lubricating oil chamber 64 are disposed via the circulating oil pipe 100. The valve mechanism 126 opens and closes the circulating oil pipe 100 in accordance with the pressure in the back pressure chamber 88 to recover the lubricating oil that changes from a predetermined low pressure to an intermediate pressure.
 加えて、制御装置110では、潤滑油循環回路98によって上側潤滑油室64に潤滑油を円滑に戻すために、三方弁102の弁駆動制御が実行される。
 詳しくは、当該弁駆動制御では、三方弁102の弁体が循環油管100のみを連通させる方向に切り換えられ、潤滑油の回収が行われている状態にて、先ず、レベルセンサ112にて検出されるオイルチャンバ104の潤滑油の油面レベルが所定の油面レベル以上であるか否かが判定される。
In addition, in the control device 110, valve drive control of the three-way valve 102 is executed in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64 by the lubricating oil circulation circuit 98.
Specifically, in the valve drive control, the valve body of the three-way valve 102 is switched to a direction in which only the circulating oil pipe 100 is communicated, and is first detected by the level sensor 112 in a state where the lubricating oil is being collected. It is determined whether or not the oil level of the lubricating oil in the oil chamber 104 is equal to or higher than a predetermined oil level.
 次に、油面レベルが所定の油面レベル以上であると判定された場合には、三方弁102の弁体を循環油管100側から高圧管108側に切り換えることにより、高圧管108がオイルチャンバ104に連通され、オイルチャンバ104に高圧側圧力が供給される。
 そして、冷媒の高圧側圧力により所定の高圧に昇圧された潤滑油は逆止弁106を通過して、同じく冷媒の高圧側圧力が作用する上側潤滑油室64に円滑に戻される(昇圧手段)。
Next, when it is determined that the oil level is equal to or higher than the predetermined oil level, the high pressure pipe 108 is connected to the oil chamber by switching the valve body of the three-way valve 102 from the circulating oil pipe 100 side to the high pressure pipe 108 side. The high pressure side pressure is supplied to the oil chamber 104.
The lubricating oil whose pressure has been increased to a predetermined high pressure by the high pressure side of the refrigerant passes through the check valve 106 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant acts (pressure increasing means). .
 以上のように、第1実施形態では、弁機構126及び潤滑油循環回路98を備えることにより、背圧室88の潤滑油を膨張機8の吐出管28を介して吐出される冷媒とは独立して、背圧室88内の圧力に応じて上側潤滑油室64に回収し、再び背圧室88に供給することができる。従って、オイルセパレータなどを用いなくとも、潤滑油が冷媒に過度に含まれ流体機械1の組み込まれる冷凍サイクル中に流出されることを防止することができ、冷凍サイクルの熱交換効率を簡易にして向上することができる。 As described above, in the first embodiment, by providing the valve mechanism 126 and the lubricating oil circulation circuit 98, the lubricating oil in the back pressure chamber 88 is independent of the refrigerant discharged through the discharge pipe 28 of the expander 8. Then, it can be recovered in the upper lubricating oil chamber 64 according to the pressure in the back pressure chamber 88 and supplied to the back pressure chamber 88 again. Therefore, without using an oil separator or the like, it is possible to prevent the lubricating oil from being excessively contained in the refrigerant and flowing out into the refrigeration cycle in which the fluid machine 1 is incorporated, thereby simplifying the heat exchange efficiency of the refrigeration cycle. Can be improved.
 更に、上記弁駆動制御を行うことにより、オイルチャンバ104に貯留される潤滑油を冷媒の高圧側圧力が作用する上側潤滑油室64と略均圧にすることができるため、潤滑油を上側潤滑油室64に更に円滑に回収することができ、冷凍サイクルの熱交換効率をより一層向上することができる。
 更にまた、上記弁駆動制御において、冷凍サイクル内の冷媒の高圧側圧力を利用して潤滑油を昇圧させることができるため、潤滑油循環回路98を更に簡易に構成することができる。
Further, by performing the valve drive control, the lubricating oil stored in the oil chamber 104 can be approximately equalized with the upper lubricating oil chamber 64 where the high-pressure side pressure of the refrigerant acts, so that the lubricating oil is lubricated to the upper side. The oil chamber 64 can be recovered more smoothly, and the heat exchange efficiency of the refrigeration cycle can be further improved.
Furthermore, in the valve drive control, the lubricating oil can be boosted using the high-pressure side pressure of the refrigerant in the refrigeration cycle, so that the lubricating oil circulation circuit 98 can be configured more simply.
 また、上記弁駆動制御において、オイルチャンバ104に所定量の潤滑油が貯留された後に昇圧させることができるため、潤滑油を上側潤滑油室64に更に円滑に回収することができ、冷凍サイクルの熱交換効率を更に向上することができる。 Further, in the above valve drive control, the pressure can be increased after a predetermined amount of lubricating oil is stored in the oil chamber 104, so that the lubricating oil can be more smoothly collected in the upper lubricating oil chamber 64, and the refrigeration cycle can be recovered. The heat exchange efficiency can be further improved.
 次に、本発明の第2実施形態について図3を参照して説明する。
 図3は、上記第1実施形態とは異なる構成の潤滑油循環回路(潤滑油循環手段)128を示すものであり、他は上記第1実施形態と略同一の構成をなすため、主としてこの潤滑油循環回路128について説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 3 shows a lubricating oil circulation circuit (lubricating oil circulation means) 128 having a configuration different from that of the first embodiment, and the other configuration is substantially the same as that of the first embodiment. The oil circulation circuit 128 will be described.
 本実施形態では、オイルチャンバ104の前後の循環油管100にそれぞれ介挿される入口弁130及び出口弁132と、オイルチャンバ104と上側潤滑油室64との間の循環油管100に介挿されるポンプ134とを備えた潤滑油循環回路128が構成されている。
 入口弁130、出口弁132及びポンプ134の各駆動部は、制御装置110に電気的に接続され、制御装置110では、上側潤滑油室64に潤滑油を円滑に戻すために、入口弁130、出口弁132及びポンプ134の弁・ポンプ駆動制御が実行される。
In the present embodiment, an inlet valve 130 and an outlet valve 132 inserted in the circulating oil pipes 100 before and after the oil chamber 104, and a pump 134 inserted in the circulating oil pipe 100 between the oil chamber 104 and the upper lubricating oil chamber 64. The lubricating oil circulation circuit 128 is provided.
The drive units of the inlet valve 130, the outlet valve 132, and the pump 134 are electrically connected to the control device 110. In the control device 110, in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64, the inlet valve 130, Valve / pump drive control of the outlet valve 132 and the pump 134 is executed.
 詳しくは、当該弁・ポンプ駆動制御では、入口弁130が開弁され、出口弁132が閉弁され、ポンプ134が停止され、潤滑油の回収が行われている状態にて、先ず、レベルセンサ112にて検出されるオイルチャンバ104の潤滑油の油面レベルが所定の油面レベル以上であるか否かが判定される。
 次に、油面レベルが所定の油面レベル以上であると判定された場合には、入口弁130を閉弁するとともに出口弁132を開弁し、更にポンプ134を駆動することにより、オイルチャンバ104に貯留される潤滑油が冷媒の高圧側圧力程度の所定の高圧まで昇圧される。
Specifically, in the valve / pump drive control, the level sensor is first opened in a state where the inlet valve 130 is opened, the outlet valve 132 is closed, the pump 134 is stopped, and the lubricating oil is collected. It is determined whether or not the oil level in the oil chamber 104 detected at 112 is greater than or equal to a predetermined oil level.
Next, when it is determined that the oil level is equal to or higher than the predetermined oil level, the inlet valve 130 is closed, the outlet valve 132 is opened, and the pump 134 is further driven, whereby the oil chamber The lubricating oil stored in 104 is increased to a predetermined high pressure that is about the high pressure side pressure of the refrigerant.
 そして、冷媒の高圧側圧力程度の所定の高圧に昇圧された潤滑油は逆止弁106を通過して、同じく冷媒の高圧側圧力が作用する上側潤滑油室64に円滑に戻される(昇圧手段)。
 以上のように、第2実施形態では、上記第1実施形態と同様に、簡素且つ高効率な潤滑油循環回路128によって冷凍サイクルの熱交換効率を効率的に向上することができる。
Then, the lubricating oil whose pressure has been increased to a predetermined high pressure about the high pressure side pressure of the refrigerant passes through the check valve 106 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant similarly acts (pressure increasing means). ).
As described above, in the second embodiment, similarly to the first embodiment, the heat exchange efficiency of the refrigeration cycle can be improved efficiently by the simple and highly efficient lubricating oil circulation circuit 128.
 特に、当該第2実施形態では、潤滑油の昇圧手段にポンプ134を用い、ポンプ134を冷媒の高圧側圧力を得られる程度の所定の回転数にて駆動することにより、冷媒の高圧側圧力の変動によらないで潤滑油を確実に昇圧させることができるため、冷凍サイクルの熱交換効率を確実に向上することができる。 In particular, in the second embodiment, the pump 134 is used as a means for boosting the lubricating oil, and the pump 134 is driven at a predetermined rotational speed at which the high pressure side pressure of the refrigerant can be obtained. Since the pressure of the lubricating oil can be reliably increased regardless of fluctuations, the heat exchange efficiency of the refrigeration cycle can be reliably improved.
 次に、本発明の第3実施形態について図4を参照して説明する。
 図4は、上記各実施形態とは異なる構成の潤滑油循環回路(潤滑油循環手段)136を流体機械1の膨張機8側のみにて示している。
 本実施形態では、オイルチャンバ138をハウジング2内の上側潤滑油室64に近接して設けており、他は上記第1実施形態と略同一の構成をなしている。
 オイルチャンバ138には、上側フレーム16の台座部において、背圧室88に開口され、上側潤滑油室64側に向けて貫通して形成され油路140が連通されている。
Next, a third embodiment of the present invention will be described with reference to FIG.
FIG. 4 shows a lubricating oil circulation circuit (lubricating oil circulation means) 136 having a configuration different from those of the above embodiments only on the expander 8 side of the fluid machine 1.
In the present embodiment, the oil chamber 138 is provided in the vicinity of the upper lubricating oil chamber 64 in the housing 2, and the rest of the configuration is substantially the same as that of the first embodiment.
The oil chamber 138 is open to the back pressure chamber 88 in the pedestal portion of the upper frame 16 and is formed so as to penetrate toward the upper lubricating oil chamber 64 side.
 油路140には、オイルチャンバ138から背圧室88への潤滑油の逆流を阻止する逆止弁142が介挿され、更に、オイルチャンバ138の底部には上側潤滑油室64と連通可能な逆止弁144が設けられ、逆止弁144は上側潤滑油室64からオイルチャンバ138への潤滑油の逆流を阻止している。
 また、オイルチャンバ138はセンターシェル14に近接して設けられており、高圧管108がセンターシェル14を介して接続されている。
A check valve 142 for preventing backflow of lubricating oil from the oil chamber 138 to the back pressure chamber 88 is inserted in the oil passage 140, and further, the bottom of the oil chamber 138 can communicate with the upper lubricating oil chamber 64. A check valve 144 is provided, and the check valve 144 prevents backflow of lubricating oil from the upper lubricating oil chamber 64 to the oil chamber 138.
The oil chamber 138 is provided in the vicinity of the center shell 14, and the high pressure pipe 108 is connected via the center shell 14.
 高圧管108には、三方弁102が介挿され、三方弁102の他方のポートには均圧管113が接続されている。
 このように構成される潤滑油循環回路136では、冷媒の高圧側圧力が作用する上側潤滑油室64に潤滑油を円滑に戻すために、三方弁102の弁駆動制御が制御装置110にて実行される。
A three-way valve 102 is inserted in the high-pressure pipe 108, and a pressure equalizing pipe 113 is connected to the other port of the three-way valve 102.
In the lubricating oil circulation circuit 136 configured as described above, the control device 110 executes valve drive control of the three-way valve 102 in order to smoothly return the lubricating oil to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant acts. Is done.
 詳しくは、当該弁駆動制御では、三方弁102の弁体が均圧管113のみを連通させる方向に切り換えられ、潤滑油の回収が行われている状態にて、先ず、レベルセンサ112にて検出されるオイルチャンバ138の潤滑油の油面レベルが所定の油面レベル以上であるか否かが判定される。
 次に、油面レベルが所定の油面レベル以上であると判定された場合には、三方弁102の弁体を均圧管113側から高圧管108側に切り換えることにより、高圧管108がオイルチャンバ138に連通され、オイルチャンバ138に高圧側圧力が供給される。
Specifically, in the valve drive control, the valve body of the three-way valve 102 is switched to a direction in which only the pressure equalizing pipe 113 is communicated, and is first detected by the level sensor 112 in a state where the lubricating oil is being collected. It is determined whether or not the oil level of the lubricating oil in the oil chamber 138 is equal to or higher than a predetermined oil level.
Next, when it is determined that the oil level is equal to or higher than the predetermined oil level, the high pressure pipe 108 is connected to the oil chamber by switching the valve body of the three-way valve 102 from the pressure equalizing pipe 113 side to the high pressure pipe 108 side. The oil chamber 138 is supplied with a high-pressure side pressure.
 そして、冷媒の高圧側圧力により所定の高圧に昇圧された潤滑油は逆止弁144を通過して、同じく冷媒の高圧側圧力が作用する上側潤滑油室64に円滑に戻される(昇圧手段)。
 以上のように、第3実施形態では、上記第1及び第2実施形態と同様に、簡素且つ高効率な潤滑油循環回路136によって冷凍サイクルの熱交換効率を効率的に向上することができる。
The lubricating oil whose pressure has been increased to a predetermined high pressure by the high pressure side of the refrigerant passes through the check valve 144 and is smoothly returned to the upper lubricating oil chamber 64 where the high pressure side pressure of the refrigerant similarly acts (pressure increasing means). .
As described above, in the third embodiment, similarly to the first and second embodiments, the heat exchange efficiency of the refrigeration cycle can be efficiently improved by the simple and highly efficient lubricating oil circulation circuit 136.
 特に、当該第3実施形態では、オイルチャンバ138をハウジング2内に設けることができるため、潤滑油循環回路136の更なる簡素化を図ることができる。
 以上で本発明の一実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
 例えば、上記各実施形態では、レベルセンサ112にて検出された潤滑油の油面レベルに応じて潤滑油の昇圧を行っている。しかし、これに限らず、例えば、オイルチャンバに回収される潤滑油の回収時間を制御装置110のタイマ機能などによりカウントし、潤滑油の回収時間が所定の回収時間以上になるとき、オイルチャンバに貯留される潤滑油を所定の高圧側圧力まで昇圧させるようにしても良い。この場合にも、上記各実施形態の場合と同様に、オイルチャンバに所定量の潤滑油が貯留された後に昇圧させることができるため、潤滑油を上側潤滑油室64に円滑に回収することができる。
In particular, in the third embodiment, since the oil chamber 138 can be provided in the housing 2, the lubricating oil circulation circuit 136 can be further simplified.
Although the description of one embodiment of the present invention has been completed above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, the pressure of the lubricating oil is increased according to the oil level of the lubricating oil detected by the level sensor 112. However, the present invention is not limited to this. For example, when the recovery time of the lubricating oil recovered in the oil chamber is counted by the timer function of the control device 110 and the recovery time of the lubricating oil exceeds a predetermined recovery time, the oil chamber The stored lubricating oil may be boosted to a predetermined high pressure. Also in this case, as in the case of each of the above embodiments, the pressure can be increased after a predetermined amount of lubricating oil is stored in the oil chamber, so that the lubricating oil can be smoothly collected in the upper lubricating oil chamber 64. it can.
 また、上記第2実施形態において、各弁130,132を撤去し、ポンプ134のみで潤滑油の昇圧を制御しても良いし、或いは、ポンプ134の出口側に図示しない逆止弁を設けてポンプ134への冷媒の逆流を阻止するようにしても良い。
 更に、上記第1実施形態の変形例として、図5に示されるように、三方弁102に高圧管108及び均圧管113を接続することにより、三方弁102を介してオイルチャンバ104に直接に導圧し、循環油管100に、潤滑油の流れ方向から順に、逆止弁106、オイルチャンバ104、逆止弁106を介挿して潤滑油循環回路98を構成しても良い。
In the second embodiment, the valves 130 and 132 may be removed, and the pressure of the lubricating oil may be controlled only by the pump 134, or a check valve (not shown) may be provided on the outlet side of the pump 134. You may make it prevent the reverse flow of the refrigerant | coolant to the pump 134. FIG.
Further, as a modification of the first embodiment, as shown in FIG. 5, a high pressure pipe 108 and a pressure equalizing pipe 113 are connected to the three-way valve 102, thereby leading directly to the oil chamber 104 via the three-way valve 102. The lubricating oil circulation circuit 98 may be configured by inserting the check valve 106, the oil chamber 104, and the check valve 106 into the circulating oil pipe 100 in order from the flow direction of the lubricating oil.
 更にまた、上記各実施形態において、レベルセンサ112の代わりに上側潤滑油室64に貯留される潤滑油の油面レベルを検出する図示しないレベルセンサ(第2の油面レベル検出手段)を設け、当該レベルセンサにて検出される潤滑油の油面レベルが所定の油面レベル未満になるとき、オイルチャンバに貯留される潤滑油を所定の高圧側圧力まで昇圧させるようにしても良い。この場合には、潤滑油を途切れさせることなく連続的に膨張機8に供給することができるため、供給される高圧の潤滑油で可動スクロール44に適正な背圧を付与して流体機械1を適正に且つ効率良く稼動させることができる。 Furthermore, in each of the above embodiments, a level sensor (second oil level detecting means) (not shown) that detects the oil level of the lubricating oil stored in the upper lubricating oil chamber 64 is provided instead of the level sensor 112, When the oil level detected by the level sensor becomes lower than a predetermined oil level, the lubricating oil stored in the oil chamber may be increased to a predetermined high pressure. In this case, since the lubricating oil can be continuously supplied to the expander 8 without being interrupted, an appropriate back pressure is applied to the movable scroll 44 with the supplied high-pressure lubricating oil, so that the fluid machine 1 is It can be operated appropriately and efficiently.
 また、上記各実施形態では、ハウジング2内の膨張機8側と圧縮機12側とを仕切る隔壁36が設けられているが、この隔壁36を排除して膨張機8及び圧縮機12を潤滑するための潤滑油を貯留する共通の潤滑油室を1つ形成しても良い。この場合には、隔壁36のみならず、これに装着されるメカニカルシール42が不要となるため、流体機械1がより簡素化されて好ましい。 Further, in each of the above embodiments, the partition wall 36 that partitions the expander 8 side and the compressor 12 side in the housing 2 is provided. However, the partition wall 36 is excluded to lubricate the expander 8 and the compressor 12. One common lubricating oil chamber for storing lubricating oil for the purpose may be formed. In this case, not only the partition wall 36 but also the mechanical seal 42 attached to the partition wall 36 is not necessary, so that the fluid machine 1 is more simplified and preferable.
 更に、上記各実施形態では、駆動側スクロールユニットが膨張機8であって、被駆動側スクロールユニットは膨張機8の下側に設けられた圧縮機12であるが、2つのスクロールユニットの何れかが駆動側及び被駆動側のスクロールユニットであれば良く、膨張機8、圧縮機12のユニット種別や、上下の配置は限定されない。但し、本実施形態によれば、少なくとも、外部回路を循環する冷媒の吐出圧力によって膨張機8を駆動し、この駆動力によって圧縮機12を駆動する圧縮機一体型膨張機を構成することができる。この圧縮機一体型膨張機をヒートポンプや冷凍回路になどの冷凍サイクルに組み込むことによって、ヒートポンプや冷凍回路が搭載される給湯装置や空調装置等の構成の簡素化及び効率向上を図ることができて好ましい。 Further, in each of the above embodiments, the drive side scroll unit is the expander 8 and the driven side scroll unit is the compressor 12 provided on the lower side of the expander 8, but either one of the two scroll units is used. May be a scroll unit on the driving side and the driven side, and the unit type of the expander 8 and the compressor 12 and the vertical arrangement are not limited. However, according to the present embodiment, it is possible to configure a compressor-integrated expander in which the expander 8 is driven by at least the discharge pressure of the refrigerant circulating in the external circuit and the compressor 12 is driven by this driving force. . By incorporating this compressor-integrated expander into a refrigeration cycle such as a heat pump or a refrigeration circuit, it is possible to simplify the configuration and improve the efficiency of a hot water supply device or an air conditioner mounted with the heat pump or refrigeration circuit preferable.
 オイルセパレータなどを用いなくとも、潤滑油が作動流体に過度に含まれスクロール型流体機械の組み込まれる冷凍サイクル中に流出されることを防止し冷凍サイクルの熱交換効率を向上することができので、圧縮機一体型膨張機に限らずスクロール型流体機械に適用することができる。 Even without using an oil separator, etc., it is possible to prevent the lubricating oil from being excessively contained in the working fluid and flowing out into the refrigeration cycle in which the scroll type fluid machine is incorporated, so that the heat exchange efficiency of the refrigeration cycle can be improved. The present invention can be applied to not only a compressor-integrated expander but also a scroll fluid machine.
  1 スクロール型流体機械
  2 ハウジング(密閉容器)
  4 駆動軸
  8 膨張機(スクロールユニット)
 12 圧縮機
 16 上側フレーム(フレーム)
 36 隔壁
 44 可動スクロール
44a 背面
 46 固定スクロール
 52 吐出室(吐出ポート)
 64 上側潤滑油室(潤滑油室)
 88 背圧室
98,128,136 潤滑油循環回路(潤滑油循環手段)
100 循環油管(循環路)
104,138 オイルチャンバ
108 高圧管(高圧供給路)
112 レベルセンサ(油面レベル検出手段)
114 摺動面
116 環状溝
122 弁室
126 弁機構
130 入口弁
132 出口弁
134 ポンプ
1 Scroll type fluid machine 2 Housing (sealed container)
4 Drive shaft 8 Expander (scroll unit)
12 Compressor 16 Upper frame (frame)
36 Partition 44 Movable scroll 44a Back 46 Fixed scroll 52 Discharge chamber (discharge port)
64 Upper lubricating oil chamber (lubricating oil chamber)
88 Back pressure chamber 98, 128, 136 Lubricating oil circulation circuit (lubricating oil circulation means)
100 Circulating oil pipe (circulation path)
104,138 Oil chamber 108 High pressure pipe (high pressure supply path)
112 Level sensor (oil level detection means)
114 Sliding surface 116 Annular groove 122 Valve chamber 126 Valve mechanism 130 Inlet valve 132 Outlet valve 134 Pump

Claims (11)

  1.  密閉容器内を延びる駆動軸と、
     前記密閉容器に固定される固定スクロールと、前記駆動軸の一端部が連結されて前記固定スクロールの軸心周りに公転旋回運動される可動スクロールとが互いに協働して作動流体の作動空間を形成し、作動空間の作動流体を吐出ポートを介して吐出するスクロールユニットと、
     前記密閉容器に固定されて前記駆動軸を回転自在に支持し且つ前記可動スクロールを公転旋回運動可能に支持するフレームと、
     前記密閉容器内の前記駆動軸の他端側に設けられ、前記作動流体の高圧側圧力が作用する潤滑油が貯留される潤滑油室と、
     前記フレームと前記可動スクロールの背面との間に形成され、前記潤滑油室の潤滑油が供給されることにより発生する背圧によって前記可動スクロールを前記固定スクロールに対して押圧する背圧室と、
     前記固定スクロールに設けられ、前記背圧室と連通する弁室と、
     前記弁室と前記潤滑油室とを連通する循環路を有する潤滑油循環手段と、
     前記弁室内に設けられ、前記背圧室内の圧力に応じて前記循環路を開閉する弁機構とを備えることを特徴とするスクロール型流体機械。
    A drive shaft extending through the sealed container;
    A fixed scroll fixed to the hermetic container and a movable scroll connected to one end of the drive shaft and revolved around the axis of the fixed scroll cooperate to form a working space for the working fluid. A scroll unit that discharges the working fluid in the working space through the discharge port;
    A frame fixed to the hermetic container and rotatably supporting the drive shaft, and supporting the movable scroll so as to be capable of revolving and revolving;
    A lubricating oil chamber that is provided on the other end side of the drive shaft in the sealed container and stores lubricating oil on which a high-pressure side pressure of the working fluid acts;
    A back pressure chamber that is formed between the frame and the back surface of the movable scroll, and that presses the movable scroll against the fixed scroll by a back pressure generated by supplying the lubricating oil in the lubricating oil chamber;
    A valve chamber provided in the fixed scroll and communicating with the back pressure chamber;
    Lubricating oil circulating means having a circulation path communicating the valve chamber and the lubricating oil chamber;
    A scroll type fluid machine comprising: a valve mechanism provided in the valve chamber and opening and closing the circulation path according to a pressure in the back pressure chamber.
  2.  前記固定スクロールは、前記可動スクロールの公転旋回運動に伴って前記可動スクロールが摺動される前記固定スクロールの摺動面に形成され、前記固定スクロールの中心部を中心とした円環状の環状溝を有し、
     前記弁室は、前記環状溝を介して前記背圧室と連通されることを特徴とする請求項1のスクロール型流体機械。
    The fixed scroll is formed on a sliding surface of the fixed scroll on which the movable scroll is slid in accordance with the revolving orbiting motion of the movable scroll, and has an annular ring groove centering on a central portion of the fixed scroll. Have
    The scroll type fluid machine according to claim 1, wherein the valve chamber communicates with the back pressure chamber via the annular groove.
  3.  前記潤滑油循環手段は、前記循環路に介挿され、前記弁室を経由した潤滑油を一旦貯留するオイルチャンバと、前記オイルチャンバに貯留された潤滑油を前記作動流体の前記高圧側圧力まで昇圧させて前記潤滑油室側に送出する昇圧手段とを備えることを特徴とする請求項2のスクロール型流体機械。 The lubricating oil circulation means is inserted in the circulation path and temporarily stores the lubricating oil that has passed through the valve chamber, and the lubricating oil stored in the oil chamber is supplied to the high pressure side pressure of the working fluid. 3. A scroll type fluid machine according to claim 2, further comprising pressure increasing means for increasing the pressure and sending the pressure to the lubricating oil chamber side.
  4.  前記オイルチャンバに前記作動流体の前記高圧側圧力を導圧する高圧供給路を備え、
     前記昇圧手段は、前記高圧供給路を前記オイルチャンバに連通させることにより前記オイルチャンバに貯留される潤滑油を前記作動流体の前記高圧側圧力まで昇圧させることを特徴とする請求項3のスクロール型流体機械。
    A high pressure supply path for guiding the high pressure side pressure of the working fluid to the oil chamber;
    4. The scroll type according to claim 3, wherein the boosting means boosts the lubricating oil stored in the oil chamber to the high-pressure side pressure of the working fluid by communicating the high-pressure supply path with the oil chamber. Fluid machinery.
  5.  記オイルチャンバと前記潤滑油室との間の前記循環路に介挿されるポンプを備え、
     前記昇圧手段は、前記ポンプを駆動することにより前記オイルチャンバに貯留される潤滑油を前記作動流体の前記高圧側圧力まで昇圧させることを特徴とする請求項3のスクロール型流体機械。
    A pump inserted in the circulation path between the oil chamber and the lubricating oil chamber,
    4. The scroll type fluid machine according to claim 3, wherein the boosting means boosts the lubricating oil stored in the oil chamber to the high pressure side pressure of the working fluid by driving the pump.
  6.  前記オイルチャンバに貯留される潤滑油の油面レベルを検出する第1の油面レベル検出手段を備え、
     前記昇圧手段は、前記第1の油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル以上になるとき、前記オイルチャンバに貯留される潤滑油を前記作動流体の前記高圧側圧力まで昇圧させることを特徴とする請求項3乃至5の何れかのスクロール型流体機械。
    A first oil level detecting means for detecting an oil level of lubricating oil stored in the oil chamber;
    When the oil level detected by the first oil level detecting unit is equal to or higher than a predetermined oil level, the boosting unit removes the lubricating oil stored in the oil chamber from the working fluid. 6. The scroll type fluid machine according to claim 3, wherein the pressure is increased to the high pressure side pressure.
  7.  前記潤滑油室に貯留される潤滑油の油面レベルを検出する第2の油面レベル検出手段を備え、
     前記昇圧手段は、前記第2の油面レベル検出手段にて検出される潤滑油の油面レベルが所定の油面レベル未満になるとき、前記オイルチャンバに貯留される潤滑油を前記作動流体の前記高圧側圧力まで昇圧させることを特徴とする請求項3乃至6のスクロール型流体機械。
    A second oil level detecting means for detecting an oil level of the lubricating oil stored in the lubricating oil chamber;
    When the oil level of the lubricating oil detected by the second oil level detecting means is less than a predetermined oil level, the boosting means removes the lubricating oil stored in the oil chamber from the working fluid. 7. The scroll type fluid machine according to claim 3, wherein the pressure is increased to the high pressure side pressure.
  8.  前記オイルチャンバに回収される潤滑油の回収時間を検出する油回収時間検出手段を備え、
     前記昇圧手段は、前記油回収時間検出手段にて検出される潤滑油の回収時間が所定の回収時間以上になるとき、前記オイルチャンバに貯留される潤滑油を前記作動流体の前記高圧側圧力まで昇圧させることを特徴とする請求項3乃至5の何れかのスクロール型流体機械。
    Oil recovery time detection means for detecting the recovery time of the lubricating oil recovered in the oil chamber,
    The pressurizing means is configured to reduce the lubricating oil stored in the oil chamber to the high-pressure side pressure of the working fluid when the lubricating oil recovery time detected by the oil recovery time detecting means is equal to or longer than a predetermined recovery time. 6. The scroll type fluid machine according to claim 3, wherein the pressure is increased.
  9.  前記オイルチャンバは、前記密閉容器内に設けられることを特徴とする請求項3乃至8の何れかのスクロール型流体機械。 The scroll type fluid machine according to any one of claims 3 to 8, wherein the oil chamber is provided in the sealed container.
  10.  前記駆動軸は、長手方向が鉛直方向に配され、前記駆動軸の上端側に連結される膨張機と、前記駆動軸の下端側に連結される圧縮機とからなる縦置き型のスクロール型流体機械であって、
     前記スクロールユニットは、膨張機であり、
     前記潤滑油室は、前記膨張機及び前記圧縮機を潤滑するための潤滑油が貯留されることを特徴とする請求項1乃至9の何れかのスクロール型流体機械。
    The drive shaft has a vertical scroll type fluid, the longitudinal direction of which is arranged in the vertical direction, and includes an expander connected to the upper end side of the drive shaft and a compressor connected to the lower end side of the drive shaft. A machine,
    The scroll unit is an expander,
    The scroll type fluid machine according to any one of claims 1 to 9, wherein the lubricating oil chamber stores lubricating oil for lubricating the expander and the compressor.
  11.  前記駆動軸は、長手方向が鉛直方向に配され、前記駆動軸の上端側に連結される膨張機と、前記駆動軸の下端側に連結される圧縮機とからなる縦置き型のスクロール型流体機械であって、
     前記スクロールユニットは、膨張機であり、
     前記密閉容器内の前記膨張機側と前記圧縮機側とを前記駆動軸の回転を妨げることなく仕切る隔壁を備え、
     前記潤滑油室は、前記隔壁の上側に形成され、前記膨張機を潤滑するための潤滑油が貯留されることを特徴とする請求項1乃至9の何れかのスクロール型流体機械。
    The drive shaft has a vertical scroll type fluid, the longitudinal direction of which is arranged in the vertical direction, and includes an expander connected to the upper end side of the drive shaft and a compressor connected to the lower end side of the drive shaft. A machine,
    The scroll unit is an expander,
    A partition that partitions the expander side and the compressor side in the sealed container without interfering with the rotation of the drive shaft;
    The scroll type fluid machine according to any one of claims 1 to 9, wherein the lubricating oil chamber is formed above the partition wall and stores lubricating oil for lubricating the expander.
PCT/JP2010/000852 2009-02-13 2010-02-12 Scroll-type fluid machine WO2010092813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031113A JP2010185412A (en) 2009-02-13 2009-02-13 Scroll fluid machine
JP2009-031113 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092813A1 true WO2010092813A1 (en) 2010-08-19

Family

ID=42561661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000852 WO2010092813A1 (en) 2009-02-13 2010-02-12 Scroll-type fluid machine

Country Status (2)

Country Link
JP (1) JP2010185412A (en)
WO (1) WO2010092813A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180142B (en) * 2018-01-23 2019-03-26 江森自控日立万宝压缩机(广州)有限公司 A kind of quiet disk of environmental protection silent type vortex air compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
JP2007154805A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Refrigerating cycle apparatus
JP2007239575A (en) * 2006-03-08 2007-09-20 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2007315227A (en) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd Expander integrated compressor, and refrigerating cycle apparatus
JP2008088854A (en) * 2006-09-29 2008-04-17 Daikin Ind Ltd Scroll expander

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220143A (en) * 2005-01-14 2006-08-24 Hitachi Ltd Displacement fluid machine and refrigerating cycle by use of it
JP2007154805A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Refrigerating cycle apparatus
JP2007239575A (en) * 2006-03-08 2007-09-20 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2007315227A (en) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd Expander integrated compressor, and refrigerating cycle apparatus
JP2008088854A (en) * 2006-09-29 2008-04-17 Daikin Ind Ltd Scroll expander

Also Published As

Publication number Publication date
JP2010185412A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4192158B2 (en) Hermetic scroll compressor and refrigeration air conditioner
WO2011019021A1 (en) Scroll fluid machine
JP2010106780A (en) Scroll compressor
KR20080031963A (en) Compressor with fluid injection system
JP6241605B2 (en) Scroll type fluid machinery
KR20180083646A (en) Scroll compressor
KR102565824B1 (en) Scroll compressor
JP5777571B2 (en) Scroll compressor
JP4697734B2 (en) Refrigeration cycle
US8277202B2 (en) Multicylindrical rotary compressor
CN100501166C (en) Vortex type compressor
JP5771739B2 (en) Scroll compressor
WO2010092813A1 (en) Scroll-type fluid machine
JP5291423B2 (en) Fluid machinery
JP5185153B2 (en) Scroll compressor
JP4881709B2 (en) Scroll compressor and refrigeration cycle equipped with the same
JP2008157109A (en) Scroll compressor and refrigeration cycle
JP2009299523A (en) Scroll type fluid machine
JP2009085189A (en) Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment
JP4945306B2 (en) Scroll compressor and heat pump device using the same
CN101782070B (en) Scroll compressor
JP2010138749A (en) Scroll type fluid machine
KR20100104197A (en) Scroll compressor
JP2009127440A (en) Scroll compressor
WO2010070913A1 (en) Scroll type fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741093

Country of ref document: EP

Kind code of ref document: A1