WO2010092776A1 - Optical communication system, optical communication method, and optical communication device - Google Patents

Optical communication system, optical communication method, and optical communication device Download PDF

Info

Publication number
WO2010092776A1
WO2010092776A1 PCT/JP2010/000730 JP2010000730W WO2010092776A1 WO 2010092776 A1 WO2010092776 A1 WO 2010092776A1 JP 2010000730 W JP2010000730 W JP 2010000730W WO 2010092776 A1 WO2010092776 A1 WO 2010092776A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
phase
wavelength
modulation
interferometer
Prior art date
Application number
PCT/JP2010/000730
Other languages
French (fr)
Japanese (ja)
Inventor
田中聡寛
田島章雄
高橋成五
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010550442A priority Critical patent/JP5413687B2/en
Publication of WO2010092776A1 publication Critical patent/WO2010092776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately

Definitions

  • the present invention relates to an optical communication system that performs communication using phase information of an optical signal, and more particularly, to an optical communication system and method for transmitting signals of a plurality of wavelengths, an optical communication apparatus, and a phase modulation control method thereof.
  • binary amplitude modulation (ASK: Amplitude Shift x Keying) is mainly used. Therefore, in order to improve the signal speed per carrier, an approach by shortening the time slot per bit is used. Was the mainstream. However, since the signal speed per carrier wave exceeds 10 Gb / s, the difficulty of speeding up with only ASK is becoming more prominent. One of the causes is waveform deterioration due to wavelength dispersion peculiar to the optical transmission line.
  • the chromatic dispersion means a phenomenon in which the propagation delay time generated in the transmission line differs depending on the signal light wavelength.
  • the signal light spectrum has a specific wavelength range
  • short wavelength components and long wavelength components in the same signal light accumulate different chromatic dispersion values during transmission, and after transmission, propagation delay differences are caused by this accumulated dispersion. That is, waveform distortion occurs.
  • the signal light spectrum is proportional to the modulation speed, so that the waveform distortion due to chromatic dispersion increases in proportion to the increase in the signal speed.
  • one time slot is shortened in proportion to an increase in signal speed, even when the same amount of waveform distortion (difference in propagation delay) is applied, this effect is more greatly affected as the signal is faster. As a result, the transmission characteristics deteriorate in proportion to the square of the signal speed.
  • Non-Patent Documents 1, 2, and 3 As a result of the difficulty in speeding up only with ASK, as another approach for speeding up, a technique for improving the transmission band by multi-leveling the state represented by one time slot attracts attention.
  • Non-Patent Documents 1, 2, and 3 Non-Patent Document 1 improves the transmission band by quaternary modulation of the phase of light
  • Non-Patent Documents 2 and 3 describe one symbol by a method (APSK: Amplitude Phase Shift Keying) that modulates both the intensity and phase of light. It represents a larger number of digital bits (with one carrier and one time slot).
  • phase information cannot be extracted simply by directly detecting the optical signal with a photoelectric conversion module such as a photodiode (PD) .
  • a photoelectric conversion module such as a photodiode (PD)
  • the receiving side interferes with the reference light and the signal light. It is necessary to adopt a detection method such as reading the light intensity after interference.
  • FIG. 11 is a schematic diagram showing an example of a differential phase shift (DPS: Differential Phase Shift) decoding method in which information is placed on a phase difference between adjacent bits.
  • a 1-bit delay interferometer is provided on the receiving side to extract the phase information carried by interfering with the front and rear 1-bit optical signals. If the phase difference between the front and rear is 0, the optical signal after interference is output to port 0, and if the phase difference is ⁇ , the optical signal after interference is output to port 1.
  • a Mach-Zehnder interferometer is used as a 1-bit delay interferometer, but a Michelson interferometer can also be used.
  • the 1-bit delay interferometer is provided with a thermoelectric cooler (TEC: Thermo-Electric Cooler) as temperature adjusting means, as will be described later.
  • TEC thermoelectric cooler
  • Quantum key distribution technology can also be cited as a communication system that uses phase modulation of optical signals.
  • QKD Quantum key distribution technology
  • a photon is generally used as a communication medium, and information is carried on the quantum state for transmission.
  • An eavesdropper on the transmission path steals information by tapping the photons being transmitted, etc., but returns the photons that have been observed once to Heisenberg's uncertainty principle completely to the quantum state before observation.
  • the statistical value of the received data detected by the legitimate receiver changes. By detecting this change, the receiver can detect an eavesdropper on the transmission path.
  • an optical interferometer is organized by a sender and a receiver (hereinafter referred to as Alice and Bob), and phase modulation is randomly performed on each photon by Alice and Bob.
  • phase modulation is randomly performed on each photon by Alice and Bob.
  • an output of 0 or 1 can be obtained on the Bob side.
  • the same bit string can finally be shared between Alice and Bob.
  • FIG. 12 is a system configuration diagram showing an example of an optical interferometer used for quantum key distribution.
  • Alice 21 which is a transmission side communication device is connected to Bob 23 which is a reception side communication device through an optical transmission path 22.
  • This example is a one-way type optical interferometer, and 1-bit delay interferometers 213 and 232 are provided on both Alice 21 and Bob 23.
  • the eavesdropper hereinafter referred to as “Eve” prepares a local oscillator and there is a concern that the security of encryption key distribution may deteriorate. This is for the purpose.
  • the 1-bit delay interferometers 213 and 232 are provided with temperature controllers 212 and 233, respectively.
  • the optical pulse train ( ⁇ T interval) generated by the pulse light source 211 is converted into a double pulse train having a delay amount ⁇ t using a 1-bit delay interferometer 213, and a phase modulator 214 is used between each pulse pair. Modulate to give a phase difference of ⁇ A.
  • ⁇ A takes four values of 0, ⁇ , ⁇ / 2, and 3 ⁇ / 2, and these four values are randomly assigned to each pulse pair.
  • Alice 21 is provided with two systems of random number sources 215 and 216 and a digital-to-analog converter (DAC) 217 that adds these random numbers.
  • DAC digital-to-analog converter
  • the optical signal sent from Alice 21 is modulated by the phase modulator 231 so as to give a phase difference of ⁇ B between the pulse pairs again. Then, the pulse pair is caused to interfere using the 1-bit delay interferometer 232 having the delay amount ⁇ t, and the interference result is read by the photon detectors 234 and 235.
  • the phase modulation on the Bob side is performed with binary values of 0 and ⁇ / 2, and a random number source 236 for this purpose is held.
  • the repetition rate (1 / ⁇ T) of the system is increased to about 1 GHz due to the limitation of the operation speed of the photon detector, but the delay amount of the 1-bit delay interferometer corresponding to this operation speed is In order to obtain stable characteristics as long as ⁇ 500 ps ( ⁇ 10 cm), it is necessary to control the temperature of the interferometer in units of 0.01K.
  • FIG. 13 is an explanatory diagram conceptually showing the BB84 protocol disclosed in Non-Patent Document 4.
  • Alice 21 on the transmission side and Bob 23 on the reception side are connected by an optical transmission line 22 and perform quantum cryptography communication.
  • four kinds of quantum states are used, Alice 21 has two random number sources, one random number 1 represents 0 or 1 encryption key data, and the other random number 2 encodes information of random number 1 To decide.
  • phase 0 is an encryption key “0” and phase ⁇ is an encryption key “1”.
  • a coding set hereinafter referred to as “X basis” and a coding set (hereinafter referred to as “Y basis”) in which phase ⁇ / 2 represents the encryption key “0” and phase 3 ⁇ / 2 represents the encryption key “1”.
  • X basis a coding set
  • Y basis a coding set in which phase ⁇ / 2 represents the encryption key “0”
  • phase 3 ⁇ / 2 represents the encryption key “1”.
  • And 2 are selected with a random number 2. That is, four modulations of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 are randomly applied to one photon and transmitted to Bob23.
  • Bob 23 has a random number source (random number 3) corresponding to the base and decodes photons sent from Alice 21.
  • a random number source random number 3
  • the phase 0 (X basis) is modulated on the photon
  • the value is “1”
  • the phase ⁇ / 2 (Y basis) is modulated.
  • a random number obtained as an output of the optical interferometer is set as a random number 4.
  • FIG. 14 is a block diagram schematically showing the unidirectional QKD system disclosed in Non-Patent Document 5. The method shown in FIG. 14 uses a binary phase state and a binary time state.
  • a 4 ⁇ 2 interferometer with 4 inputs and 2 outputs is used to input light pulses from the light sources LD1 to LD4 to each of the 4 input ports.
  • an optical pulse is input from the light source LD1
  • the optical pulse passes only through the long path of the interferometer, only one pulse delayed in time is sent to the transmission path, and when an optical pulse is input from the light source LD4, Since the optical pulse passes only through the short path of the interferometer, only one pulse advanced in time is transmitted to the transmission path.
  • an X basis or a Y basis can be generated by the phase difference between both paths of the 2 ⁇ 4 interferometer.
  • each base is decoded using a 2 ⁇ 4 interferometer having 2 inputs and 4 outputs, and detected by four photon detectors PD1 to PD4.
  • a coding set in which a photon exists on only one side of a double pulse is referred to as “Z basis”. Note that the sum of the light intensity of the double pulses when the X base or the Y base is selected needs to be equal to that when the Z base is selected, so the intensity of each pulse is halved.
  • the Alice side selects which light source LD1 to LD4 generates the light pulse, and the Bob side simultaneously determines the bit and the base by detecting the photon with any of the photon detectors PD1 to PD4. can do.
  • the Bob side since no modulator is required on the Bob side, it is possible to increase the speed of encryption key generation.
  • FIG. 15 is a schematic block diagram of a quantum key distribution system using the DPS method disclosed in Non-Patent Document 6.
  • Alice 41 of this system is provided with a pulse source 411, a phase modulator 412 and a random number source 413, but without an interferometer.
  • Bob 43 a phase modulator 431, a 1-bit delay interferometer 432, a temperature regulator 433, and photon detectors 434 and 435 are provided.
  • the phase modulator 412 of Alice 41 randomly applies phase modulation (binary phase modulation of 0 and ⁇ ) to the phase difference between adjacent bits.
  • a method of transmitting a plurality of signals in parallel can be considered.
  • WDM wavelength division multiplexing
  • Patent Document 1 discloses a wavelength multiplexed optical CDMA system.
  • a method is described in which a plurality of phase modulators are used to perform different phase modulation for each wavelength.
  • a plurality of DPSK demodulators are used, and this DPSK demodulator has a 1-bit delay. It functions as an interferometer (see the paragraphs 0035 and 0048 of the specification of Patent Document 1 and FIG. 3).
  • FIG. 16 is a block diagram of a system in which WDM technology is simply applied to an optical interference system.
  • the quantum cryptography system illustrated in FIG. 12 has a configuration in which a plurality of wavelengths are bundled using a WDM filter.
  • the Alice 51 is connected to the Bob 53 through the optical transmission line fiber 52.
  • the delay amount of the 1-bit delay interferometer corresponding to this operation speed is as high as ⁇ 500 ps ( ⁇ 10 cm).
  • Such a 1-bit delay interferometer and a temperature regulator for performing temperature control in units of 0.01K are very expensive. Therefore, as shown in FIG. 16, the configuration in which the 1-bit delay interferometer and the temperature controller are provided for each wavelength not only complicates the system configuration but also significantly increases the system cost.
  • FIG. 17A is a block diagram showing an experimental system for verifying the operating characteristics of the delay interferometer
  • FIG. 17B is a graph showing the relationship between temperature and light intensity
  • FIG. It is a graph which shows the relationship between a wavelength and light intensity.
  • the output of a continuous light source (CW light source) 601 is passed through a Mach-Zehnder interferometer 602, and the light intensity on one side of the output port is measured by an optical power meter 604.
  • the wavelength of the CW light source 601 is fixed at ⁇ 0 and the control temperature of the interferometer 602 is changed, the light intensity measured by the optical power meter 604 draws a sine wave as shown in FIG. . This is because when the temperature of the delay path of the interferometer 602 changes, the expansion and contraction of the delay path occurs, and the optical path difference between the optical signals passing through both paths of the interferometer changes, which is strengthened when combined.
  • the optical path difference is an integral multiple of the wavelength
  • weakened the optical path difference is "integer + 1/2" multiple of the wavelength.
  • the manufacturing error of the 1-bit delay interferometer must be taken into consideration. For example, consider two 1-bit delay interferometers with a delay amount (800 ps ⁇ manufacturing error). A general specification value of the manufacturing error of the delay amount is about 800 ps ⁇ 2%. As an example, consider a case where there is an error of 0.5% as shown in FIG. In order to simplify the calculation, the delay amount 800 ps is set to 16.00 cm, and the delay amount 804 ps when there is a manufacturing error of 0.5% is set to 16.08 cm.
  • the difference in delay amount between 1-bit delay interferometers 511 and 531 is 0 or ⁇ (+ wave integer). Times).
  • ⁇ 0 In order to satisfy this condition at the specific wavelength ⁇ 0 , it is relatively easy to control the temperature of the delay amount of one interferometer.
  • the control temperature is set such that the difference in delay amount between the 1-bit delay interferometers 511 and 531 is 0 (plus an integral multiple of the wavelength) at ⁇ 0 , the wavelength at which the difference in delay amount is “0 or ⁇ ”.
  • WDM filters that perform wavelength multiplexing / demultiplexing are mostly manufactured according to the ITU grid (50 GHz interval or 100 GHz interval), it is also a problem that these commercially available products cannot be used.
  • the present invention provides an optical communication system, an optical communication system that can apply a wavelength division multiplexing technique to an optical interference system in an arbitrary wavelength arrangement without depending on manufacturing errors of the interferometer and without complicating the apparatus configuration.
  • An object is to provide a communication method and an optical communication device.
  • An optical communication apparatus is an optical communication apparatus in an optical communication system including an optical interference system using phase information of an optical signal, and combines optical signals of a plurality of wavelengths and outputs one combined optical signal.
  • a plurality of phase modulation means for phase-modulating each of the wavelength-dependent optical signals on the input side of the wave means or the wavelength-demultiplexed optical signals on the output side of the light demultiplexing means for each wavelength;
  • Phase modulation control means for individually controlling the amount of modulation by the phase modulation means according to the wavelength.
  • An optical communication method is an optical communication method in an optical communication system including an optical interference system using phase information of an optical signal, in which an optical multiplexing unit combines optical signals of a plurality of wavelengths to form one combined optical signal.
  • the optical interferometer temporally separates the combined optical signal, and the optical demultiplexing means demultiplexes the output light from the optical interferometer to generate the demultiplexed optical signals of the plurality of wavelengths,
  • An optical communication system is an optical communication system including an optical interference system having a transmission-side communication device and a reception-side communication device and using phase information of an optical signal.
  • a plurality of phase modulation means for phase-modulating each wavelength of the optical signal, and an optical multiplexing means for combining the phase-modulated optical signals of the plurality of wavelengths and transmitting one combined optical signal to the receiving-side communication device;
  • the receiving-side communication device includes: a receiving-side optical interference unit that temporally separates a received optical signal; and the output light from the receiving-side optical interference unit is demultiplexed to demultiplex the plurality of wavelengths.
  • Receiving-side optical demultiplexing means for outputting a wave signal, and the transmitting-side communication device further includes phase modulation control means for individually controlling the modulation amounts by the plurality of phase modulation means according to wavelengths. It is characterized by that.
  • a program according to the present invention is a program for causing a program control processor in an optical communication apparatus of an optical communication system including an optical interference system using phase information of an optical signal to function as a phase modulation control apparatus, wherein the optical multiplexing means has a plurality of wavelengths.
  • the optical signal is multiplexed to generate one combined optical signal
  • the optical interferometer temporally separates the combined optical signal
  • the optical demultiplexing means demultiplexes the output light from the optical interferometer to generate the combined optical signal.
  • the program control processor is made to function as described above.
  • the wavelength division multiplexing technique can be applied to the optical interference system with any wavelength arrangement without depending on the manufacturing error of the optical interferometer and without complicating the apparatus configuration.
  • 1 is a block diagram schematically showing the configuration of an optical communication system according to a first embodiment of the present invention. It is a block diagram which shows the schematic structure of the optical communication system by 2nd Embodiment of this invention. 1 is a block diagram schematically showing the configuration of an optical communication system according to a first embodiment of the present invention. It is a graph which shows the wavelength-phase difference for demonstrating the difference of the delay amount of two Mach-Zehnder interferometers used in 1st Example. (A) is a graph showing the waveform of the drive signal of the phase modulator when the phase control of the first embodiment is not performed, and (b) is the drive signal of the phase modulator when the phase control of the first embodiment is executed. It is a graph which shows a waveform.
  • FIG. 1 It is a block diagram which shows the structure of the optical communication system by 2nd Example of this invention roughly.
  • (A) is a graph showing the waveform of the phase modulator drive signal based on random numbers in the second embodiment, and (b) is the waveform of the phase modulator drive signal when the offset phase control in the second embodiment is executed. There is a graph to show.
  • FIG. 10 is a schematic block diagram of a quantum key distribution system using a DPS method disclosed in Non-Patent Document 6. 1 is a block diagram of a system in which WDM technology is simply applied to an optical interference system.
  • (A) is a block diagram showing an experimental system for verifying the operating characteristics of a delay interferometer
  • (b) is a graph showing the relationship between temperature and light intensity
  • (c) is a graph of temperature, wavelength and light intensity. It is a graph which shows a relationship.
  • (A) is a schematic configuration diagram of two 1-bit delay interferometers having a manufacturing error of the delay amount
  • (b) is a graph showing a wavelength-phase difference for explaining a difference in delay amount of the 1-bit delay interferometer It is.
  • an optical communication system includes a wavelength division multiplexing (WDM) filter 101 for multiplexing / demultiplexing optical signals having a plurality of wavelengths ⁇ 1 to ⁇ n. , 104 and 106.
  • a delay interferometer 102 is provided in a section in which optical signals between the WDM filter 101 and the WDM filter 104 are multiplexed, and a temperature regulator 103 that controls the temperature of the delay amount is provided.
  • a 2-input 2-output Mach-Zehnder asymmetrical interferometer for time-separating an input optical signal is used.
  • TEC thermoelectric cooler
  • a phase modulator group 105 is provided in a section where the optical signals between the WDM filters 104 and 106 are demultiplexed for each wavelength, and the phase modulator group 105 corresponds to a plurality of optical signals having wavelengths ⁇ 1 to ⁇ n.
  • Phase modulators PM 1 to PM n that respectively perform phase modulation.
  • a phase offset ⁇ ( ⁇ ) depending on the wavelength is set by the phase modulation control unit 107.
  • phase modulation is executed by adding a phase offset ⁇ ( ⁇ ) for compensating the wavelength-dependent delay amount of the delay interferometer 102 to the phase modulation amount ⁇ according to given data, as will be described later. .
  • phase offset theta (lambda) is the offset value which is previously determined depending on the wavelength lambda
  • a phase offset value ⁇ 1 ⁇ ⁇ n is a phase modulator PM 1 ⁇ PM respectively corresponding to wavelengths ⁇ 1 ⁇ ⁇ n here n , respectively.
  • the phase modulation ⁇ and the phase offset ⁇ can be executed by one phase modulator, or can be executed by separate phase modulators.
  • the delay interferometer 102 and its temperature adjuster 103 can be combined with light of a plurality of wavelengths.
  • the signal can be shared.
  • the device configuration can be greatly simplified even if wavelength division multiplexing is applied to the optical interference system. Furthermore, the phase offset values ⁇ 1 to ⁇ n are set in the phase modulators PM 1 to PM n , respectively, so that the manufacturing error of the delay amount of the delay interferometer 102 can be compensated.
  • a transmission device or a reception device of an optical communication system can be configured.
  • a transmitter is configured by connecting a plurality of light sources that emit light of wavelengths ⁇ 1 to ⁇ n to local ports for each wavelength of the WDM filter 101 and connecting optical transmission fibers to multiple ports of the WDM filter 106. If a photodetector that detects light of wavelengths ⁇ 1 to ⁇ n is connected to the local port of the WDM filter 101, a receiving device is configured.
  • the delay amount of a 1-bit delay interferometer such as a Mach-Zehnder interferometer is reduced.
  • the interferometer and its temperature regulator can be shared by a plurality of wavelength signals, so that a system can be constructed with a simple configuration.
  • the encryption key generation speed per transmission line can be improved in the quantum encryption key distribution system.
  • the optical communication system according to the second embodiment of the present invention also multiplexes / demultiplexes optical signals having a plurality of wavelengths ⁇ 1 to ⁇ n , as in the first embodiment.
  • the WDM filters 101 and 104 are provided, a delay interferometer 102 is provided between the WDM filters 101 and 104, and a temperature regulator 103 for controlling the temperature of the delay amount is provided.
  • a two-input two-output Mach-Zehnder asymmetrical interferometer and a thermoelectric cooler (TEC) are used for the delay interferometer 102 and the temperature controller 103, respectively.
  • one of the inputs and outputs is demultiplexed into optical signals of a plurality of wavelengths ⁇ 1 to ⁇ n and the other is a multiplexed signal
  • the optical communication system is different in that it has an input / output demultiplexed into optical signals having a plurality of wavelengths ⁇ 1 to ⁇ n .
  • phase modulator group 110 The port of each wavelength of the WDM filter 101 is connected phase modulator group 110, a phase modulator group 110 phase modulators PM 1 ⁇ performing each phase modulation to light signals of a plurality of wavelengths ⁇ 1 ⁇ ⁇ n It consists of PM n .
  • phase modulators PM 1 to PM n are subjected to phase modulation control by the phase modulation control unit 111 as in the first embodiment. Therefore, as in the first embodiment, the delay interferometer 102 and its temperature adjuster 103 can be shared by optical signals of a plurality of wavelengths by compensating the wavelength dependence of the delay amount of the delay interferometer 102 by phase modulation. Even if wavelength division multiplexing is applied to the optical interference system, the apparatus configuration can be greatly simplified. Furthermore, the phase offset values ⁇ 1 to ⁇ n are set in the phase modulators PM 1 to PM n , respectively, so that the manufacturing error of the delay amount of the delay interferometer 102 can be compensated.
  • an optical communication system including a transmission device and a reception device can be configured.
  • the WDM filter 101, the phase modulator group 110, and the phase modulation control unit 111 are configured on the transmission side / reception side
  • the WDM filter 104, the delay interferometer 102, and the temperature regulator 103 are configured on the reception side / transmission side.
  • the optical transmission line between the WDM filter 101 and the delay interferometer 102 is an optical fiber that connects the transmission device and the reception device.
  • a 1-bit delay such as a Mach-Zehnder interferometer or the like is used.
  • the interferometer and its temperature controller can be shared by a plurality of wavelength signals, so that a system can be constructed with a simple configuration.
  • the encryption key generation speed per transmission line can be improved in the quantum encryption key distribution system.
  • the multi-level modulation level is adjusted, and an offset corresponding to the wavelength is superimposed on the phase difference applied between the double photon pulses.
  • the number of wavelengths to be multiplexed is described as four as an example, it is needless to say that the number of wavelengths is not limited to this.
  • Alice 11 is a laser diode (LD) 1101-1104 that generates optical pulses of four wavelengths ⁇ 1 to ⁇ 4 respectively, and a two-input two-output Mach-Zehnder asymmetric that generates a two-unit optical pulse by time-separating the optical pulses.
  • An interferometer hereinafter referred to as a Mach-Zehnder interferometer
  • a temperature controller 1106 that controls the temperature of the delay amount of the Mach-Zehnder interferometer 1105
  • a two-time optical pulse that is time-separated into two predetermined positions.
  • a phase modulator 1107-1110 for adding a phase difference a clock source 1111 for driving the laser diode 1101-1104, a random number source 1112-1119, an offset storage unit 1120 for holding an offset amount for each wavelength, and a random number source 1112-1119
  • a digital-analog converter DAC Digital-t
  • DAC Digital-t
  • Each of the DACs 1121-1124 receives two random numbers from two random number sources and an offset value from the offset storage unit 1120, and outputs a modulation signal for each wavelength to the phase modulator 1107-1110, respectively. Modulation ⁇ + ⁇ ( ⁇ ) is performed.
  • a Mach-Zehnder interferometer 1105 which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 1125 and 1126 are multiplexed, and a temperature regulator 1106 that controls the temperature of the delay amount is provided.
  • Phase modulators 1107-1110 that perform phase modulation on the optical signals of wavelengths ⁇ 1 to ⁇ 4 are connected in a section where the optical signals between the WDM filters 1126 and 1127 are demultiplexed for each wavelength.
  • the random number source 1112-1119, the offset storage unit 1120, and the DAC 1121-1124 constitute the phase modulation control unit 107 in FIG. Alice 11 may be provided with an optical attenuator for attenuating each phase-modulated duplex optical pulse to a single photon level or less.
  • Bob 13 includes a phase modulator 1301-1304 that gives a phase difference again to the double photon pulse sent from Alice 11, a Mach-Zehnder interferometer 1305 that combines the double photon pulses, and a delay of the Mach-Zehnder interferometer 1305. It has a temperature regulator 1306 that controls the amount of temperature, two photon detectors 1307 and 1311, 1308 and 1312, 1309 and 1313, 1310 and 1314 for each wavelength, and a WDM filter 1315-1318.
  • an avalanche photodiode is used in the gate mode here.
  • optical pulses of wavelengths ⁇ 1 to ⁇ 4 synchronized with a 625 MHz clock source 1111 are generated by the LD 1101-1104.
  • the wavelengths ⁇ 1 1550.92 nm
  • ⁇ 2 1551.72 nm
  • ⁇ 3 1552.52 nm
  • ⁇ 4 1553.33 nm.
  • Optical pulses having wavelengths ⁇ 1 to ⁇ 4 are multiplexed by a WDM filter 1125, converted into a double optical pulse time-separated by a Mach-Zehnder interferometer 1105, and then demultiplexed by a WDM filter 1126 again.
  • the phase modulator 1107-1110 by modulating one optical phase of the duplex optical pulses of wavelengths ⁇ 1 to ⁇ 4 by the phase modulator 1107-1110, the relative phase difference ⁇ A of the duplex optical pulses of each wavelength is randomly generated. Then, the signal is multiplexed again by the WDM filter 1127 and sent to the transmission line 12. Performing described in detail later with respect to the phase modulation amount phi A here.
  • the duplex optical pulse passes through the transmission line 12 to reach Bob 13 and is demultiplexed by the WDM filter 1315, and then one optical phase of the duplex optical pulses of wavelengths ⁇ 1 to ⁇ 4 is converted by the phase modulator 1301-1304. Each is modulated.
  • the phase modulation here is performed randomly so that the relative phase difference ( ⁇ B ) of the double light pulses is 0, ⁇ / 2.
  • the duplex optical pulses are multiplexed by a WDM filter 1316 and then multiplexed by using a Mach-Zehnder interferometer 1305, so that a photon detector 1307-1310 or a photon detector is applied according to the modulation phase applied to Alice 11 and Bob 13, respectively. It is detected at 1311-1314.
  • FIG. 18 is a graph obtained by enlarging the graph of FIG. 18B in the wavelength band of ⁇ 1 to ⁇ 4 .
  • phase difference ⁇ ( ⁇ ) is measured in advance and stored as an offset in the offset amount storage unit 1120. A method for measuring the offset phase difference ⁇ ( ⁇ ) will be described later. Then, DAC corresponding to each wavelength, and inputs the two random numbers and the offset, and outputs a phase-modulated signal obtained by adding the offset theta A phase modulation ⁇ by two random numbers to the phase modulator.
  • the phase difference ⁇ obtained by referring to two random numbers for each of the four signals of wavelengths ⁇ 1 to ⁇ 4 is 0, ⁇ / 2, ⁇ , 3 ⁇ / 2. While four values are given at random, in this embodiment, an offset is added for each wavelength. That is, for the wavelength ⁇ 1, 0 + 1.65 ⁇ , ⁇ / 2 + 1.65 ⁇ , ⁇ + 1.65 ⁇ , the 4 phases of the 3 ⁇ / 2 + 1.65 ⁇ , to the wavelength ⁇ 2, 0 + 1.11 ⁇ , ⁇ / 2 + 1.
  • phase modulation control method in the present embodiment will be described in more detail with reference to FIG. 5, taking the wavelength ⁇ 1 as an example.
  • FIG. 16 in the configuration in which the double light pulses (pre-pulse and post-pulse) generated by the Mach-Zehnder interferometer provided for each wavelength are input to the phase modulator, FIG.
  • ⁇ A
  • the above values are examples, and any number of equivalent modulation methods can be adopted, but all are quaternary modulation.
  • the signal for driving the phase modulator 1107 is a quinary signal.
  • phase difference ⁇ A applied to Alice 11 with respect to the double light pulse, the phase difference ⁇ B applied to Bob 13, and the phase difference ⁇ between the interferometers 1105 and 1305, ⁇ ⁇ A + ⁇ B + ⁇ has four values of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 regardless of the wavelength. Therefore, in the quantum cryptography key distribution system shown in FIGS. 12 and 13, when ⁇ is 0, a photon pulse of the corresponding wavelength of the photon detector 1307-1310 is detected, and the bit of the encryption key is It becomes “0”. When ⁇ is ⁇ , the photon pulse of the corresponding wavelength of the photon detectors 1311-1314 is detected, and the corresponding bit of the encryption key is “1”. When ⁇ is ⁇ / 2 or 3 ⁇ / 2, photon pulses are detected by either photon detector with a probability of 1/2, but these detection bits are discarded in the base matching process as described above.
  • the quantum cryptography key distribution system shown in FIGS. 12 and 13 when ⁇ is 0, a photo
  • phase modulation control can be realized by executing a computer program on a program control processor such as a CPU.
  • a system when the WDM technique is applied to an optical interference system using phase modulation such as a quantum key distribution technique, a system can be constructed with an inexpensive configuration. This is because the interferometer and its temperature controller can be shared by a plurality of wavelength signals by compensating the wavelength dependence of the delay amount of a 1-bit delay interferometer such as a Mach-Zehnder interferometer by phase modulation.
  • the wavelength arrangement on the ITU grid is exemplified, but the wavelength arrangement is not limited to this, and the number of wavelengths is not limited to four wavelengths.
  • the wavelength dependency of the delay amount of the interferometer 1105 is compensated by the phase modulator 1107-1110 on the transmission side, but this may be performed on the reception side.
  • the temperature regulators 1106 and 1306 so that the difference in delay between the two Mach-Zehnder interferometers 1105 and 1305 is also 0 or ⁇ at any of the wavelengths ⁇ 1 to ⁇ 4 , the remaining wavelengths An offset may be determined for.
  • the multi-level modulation level is adjusted to superimpose an offset corresponding to the wavelength on the phase difference applied between the double photon pulses.
  • the difference is that a phase modulator for offset is connected in series.
  • the number of wavelengths to be multiplexed is described as four as an example, it is needless to say that the number of wavelengths is not limited to this.
  • Alice 41 is a laser diode (LD) 4101-4104 that generates optical pulses of four wavelengths ⁇ 1 to ⁇ 4 respectively, and a two-input two-output Mach-Zehnder asymmetric that generates a double optical pulse by time-separating the optical pulses.
  • Interferometer hereinafter referred to as “Mach-Zehnder interferometer”
  • Temperatur controller 4106 that controls the temperature of the delay amount of Mach-Zehnder interferometer 4105
  • two-time optical pulses that are time-separated in accordance with random numbers.
  • the phase modulator 4107-4110 for adding a predetermined phase difference and the phase modulator 4111-4114 for offset, the clock source 4115 for driving the laser diode 4101-4104, the random number source 4116-4123, and the offset amount for each wavelength Are stored in an offset storage unit 4124 and a random number source 4116-4123 to generate a modulation signal. It has a converter DAC (Digital-to-Analog Converter) 4125-4128 and a WDM filter 4129-4131. Each of the DACs 4125-4128 inputs the two random numbers from the two random number sources, and outputs the modulation signal for each wavelength to the phase modulator 4107-4110 to execute the above-described phase modulation ⁇ , and stores it in the offset storage unit 4124.
  • DAC Digital-to-Analog Converter
  • the stored offset amount is output to the phase modulator 4111-4114 for each wavelength, and the offset ⁇ ( ⁇ ) is executed. Therefore, phase modulation ⁇ + ⁇ ( ⁇ ) is executed for each wavelength by the phase modulator 4107-4110 and the phase modulator 4111-4114.
  • a Mach-Zehnder interferometer 4105 which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 4129 and 4130 are multiplexed, and a temperature regulator 4106 for controlling the temperature of the delay amount is provided. .
  • a phase modulator 4107-4110 and a phase modulator 4111 that respectively perform phase modulation on the optical signals of wavelengths ⁇ 1 to ⁇ 4. -4114 is connected.
  • the random number source 4116-4123, the offset storage unit 4124, and the DAC 4125-4128 constitute the phase modulation control unit 107 in FIG.
  • the Alice 41 may be provided with an optical attenuator that attenuates each phase-modulated duplex optical pulse to a single photon level or less.
  • Bob 43 includes a phase modulator 4301-4304 that gives a phase difference again to the double photon pulse sent from Alice 41, a Mach-Zehnder interferometer 4305 that multiplexes the double photon pulses, and a delay of the Mach-Zehnder interferometer 4305. It has a temperature regulator 4306 for temperature control of the quantity, two photon detectors 4307-4310 and 4311-4314 for each wavelength, and a WDM filter 4315-4318.
  • a Mach-Zehnder interferometer 4305 which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 4316 and 4317/4318 are multiplexed, and a temperature regulator 4306 for controlling the temperature of the delay amount is provided. ing.
  • a phase modulator 4301-4304 that performs phase modulation on the double photon pulses of wavelengths ⁇ 1 to ⁇ 4 is connected to a section where the optical signal between the WDM filters 4315 and 4316 is demultiplexed for each wavelength. Yes. Note that, for the photon detectors 4307-4310 and 4311-4314, an avalanche photodiode (APD) is used in the gate mode here.
  • APD avalanche photodiode
  • the Mach-Zehnder interferometers 4105 and 4305 have delay amounts of 800.00 ps and 804.00 ps, respectively, as illustrated in FIG.
  • phase difference ⁇ ( ⁇ ) is measured in advance and stored in the offset amount storage unit 4124 as an offset.
  • the DAC corresponding to each wavelength inputs two random numbers and outputs a phase modulation signal that causes phase modulation ⁇ to the phase modulator. For each of the four signals of wavelengths ⁇ 1 to ⁇ 4 , four values of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 are randomly given as the phase difference ⁇ obtained by referring to two random numbers.
  • the duplex optical pulse generated by the Mach-Zehnder interferometer 4105 is phase-modulated by the phase modulator 4107-4110, and then subjected to offset phase modulation by the phase modulator 4111-4114. Specifically, 1.65 ⁇ V [pi for wavelength ⁇ 1, 1.11 ⁇ V ⁇ for wavelength ⁇ 2, 0.58 ⁇ V ⁇ for wavelength lambda 3, to the wavelength lambda 4
  • Each of the phase modulators 4111 to 4114 is driven with an amplitude of 0.05 ⁇ V ⁇ .
  • V ⁇ represents a voltage applied to the phase modulator to apply phase modulation of ⁇ .
  • phase modulation control method in the present embodiment will be described in more detail with reference to FIG. 7, taking the wavelength ⁇ 1 as an example.
  • duplex optical pulses (pre-pulse and post-pulse) generated by the Mach-Zehnder interferometer 4105 are demultiplexed by the WDM filter 4130 and input to the phase modulators 4107 to 4110, respectively.
  • phase modulation of phase difference ⁇ A
  • the above values are examples, and any number of equivalent modulation methods can be adopted, but all are quaternary modulation.
  • phase modulation control can be realized by executing a computer program on a program control processor such as a CPU.
  • the following effects can be obtained in addition to the effects of the first embodiment. That is, the means for generating the phase modulator drive signal is simplified. The reason is that in the first embodiment, it was necessary to perform five-level phase modulation, but in this embodiment, the phase modulator is divided into a modulator that performs four-level modulation and a modulator that provides a phase offset. This is because the multi-value number can be suppressed. It is possible to further divide the phase modulator that performs the quaternary modulation into two to make all the drive signals binary signals. Of course, the system cost increases as the number of modulators increases.
  • the wavelength dependency of the delay amount of the interferometer 4105 is compensated by the phase modulator 4111-4114 on the transmission side, but this may be performed on the reception side.
  • the temperature regulators 4106 and 4306 so that the difference in delay amount between the two Mach-Zehnder interferometers 4105 and 4305 is also 0 or ⁇ at any of the wavelengths ⁇ 1 to ⁇ 4 , the remaining wavelengths An offset may be determined for.
  • step S10 the drive signal amplitudes of all the phase modulators 4107-4114, 4301-4304 are set to 0, and the initial values of the four variables C 1 -C 4 are set to 0 (step S10). Subsequently, the drive signal amplitude of the phase modulator corresponding to each of the wavelengths ⁇ 1 to ⁇ 4 is determined. Since the basic procedure is the same for all wavelengths, the processing step S11 for the wavelength ⁇ 1 is used here. -S16 will be described.
  • the drive signal amplitude was a is increased by a predetermined step [Delta] V (step S11) of the phase modulator 4111, measures the number of photon counts per unit time of the photon detectors 4307 and 4311 (Step S12). Subsequently, the count ratio C 1 ′ is calculated using the respective count values C 10 and C 11 in the photon detectors 4307 and 4311 (step S13), and the calculated C 1 ′ is compared with the current variable C 1. (Step S14).
  • step S14 If the calculated C 1 ′ is equal to or greater than the current variable C 1 (step S14: No), the calculated C 1 ′ is newly set as the variable C 1 (step S15), and the process returns to step S11. By repeating steps S11 to S15 in this way, the drive signal amplitude for obtaining C 1 ′ greater than or equal to the previously calculated C 1 ′ is updated in ⁇ V steps.
  • step S14 When the calculated C 1 ′ becomes smaller than the current variable C 1 (step S14: Yes), the peak has passed, so the drive signal amplitude of the phase modulator 4111 is reduced by ⁇ V and fixed, and the wavelength ⁇ 1 Is determined (step S16).
  • the drive signal amplitude of the phase modulator 4111 is scanned, and the drive signal amplitude is set so that the ratio of the photon detection count values of the corresponding two photon detectors 4307 and 4311 is maximized.
  • the respective phase offset amounts can be determined by the same procedure in steps S21 to S26, steps S31 to S36, and steps S41 to S46.
  • Third Embodiment can also be applied to a quantum key distribution method (see FIG. 14) using a “Z base” as described in Non-Patent Document 5.
  • a four-input two-output 2 ⁇ 4 interferometer 5122 is used and multiple light source units are provided for each of four input ports. Is connected.
  • the first multiple light source unit includes LDs 5101 to 5104 and WDM filters 5117 corresponding to the wavelengths ⁇ 1 to ⁇ 4 respectively
  • the second multiple light source unit includes LDs 5105 to 5108 and WDM filters corresponding to the wavelengths ⁇ 1 to ⁇ 4 respectively.
  • third multiplexing light source unit LD5109-5112 and the WDM filter 5120 correspond to the wavelengths ⁇ 1 ⁇ ⁇ 4
  • LD5113-5116 and WDM filter fourth multiplexing light source unit correspond respectively to the wavelength lambda 1 ⁇ lambda 4 5118.
  • phase modulators 5124-5127 are inserted in the demultiplexed sections between the WDM filters 5123 and 5128 corresponding to the respective wavelengths.
  • the phase modulator 5124-5127 can compensate the wavelength dependence of the delay amount of the 2 ⁇ 4 interferometer 5122 by phase modulation as described above according to the offset amount from the offset storage unit 5129.
  • the optical pulse When an optical pulse is input to the 2 ⁇ 4 interferometer 5122 from the first multiple light source unit, the optical pulse passes through only the long path of the interferometer, and therefore, a phase modulator having a wavelength corresponding to only one pulse delayed in time. And sent to the transmission line.
  • the optical pulse passes through only the short path of the interferometer, so that only one pulse advanced in time is sent to the transmission path.
  • an X base or a Y base can be generated based on the phase difference between both paths of the 2 ⁇ 4 interferometer.
  • the phase modulator 5124-5127 adds an offset corresponding to the wavelength according to the offset amount from the offset storage unit 5129. At this time, even if phase modulation in units of wavelengths is applied, there is no effect on the Z-base signal, so that the phase modulator 5124-5127 acts only on the X-base or Y-base signal.
  • Fourth Embodiment The present invention can also be applied to a quantum key distribution system (see FIG. 15) using the DPS method disclosed in Non-Patent Document 6.
  • the transmission-side Alice of the optical communication system includes a laser diode (LD) 6101-6104 that generates optical pulses of four wavelengths ⁇ 1 to ⁇ 4 , and a wavelength
  • a phase modulator 6105-6108 that modulates the phase of each of the optical pulses of ⁇ 1 to ⁇ 4
  • a clock source 6109 that drives the laser diode 6101-6104
  • a random number source 6111-6114 and an offset amount for each wavelength
  • An offset storage unit 6115, a random number source 6111-6114, a DAC 6116-6119 that generates a modulation signal based on the offset amount of the offset storage unit 6115, and a WDM filter 6120.
  • Each of DACs 6116-6119 receives a random number from a corresponding random number source and an offset value from offset storage unit 6115, and outputs a modulated signal for each wavelength to phase modulator 6105-6108.
  • the optical pulses having the wavelengths ⁇ 1 to ⁇ 4 thus phase-modulated are combined by the WDM filter 6120 and reach the receiving side Bob through the optical transmission path 6121.
  • the receiving-side Bob has a Mach-Zehnder interferometer 6122 that generates time-separated optical pulses by separating the optical pulses, a temperature adjuster 6123 that controls the temperature of the delay amount of the Mach-Zehnder interferometer 6122, and a wavelength for each wavelength.
  • a Mach-Zehnder interferometer 6122 that generates time-separated optical pulses by separating the optical pulses
  • a temperature adjuster 6123 that controls the temperature of the delay amount of the Mach-Zehnder interferometer 6122, and a wavelength for each wavelength.
  • Each has two photon detectors 6125-6128 and 6129-6132 and WDM filters 6124 and 6133.
  • the temperature adjustment is performed to control the temperature of the Mach-Zehnder interferometer 6122 and its delay amount in the section in which the optical signal between the WDM filter 6120 on the transmission side and the WDM filter 6124/6133 on the reception side is multiplexed.
  • the instrument 6123 is equipped. Further, in the section where the optical signal between the laser diode (LD) 6101-6104 and the local port of the WDM filter 6120 is demultiplexed for each wavelength, phase modulation is performed on the optical signals of wavelengths ⁇ 1 to ⁇ 4 respectively. A phase modulator 6105-6108 to perform is connected.
  • the present invention can be used in an optical interference communication system using phase modulation represented by quantum key distribution technology.
  • the protocol of the quantum cryptography key distribution method does not matter.

Abstract

Disclosed is an optical communication system capable of applying a wavelength division multiplex technique to an optical interference system with any wavelength arrangement, independent of manufacturing error in the interferometer and without complicating the device configuration. The optical communication system, which includes optical interference systems that use the phase information of optical signals, comprises: an optical multiplexing means (101) that multiplexes optical signals of multiple wavelengths (λ1-λn) and outputs one multiplexed optical signal; an optical interference means (102) that temporally divides the multiplexed optical signal; a demultiplexing means (104) that demultiplexes the light output from the optical interference means and outputs demultiplexed optical signals of multiple wavelengths; multiple phase modulation means (PM1-PMn, 105) that phase modulate, wavelength-by-wavelength, optical signals of multiple wavelengths or the demultiplexed optical signals of multiple wavelengths output from the demultiplexing means; and a phase modulation control means (107) that individually controls the amount of modulation by the multiple phase modulation means according to the wavelength.

Description

光通信システム、光通信方法および光通信装置Optical communication system, optical communication method, and optical communication apparatus
 本発明は光信号の位相情報を利用して通信を行う光通信システムに係り、特に複数波長の信号を伝送する光通信システムおよび方法、光通信装置並びにその位相変調制御方法に関する。 The present invention relates to an optical communication system that performs communication using phase information of an optical signal, and more particularly, to an optical communication system and method for transmitting signals of a plurality of wavelengths, an optical communication apparatus, and a phase modulation control method thereof.
 インターネットトラフィックの急激な成長が継続している現状において、伝送帯域を向上させることは最重点課題の一つである。このことは、基幹系光ネットワークにおいても例外ではなく、伝送路や中継器を増設することなく既存のインフラを利用して伝送容量を拡大するために、様々な研究機関が1搬送波当たりの信号速度の高速化に取り組み、実際の商用伝送システムでも信号速度は高速化し続けている。 In the current situation where the rapid growth of Internet traffic continues, improving the transmission bandwidth is one of the most important issues. This is no exception even in the backbone optical network, and various research institutions have increased the signal speed per carrier in order to expand the transmission capacity using the existing infrastructure without adding transmission lines and repeaters. In actual commercial transmission systems, the signal speed continues to increase.
 一般的な光通信技術では主として2値振幅変調 (ASK:Amplitude Shift Keying)が使用されているので、1搬送波当たりの信号速度を向上させるためには1ビット当たりのタイムスロットを短くすることによるアプローチが主流であった。しかしながら、1搬送波当たりの信号速度が10Gb/sを超えだした頃からASKのみでの高速化の困難性が顕著になりつつある。この原因の一つとして、光伝送路特有の波長分散による波形劣化が挙げられる。波長分散とは、信号光波長によって伝送路で生じる伝播遅延時間が異なる現象を意味する。信号光スペクトルは特定の波長範囲を有しているので、同一信号光内の短波長成分と長波長成分とが伝送中に異なる波長分散値を蓄積し、伝送後にはこの蓄積分散によって伝播遅延差、つまり波形歪みが生じる。ASK信号で比較した場合、信号光スペクトルは変調速度に比例するので、信号速度が速くなるに比例して波長分散による波形歪みが大きくなる。一方、信号速度が速くなるに比例して1タイムスロットが短くなるので、同一量の波形歪み(伝播遅延差)を受けた場合でも、高速信号である程この影響を大きく受ける。このことにより伝送特性は信号速度の2乗に比例して劣化する。 In general optical communication technology, binary amplitude modulation (ASK: Amplitude Shift x Keying) is mainly used. Therefore, in order to improve the signal speed per carrier, an approach by shortening the time slot per bit is used. Was the mainstream. However, since the signal speed per carrier wave exceeds 10 Gb / s, the difficulty of speeding up with only ASK is becoming more prominent. One of the causes is waveform deterioration due to wavelength dispersion peculiar to the optical transmission line. The chromatic dispersion means a phenomenon in which the propagation delay time generated in the transmission line differs depending on the signal light wavelength. Since the signal light spectrum has a specific wavelength range, short wavelength components and long wavelength components in the same signal light accumulate different chromatic dispersion values during transmission, and after transmission, propagation delay differences are caused by this accumulated dispersion. That is, waveform distortion occurs. When compared with an ASK signal, the signal light spectrum is proportional to the modulation speed, so that the waveform distortion due to chromatic dispersion increases in proportion to the increase in the signal speed. On the other hand, since one time slot is shortened in proportion to an increase in signal speed, even when the same amount of waveform distortion (difference in propagation delay) is applied, this effect is more greatly affected as the signal is faster. As a result, the transmission characteristics deteriorate in proportion to the square of the signal speed.
 このようにASKのみでの高速化が困難になってきた結果、高速化の為の別のアプローチとして、1タイムスロットで表す状態を多値化することにより伝送帯域を向上させる技術も注目を集めている(非特許文献1,2および3参照)。非特許文献1は光の位相を4値変調することで伝送帯域を向上させ、非特許文献2および3は光の強度および位相の両方を変調する方式(APSK:Amplitude Phase Shift Keying)によって1シンボル(1搬送波および1タイムスロットでの)でより多くのディジタルビット数を表現している。ただし、光信号をフォトダイオード(PD)等の光電変換モジュールで直接検波するだけでは位相情報が抽出できないので、光信号の位相を変調する場合には、受信側で参照光と信号光とを干渉させ干渉後の光強度を読み取る等の検出方法を採る必要がある。 As a result of the difficulty in speeding up only with ASK, as another approach for speeding up, a technique for improving the transmission band by multi-leveling the state represented by one time slot attracts attention. (See Non-Patent Documents 1, 2, and 3). Non-Patent Document 1 improves the transmission band by quaternary modulation of the phase of light, and Non-Patent Documents 2 and 3 describe one symbol by a method (APSK: Amplitude Phase Shift Keying) that modulates both the intensity and phase of light. It represents a larger number of digital bits (with one carrier and one time slot). However, phase information cannot be extracted simply by directly detecting the optical signal with a photoelectric conversion module such as a photodiode (PD) .Therefore, when modulating the phase of the optical signal, the receiving side interferes with the reference light and the signal light. It is necessary to adopt a detection method such as reading the light intensity after interference.
 図11は、隣接ビット間の位相差に情報を載せる差動位相シフト(DPS:Differential Phase Shift)方式の復号方式の一例を示す模式図である。受信側に1ビット遅延干渉計を設け、前後1ビットの光信号を干渉させることによって載せられた位相情報を取り出す。前後の位相差が0ならポート0に、位相差がπならポート1に、それぞれ干渉後の光信号が出力される。この例では、1ビット遅延干渉計としてマッハツェンダ(Mach-Zehnder)干渉計を用いたが、マイケルソン(Michelson)干渉計を利用することも可能である。なお、1ビット遅延干渉計には、後述するように温度調整手段としての熱電冷却器(TEC:Thermo-Electric Cooler)が設けられている。 FIG. 11 is a schematic diagram showing an example of a differential phase shift (DPS: Differential Phase Shift) decoding method in which information is placed on a phase difference between adjacent bits. A 1-bit delay interferometer is provided on the receiving side to extract the phase information carried by interfering with the front and rear 1-bit optical signals. If the phase difference between the front and rear is 0, the optical signal after interference is output to port 0, and if the phase difference is π, the optical signal after interference is output to port 1. In this example, a Mach-Zehnder interferometer is used as a 1-bit delay interferometer, but a Michelson interferometer can also be used. The 1-bit delay interferometer is provided with a thermoelectric cooler (TEC: Thermo-Electric Cooler) as temperature adjusting means, as will be described later.
 光信号の位相変調を利用する通信システムとして、量子暗号鍵配付技術(QKD:Quantum Key Distribution)も挙げることができる。QKDでは、一般に通信媒体として光子を使用し、その量子状態に情報を載せて伝送を行う。伝送路の盗聴者は伝送中の光子をタッピングする等して情報を盗み見るものの、ハイゼンベルク(Heisenberg)の不確定性原理により1度観測されてしまった光子を完全に観測前の量子状態に戻すことは不可能となるので、このことによって正規の受信者が検出する受信データの統計値に変化が生じる。この変化を検出することにより受信者は伝送路における盗聴者を検出することができる。 Quantum key distribution technology (QKD: Quantum Key Distribution) can also be cited as a communication system that uses phase modulation of optical signals. In QKD, a photon is generally used as a communication medium, and information is carried on the quantum state for transmission. An eavesdropper on the transmission path steals information by tapping the photons being transmitted, etc., but returns the photons that have been observed once to Heisenberg's uncertainty principle completely to the quantum state before observation. As a result, the statistical value of the received data detected by the legitimate receiver changes. By detecting this change, the receiver can detect an eavesdropper on the transmission path.
 量子暗号鍵配付方法では、送信者と受信者(以下、AliceとBobと称する。)で光学干渉計を組織し、各々の光子にAliceとBobでそれぞれランダムに位相変調を施し、この変調位相の深さの差によってBob側で0あるいは1の出力を得ることができる。その後、AliceとBobの間で、出力データを測定したときの条件の一部分を照合することにより、最終的にAlice-Bob間で同一ビット列を共有することができる。以下、図12を参照してより詳細に説明する。 In the quantum cryptography key distribution method, an optical interferometer is organized by a sender and a receiver (hereinafter referred to as Alice and Bob), and phase modulation is randomly performed on each photon by Alice and Bob. Depending on the depth difference, an output of 0 or 1 can be obtained on the Bob side. Then, by collating a part of the conditions when the output data is measured between Alice and Bob, the same bit string can finally be shared between Alice and Bob. Hereinafter, this will be described in more detail with reference to FIG.
 図12は量子暗号鍵配付に使用される光干渉計の一例を示すシステム構成図である。ここでは、送信側通信機であるAlice21が光伝送路22を通して受信側通信機であるBob23に接続されているものとする。本例は、一方向型の光干渉計であり、Alice21とBob23の双方に1ビット遅延干渉計213および232が設けられている。この理由は、上述した差動位相シフトDPSの様に隣接ビット間に情報を載せると、盗聴者(以下、Eveという。)がローカルオシレータを準備することにより暗号鍵配付の安全性劣化が懸念される為である。なお、1ビット遅延干渉計213および232には、それぞれ温度調整器212および233が設けられている。 FIG. 12 is a system configuration diagram showing an example of an optical interferometer used for quantum key distribution. Here, it is assumed that Alice 21 which is a transmission side communication device is connected to Bob 23 which is a reception side communication device through an optical transmission path 22. This example is a one-way type optical interferometer, and 1- bit delay interferometers 213 and 232 are provided on both Alice 21 and Bob 23. The reason for this is that if information is placed between adjacent bits as in the above-described differential phase shift DPS, the eavesdropper (hereinafter referred to as “Eve”) prepares a local oscillator and there is a concern that the security of encryption key distribution may deteriorate. This is for the purpose. The 1- bit delay interferometers 213 and 232 are provided with temperature controllers 212 and 233, respectively.
 Alice21では、パルス光源211によって発生した光パルス列(ΔT間隔)を、1ビット遅延干渉計213を用いて遅延量Δtの2連パルス列へと変換し、位相変調器214によって各々のパルス対の間にφAの位相差を与える様に変調を施す。後述するBB84プロトコルと呼ばれる最も代表的な量子暗号鍵配付アルゴリズムでは、φAは0、π、π/2、3π/2の4値をとり、各パルス対に対してこの4値をランダムに割り当てる。このために、Alice21には、2系統の乱数源215および216と、これらの乱数を足し合わせるデジタル-アナログ変換器(DAC:Digital-to-Analog Converter)217と、を設ける。 In Alice 21, the optical pulse train (ΔT interval) generated by the pulse light source 211 is converted into a double pulse train having a delay amount Δt using a 1-bit delay interferometer 213, and a phase modulator 214 is used between each pulse pair. Modulate to give a phase difference of φA. In the most typical quantum key distribution algorithm called BB84 protocol described later, φA takes four values of 0, π, π / 2, and 3π / 2, and these four values are randomly assigned to each pulse pair. For this purpose, Alice 21 is provided with two systems of random number sources 215 and 216 and a digital-to-analog converter (DAC) 217 that adds these random numbers.
 Bob23では、Alice21より送られてきた光信号に対し、位相変調器231によって再びパルス対の間にφBの位相差を与える様に変調を施す。そして遅延量Δtの1ビット遅延干渉計232を用いてパルス対を干渉させ、干渉結果を光子検出器234および235で読み取る。Bob側の位相変調は0、π/2の2値で行い、この為の乱数源236を保有する。現状では、光子検出器の動作速度制限から、システムの繰り返し周波数(1/ΔT)は1GHz程度までの高速化が実現されているものの、この動作速度に対応する1ビット遅延干渉計の遅延量は~500ps(~10cm) と非常に長く、安定した特性を得るためには干渉計の温度制御を0.01K単位で行う必要がある。 In Bob 23, the optical signal sent from Alice 21 is modulated by the phase modulator 231 so as to give a phase difference of φB between the pulse pairs again. Then, the pulse pair is caused to interfere using the 1-bit delay interferometer 232 having the delay amount Δt, and the interference result is read by the photon detectors 234 and 235. The phase modulation on the Bob side is performed with binary values of 0 and π / 2, and a random number source 236 for this purpose is held. At present, the repetition rate (1 / ΔT) of the system is increased to about 1 GHz due to the limitation of the operation speed of the photon detector, but the delay amount of the 1-bit delay interferometer corresponding to this operation speed is In order to obtain stable characteristics as long as ˜500 ps (˜10 cm), it is necessary to control the temperature of the interferometer in units of 0.01K.
 図13は非特許文献4に開示されているBB84プロトコルを概念的に示す説明図である。ここでは、送信側のAlice21と受信側のBob23とが光伝送路22で接続され、量子暗号通信を行うものとする。この方法では4通りの量子状態を利用し、Alice21が乱数源を2つ持ち、一方の乱数1で0あるいは1の暗号鍵データを表し、もう一方の乱数2で乱数1の情報をコーディングする方法を決定する。 FIG. 13 is an explanatory diagram conceptually showing the BB84 protocol disclosed in Non-Patent Document 4. Here, it is assumed that Alice 21 on the transmission side and Bob 23 on the reception side are connected by an optical transmission line 22 and perform quantum cryptography communication. In this method, four kinds of quantum states are used, Alice 21 has two random number sources, one random number 1 represents 0 or 1 encryption key data, and the other random number 2 encodes information of random number 1 To decide.
 具体的には、コヒーレントな2パルス間の位相差を利用して4状態のコーディングを行う量子暗号鍵配付方法において、位相0が暗号鍵“0”、位相πが暗号鍵“1”の組を表すコーディングセット(以下、「X基底」と称する。)と、位相π/2が暗号鍵“0”、位相3π/2が暗号鍵“1”を表すコーディングセット(以下、「Y基底」と称する。)と、の2組の基底を乱数2で選択する。つまり1つの光子に対して、0、π/2、π、3π/2の4通りの変調をランダムに施してBob23へ送信する。 Specifically, in a quantum encryption key distribution method that performs four-state coding using a phase difference between two coherent pulses, a set of phase 0 is an encryption key “0” and phase π is an encryption key “1”. A coding set (hereinafter referred to as “X basis”) and a coding set (hereinafter referred to as “Y basis”) in which phase π / 2 represents the encryption key “0” and phase 3π / 2 represents the encryption key “1”. And 2) are selected with a random number 2. That is, four modulations of 0, π / 2, π, and 3π / 2 are randomly applied to one photon and transmitted to Bob23.
 一方、Bob23では基底に対応する乱数源(乱数3)を持ち、Alice21より送られてきた光子に対してデコードを行う。乱数3の値が“0”である場合、光子に対して位相0(X基底)の変調を、“1”である時には位相π/2(Y基底)の変調を施す。ここで光学干渉計出力として得られた乱数を乱数4とする。 On the other hand, Bob 23 has a random number source (random number 3) corresponding to the base and decodes photons sent from Alice 21. When the value of the random number 3 is “0”, the phase 0 (X basis) is modulated on the photon, and when the value is “1”, the phase π / 2 (Y basis) is modulated. Here, a random number obtained as an output of the optical interferometer is set as a random number 4.
 Alice21とBob23の両者が施した変調の基底が同一である場合(乱数2=乱数3)には、乱数1の値をBob23は正しく検出することができ(乱数1=乱数4)、異なる場合(乱数2≠乱数3)には乱数1の値に依らずBob23は乱数4として0/1の値をランダムに得る。 If the basis of modulation performed by both Alice 21 and Bob 23 is the same (random number 2 = random number 3), Bob 23 can correctly detect the value of random number 1 (random number 1 = random number 4), and if different ( For random number 2 ≠ random number 3), Bob 23 randomly obtains a value of 0/1 as random number 4 regardless of the value of random number 1.
 乱数1/2/3は共に1ビット毎に変化する乱数である為、基底が一致する確率と不一致である確率は共に50%となる。ただし、後段の基底照合(Basis Reconciliation)によって基底が不一致となるビットを削除する為、Alice21とBob23は乱数1に対応する0/1ビット列を共有することができる。なお、量子暗号鍵配付では、基底不一致ビットを削除する前の乱数データを「生鍵」、基底不一致ビットを削除した後の乱数データを「選別鍵」と呼ぶ。 Since both random numbers 1/2/3 are random numbers that change every bit, the probability that the bases match and the probability that they do not match are both 50%. However, since the bits whose bases do not match are deleted by the subsequent base collation (Basis Reconciliation), Alice 21 and Bob 23 can share the 0/1 bit string corresponding to the random number 1. In the quantum key distribution, the random number data before deleting the base mismatch bit is referred to as a “raw key”, and the random data after the base mismatch bit is deleted as a “selection key”.
 図14は非特許文献5に開示された単一方向型QKDシステムを概略的に示すブロック図である。図14に示す方式では2値の位相状態と2値の時間状態とを使用する。 FIG. 14 is a block diagram schematically showing the unidirectional QKD system disclosed in Non-Patent Document 5. The method shown in FIG. 14 uses a binary phase state and a binary time state.
 まずAlice31で4入力2出力の2×4干渉計を利用し、4つの入力ポート各々に光源LD1~LD4からの光パルスを入力する。光源LD1から光パルスを入力した場合、光パルスは干渉計の長経路のみを通る為、時間的に遅れた1パルスのみが伝送路に送出され、光源LD4から光パルスを入力した場合には、光パルスは干渉計の短経路のみを通る為に時間的に進んだ1パルスのみが伝送路に送出される。光源LD2およびLD3から光パルスを入力した場合は、2×4干渉計の両経路の位相差によって、X基底あるいはY基底を生成できる。Bob32では、2入力4出力の2×4干渉計を利用して各基底のデコードを行い4個の光子検出器PD1~PD4により検出される。 First, using Alice 31, a 4 × 2 interferometer with 4 inputs and 2 outputs is used to input light pulses from the light sources LD1 to LD4 to each of the 4 input ports. When an optical pulse is input from the light source LD1, since the optical pulse passes only through the long path of the interferometer, only one pulse delayed in time is sent to the transmission path, and when an optical pulse is input from the light source LD4, Since the optical pulse passes only through the short path of the interferometer, only one pulse advanced in time is transmitted to the transmission path. When optical pulses are input from the light sources LD2 and LD3, an X basis or a Y basis can be generated by the phase difference between both paths of the 2 × 4 interferometer. In Bob 32, each base is decoded using a 2 × 4 interferometer having 2 inputs and 4 outputs, and detected by four photon detectors PD1 to PD4.
 以下、光源LD1およびLD4を使用した場合の様に、2連パルスの片側のみ光子が存在するようなコーディングセットを「Z基底(Z basis)」と呼ぶこととする。なお、X基底あるいはY基底を選択時の2連パルスの光強度の総和は、Z基底選択時と等しい必要がある為、個々のパルスの強度は半分となる。 Hereinafter, as in the case of using the light sources LD1 and LD4, a coding set in which a photon exists on only one side of a double pulse is referred to as “Z basis”. Note that the sum of the light intensity of the double pulses when the X base or the Y base is selected needs to be equal to that when the Z base is selected, so the intensity of each pulse is halved.
 すなわち、Alice側は光源LD1-LD4のうちのどの光源から光パルスを発生させるかを選択し、Bob側は光子検出器PD1~PD4のいずれかで光子を検出することによりビットおよび基底を同時に判定することができる。本方式では、Bob側に変調器を必要としない為、暗号鍵生成の高速化が実現できる。 That is, the Alice side selects which light source LD1 to LD4 generates the light pulse, and the Bob side simultaneously determines the bit and the base by detecting the photon with any of the photon detectors PD1 to PD4. can do. In this method, since no modulator is required on the Bob side, it is possible to increase the speed of encryption key generation.
 図15は非特許文献6に開示されたDPS方式を利用した量子暗号鍵配付システムの概略的ブロック図である。このシステムのAlice41には、パルス源411、位相変調器412および乱数源413が設けられているが、干渉計がない。Bob43には、位相変調器431、1ビット遅延干渉計432、温度調整器433、光子検出器434および435が設けられている。Alice41の位相変調器412により、隣接ビットの位相差にランダムに位相変調(0、πの2値位相変調)が施される。 FIG. 15 is a schematic block diagram of a quantum key distribution system using the DPS method disclosed in Non-Patent Document 6. Alice 41 of this system is provided with a pulse source 411, a phase modulator 412 and a random number source 413, but without an interferometer. In Bob 43, a phase modulator 431, a 1-bit delay interferometer 432, a temperature regulator 433, and photon detectors 434 and 435 are provided. The phase modulator 412 of Alice 41 randomly applies phase modulation (binary phase modulation of 0 and π) to the phase difference between adjacent bits.
 ところで、光通信の高速化には、上述したような繰り返し周波数の向上以外に、複数信号をパラレルに伝送する方式も考えられる。特に、波長分割多重(WDM:Wavelength Division Multiplexing)技術を利用することによって、Alice-Bob間の光伝送ファイバを1本としたままでQKDシステムでの鍵生成速度の向上を図ることができる。 Incidentally, in order to increase the speed of optical communication, in addition to the improvement of the repetition frequency as described above, a method of transmitting a plurality of signals in parallel can be considered. In particular, by using wavelength division multiplexing (WDM) technology, it is possible to improve the key generation speed in the QKD system with a single optical transmission fiber between Alice and Bob.
 複数波長を利用して通信を行う通信システムとしては、たとえば特許文献1に波長多重光CDMAシステムが開示されている。ここには、複数の位相変調器を用いて波長毎に異なる位相変調を施す手法が記載されているが、複数のDPSK復調器を使用することを前提としており、このDPSK復調器は1ビット遅延干渉計として機能している(特許文献1の明細書段落0035、0048および図3参照)。 As a communication system that performs communication using a plurality of wavelengths, for example, Patent Document 1 discloses a wavelength multiplexed optical CDMA system. Here, a method is described in which a plurality of phase modulators are used to perform different phase modulation for each wavelength. However, it is assumed that a plurality of DPSK demodulators are used, and this DPSK demodulator has a 1-bit delay. It functions as an interferometer (see the paragraphs 0035 and 0048 of the specification of Patent Document 1 and FIG. 3).
特表2008-529422号公報Special table 2008-529422
 しかしながら、量子暗号鍵配付技術のような位相変調を利用した光干渉システムにWDM技術を適用する場合、特許文献1に記載されているように波長毎に1ビット遅延干渉計を設けることは、たとえば図16に例示するように装置構成が複雑化しコスト的にも不利である。 However, when the WDM technique is applied to an optical interference system using phase modulation such as the quantum encryption key distribution technique, it is possible to provide a 1-bit delay interferometer for each wavelength as described in Patent Document 1, for example. As illustrated in FIG. 16, the apparatus configuration is complicated and disadvantageous in terms of cost.
 図16はWDM技術を光干渉システムに単純に適用したシステムのブロック図である。図12に例示した量子暗号システムを、WDMフィルタを用いて複数波長束ねた構成である。本構成ではAlice51が光伝送路ファイバ52を通してBob53に接続されているが、Alice51およびBob53のそれぞれにおいて、波長ごとに1ビット遅延干渉計511、531と、その温度調整器512、532とを設ける必要がある。 FIG. 16 is a block diagram of a system in which WDM technology is simply applied to an optical interference system. The quantum cryptography system illustrated in FIG. 12 has a configuration in which a plurality of wavelengths are bundled using a WDM filter. In this configuration, the Alice 51 is connected to the Bob 53 through the optical transmission line fiber 52. In each of the Alice 51 and Bob 53, it is necessary to provide 1- bit delay interferometers 511 and 531 and their temperature regulators 512 and 532 for each wavelength. There is.
 上述したように、システムの繰り返し周波数(1/ΔT)が1GHz程度までの高速化されていても、この動作速度に対応する1ビット遅延干渉計の遅延量は~500ps(~10cm) と非常に長く、安定した特性を得るためには干渉計の温度制御を0.01K単位で行う必要がある。このような1ビット遅延干渉計や0.01K単位での温度制御を行うための温度調整器は非常に高額である。したがって、図16に示すように波長ごとに1ビット遅延干渉計および温度調整器を設ける構成では、システム構成を複雑化するだけでなく、システムコストを大幅に増加させる要因となる。 As described above, even if the repetition frequency (1 / ΔT) of the system is increased to about 1 GHz, the delay amount of the 1-bit delay interferometer corresponding to this operation speed is as high as ˜500 ps (˜10 cm). In order to obtain long and stable characteristics, it is necessary to control the temperature of the interferometer in units of 0.01K. Such a 1-bit delay interferometer and a temperature regulator for performing temperature control in units of 0.01K are very expensive. Therefore, as shown in FIG. 16, the configuration in which the 1-bit delay interferometer and the temperature controller are provided for each wavelength not only complicates the system configuration but also significantly increases the system cost.
 図17(a)は遅延干渉計の動作特性を検証するための実験系を示すブロック図であり、図17(b)は温度と光強度との関係を示すグラフ、図17(c)は温度、波長および光強度の関係を示すグラフである。 FIG. 17A is a block diagram showing an experimental system for verifying the operating characteristics of the delay interferometer, FIG. 17B is a graph showing the relationship between temperature and light intensity, and FIG. It is a graph which shows the relationship between a wavelength and light intensity.
 図17(a)において、連続光源(CW光源)601の出力をMach-Zehnder干渉計602に通し、出力ポートの片側の光強度を光パワーメータ604で測定する。CW光源601の波長をλで固定し、干渉計602の制御温度を変化させた場合、光パワーメータ604で測定した光強度は図17(b)に示す様に正弦波を描くことになる。これは、干渉計602の遅延経路の温度が変化することによって遅延経路の伸縮が生じ、干渉計の両経路を通過する光信号の光路差が変化することで、合波される際に強めあったり(光路差が波長の整数倍)、弱めあったり(光路差が波長の「整数+1/2」倍) する為である。図17(b)に示す関係をさらに波長方向に見てみると、図17(c)に示す様に、モニタ光強度の山および谷がある傾斜を持って変化する。これは干渉計602の光路差が波長の整数倍となる遅延量が波長によって異なるためである。 In FIG. 17A, the output of a continuous light source (CW light source) 601 is passed through a Mach-Zehnder interferometer 602, and the light intensity on one side of the output port is measured by an optical power meter 604. When the wavelength of the CW light source 601 is fixed at λ 0 and the control temperature of the interferometer 602 is changed, the light intensity measured by the optical power meter 604 draws a sine wave as shown in FIG. . This is because when the temperature of the delay path of the interferometer 602 changes, the expansion and contraction of the delay path occurs, and the optical path difference between the optical signals passing through both paths of the interferometer changes, which is strengthened when combined. (The optical path difference is an integral multiple of the wavelength) or weakened (the optical path difference is "integer + 1/2" multiple of the wavelength). When the relationship shown in FIG. 17B is further viewed in the wavelength direction, the monitor light intensity changes with a certain slope as shown in FIG. 17C. This is because the delay amount at which the optical path difference of the interferometer 602 becomes an integral multiple of the wavelength differs depending on the wavelength.
 さらに、1ビット遅延干渉計の製造誤差も考慮しなければならない。たとえば、遅延量(800ps±製造誤差)の2つの1ビット遅延干渉計を考える。遅延量の製造誤差の一般的な仕様値は800ps±2%程度であるが、一例として図18(a)に示すように0.5%の誤差がある場合を考える。計算を簡略にするために遅延量800psを16.00cmとし、0.5%の製造誤差がある場合の遅延量804psを16.08cmとする。 Furthermore, the manufacturing error of the 1-bit delay interferometer must be taken into consideration. For example, consider two 1-bit delay interferometers with a delay amount (800 ps ± manufacturing error). A general specification value of the manufacturing error of the delay amount is about 800 ps ± 2%. As an example, consider a case where there is an error of 0.5% as shown in FIG. In order to simplify the calculation, the delay amount 800 ps is set to 16.00 cm, and the delay amount 804 ps when there is a manufacturing error of 0.5% is set to 16.08 cm.
 この場合、図16に示すように、送受信両端に1ビット遅延干渉計511および531を有する光通信システムでは、1ビット遅延干渉計511および531の遅延量の差が0若しくはπ(+波の整数倍)となっている必要がある。特定波長λでこの条件を満たす為には、片方の干渉計の遅延量を温度制御すればよいので比較的容易である。 In this case, as shown in FIG. 16, in an optical communication system having 1- bit delay interferometers 511 and 531 at both transmission and reception ends, the difference in delay amount between 1- bit delay interferometers 511 and 531 is 0 or π (+ wave integer). Times). In order to satisfy this condition at the specific wavelength λ 0 , it is relatively easy to control the temperature of the delay amount of one interferometer.
 しかしながら、λで1ビット遅延干渉計511および531の遅延量の差が0(+波長の整数倍)になる様に制御温度を設定すると、遅延量の差が「0若しくはπ」となる波長は、図18(b)に示すように周期的になる。この周期で波長配置を行えば干渉システムにWDM技術を適用することは可能であるが、遅延量の製造誤差によってこの周期は変化する。したがって、使用する干渉計の特性によって波長配置を変更する必要が生じ、システムの大量生産に適さない。また、波長合分波を行うWDMフィルタも、ITUグリッド(50GHz間隔や100GHz間隔)に合わせて製造されていることが殆どであるために、これらの市販品を使用できないことも問題となる。 However, if the control temperature is set such that the difference in delay amount between the 1- bit delay interferometers 511 and 531 is 0 (plus an integral multiple of the wavelength) at λ 0 , the wavelength at which the difference in delay amount is “0 or π”. Is periodic as shown in FIG. It is possible to apply the WDM technique to the interference system if the wavelength arrangement is performed at this period, but this period changes due to a manufacturing error of the delay amount. Therefore, it is necessary to change the wavelength arrangement depending on the characteristics of the interferometer used, which is not suitable for mass production of the system. In addition, since WDM filters that perform wavelength multiplexing / demultiplexing are mostly manufactured according to the ITU grid (50 GHz interval or 100 GHz interval), it is also a problem that these commercially available products cannot be used.
 そこで、本発明は、干渉計の製造誤差に依存せず、かつ、装置構成を複雑化しないで、任意の波長配置にて波長分割多重技術を光干渉システムに適用可能にする光通信システム、光通信方法および光通信装置を提供することを目的とする。 Accordingly, the present invention provides an optical communication system, an optical communication system that can apply a wavelength division multiplexing technique to an optical interference system in an arbitrary wavelength arrangement without depending on manufacturing errors of the interferometer and without complicating the apparatus configuration. An object is to provide a communication method and an optical communication device.
 本発明による光通信装置は、光信号の位相情報を利用した光干渉システムを含む光通信システムにおける光通信装置であって、複数波長の光信号を合波して1つの合波光信号を出力する光合波手段と、前記合波光信号を時間的に分離する光干渉手段と、前記光干渉手段からの出力光を分波して前記複数波長の分波光信号を出力する分波手段と、前記光合波手段の入力側の前記複数波長の光信号あるいは前記光分波手段の出力側の前記複数波長の分波光信号のいずれか一方を波長ごとにそれぞれ位相変調する複数の位相変調手段と、前記複数の位相変調手段による変調量を波長に応じて個別に制御する位相変調制御手段と、を有することを特徴とする。 An optical communication apparatus according to the present invention is an optical communication apparatus in an optical communication system including an optical interference system using phase information of an optical signal, and combines optical signals of a plurality of wavelengths and outputs one combined optical signal. An optical multiplexing unit; an optical interference unit that temporally separates the combined optical signal; a demultiplexing unit that demultiplexes output light from the optical interference unit and outputs the demultiplexed optical signals of the plurality of wavelengths; A plurality of phase modulation means for phase-modulating each of the wavelength-dependent optical signals on the input side of the wave means or the wavelength-demultiplexed optical signals on the output side of the light demultiplexing means for each wavelength; Phase modulation control means for individually controlling the amount of modulation by the phase modulation means according to the wavelength.
 本発明による光通信方法は光信号の位相情報を利用した光干渉システムを含む光通信システムにおける光通信方法であって、光合波手段が複数波長の光信号を合波して1つの合波光信号を生成し、光干渉計が前記合波光信号を時間的に分離し、光分波手段が前記光干渉計からの出力光を分波して前記複数波長の分波光信号を生成し、前記複数波長の分波光信号または前記複数波長の光信号を、波長ごとに、波長に応じて個別に制御された変調量でそれぞれ位相変調する、ことを特徴とする法。 An optical communication method according to the present invention is an optical communication method in an optical communication system including an optical interference system using phase information of an optical signal, in which an optical multiplexing unit combines optical signals of a plurality of wavelengths to form one combined optical signal. The optical interferometer temporally separates the combined optical signal, and the optical demultiplexing means demultiplexes the output light from the optical interferometer to generate the demultiplexed optical signals of the plurality of wavelengths, A method of performing phase modulation on a wavelength-demultiplexed optical signal or an optical signal of a plurality of wavelengths, for each wavelength, with a modulation amount individually controlled according to the wavelength.
 本発明による光通信システムは、送信側通信装置と受信側通信装置とを有し、光信号の位相情報を利用した光干渉システムを含む光通信システムであって、前記送信側通信装置は、複数波長の光信号を波長ごとにそれぞれ位相変調する複数の位相変調手段と、位相変調された複数波長の光信号を合波して1つの合波光信号を前記受信側通信装置へ送信する光合波手段と、を少なくとも有し、前記受信側通信装置は、受信光信号を時間的に分離する受信側光干渉手段と、前記受信側光干渉手段からの出力光を分波して前記複数波長の分波光信号を出力する受信側光分波手段と、を少なくとも有し、前記送信側通信装置は、前記複数の位相変調手段による変調量を波長に応じて個別に制御する位相変調制御手段を更に有することを特徴とする。 An optical communication system according to the present invention is an optical communication system including an optical interference system having a transmission-side communication device and a reception-side communication device and using phase information of an optical signal. A plurality of phase modulation means for phase-modulating each wavelength of the optical signal, and an optical multiplexing means for combining the phase-modulated optical signals of the plurality of wavelengths and transmitting one combined optical signal to the receiving-side communication device; The receiving-side communication device includes: a receiving-side optical interference unit that temporally separates a received optical signal; and the output light from the receiving-side optical interference unit is demultiplexed to demultiplex the plurality of wavelengths. Receiving-side optical demultiplexing means for outputting a wave signal, and the transmitting-side communication device further includes phase modulation control means for individually controlling the modulation amounts by the plurality of phase modulation means according to wavelengths. It is characterized by that.
 本発明によるプログラムは、光信号の位相情報を利用した光干渉システムを含む光通信システムの光通信装置におけるプログラム制御プロセッサを位相変調制御装置として機能させるプログラムであって、光合波手段が複数波長の光信号を合波して1つの合波光信号を生成し、光干渉計が前記合波光信号を時間的に分離し、光分波手段が前記光干渉計からの出力光を分波して前記複数波長の分波光信号を生成し、前記複数波長の分波光信号または前記複数波長の光信号を波長ごとにそれぞれ位相変調する複数の位相変調手段の変調量を波長に応じて個別に制御する、ように前記プログラム制御プロセッサを機能させることを特徴とする。 A program according to the present invention is a program for causing a program control processor in an optical communication apparatus of an optical communication system including an optical interference system using phase information of an optical signal to function as a phase modulation control apparatus, wherein the optical multiplexing means has a plurality of wavelengths. The optical signal is multiplexed to generate one combined optical signal, the optical interferometer temporally separates the combined optical signal, and the optical demultiplexing means demultiplexes the output light from the optical interferometer to generate the combined optical signal. Generating a plurality of wavelength-demultiplexed optical signals, and individually controlling the modulation amounts of a plurality of phase modulation means for phase-modulating the plurality of wavelength-demultiplexed optical signals or the plurality of wavelength optical signals for each wavelength, according to the wavelength; The program control processor is made to function as described above.
 上述したように、本発明により、光干渉計の製造誤差に依存せず、かつ、装置構成を複雑化しないで、任意の波長配置にて波長分割多重技術が光干渉システムに適用可能となる。 As described above, according to the present invention, the wavelength division multiplexing technique can be applied to the optical interference system with any wavelength arrangement without depending on the manufacturing error of the optical interferometer and without complicating the apparatus configuration.
本発明の第1実施形態による光通信システムの概略的に構成を示すブロック図である。1 is a block diagram schematically showing the configuration of an optical communication system according to a first embodiment of the present invention. 本発明の第2実施形態による光通信システムの概略的に構成を示すブロック図である。It is a block diagram which shows the schematic structure of the optical communication system by 2nd Embodiment of this invention. 本発明の第1実施例による光通信システムの概略的に構成を示すブロック図である。1 is a block diagram schematically showing the configuration of an optical communication system according to a first embodiment of the present invention. 第1実施例で使用する2つのMach-Zehnder干渉計の遅延量の差を説明するための波長-位相差を示すグラフである。It is a graph which shows the wavelength-phase difference for demonstrating the difference of the delay amount of two Mach-Zehnder interferometers used in 1st Example. (a)は第1実施例の位相制御をしない場合の位相変調器の駆動信号の波形を示すグラフ、(b)は第1実施例の位相制御を実行する場合の位相変調器の駆動信号の波形を示すグラフある。(A) is a graph showing the waveform of the drive signal of the phase modulator when the phase control of the first embodiment is not performed, and (b) is the drive signal of the phase modulator when the phase control of the first embodiment is executed. It is a graph which shows a waveform. 本発明の第2実施例による光通信システムの概略的に構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system by 2nd Example of this invention roughly. (a)は第2実施例における乱数による位相変調器の駆動信号の波形を示すグラフ、(b)は第2実施例におけるオフセット用位相制御を実行する場合の位相変調器の駆動信号の波形を示すグラフある。(A) is a graph showing the waveform of the phase modulator drive signal based on random numbers in the second embodiment, and (b) is the waveform of the phase modulator drive signal when the offset phase control in the second embodiment is executed. There is a graph to show. 第2実施例における位相変調器の駆動信号の振幅を決定する手順を示すフローチャートである。It is a flowchart which shows the procedure which determines the amplitude of the drive signal of the phase modulator in 2nd Example. 本発明の第3実施例による光通信システムの送信装置の概略的構成を示すブロック図である。It is a block diagram which shows schematic structure of the transmitter of the optical communication system by 3rd Example of this invention. 本発明の第4実施例による光通信システムの概略的に構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system by 4th Example of this invention schematically. 隣接ビット間の位相差に情報を載せる差動位相シフトDPS復号方式の一例を示す模式図である。It is a schematic diagram which shows an example of the differential phase shift DPS decoding system which puts information on the phase difference between adjacent bits. 量子暗号鍵配付に使用される光干渉計の一例とその機能を説明するためのシステム構成図である。It is a system block diagram for demonstrating an example of the optical interferometer used for quantum encryption key distribution, and its function. 非特許文献4に開示されているBB84プロトコルを概念的に示す説明図である。It is explanatory drawing which shows notionally BB84 protocol currently disclosed by the nonpatent literature 4. 非特許文献5に開示された単一方向型QKDシステムを概略的に示すブロック図である。It is a block diagram which shows roughly the unidirectional QKD system disclosed by the nonpatent literature 5. FIG. 非特許文献6に開示されたDPS方式を利用した量子暗号鍵配付システムの概略的ブロック図である。FIG. 10 is a schematic block diagram of a quantum key distribution system using a DPS method disclosed in Non-Patent Document 6. WDM技術を光干渉システムに単純に適用したシステムのブロック図である。1 is a block diagram of a system in which WDM technology is simply applied to an optical interference system. (a)は遅延干渉計の動作特性を検証するための実験系を示すブロック図であり、(b)は温度と光強度との関係を示すグラフ、(c)は温度、波長および光強度の関係を示すグラフである。(A) is a block diagram showing an experimental system for verifying the operating characteristics of a delay interferometer, (b) is a graph showing the relationship between temperature and light intensity, (c) is a graph of temperature, wavelength and light intensity. It is a graph which shows a relationship. (a)は遅延量の製造誤差がある2つの1ビット遅延干渉計の模式的構成図、(b)は1ビット遅延干渉計の遅延量の差を説明するための波長-位相差を示すグラフである。(A) is a schematic configuration diagram of two 1-bit delay interferometers having a manufacturing error of the delay amount, and (b) is a graph showing a wavelength-phase difference for explaining a difference in delay amount of the 1-bit delay interferometer It is.
 1.第1実施形態
 図1に示すように、本発明の第1実施形態による光通信システムは、複数の波長λ~λの光信号を合波/分波する波長分割多重(WDM)フィルタ101、104および106を有する。WDMフィルタ101とWDMフィルタ104との間の光信号が多重された区間には遅延干渉計102が設けられ、その遅延量の温度制御を行う温度調整器103が装備されている。遅延干渉計102には、一例として、入力した光信号を時間分離するための2入力2出力マッハツェンダ(Mach-Zehnder)非対称干渉計が用いられる。温度調整器103には、一例として熱電気冷却器(TEC)が用いられる。
1. First Embodiment As shown in FIG. 1, an optical communication system according to a first embodiment of the present invention includes a wavelength division multiplexing (WDM) filter 101 for multiplexing / demultiplexing optical signals having a plurality of wavelengths λ 1 to λ n. , 104 and 106. A delay interferometer 102 is provided in a section in which optical signals between the WDM filter 101 and the WDM filter 104 are multiplexed, and a temperature regulator 103 that controls the temperature of the delay amount is provided. As the delay interferometer 102, for example, a 2-input 2-output Mach-Zehnder asymmetrical interferometer for time-separating an input optical signal is used. For example, a thermoelectric cooler (TEC) is used for the temperature regulator 103.
 WDMフィルタ104と106との間の光信号が波長ごとに分波された区間には位相変調器群105が設けられ、位相変調器群105は複数の波長λ~λの光信号に対してそれぞれ位相変調を行う位相変調器PM~PMを有する。これらの位相変調器PM~PMは、位相変調制御部107によりそれぞれ波長に依存した位相オフセットθ(λ)が設定される。たとえば、与えられたデータに従った位相変調量φに、後述するように遅延干渉計102の波長依存性の遅延量を補償するための位相オフセットθ(λ)を加えた位相変調が実行される。位相オフセットθ(λ)は波長λに依存して予め決定されたオフセット値であり、ここでは波長λ~λにそれぞれ対応した位相オフセット値θ~θが位相変調器PM~PMにそれぞれ設定される。なお、位相変調φと位相オフセットθとは、1つの位相変調器で実行することもできるし、それぞれ別個の位相変調器で実行することもできる。 A phase modulator group 105 is provided in a section where the optical signals between the WDM filters 104 and 106 are demultiplexed for each wavelength, and the phase modulator group 105 corresponds to a plurality of optical signals having wavelengths λ 1 to λ n. Phase modulators PM 1 to PM n that respectively perform phase modulation. In these phase modulators PM 1 to PM n , a phase offset θ (λ) depending on the wavelength is set by the phase modulation control unit 107. For example, phase modulation is executed by adding a phase offset θ (λ) for compensating the wavelength-dependent delay amount of the delay interferometer 102 to the phase modulation amount φ according to given data, as will be described later. . A phase offset theta (lambda) is the offset value which is previously determined depending on the wavelength lambda, a phase offset value θ 1 ~ θ n is a phase modulator PM 1 ~ PM respectively corresponding to wavelengths λ 1 ~ λ n here n , respectively. Note that the phase modulation φ and the phase offset θ can be executed by one phase modulator, or can be executed by separate phase modulators.
 このように遅延干渉計102の遅延量の波長依存性を位相変調で補償することで、任意の波長配置の設定が可能となると共に、遅延干渉計102とその温度調整器103を複数波長の光信号で共用することが可能となる。 In this way, by compensating the wavelength dependence of the delay amount of the delay interferometer 102 by phase modulation, it becomes possible to set an arbitrary wavelength arrangement, and the delay interferometer 102 and its temperature adjuster 103 can be combined with light of a plurality of wavelengths. The signal can be shared.
 図1に示す構成から明らかなように、複数の波長λ~λの光信号に対して1つの遅延干渉計102(およびその温度調整器103)だけ装備すればよい。図16に示す構成と比較すれば明らかなように、本実施形態によれば、光干渉系に波長分割多重を適用しても装置構成を極めて簡略化することができる。さらに、位相オフセット値θ~θが位相変調器PM~PMにそれぞれ設定されることで、遅延干渉計102の遅延量の製造誤差も補償することができる。 As is clear from the configuration shown in FIG. 1, only one delay interferometer 102 (and its temperature regulator 103) needs to be provided for optical signals having a plurality of wavelengths λ 1 to λ n . As is clear from comparison with the configuration shown in FIG. 16, according to this embodiment, the device configuration can be greatly simplified even if wavelength division multiplexing is applied to the optical interference system. Furthermore, the phase offset values θ 1 to θ n are set in the phase modulators PM 1 to PM n , respectively, so that the manufacturing error of the delay amount of the delay interferometer 102 can be compensated.
 第1実施形態によれば、光通信システムの送信装置あるいは受信装置を構成可能である。たとえば、WDMフィルタ101の波長ごとのローカルポートに波長λ~λの光を発光する複数の光源を接続し、WDMフィルタ106の多重ポートに光伝送ファイバを接続することで送信装置が構成され、WDMフィルタ101のローカルポートに波長λ~λの光を検出する光検出器を接続すれば受信装置が構成される。 According to the first embodiment, a transmission device or a reception device of an optical communication system can be configured. For example, a transmitter is configured by connecting a plurality of light sources that emit light of wavelengths λ 1 to λ n to local ports for each wavelength of the WDM filter 101 and connecting optical transmission fibers to multiple ports of the WDM filter 106. If a photodetector that detects light of wavelengths λ 1 to λ n is connected to the local port of the WDM filter 101, a receiving device is configured.
 このように、本実施形態によれば、量子暗号鍵配付技術等の位相変調を利用した光干渉システムにWDM技術を適用する際、Mach-Zehnder干渉計等の1ビット遅延干渉計の遅延量の波長依存性を位相変調で補償することによって干渉計とその温度調整器を複数波長信号で共用できるので、簡易な構成でシステムを構築できる。その結果、量子暗号鍵配付システムにおいて、伝送路1本当たりの暗号鍵生成速度を向上させることができる。 Thus, according to this embodiment, when applying the WDM technique to an optical interference system using phase modulation such as a quantum cryptography key distribution technique, the delay amount of a 1-bit delay interferometer such as a Mach-Zehnder interferometer is reduced. By compensating the wavelength dependence by phase modulation, the interferometer and its temperature regulator can be shared by a plurality of wavelength signals, so that a system can be constructed with a simple configuration. As a result, the encryption key generation speed per transmission line can be improved in the quantum encryption key distribution system.
 2.第2実施形態
 図2に示すように、本発明の第2実施形態による光通信システムも、第1実施形態と同様に、複数の波長λ~λの光信号を合波/分波するWDMフィルタ101および104を有し、WDMフィルタ101と104との間に遅延干渉計102が設けられ、その遅延量の温度制御を行う温度調整器103が装備されている。遅延干渉計102および温度調整器103には、それぞれ一例として、2入力2出力マッハツェンダ(Mach-Zehnder)非対称干渉計および熱電気冷却器(TEC)が用いられるものとする。ただし、上記第1実施形態による光通信システムでは入出力の一方が複数の波長λ~λの光信号に分波され、他方が多重化信号であるのに対して、第2実施形態による光通信システムは、複数の波長λ~λの光信号に分波された入出力を有する点が異なっている。
2. Second Embodiment As shown in FIG. 2, the optical communication system according to the second embodiment of the present invention also multiplexes / demultiplexes optical signals having a plurality of wavelengths λ 1 to λ n , as in the first embodiment. The WDM filters 101 and 104 are provided, a delay interferometer 102 is provided between the WDM filters 101 and 104, and a temperature regulator 103 for controlling the temperature of the delay amount is provided. For example, a two-input two-output Mach-Zehnder asymmetrical interferometer and a thermoelectric cooler (TEC) are used for the delay interferometer 102 and the temperature controller 103, respectively. However, in the optical communication system according to the first embodiment, one of the inputs and outputs is demultiplexed into optical signals of a plurality of wavelengths λ 1 to λ n and the other is a multiplexed signal, whereas the second embodiment The optical communication system is different in that it has an input / output demultiplexed into optical signals having a plurality of wavelengths λ 1 to λ n .
 WDMフィルタ101の波長ごとのポートには位相変調器群110が接続され、位相変調器群110は複数の波長λ~λの光信号に対してそれぞれ位相変調を行う位相変調器PM~PMからなる。これらの位相変調器PM~PMは位相変調制御部111により第1実施形態と同様に位相変調制御される。したがって、第1実施形態と同様に、遅延干渉計102の遅延量の波長依存性を位相変調で補償することで、遅延干渉計102とその温度調整器103を複数波長の光信号で共用することが可能となり、光干渉系に波長分割多重を適用しても装置構成を極めて簡略化することができる。さらに、位相オフセット値θ~θが位相変調器PM~PMにそれぞれ設定されることで、遅延干渉計102の遅延量の製造誤差も補償することができる。 The port of each wavelength of the WDM filter 101 is connected phase modulator group 110, a phase modulator group 110 phase modulators PM 1 ~ performing each phase modulation to light signals of a plurality of wavelengths λ 1 ~ λ n It consists of PM n . These phase modulators PM 1 to PM n are subjected to phase modulation control by the phase modulation control unit 111 as in the first embodiment. Therefore, as in the first embodiment, the delay interferometer 102 and its temperature adjuster 103 can be shared by optical signals of a plurality of wavelengths by compensating the wavelength dependence of the delay amount of the delay interferometer 102 by phase modulation. Even if wavelength division multiplexing is applied to the optical interference system, the apparatus configuration can be greatly simplified. Furthermore, the phase offset values θ 1 to θ n are set in the phase modulators PM 1 to PM n , respectively, so that the manufacturing error of the delay amount of the delay interferometer 102 can be compensated.
 第2実施形態によれば、送信装置と受信装置とを含む光通信システムが構成可能である。たとえば、WDMフィルタ101、位相変調器群110および位相変調制御部111を送信側/受信側の構成とし、WDMフィルタ104、遅延干渉計102および温度調整器103を受信側/送信側の構成とすることが可能である。この場合には、WDMフィルタ101と遅延干渉計102との間の光伝送路が送信装置と受信装置とを接続する光ファイバである。 According to the second embodiment, an optical communication system including a transmission device and a reception device can be configured. For example, the WDM filter 101, the phase modulator group 110, and the phase modulation control unit 111 are configured on the transmission side / reception side, and the WDM filter 104, the delay interferometer 102, and the temperature regulator 103 are configured on the reception side / transmission side. It is possible. In this case, the optical transmission line between the WDM filter 101 and the delay interferometer 102 is an optical fiber that connects the transmission device and the reception device.
 また、第1実施形態と同様に、本実施形態によれば、量子暗号鍵配付技術等の位相変調を利用した光干渉システムにWDM技術を適用する際、Mach-Zehnder干渉計等の1ビット遅延干渉計の遅延量の波長依存性を位相変調で補償することによって干渉計とその温度調整器を複数波長信号で共用できるので、簡易な構成でシステムを構築できる。その結果、量子暗号鍵配付システムにおいて、伝送路1本当たりの暗号鍵生成速度を向上させることができる。 Similarly to the first embodiment, according to this embodiment, when applying the WDM technique to an optical interference system using phase modulation such as a quantum cryptography key distribution technique, a 1-bit delay such as a Mach-Zehnder interferometer or the like is used. By compensating the wavelength dependence of the delay amount of the interferometer by phase modulation, the interferometer and its temperature controller can be shared by a plurality of wavelength signals, so that a system can be constructed with a simple configuration. As a result, the encryption key generation speed per transmission line can be improved in the quantum encryption key distribution system.
 3.第1実施例
 次に、図3~図5を参照して、本発明の第1実施例による光通信システムを詳細に説明する。本実施例では、多値変調レベルを調整して2連光子パルス間に施す位相差に波長に応じたオフセットを重畳させる。以下、一例として多重する波長数を4個として説明するが、無論この波長数に限定されるものではない。
3. First Embodiment Next, an optical communication system according to a first embodiment of the present invention will be described in detail with reference to FIGS. In the present embodiment, the multi-level modulation level is adjusted, and an offset corresponding to the wavelength is superimposed on the phase difference applied between the double photon pulses. Hereinafter, although the number of wavelengths to be multiplexed is described as four as an example, it is needless to say that the number of wavelengths is not limited to this.
 3.1)構成
 図3において、送信装置であるAlice11は、光伝送路12によってBob13と接続されている。
3.1) Configuration In FIG. 3, Alice 11 serving as a transmission device is connected to Bob 13 through an optical transmission line 12.
 Alice11は、4つの波長λ~λの光パルスをそれぞれ生成するレーザダイオード(LD)1101-1104と、光パルスを時間分離して2連光パルスを生成する2入力2出力Mach-Zehnder非対称干渉計(以下、Mach-Zehnder干渉計という。)1105と、Mach-Zehnder干渉計1105の遅延量の温度制御を行う温度調整器1106と、2つに時間分離した2連光パルスに所定の位相差を加える位相変調器1107-1110と、レーザダイオード1101-1104を駆動するクロック源1111と、乱数源1112-1119と、波長ごとのオフセット量を保持するオフセット記憶部1120と、乱数源1112-1119とオフセット記憶部1120のオフセット量とにより変調信号を生成するデジタル-アナログ変換器DAC(Digital-to-Analog Converter)1121-1124と、WDMフィルタ1125-1127と、を有する。DAC1121-1124の各々は、2つの乱数源からの2つの乱数とオフセット記憶部1120からのオフセット値とを入力し、位相変調器1107-1110へ波長ごとの変調信号をそれぞれ出力し、上述した位相変調φ+θ(λ)が実行される。 Alice 11 is a laser diode (LD) 1101-1104 that generates optical pulses of four wavelengths λ 1 to λ 4 respectively, and a two-input two-output Mach-Zehnder asymmetric that generates a two-unit optical pulse by time-separating the optical pulses. An interferometer (hereinafter referred to as a Mach-Zehnder interferometer) 1105, a temperature controller 1106 that controls the temperature of the delay amount of the Mach-Zehnder interferometer 1105, and a two-time optical pulse that is time-separated into two predetermined positions. A phase modulator 1107-1110 for adding a phase difference, a clock source 1111 for driving the laser diode 1101-1104, a random number source 1112-1119, an offset storage unit 1120 for holding an offset amount for each wavelength, and a random number source 1112-1119 And a digital-analog converter DAC (Digital-t) that generates a modulation signal based on the offset amount of the offset storage unit 1120 o-Analog Converter) 1121-1124 and a WDM filter 1125-1127. Each of the DACs 1121-1124 receives two random numbers from two random number sources and an offset value from the offset storage unit 1120, and outputs a modulation signal for each wavelength to the phase modulator 1107-1110, respectively. Modulation φ + θ (λ) is performed.
 WDMフィルタ1125と1126との間の光信号が多重された区間には遅延干渉計であるMach-Zehnder干渉計1105が設けられ、その遅延量の温度制御を行う温度調整器1106が装備されている。WDMフィルタ1126と1127との間の光信号が波長ごとに分波された区間には波長λ~λの光信号に対してそれぞれ位相変調を行う位相変調器1107-1110が接続されている。また、乱数源1112-1119と、オフセット記憶部1120と、DAC1121-1124とが図1における位相変調制御部107を構成する。なお、Alice11には、位相変調された2連光パルスをそれぞれ単一光子レベル以下に減衰させる光減衰器が設けられてもよい。 A Mach-Zehnder interferometer 1105, which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 1125 and 1126 are multiplexed, and a temperature regulator 1106 that controls the temperature of the delay amount is provided. . Phase modulators 1107-1110 that perform phase modulation on the optical signals of wavelengths λ 1 to λ 4 are connected in a section where the optical signals between the WDM filters 1126 and 1127 are demultiplexed for each wavelength. . Further, the random number source 1112-1119, the offset storage unit 1120, and the DAC 1121-1124 constitute the phase modulation control unit 107 in FIG. Alice 11 may be provided with an optical attenuator for attenuating each phase-modulated duplex optical pulse to a single photon level or less.
 Bob13は、Alice11より送られた2連光子パルスに再度位相差を与える位相変調器1301-1304と、2連光子パルスを合波するMach-Zehnder干渉計1305と、Mach-Zehnder干渉計1305の遅延量の温度制御を行う温度調整器1306と、波長ごとに2つの光子検出器1307および1311、1308および1312、1309および1313、1310および1314と、WDMフィルタ1315-1318とを有する。 Bob 13 includes a phase modulator 1301-1304 that gives a phase difference again to the double photon pulse sent from Alice 11, a Mach-Zehnder interferometer 1305 that combines the double photon pulses, and a delay of the Mach-Zehnder interferometer 1305. It has a temperature regulator 1306 that controls the amount of temperature, two photon detectors 1307 and 1311, 1308 and 1312, 1309 and 1313, 1310 and 1314 for each wavelength, and a WDM filter 1315-1318.
 WDMフィルタ1316と1317/1318との間の光信号が多重された区間には遅延干渉計であるMach-Zehnder干渉計1305が設けられ、その遅延量の温度制御を行う温度調整器1306が装備されている。WDMフィルタ1315と1316との間の光信号が波長ごとに分波された区間には波長λ~λの2連光子パルスに対して位相変調を行う位相変調器1301-1304が接続されている。なお、光子検出器1307-1310および1311-1314は、ここではアバランシェ・フォトダイオード(APD)がゲートモードで使用される。 A Mach-Zehnder interferometer 1305, which is a delay interferometer, is provided in a section where optical signals between the WDM filters 1316 and 1317/1318 are multiplexed, and a temperature regulator 1306 for controlling the temperature of the delay amount is provided. ing. A phase modulator 1301-1304 that performs phase modulation on the double photon pulses of wavelengths λ 1 to λ 4 is connected to a section where the optical signals between the WDM filters 1315 and 1316 are demultiplexed for each wavelength. Yes. Here, for the photon detectors 1307-1310 and 1311-1314, an avalanche photodiode (APD) is used in the gate mode here.
 3.2)動作
 Alice11では、625MHzのクロック源1111に同期した波長λ~λの光パルスがLD1101-1104により生成される。ここでは波長λ=1550.92nm、λ=1551.72nm、λ=1552.52nm、λ=1553.33nmであるとする。波長λ~λの光パルスはWDMフィルタ1125によって合波され、Mach-Zehnder干渉計1105によって時間分離された2連光パルスへと変換された後、再びWDMフィルタ1126によって分波される。そして、波長λ~λの2連光パルスの一方の光位相を位相変調器1107-1110でそれぞれ変調することで、各波長の2連光パルスの相対位相差φをランダムに生成し、再びWDMフィルタ1127で合波して伝送路12へと送り出す。ここでの位相変調量φに関しては後ほど詳細な説明を行う。
3.2) Operation In Alice 11, optical pulses of wavelengths λ 1 to λ 4 synchronized with a 625 MHz clock source 1111 are generated by the LD 1101-1104. Here, it is assumed that the wavelengths λ 1 = 1550.92 nm, λ 2 = 1551.72 nm, λ 3 = 1552.52 nm, and λ 4 = 1553.33 nm. Optical pulses having wavelengths λ 1 to λ 4 are multiplexed by a WDM filter 1125, converted into a double optical pulse time-separated by a Mach-Zehnder interferometer 1105, and then demultiplexed by a WDM filter 1126 again. Then, by modulating one optical phase of the duplex optical pulses of wavelengths λ 1 to λ 4 by the phase modulator 1107-1110, the relative phase difference φ A of the duplex optical pulses of each wavelength is randomly generated. Then, the signal is multiplexed again by the WDM filter 1127 and sent to the transmission line 12. Performing described in detail later with respect to the phase modulation amount phi A here.
 2連光パルスは伝送路12を通過してBob13に到達し、WDMフィルタ1315によって分波した後、波長λ~λの2連光パルスの一方の光位相が位相変調器1301-1304によってそれぞれ変調される。ここでの位相変調は、2連光パルスの相対位相差(φ)が0、π/2となるようにランダムに行われる。この2連光パルスをWDMフィルタ1316で合波した後、Mach-Zehnder干渉計1305を用いて合波させることで、Alice11とBob13でそれぞれ施した変調位相に従って光子検出器1307-1310または光子検出器1311-1314において検出される。 The duplex optical pulse passes through the transmission line 12 to reach Bob 13 and is demultiplexed by the WDM filter 1315, and then one optical phase of the duplex optical pulses of wavelengths λ 1 to λ 4 is converted by the phase modulator 1301-1304. Each is modulated. The phase modulation here is performed randomly so that the relative phase difference (φ B ) of the double light pulses is 0, π / 2. The duplex optical pulses are multiplexed by a WDM filter 1316 and then multiplexed by using a Mach-Zehnder interferometer 1305, so that a photon detector 1307-1310 or a photon detector is applied according to the modulation phase applied to Alice 11 and Bob 13, respectively. It is detected at 1311-1314.
 以下、具体的に説明するために、図18に示した例に従うものとする。すなわち、Mach-Zehnder干渉計1105および1305は、図18(a)で例示したように、それぞれ800.00psと804.00psの遅延量を有するものとする。図4は、図18(b)のグラフをλ~λの波長帯で拡大したグラフである。 Hereinafter, in order to explain specifically, the example shown in FIG. 18 shall be followed. That is, the Mach- Zehnder interferometers 1105 and 1305 are assumed to have delay amounts of 800.00 ps and 804.00 ps, respectively, as illustrated in FIG. FIG. 4 is a graph obtained by enlarging the graph of FIG. 18B in the wavelength band of λ 1 to λ 4 .
 図4に示すように、2つのMach-Zehnder干渉計1105および1305の遅延量の差が4psであるから、波長λに対しては1.65π、波長λに対しては1.11π、波長λに対しては0.58π、波長λに対しては0.05πの位相差が生じることになる。この位相差θ(λ)を事前に測定してオフセット量記憶部1120にオフセットとして記憶しておく。なお、オフセット用位相差θ(λ)の測定方法に関しては後述する。そして、各波長に対応するDACは、2つの乱数と当該オフセットとを入力し、2つの乱数による位相変調φにオフセット分θを加えた位相変調信号を位相変調器へ出力する。 As shown in FIG. 4, since the difference in delay between the two Mach- Zehnder interferometers 1105 and 1305 is 4 ps, 1.65π for the wavelength λ 1 , 1.11π for the wavelength λ 2 , so that the phase difference of 0.05π occurs 0.58Pai, with respect to the wavelength lambda 4 for wavelength lambda 3. This phase difference θ (λ) is measured in advance and stored as an offset in the offset amount storage unit 1120. A method for measuring the offset phase difference θ (λ) will be described later. Then, DAC corresponding to each wavelength, and inputs the two random numbers and the offset, and outputs a phase-modulated signal obtained by adding the offset theta A phase modulation φ by two random numbers to the phase modulator.
 図16に示す構成であれば、波長λ~λの4つの信号の各々に対して、2つの乱数を参照して得た位相差φとして0、π/2、π、3π/2の4値をランダムに与えていたのに対し、本実施例では波長毎にオフセット分が加えられる。すなわち、波長λに対しては、0+1.65π、π/2+1.65π、π+1.65π、3π/2+1.65πの4位相を、波長λに対しては、0+1.11π、π/2+1.11π、π+1.11π、3π/2+1.11πの4位相を、波長λに対しては、0+0.58π、π/2+0.58π、π+0.58π、3π/2+0.58πの4位相を、波長λに対しては、0+0.05π、π/2+0.05π、π+0.05π、3π/2+0.05πの4位相を、それぞれランダムに与える。 With the configuration shown in FIG. 16, the phase difference φ obtained by referring to two random numbers for each of the four signals of wavelengths λ 1 to λ 4 is 0, π / 2, π, 3π / 2. While four values are given at random, in this embodiment, an offset is added for each wavelength. That is, for the wavelength λ 1, 0 + 1.65π, π / 2 + 1.65π, π + 1.65π, the 4 phases of the 3π / 2 + 1.65π, to the wavelength λ 2, 0 + 1.11π, π / 2 + 1. 11π, π + 1.11π, the 4 phases of the 3π / 2 + 1.11π, to the wavelength λ 3, 0 + 0.58π, π / 2 + 0.58π, π + 0.58π, the 4 phases of the 3π / 2 + 0.58π, wavelength lambda For 4 , four phases of 0 + 0.05π, π / 2 + 0.05π, π + 0.05π, and 3π / 2 + 0.05π are randomly given.
 次に、図5を参照して、波長λを例にとり、本実施例における位相変調制御方法をより詳細に説明する。 Next, the phase modulation control method in the present embodiment will be described in more detail with reference to FIG. 5, taking the wavelength λ 1 as an example.
 まず、図16に示すように波長ごとに設けられたMach-Zehnder干渉計により生成された2連光パルス(前パルス、後パルス)が位相変調器に入力する構成では、図5(a)に示すように、乱数RND1=RND2=0では共に0で位相差φ=0、乱数RND1=0、RND2=1では位相差φ=π/2、乱数RND1=1、RND2=0では位相差φ=π、乱数RND1=1、RND2=1では位相差φ=3π/2の位相変調が2連光パルスに対して加えられる。ただし、以上の値は一例であり、等価な変調方法は何通りも採りうるが、いずれも4値変調である。 First, as shown in FIG. 16, in the configuration in which the double light pulses (pre-pulse and post-pulse) generated by the Mach-Zehnder interferometer provided for each wavelength are input to the phase modulator, FIG. As shown in the figure, random numbers RND1 = RND2 = 0 are both 0 and phase difference φ A = 0, random numbers RND1 = 0, RND2 = 1, phase difference φ A = π / 2, random numbers RND1 = 1, and RND2 = 0 are phase differences. When φ A = π, random numbers RND 1 = 1, and RND 2 = 1, phase modulation with a phase difference φ A = 3π / 2 is applied to the duplex light pulse. However, the above values are examples, and any number of equivalent modulation methods can be adopted, but all are quaternary modulation.
 これに対して、本実施例によれば、図5(b)に示すように、波長λに対して1.65πのオフセットが加えられる。従って、前パルスには常に0の位相変調を加えるものの、後パルスには、乱数RND1=RND2=0では位相差φ=1.65π、乱数RND1=0、RND2=1では位相差φ=π/2+1.65π、乱数RND1=1、RND2=0では位相差φ=π+1.65π、乱数RND1=1、RND2=1では位相差φ=3π/2+1.65πの位相変調が2連光パルスに対して加えられる。結果として位相変調器1107を駆動する信号は5値信号となる。 In contrast, according to this embodiment, as shown in FIG. 5 (b), the offset of 1.65π is applied to the wavelength lambda 1. Therefore, although added always phase modulation of 0 before pulse, the rear pulse, a random number RND1 = RND2 = 0 the phase difference φ A = 1.65π, random number RND1 = 0, RND2 = 1 the phase difference phi A = Phase modulation of π / 2 + 1.65π, random number RND1 = 1, RND2 = 0, phase difference φ A = π + 1.65π, random number RND1 = 1, RND2 = 1, phase difference φ A = 3π / 2 + 1.65π is a double beam Added to the pulse. As a result, the signal for driving the phase modulator 1107 is a quinary signal.
 以上の様に、2連光パルスに対してAlice11で施される位相差φ、Bob13で施される位相差φ、および干渉計1105および1305の間の位相差Δとすれば、ΔΦ=φ+φ+Δは波長によらず0、π/2、π、3π/2の4値となる。したがって、図12および図13に示す量子暗号鍵配付システムにおいて、ΔΦが0の場合、光子検出器1307-1310の対応する波長の光子検出器にて光子パルスが検出され、暗号鍵の当該ビットは“0”となる。ΔΦがπの場合、光子検出器1311-1314の対応する波長の光子検出器にて光子パルスは検出され、暗号鍵の当該ビットは“1”となる。ΔΦがπ/2若しくは3π/2の場合は1/2の確率でどちらかの光子検出器にて光子パルスは検出されるが、これらの検出ビットは既に述べたように基底照合過程で破棄される。 As described above, if the phase difference φ A applied to Alice 11 with respect to the double light pulse, the phase difference φ B applied to Bob 13, and the phase difference Δ between the interferometers 1105 and 1305, ΔΦ = φ A + φ B + Δ has four values of 0, π / 2, π, and 3π / 2 regardless of the wavelength. Therefore, in the quantum cryptography key distribution system shown in FIGS. 12 and 13, when ΔΦ is 0, a photon pulse of the corresponding wavelength of the photon detector 1307-1310 is detected, and the bit of the encryption key is It becomes “0”. When ΔΦ is π, the photon pulse of the corresponding wavelength of the photon detectors 1311-1314 is detected, and the corresponding bit of the encryption key is “1”. When ΔΦ is π / 2 or 3π / 2, photon pulses are detected by either photon detector with a probability of 1/2, but these detection bits are discarded in the base matching process as described above. The
 なお、このような位相変調制御はCPU等のプログラム制御プロセッサ上でコンピュータプログラムを実行することにより実現することができる。 It should be noted that such phase modulation control can be realized by executing a computer program on a program control processor such as a CPU.
 3.3)効果
 本実施例によれば、量子暗号鍵配付技術等の位相変調を利用した光干渉システムにWDM技術を適用する際、安価な構成でシステムを構築できる。その理由は、Mach-Zehnder干渉計等の1ビット遅延干渉計の遅延量の波長依存性を位相変調で補償することによって、干渉計とその温度調整器を複数波長信号で共用できる為である。なお、本実施例ではITUグリッド上の波長配置を例示したが、波長配置はこれに限定されるものではなく、また波長数も4波長に限られない。
3.3) Effect According to the present embodiment, when the WDM technique is applied to an optical interference system using phase modulation such as a quantum key distribution technique, a system can be constructed with an inexpensive configuration. This is because the interferometer and its temperature controller can be shared by a plurality of wavelength signals by compensating the wavelength dependence of the delay amount of a 1-bit delay interferometer such as a Mach-Zehnder interferometer by phase modulation. In this embodiment, the wavelength arrangement on the ITU grid is exemplified, but the wavelength arrangement is not limited to this, and the number of wavelengths is not limited to four wavelengths.
 また、本実施例では、送信側の位相変調器1107-1110にて干渉計1105の遅延量の波長依存性を補償する例を示したが、これを受信側で行っても良い。2つのMach-Zehnder干渉計1105および1305の遅延量の差も、波長λ~λのいずれかの波長で0若しくはπになる様に温度調整器1106および1306を調整した後、残りの波長に対するオフセットを決定しても良い。 Further, in this embodiment, an example is shown in which the wavelength dependency of the delay amount of the interferometer 1105 is compensated by the phase modulator 1107-1110 on the transmission side, but this may be performed on the reception side. After adjusting the temperature regulators 1106 and 1306 so that the difference in delay between the two Mach- Zehnder interferometers 1105 and 1305 is also 0 or π at any of the wavelengths λ 1 to λ 4 , the remaining wavelengths An offset may be determined for.
 4.第2実施例
 次に、図6~図8を参照して、本発明の第2実施例による光通信システムを詳細に説明する。本実施例においても、第1実施例と同様に、多値変調レベルを調整して2連光子パルス間に施す位相差に波長に応じたオフセットを重畳させるが、乱数による位相変調器とは別個にオフセット用の位相変調器を直列に接続した点が異なっている。以下、一例として多重する波長数を4個として説明するが、無論この波長数に限定されるものではない。
4). Second Embodiment Next, an optical communication system according to a second embodiment of the present invention will be described in detail with reference to FIGS. Also in this embodiment, as in the first embodiment, the multi-level modulation level is adjusted to superimpose an offset corresponding to the wavelength on the phase difference applied between the double photon pulses. The difference is that a phase modulator for offset is connected in series. Hereinafter, although the number of wavelengths to be multiplexed is described as four as an example, it is needless to say that the number of wavelengths is not limited to this.
 4.1)構成
 図6において、送信装置であるAlice41は、光伝送路42によってBob43と接続されている。
4.1) Configuration In FIG. 6, Alice 41 as a transmission device is connected to Bob 43 through an optical transmission line 42.
 Alice41は、4つの波長λ~λの光パルスをそれぞれ生成するレーザダイオード(LD)4101-4104と、光パルスを時間分離して2連光パルスを生成する2入力2出力Mach-Zehnder非対称干渉計(以下、Mach-Zehnder干渉計という。)4105と、Mach-Zehnder干渉計4105の遅延量の温度制御を行う温度調整器4106と、2つに時間分離した2連光パルスに乱数に従った所定の位相差を加える位相変調器4107-4110およびオフセット用の位相変調器4111-4114と、レーザダイオード4101-4104を駆動するクロック源4115と、乱数源4116-4123と、波長ごとのオフセット量を保持するオフセット記憶部4124と、乱数源4116-4123により変調信号を生成するデジタル-アナログ変換器DAC(Digital-to-Analog Converter)4125-4128と、WDMフィルタ4129-4131と、を有する。DAC4125-4128の各々は2つの乱数源から2つの乱数を入力し、位相変調器4107-4110へ波長ごとの変調信号をそれぞれ出力することで上述した位相変調φを実行し、オフセット記憶部4124に記憶されたオフセット量が位相変調器4111-4114へ波長ごとに出力されることでオフセットθ(λ)が実行される。したがって、位相変調器4107-4110および位相変調器4111-4114によって、波長ごとに位相変調φ+θ(λ)が実行される。 Alice 41 is a laser diode (LD) 4101-4104 that generates optical pulses of four wavelengths λ 1 to λ 4 respectively, and a two-input two-output Mach-Zehnder asymmetric that generates a double optical pulse by time-separating the optical pulses. Interferometer (hereinafter referred to as “Mach-Zehnder interferometer”) 4105, temperature controller 4106 that controls the temperature of the delay amount of Mach-Zehnder interferometer 4105, and two-time optical pulses that are time-separated in accordance with random numbers. The phase modulator 4107-4110 for adding a predetermined phase difference and the phase modulator 4111-4114 for offset, the clock source 4115 for driving the laser diode 4101-4104, the random number source 4116-4123, and the offset amount for each wavelength Are stored in an offset storage unit 4124 and a random number source 4116-4123 to generate a modulation signal. It has a converter DAC (Digital-to-Analog Converter) 4125-4128 and a WDM filter 4129-4131. Each of the DACs 4125-4128 inputs the two random numbers from the two random number sources, and outputs the modulation signal for each wavelength to the phase modulator 4107-4110 to execute the above-described phase modulation φ, and stores it in the offset storage unit 4124. The stored offset amount is output to the phase modulator 4111-4114 for each wavelength, and the offset θ (λ) is executed. Therefore, phase modulation φ + θ (λ) is executed for each wavelength by the phase modulator 4107-4110 and the phase modulator 4111-4114.
 WDMフィルタ4129と4130との間の光信号が多重された区間には遅延干渉計であるMach-Zehnder干渉計4105が設けられ、その遅延量の温度制御を行う温度調整器4106が装備されている。WDMフィルタ4130と4131との間の光信号が波長ごとに分波された区間には波長λ~λの光信号に対してそれぞれ位相変調を行う位相変調器4107-4110および位相変調器4111-4114が接続されている。また、乱数源4116-4123と、オフセット記憶部4124と、DAC4125-4128とが図1における位相変調制御部107を構成する。なお、Alice41には、位相変調された2連光パルスをそれぞれ単一光子レベル以下に減衰させる光減衰器が設けられてもよい。 A Mach-Zehnder interferometer 4105, which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 4129 and 4130 are multiplexed, and a temperature regulator 4106 for controlling the temperature of the delay amount is provided. . In a section where the optical signals between the WDM filters 4130 and 4131 are demultiplexed for each wavelength, a phase modulator 4107-4110 and a phase modulator 4111 that respectively perform phase modulation on the optical signals of wavelengths λ 1 to λ 4. -4114 is connected. The random number source 4116-4123, the offset storage unit 4124, and the DAC 4125-4128 constitute the phase modulation control unit 107 in FIG. The Alice 41 may be provided with an optical attenuator that attenuates each phase-modulated duplex optical pulse to a single photon level or less.
 Bob43は、Alice41より送られた2連光子パルスに再度位相差を与える位相変調器4301-4304と、2連光子パルスを合波するMach-Zehnder干渉計4305と、Mach-Zehnder干渉計4305の遅延量の温度制御を行う温度調整器4306と、波長ごとに2つの光子検出器4307-4310および4311-4314と、WDMフィルタ4315-4318と、を有する。 Bob 43 includes a phase modulator 4301-4304 that gives a phase difference again to the double photon pulse sent from Alice 41, a Mach-Zehnder interferometer 4305 that multiplexes the double photon pulses, and a delay of the Mach-Zehnder interferometer 4305. It has a temperature regulator 4306 for temperature control of the quantity, two photon detectors 4307-4310 and 4311-4314 for each wavelength, and a WDM filter 4315-4318.
 WDMフィルタ4316と4317/4318との間の光信号が多重された区間には遅延干渉計であるMach-Zehnder干渉計4305が設けられ、その遅延量の温度制御を行う温度調整器4306が装備されている。WDMフィルタ4315と4316との間の光信号が波長ごとに分波された区間には波長λ~λの2連光子パルスに対して位相変調を行う位相変調器4301-4304が接続されている。なお、光子検出器4307-4310および4311-4314は、ここではアバランシェ・フォトダイオード(APD)がゲートモードで使用される。 A Mach-Zehnder interferometer 4305, which is a delay interferometer, is provided in a section in which optical signals between the WDM filters 4316 and 4317/4318 are multiplexed, and a temperature regulator 4306 for controlling the temperature of the delay amount is provided. ing. A phase modulator 4301-4304 that performs phase modulation on the double photon pulses of wavelengths λ 1 to λ 4 is connected to a section where the optical signal between the WDM filters 4315 and 4316 is demultiplexed for each wavelength. Yes. Note that, for the photon detectors 4307-4310 and 4311-4314, an avalanche photodiode (APD) is used in the gate mode here.
 4.2)動作
 位相変調器4107-4110および4111-4114とDAC4125-4128以外のブロックの動作は、第1実施例と同等であるから本実施例では説明を省略する。
4.2) Operation Since the operations of the blocks other than the phase modulators 4107-4110 and 4111-4114 and the DAC 4125-4128 are the same as those in the first embodiment, the description thereof is omitted in this embodiment.
 Mach-Zehnder干渉計4105および4305は、第1実施例と同じく、図18(a)で例示したように、それぞれ800.00psと804.00psの遅延量を有するものとする。 As in the first embodiment, the Mach- Zehnder interferometers 4105 and 4305 have delay amounts of 800.00 ps and 804.00 ps, respectively, as illustrated in FIG.
 2つのMach-Zehnder干渉計4105および4305の遅延量の差が4psであるから、波長λに対しては1.65π、波長λに対しては1.11π、波長λに対しては0.58π、波長λに対しては0.05πの位相差が生じることになる。この位相差θ(λ)を事前に測定してオフセット量記憶部4124にオフセットとして記憶しておく。なお、オフセット用位相差θ(λ)の測定方法に関しては後述する。そして、各波長に対応するDACは、2つの乱数を入力して位相変調φを生じさせる位相変調信号を位相変調器へ出力する。波長λ~λの4つの信号の各々に対して、2つの乱数を参照して得た位相差φとして0、π/2、π、3π/2の4値がランダムに与えられる。 Since the difference in the delay amounts of the two Mach- Zehnder interferometer 4105 and 4305 are 4ps, 1.65π for wavelength λ 1, 1.11π for wavelength lambda 2, to the wavelength lambda 3 0.58Pai, so that the phase difference of 0.05π occurs with respect to the wavelength lambda 4. This phase difference θ (λ) is measured in advance and stored in the offset amount storage unit 4124 as an offset. A method for measuring the offset phase difference θ (λ) will be described later. The DAC corresponding to each wavelength inputs two random numbers and outputs a phase modulation signal that causes phase modulation φ to the phase modulator. For each of the four signals of wavelengths λ 1 to λ 4 , four values of 0, π / 2, π, and 3π / 2 are randomly given as the phase difference φ obtained by referring to two random numbers.
 Mach-Zehnder干渉計4105により生成された2連光パルスは、位相変調器4107-4110により位相変調された後、位相変調器4111-4114によりオフセット用位相変調が加えられる。具体的には、波長λに対しては1.65×Vπ、波長λに対しては1.11×Vπ、波長λに対しては0.58×Vπ、波長λに対しては0.05×Vπの振幅で位相変調器4111-4114の各々が駆動される。ここでVπはπの位相変調を加える為に位相変調器に印加される電圧を指す。 The duplex optical pulse generated by the Mach-Zehnder interferometer 4105 is phase-modulated by the phase modulator 4107-4110, and then subjected to offset phase modulation by the phase modulator 4111-4114. Specifically, 1.65 × V [pi for wavelength λ 1, 1.11 × Vπ for wavelength λ 2, 0.58 × Vπ for wavelength lambda 3, to the wavelength lambda 4 Each of the phase modulators 4111 to 4114 is driven with an amplitude of 0.05 × Vπ. Here, Vπ represents a voltage applied to the phase modulator to apply phase modulation of π.
 次に、図7を参照して、波長λを例にとり、本実施例における位相変調制御方法をより詳細に説明する。 Next, the phase modulation control method in the present embodiment will be described in more detail with reference to FIG. 7, taking the wavelength λ 1 as an example.
 まず、Mach-Zehnder干渉計4105により生成された2連光パルス(前パルス、後パルス)がWDMフィルタ4130により分波され、それぞれ位相変調器4107-4110に入力する。そして、図7(a)に示すように、乱数RND1=RND2=0では共に0で位相差φ=0、乱数RND1=0、RND2=1では位相差φ=π/2、乱数RND1=1、RND2=0では位相差φ=π、乱数RND1=1、RND2=1では位相差φ=3π/2の位相変調が2連光パルスに対して加えられる。ただし、以上の値は一例であり、等価な変調方法は何通りも採りうるが、いずれも4値変調である。 First, duplex optical pulses (pre-pulse and post-pulse) generated by the Mach-Zehnder interferometer 4105 are demultiplexed by the WDM filter 4130 and input to the phase modulators 4107 to 4110, respectively. As shown in FIG. 7A, when the random number RND1 = RND2 = 0, both are 0 and the phase difference φ A = 0, the random number RND1 = 0, and when the random number RND2 = 1, the phase difference φ A = π / 2, and the random number RND1 = 1. When RND2 = 0, phase modulation of phase difference φ A = π, random number RND1 = 1, RND2 = 1, phase difference φ A = 3π / 2 is applied to the duplex light pulse. However, the above values are examples, and any number of equivalent modulation methods can be adopted, but all are quaternary modulation.
 このような位相変調された波長λの2連光パルスは、図7(b)に示すように、さらに1.65πのオフセットが加えられる。すなわち乱数RND1、RND2の値によらず、オフセットθ=1.65πの位相変調が2連光パルスに対して加えられる。したがって、結果としては、Mach-Zehnder干渉計4105により生成された2連光パルスに対して位相変調φ+θ(λ)が実行される。 Such phase-modulated duplicate optical pulses of a wavelength lambda 1, as shown in FIG. 7 (b), further offset 1.65π is added. That is, regardless of the values of the random numbers RND1 and RND2, the phase modulation with the offset θ 1 = 1.65π is added to the double light pulse. Therefore, as a result, phase modulation φ + θ (λ) is performed on the double light pulse generated by the Mach-Zehnder interferometer 4105.
 なお、このような位相変調制御はCPU等のプログラム制御プロセッサ上でコンピュータプログラムを実行することにより実現することができる。 It should be noted that such phase modulation control can be realized by executing a computer program on a program control processor such as a CPU.
 4.3)効果
 本実施例によれば、第1実施例の効果に加えて次のような効果が得られる。すなわち、位相変調器の駆動信号を生成する手段が簡易となる。その理由は、第1実施例では5値の位相変調を施す必要があったが、本実施例では位相変調器を4値変調を行う変調器と位相オフセットを与える変調器とに分割することによって、多値数を抑制することができるからである。この4値変調を行う位相変調器をさらに2つに分割して駆動信号を全てバイナリ信号とすることも可能であるが、もちろん変調器の数が増えるに従ってシステムのコストは高くなる。
4.3) Effects According to the present embodiment, the following effects can be obtained in addition to the effects of the first embodiment. That is, the means for generating the phase modulator drive signal is simplified. The reason is that in the first embodiment, it was necessary to perform five-level phase modulation, but in this embodiment, the phase modulator is divided into a modulator that performs four-level modulation and a modulator that provides a phase offset. This is because the multi-value number can be suppressed. It is possible to further divide the phase modulator that performs the quaternary modulation into two to make all the drive signals binary signals. Of course, the system cost increases as the number of modulators increases.
 なお、本実施例では、送信側の位相変調部4111-4114にて干渉計4105の遅延量の波長依存性を補償する例を示したが、これを受信側で行っても良い。2つのMach-Zehnder干渉計4105および4305の遅延量の差も、波長λ~λのいずれかの波長で0若しくはπになる様に温度調整器4106および4306を調整した後、残りの波長に対するオフセットを決定しても良い。 In the present embodiment, an example is shown in which the wavelength dependency of the delay amount of the interferometer 4105 is compensated by the phase modulator 4111-4114 on the transmission side, but this may be performed on the reception side. After adjusting the temperature regulators 4106 and 4306 so that the difference in delay amount between the two Mach- Zehnder interferometers 4105 and 4305 is also 0 or π at any of the wavelengths λ 1 to λ 4 , the remaining wavelengths An offset may be determined for.
 5.位相オフセット量の決定手順
 次に、上述した第1実施例におけるオフセット記憶部1120および第2実施例におけるオフセット記憶部4124に記憶される波長毎の位相オフセット量θ~θの決定方法を図6に示す第2実施例の構成を例にとって説明する。ただし、位相変調器は駆動信号の電圧値により位相変調の深さが決定されるので、実際には、それぞれの位相オフセット量に対応する位相変調器の駆動信号の振幅を決定する。
5). Procedure for Determining Phase Offset Amount Next, a method for determining the phase offset amounts θ 1 to θ 4 for each wavelength stored in the offset storage unit 1120 in the first embodiment and the offset storage unit 4124 in the second embodiment is illustrated. The configuration of the second embodiment shown in FIG. However, since the phase modulation depth of the phase modulator is determined by the voltage value of the drive signal, the amplitude of the drive signal of the phase modulator corresponding to each phase offset amount is actually determined.
 図8において、まずシステム導入時に、全ての位相変調器4107-4114、4301-4304の駆動信号振幅を0とし、4つの変数C-Cの初期値0にする(ステップS10)。続いて、波長λ~λの各々に対応する位相変調器の駆動信号振幅を決定するが、基本的手順はどの波長についても同一であるから、ここでは波長λの場合の処理ステップS11-S16について説明する。 In FIG. 8, first, when the system is introduced, the drive signal amplitudes of all the phase modulators 4107-4114, 4301-4304 are set to 0, and the initial values of the four variables C 1 -C 4 are set to 0 (step S10). Subsequently, the drive signal amplitude of the phase modulator corresponding to each of the wavelengths λ 1 to λ 4 is determined. Since the basic procedure is the same for all wavelengths, the processing step S11 for the wavelength λ 1 is used here. -S16 will be described.
 まず、波長λの信号に対しては、位相変調器4111の駆動信号振幅を所定ステップΔVだけ増加させ(ステップS11)、光子検出器4307および4311での単位時間当たりの光子カウント数を測定する(ステップS12)。続いて、光子検出器4307および4311でのそれぞれのカウント値C10、C11を用いてカウント比C’を計算し(ステップS13)、算出したC’と現在の変数Cとを比較する(ステップS14)。 First, with respect to the wavelength lambda 1 of the signal, the drive signal amplitude was a is increased by a predetermined step [Delta] V (step S11) of the phase modulator 4111, measures the number of photon counts per unit time of the photon detectors 4307 and 4311 (Step S12). Subsequently, the count ratio C 1 ′ is calculated using the respective count values C 10 and C 11 in the photon detectors 4307 and 4311 (step S13), and the calculated C 1 ′ is compared with the current variable C 1. (Step S14).
 算出したC’が現在の変数C以上であれば(ステップS14:No)、算出したC’の値を新たに変数Cとして(ステップS15)、ステップS11へ戻る。こうしてステップS11~S15を繰り返すことで、前回算出したC’以上のC’が得られる駆動信号振幅がΔVステップで更新されていく。 If the calculated C 1 ′ is equal to or greater than the current variable C 1 (step S14: No), the calculated C 1 ′ is newly set as the variable C 1 (step S15), and the process returns to step S11. By repeating steps S11 to S15 in this way, the drive signal amplitude for obtaining C 1 ′ greater than or equal to the previously calculated C 1 ′ is updated in ΔV steps.
 算出したC’が現在の変数Cより小さくなると(ステップS14:Yes)、ピー
クを過ぎたことになるので、位相変調器4111の駆動信号振幅をΔVだけ減少させて固
定し、波長λの信号の位相オフセット量を決定する(ステップS16)。
When the calculated C 1 ′ becomes smaller than the current variable C 1 (step S14: Yes), the peak has passed, so the drive signal amplitude of the phase modulator 4111 is reduced by ΔV and fixed, and the wavelength λ 1 Is determined (step S16).
 このように、位相変調器4111の駆動信号振幅をスキャンし、対応する2つの光子検出器4307および4311での光子検出カウント値の比が最大となるように駆動信号振幅を設定する。この際、ΔVを出来る限り小さくした方が精度良く位相オフセット量を決定できる。他の波長λ~λの場合も、それぞれステップS21~S26、ステップS31~S36およびステップS41~S46において同様の手順で、それぞれの位相オフセット量を決定することができる。 In this way, the drive signal amplitude of the phase modulator 4111 is scanned, and the drive signal amplitude is set so that the ratio of the photon detection count values of the corresponding two photon detectors 4307 and 4311 is maximized. At this time, it is possible to determine the phase offset amount with higher accuracy by reducing ΔV as much as possible. In the case of the other wavelengths λ 2 to λ 4 , the respective phase offset amounts can be determined by the same procedure in steps S21 to S26, steps S31 to S36, and steps S41 to S46.
 6.第3実施例
 本発明は、非特許文献5に記載されているような「Z基底」を使用する量子暗号鍵配付方法(図14参照)にも適用できる。
6). Third Embodiment The present invention can also be applied to a quantum key distribution method (see FIG. 14) using a “Z base” as described in Non-Patent Document 5.
 図9に示すように、本発明の第3実施例による光通信システムにおける送信装置(Alice)において、4入力2出力の2×4干渉計5122を利用し、4つの入力ポート各々に多重光源部が接続されている。第1の多重光源部は波長λ~λにそれぞれ対応するLD5101-5104およびWDMフィルタ5117からなり、第2の多重光源部は波長λ~λにそれぞれ対応するLD5105-5108およびWDMフィルタ5119、第3の多重光源部は波長λ~λにそれぞれ対応するLD5109-5112およびWDMフィルタ5120、第4の多重光源部は波長λ~λにそれぞれ対応するLD5113-5116およびWDMフィルタ5118からなる。 As shown in FIG. 9, in the transmission apparatus (Alice) in the optical communication system according to the third embodiment of the present invention, a four-input two-output 2 × 4 interferometer 5122 is used and multiple light source units are provided for each of four input ports. Is connected. The first multiple light source unit includes LDs 5101 to 5104 and WDM filters 5117 corresponding to the wavelengths λ 1 to λ 4 respectively, and the second multiple light source unit includes LDs 5105 to 5108 and WDM filters corresponding to the wavelengths λ 1 to λ 4 respectively. 5119, third multiplexing light source unit LD5109-5112 and the WDM filter 5120 correspond to the wavelengths λ 1 ~ λ 4, LD5113-5116 and WDM filter fourth multiplexing light source unit correspond respectively to the wavelength lambda 1 ~ lambda 4 5118.
 さらに、WDMフィルタ5123と5128との間の分波された区間には、位相変調器5124-5127がそれぞれの波長に対応して挿入されている。位相変調器5124-5127は、オフセット記憶部5129からのオフセット量に従って、上述したように2×4干渉計5122の遅延量の波長依存性を位相変調で補償することができる。 Furthermore, phase modulators 5124-5127 are inserted in the demultiplexed sections between the WDM filters 5123 and 5128 corresponding to the respective wavelengths. The phase modulator 5124-5127 can compensate the wavelength dependence of the delay amount of the 2 × 4 interferometer 5122 by phase modulation as described above according to the offset amount from the offset storage unit 5129.
 2×4干渉計5122に第1の多重光源部から光パルスを入力した場合、光パルスは干渉計の長経路のみを通る為、時間的に遅れた1パルスのみが対応する波長の位相変調器を通って伝送路に送出される。また、第4の多重光源部から光パルスを入力した場合には、光パルスは干渉計の短経路のみを通る為に時間的に進んだ1パルスのみが伝送路に送出される。第2多重光源部あるいは第3多重光源部から光パルスを入力した場合は、2×4干渉計の両経路の位相差によって、X基底あるいはY基底を生成できる。 When an optical pulse is input to the 2 × 4 interferometer 5122 from the first multiple light source unit, the optical pulse passes through only the long path of the interferometer, and therefore, a phase modulator having a wavelength corresponding to only one pulse delayed in time. And sent to the transmission line. When an optical pulse is input from the fourth multiple light source unit, the optical pulse passes through only the short path of the interferometer, so that only one pulse advanced in time is sent to the transmission path. When an optical pulse is input from the second multiple light source unit or the third multiple light source unit, an X base or a Y base can be generated based on the phase difference between both paths of the 2 × 4 interferometer.
 このように2×4干渉計5122によって各波長のパルスを時間分離した後、位相変調器5124-5127は、オフセット記憶部5129からのオフセット量に従って波長に応じたオフセットを加える。この際、波長単位の位相変調を加えてもZ基底の信号には影響が無い為、位相変調器5124-5127はX基底もしくはY基底の信号に対してのみ作用する。 Thus, after the pulses of each wavelength are time-separated by the 2 × 4 interferometer 5122, the phase modulator 5124-5127 adds an offset corresponding to the wavelength according to the offset amount from the offset storage unit 5129. At this time, even if phase modulation in units of wavelengths is applied, there is no effect on the Z-base signal, so that the phase modulator 5124-5127 acts only on the X-base or Y-base signal.
 7.第4実施例
 本発明は、非特許文献6に開示されたDPS方式を利用した量子暗号鍵配付システム(図15参照)にも適用できる。
7). Fourth Embodiment The present invention can also be applied to a quantum key distribution system (see FIG. 15) using the DPS method disclosed in Non-Patent Document 6.
 図10に示すように、本発明の第4実施例による光通信システムの送信側Aliceは、4つの波長λ~λの光パルスをそれぞれ生成するレーザダイオード(LD)6101-6104と、波長λ~λの光パルスに対してそれぞれ位相変調する位相変調器6105-6108と、レーザダイオード6101-6104を駆動するクロック源6109と、乱数源6111-6114と、波長ごとのオフセット量を保持するオフセット記憶部6115と、乱数源6111-6114とオフセット記憶部6115のオフセット量とにより変調信号を生成するDAC6116-6119と、WDMフィルタ6120と、を有する。DAC6116-6119の各々は、対応する乱数源からの乱数とオフセット記憶部6115からのオフセット値とを入力し、位相変調器6105-6108へ波長ごとの変調信号をそれぞれ出力する。こうして位相変調された波長λ~λの光パルスがWDMフィルタ6120で合波され、光伝送路6121を通して受信側であるBobへ到達する。 As shown in FIG. 10, the transmission-side Alice of the optical communication system according to the fourth embodiment of the present invention includes a laser diode (LD) 6101-6104 that generates optical pulses of four wavelengths λ 1 to λ 4 , and a wavelength A phase modulator 6105-6108 that modulates the phase of each of the optical pulses of λ 1 to λ 4 , a clock source 6109 that drives the laser diode 6101-6104, a random number source 6111-6114, and an offset amount for each wavelength An offset storage unit 6115, a random number source 6111-6114, a DAC 6116-6119 that generates a modulation signal based on the offset amount of the offset storage unit 6115, and a WDM filter 6120. Each of DACs 6116-6119 receives a random number from a corresponding random number source and an offset value from offset storage unit 6115, and outputs a modulated signal for each wavelength to phase modulator 6105-6108. The optical pulses having the wavelengths λ 1 to λ 4 thus phase-modulated are combined by the WDM filter 6120 and reach the receiving side Bob through the optical transmission path 6121.
 受信側Bobは、光パルスを時間分離して2連光パルスを生成するMach-Zehnder干渉計6122と、Mach-Zehnder干渉計6122の遅延量の温度制御を行う温度調整器6123と、波長ごとにそれぞれ2つの光子検出器6125-6128および6129-6132と、WDMフィルタ6124および6133と、を有する。 The receiving-side Bob has a Mach-Zehnder interferometer 6122 that generates time-separated optical pulses by separating the optical pulses, a temperature adjuster 6123 that controls the temperature of the delay amount of the Mach-Zehnder interferometer 6122, and a wavelength for each wavelength. Each has two photon detectors 6125-6128 and 6129-6132 and WDM filters 6124 and 6133.
 本実施例では、送信側のWDMフィルタ6120と受信側のWDMフィルタ6124/6133との間の光信号が多重された区間に、Mach-Zehnder干渉計6122とその遅延量の温度制御を行う温度調整器6123とが装備されている。また、レーザダイオード(LD)6101-6104とWDMフィルタ6120のローカルポートとの間の光信号が波長ごとに分波された区間には波長λ~λの光信号に対してそれぞれ位相変調を行う位相変調器6105-6108が接続されている。 In this embodiment, the temperature adjustment is performed to control the temperature of the Mach-Zehnder interferometer 6122 and its delay amount in the section in which the optical signal between the WDM filter 6120 on the transmission side and the WDM filter 6124/6133 on the reception side is multiplexed. The instrument 6123 is equipped. Further, in the section where the optical signal between the laser diode (LD) 6101-6104 and the local port of the WDM filter 6120 is demultiplexed for each wavelength, phase modulation is performed on the optical signals of wavelengths λ 1 to λ 4 respectively. A phase modulator 6105-6108 to perform is connected.
 このようなDPS型量子暗号鍵配付システムでは、送信側に干渉計がないが、各波長に対して、隣接ビット間で異なる位相オフセットを施すことにより、受信側に設けられたMach-Zehnder干渉計6122の自由スペクトル間隔(FSR:Free Spectral Range)に依存せずに、使用する波長を決定することが出来る。 In such a DPS quantum key distribution system, there is no interferometer on the transmission side, but a Mach-Zehnder interferometer provided on the reception side by applying different phase offsets between adjacent bits for each wavelength. The wavelength to be used can be determined without depending on the free spectral interval (FSR) of 6122.
 本発明は、量子暗号鍵配付技術に代表される位相変調を利用した光干渉通信システムに利用可能である。量子暗号鍵配付方法のプロトコルは問わない。 The present invention can be used in an optical interference communication system using phase modulation represented by quantum key distribution technology. The protocol of the quantum cryptography key distribution method does not matter.
101 WDMフィルタ
102 干渉計
103 温度調整器
104 WDMフィルタ
105、110 位相変調器群
106 WDMフィルタ
107、111 位相変調制御部
11、41 送信装置(Alice)
12、42 光伝送路
13、43 受信装置(Bob)
1101-1104、4101-4104、5101-5116、6101-6104 レーザダイオード
1105、1305、4105、4305、6122 2入力2出力Mach-Zehnder干渉計
1107-1110、1301-1304、4107-4114、4301-4304、5124-5127、6105-6108 位相変調器
1111、4115、6109 クロック源
1307-1314、4307-4314、6125-6132 光子検出器
5122  4入力2出力非対称Mach-Zehnder干渉計
1106、1306、4106、4306、5121、6123 温度調整器
1120、4124、5129、6115 オフセット記憶部
1121-1124、4125-4128、6116-6119 デジタル-アナログ変換器(DAC)
101 WDM filter
102 Interferometer
103 Temperature controller
104 WDM filter
105, 110 Phase modulator group
106 WDM filter
107, 111 Phase modulation controller
11, 41 Transmitter (Alice)
12, 42 Optical transmission line
13, 43 Receiver (Bob)
1101-1104, 4101-4104, 5101-5116, 6101-6104 Laser diode
1105, 1305, 4105, 4305, 6122 2-input 2-output Mach-Zehnder interferometer
1107-1110, 1301-1304, 4107-4114, 4301-4304, 5124-5127, 6105-6108 Phase modulator
1111, 4115, 6109 Clock source
1307-1314, 4307-4314, 6125-6132 Photon detector
5122 4-input 2-output asymmetric Mach-Zehnder interferometer
1106, 1306, 4106, 4306, 5121, 6123 Temperature controller
1120, 4124, 5129, 6115 Offset storage
1121-1124, 4125-4128, 6116-6119 Digital-to-analog converter (DAC)

Claims (20)

  1.  光信号の位相情報を利用した光干渉システムを含む光通信システムにおける光通信装置であって、
     複数波長の光信号を合波して1つの合波光信号を出力する光合波手段と、
     前記合波光信号を時間的に分離する光干渉手段と、
     前記光干渉手段からの出力光を分波して前記複数波長の分波光信号を出力する光分波手段と、
     前記光合波手段の入力側の前記複数波長の光信号あるいは前記光分波手段の出力側の前記複数波長の分波光信号のいずれか一方を波長ごとにそれぞれ位相変調する複数の位相変調手段と、
     前記複数の位相変調手段による変調量を波長に応じて個別に制御する位相変調制御手段と、
     を有することを特徴とする光通信装置。
    An optical communication apparatus in an optical communication system including an optical interference system using phase information of an optical signal,
    Optical multiplexing means for combining optical signals of a plurality of wavelengths and outputting one combined optical signal;
    Optical interference means for temporally separating the combined optical signal;
    Optical demultiplexing means for demultiplexing output light from the optical interference means and outputting the demultiplexed optical signals of the plurality of wavelengths;
    A plurality of phase modulation means for phase-modulating each of the optical signals of the plurality of wavelengths on the input side of the optical multiplexing means or the demultiplexed optical signals of the plurality of wavelengths on the output side of the optical demultiplexing means;
    Phase modulation control means for individually controlling the modulation amounts by the plurality of phase modulation means according to the wavelength;
    An optical communication device comprising:
  2.  前記位相変調制御手段は、前記光干渉手段の遅延量の波長依存性を補償するように前記変調量を制御することを特徴とする請求項1に記載の光通信装置。 2. The optical communication apparatus according to claim 1, wherein the phase modulation control unit controls the modulation amount so as to compensate a wavelength dependency of a delay amount of the optical interference unit.
  3.  前記位相変調制御手段は、乱数に基づいて生成された変調信号に前記変調量を加えて前記複数の位相変調手段へそれぞれ出力することを特徴とする請求項1または2に記載の光通信装置。 3. The optical communication apparatus according to claim 1, wherein the phase modulation control unit adds the modulation amount to a modulation signal generated based on a random number and outputs the modulated signal to the plurality of phase modulation units.
  4.  前記複数の位相変調手段の各々は第1位相変調器と第2位相変調器とを有し、
     前記位相変調制御手段は、乱数に基づいて生成された変調信号を前記第1位相変調器へ出力し、前記変調量を前記第2位相変調器へ出力することを特徴とする請求項1または2に記載の光通信装置。
    Each of the plurality of phase modulation means includes a first phase modulator and a second phase modulator,
    3. The phase modulation control unit outputs a modulation signal generated based on a random number to the first phase modulator and outputs the modulation amount to the second phase modulator. An optical communication device according to 1.
  5.  前記光通信システムにおいて伝送される光信号は、パルスあたりの光子数が1個以下の光強度であることを特徴とする請求項1-4のいずれか1項に記載の光通信装置。 5. The optical communication apparatus according to claim 1, wherein the optical signal transmitted in the optical communication system has a light intensity of 1 or less photons per pulse.
  6.  光信号の位相情報を利用した光干渉システムを含む光通信システムにおける光通信方法であって、
     光合波手段が複数波長の光信号を合波して1つの合波光信号を生成し、
     光干渉計が前記合波光信号を時間的に分離し、
     光分波手段が前記光干渉計からの出力光を分波して前記複数波長の分波光信号を生成し、
     前記複数波長の分波光信号または前記複数波長の光信号を、波長ごとに、波長に応じて個別に制御された変調量でそれぞれ位相変調する、
     ことを特徴とする光通信方法。
    An optical communication method in an optical communication system including an optical interference system using phase information of an optical signal,
    The optical multiplexing means combines optical signals of a plurality of wavelengths to generate one combined optical signal,
    An optical interferometer temporally separates the combined optical signal;
    An optical demultiplexing unit demultiplexes the output light from the optical interferometer to generate a demultiplexed optical signal of the plurality of wavelengths,
    Phase-modulating the demultiplexed optical signal of the plurality of wavelengths or the optical signal of the plurality of wavelengths for each wavelength with a modulation amount controlled individually according to the wavelength,
    An optical communication method characterized by the above.
  7.  前記光干渉計の遅延量の波長依存性を前記変調量で補償することを特徴とする請求項6に記載の光通信方法。 The optical communication method according to claim 6, wherein the wavelength dependence of the delay amount of the optical interferometer is compensated by the modulation amount.
  8.  乱数に基づいて生成された変調信号に前記変調量を加えて位相変調することを特徴とする請求項6または7に記載の光通信方法。 The optical communication method according to claim 6, wherein the modulation amount is added to the modulation signal generated based on the random number to perform phase modulation.
  9.  乱数に基づいて生成された変調信号により前記複数波長の分波光信号または前記複数波長の光信号を波長ごとに位相変調し、さらに前記変調量により位相変調することを特徴とする請求項6または7に記載の光通信方法。 8. The phase-modulated optical signal of the plurality of wavelengths or the optical signal of the plurality of wavelengths is modulated for each wavelength by a modulation signal generated based on a random number, and further phase-modulated by the modulation amount. An optical communication method according to claim 1.
  10.  前記光通信システムの送信側通信装置および受信側通信装置がそれぞれ送信側光干渉計および受信側光干渉計を有し、前記送信側光干渉計と前記受信側光干渉計との遅延量の差を前記変調量で補償することを特徴とする請求項6または7に記載の光通信方法。 The transmission-side communication device and the reception-side communication device of the optical communication system each have a transmission-side optical interferometer and a reception-side optical interferometer, and a difference in delay amount between the transmission-side optical interferometer and the reception-side optical interferometer The optical communication method according to claim 6, wherein: is compensated by the modulation amount.
  11.  前記光通信システムが送信側通信装置および受信側通信装置を有し、前記光干渉計が前記受信側通信装置に設けられ、前記送信側通信装置において前記光干渉計の遅延量の波長依存性を前記変調量で補償することを特徴とする請求項6または7に記載の光通信方法。 The optical communication system includes a transmission-side communication device and a reception-side communication device, the optical interferometer is provided in the reception-side communication device, and the wavelength dependency of the delay amount of the optical interferometer is set in the transmission-side communication device. 8. The optical communication method according to claim 6, wherein compensation is performed by the modulation amount.
  12.  前記光通信システムにおいて伝送される光信号は、パルスあたりの光子数が1個以下の光強度であることを特徴とする請求項6-11のいずれか1項に記載の光通信方法。 The optical communication method according to any one of claims 6 to 11, wherein the optical signal transmitted in the optical communication system has a light intensity of 1 or less photons per pulse.
  13.  送信側通信装置と受信側通信装置とを有し、光信号の位相情報を利用した光干渉システムを含む光通信システムにおいて、
     前記送信側通信装置は、複数波長の光信号を波長ごとにそれぞれ位相変調する複数の位相変調手段と、位相変調された複数波長の光信号を合波して1つの合波光信号を前記受信側通信装置へ送信する光合波手段と、を少なくとも有し、
     前記受信側通信装置は、受信光信号を時間的に分離する受信側光干渉手段と、前記受信側光干渉手段からの出力光を分波して前記複数波長の分波光信号を出力する受信側光分波手段と、を少なくとも有し、
     前記送信側通信装置は、前記複数の位相変調手段による変調量を波長に応じて個別に制御する位相変調制御手段を更に有することを特徴とする光通信システム。
    In an optical communication system including an optical interference system using a phase information of an optical signal, having a transmission side communication device and a reception side communication device,
    The transmission-side communication device includes: a plurality of phase modulation units that phase-modulate optical signals of a plurality of wavelengths for each wavelength; and a plurality of phase-modulated optical signals that are combined to generate one combined optical signal. Optical multiplexing means for transmitting to the communication device,
    The receiving-side communication device includes: a receiving-side optical interference unit that temporally separates a received optical signal; and a receiving side that demultiplexes output light from the receiving-side optical interference unit and outputs the demultiplexed optical signals of the plurality of wavelengths. Optical demultiplexing means,
    The optical communication system, wherein the transmission-side communication device further includes phase modulation control means for individually controlling modulation amounts by the plurality of phase modulation means according to wavelengths.
  14.  前記受信側光干渉手段の遅延量の波長依存性を前記変調量で補償することを特徴とする請求項13に記載の光通信システム。 14. The optical communication system according to claim 13, wherein the wavelength dependence of the delay amount of the reception side optical interference means is compensated by the modulation amount.
  15.  前記送信側通信装置は、送信合波光信号を時間的に分離する送信側光干渉手段と、前記送信側光干渉手段の出力を分波して前記複数波長の光信号を出力する送信側光分波手段と、を更に有し、
     前記位相変調制御手段は、前記送信側光干渉手段と前記受信側光干渉計との遅延量の差を前記変調量で補償することを特徴とする請求項13または14に記載の光通信システム。
    The transmission-side communication apparatus includes: a transmission-side optical interference unit that temporally separates a transmission-multiplexed optical signal; and a transmission-side optical component that demultiplexes the output of the transmission-side optical interference unit and outputs the optical signals of the plurality of wavelengths. Wave means,
    15. The optical communication system according to claim 13, wherein the phase modulation control unit compensates for a difference in delay amount between the transmission side optical interference unit and the reception side optical interferometer with the modulation amount.
  16.  前記送信側通信装置から前記受信側通信装置へ伝送される前記複数波長の光信号の各々は、パルスあたりの光子数が1個以下の光強度であることを特徴とする請求項13-15のいずれか1項に記載の光通信システム。 16. The optical signal having a plurality of wavelengths transmitted from the transmitting communication device to the receiving communication device has a light intensity of 1 or less photons per pulse. The optical communication system according to any one of the above.
  17.  光信号の位相情報を利用した光干渉システムを含む光通信システムの光通信装置におけるプログラム制御プロセッサを位相変調制御装置として機能させるプログラムであって、
     光合波手段が複数波長の光信号を合波して1つの合波光信号を生成し、
     光干渉計が前記合波光信号を時間的に分離し、
     光分波手段が前記光干渉計からの出力光を分波して前記複数波長の分波光信号を生成し、
     前記複数波長の分波光信号または前記複数波長の光信号を波長ごとにそれぞれ位相変調する複数の位相変調手段の変調量を波長に応じて個別に制御する、
     ように前記プログラム制御プロセッサを機能させることを特徴とするプログラム。
    A program for causing a program control processor in an optical communication apparatus of an optical communication system including an optical interference system using phase information of an optical signal to function as a phase modulation control apparatus,
    The optical multiplexing means combines optical signals of a plurality of wavelengths to generate one combined optical signal,
    An optical interferometer temporally separates the combined optical signal;
    An optical demultiplexing unit demultiplexes the output light from the optical interferometer to generate a demultiplexed optical signal of the plurality of wavelengths,
    Individually controlling the amount of modulation of a plurality of phase modulation means for phase-modulating the wavelength-demultiplexed optical signal or the wavelength-dependent optical signal for each wavelength, according to the wavelength;
    A program for causing the program control processor to function as described above.
  18.  前記光干渉計の遅延量の波長依存性を前記変調量で補償することを特徴とする請求項17に記載のプログラム。 The program according to claim 17, wherein the wavelength dependence of the delay amount of the optical interferometer is compensated by the modulation amount.
  19.  前記光通信システムの送信側通信装置および受信側通信装置がそれぞれ送信側光干渉計および受信側光干渉計を有し、前記送信側光干渉計と前記受信側光干渉計との遅延量の差を前記変調量で補償することを特徴とする請求項17または18に記載のプログラム。 The transmission-side communication device and the reception-side communication device of the optical communication system each have a transmission-side optical interferometer and a reception-side optical interferometer, and a difference in delay amount between the transmission-side optical interferometer and the reception-side optical interferometer The program according to claim 17 or 18, wherein the program is compensated by the modulation amount.
  20.  前記光通信システムが送信側通信装置および受信側通信装置を有し、前記光干渉計が前記受信側通信装置に設けられ、前記送信側通信装置において前記光干渉計の遅延量の波長依存性を前記変調量で補償することを特徴とする請求項17または18に記載のプログラム。 The optical communication system includes a transmission-side communication device and a reception-side communication device, the optical interferometer is provided in the reception-side communication device, and the wavelength dependency of the delay amount of the optical interferometer is set in the transmission-side communication device. The program according to claim 17 or 18, wherein compensation is performed by the modulation amount.
PCT/JP2010/000730 2009-02-10 2010-02-08 Optical communication system, optical communication method, and optical communication device WO2010092776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010550442A JP5413687B2 (en) 2009-02-10 2010-02-08 Optical communication system, optical communication method, and optical communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-028023 2009-02-10
JP2009028023 2009-02-10

Publications (1)

Publication Number Publication Date
WO2010092776A1 true WO2010092776A1 (en) 2010-08-19

Family

ID=42561625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000730 WO2010092776A1 (en) 2009-02-10 2010-02-08 Optical communication system, optical communication method, and optical communication device

Country Status (2)

Country Link
JP (1) JP5413687B2 (en)
WO (1) WO2010092776A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031319A (en) * 2018-08-22 2020-02-27 株式会社東芝 Quantum communication system, transmitter, and receiver unit
CN117240368A (en) * 2023-11-16 2023-12-15 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512018A (en) * 2004-09-02 2008-04-17 アイディー クアンティック エス.アー. Apparatus with intra-qubit and inter-qubit interference for non-orthogonal two-state quantum cryptography and wiretapping detection
JP2008514119A (en) * 2004-09-15 2008-05-01 マジック テクノロジーズ,インコーポレーテッド Dual gate QKD system for WDM networks
JP2008541661A (en) * 2005-05-17 2008-11-20 ルーセント テクノロジーズ インコーポレーテッド Phase lock method in multi-channel quantum communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639947B2 (en) * 2005-09-19 2009-12-29 The Chinese University Of Hong Kong System and methods for quantum key distribution over WDM links

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512018A (en) * 2004-09-02 2008-04-17 アイディー クアンティック エス.アー. Apparatus with intra-qubit and inter-qubit interference for non-orthogonal two-state quantum cryptography and wiretapping detection
JP2008514119A (en) * 2004-09-15 2008-05-01 マジック テクノロジーズ,インコーポレーテッド Dual gate QKD system for WDM networks
JP2008541661A (en) * 2005-05-17 2008-11-20 ルーセント テクノロジーズ インコーポレーテッド Phase lock method in multi-channel quantum communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIHIRO TANAKA ET AL.: "Ryoshi Ango Kagi Haifu System no Jitsuyo Gijutsu no Kaihatsu", 2004 NEN IEICE ELECTRONICS SOCIETY TAIKAI KOEN RONBUNSHU 1, 8 September 2004 (2004-09-08), pages S23 - S24 *
AKIHIRO TANAKA ET AL.: "WDN ni yoru QKD Dai Yoryoka no Tameno Kanshokei Hacho Muizonka Gijutsu", 2009 NEN SOCIETY TAIKAI KOEN RONBUNSHU, 1 September 2009 (2009-09-01), pages 253 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031319A (en) * 2018-08-22 2020-02-27 株式会社東芝 Quantum communication system, transmitter, and receiver unit
JP7123694B2 (en) 2018-08-22 2022-08-23 株式会社東芝 Quantum communication system, transmitter, and receiver
CN117240368A (en) * 2023-11-16 2023-12-15 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method
CN117240368B (en) * 2023-11-16 2024-02-20 鹏城实验室 Optical domain spectrum synthesis system and optical domain spectrum synthesis method

Also Published As

Publication number Publication date
JPWO2010092776A1 (en) 2012-08-16
JP5413687B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5196093B2 (en) Optical communication apparatus and quantum cryptography key distribution system using the same
Paraïso et al. A modulator-free quantum key distribution transmitter chip
US8718485B2 (en) Quantum key distribution system, optical transmitter, optical modulation control circuit, and optical modulation control method
US6473214B1 (en) Methods of and apparatus for optical signal transmission
US8041232B2 (en) Optical transmitter and control method thereof
US7616765B2 (en) Method and system for generating shared information
US7643760B1 (en) Direct detection differential polarization-phase-shift keying for high spectral efficiency optical communication
US8184989B2 (en) Communication system and timing control method
KR101466213B1 (en) Method and Apparatus for Differential Optical Phase Modulation in Quantum Key Distribution System
JP5347644B2 (en) Optical communication system and method, transmitter and receiver, quantum cryptography key distribution system and method
Grande et al. Adaptable transmitter for discrete and continuous variable quantum key distribution
JP2009194833A (en) Optical multiplex communication system and crosstalk eliminating method of the same
JP5413687B2 (en) Optical communication system, optical communication method, and optical communication apparatus
CN114667710A (en) Qubit decoding apparatus, systems, and methods
JP5440787B2 (en) Communication apparatus and interferometer synchronization control method thereof in optical communication system
Djordjevic Proposal for slepian-states-based DV-and CV-QKD schemes suitable for implementation in integrated photonics platforms
Agnesi et al. Time-bin Quantum Key Distribution exploiting the iPOGNAC polarization moulator and Qubit4Sync temporal synchronization
JP4827944B2 (en) Optical signal transmitter for wavelength division multiplexing transmission
Ban et al. A novel optical frequency-hopping system based on DFB laser integrated with an EA modulator
CN112449748B (en) Quantum key distribution system and method
JP4737225B2 (en) Quantum cryptographic key distribution system and synchronization method used therefor
da Silva et al. Optical transmission of frequency-coded quantum bits with WDM synchronization
Mora et al. Microwave photonics parallel quantum key distribution
Sotiropoulos et al. Multi-level modulation formats for optical access networks
CN112449748A (en) Quantum key distribution system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010550442

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741056

Country of ref document: EP

Kind code of ref document: A1