WO2010090293A1 - Opening-closing device - Google Patents

Opening-closing device Download PDF

Info

Publication number
WO2010090293A1
WO2010090293A1 PCT/JP2010/051731 JP2010051731W WO2010090293A1 WO 2010090293 A1 WO2010090293 A1 WO 2010090293A1 JP 2010051731 W JP2010051731 W JP 2010051731W WO 2010090293 A1 WO2010090293 A1 WO 2010090293A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
force
generation unit
force generation
float
Prior art date
Application number
PCT/JP2010/051731
Other languages
French (fr)
Japanese (ja)
Inventor
小松寛
井藤元暢
山之内和弘
長谷川健司
伊藤岩雄
Original Assignee
日本工営株式会社
東京都下水道サービス株式会社
管清工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本工営株式会社, 東京都下水道サービス株式会社, 管清工業株式会社 filed Critical 日本工営株式会社
Priority to SG2011056116A priority Critical patent/SG173532A1/en
Priority to KR1020117018199A priority patent/KR101357064B1/en
Priority to CA 2751405 priority patent/CA2751405C/en
Priority to PL10738623T priority patent/PL2395162T3/en
Priority to AU2010211675A priority patent/AU2010211675B2/en
Priority to US13/147,343 priority patent/US8695628B2/en
Priority to EP10738623.7A priority patent/EP2395162B1/en
Publication of WO2010090293A1 publication Critical patent/WO2010090293A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/40Swinging or turning gates
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F9/00Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
    • E03F9/007Devices providing a flushing surge
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/02Sediment base gates; Sand sluices; Structures for retaining arresting waterborne material
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F7/00Other installations or implements for operating sewer systems, e.g. for preventing or indicating stoppage; Emptying cesspools
    • E03F7/02Shut-off devices
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F9/00Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7287Liquid level responsive or maintaining systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7287Liquid level responsive or maintaining systems
    • Y10T137/7358By float controlled valve
    • Y10T137/7404Plural floats

Definitions

  • the present invention relates to a switchgear used for a flow path such as a sewer.
  • an opening / closing device used for a flow path such as a sewer is known (for example, see Patent Document 1 (Japanese Patent Laid-Open No. 2004-300895)).
  • Such an opening / closing device usually clogs the flow path with the valve body closed. Then, garbage accumulates downstream of the flow path.
  • the valve body is opened, water flows downstream of the flow path, and garbage collected downstream can be washed away. That is, the channel can be cleaned.
  • a float is used in order to detect whether or not the water level in the flow path is equal to or higher than a predetermined water level (see, for example, FIG. 1 of Patent Document 1).
  • frame pillars are set up on the left and right sides of the valve body, and the valve body is locked to the left and right frame pillars by a locking mechanism on the left and right frame pillars so that the valve body is not opened (for example, (See FIGS. 5 and 6 of Patent Document 1).
  • the float and the lock mechanism are interlocked so that when the water level in the flow path becomes equal to or higher than the predetermined water level, the lock by the lock mechanism is released and the valve body is opened.
  • the left and right lock mechanisms are connected to each other because the lock mechanisms provided on the left and right frame columns are simultaneously unlocked. Further, it is known that when the water level is lowered in a state where the valve body is opened, the valve body is returned to a closed state by the force of a spring (for example, FIG. 1 of Patent Document 1). reference). In this case, the force generated by the spring is increased when the valve body is open.
  • the switchgear according to the present invention includes a gate capable of receiving a fluid flow in a standing state and falling down in a downstream direction of the flow, and a first force generating unit that generates a force for bringing the gate into the standing state.
  • the first force generation unit generates a force that is not sufficient to bring the gate into the standing state when the gate is tilted, and the gate is tilted by a predetermined angle or less.
  • the gate can receive a fluid flow in a standing state and can fall down in the downstream direction of the flow.
  • the first force generation unit generates a force that brings the gate into the standing state.
  • the first force generation unit generates a force that is not sufficient to bring the gate into the standing state when the gate is tilted, and the gate is tilted by a predetermined angle or less. Sufficient force is generated to bring the gate into the standing state.
  • the gate can be tilted about the gate rotation axis, and one end of the first force generation unit is fixed above the gate rotation axis.
  • the other end of the first force generator is disposed at a position away from the gate rotation axis by a predetermined length, and the one end of the first force generator and the first force generator in a state where the gate is tilted
  • the distance between the straight line connecting the other end of the gate and the rotation center of the gate rotation shaft is such that the one end of the first force generator and the first force are in a state where the gate is tilted by a predetermined angle or less. You may make it shorter than the distance of the straight line which tied the other end of the generation
  • the first force generation unit may have a spring fixed to one end of the first force generation unit.
  • the first force generation unit may include a link fixed to the other end of the first force generation unit and connected to the spring.
  • the switchgear according to the present invention has a force sufficient to start the gate in the standing state when the gate is tilted and the water level of the flow path through which the fluid flows is equal to or lower than a predetermined water level. You may make it provide the 2nd force generation
  • the gate can be tilted about the gate rotation axis, and one end of the second force generation unit is fixed above the gate rotation axis.
  • the other end of the second force generator may be disposed at a position separated from the gate rotation axis by a predetermined length.
  • the second force generation unit includes a spring fixed to one or both of one end of the second force generation unit and the other end of the second force generation unit. Also good.
  • one end of the first force generation unit is fixed above the gate rotation shaft, and the other end of the first force generation unit has a predetermined length from the gate rotation shaft. A straight line connecting one end of the second force generation unit and the other end of the second force generation unit in a state where the gate is tilted, and a rotation center of the gate rotation shaft.
  • the distance is longer than the distance between the straight line connecting one end of the first force generation unit and the other end of the first force generation unit and the rotation center of the gate rotation shaft in a state where the gate is tilted. It may be.
  • the spring constant of the spring included in the first force generation unit may be larger than the spring constant of the spring included in the second force generation unit.
  • FIG. 1 is a diagram for explaining the outline of the operation when the switchgear 1 according to the embodiment of the present invention is provided in the sewers 100U, 100L, and is a diagram when the water level of the sewer 100U is low (FIG. 1 (a )), A view when the water level of the sewer 100U is becoming higher (FIG. 1 (b)), and a view after the water level of the sewer 100U is higher than a predetermined height (FIG. 1 (c)).
  • FIG. 2 is a perspective view of the opening / closing device 1 (a state where the gate 10 is standing).
  • FIG. 3 is a perspective view of the opening / closing device 1 (a state in which the gate 10 is tilted).
  • FIG. 1 is a diagram for explaining the outline of the operation when the switchgear 1 according to the embodiment of the present invention is provided in the sewers 100U, 100L, and is a diagram when the water level of the sewer 100U is low (FIG. 1 (a )), A view when the water level of the
  • FIG. 4 is a view of the opening / closing device 1 as viewed from the upstream side (FIG. 4A) and a view as viewed from the downstream side (FIG. 4B).
  • FIG. 5 is a side view of the opening / closing device 1, which is a left side view (FIG. 5 (a)) and a right side view (FIG. 5 (b)) as viewed from the upstream side.
  • FIG. 6 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1.
  • FIG. 7 is a plan view seen through the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 is standing.
  • FIG. 8 is a right side view of the switchgear 1 when viewed from the upstream side when the water level of the sewage W is low (indicated as W.L.)
  • FIG. 9 is the water level of the sewage W (W.L.). Is a right side view of the opening / closing device 1 when the second float 16 is positioned substantially above the water level of the sewage W.
  • FIG. 10 is a right side view of the opening / closing device 1 when the water level of the sewage W (indicated as W.L.) becomes higher and the second float 16 floats.
  • FIG. 11 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1 when the floating prevention portion 44 rotates.
  • FIG. 11 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1 when the floating prevention portion 44 rotates.
  • FIG. 12 is a plan view of the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 has fallen.
  • FIG. 13 is a view of the opening / closing device 1 as viewed from the downstream side, seeing through the common rotation shaft 28, and further, a first release operation part (rotation part 29b and descending part 24b) and a second release operation part (rotation). The portion 29a and the descending portion 24a), the fall prevention portions 20b and 20a, the first support release portion 22b, and the second support release portion 22a are illustrated.
  • FIG. 14 is a right side view of the opening / closing device 1 after the sewage W has flowed downstream.
  • FIG. 15 is a side view of the opening / closing device 1 when the gate 10 falls down, and is a left side view (FIG. 15 (a)) and a right side view (FIG. 15 (b)) as viewed from the upstream side. is there.
  • FIG. 16 is a side view of the opening / closing device 1 when the gate 10 is slightly raised, as viewed from the upstream side (FIG. 16 (a)), right side view (FIG. 16 (b)). It is.
  • FIG. 17 is a side view of the opening / closing device 1 when the gate 10 is further raised, and is a left side view (FIG. 17 (a)) and a right side view (FIG. 17 (b)) as viewed from the upstream side. It is.
  • FIG. 17 is a side view of the opening / closing device 1 when the gate 10 is further raised, and is a left side view (FIG. 17 (a)) and a right side view (FIG. 17 (b)) as viewed from
  • FIG. 18 is a side view of the switchgear 1 in a state where the gate 10 stands, and is a left side view (FIG. 18 (a)) and a right side view (FIG. 18 (b)) as viewed from the upstream side. is there.
  • FIG. 1 is a diagram for explaining the outline of the operation when the switchgear 1 according to the embodiment of the present invention is provided in the sewers 100U, 100L, and is a diagram when the water level of the sewer 100U is low (FIG. 1 (a )), A view when the water level of the sewer 100U is becoming higher (FIG. 1 (b)), and a view after the water level of the sewer 100U is higher than a predetermined height (FIG. 1 (c)).
  • the gate 10 of the switchgear 1 is shown, other components of the switchgear 1 are not shown in FIG.
  • the sewer 100U is on the upstream side
  • the sewer 100L side is on the downstream side.
  • the switchgear 1 is disposed between the sewer 100U and the sewer 100L through a manhole (not shown).
  • the water level of the sewage W flowing through the sewer 100U is low (see FIG. 1 (a)).
  • the gate 10 stands and receives a flow of sewage W (a kind of fluid) flowing through the sewer 100U.
  • the sewage W is stopped by the gate 10, and the sewage W does not flow into the downstream sewer 100L.
  • garbage G accumulates in the sewer 100L.
  • the water level of the sewage W flowing through the sewer 100U rises due to rain or the like (see FIG. 1 (b)).
  • the water level of the sewer 100U becomes equal to or higher than a predetermined height (see FIG.
  • FIG. 2 is a perspective view of the opening / closing device 1 (a state where the gate 10 is standing).
  • FIG. 3 is a perspective view of the opening / closing device 1 (a state in which the gate 10 is tilted).
  • FIG. 4 is a view of the opening / closing device 1 as viewed from the upstream side (FIG. 4A) and a view as viewed from the downstream side (FIG. 4B).
  • the switchgear 1 includes a gate 10, frame columns 12a and 12b, a bottom 12c, a plate 14, a first float 18, a second float 16, a float support 30, a lower fulcrum 32, a lower float insert 34L, and an upper float insert 34U.
  • the upper fulcrum 36, the suspension member 38, the suspension fulcrum 40, and the plate 50 are provided.
  • the gate 10 is surrounded by frame pillars 12 a and 12 b standing on the side of the gate 10 and a bottom portion 12 c disposed at the bottom of the gate 10, and is further partially covered by a plate 14. When the gate 10 is standing, it receives the water flow and is coughing (see FIG. 2).
  • the gate 10 falls to the downstream side, and fluid such as sewage W flows downstream (see FIG. 3).
  • the left side is the upstream side and the right side is the downstream side.
  • the specific gravity of the first float 18 and the second float 16 is smaller than the specific gravity of the fluid received with the gate 10 standing.
  • the first float 18 and the second float 16 are arranged on the upstream side of the gate 10.
  • the second float 16 is disposed above the first float 18.
  • the float support 30 is arrange
  • a lower float insert 34 ⁇ / b> L is fixed to the lower fulcrum 32 of the float support 30.
  • the lower float insert 34L extends in the vertical direction and is inserted into the first float 18 from below.
  • the first float 18 can move up and down along the lower float insert 34L.
  • the upper float insert 34U penetrates the second float 16 and is inserted into the first float 18 from above.
  • the suspension member 38 is a member that suspends the first float 18 with the upper float insertion body 34U fixed to the upper fulcrum 36 thereof.
  • the suspension member 38 is fixed to the frame column 12b by a suspension fulcrum 40.
  • FIG. 5 is a side view of the opening / closing device 1, which is a left side view (FIG. 5 (a)) and a right side view (FIG. 5 (b)) as viewed from the upstream side.
  • FIG. 6 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1.
  • FIG. 7 is a plan view seen through the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 is standing.
  • the switchgear 1 includes the fall prevention parts 20b, 20a, the first support release part 22b, the second support release part 22a, the floating prevention part 44, the second float support beam 41, and the floating prevention release part. 42, gate rotating shaft 26, common rotating shaft 28, rotating portions 29b and 29a, descending portions 24b and 24a, first spring 52a, second spring (second force generating portion) 52b, link 54, rotating bodies 56a and 56b. Prepare.
  • the gate 10 can be tilted about a hollow gate rotation shaft 26 (see FIG. 13) as a rotation center (rotation shaft). Note that the gate 10 in a collapsed state is shown by a dotted line in FIG. Referring to FIG. 7, the fall prevention portions 20 b and 20 a are in contact with the downstream surface 10 a and apply a force against the water flow to the gate 10. In other words, the fall prevention portions 20 b and 20 a support the downstream surface 10 a of the gate 10. The fall prevention units 20b and 20a support the gate 10 to prevent the gate 10 from falling to the downstream side. When viewed from the upstream side, the fall prevention unit 20b is arranged on the right side, and the fall prevention unit 20a is arranged on the left side. Referring to FIG.
  • first support release portion 22b and second support release portion 22a are bilaterally symmetric when viewed from the upstream side (even when viewed from the downstream side).
  • the first support release portion 22b pulls the fall prevention portion 20b to the outside (right side in FIG. 7) of the water flow (flow), thereby removing the point where the fall prevention portion 20b contacts the gate 10 from the gate 10 to prevent the fall.
  • the support of the gate 10 by the portion 20b is released (see FIG. 12).
  • the second support release part 22a pulls the fall prevention part 20a to the outside of the water flow (flow) (left side in FIG. 7), thereby removing the point where the fall prevention part 20a contacts the gate 10 from the gate 10 to prevent the fall.
  • the support of the gate 10 by the part 20a is released (see FIG.
  • the anti-lifting release portion 42, the anti-lifting portion 44, and the plate 50 are not shown.
  • the link 58 shown in FIG. 15 (a)
  • the floating prevention unit 44 prevents the first float 18 from floating.
  • the levitation preventing portion 44 has a collision portion 44b, a fixed portion 44a, and a rotatable portion 44c.
  • the collision portion 44b is positioned above the suspension member 38 and collides with the suspension member 38 when the portion where the suspension member 38 rises (the portion of the suspension member 38 that is directly below the collision portion 44b) rises. If the 1st float 18 floats, the part to which the suspension member 38 will raise will also raise. However, since the suspension member 38 collides with the collision portion 44b, the first float 18 cannot be lifted.
  • the fixing portion 44a fixes the collision portion 44b to a portion that is stationary with respect to the flow (for example, the plate 50). The collision portion 44b can rotate around the fixed portion 44a. Note that the fixed portion 44a is fixed to the plate 50 in other drawings.
  • the rotatable portion 44c is located at the same height as the fixed portion 44a and is rotatable about the fixed portion 44a.
  • the collision portion 44b and the rotatable portion 44c are integrated, and the collision portion 44b also rotates around the fixed portion 44a by the angle at which the rotatable portion 44c rotates around the fixed portion 44a.
  • the second float support beam 41 is fixed to the frame column 12b at a fulcrum 41a (see FIG. 8) and supports the second float 16.
  • the second float support beam 41 is rotatable around a fulcrum 41a.
  • the levitation prevention release part (drive part) 42 is rotatably connected to a connection point 41b (arranged upstream of the fulcrum 41a) of the second float support beam 41 (see FIG. 8).
  • a connection point 41b arranged upstream of the fulcrum 41a
  • the connection point 41b rises.
  • the anti-lifting release unit (driving unit) 42 moves up and pushes the rotatable portion 44c upward, and the rotatable portion 44c rotates around the fixed portion 44a.
  • the collision portion 44b moves from above the suspension member 38 (see FIG. 11), and there is no obstacle that prevents the suspension member 38 from being lifted immediately below the collision portion 44b.
  • the floating prevention release unit (drive unit) 42 releases the floating prevention of the first float 18 by the floating prevention unit 44 as the second float 16 floats.
  • the common rotating shaft 28 is disposed inside the hollow gate rotating shaft 26 and extends in the same direction as the gate rotating shaft 26.
  • the rotating portions 29 b and 29 a are fixed to the common rotating shaft 28 and rotate together with the common rotating shaft 28.
  • the rotating unit 29b rotates
  • the common rotating shaft 28 rotates with the rotation.
  • the rotating unit 29a rotates.
  • One end 54a of the link 54 is connected to the suspension member 38, and the vicinity 54b of the other end is connected to the rotating portion 29b.
  • the descending portion 24b is fixed so as to be able to rotate at the end of the rotating portion 29b (on the opposite side to the vicinity 54b of the other end).
  • the rotating portion 29b rotates clockwise in FIG. 5 (b)
  • the descending portion 24b descends accordingly.
  • the descending portion 24b is connected to the suspension member 38 via the link 54 and the rotating portion 29b.
  • the rotating part 29b rotates clockwise in FIG. 5 (b), and the descending part 24b Descend.
  • the descending portion 24a is fixed to the end of the rotating portion 29a so as to be rotatable. When the rotating portion 29a rotates counterclockwise in FIG.
  • the descending portion 24a descends accordingly.
  • the rotating part 29b and the descending part 24b constitute a first release operating part.
  • the first release actuating part lowers the descending part 24b and pulls the first support releasing part 22b while rotating the common rotating shaft 28 by the rotating part 29b (clockwise rotation in FIG. 5 (b)).
  • the first support release portion 22b is operated.
  • the first support release portion 22b has a shape bent substantially at a right angle, the horizontal portion is connected to the descending portion 24b, and the portion extending in the vertical direction becomes the fall preventing portion 20b. It can be connected and rotated around a bent part at a right angle.
  • the first support release portion 22b rotates counterclockwise in FIG. 13 and pulls the fall prevention portion 20b.
  • the part 22b will operate.
  • the rotating portion 29a and the descending portion 24a constitute a second release operating portion.
  • the second release actuating part rotates the rotating part 29a with the rotation of the common rotating shaft 28 (counterclockwise rotation in FIG. 5 (a)), lowers the descending part 24a, and the second support releasing part 22a. By pulling, the second support release portion 22a is operated. Referring to FIG.
  • the second support releasing portion 22a has a shape bent substantially at a right angle, the horizontal portion is connected to the descending portion 24a, and the portion extending in the vertical direction becomes the fall preventing portion 20a. It can be connected and rotated around a bent part at a right angle. Therefore, when the lowering portion 24a is lowered and the second support release portion 22a is pulled, the second support release portion 22a rotates clockwise in FIG. 13 and pulls the fall prevention portion 20a. 22a will operate.
  • the first release operation part (rotating part 29b and descending part 24b) and the second release action part (rotating part 29a and descending part 24a) are bilaterally symmetric when viewed from the upstream side (even when viewed from the downstream side). is there.
  • FIG. 8 is a right side view of the switchgear 1 when viewed from the upstream side when the water level of the sewage W (indicated as W.L.) is low. Referring to FIG. 8, when the water level of sewage W (indicated as W.L.) is low, it is as described with reference to FIGS. 5 (a) and 5 (b), and gate 10 falls over preventing part 20b. , 20a and remain standing.
  • the water level of the sewage W becomes higher due to rain or the like.
  • the water level of the sewage W (indicated as WL) is high and exceeds the upper end of the first float 18, but the second float 16 is located substantially above the water level of the sewage W.
  • the descending portion 24b is not shown. Since the first float 18 is submerged in the sewage W, and the specific gravity of the first float 18 is smaller than the specific gravity of the sewage W, the first float 18 originally floats and the upper end of the first float 18 is the sewage W. Should exceed the water level. However, the first float 18 does not rise.
  • FIG. 10 is a right side view of the opening / closing device 1 when the water level of the sewage W (indicated as W.L.) becomes higher and the second float 16 floats.
  • the gate rotation shaft 26 is not shown.
  • the second float 16 is made of the same material as the first float 18 and has the same outer diameter at the bottom. However, the second float 16 is thinner in the vertical direction than the first float 18. Therefore, the second float 16 is lighter than the first float 18. This means that when the second float 16 is partially submerged in the sewage W, it is likely to rise rapidly.
  • FIG. 11 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1 when the floating prevention portion 44 rotates.
  • the second float 16 When the second float 16 is partially submerged in the sewage W and rapidly rises, the second float support beam 41 rotates around the fulcrum 41a and the connection point 41b rises. Then, the anti-lifting release unit (driving unit) 42 moves up and pushes the rotatable portion 44c upward, and the rotatable portion 44c rotates around the fixed portion 44a. Then, the collision portion 44b moves from above the suspension member 38 (see FIG. 11), and there is no obstacle that prevents the suspension member 38 from being lifted immediately below the collision portion 44b.
  • the first float 18 since the first float 18 is completely submerged in the sewage W and receives a large buoyancy, the first float 18 tends to rise rapidly.
  • FIG. 13 is a view of the opening / closing device 1 as viewed from the downstream side, seeing through the common rotation shaft 28, and further, a first release operation part (rotation part 29b and descending part 24b) and a second release operation part (rotation).
  • the portion 29a and the descending portion 24a), the fall prevention portions 20b and 20a, the first support release portion 22b, and the second support release portion 22a are illustrated.
  • the common rotating shaft 28 rotates (clockwise in FIG. 10)
  • the common rotating shaft 28 rotates counterclockwise in FIG. 5 (a)
  • the descending portion 24a descends to provide the second support.
  • the release portion 22a is pulled and the second support release portion 22a rotates clockwise in FIG. 13 to pull the fall prevention portion 20a
  • the second support release portion 22a operates.
  • the fall prevention unit 20a is detached from the gate 10 (see FIG. 12).
  • the first support release portion is associated with the floating of the first float 18 (in addition, “floating” does not necessarily require the upper end to be exposed to the water surface, and includes that the upper end moves toward the water surface). 22b and the second support release part 22a operate.
  • FIG. 12 is a plan view of the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 has fallen. Since the fall prevention parts 20a and 20b are detached from the gate 10, the gate 10 falls down downstream due to the water pressure of the sewage W.
  • FIG. 14 is a right side view of the opening / closing device 1 after the sewage W has flowed downstream.
  • the first float 18 descends while floating on the surface of the sewage W. Thereby, the suspension member 38 also returns to the horizontal.
  • the second float 16 is lowered, the connection point 41b is also lowered, and the floating prevention portion 44 is also returned to the position where the suspension member 38 is held down (see FIG. 6).
  • the levitation preventing portion 44 holds down the suspension member 38 until the second float 16 rises (FIG. 6). See), the first float 18 cannot rise.
  • the rise prevention unit 44 rotates accordingly, and the suspension member 38 cannot be restrained (see FIG. 11), and the first float 18 starts to rise suddenly. (It has already been submerged and large buoyancy is acting on the first float 18).
  • the fulcrum 40 rotates about the fulcrum 40 of the suspension member 38 in the clockwise direction in FIG. 10 and the link 54 rises, so that the rotating portion 29b rotates clockwise, and the descending portion 24b descends.
  • the support release portion 22b is pulled (see FIG. 13), the fall prevention portion 20b is pulled, and the support of the gate 10 is released.
  • the rotating portion 29b rotates clockwise in FIG.
  • the common rotating shaft 28 rotates, the rotating portion 29a rotates (counterclockwise in FIG. 5A), and the descending portion 24a descends.
  • the second support release portion 22a is pulled (see FIG. 13), the fall prevention portion 20a is pulled, and the support of the gate 10 is released.
  • it is beneficial that the operation is transmitted by pulling so that the support of the gate 10 is released simultaneously by the fall prevention units 20a and 20b.
  • the first float 18 rises abruptly, the support of the gate 10 by the fall prevention portion 20b is also suddenly released, so that the gate 10 can be quickly fallen down and opened.
  • FIG. 15 is a side view of the opening / closing device 1 when the gate 10 falls down, and is a left side view (FIG. 15 (a)) and a right side view (FIG. 15 (b)) as viewed from the upstream side. is there.
  • the opening / closing device 1 includes the first spring 52a, the second spring (second force generating unit) 52b, the link 54, and the rotating bodies 56a and 56b. Further, the opening / closing device 1 has a link 58.
  • the rotators 56 a and 56 b are fixed to the gate rotation shaft 26 and rotate together with the gate rotation shaft 26.
  • the first force generator is configured by a first spring 52 a and a link 58.
  • the first spring 52a is fixed to one end 52a-1 of the first force generator.
  • the link 58 is fixed to the other end 58a of the first force generator and is connected to the first spring 52a.
  • One end 52 a-1 of the first force generator is fixed above the gate rotation shaft 26.
  • the other end 58a of the first force generating unit is fixed to the rotating body 56a and the other end 58a of the first force generating unit is disposed at a position separated from the gate rotation shaft 26 (the center) by a predetermined length. ing. That is, even if the rotating body 56a rotates together with the gate rotation shaft 26, the distance (predetermined length) between the other end 58a of the first force generator and the gate rotation shaft 26 (the center thereof) does not change.
  • the first spring 52a generates a force that returns the gate 10 to a standing state. However, the first spring 52a generates a force that is not sufficient to bring the gate 10 into a standing state when the gate 10 is tilted. Referring to FIG.
  • the second force generator has a second spring 52b fixed to both one end 52b-1 of the second force generator and the other end 52b-2 of the second force generator.
  • the second spring 52b is fixed to one end 52b-1 (or the other end 52b-2), the link is connected to the other end 52b-2 (or one end 52b-1), and the second spring 52b is connected to the link. It is also conceivable to do so.
  • One end 52 b-1 of the second force generator is fixed above the gate rotation shaft 26.
  • the other end 52b-2 of the second force generation unit is fixed to the rotating body 56b, and is disposed at a position separated from the gate rotation shaft 26 (the center) by a predetermined length. That is, even if the rotating body 56b rotates together with the gate rotation shaft 26, the distance (predetermined length) between the other end 52b-2 of the second force generation unit and the gate rotation shaft 26 (the center) does not change.
  • a distance D2 between a straight line connecting one end 52b-1 of the second force generation unit and the other end 52b-2 of the second force generation unit and the rotation center of the gate rotation shaft 26 in a state where the gate 10 is tilted. (Corresponding to the length of a perpendicular line drawn from the center of the gate rotation shaft 26 to the straight line connecting the one end 52b-1 and the other end 52b-2) is longer than the distance D1.
  • the second spring 52b is longer than the first spring 52a (the spring constant is small), and the torque to rotate counterclockwise in FIG. 15 (b) is small.
  • FIG. 16 is a side view of the opening / closing device 1 when the gate 10 is slightly raised, as viewed from the upstream side (FIG.
  • FIG. 16 (a) right side view
  • FIG. 16 (b) right side view
  • FIG. 16 (a) a straight line connecting one end 52a-1 of the first force generating portion and the other end 58a of the first force generating portion when the gate 10 is slightly raised, and the gate rotating shaft 26 The distance from the center is still short. Therefore, the torque generated by the first spring 52a for rotating the gate rotation shaft 26 clockwise (torque for raising the gate 10) is still small.
  • FIG. 16 (b) a straight line connecting one end 52b-1 of the second force generating portion and the other end 52b-2 of the second force generating portion when the gate 10 is slightly raised, and gate rotation The distance from the center of the shaft 26 is still long.
  • FIG. 17 is a side view of the opening / closing device 1 when the gate 10 is further raised, and is a left side view (FIG. 17 (a)) and a right side view (FIG. 17 (b)) as viewed from the upstream side. It is. Referring to FIG. 17 (a), a straight line connecting one end 52a-1 of the first force generating portion and the other end 58a of the first force generating portion when the gate 10 is tilted by a predetermined angle. The distance D3 from the center of the gate rotation shaft 26 is long.
  • FIG. 18 is a side view of the switchgear 1 in a state where the gate 10 stands, and is a left side view (FIG. 18 (a)) and a right side view (FIG. 18 (b)) as viewed from the upstream side. is there. Referring to FIG.
  • the torque for rotating the gate rotation shaft 26 generated by the first spring 52a clockwise is large.
  • FIG. 18 (b) there is a gate rotation shaft 26 on a straight line connecting one end 52b-1 of the second force generating portion and the other end 52b-2 of the second force generating portion.
  • the torque generated by the spring 52b for rotating the gate rotation shaft 26 counterclockwise is substantially zero.
  • the torque for bringing the gate 10 upright caused by the first spring 52a having a large spring constant is small. It is possible to prevent the gate 10 from closing while the water level of the flow path is high.
  • the gate 10 is tilted by a predetermined angle or less (see FIG.
  • the first spring 52a generates a force sufficient to bring the gate 10 into a standing state. Therefore, the gate 10 can be made to stand. Furthermore, when the gate 10 falls down (see FIG. 15 (b)), when the water level of the flow path through which the fluid (sewage W) flows is below a predetermined water level, the gate 10 starts to stand. The gate 10 can be started to stand by the second spring 52b that generates a sufficient force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)
  • Sewage (AREA)

Abstract

An opening-closing device (1) provided with a gate (10) which can receive the flow of sewage water (W) while in a standing position and fall over in the downstream direction of the flow, and also with a first spring (52a) which generates force for moving the gate (10) to the standing position. When the gate (10) is in a fallen-over position, the first spring (52a) generates force which is not sufficient to move the gate (10) to the standing position, and when the gate (10) is in a tilted position in which the gate (10) is tilted to an angle equal to or less than a predetermined angle, the first spring (52a) generates force which is sufficient to move the gate to the standing position.

Description

開閉装置Switchgear
 本発明は、下水道などの流路に使用する開閉装置に関する。 The present invention relates to a switchgear used for a flow path such as a sewer.
 従来より、下水道などの流路に使用する開閉装置が知られている(例えば、特許文献1(特開2004−300895号公報)を参照)。このような開閉装置は、通常は弁体が閉じられた状態で流路をせきとめている。すると、流路の下流には、ごみがたまる。ここで、降雨等により流路の水位が所定の水位以上となると、弁体が開いた状態となって流路の下流に水が流れ、下流にたまったごみを流し去ることができる。すなわち、流路の洗浄を行うことができる。
 なお、流路の水位が所定の水位以上となったか否かを検知するためには、フロートを用いることが知られている(例えば、特許文献1の図1を参照)。
 また、弁体の左右に枠柱を立て、左右の枠柱にロック機構によって弁体を左右の枠柱にロックして、弁体を開かないようにしておくことが知られている(例えば、特許文献1の図5、図6を参照)。この場合、フロートとロック機構が連動することにより、流路の水位が所定の水位以上となったときに、ロック機構によるロックが解除されて、弁体が開く。なお、左右の枠柱にそれぞれ設けられたロック機構におけるロック解除が同時に行うため、左右のロック機構が連結されている。
 さらに、弁体が開いた状態において、水位が低下していけば、弁体をばね(スプリング)の力によって、閉じた状態に戻すことが知られている(例えば、特許文献1の図1を参照)。この場合、弁体が開いた状態において、ばねが生じる力が大きくなるようにされている。
2. Description of the Related Art Conventionally, an opening / closing device used for a flow path such as a sewer is known (for example, see Patent Document 1 (Japanese Patent Laid-Open No. 2004-300895)). Such an opening / closing device usually clogs the flow path with the valve body closed. Then, garbage accumulates downstream of the flow path. Here, when the water level of the flow path becomes equal to or higher than a predetermined water level due to rain or the like, the valve body is opened, water flows downstream of the flow path, and garbage collected downstream can be washed away. That is, the channel can be cleaned.
It is known that a float is used in order to detect whether or not the water level in the flow path is equal to or higher than a predetermined water level (see, for example, FIG. 1 of Patent Document 1).
In addition, it is known that frame pillars are set up on the left and right sides of the valve body, and the valve body is locked to the left and right frame pillars by a locking mechanism on the left and right frame pillars so that the valve body is not opened (for example, (See FIGS. 5 and 6 of Patent Document 1). In this case, the float and the lock mechanism are interlocked so that when the water level in the flow path becomes equal to or higher than the predetermined water level, the lock by the lock mechanism is released and the valve body is opened. Note that the left and right lock mechanisms are connected to each other because the lock mechanisms provided on the left and right frame columns are simultaneously unlocked.
Further, it is known that when the water level is lowered in a state where the valve body is opened, the valve body is returned to a closed state by the force of a spring (for example, FIG. 1 of Patent Document 1). reference). In this case, the force generated by the spring is increased when the valve body is open.
 しかしながら、弁体が開いた状態において、ばねが生じる力が大きくなるようにされているので、何かの契機により、流路の水位がまだ高いうちに、弁体が閉じてしまう可能性がある。
 そこで、本発明は、弁体が開いた状態において、流路の水位が高いうちに、弁体が閉じてしまわないようにすることを課題とする。
 本発明にかかる開閉装置は、立った状態で流体の流れを受け、該流れの下流方向に倒れることが可能なゲートと、前記ゲートを前記立った状態にする力を発生する第一力発生部と、を備え、前記第一力発生部は、前記ゲートが倒れた状態では、前記ゲートを前記立った状態にするためには充分ではない力を発生し、前記ゲートが所定の角度以下だけ倒れかけている状態で、前記ゲートを前記立った状態にするために充分な力を発生するように構成される。
 上記のように構成された開閉装置によれば、ゲートが、立った状態で流体の流れを受け、該流れの下流方向に倒れることが可能である。第一力発生部が、前記ゲートを前記立った状態にする力を発生する。前記第一力発生部は、前記ゲートが倒れた状態では、前記ゲートを前記立った状態にするためには充分ではない力を発生し、前記ゲートが所定の角度以下だけ倒れかけている状態で、前記ゲートを前記立った状態にするために充分な力を発生する。
 なお、本発明にかかる開閉装置は、前記ゲートは、ゲート回転軸を回転中心にして倒れることが可能であり、前記第一力発生部の一端が、前記ゲート回転軸よりも上に固定され、前記第一力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置され、前記ゲートが倒れた状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離が、前記ゲートが所定の角度以下だけ倒れかけている状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離よりも短いようにしてもよい。
 なお、本発明にかかる開閉装置は、前記第一力発生部が、前記第一力発生部の一端に固定されたバネを有するようにしてもよい。
 なお、本発明にかかる開閉装置は、前記第一力発生部が、前記第一力発生部の他端に固定され、前記バネと連結されるリンクと、を有するようにしてもよい。
 なお、本発明にかかる開閉装置は、前記ゲートが倒れた状態で、前記流体の流れる流路の水位が所定の水位以下であるときに、前記ゲートを前記立った状態にし始めるために充分な力を発生する第二力発生部を備えるようにしてもよい。
 なお、本発明にかかる開閉装置は、前記ゲートは、ゲート回転軸を回転中心にして倒れることが可能であり、前記第二力発生部の一端が、前記ゲート回転軸よりも上に固定され、前記第二力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置されるようにしてもよい。
 なお、本発明にかかる開閉装置は、前記第二力発生部が、前記第二力発生部の一端および前記第二力発生部の他端の一方または双方に固定されたバネを有するようにしてもよい。
 なお、本発明にかかる開閉装置は、前記第一力発生部の一端が、前記ゲート回転軸よりも上に固定され、前記第一力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置され、前記ゲートが倒れた状態における、前記第二力発生部の一端と前記第二力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離が、前記ゲートが倒れた状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離よりも長いようにしてもよい。
 なお、本発明にかかる開閉装置は、前記第一力発生部が有するバネのバネ定数が、前記第二力発生部が有するバネのバネ定数よりも大きいようにしてもよい。
However, since the force generated by the spring is increased in a state where the valve body is open, the valve body may be closed while the water level of the flow path is still high due to some trigger. .
Then, this invention makes it a subject to prevent a valve body from closing, when the water level of a flow path is high in the state which the valve body opened.
The switchgear according to the present invention includes a gate capable of receiving a fluid flow in a standing state and falling down in a downstream direction of the flow, and a first force generating unit that generates a force for bringing the gate into the standing state. The first force generation unit generates a force that is not sufficient to bring the gate into the standing state when the gate is tilted, and the gate is tilted by a predetermined angle or less. It is configured to generate a force sufficient to bring the gate to the standing state when applied.
According to the switchgear configured as described above, the gate can receive a fluid flow in a standing state and can fall down in the downstream direction of the flow. The first force generation unit generates a force that brings the gate into the standing state. The first force generation unit generates a force that is not sufficient to bring the gate into the standing state when the gate is tilted, and the gate is tilted by a predetermined angle or less. Sufficient force is generated to bring the gate into the standing state.
In the opening / closing apparatus according to the present invention, the gate can be tilted about the gate rotation axis, and one end of the first force generation unit is fixed above the gate rotation axis. The other end of the first force generator is disposed at a position away from the gate rotation axis by a predetermined length, and the one end of the first force generator and the first force generator in a state where the gate is tilted The distance between the straight line connecting the other end of the gate and the rotation center of the gate rotation shaft is such that the one end of the first force generator and the first force are in a state where the gate is tilted by a predetermined angle or less. You may make it shorter than the distance of the straight line which tied the other end of the generation | occurrence | production part, and the rotation center of the said gate rotating shaft.
In the opening / closing apparatus according to the present invention, the first force generation unit may have a spring fixed to one end of the first force generation unit.
In the opening / closing apparatus according to the present invention, the first force generation unit may include a link fixed to the other end of the first force generation unit and connected to the spring.
The switchgear according to the present invention has a force sufficient to start the gate in the standing state when the gate is tilted and the water level of the flow path through which the fluid flows is equal to or lower than a predetermined water level. You may make it provide the 2nd force generation | occurrence | production part which generate | occur | produces.
In the opening / closing apparatus according to the present invention, the gate can be tilted about the gate rotation axis, and one end of the second force generation unit is fixed above the gate rotation axis. The other end of the second force generator may be disposed at a position separated from the gate rotation axis by a predetermined length.
In the opening / closing apparatus according to the present invention, the second force generation unit includes a spring fixed to one or both of one end of the second force generation unit and the other end of the second force generation unit. Also good.
In the opening / closing apparatus according to the present invention, one end of the first force generation unit is fixed above the gate rotation shaft, and the other end of the first force generation unit has a predetermined length from the gate rotation shaft. A straight line connecting one end of the second force generation unit and the other end of the second force generation unit in a state where the gate is tilted, and a rotation center of the gate rotation shaft. The distance is longer than the distance between the straight line connecting one end of the first force generation unit and the other end of the first force generation unit and the rotation center of the gate rotation shaft in a state where the gate is tilted. It may be.
In the opening / closing apparatus according to the present invention, the spring constant of the spring included in the first force generation unit may be larger than the spring constant of the spring included in the second force generation unit.
 第1図は、本発明の実施形態にかかる開閉装置1を下水道100U、100Lに設けたときの動作の概要を説明する図であり、下水道100Uの水位が低いときの図(第1図(a))、下水道100Uの水位が高くなりつつあるときの図(第1図(b))、下水道100Uの水位が所定の高さ以上になった後の図(第1図(c))である。
 第2図は、開閉装置1の斜視図(ゲート10が立っている状態)である。
 第3図は、開閉装置1の斜視図(ゲート10が倒れている状態)である。
 第4図は、開閉装置1を上流側から見た図(第4図(a))、下流側から見た図(第4図(b))である。
 第5図は、開閉装置1の側面図であり、上流側から見て左側面図(第5図(a))、右側面図(第5図(b))である。
 第6図は、開閉装置1の浮上防止部44近傍の拡大正面図である。
 第7図は、ゲート10が立っている状態の、倒れ防止部20a、20b近傍を透視した平面図である。
 第8図は、下水Wの水位(W.L.と表記)が低いときの上流側から見たときの開閉装置1の右側面図である
 第9図は、下水Wの水位(W.L.と表記)が高くなり、第一フロート18の上端を超えたが、第二フロート16がほぼ下水Wの水位よりも上に位置している場合の開閉装置1の右側面図である。
 第10図は、下水Wの水位(W.L.と表記)がさらに高くなり、第二フロート16が浮上した場合の開閉装置1の右側面図である。
 第11図は、浮上防止部44が回転したときの開閉装置1の浮上防止部44近傍の拡大正面図である。
 第12図は、ゲート10が倒れた状態の、倒れ防止部20a、20b近傍を透視した平面図である。
 第13図は、開閉装置1を下流側から見た図であり、共通回転軸28を透視し、さらに、第一解除作動部(回転部29bおよび下降部分24b)および第二解除作動部(回転部29aおよび下降部分24a)、倒れ防止部20b、20a、第一支持解除部22b、第二支持解除部22aを図示したものである。
 第14図は、下水Wが下流側に流れた後の開閉装置1の右側面図である。
 第15図は、ゲート10が倒れたときの開閉装置1の側面図であり、上流側から見て左側面図(第15図(a))、右側面図(第15図(b))である。
 第16図は、ゲート10が少し上がったときの開閉装置1の側面図であり、上流側から見て左側面図(第16図(a))、右側面図(第16図(b))である。
 第17図は、ゲート10がさらに上がったときの開閉装置1の側面図であり、上流側から見て左側面図(第17図(a))、右側面図(第17図(b))である。
 第18図は、ゲート10が立った状態の開閉装置1の側面図であり、上流側から見て左側面図(第18図(a))、右側面図(第18図(b))である。
FIG. 1 is a diagram for explaining the outline of the operation when the switchgear 1 according to the embodiment of the present invention is provided in the sewers 100U, 100L, and is a diagram when the water level of the sewer 100U is low (FIG. 1 (a )), A view when the water level of the sewer 100U is becoming higher (FIG. 1 (b)), and a view after the water level of the sewer 100U is higher than a predetermined height (FIG. 1 (c)). .
FIG. 2 is a perspective view of the opening / closing device 1 (a state where the gate 10 is standing).
FIG. 3 is a perspective view of the opening / closing device 1 (a state in which the gate 10 is tilted).
FIG. 4 is a view of the opening / closing device 1 as viewed from the upstream side (FIG. 4A) and a view as viewed from the downstream side (FIG. 4B).
FIG. 5 is a side view of the opening / closing device 1, which is a left side view (FIG. 5 (a)) and a right side view (FIG. 5 (b)) as viewed from the upstream side.
FIG. 6 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1.
FIG. 7 is a plan view seen through the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 is standing.
FIG. 8 is a right side view of the switchgear 1 when viewed from the upstream side when the water level of the sewage W is low (indicated as W.L.) FIG. 9 is the water level of the sewage W (W.L.). Is a right side view of the opening / closing device 1 when the second float 16 is positioned substantially above the water level of the sewage W.
FIG. 10 is a right side view of the opening / closing device 1 when the water level of the sewage W (indicated as W.L.) becomes higher and the second float 16 floats.
FIG. 11 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1 when the floating prevention portion 44 rotates.
FIG. 12 is a plan view of the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 has fallen.
FIG. 13 is a view of the opening / closing device 1 as viewed from the downstream side, seeing through the common rotation shaft 28, and further, a first release operation part (rotation part 29b and descending part 24b) and a second release operation part (rotation). The portion 29a and the descending portion 24a), the fall prevention portions 20b and 20a, the first support release portion 22b, and the second support release portion 22a are illustrated.
FIG. 14 is a right side view of the opening / closing device 1 after the sewage W has flowed downstream.
FIG. 15 is a side view of the opening / closing device 1 when the gate 10 falls down, and is a left side view (FIG. 15 (a)) and a right side view (FIG. 15 (b)) as viewed from the upstream side. is there.
FIG. 16 is a side view of the opening / closing device 1 when the gate 10 is slightly raised, as viewed from the upstream side (FIG. 16 (a)), right side view (FIG. 16 (b)). It is.
FIG. 17 is a side view of the opening / closing device 1 when the gate 10 is further raised, and is a left side view (FIG. 17 (a)) and a right side view (FIG. 17 (b)) as viewed from the upstream side. It is.
FIG. 18 is a side view of the switchgear 1 in a state where the gate 10 stands, and is a left side view (FIG. 18 (a)) and a right side view (FIG. 18 (b)) as viewed from the upstream side. is there.
 以下、本発明の実施形態を図面を参照しながら説明する。
 第1図は、本発明の実施形態にかかる開閉装置1を下水道100U、100Lに設けたときの動作の概要を説明する図であり、下水道100Uの水位が低いときの図(第1図(a))、下水道100Uの水位が高くなりつつあるときの図(第1図(b))、下水道100Uの水位が所定の高さ以上になった後の図(第1図(c))である。なお、開閉装置1のゲート10を図示したが、開閉装置1の他の構成要素は第1図においては図示省略する。
 まず、下水道100Uが上流側、下水道100L側が下流側にある。開閉装置1は図示省略したマンホールを通して、下水道100Uと下水道100Lとの間に配置される。通常は、下水道100Uを流れる下水Wの水位が低い(第1図(a)参照)。このとき、ゲート10は、立っており、下水道100Uを流れる下水W(流体の一種)の流れを受ける。すると、ゲート10により下水Wはせきとめられ、下流側の下水道100Lには下水Wが流れない。すると、ゴミGが下水道100Lにたまる。
 ここで、降雨等により下水道100Uを流れる下水Wの水位が上昇する(第1図(b)参照)。そして、下水道100Uの水位が所定の高さ以上になると(第1図(b)参照)、ゲート10が倒れ、下水Wが下水道100Uから下水道100Lに流れる。これにより、下水道100LにたまったゴミGが流れ去り、下水道100Lを洗浄できる。
 第2図は、開閉装置1の斜視図(ゲート10が立っている状態)である。第3図は、開閉装置1の斜視図(ゲート10が倒れている状態)である。第4図は、開閉装置1を上流側から見た図(第4図(a))、下流側から見た図(第4図(b))である。
 開閉装置1は、ゲート10、枠柱12a、12b、底部12c、プレート14、第一フロート18、第二フロート16、フロート支え30、下部支点32、下側フロート挿入体34L、上側フロート挿入体34U、上部支点36、吊り下げ部材38、吊り下げ支点40、プレート50を備える。
 ゲート10は、ゲート10の脇に立つ枠柱12a、12bと、ゲート10の底に配置される底部12cに囲まれ、さらに、プレート14により部分的に覆われる。ゲート10は、立っているときに、水流を受けて、せきとめている(第2図参照)。しかし、水流の水位が高まって、第一フロート18および第二フロート16が浮上すると、ゲート10が下流側に倒れ、下水W等の流体が下流に流れる(第3図参照)。
 なお、第2図および第3図においては、左側が上流側、右側が下流側となる。また、第一フロート18および第二フロート16の比重は、ゲート10が立った状態で受けている流体の比重よりも小さいものとする。しかも、第一フロート18および第二フロート16は、ゲート10よりも上流側に配置されている。さらに、第二フロート16は第一フロート18よりも上に配置されている。
 なお、フロート支え30は、第一フロート18よりも下に配置され、枠柱12bに固定されている。フロート支え30の下部支点32に、下側フロート挿入体34Lが固定されている。下側フロート挿入体34Lは、上下方向に延伸し、第一フロート18に下から挿入される。第一フロート18は、下側フロート挿入体34Lに沿って上下に動くことができる。上側フロート挿入体34Uは、第二フロート16を貫通し、第一フロート18に上から挿入される。吊り下げ部材38は、その上部支点36に上側フロート挿入体34Uが固定されており、第一フロート18を吊り下げる部材である。吊り下げ部材38は、吊り下げ支点40により、枠柱12bに固定されている。第一フロート18が浮上しない場合は、上側フロート挿入体34Uも上昇せず、吊り下げ部材38も水平のままである(第8図、第9図参照)。第一フロート18が浮上すると、上側フロート挿入体34Uも上昇し、上部支点36が上昇するように、吊り下げ部材38が吊り下げ支点40を中心として回転する(例えば、第10図参照)。
 なお、第4図(a)に示す浮上防止部44については、後で、第5図、第6図を参照して説明する。
 プレート50は、枠柱12bの上部に固定されている。
 第5図は、開閉装置1の側面図であり、上流側から見て左側面図(第5図(a))、右側面図(第5図(b))である。第6図は、開閉装置1の浮上防止部44近傍の拡大正面図である。第7図は、ゲート10が立っている状態の、倒れ防止部20a、20b近傍を透視した平面図である。
 開閉装置1は、これまで説明したものの他に、倒れ防止部20b、20a、第一支持解除部22b、第二支持解除部22a、浮上防止部44、第二フロート支持はり41、浮上防止解除部42、ゲート回転軸26、共通回転軸28、回転部29b、29a、下降部分24b、24a、第一バネ52a、第二バネ(第二力発生部)52b、リンク54、回転体56a、56bを備える。
 ゲート10は、中空のゲート回転軸26(第13図参照)を回転中心(回転軸)として倒れることができる。なお、倒れた状態のゲート10を第5図においては点線で図示している。
 第7図を参照して、倒れ防止部20b、20aは、下流側の面10aに接触して、水流に対抗する力をゲート10に与えている。言い換えれば、倒れ防止部20b、20aは、ゲート10の下流側の面10aを支持している。なお、倒れ防止部20b、20aは、ゲート10を支持することにより、ゲート10が下流側に倒れることを防止している。上流側から見ると、倒れ防止部20bが右側に、倒れ防止部20aが左側に配置されている。
 第7図を参照して、第一支持解除部22bおよび第二支持解除部22aは、上流側から見て(下流側から見ても)左右対称である。
 第一支持解除部22bは、倒れ防止部20bを水流(流れ)の外側(第7図では右側)に引っ張ることにより、倒れ防止部20bがゲート10に接触する点をゲート10から外し、倒れ防止部20bによるゲート10の支持を解除する(第12図参照)。
 第二支持解除部22aは、倒れ防止部20aを水流(流れ)の外側(第7図では左側)に引っ張ることにより、倒れ防止部20aがゲート10に接触する点をゲート10から外し、倒れ防止部20aによるゲート10の支持を解除する(第12図参照)。
 なお、第5図(a)においては、図示の便宜上、浮上防止解除部42、浮上防止部44、プレート50を図示省略している。さらに、第5図(a)においては、リンク58(第15図(a)に図示)も図示省略し、第一バネ52が回転部56aに固定されているように図示している。
 浮上防止部44は、第一フロート18の浮上を防止する。
 第6図を参照して、浮上防止部44は、衝突部分44b、固定部分44a、回転可能部分44cを有する。
 衝突部分44bは、吊り下げ部材38の上方に位置し、吊り下げ部材38の上昇する部分(衝突部分44bの真下にある、吊り下げ部材38の部分)の上昇時に吊り下げ部材38に衝突する。第一フロート18が浮上すれば、吊り下げ部材38の上昇する部分も上昇する。しかし、吊り下げ部材38が衝突部分44bに衝突するので、第一フロート18が浮上できない。
 固定部分44aは、流れに対して静止している部分(例えば、プレート50)に、衝突部分44bを固定する。なお、衝突部分44bは、固定部分44aを中心として回転可能である。なお、固定部分44aはプレート50に固定されていることは他の図面では図示省略している。
 回転可能部分44cは、固定部分44aと同じ程度の高さに位置し、固定部分44aを中心として回転可能である。
 なお、衝突部分44bおよび回転可能部分44cは一体であり、回転可能部分44cが固定部分44aまわりに回転した角度だけ、衝突部分44bも固定部分44aまわりに回転する。
 第二フロート支持はり41は、枠柱12bに支点41a(第8図参照)において固定されており、第二フロート16を支持する。第二フロート支持はり41は、支点41aを中心として回転可能である。
 浮上防止解除部(駆動部)42は、第二フロート支持はり41の接続点41b(支点41aよりも上流側に配置される)(第8図参照)に回転可能に接続される。第二フロート16が浮上すると、第二フロート支持はり41が支点41aを中心として回転し、接続点41bが上昇する。すると、浮上防止解除部(駆動部)42が上昇し、回転可能部分44cを上に突き動かし、回転可能部分44cが固定部分44aを中心に回転する。すると、吊り下げ部材38の上方から、衝突部分44bが移動してしまい(第11図参照)、衝突部分44bの真下にある、吊り下げ部材38の部分の上昇を妨げるものは無くなる。浮上防止解除部(駆動部)42は、このようにして、第二フロート16の浮上に伴い、浮上防止部44による第一フロート18の浮上の防止を解除する。
 共通回転軸28は、第13図を参照して、中空のゲート回転軸26の内部に配置され、ゲート回転軸26と同じ方向に延伸する。
 回転部29b、29aは、共通回転軸28に固定され、共通回転軸28とともに回転する。例えば、回転部29bが回転すると、その回転とともに共通回転軸28が回転する。共通回転軸28が回転すると、回転部29aが回転する。
 リンク54は、その一端54aが吊り下げ部材38に接続され、他端の近傍54bが回転部29bに接続されている。
 下降部分24bは、回転部29bの端部(他端の近傍54bとは反対側)に回転できるように固定される。回転部29bが第5図(b)において時計回りに回転すると、それに伴い、下降部分24bは下降する。
 なお、下降部分24bは、吊り下げ部材38に、リンク54および回転部29bを介して連結されている。吊り下げ部材38の上昇する部分(衝突部分44bの真下にある、吊り下げ部材38の部分)の上昇に伴い、回転部29bが第5図(b)において時計回りに回転し、下降部分24bが下降する。
 下降部分24aは、回転部29aの端部に回転できるように固定される。回転部29aが第5図(a)において反時計回りに回転(第5図(b)における時計回りの回転に相当)すると、それに伴い、下降部分24aは下降する。
 回転部29bおよび下降部分24bは、第一解除作動部を構成する。第一解除作動部は、回転部29bにより共通回転軸28を回転(第5図(b)における時計回りの回転)させながら、下降部分24bを下降させて、第一支持解除部22bを引っ張ることにより、第一支持解除部22bを作動させる。
 第13図を参照して、第一支持解除部22bは、ほぼ直角に折れ曲がった形状をしており、水平な部分が下降部分24bに連結され、上下方向に延伸する部分が倒れ防止部20bに連結され、直角に折れ曲がった部分を中心に回転できる。
 よって、下降部分24bを下降させて、第一支持解除部22bを引っ張ると、第一支持解除部22bが第13図において反時計回りに回転し、倒れ防止部20bを引っ張るので、第一支持解除部22bが作動することになる。
 回転部29aおよび下降部分24aは、第二解除作動部を構成する。第二解除作動部は、共通回転軸28の回転(第5図(a)における反時計回りの回転)に伴い回転部29aが回転し、下降部分24aを下降させて、第二支持解除部22aを引っ張ることにより、第二支持解除部22aを作動させる。
 第13図を参照して、第二支持解除部22aは、ほぼ直角に折れ曲がった形状をしており、水平な部分が下降部分24aに連結され、上下方向に延伸する部分が倒れ防止部20aに連結され、直角に折れ曲がった部分を中心に回転できる。
 よって、下降部分24aを下降させて、第二支持解除部22aを引っ張ると、第二支持解除部22aが第13図において時計回りに回転し、倒れ防止部20aを引っ張るので、第二支持解除部22aが作動することになる。
 なお、第一解除作動部(回転部29bおよび下降部分24b)と、第二解除作動部(回転部29aおよび下降部分24a)とは上流側から見て(下流側から見ても)左右対称である。
 なお、第一バネ52a、第二バネ(第二力発生部)52b、回転体56a、56bについては、第15図などを用いて、後で説明する。
 次に、本発明の実施形態の動作(低水位から高水位となり、ゲート10が倒れるまで)を説明する。
 通常は、下水Wの水位が低い。
 第8図は、下水Wの水位(W.L.と表記)が低いときの上流側から見たときの開閉装置1の右側面図である。第8図を参照して、下水Wの水位(W.L.と表記)が低いときには、第5図(a)、(b)を用いて説明したとおりであり、ゲート10は倒れ防止部20b、20aにより支持され、立ったままである。
 ここで、降雨などにより、下水Wの水位が高くなっていく。
 第9図は、下水Wの水位(W.L.と表記)が高くなり、第一フロート18の上端を超えたが、第二フロート16がほぼ下水Wの水位よりも上に位置している場合の開閉装置1の右側面図である。なお、第9図においては、下降部分24bを図示省略している。
 第一フロート18は下水Wに水没しており、第一フロート18の比重が下水Wの比重よりも小さいことから、本来は第一フロート18が浮上し、第一フロート18の上端が下水Wの水位を超えるようになるはずである。しかし、第一フロート18は浮上しない。
 第一フロート18が浮上すれば、上側フロート挿入体34Uも上昇し、上部支点36が上昇するように、吊り下げ部材38が吊り下げ支点40を中心として回転(第9図においては、時計回り)する。しかし、第6図を参照して、衝突部分44bが吊り下げ部材38の上方に位置している。このため、吊り下げ部材38の吊り下げ支点40を中心として回転をしようとしても、吊り下げ部材38が衝突部分44bに衝突して、それ以上は回転できない、よって、吊り下げ部材38の回転が防止されるので、第一フロート18が浮上しない。
 さらに、下水Wの水位が高くなっていく。
 第10図は、下水Wの水位(W.L.と表記)がさらに高くなり、第二フロート16が浮上した場合の開閉装置1の右側面図である。なお、第10図においては、ゲート回転軸26を図示省略している。
 第二フロート16は第一フロート18と同じ素材で形成され、底面の外径も等しい。しかし、第二フロート16は第一フロート18に比べて、上下方向の厚さが薄い。よって、第二フロート16は第一フロート18よりも軽い。これは、第二フロート16が下水Wに部分的に水没したときは急激に浮上しやすいということを意味する。
 第11図は、浮上防止部44が回転したときの開閉装置1の浮上防止部44近傍の拡大正面図である。
 第二フロート16が下水Wに部分的に水没して、急激に浮上すると、第二フロート支持はり41が支点41aを中心として回転し、接続点41bが上昇する。すると、浮上防止解除部(駆動部)42が上昇し、回転可能部分44cを上に突き動かし、回転可能部分44cが固定部分44aを中心に回転する。すると、吊り下げ部材38の上方から、衝突部分44bが移動してしまい(第11図参照)、衝突部分44bの真下にある、吊り下げ部材38の部分の上昇を妨げるものは無くなる。
 ここで、第一フロート18は下水Wに完全に水没しており、大きな浮力を受けているため、第一フロート18が急激に浮上しようとする。その結果、吊り下げ部材38は吊り下げ支点40を中心として回転(第10図において、時計回り)する。
 すると、リンク54が上昇し、回転部29bが共通回転軸28を回転(第10図において、時計回り)させながら、下降部分24bを下降させる。下降部分24bを下降させて、第一支持解除部22bを引っ張ると、第一支持解除部22bが第13図において反時計回りに回転し、倒れ防止部20bを引っ張るので、第一支持解除部22bが作動する。よって、倒れ防止部20bはゲート10から外れる(第12図参照)。
 第13図は、開閉装置1を下流側から見た図であり、共通回転軸28を透視し、さらに、第一解除作動部(回転部29bおよび下降部分24b)および第二解除作動部(回転部29aおよび下降部分24a)、倒れ防止部20b、20a、第一支持解除部22b、第二支持解除部22aを図示したものである。
 共通回転軸28が回転(第10図において、時計回り)すると、第5図(a)において共通回転軸28が反時計回りに回転することになり、下降部分24aが下降して、第二支持解除部22aを引っ張り、第二支持解除部22aが第13図において時計回りに回転し、倒れ防止部20aを引っ張るので、第二支持解除部22aが作動する。よって、倒れ防止部20aがゲート10から外れる(第12図参照)。
 このように、第一フロート18の浮上(なお、「浮上」は、必ずしも上端が水面に露出すること必要とせず、上端が水面に向かって動くことも含むものとする)に伴い、第一支持解除部22bおよび第二支持解除部22aが作動する。
 なお、第12図は、ゲート10が倒れた状態の、倒れ防止部20a、20b近傍を透視した平面図である。倒れ防止部20a、20bが、ゲート10から外れたので、ゲート10は下水Wの水圧により、下流側に倒れる。
 第14図は、下水Wが下流側に流れた後の開閉装置1の右側面図である。下水Wが下流側に流れることなどにより、第二フロート16の下端よりも水位が低くなれば、第一フロート18は下水Wの水面に浮かびながら、下降していく。これにより、吊り下げ部材38も水平に戻る。しかも、第二フロート16は下降し、接続点41bも下がり、浮上防止部44も元通りに、吊り下げ部材38を抑えつける位置(第6図参照)に戻る。
 本発明の実施形態によれば、第一フロート18が下水Wに水没しても、第二フロート16が浮上するまでは、浮上防止部44が吊り下げ部材38を抑えつけており(第6図参照)、第一フロート18が浮上できない。
 ここで、第二フロート16の急激に浮上すると、それに伴い、浮上防止部44が回転し、吊り下げ部材38を抑えつけなくなり(第11図参照)、第一フロート18は急激な浮上を開始する(すでに、水没しており、大きな浮力が第一フロート18に働いている)。これにより、吊り下げ部材38の支点40を中心に第10図において時計回りに回転し、リンク54が上昇することで、回転部29bが時計回りに回転し、下降部分24bが下降して、第一支持解除部22bが引っ張られ(第13図参照)、倒れ防止部20bが引っ張られて、ゲート10の支持が解除される。
 しかも、回転部29bの第10図における時計回りの回転に伴い、共通回転軸28が回転し、回転部29aが回転して(第5図(a)において反時計回り)、下降部分24aが下降して、第二支持解除部22aが引っ張られ(第13図参照)、倒れ防止部20aが引っ張られて、ゲート10の支持が解除される。なお、原則、引っ張りにより、動作が伝達されることは、倒れ防止部20a、20bによるゲート10の支持解除が同時に行われるようにするために、有益である。
 ここで、第一フロート18が急激な浮上を行うため、倒れ防止部20bによるゲート10の支持の解除も急激に行われるので、ゲート10が素早く倒れて開くことができる。
 しかも、倒れ防止部20a、20bが共通回転軸28により連結されることになるが、共通回転軸28は、中空のゲート回転軸26に入っており、ゲート回転軸26の内部には下水Wが入らないようになっているので、共通回転軸28が下水Wにさらされない。
 しかも、本発明の実施形態における開閉装置1は、ゲート10が倒れたから、流路の水位が低くなった場合に、ゲート10が立った状態に戻るようになっている。
 第15図は、ゲート10が倒れたときの開閉装置1の側面図であり、上流側から見て左側面図(第15図(a))、右側面図(第15図(b))である。開閉装置1は、先に記載したように、第一バネ52a、第二バネ(第二力発生部)52b、リンク54、回転体56a、56bを備える。さらに、開閉装置1は、リンク58を有する。
 回転体56a、56bは、ゲート回転軸26に固定され、ゲート回転軸26とともに回転する。
 第一力発生部は、第一バネ52aおよびリンク58により構成される。第一バネ52aは、第一力発生部の一端52a−1に固定されている。リンク58は、第一力発生部の他端58aに固定され、第一バネ52aに連結される。
 第一力発生部の一端52a−1が、ゲート回転軸26よりも上に固定されている。第一力発生部の他端58aは、第一力発生部の他端58aは回転体56aに固定されており、ゲート回転軸26(の中心)から、所定長さだけ離れた位置に配置されている。すなわち、回転体56aがゲート回転軸26とともに回転しても、第一力発生部の他端58aとゲート回転軸26(の中心)との距離(所定長さ)は変わらない。
 第一バネ52aは、ゲート10を立った状態に戻る力を発生する。ただし、第一バネ52aは、ゲート10が倒れた状態では、ゲート10を立った状態にするためには充分ではない力を発生する。第15図(a)を参照して、ゲート10が倒れた状態における、第一力発生部の一端52a−1と第一力発生部の他端58aとを結んだ直線と、ゲート回転軸26の中心との距離D1(一端52a−1と他端58aとを結んだ直線に、ゲート回転軸26の中心から下ろした垂線の長さに相当する)が短い。よって、ゲート回転軸26を、第15図(a)において時計回りに回転させるトルクが小さく、ゲート10を立った状態にするためには力が充分ではない。
 第二力発生部は、第二力発生部の一端52b−1および第二力発生部の他端52b−2の双方に固定された第二バネ52bを有する。ただし、第二バネ52bを一端52b−1(または他端52b−2)に固定し、リンクを他端52b−2(または一端52b−1)に接続し、第二バネ52bとリンクとを接続するようにすることも考えられる。
 第二力発生部の一端52b−1は、ゲート回転軸26よりも上に固定される。第二力発生部の他端52b−2は回転体56bに固定されており、ゲート回転軸26(の中心)から、所定長さだけ離れた位置に配置されている。すなわち、回転体56bがゲート回転軸26とともに回転しても、第二力発生部の他端52b−2とゲート回転軸26(の中心)との距離(所定長さ)は変わらない。
 なお、ゲート10が倒れた状態における、第二力発生部の一端52b−1と第二力発生部の他端52b−2とを結んだ直線と、ゲート回転軸26の回転中心との距離D2(一端52b−1と他端52b−2とを結んだ直線に、ゲート回転軸26の中心から下ろした垂線の長さに相当する)は、距離D1よりも長い。しかし、第二バネ52bは第一バネ52aよりも長く(バネ定数は小さくなる)、第15図(b)において反時計回りに回転させるトルクは小さい。
 なお、距離D2や第二バネ52bを収縮させる長さを調整することで、流体(下水W)の流れる流路の水位が所定の水位以下であるときに、ゲート10を立った状態にし始めるために充分な力を発生するようにする。ただし、第二バネ52bの力を大きくしすぎて、流路の水位がまだ高いうちにゲート10を立った状態にし始めるために充分な力を発生しないようにする。
 すると、水位が所定の水位以下になったときに、第二バネ52bの収縮力により、ゲート回転軸26が回転し、ゲート10が少し上がる。
 第16図は、ゲート10が少し上がったときの開閉装置1の側面図であり、上流側から見て左側面図(第16図(a))、右側面図(第16図(b))である。
 第16図(a)を参照して、ゲート10が少し上がったときの第一力発生部の一端52a−1と第一力発生部の他端58aとを結んだ直線と、ゲート回転軸26の中心との距離は依然として短い。よって、第一バネ52aにより生じる、ゲート回転軸26を時計回りに回転させるためのトルク(ゲート10を上げるためのトルク)は依然として小さい。
 第16図(b)を参照して、ゲート10が少し上がったときの第二力発生部の一端52b−1と第二力発生部の他端52b−2とを結んだ直線と、ゲート回転軸26の中心との距離は依然として、長い。よって、第二バネ52bにより生じる、ゲート回転軸26を反時計回りに回転させるためのトルク(ゲート10を上げるためのトルク)は依然として、ゲート10を上げるために充分なものである。
 さらに、ゲート10が上がる。
 第17図は、ゲート10がさらに上がったときの開閉装置1の側面図であり、上流側から見て左側面図(第17図(a))、右側面図(第17図(b))である。
 第17図(a)を参照して、ゲート10が所定の角度だけ倒れかけているときの第一力発生部の一端52a−1と第一力発生部の他端58aとを結んだ直線と、ゲート回転軸26の中心との距離D3は長い。すなわち、ゲート10が倒れた状態における(第15図(a)参照)、第一力発生部の一端52a−1と第一力発生部の他端58aとを結んだ直線と、ゲート回転軸26の中心との距離D1が、距離D3よりも短い。なお、所定の角度未満だけ倒れかけているとき(第17図(a)よりも、ゲート10が立っているとき)も、同様である。よって、ゲート10が所定の角度以下だけ倒れかけているとき、第一バネ52aは、ゲート10を立った状態にするために充分な力を発生する。すなわち、第一バネ52aにより生じるゲート回転軸26を時計回りに回転させるためのトルク(ゲート10を上げるためのトルク)が、ゲート10を立った状態にするために充分に大きい。
 第17図(b)を参照して、ゲート10がさらに上がったときの第二力発生部の一端52b−1と第二力発生部の他端52b−2とを結んだ直線と、ゲート回転軸26の中心との距離はやや短くなる。よって、第二バネ52bにより生じる、ゲート回転軸26を反時計回りに回転させるためのトルク(ゲート10を上げるためのトルク)はやや小さくなる。
 最後に、ゲート10が立った状態に戻る。
 第18図は、ゲート10が立った状態の開閉装置1の側面図であり、上流側から見て左側面図(第18図(a))、右側面図(第18図(b))である。
 第18図(a)を参照して、第一バネ52aにより生じるゲート回転軸26を時計回りに回転させるためのトルクが大きい。
 第18図(b)を参照して、第二力発生部の一端52b−1と第二力発生部の他端52b−2とを結んだ直線上に、ゲート回転軸26があり、第二バネ52bにより生じる、ゲート回転軸26を反時計回りに回転させるためのトルクはほぼ0となる。
 本発明の実施形態によれば、ゲート10が倒れたときは(第15図(a)参照)、バネ定数が大きい第一バネ52aにより生じるゲート10を立った状態にするためのトルクは小さいので、流路の水位が高いうちに、ゲート10が閉じてしまわないようにすることができる。
 しかも、ゲート10が所定の角度以下だけ倒れかけているときには(第17図(a)参照)、第一バネ52aは、ゲート10を立った状態にするために充分な力を発生する。よって、ゲート10を立った状態にすることができる。
 さらに、ゲート10が倒れたときは(第15図(b)参照)、流体(下水W)の流れる流路の水位が所定の水位以下であるときに、ゲート10を立った状態にし始めるために充分な力を発生するようにした第二バネ52bにより、ゲート10を立った状態にし始めることができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining the outline of the operation when the switchgear 1 according to the embodiment of the present invention is provided in the sewers 100U, 100L, and is a diagram when the water level of the sewer 100U is low (FIG. 1 (a )), A view when the water level of the sewer 100U is becoming higher (FIG. 1 (b)), and a view after the water level of the sewer 100U is higher than a predetermined height (FIG. 1 (c)). . Although the gate 10 of the switchgear 1 is shown, other components of the switchgear 1 are not shown in FIG.
First, the sewer 100U is on the upstream side, and the sewer 100L side is on the downstream side. The switchgear 1 is disposed between the sewer 100U and the sewer 100L through a manhole (not shown). Usually, the water level of the sewage W flowing through the sewer 100U is low (see FIG. 1 (a)). At this time, the gate 10 stands and receives a flow of sewage W (a kind of fluid) flowing through the sewer 100U. Then, the sewage W is stopped by the gate 10, and the sewage W does not flow into the downstream sewer 100L. Then, garbage G accumulates in the sewer 100L.
Here, the water level of the sewage W flowing through the sewer 100U rises due to rain or the like (see FIG. 1 (b)). Then, when the water level of the sewer 100U becomes equal to or higher than a predetermined height (see FIG. 1 (b)), the gate 10 falls and the sewer W flows from the sewer 100U to the sewer 100L. Thereby, the garbage G accumulated in the sewer 100L flows away, and the sewer 100L can be washed.
FIG. 2 is a perspective view of the opening / closing device 1 (a state where the gate 10 is standing). FIG. 3 is a perspective view of the opening / closing device 1 (a state in which the gate 10 is tilted). FIG. 4 is a view of the opening / closing device 1 as viewed from the upstream side (FIG. 4A) and a view as viewed from the downstream side (FIG. 4B).
The switchgear 1 includes a gate 10, frame columns 12a and 12b, a bottom 12c, a plate 14, a first float 18, a second float 16, a float support 30, a lower fulcrum 32, a lower float insert 34L, and an upper float insert 34U. The upper fulcrum 36, the suspension member 38, the suspension fulcrum 40, and the plate 50 are provided.
The gate 10 is surrounded by frame pillars 12 a and 12 b standing on the side of the gate 10 and a bottom portion 12 c disposed at the bottom of the gate 10, and is further partially covered by a plate 14. When the gate 10 is standing, it receives the water flow and is coughing (see FIG. 2). However, when the water level of the water flow increases and the first float 18 and the second float 16 rise, the gate 10 falls to the downstream side, and fluid such as sewage W flows downstream (see FIG. 3).
In FIGS. 2 and 3, the left side is the upstream side and the right side is the downstream side. The specific gravity of the first float 18 and the second float 16 is smaller than the specific gravity of the fluid received with the gate 10 standing. In addition, the first float 18 and the second float 16 are arranged on the upstream side of the gate 10. Further, the second float 16 is disposed above the first float 18.
In addition, the float support 30 is arrange | positioned below the 1st float 18, and is being fixed to the frame pillar 12b. A lower float insert 34 </ b> L is fixed to the lower fulcrum 32 of the float support 30. The lower float insert 34L extends in the vertical direction and is inserted into the first float 18 from below. The first float 18 can move up and down along the lower float insert 34L. The upper float insert 34U penetrates the second float 16 and is inserted into the first float 18 from above. The suspension member 38 is a member that suspends the first float 18 with the upper float insertion body 34U fixed to the upper fulcrum 36 thereof. The suspension member 38 is fixed to the frame column 12b by a suspension fulcrum 40. When the first float 18 does not float, the upper float insert 34U does not rise, and the suspension member 38 remains horizontal (see FIGS. 8 and 9). When the first float 18 rises, the upper float insert 34U also rises, and the suspension member 38 rotates about the suspension fulcrum 40 so that the upper fulcrum 36 rises (see, for example, FIG. 10).
The floating prevention unit 44 shown in FIG. 4 (a) will be described later with reference to FIG. 5 and FIG.
The plate 50 is fixed to the upper part of the frame column 12b.
FIG. 5 is a side view of the opening / closing device 1, which is a left side view (FIG. 5 (a)) and a right side view (FIG. 5 (b)) as viewed from the upstream side. FIG. 6 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1. FIG. 7 is a plan view seen through the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 is standing.
In addition to what has been described so far, the switchgear 1 includes the fall prevention parts 20b, 20a, the first support release part 22b, the second support release part 22a, the floating prevention part 44, the second float support beam 41, and the floating prevention release part. 42, gate rotating shaft 26, common rotating shaft 28, rotating portions 29b and 29a, descending portions 24b and 24a, first spring 52a, second spring (second force generating portion) 52b, link 54, rotating bodies 56a and 56b. Prepare.
The gate 10 can be tilted about a hollow gate rotation shaft 26 (see FIG. 13) as a rotation center (rotation shaft). Note that the gate 10 in a collapsed state is shown by a dotted line in FIG.
Referring to FIG. 7, the fall prevention portions 20 b and 20 a are in contact with the downstream surface 10 a and apply a force against the water flow to the gate 10. In other words, the fall prevention portions 20 b and 20 a support the downstream surface 10 a of the gate 10. The fall prevention units 20b and 20a support the gate 10 to prevent the gate 10 from falling to the downstream side. When viewed from the upstream side, the fall prevention unit 20b is arranged on the right side, and the fall prevention unit 20a is arranged on the left side.
Referring to FIG. 7, first support release portion 22b and second support release portion 22a are bilaterally symmetric when viewed from the upstream side (even when viewed from the downstream side).
The first support release portion 22b pulls the fall prevention portion 20b to the outside (right side in FIG. 7) of the water flow (flow), thereby removing the point where the fall prevention portion 20b contacts the gate 10 from the gate 10 to prevent the fall. The support of the gate 10 by the portion 20b is released (see FIG. 12).
The second support release part 22a pulls the fall prevention part 20a to the outside of the water flow (flow) (left side in FIG. 7), thereby removing the point where the fall prevention part 20a contacts the gate 10 from the gate 10 to prevent the fall. The support of the gate 10 by the part 20a is released (see FIG. 12).
In FIG. 5A, for the sake of convenience of illustration, the anti-lifting release portion 42, the anti-lifting portion 44, and the plate 50 are not shown. Further, in FIG. 5 (a), the link 58 (shown in FIG. 15 (a)) is also omitted, and the first spring 52 is shown fixed to the rotating portion 56a.
The floating prevention unit 44 prevents the first float 18 from floating.
Referring to FIG. 6, the levitation preventing portion 44 has a collision portion 44b, a fixed portion 44a, and a rotatable portion 44c.
The collision portion 44b is positioned above the suspension member 38 and collides with the suspension member 38 when the portion where the suspension member 38 rises (the portion of the suspension member 38 that is directly below the collision portion 44b) rises. If the 1st float 18 floats, the part to which the suspension member 38 will raise will also raise. However, since the suspension member 38 collides with the collision portion 44b, the first float 18 cannot be lifted.
The fixing portion 44a fixes the collision portion 44b to a portion that is stationary with respect to the flow (for example, the plate 50). The collision portion 44b can rotate around the fixed portion 44a. Note that the fixed portion 44a is fixed to the plate 50 in other drawings.
The rotatable portion 44c is located at the same height as the fixed portion 44a and is rotatable about the fixed portion 44a.
The collision portion 44b and the rotatable portion 44c are integrated, and the collision portion 44b also rotates around the fixed portion 44a by the angle at which the rotatable portion 44c rotates around the fixed portion 44a.
The second float support beam 41 is fixed to the frame column 12b at a fulcrum 41a (see FIG. 8) and supports the second float 16. The second float support beam 41 is rotatable around a fulcrum 41a.
The levitation prevention release part (drive part) 42 is rotatably connected to a connection point 41b (arranged upstream of the fulcrum 41a) of the second float support beam 41 (see FIG. 8). When the second float 16 rises, the second float support beam 41 rotates about the fulcrum 41a, and the connection point 41b rises. Then, the anti-lifting release unit (driving unit) 42 moves up and pushes the rotatable portion 44c upward, and the rotatable portion 44c rotates around the fixed portion 44a. Then, the collision portion 44b moves from above the suspension member 38 (see FIG. 11), and there is no obstacle that prevents the suspension member 38 from being lifted immediately below the collision portion 44b. In this way, the floating prevention release unit (drive unit) 42 releases the floating prevention of the first float 18 by the floating prevention unit 44 as the second float 16 floats.
Referring to FIG. 13, the common rotating shaft 28 is disposed inside the hollow gate rotating shaft 26 and extends in the same direction as the gate rotating shaft 26.
The rotating portions 29 b and 29 a are fixed to the common rotating shaft 28 and rotate together with the common rotating shaft 28. For example, when the rotating unit 29b rotates, the common rotating shaft 28 rotates with the rotation. When the common rotating shaft 28 rotates, the rotating unit 29a rotates.
One end 54a of the link 54 is connected to the suspension member 38, and the vicinity 54b of the other end is connected to the rotating portion 29b.
The descending portion 24b is fixed so as to be able to rotate at the end of the rotating portion 29b (on the opposite side to the vicinity 54b of the other end). When the rotating portion 29b rotates clockwise in FIG. 5 (b), the descending portion 24b descends accordingly.
The descending portion 24b is connected to the suspension member 38 via the link 54 and the rotating portion 29b. As the part where the hanging member 38 rises (the part of the hanging member 38 directly below the collision part 44b) rises, the rotating part 29b rotates clockwise in FIG. 5 (b), and the descending part 24b Descend.
The descending portion 24a is fixed to the end of the rotating portion 29a so as to be rotatable. When the rotating portion 29a rotates counterclockwise in FIG. 5 (a) (corresponding to the clockwise rotation in FIG. 5 (b)), the descending portion 24a descends accordingly.
The rotating part 29b and the descending part 24b constitute a first release operating part. The first release actuating part lowers the descending part 24b and pulls the first support releasing part 22b while rotating the common rotating shaft 28 by the rotating part 29b (clockwise rotation in FIG. 5 (b)). Thus, the first support release portion 22b is operated.
Referring to FIG. 13, the first support release portion 22b has a shape bent substantially at a right angle, the horizontal portion is connected to the descending portion 24b, and the portion extending in the vertical direction becomes the fall preventing portion 20b. It can be connected and rotated around a bent part at a right angle.
Therefore, when the lowering portion 24b is lowered and the first support release portion 22b is pulled, the first support release portion 22b rotates counterclockwise in FIG. 13 and pulls the fall prevention portion 20b. The part 22b will operate.
The rotating portion 29a and the descending portion 24a constitute a second release operating portion. The second release actuating part rotates the rotating part 29a with the rotation of the common rotating shaft 28 (counterclockwise rotation in FIG. 5 (a)), lowers the descending part 24a, and the second support releasing part 22a. By pulling, the second support release portion 22a is operated.
Referring to FIG. 13, the second support releasing portion 22a has a shape bent substantially at a right angle, the horizontal portion is connected to the descending portion 24a, and the portion extending in the vertical direction becomes the fall preventing portion 20a. It can be connected and rotated around a bent part at a right angle.
Therefore, when the lowering portion 24a is lowered and the second support release portion 22a is pulled, the second support release portion 22a rotates clockwise in FIG. 13 and pulls the fall prevention portion 20a. 22a will operate.
The first release operation part (rotating part 29b and descending part 24b) and the second release action part (rotating part 29a and descending part 24a) are bilaterally symmetric when viewed from the upstream side (even when viewed from the downstream side). is there.
The first spring 52a, the second spring (second force generator) 52b, and the rotating bodies 56a and 56b will be described later with reference to FIG.
Next, the operation of the embodiment of the present invention (from the low water level to the high water level until the gate 10 falls) will be described.
Usually, the water level of the sewage W is low.
FIG. 8 is a right side view of the switchgear 1 when viewed from the upstream side when the water level of the sewage W (indicated as W.L.) is low. Referring to FIG. 8, when the water level of sewage W (indicated as W.L.) is low, it is as described with reference to FIGS. 5 (a) and 5 (b), and gate 10 falls over preventing part 20b. , 20a and remain standing.
Here, the water level of the sewage W becomes higher due to rain or the like.
In FIG. 9, the water level of the sewage W (indicated as WL) is high and exceeds the upper end of the first float 18, but the second float 16 is located substantially above the water level of the sewage W. It is a right view of the switchgear 1 in the case. In FIG. 9, the descending portion 24b is not shown.
Since the first float 18 is submerged in the sewage W, and the specific gravity of the first float 18 is smaller than the specific gravity of the sewage W, the first float 18 originally floats and the upper end of the first float 18 is the sewage W. Should exceed the water level. However, the first float 18 does not rise.
When the first float 18 rises, the upper float insert 34U also rises, and the suspension member 38 rotates about the suspension fulcrum 40 so that the upper fulcrum 36 rises (clockwise in FIG. 9). To do. However, referring to FIG. 6, the collision portion 44 b is located above the suspension member 38. For this reason, even if it tries to rotate around the suspending fulcrum 40 of the suspending member 38, the suspending member 38 collides with the collision part 44b and cannot be rotated any more. Therefore, the rotation of the suspending member 38 is prevented. As a result, the first float 18 does not rise.
Furthermore, the water level of the sewage W becomes higher.
FIG. 10 is a right side view of the opening / closing device 1 when the water level of the sewage W (indicated as W.L.) becomes higher and the second float 16 floats. In FIG. 10, the gate rotation shaft 26 is not shown.
The second float 16 is made of the same material as the first float 18 and has the same outer diameter at the bottom. However, the second float 16 is thinner in the vertical direction than the first float 18. Therefore, the second float 16 is lighter than the first float 18. This means that when the second float 16 is partially submerged in the sewage W, it is likely to rise rapidly.
FIG. 11 is an enlarged front view of the vicinity of the floating prevention portion 44 of the opening / closing device 1 when the floating prevention portion 44 rotates.
When the second float 16 is partially submerged in the sewage W and rapidly rises, the second float support beam 41 rotates around the fulcrum 41a and the connection point 41b rises. Then, the anti-lifting release unit (driving unit) 42 moves up and pushes the rotatable portion 44c upward, and the rotatable portion 44c rotates around the fixed portion 44a. Then, the collision portion 44b moves from above the suspension member 38 (see FIG. 11), and there is no obstacle that prevents the suspension member 38 from being lifted immediately below the collision portion 44b.
Here, since the first float 18 is completely submerged in the sewage W and receives a large buoyancy, the first float 18 tends to rise rapidly. As a result, the suspension member 38 rotates around the suspension fulcrum 40 (clockwise in FIG. 10).
Then, the link 54 rises, and the rotating portion 29b lowers the descending portion 24b while rotating the common rotating shaft 28 (clockwise in FIG. 10). When the lowering portion 24b is lowered and the first support release portion 22b is pulled, the first support release portion 22b rotates counterclockwise in FIG. 13 and pulls the fall prevention portion 20b. Therefore, the first support release portion 22b Operates. Therefore, the fall prevention unit 20b is detached from the gate 10 (see FIG. 12).
FIG. 13 is a view of the opening / closing device 1 as viewed from the downstream side, seeing through the common rotation shaft 28, and further, a first release operation part (rotation part 29b and descending part 24b) and a second release operation part (rotation). The portion 29a and the descending portion 24a), the fall prevention portions 20b and 20a, the first support release portion 22b, and the second support release portion 22a are illustrated.
When the common rotating shaft 28 rotates (clockwise in FIG. 10), the common rotating shaft 28 rotates counterclockwise in FIG. 5 (a), and the descending portion 24a descends to provide the second support. When the release portion 22a is pulled and the second support release portion 22a rotates clockwise in FIG. 13 to pull the fall prevention portion 20a, the second support release portion 22a operates. Therefore, the fall prevention unit 20a is detached from the gate 10 (see FIG. 12).
As described above, the first support release portion is associated with the floating of the first float 18 (in addition, “floating” does not necessarily require the upper end to be exposed to the water surface, and includes that the upper end moves toward the water surface). 22b and the second support release part 22a operate.
FIG. 12 is a plan view of the vicinity of the fall prevention portions 20a and 20b in a state where the gate 10 has fallen. Since the fall prevention parts 20a and 20b are detached from the gate 10, the gate 10 falls down downstream due to the water pressure of the sewage W.
FIG. 14 is a right side view of the opening / closing device 1 after the sewage W has flowed downstream. If the water level becomes lower than the lower end of the second float 16 due to the sewage W flowing downstream, the first float 18 descends while floating on the surface of the sewage W. Thereby, the suspension member 38 also returns to the horizontal. In addition, the second float 16 is lowered, the connection point 41b is also lowered, and the floating prevention portion 44 is also returned to the position where the suspension member 38 is held down (see FIG. 6).
According to the embodiment of the present invention, even if the first float 18 is submerged in the sewage W, the levitation preventing portion 44 holds down the suspension member 38 until the second float 16 rises (FIG. 6). See), the first float 18 cannot rise.
Here, when the second float 16 suddenly rises, the rise prevention unit 44 rotates accordingly, and the suspension member 38 cannot be restrained (see FIG. 11), and the first float 18 starts to rise suddenly. (It has already been submerged and large buoyancy is acting on the first float 18). As a result, the fulcrum 40 rotates about the fulcrum 40 of the suspension member 38 in the clockwise direction in FIG. 10 and the link 54 rises, so that the rotating portion 29b rotates clockwise, and the descending portion 24b descends. The support release portion 22b is pulled (see FIG. 13), the fall prevention portion 20b is pulled, and the support of the gate 10 is released.
Moreover, as the rotating portion 29b rotates clockwise in FIG. 10, the common rotating shaft 28 rotates, the rotating portion 29a rotates (counterclockwise in FIG. 5A), and the descending portion 24a descends. Then, the second support release portion 22a is pulled (see FIG. 13), the fall prevention portion 20a is pulled, and the support of the gate 10 is released. In principle, it is beneficial that the operation is transmitted by pulling so that the support of the gate 10 is released simultaneously by the fall prevention units 20a and 20b.
Here, since the first float 18 rises abruptly, the support of the gate 10 by the fall prevention portion 20b is also suddenly released, so that the gate 10 can be quickly fallen down and opened.
In addition, the fall prevention portions 20a and 20b are connected by the common rotary shaft 28, and the common rotary shaft 28 enters the hollow gate rotary shaft 26, and the sewage W is inside the gate rotary shaft 26. Since it does not enter, the common rotating shaft 28 is not exposed to the sewage W.
Moreover, the opening / closing device 1 according to the embodiment of the present invention returns to the state where the gate 10 stands when the water level of the flow path becomes low because the gate 10 falls down.
FIG. 15 is a side view of the opening / closing device 1 when the gate 10 falls down, and is a left side view (FIG. 15 (a)) and a right side view (FIG. 15 (b)) as viewed from the upstream side. is there. As described above, the opening / closing device 1 includes the first spring 52a, the second spring (second force generating unit) 52b, the link 54, and the rotating bodies 56a and 56b. Further, the opening / closing device 1 has a link 58.
The rotators 56 a and 56 b are fixed to the gate rotation shaft 26 and rotate together with the gate rotation shaft 26.
The first force generator is configured by a first spring 52 a and a link 58. The first spring 52a is fixed to one end 52a-1 of the first force generator. The link 58 is fixed to the other end 58a of the first force generator and is connected to the first spring 52a.
One end 52 a-1 of the first force generator is fixed above the gate rotation shaft 26. The other end 58a of the first force generating unit is fixed to the rotating body 56a and the other end 58a of the first force generating unit is disposed at a position separated from the gate rotation shaft 26 (the center) by a predetermined length. ing. That is, even if the rotating body 56a rotates together with the gate rotation shaft 26, the distance (predetermined length) between the other end 58a of the first force generator and the gate rotation shaft 26 (the center thereof) does not change.
The first spring 52a generates a force that returns the gate 10 to a standing state. However, the first spring 52a generates a force that is not sufficient to bring the gate 10 into a standing state when the gate 10 is tilted. Referring to FIG. 15A, a straight line connecting one end 52a-1 of the first force generating portion and the other end 58a of the first force generating portion in a state where the gate 10 is tilted, and the gate rotating shaft 26 Distance D1 (corresponding to the length of a perpendicular line extending from the center of the gate rotation shaft 26 to the straight line connecting the one end 52a-1 and the other end 58a). Therefore, the torque for rotating the gate rotation shaft 26 clockwise in FIG. 15 (a) is small, and the force is not sufficient to bring the gate 10 into the standing state.
The second force generator has a second spring 52b fixed to both one end 52b-1 of the second force generator and the other end 52b-2 of the second force generator. However, the second spring 52b is fixed to one end 52b-1 (or the other end 52b-2), the link is connected to the other end 52b-2 (or one end 52b-1), and the second spring 52b is connected to the link. It is also conceivable to do so.
One end 52 b-1 of the second force generator is fixed above the gate rotation shaft 26. The other end 52b-2 of the second force generation unit is fixed to the rotating body 56b, and is disposed at a position separated from the gate rotation shaft 26 (the center) by a predetermined length. That is, even if the rotating body 56b rotates together with the gate rotation shaft 26, the distance (predetermined length) between the other end 52b-2 of the second force generation unit and the gate rotation shaft 26 (the center) does not change.
Note that a distance D2 between a straight line connecting one end 52b-1 of the second force generation unit and the other end 52b-2 of the second force generation unit and the rotation center of the gate rotation shaft 26 in a state where the gate 10 is tilted. (Corresponding to the length of a perpendicular line drawn from the center of the gate rotation shaft 26 to the straight line connecting the one end 52b-1 and the other end 52b-2) is longer than the distance D1. However, the second spring 52b is longer than the first spring 52a (the spring constant is small), and the torque to rotate counterclockwise in FIG. 15 (b) is small.
By adjusting the distance D2 and the length by which the second spring 52b is contracted, when the water level of the flow path through which the fluid (sewage W) flows is equal to or lower than the predetermined water level, the gate 10 starts to stand. To generate sufficient force. However, the force of the second spring 52b is increased too much so that sufficient force is not generated to start the gate 10 standing while the water level in the flow path is still high.
Then, when the water level becomes equal to or lower than the predetermined water level, the gate rotation shaft 26 is rotated by the contraction force of the second spring 52b, and the gate 10 is slightly raised.
FIG. 16 is a side view of the opening / closing device 1 when the gate 10 is slightly raised, as viewed from the upstream side (FIG. 16 (a)), right side view (FIG. 16 (b)). It is.
Referring to FIG. 16 (a), a straight line connecting one end 52a-1 of the first force generating portion and the other end 58a of the first force generating portion when the gate 10 is slightly raised, and the gate rotating shaft 26 The distance from the center is still short. Therefore, the torque generated by the first spring 52a for rotating the gate rotation shaft 26 clockwise (torque for raising the gate 10) is still small.
Referring to FIG. 16 (b), a straight line connecting one end 52b-1 of the second force generating portion and the other end 52b-2 of the second force generating portion when the gate 10 is slightly raised, and gate rotation The distance from the center of the shaft 26 is still long. Therefore, the torque (torque for raising the gate 10) for rotating the gate rotation shaft 26 counterclockwise generated by the second spring 52b is still sufficient for raising the gate 10.
Furthermore, the gate 10 goes up.
FIG. 17 is a side view of the opening / closing device 1 when the gate 10 is further raised, and is a left side view (FIG. 17 (a)) and a right side view (FIG. 17 (b)) as viewed from the upstream side. It is.
Referring to FIG. 17 (a), a straight line connecting one end 52a-1 of the first force generating portion and the other end 58a of the first force generating portion when the gate 10 is tilted by a predetermined angle. The distance D3 from the center of the gate rotation shaft 26 is long. That is, in a state where the gate 10 is tilted (see FIG. 15 (a)), the straight line connecting the one end 52a-1 of the first force generating unit and the other end 58a of the first force generating unit, and the gate rotation shaft 26 The distance D1 from the center of is shorter than the distance D3. The same applies to the case of tilting less than a predetermined angle (when the gate 10 is standing more than in FIG. 17A). Therefore, when the gate 10 is tilted by a predetermined angle or less, the first spring 52a generates a force sufficient to bring the gate 10 into a standing state. That is, the torque for rotating the gate rotation shaft 26 generated by the first spring 52a clockwise (torque for raising the gate 10) is sufficiently large to make the gate 10 stand.
Referring to FIG. 17 (b), a straight line connecting one end 52b-1 of the second force generating portion and the other end 52b-2 of the second force generating portion when the gate 10 is further raised, and gate rotation The distance from the center of the shaft 26 is slightly shortened. Therefore, the torque generated by the second spring 52b for rotating the gate rotation shaft 26 counterclockwise (torque for raising the gate 10) is slightly reduced.
Finally, the gate 10 is returned to the standing state.
FIG. 18 is a side view of the switchgear 1 in a state where the gate 10 stands, and is a left side view (FIG. 18 (a)) and a right side view (FIG. 18 (b)) as viewed from the upstream side. is there.
Referring to FIG. 18 (a), the torque for rotating the gate rotation shaft 26 generated by the first spring 52a clockwise is large.
Referring to FIG. 18 (b), there is a gate rotation shaft 26 on a straight line connecting one end 52b-1 of the second force generating portion and the other end 52b-2 of the second force generating portion. The torque generated by the spring 52b for rotating the gate rotation shaft 26 counterclockwise is substantially zero.
According to the embodiment of the present invention, when the gate 10 falls (see FIG. 15 (a)), the torque for bringing the gate 10 upright caused by the first spring 52a having a large spring constant is small. It is possible to prevent the gate 10 from closing while the water level of the flow path is high.
In addition, when the gate 10 is tilted by a predetermined angle or less (see FIG. 17A), the first spring 52a generates a force sufficient to bring the gate 10 into a standing state. Therefore, the gate 10 can be made to stand.
Furthermore, when the gate 10 falls down (see FIG. 15 (b)), when the water level of the flow path through which the fluid (sewage W) flows is below a predetermined water level, the gate 10 starts to stand. The gate 10 can be started to stand by the second spring 52b that generates a sufficient force.

Claims (9)

  1. 立った状態で流体の流れを受け、該流れの下流方向に倒れることが可能なゲートと、
     前記ゲートを前記立った状態にする力を発生する第一力発生部と、
     を備え、
     前記第一力発生部は、
     前記ゲートが倒れた状態では、前記ゲートを前記立った状態にするためには充分ではない力を発生し、
     前記ゲートが所定の角度以下だけ倒れかけている状態で、前記ゲートを前記立った状態にするために充分な力を発生する、
     開閉装置。
    A gate capable of receiving a fluid flow in a standing state and falling down in the downstream direction of the flow;
    A first force generator for generating a force to bring the gate into the standing state;
    With
    The first force generator is
    In the state where the gate falls, it generates a force that is not sufficient to bring the gate into the standing state,
    Generating sufficient force to bring the gate into the standing position with the gate leaning down by a predetermined angle or less;
    Switchgear.
  2. 請求項1に記載の開閉装置であって、
     前記ゲートは、ゲート回転軸を回転中心にして倒れることが可能であり、
     前記第一力発生部の一端が、前記ゲート回転軸よりも上に固定され、
     前記第一力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置され、
     前記ゲートが倒れた状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離が、
     前記ゲートが所定の角度以下だけ倒れかけている状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離よりも短い、
     開閉装置。
    The switchgear according to claim 1,
    The gate can be tilted about the rotation axis of the gate,
    One end of the first force generator is fixed above the gate rotation axis,
    The other end of the first force generation unit is disposed at a position away from the gate rotation axis by a predetermined length,
    The distance between the straight line connecting one end of the first force generation unit and the other end of the first force generation unit and the rotation center of the gate rotation shaft in a state where the gate is tilted,
    A distance between a straight line connecting one end of the first force generation unit and the other end of the first force generation unit and a rotation center of the gate rotation shaft in a state where the gate is tilted by a predetermined angle or less. Shorter than,
    Switchgear.
  3. 請求項2に記載の開閉装置であって、
     前記第一力発生部が、前記第一力発生部の一端に固定されたバネを有する開閉装置。
    The switchgear according to claim 2, wherein
    The opening / closing apparatus in which the first force generation unit includes a spring fixed to one end of the first force generation unit.
  4. 請求項3に記載の開閉装置であって、
     前記第一力発生部が、
     前記第一力発生部の他端に固定され、前記バネと連結されるリンクと、
     を有する開閉装置。
    The switchgear according to claim 3, wherein
    The first force generator is
    A link fixed to the other end of the first force generator and connected to the spring;
    Opening and closing device.
  5. 請求項1に記載の開閉装置であって、
     前記ゲートが倒れた状態で、前記流体の流れる流路の水位が所定の水位以下であるときに、前記ゲートを前記立った状態にし始めるために充分な力を発生する第二力発生部、
     を備えた開閉装置。
    The switchgear according to claim 1,
    A second force generator that generates a sufficient force to start the gate in the standing state when the water level of the flow path through which the fluid flows is equal to or lower than a predetermined water level when the gate is tilted;
    Opening and closing device provided with.
  6. 請求項5に記載の開閉装置であって、
     前記ゲートは、ゲート回転軸を回転中心にして倒れることが可能であり、
     前記第二力発生部の一端が、前記ゲート回転軸よりも上に固定され、
     前記第二力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置される、
     開閉装置。
    The switchgear according to claim 5,
    The gate can be tilted about the rotation axis of the gate,
    One end of the second force generation unit is fixed above the gate rotation axis,
    The other end of the second force generator is disposed at a position away from the gate rotation axis by a predetermined length.
    Switchgear.
  7. 請求項6に記載の開閉装置であって、
     前記第二力発生部が、前記第二力発生部の一端および前記第二力発生部の他端の一方または双方に固定されたバネを有する開閉装置。
    The switchgear according to claim 6, wherein
    An opening / closing device in which the second force generation unit includes a spring fixed to one or both of one end of the second force generation unit and the other end of the second force generation unit.
  8. 請求項7に記載の開閉装置であって、
     前記第一力発生部の一端が、前記ゲート回転軸よりも上に固定され、
     前記第一力発生部の他端が、前記ゲート回転軸から所定長さだけ離れた位置に配置され、
     前記ゲートが倒れた状態における、前記第二力発生部の一端と前記第二力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離が、
     前記ゲートが倒れた状態における、前記第一力発生部の一端と前記第一力発生部の他端とを結んだ直線と、前記ゲート回転軸の回転中心との距離よりも長い、
     開閉装置。
    The switchgear according to claim 7, wherein
    One end of the first force generator is fixed above the gate rotation axis,
    The other end of the first force generation unit is disposed at a position away from the gate rotation axis by a predetermined length,
    The distance between the straight line connecting one end of the second force generation unit and the other end of the second force generation unit in the state where the gate is tilted, and the rotation center of the gate rotation axis is
    In a state where the gate is tilted, it is longer than a distance between a straight line connecting one end of the first force generation unit and the other end of the first force generation unit, and a rotation center of the gate rotation shaft,
    Switchgear.
  9. 請求項5に記載の開閉装置であって、
     前記第一力発生部が有するバネのバネ定数が、前記第二力発生部が有するバネのバネ定数よりも大きい、
     開閉装置。
    The switchgear according to claim 5,
    The spring constant of the spring that the first force generation unit has is larger than the spring constant of the spring that the second force generation unit has,
    Switchgear.
PCT/JP2010/051731 2009-02-04 2010-02-02 Opening-closing device WO2010090293A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG2011056116A SG173532A1 (en) 2009-02-04 2010-02-02 Opening-closing device
KR1020117018199A KR101357064B1 (en) 2009-02-04 2010-02-02 Opening-closing device
CA 2751405 CA2751405C (en) 2009-02-04 2010-02-02 Opening/closing device
PL10738623T PL2395162T3 (en) 2009-02-04 2010-02-02 Opening-closing device
AU2010211675A AU2010211675B2 (en) 2009-02-04 2010-02-02 Opening-closing device
US13/147,343 US8695628B2 (en) 2009-02-04 2010-02-02 Opening/closing device
EP10738623.7A EP2395162B1 (en) 2009-02-04 2010-02-02 Opening-closing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023195A JP5166311B2 (en) 2009-02-04 2009-02-04 Switchgear
JP2009-023195 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090293A1 true WO2010090293A1 (en) 2010-08-12

Family

ID=42542183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051731 WO2010090293A1 (en) 2009-02-04 2010-02-02 Opening-closing device

Country Status (10)

Country Link
US (1) US8695628B2 (en)
EP (1) EP2395162B1 (en)
JP (1) JP5166311B2 (en)
KR (1) KR101357064B1 (en)
AU (1) AU2010211675B2 (en)
CA (1) CA2751405C (en)
MY (1) MY158647A (en)
PL (1) PL2395162T3 (en)
SG (1) SG173532A1 (en)
WO (1) WO2010090293A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0809150D0 (en) * 2008-05-20 2008-06-25 Pitt David G Sewage flushing
JP5416292B1 (en) * 2013-02-26 2014-02-12 阿見 純夫 Float type water stop door
JP6277156B2 (en) * 2015-06-05 2018-02-07 日本工営株式会社 Switchgear
US10934674B2 (en) * 2016-08-17 2021-03-02 Art Metal Industries, Llc Single bay mechanical closure device
US10704249B2 (en) * 2016-08-17 2020-07-07 Art Metal Industries, Llc Mechanical closure device
CN107480884B (en) * 2017-08-14 2019-10-22 水利部交通运输部国家能源局南京水利科学研究院 A kind of more gate dam plain tract wintering ecology flow calculation methods
US11112011B1 (en) * 2018-08-09 2021-09-07 Patrick M. Murphy Controllably opening water supply line doors
CN110205978A (en) * 2019-06-11 2019-09-06 长沙理工大学 A kind of moment of dam break experiment opens a sluice gate device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300895A (en) 2003-04-01 2004-10-28 Kubota Corp Flash gate
JP2006022517A (en) * 2004-07-07 2006-01-26 Kubota Corp Flushing gate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1039072A (en) * 1911-11-03 1912-09-17 Walter S Edge Automatic flood-gate.
US3338057A (en) * 1965-01-08 1967-08-29 Jack O Eckstine Automatic irrigation gate
FR1556220A (en) * 1967-08-03 1969-02-07
US3952522A (en) * 1971-11-19 1976-04-27 Shettel Ralph E Irrigation systems automation
US3815161A (en) * 1973-04-16 1974-06-11 Baker Hydro Inc Swimming pool surface skimming weir
US4073147A (en) * 1975-09-18 1978-02-14 Takeshi Nomura Water gate control system
US3974654A (en) * 1975-10-28 1976-08-17 W. S. Rockwell Company Self-regulating tide gate
US4114381A (en) * 1977-03-18 1978-09-19 Poseidon Marketing And Development Co. Positive flow estuary structure
US4253202A (en) * 1979-08-10 1981-03-03 Forbes Norris Automatic adjusting wave gutter for swimming pools
US4321948A (en) * 1981-01-22 1982-03-30 Bradley Earl H Discharge system for septic tank
EP0197372A3 (en) * 1985-04-10 1987-04-29 Erik Nylander Device for regulating a liquid level, especially a water level
CA2096269C (en) * 1993-05-14 1997-09-30 Peter Langemann Irrigation control structure
NO990505L (en) * 1999-02-03 2000-09-22 Cleanpipe As Device for extending twist or bending sleeves in a shock loader
JP3286267B2 (en) * 1999-06-09 2002-05-27 株式会社ニムラ Self-cleaning device for drains
US6623209B1 (en) * 2002-04-04 2003-09-23 Floodbreak Llc Automatic flood gate
US6779947B1 (en) * 2003-08-21 2004-08-24 Kevin Buchanan Gate systems and methods for regulating tidal flows
JP4136875B2 (en) * 2003-09-30 2008-08-20 株式会社クボタ Flash gate
CA2450151A1 (en) * 2003-11-19 2005-05-19 Aqua Systems 2000 Inc. Irrigation gate system
US8246272B1 (en) * 2010-01-19 2012-08-21 Denios, Inc. Actuated spill barrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300895A (en) 2003-04-01 2004-10-28 Kubota Corp Flash gate
JP2006022517A (en) * 2004-07-07 2006-01-26 Kubota Corp Flushing gate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2395162A4

Also Published As

Publication number Publication date
US8695628B2 (en) 2014-04-15
AU2010211675B2 (en) 2013-01-17
PL2395162T3 (en) 2018-02-28
AU2010211675A1 (en) 2011-08-25
CA2751405C (en) 2013-03-12
US20110290343A1 (en) 2011-12-01
MY158647A (en) 2016-10-31
KR101357064B1 (en) 2014-02-03
EP2395162A1 (en) 2011-12-14
EP2395162B1 (en) 2017-11-15
JP2010180568A (en) 2010-08-19
SG173532A1 (en) 2011-09-29
CA2751405A1 (en) 2010-08-12
KR20110116152A (en) 2011-10-25
EP2395162A4 (en) 2016-05-11
JP5166311B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2010090296A1 (en) Opening-closing device
WO2010090293A1 (en) Opening-closing device
JP6277156B2 (en) Switchgear
JP5905152B1 (en) Flap gate
WO2010090297A1 (en) Opening-closing device
JP2012026109A (en) Water level detector
JP7111316B2 (en) Toilet flush water discharge device
JP2005188084A (en) Automatic opening/closing device for sluice gate
JP2007270489A (en) Sewage treatment pump facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738623

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010738623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738623

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117018199

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2751405

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13147343

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010211675

Country of ref document: AU

Date of ref document: 20100202

Kind code of ref document: A