WO2010090234A1 - 12-deoxyfusicoccin sugar chain-modified derivatives and uses thereof - Google Patents

12-deoxyfusicoccin sugar chain-modified derivatives and uses thereof Download PDF

Info

Publication number
WO2010090234A1
WO2010090234A1 PCT/JP2010/051537 JP2010051537W WO2010090234A1 WO 2010090234 A1 WO2010090234 A1 WO 2010090234A1 JP 2010051537 W JP2010051537 W JP 2010051537W WO 2010090234 A1 WO2010090234 A1 WO 2010090234A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
isir
cells
carbon atoms
Prior art date
Application number
PCT/JP2010/051537
Other languages
French (fr)
Japanese (ja)
Inventor
修雄 加藤
崇嗣 井上
友理子 丸山
孟 新田
良夫 本間
武史 佐々
Original Assignee
国立大学法人大阪大学
国立大学法人島根大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立大学法人島根大学 filed Critical 国立大学法人大阪大学
Publication of WO2010090234A1 publication Critical patent/WO2010090234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a novel water-soluble compound having a cell differentiation-inducing action. More specifically, the present invention relates to a 12-deoxy derivative of fusicoccin having the above properties and having a modified sugar chain (hereinafter, also simply referred to as “12-deoxyfusucocin sugar chain-modified derivative”). Furthermore, the present invention relates to a cell differentiation inducer and an antitumor agent comprising such a 12-deoxyfusicoccin sugar chain-modified derivative as an active ingredient.
  • chemotherapeutic agents in tumor treatment are cytotoxic substances and may have serious side effects depending on the dose and method of administration.
  • Tumor cells repeat proliferation while remaining undifferentiated during differentiation. Therefore, focusing on this property of tumor cells, a method of suppressing the proliferation of tumor cells by differentiating undifferentiated tumor cells using a cell differentiation inducer is a trial for treating tumors, particularly malignant tumors (cancers). (See Patent Document 1).
  • Non-Patent Document 1 cotylenin C, a diterpene glycoside having a plant hormone-like activity (plant growth promoting activity), induces differentiation of mouse myeloid leukemia cells into mature cells, Although it was thought that it had a potential as an anticancer agent for a long time (see Patent Document 2), it was later found that it alone has an effect of inducing differentiation of tumor cells of patients with acute myeloid leukemia into normal mature cells. It is expected to be a therapeutic drug for leukemia (see Non-Patent Document 1).
  • cell differentiation inducers are effective in tumors such as cancer by inducing apoptosis when used in combination with interferon ⁇ .
  • cotylenin when used in combination with interferon ⁇ as a cell differentiation inducer, it exerts a strong apoptosis-inducing activity against various tumor cells and a remarkable tumor growth-inhibiting effect resulting from it.
  • a remarkable effect is also shown against cellular lung cancer (see Non-Patent Document 2) and ovarian cancer (see Non-Patent Document 3).
  • cotylenin is also effective against cell lines that are resistant to cisplatin and taxol.
  • Cochilenin is effective not only for cultured cells but also for cells collected from actual ovarian cancer patients.
  • cotylenin also shows a remarkable synergistic effect when used in combination with the cell cycle inhibitor rapamycin, and it has been demonstrated using breast cancer cells that the tumor growth inhibitory effect of cell cycle G1 phase arrest is shown (non-patented). Reference 4).
  • cotylenin is highly expected as a new active ingredient of an antitumor agent that is effective for intractable tumors resistant to various antitumor agents and has low toxicity.
  • clinical application of cotylenin has not yet been made.
  • Fusicoccin which is chemically similar to cotyrenin, is stably produced by Pomoopsis amygdali. Although the fusicoccin has a plant hormone-like activity equivalent to that of cotyrenin, it has almost no cell differentiation-inducing activity.
  • the 12-deoxy derivative of the fusicoccin (12-deoxyfusicoccin derivative) exhibits cell differentiation-inducing activity similar to cotyrenin (Patent Document 3).
  • a representative compound is 4 ', 6'-isopropylidene-12-deoxyfusicoccin J (ISIR-005).
  • Such a 12-deoxyfusicoccin derivative has a good differentiation-inducing activity against leukemia tumor cells in addition to low toxicity, and it can induce apoptosis in various solid tumors when used in combination with interferon ⁇ . From the viewpoint of induction, it is expected as an active ingredient of antitumor agents. However, there is a problem that it is poor in water solubility and it is difficult to adjust to various dosage forms including liquids such as injections.
  • n is an integer of 0 to 5
  • Me is a methyl group
  • R 1 is an alkyl group having 1 to 6 carbon atoms, or an amino group represented by the following formula:
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or an amidyl group (—CNHNH 2 ).
  • the compound represented by the formula has cell differentiation-inducing activity superior to ISIR-005, and good apoptosis-inducing activity in combination with interferon ⁇ , and the compound (1) has the desired water solubility. It was confirmed.
  • the inventors of the present application said that a part of the compounds included in the compound (1) group more significantly suppresses the growth of solid tumor cells in a Hypoxia (hypoxia) state in addition to the above action. It was found to have a very rare and useful action that was not seen with ISIR-005. The inside of the developed tumor tissue is often under hypoxia, which causes treatment resistance in radiation therapy and chemotherapy. Therefore, it is extremely important in cancer treatment strategies to exert an effective growth inhibitory effect even in a hypoxic environment and to increase the sensitivity of tumor cells to anticancer agents in a hypoxic environment.
  • the above compounds can be expected to have an effective antitumor effect against malignant tumors that have developed and become difficult to treat with conventional radiation therapy and chemotherapy, and in a hypoxia state unlike normal cells. It is believed that certain tumor cells (especially solid tumor cells) can be selectively targeted.
  • n is an integer of 0 to 5
  • Me is a methyl group
  • R 1 is an alkyl group having 1 to 6 carbon atoms, —N 3 group or an amino group represented by the following formula:
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or a p-nitrophenylsulfonyl group. Alternatively, it represents an amidyl group (—CNHNH 2 ).
  • R 1 is an alkyl group having 1 to 6 carbon atoms, or an amino group represented by formula (2) (wherein R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, The compound according to (I-1), which is an acyl group of 7 or an amidyl group (-CNHNH 2 ).
  • n 0 and R 1 is a methyl group, or n is an integer of 2 to 5, and R 1 is an amino group represented by the following formula (2):
  • R 2 represents a hydrogen atom
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or an amidyl group.
  • Cell differentiation inducer (II) A cell differentiation inducer comprising as an active ingredient the compound described in any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof.
  • (III) Antitumor agent against hematological malignancy comprising as an active ingredient the compound according to any one of (III-1) (I-1) to (I-4) or a pharmaceutically acceptable salt thereof Agent.
  • III-3) An antitumor agent comprising a combination of the compound described in any of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and interferon ⁇ .
  • composition according to (III-4) which is a composition comprising the compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and interferon ⁇ .
  • Antitumor agent (III-5) a drug containing the compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and a drug containing interferon ⁇ as an active ingredient,
  • the antitumor agent according to (III-3) which is provided as a separately packaged combination kit.
  • III-6 The antitumor agent according to (III-3), wherein the target tumor is a lung tumor or a breast tumor.
  • a method for treating a tumor comprising: (IV-3) The hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or a solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer
  • IV-4) The compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof, which is used for treating a tumor.
  • (IV-5) The hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or a solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer
  • (IV-6) A compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and a combination of interferon ⁇ and used for the treatment of tumors.
  • (IV-7) Any hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer The combination described in (IV-6).
  • a novel compound (1) which has a cell differentiation inducing action and is useful as a cell differentiation inducer and as an active ingredient of an antitumor agent, particularly an anti-hematologic malignant tumor agent or an intermediate thereof.
  • the compound (1) (excluding the intermediate) has an effect of enhancing the tumor activity of an antitumor agent such as interferon ⁇ and is useful as an active ingredient of an antitumor agent itself. It is also useful as an antitumor effect enhancer of antitumor agents such as
  • ISIR-040 Compound (3)
  • ISIR-041 Compound (4)
  • ISIR-042 Compound (5)
  • ISIR-043 Compound (6)
  • ISIR -044 This represents a synthesis scheme of the compound (7).
  • the abbreviations and abbreviations of substituents in the drawings mean the following terms (the same applies to FIGS. 2 and 3).
  • Me methyl group
  • Ac acetyl group
  • Ms methanesulfonyl group
  • Ns 4-nitrobenzenesulfonyl group
  • Cbz benzyloxycarbonyl group
  • AcCl acetyl chloride
  • DMAP dimethylaminopyridine
  • PPTS pyridinium p-toluenesulfonic acid
  • MsCl Methanesulfonyl chloride
  • ISIR-051 Compound (11)
  • ISIR-052 Compound (12)
  • ISIR-040 (compound (3)), ISIR-042 (compound (5)), ISIR-062 (compound (8)), ISIR-082 (compound (10)) for human monocytic leukemia cells (U937 cells) 1 is a graph showing the cell differentiation-inducing activity of ISIR-005 and Cochirenin A (CN-A) (Test Example 1).
  • ISIR-041 (compound (4)), ISIR-042 (compound (5)), ISIR-043 (compound (6)), ISIR-044 (compound (7)) for human monocytic leukemia cells (U937 cells) 2 is a graph showing the cell differentiation-inducing activity of ISIR-005 (Test Example 1).
  • the vertical axis represents the number of viable cells (%) relative to the control.
  • the growth inhibitory effect with respect to the pancreatic cancer cell (MiaPaca-2) of the known anticancer drug Gemcitabin is shown in a result of measurement under normal oxygen concentration (21%) and hypoxia (1%) (Test Example 3).
  • the vertical axis represents the number of viable cells (%) relative to the control.
  • the results of measuring the inhibitory effect of ISIR-042, ISIR-005, and CN-A on pancreatic cancer cells (MiaPaca-2) under normal oxygen concentration (21%) and hypoxia (1%) are shown ( Test Example 3).
  • the vertical axis represents the number of viable cells (%) relative to the control.
  • R 1 means a linear or branched alkyl group having 1 to 6 carbon atoms, —N 3 group, or an amino group represented by the following general formula (2):
  • examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, A hexyl group and an isohexyl group are included. Particularly preferred is a methyl group.
  • R 2 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. Preferably it is a hydrogen atom.
  • examples of the linear or branched alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, a p-nitrophenylsulfonyl group, or an amidyl group ( -CNHNH 2 ). Particularly preferred is a hydrogen atom.
  • examples of the linear or branched alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups.
  • the acyl group having 1 to 7 carbon atoms represented by R 3 means a group represented by CO—R 4 .
  • R 4 includes an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 2 to 6 carbon atoms.
  • examples of the alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups.
  • a methyl group is preferred.
  • Examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • a vinyl group is preferred.
  • alkynyl group having 2 to 6 carbon atoms examples include ethynyl group, propynyl group, butyryl group, pentynyl group, and hexynyl group.
  • An ethynyl group is preferable.
  • the preferred acyl group acetyl group R 4 is a methyl group having one carbon atom, and R 4 is an ethynyl group or an ethynyl group having 2 carbon atoms.
  • n represents an integer of 0 to 5.
  • R 1 is an alkyl group having 1 to 6 carbon atoms
  • n is preferably 0.
  • R 1 is an amino group represented by the formula (2)
  • n is preferably an integer of 2 to 5.
  • Specific examples of the compound of the present invention represented by the formula (1) include compounds represented by the following formulas (3) to (12) (hereinafter also referred to as compounds (3) to (12)). Can do.
  • compound (4) wherein n is 2 and R 1 is an amino group in formula (1)
  • compound (5) where n is 3 and R 1 is an amino group
  • n is 3 and R 1 is the compound (9) in which R 2 is a hydrogen atom and R 3 is an ethynylcarbonyl group in the formula (2).
  • More preferred are compound (5) and compound (9).
  • a compound in which R 1 is a —N 3 group or R 3 is a p-nitrophenylsulfonyl group is a compound of the present invention having a cell differentiation inducing action. It is useful as a synthetic intermediate for compounds, particularly the above compounds (3) to (12).
  • examples of the compound (1) in which R 1 is a —N 3 group include SI-05 (Production Example 2 (1)), SI-06 (Production Example 3 (1)), SI-07 ( Production Example 4 (1)) and SI-08 (Production Example 5 (1)) can be mentioned, and these are the above-mentioned compound (4) (see ISIR-041: Production Example 2 (2)), compound ( 5) (ISIR-042: See Preparation Example 3 (2)), Compound (6) (ISIR-043: See Preparation Example 4 (2)), and Compound (7) (ISIR-044: Preparation Example 5 (2) (See FIG. 1).
  • Examples of the compound (1) in which R 3 is a p-nitrophenylsulfonyl group include SI-09 (Production Example 9 (1)) and SI-10 (Production Example 9 (2)). These are all synthetic intermediates of the above compound (10) (see ISIR-082: Production Example 9 (3)) (see FIG. 2).
  • the compound of the present invention represented by the general formula (1) is produced, for example, by changing reaction conditions, adding a reaction, omitting a reaction, etc., if necessary, based on the synthetic scheme shown in FIGS. be able to.
  • FIG. 1 is a synthesis scheme using 4 ′, 6′-isopropylidene-12-deoxyfusicoccin J (ISIR-005) described in Patent Document 3 (International Publication WO2008 / 010324) as a starting material. Is a synthesis scheme starting from compound (5) (ISIR-042).
  • FIG. 3 is a synthesis scheme using Compound (4) (ISIR-041) and Compound (5) (ISIR-042) as starting materials.
  • ISIR-005 used as a raw material is synthesized from natural fusicoccins that are stably produced by Pomoopsis ⁇ amygdali, as described in Patent Document 3 (International Publication WO2008 / 010324).
  • Natural fusicocins include, for example, (1) KD Barrow, D. H. R. Barton, Sir E. Chain, C. Conlay, T. C. Smale, R. Thomas, and E. S. Waight, J. Chem. Soc. (C), 1259 (1971); or (2) N. Tajima, M. Nukina, N.Kato, ukand T. Sassa, Biosci. Biotechnol. Biochem., 68, 1125 (2004) (Japan) It can be obtained by the method described in the literature on cultivation of peach branch rot fungus Phomopsis amygdali Niigata 2-A).
  • the compound ISIR-040 is the compound (3) described above
  • ISIR-041 to 044 is the compound (4) to (7) described above
  • ISIR-062 is the compound (8) described above.
  • Compound ISIR-072 corresponds to compound (9) described above
  • ISIR-082 corresponds to compound (10) described above
  • ISIR-051 and ISIR-052 correspond to compounds (11) and (12) described above, respectively.
  • the compound of the general formula (1) in which R 1 represents an alkyl group having 1 to 6 carbon atoms is, for example, the above known compound ISIR-005. Is then acetylated to form compound SI-01, followed by ring-opening reaction (generation of SI-02), sulfonylation (generation of SI-03), deacetylation (generation of SI-04), and ring-closing reaction Manufactured.
  • reaction conditions for acetylation, ring-opening reaction, sulfonylation, deacetylation, and ring-closing reaction known conditions can be widely applied.
  • the compounds of the general formula (1) in which R 1 represents an N 3 — group are compound (3) (compound ISIR-040) produced by the above method.
  • known conditions can be widely applied.
  • it can be produced according to the reaction conditions described in Production Examples 2 to 5 described later.
  • the compounds (4) to (7) (compounds ISIR-041 to 044) obtained here can also be prepared in the form of salts by a conventional method shown in Production Example 6.
  • a compound in which R 1 is an amino group represented by the general formula (2) (wherein R 2 is a hydrogen atom and R 3 is an acyl group having 1 to 7 carbon atoms) ( 1) (Compound ISIR-062: Compound (8)) is produced, for example, by acetylating compound ISIR-042 (compound (5)) produced by the above method, and R 1 is generally the same as above.
  • a compound (compound ISIR-072: compound (9)) which is an amino group represented by the formula (2) can be produced, for example, by ethynylcarbonylating the above compound ISIR-042 (compound (5)).
  • Compound ISIR-051: Compound (11) and Compound ISIR-052: Compound (12)) are, for example, compound ISIR-041 (compound (4)) and compound ISIR-042 (compound (5)) produced by the above-described method. Can be produced by amidylation.
  • ISIR-041 compound (4)
  • ISIR-042 compound (5)
  • various malignant tumor cells termeast cancer cells, pancreatic cancer cells, lung cancer cells, ovarian cancer cells
  • Demonstrate cell growth inhibitory effect Test Example 3
  • ISIR-042 compound (5)
  • the compound represented by SI is useful as an intermediate of the above compounds (3) to (12) which can be an active ingredient of an antitumor agent.
  • (4) to (7) and (10) having an amino group, and (11) and (12) having a guanidyl group can have a free or salt form.
  • the salt include pharmaceutically acceptable salts such as acid addition salts such as inorganic acids, organic acids, or acidic amino acids.
  • inorganic acids that form acid addition salts include hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, and the like.
  • organic acids include formic acid, acetic acid, lactic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, benzoic acid, citric acid, succinic acid, malic acid, ascorbic acid, methanesulfonic acid, ethanesulfonic acid Benzenesulfonic acid, p-toluenesulfonic acid and the like.
  • acidic amino acids include aspartic acid and glutamic acid.
  • the compound of the present invention represented by the general formula (1) has cell differentiation induction activity.
  • the compounds (3) to (12) are used in the cell differentiation-inducing activity test (testability 1) using human leukemia cells (human myeloid leukemia HL-60 cells or human monocytic leukemia U937 cells) described later. It exhibits an activity similar to that of cotylenin A and has an effect of inducing cell differentiation from abnormal cells such as tumor cells to mature cells. Since the cell differentiation inducing activity induces cell differentiation, the compound (1) of the present invention can suppress the proliferation of cells exhibiting abnormal differentiation such as tumor cells. Therefore, the compound of the present invention represented by the general formula (1) is useful as a cell differentiation inducer.
  • the target tumors include benign tumors and malignant tumors.
  • a malignant tumor is preferred.
  • Examples of the cells in which the cell growth inhibitory action by the cell differentiation-inducing activity of the compound (1) of the present invention is effective include tumor cells such as leukemia cells, malignant lymphomas, and hematological malignancies including malignant myeloma. .
  • Leukemia cells, malignant lymphoma, and malignant myeloma are preferable as growth inhibition targets, and leukemia cells (acute myeloid leukemia cells, monocytic leukemia cells) are more preferable.
  • solid cancers such as breast cancer, pancreatic cancer, lung cancer, and ovarian cancer can also be targeted.
  • the compound (1) of the present invention can also be used in combination with interferon ⁇ .
  • compound (5) can synergistically enhance the antitumor activity of interferon ⁇ when used in combination with interferon ⁇ . Therefore, the compound of the present invention can be used as an antitumor activity enhancer of interferon ⁇ , or can be used as an antitumor agent in combination with interferon ⁇ .
  • the embodiment to be combined here is not particularly limited, and is an embodiment in which the compound of the present invention and interferon ⁇ are mixed in the form of a composition (mixture) from the beginning, and the compound of the present invention and interferon ⁇ are separately packaged in packaging form. And any of the aspects (combination kit) used combining both at the time of use may be sufficient.
  • the compound (5) remarkably suppresses the growth of cancer cells in the Hypoxia state.
  • cancer tissue is hypoxic and resistant to chemotherapeutic agents. Therefore, the compound of the present invention having the above characteristics is extremely effective as an antitumor agent (anticancer agent) that exhibits an antitumor action more effectively.
  • compounds (1) of the present invention compounds (4) to (7) and (10) having an amino group, those having a guanidyl group (11) and (12), and pharmaceutically acceptable compounds thereof
  • the salt has sufficient water solubility and can be prepared as a liquid such as an injection.
  • the compound of the present invention can be orally or non-humanly administered to humans or mammals other than humans in a known manner, in known unit dosages, and as a pharmaceutical composition together with known carriers or excipients or pharmaceutically acceptable additives.
  • Administer orally eg, intramuscular, subcutaneous, intravenous injection or infusion, transpulmonary administration), or topical (mucosal administration) or external preparation (suppository, ointment, cream, patch, etc.) Can do.
  • the compound of the present invention is converted into a conventional pharmaceutical preparation, for example, a solid preparation such as tablet, capsule, granule, fine granule, powder, lozenge, troche, jelly; or solution, emulsion (water-in-oil type) Emulsions, etc.), suspensions, syrups, etc.
  • a solid preparation such as tablet, capsule, granule, fine granule, powder, lozenge, troche, jelly; or solution, emulsion (water-in-oil type) Emulsions, etc.), suspensions, syrups, etc.
  • one or more of the compounds of the present invention can be combined with conventional excipients (sodium citrate, lactose, microcrystalline cellulose, starch, etc.), lubricants (anhydrous silicic acid, Hydrogenated castor oil, magnesium stearate, sodium lauryl sulfate, talc, etc.), binders (starch paste, glucose, lactose, gum arabic, gelatin, mannitol, etc.) and other normal additives (flavors, colorants, antioxidants) Preservatives including surfactants, surfactants, suspending agents, emulsifiers and the like), and the mixture is formulated by a known method.
  • a known liquid carrier such as water, physiological saline or oil is used.
  • the compound of the present invention is used as a sterile oily or aqueous preparation. Injections are usually prepared by dissolving the compound of the present invention in distilled water for injection and then buffering or isotonizing with glucose, saline, etc. if necessary.
  • the external preparation is preferably an ointment, but includes liniments, lotions, oil-in-water or water-in-oil emulsions (for example, creams), solutions, suspensions, and the like.
  • Ointments are prepared in a known manner by conventional ointment bases such as fats, fatty acids (olive oil, sesame oil, triglycerides of medium chain fatty acids, etc.), lanolin, wax, paraffin, glycols, higher alcohols, surfactants and the like. Can be manufactured together.
  • conventional ointment bases such as fats, fatty acids (olive oil, sesame oil, triglycerides of medium chain fatty acids, etc.), lanolin, wax, paraffin, glycols, higher alcohols, surfactants and the like.
  • the dose of the compound or pharmaceutical composition of the present invention varies depending on the administration method, the sex and age of the patient, the degree of symptoms, etc., but when administered parenterally, such as subcutaneous injection, About 1 to 100 mg / kg, preferably about 3 to 40 mg / kg is used. When administered orally, although not limited, 3 to 300 mg / kg, preferably about 9 to 120 mg / kg, of the compound can be used per day for an adult.
  • the compound of the present invention may be administered alone or in combination with another antitumor agent (for example, interferon ⁇ ).
  • another antitumor agent for example, interferon ⁇
  • the amount used is not particularly limited as long as the antitumor action of the other antitumor agent is enhanced, but preferably 100 parts by weight of the other antitumor agent 0.0001 to 500 parts by weight, more preferably 0.001 to 300 parts by weight.
  • the compound of the present invention was produced based on the synthetic schemes shown in FIG. 1, FIG. 2 and FIG.
  • the starting material ISIR-005 was synthesized according to the method described in Patent Document 3 (International Publication WO2008 / 010324).
  • ESI-MS m / z 603.3165 (M + Na + ).
  • Production Example 3 Production of Compound (5) (FIG. 1, ISIR-042) (1) Synthesis of SI-06 SI-04 (53 mg (0.081 mmol)) synthesized in Production Example 1 (4) was synthesized in the same manner as the synthesis of SI-05 described in Production Example 2 (1). Reaction with azido-1-propanol gave 37.7 mg of SI-06. Yield 83%. The 13 C-NMR data and ESI-MS data of SI-06 are shown below.
  • Production Example 4 Production of Compound (6) (FIG. 1, ISIR-043) (1) Synthesis of SI-07 SI-04 (17 mg (0.026 mmol)) synthesized in Production Example 1 (4) was converted to 4-azido-, similarly to the synthesis of SI-05 in Production Example 2 (1). Reaction with 1-butanol gave 9.8 mg of SI-07. Yield 66%.
  • the 1 H-NMR data of SI-07 is shown below.
  • Production Example 5 Production of Compound (7) (FIG. 1, ISIR-044) (1) Synthesis of SI-08 SI-04 (19.5 mg (0.030 mmol)) synthesized in Production Example 1 (4) was converted to 4-azido-, similarly to the synthesis of SI-05 in Production Example 2 (1). Reaction with 1-pentanol gave 11.5 mg of SI-08. Yield 65%. The 13 C-NMR data of SI-08 is shown below.
  • Production Example 6 Production of Compound (5) Salt (Hydrochloride, Ascorbic Acid, Citrate, Benzoate) Compound (5) (ISIR-042) synthesized in Production Example 3 (2) was added to an anhydrous diethyl ether solution. By adding the equivalent amount of hydrogen chloride ether solution, ascorbic acid, citric acid or benzoic acid and diluting with petroleum ether, the resulting powder is filtered to obtain the corresponding hydrochloride salt and ascorbate salt of compound (5). Citrate or benzoate was obtained.
  • Production Example 7 Production of Compound (8) ( Figure 2, ISIR-062)
  • Compound (5) (ISIR-042) (23.8 mg, 44 ⁇ mol) synthesized in Production Example 3 (2) is dissolved in 1.0 mL of dichloromethane, and 0.1 mL of pyridine and 8.3 ⁇ L (88 ⁇ mol) of acetic anhydride are dissolved under ice cooling. And then stirred at room temperature for 1.5 hours. Dilute with saturated aqueous NH 4 Cl and extract with dichloromethane. The organic layer was washed successively with saturated NaHCO 3 and aqueous NaCl solution, dried over Na 2 SO 4 and concentrated under reduced pressure.
  • Production Example 8 Production of Compound (9) (FIG. 2, ISIR-072)
  • Compound (5) (ISIR-042) (21.4 mg, 40 ⁇ mol) synthesized in Production Example 3 (2) was dissolved in 1.0 mL of dichloromethane and immobilized at 133 mg (equivalent to 0.2 mmol) of polystyrene resin at room temperature.
  • N-cyclohexylcarbodiimide (PS-Carbodiimide) and 10 ⁇ L (0.160 mmol) of propiolic acid were added and stirred for 13.5 hours. The reaction solution was concentrated.
  • Test Example 1 Measurement of cell differentiation inducing activity (1) Cells and cell culture Suspend human acute myeloid leukemia cells (HL-60 cells) or human monocytic leukemia cells (U937 cells) in RPMI-1640 medium supplemented with 10% fetal bovine serum. The cells were cultured in humidified air at 37 ° C. containing 5% CO 2 .
  • leukemia cells (5 ⁇ 10 4 cells / mL) were added to test compounds (ISIR-040 (compound (3)), ISIR-042 ( Compound (5)), ISIR-062 (Compound (8)), ISIR-072 (Compound (9)), ISIR-082 (Compound (10), ISIR-005, Cotyrenin A (CN-A))
  • the cells were cultured in the absence of 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter, and the oxidase activity to generate superoxide was measured using the ability to reduce NBT as an indicator.
  • TPA 12-O-tetradecanoylphorbol-13-acetate
  • NBT reducing ability was measured by incubating the cells in RPMI-1640 medium containing NBT (1 mg / mL) and TPA (100 ng / ml) for 60 minutes at 37 ° C. After the reaction was completed, the cells were centrifuged. The formazan precipitate generated by the reaction in the cells was dissolved in dimethyl sulfoxide and colorimetric (wavelength 560 nm or The activity was expressed as absorbance per 10 7 cells.
  • FIG. 4 shows the evaluation results of ISIR-040 (compound (3)) on HL-60 cells, together with the results of cotylenin A (CN-A).
  • FIG. 5 shows the evaluation of ISIR-040 (compound (3)), ISIR-042 (compound (5)), ISIR-062 (compound (8)), and ISIR-082 (compound (9)) on U937 cells. The results are shown together with the results of CN-A and ISIR-005.
  • FIG. 6 shows the evaluation results of ISIR-041 (compound (3)), ISIR-042 (compound (5)), ISIR-043 (compound (6)), and ISIR-044 (compound (7)) on U937 cells. Is shown together with the result of ISIR-005.
  • FIG. 7 shows the evaluation results of ISIR-042 (compound (5)) and ISIR-072 (compound (9)) on U937 cells.
  • Test Example 2 Inhibitory effect on cancer cell proliferation by combined use of ISIR-042 and interferon ⁇
  • Lung cancer cells (A549) were used as test cells, and these cells were precultured in RPMI 1640 medium.
  • IFN ⁇ interferon ⁇
  • the concentration required to inhibit the growth of lung cancer cell A549 cells by 50% is calculated with ISIR-005 alone and in combination with 400 units / mL interferon ⁇ .
  • the concentration is> 7 ⁇ g / mL or more.
  • the latter was 4.5 ⁇ g / mL, indicating a significant synergistic effect.
  • Test Example 3 Inhibitory effect of ISIR-042 (compound (5)) on cancer cell growth under hypoxia (Hypoxia)
  • the cell growth inhibitory action of the compound of the present invention was reduced to normal oxygen concentration (21%) and hypoxia (1%)
  • the measurement was performed under the following conditions.
  • Breast cancer cells (MCF-7) were used as test cells, and these cells were precultured in RPMI 1640 medium.
  • ISIR-042 at a predetermined concentration (0, 0.5, 1.0, 1.5, 2.0, 2.5 ⁇ g / mL) was added, cultured for 7 days, and the number of viable cells was evaluated. .
  • the number of viable cells was evaluated by MTT assay.
  • FIG. 9 shows the measurement results of ISIR-042 together with the results of CN-A and ISIR-005.
  • the concentration required to inhibit the growth of breast cancer cell MCF-7 by 50% is 1.0 ⁇ g / mL for ISIR-042 when measured under hypoxia, while 2.5 ⁇ g / mL under normal oxygen concentration. A much higher concentration was required than mL.
  • FIG. 11 shows the results of comparing the effects of ISIR-042 (compound (5)) with the effects of ISIR-005 and CN-A on pancreatic cancer cells (MiaPaca-2), measured in the same manner as described above.
  • FIG. 12 shows the effects of ISIR-042 (compound (5)) and ISIR-041 (compound (4)) on pancreatic cancer cells (Panc-1).
  • ISIR-041 compound (4)
  • FIG. 12 shows the effects of ISIR-041 (compound (4)) had the same properties as ISIR-042 (compound (5)), although the effect was slightly inferior.
  • the compound (1) of the present invention is useful as an active ingredient of pharmaceuticals such as cell differentiation inducers and anticancer agents, and in the fields of fusicoccin derivatives and intermediates of various pharmaceuticals.

Abstract

Disclosed are novel water-soluble compounds that have differentiation-inducing effects on mammalian cells, cell differentiation-inducing agents that have said compounds as active ingredients and anti-tumor agents. Disclosed are compounds and salts thereof that are represented by general formula (1) (1) (wherein n represents an integer 0‑5, Me a methyl group, and R1 a 1- to 6-carbon alkyl group or amino group represented by formula (2) (2) (wherein R2 represents a hydrogen atom or 1- to 6-carbon alkyl group, R3 a hydrogen atom, 1- to 6-carbon alkyl group, a 1- to 7-carbon acyl group or amidyl group (–CNHNH2)])

Description

12-デオキシフシコクシン糖鎖改変誘導体およびその用途12-Deoxyfusicoccin sugar chain modified derivatives and uses thereof
 本発明は、細胞分化誘導作用を有する水溶性の新規化合物に関する。より詳細には、本発明は、上記性質を有する、糖鎖が改変されてなるフシコクシンの12-デオキシ誘導体(以下、単に「12-デオキシフシコクシン糖鎖改変誘導体」ともいう)に関する。さらに、本発明は、かかる12-デオキシフシコクシン糖鎖改変誘導体を有効成分とする細胞分化誘導剤、および抗腫瘍剤に関する。 The present invention relates to a novel water-soluble compound having a cell differentiation-inducing action. More specifically, the present invention relates to a 12-deoxy derivative of fusicoccin having the above properties and having a modified sugar chain (hereinafter, also simply referred to as “12-deoxyfusucocin sugar chain-modified derivative”). Furthermore, the present invention relates to a cell differentiation inducer and an antitumor agent comprising such a 12-deoxyfusicoccin sugar chain-modified derivative as an active ingredient.
 腫瘍治療における化学療法剤の多くは細胞毒性の物質であるため、投与量や投与方法によっては重大な副作用を呈する場合がある。腫瘍細胞は、分化の途中で未分化のままで増殖を繰り返す。そこで、腫瘍細胞のこの性質に着目し、細胞分化誘導剤を用いて未分化腫瘍細胞を分化させることで腫瘍細胞の増殖を抑制させる方法が、腫瘍、特に悪性腫瘍(癌)の治療法として試みられている(特許文献1参照)。かかる細胞分化誘導剤のうち、植物ホルモン様活性(植物成長促進活性)を有するジテルペン配糖体であるコチレニンC(Cotylenin C)は、マウス骨髄性白血病細胞を成熟細胞へと分化誘導することから、かねてより制癌剤としての潜在能力があると考えられていたが(特許文献2参照)、その後、単独で、急性骨髄性白血病患者の腫瘍細胞を正常成熟細胞に分化誘導する作用を有することが判明し、白血病治療薬となり得るものと期待されている(非特許文献1参照)。 ∙ Many chemotherapeutic agents in tumor treatment are cytotoxic substances and may have serious side effects depending on the dose and method of administration. Tumor cells repeat proliferation while remaining undifferentiated during differentiation. Therefore, focusing on this property of tumor cells, a method of suppressing the proliferation of tumor cells by differentiating undifferentiated tumor cells using a cell differentiation inducer is a trial for treating tumors, particularly malignant tumors (cancers). (See Patent Document 1). Among such cell differentiation inducers, cotylenin C, a diterpene glycoside having a plant hormone-like activity (plant growth promoting activity), induces differentiation of mouse myeloid leukemia cells into mature cells, Although it was thought that it had a potential as an anticancer agent for a long time (see Patent Document 2), it was later found that it alone has an effect of inducing differentiation of tumor cells of patients with acute myeloid leukemia into normal mature cells. It is expected to be a therapeutic drug for leukemia (see Non-Patent Document 1).
 また細胞分化誘導剤は、これをインターフェロンαと併用することによってアポトーシスを誘導し、癌を始めとする腫瘍に有効であることが知られている。例えば、細胞分化誘導剤としてコチレニンをインターフェロンαと併用すると、各種腫瘍細胞に対する強力なアポトーシス誘導活性と、それに起因する顕著な腫瘍増殖抑制効果を発揮し、従来の化学療法ではあまり効果のない非小細胞性肺癌(非特許文献2参照)や卵巣癌(非特許文献3参照)に対しても顕著な効果を示す。さらに、コチレニンはシスプラチンやタキソールに耐性を持つ細胞株に対しても有効である。その反面、正常細胞へはほとんど影響を与えず、上記の効果が腫瘍細胞に対して特異性の強いものであることが確認されている。また、コチレニンは培養株細胞のみならず、実際の卵巣癌患者から採取した細胞に対しても有効である。 Also, it is known that cell differentiation inducers are effective in tumors such as cancer by inducing apoptosis when used in combination with interferon α. For example, when cotylenin is used in combination with interferon α as a cell differentiation inducer, it exerts a strong apoptosis-inducing activity against various tumor cells and a remarkable tumor growth-inhibiting effect resulting from it. A remarkable effect is also shown against cellular lung cancer (see Non-Patent Document 2) and ovarian cancer (see Non-Patent Document 3). Furthermore, cotylenin is also effective against cell lines that are resistant to cisplatin and taxol. On the other hand, it has been confirmed that the above effect is highly specific to tumor cells with little effect on normal cells. Cochilenin is effective not only for cultured cells but also for cells collected from actual ovarian cancer patients.
 さらに、コチレニンは細胞周期阻害剤であるラパマイシンとの併用においても顕著な相乗効果を示し、細胞周期G1期arrestによる腫瘍増殖抑制効果を示すことが乳癌細胞を用いて明らかにされている(非特許文献4参照)。 Furthermore, cotylenin also shows a remarkable synergistic effect when used in combination with the cell cycle inhibitor rapamycin, and it has been demonstrated using breast cancer cells that the tumor growth inhibitory effect of cell cycle G1 phase arrest is shown (non-patented). Reference 4).
 このため、コチレニンは種々の抗腫瘍剤に耐性を有する難治性腫瘍にも有効で、しかも毒性の低い、抗腫瘍剤の新たな有効成分として高く期待されている。しかしながら、コチレニンの臨床的応用は未だなされていない。 For this reason, cotylenin is highly expected as a new active ingredient of an antitumor agent that is effective for intractable tumors resistant to various antitumor agents and has low toxicity. However, clinical application of cotylenin has not yet been made.
 このようにコチレニンが優れた細胞分化誘導活性を有するにもかかわらず、未だ臨床的に応用されていない理由として、必要量のコチレニンを工業的に合成して安定的に供給する方法が確立されていないことが挙げられる。 As described above, a method for industrially synthesizing and stably supplying the necessary amount of cotyrenin has been established as a reason why it has not yet been applied clinically despite its excellent cell differentiation-inducing activity. Not to mention.
 一方、コチレニンと化学構造的に類似するフシコクシン(Fusicoccin)は、モモ枝折れ病菌(Phomopsis amygdali)により安定的に産生される。当該フシコクシンは、コチレニンと同等の植物ホルモン様活性を有するものの、細胞分化誘導活性が殆どない。 On the other hand, Fusicoccin, which is chemically similar to cotyrenin, is stably produced by Pomoopsis amygdali. Although the fusicoccin has a plant hormone-like activity equivalent to that of cotyrenin, it has almost no cell differentiation-inducing activity.
 しかし、その後の本発明者らの実験により、当該フシコクシンの12-デオキシ誘導体(12-デオキシフシコクシン誘導体)は、コチレニンと同様に細胞分化誘導活性を示すことが判明した(特許文献3)。代表的な化合物は、4’,6’-イソプロピリデン-12-デオキシフシコクシンJ(ISIR-005)である。かかる12-デオキシフシコクシン誘導体は、毒性が低いことに加えて、白血病系の腫瘍細胞に対して良好な分化誘導活性を有し、またインターフェロンαと併用することで種々の固形腫瘍にアポトーシスを誘導するなどの点から、抗腫瘍剤の有効成分として期待される。しかし、水溶性に乏しく、注射剤などの液剤を含めて、種々の剤型に調整することが難しいという問題がある。 However, subsequent experiments by the present inventors have revealed that the 12-deoxy derivative of the fusicoccin (12-deoxyfusicoccin derivative) exhibits cell differentiation-inducing activity similar to cotyrenin (Patent Document 3). A representative compound is 4 ', 6'-isopropylidene-12-deoxyfusicoccin J (ISIR-005). Such a 12-deoxyfusicoccin derivative has a good differentiation-inducing activity against leukemia tumor cells in addition to low toxicity, and it can induce apoptosis in various solid tumors when used in combination with interferon α. From the viewpoint of induction, it is expected as an active ingredient of antitumor agents. However, there is a problem that it is poor in water solubility and it is difficult to adjust to various dosage forms including liquids such as injections.
特開平05-178821号公報Japanese Patent Laid-Open No. 05-178821 特開平04-149133号公報JP 04-149133 A 国際公開公報WO 2008/010324 A1International publication WO 2008/010324 A1
 本発明は、特に白血病系の腫瘍細胞に対して分化誘導作用を有する水溶性の12-デオキシフシコクシン糖鎖改変導体を提供することを目的とする。また本発明は、かかる12-デオキシフシコクシン糖鎖改変誘導体を有効成分とする細胞分化誘導剤、および抗腫瘍剤を提供することを目的とする。 An object of the present invention is to provide a water-soluble 12-deoxyfusicoccin sugar chain-modified conductor having a differentiation-inducing action particularly on leukemic tumor cells. Another object of the present invention is to provide a cell differentiation inducer and an antitumor agent comprising such a 12-deoxyfusicoccin sugar chain-modified derivative as an active ingredient.
 本発明者らは、上記課題の解決を目指して鋭意研究を重ねていたところ、上記4’,6’-イソプロピリデン-12-デオキシフシコクシンJ(以下、単に「ISIR-005」ともいう)の糖鎖改変体である下式(1): As a result of intensive research aimed at solving the above problems, the present inventors have found that the above 4 ′, 6′-isopropylidene-12-deoxyfusicoccin J (hereinafter also simply referred to as “ISIR-005”) A modified sugar chain of the following formula (1):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、nは0~5の整数、Meはメチル基、Rは炭素数1~6のアルキル基、または下式で示されるアミノ基: (In the formula, n is an integer of 0 to 5, Me is a methyl group, R 1 is an alkyl group having 1 to 6 carbon atoms, or an amino group represented by the following formula:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[上記式中、Rは水素原子または炭素数1~6のアルキル基;Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基またはアミジル基(-CNHNH)を示す。]を示す。)
で示される化合物が、ISIR-005に優る細胞分化誘導活性、ならびにインターフェロンαとの併用で良好なアポトーシス誘導活性を有することを見出し、しかも当該化合物(1)は、上記所望の水溶性を備えることを確認した。
[Wherein R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or an amidyl group (—CNHNH 2 ). ]. )
It is found that the compound represented by the formula has cell differentiation-inducing activity superior to ISIR-005, and good apoptosis-inducing activity in combination with interferon α, and the compound (1) has the desired water solubility. It was confirmed.
 また本願発明者らは、上記化合物(1)群に含まれる化合物の一部は、上記作用に加えて、さらにHypoxia(低酸素)状態にある固形腫瘍細胞の増殖をより顕著に抑制するという、ISIR-005では見られなかった極めて稀で且つ有用な作用を有することを見出した。発達した腫瘍組織の内部は低酸素下にある場合が多く、これが放射線療法や化学療法における治療抵抗性の原因となっている。従って、低酸素環境下でも有効な増殖抑制作用を発揮すること、また低酸素環境下での腫瘍細胞の抗がん剤感受性を増大させることが、癌治療の戦略において極めて重要である。ゆえに、上記化合物は、発達し従来の放射線治療や化学療法では治療が困難となった悪性腫瘍に対しても有効な抗腫瘍効果が期待できるとともに、正常細胞と異なり、Hypoxia(低酸素)状態にある腫瘍細胞(特に固形腫瘍細胞)を選択的に標的にできるものと考えられる。 Further, the inventors of the present application said that a part of the compounds included in the compound (1) group more significantly suppresses the growth of solid tumor cells in a Hypoxia (hypoxia) state in addition to the above action. It was found to have a very rare and useful action that was not seen with ISIR-005. The inside of the developed tumor tissue is often under hypoxia, which causes treatment resistance in radiation therapy and chemotherapy. Therefore, it is extremely important in cancer treatment strategies to exert an effective growth inhibitory effect even in a hypoxic environment and to increase the sensitivity of tumor cells to anticancer agents in a hypoxic environment. Therefore, the above compounds can be expected to have an effective antitumor effect against malignant tumors that have developed and become difficult to treat with conventional radiation therapy and chemotherapy, and in a hypoxia state unlike normal cells. It is believed that certain tumor cells (especially solid tumor cells) can be selectively targeted.
 本発明はこれらの知見に基づき完成されたものであり、下記の実施態様を有する。
(I)12-デオキシフシコクシン糖鎖改変誘導体
(I-1)一般式(1)で示される化合物またはその塩:
The present invention has been completed based on these findings and has the following embodiments.
(I) 12-deoxy fusicoccin sugar chain-modified derivative (I-1) compound represented by general formula (1) or salt thereof:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、nは0~5の整数、Meはメチル基、Rは炭素数1~6のアルキル基、-N基または下式で示されるアミノ基: (Wherein n is an integer of 0 to 5, Me is a methyl group, R 1 is an alkyl group having 1 to 6 carbon atoms, —N 3 group or an amino group represented by the following formula:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[上記式中、Rは水素原子または炭素数1~6のアルキル基;Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基、p-ニトロフェニルスルホニル基またはアミジル基(-CNHNH)を示す。]
を示す。)。
[Wherein R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or a p-nitrophenylsulfonyl group. Alternatively, it represents an amidyl group (—CNHNH 2 ). ]
Indicates. ).
 (I-2)一般式(1)において、
が炭素数1~6のアルキル基、または式(2)で示されるアミノ基(但し、式(2)中、Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基、またはアミジル基(-CNHNH)を示す)である、(I-1)に記載する化合物。
(I-2) In general formula (1),
R 1 is an alkyl group having 1 to 6 carbon atoms, or an amino group represented by formula (2) (wherein R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, The compound according to (I-1), which is an acyl group of 7 or an amidyl group (-CNHNH 2 ).
 (I-3)一般式(1)において、
nが0で、Rがメチル基であるか
または、
nが2~5の整数で、Rが下式(2)で示されるアミノ基:
(I-3) In general formula (1),
n is 0 and R 1 is a methyl group, or
n is an integer of 2 to 5, and R 1 is an amino group represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[上記式中、Rは水素原子;Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基またはアミジル基を示す。]
である、(I-1)または(I-2)に記載する化合物。
[Wherein R 2 represents a hydrogen atom; R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or an amidyl group. ]
The compound described in (I-1) or (I-2).
 (I-4)一般式(1)で示される化合物が下式(3)~(12)のいずれかで示される化合物である、(I-1)に記載する化合物: (I-4) The compound described in (I-1), wherein the compound represented by the general formula (1) is a compound represented by any of the following formulas (3) to (12):
 (II)細胞分化誘導剤
(II-1)(I-1)~(I-4)のいずれかに記載する化合物またはその薬学的に許容される塩を有効成分とする細胞分化誘導剤。
(II) Cell differentiation inducer (II-1) A cell differentiation inducer comprising as an active ingredient the compound described in any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof.
 (III)抗腫瘍剤
(III-1)(I-1)~(I-4)のいずれかに記載の化合物をまたはその薬学的に許容される塩を有効成分とする血液悪性腫瘍に対する抗腫瘍剤。
(III-2)血液悪性腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかである、(III-1)に記載の抗腫瘍剤。
(III-3)(I-1)~(I-4)のいずれかに記載する化合物若しくはその薬学的に許容される塩とインターフェロンαとを組み合わせてなる抗腫瘍剤。
(III-4)(I-1)~(I-4)のいずれかに記載する化合物若しくはその薬学的に許容される塩とインターフェロンαを含有する組成物である、(III-3)記載の抗腫瘍剤。
(III-5)(I-1)~(I-4)のいずれかに記載する化合物またはその薬学的に許容される塩を有効成分とする薬剤とインターフェロンαを有効成分とする薬剤を、それぞれ別個に包装された組み合わせキットとして有する、(III-3)記載の抗腫瘍剤。
(III-6)対象とする腫瘍が肺腫瘍又は乳腫瘍である、(III-3)に記載する抗腫瘍剤。
(III) Antitumor agent against hematological malignancy comprising as an active ingredient the compound according to any one of (III-1) (I-1) to (I-4) or a pharmaceutically acceptable salt thereof Agent.
(III-2) The antitumor agent according to (III-1), wherein the hematological malignancy is any one selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma.
(III-3) An antitumor agent comprising a combination of the compound described in any of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and interferon α.
(III-4) The composition according to (III-3), which is a composition comprising the compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and interferon α. Antitumor agent.
(III-5) a drug containing the compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and a drug containing interferon α as an active ingredient, The antitumor agent according to (III-3), which is provided as a separately packaged combination kit.
(III-6) The antitumor agent according to (III-3), wherein the target tumor is a lung tumor or a breast tumor.
 (IV)(I-1)~(I-4)のいずれかに記載の化合物の用途
(IV-1)(I-1)~(I-4)のいずれかに記載の化合物をまたはその薬学的に許容される塩を有効量、腫瘍患者に投与することからなる、腫瘍の治療方法。
(IV-2)(I-1)~(I-4)のいずれかに記載の化合物をまたはその薬学的に許容される塩とインターフェロンαとを組み合わせて、その有効量、腫瘍患者に投与することからなる、腫瘍の治療方法。
(IV-3)上記腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかの血液悪性腫瘍、または乳癌、膵臓癌、肺癌及び卵巣癌からなる群から選択される固形癌である、(IV-1)または(IV-2)に記載する治療方法。
(IV-4)腫瘍の治療のために用いられる(I-1)~(I-4)のいずれかに記載の化合物をまたはその薬学的に許容される塩。
(IV-5)上記腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかの血液悪性腫瘍、または乳癌、膵臓癌、肺癌及び卵巣癌からなる群から選択される固形癌である、(IV-4)に記載する化合物またはその塩。
(IV-6)腫瘍の治療のために用いられる(I-1)~(I-4)のいずれかに記載の化合物をまたはその薬学的に許容される塩とインターフェロンαとを組み合わせ物。
(IV-7)上記腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかの血液悪性腫瘍、または乳癌、膵臓癌、肺癌及び卵巣癌からなる群から選択される固形癌である、(IV-6)に記載する組み合わせ物。
(IV) Use of the compound according to any one of (I-1) to (I-4) (IV-1) The compound according to any one of (I-1) to (I-4) or a pharmaceutical product thereof A method for treating a tumor, comprising administering an effective amount of a pharmaceutically acceptable salt to a tumor patient.
(IV-2) An effective amount of the compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and a combination of interferon α is administered to a tumor patient. A method for treating a tumor, comprising:
(IV-3) The hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or a solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer The treatment method described in (IV-1) or (IV-2).
(IV-4) The compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof, which is used for treating a tumor.
(IV-5) The hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or a solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer The compound or a salt thereof described in (IV-4).
(IV-6) A compound according to any one of (I-1) to (I-4) or a pharmaceutically acceptable salt thereof and a combination of interferon α and used for the treatment of tumors.
(IV-7) Any hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or solid cancer selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer The combination described in (IV-6).
 本発明によれば、細胞分化誘導作用を有し、細胞分化誘導剤として、また抗腫瘍剤、特に抗血液悪性腫瘍剤の有効成分またはその中間体として有用な新規化合物(1)が提供される。当該化合物(1)(但し、中間体を除く)は、インターフェロンα等の抗腫瘍剤の腫瘍活性を増強する作用を有し、それ自身抗腫瘍剤の有効成分として有用である以外に、インターフェロンα等の抗腫瘍剤の抗腫瘍効果増強剤としても有用である。 According to the present invention, there is provided a novel compound (1) which has a cell differentiation inducing action and is useful as a cell differentiation inducer and as an active ingredient of an antitumor agent, particularly an anti-hematologic malignant tumor agent or an intermediate thereof. . The compound (1) (excluding the intermediate) has an effect of enhancing the tumor activity of an antitumor agent such as interferon α and is useful as an active ingredient of an antitumor agent itself. It is also useful as an antitumor effect enhancer of antitumor agents such as
一般式(1)で示される本発明の化合物(ISIR-040:化合物(3)、ISIR-041:化合物(4)、ISIR-042:化合物(5)、ISIR-043:化合物(6)、ISIR-044:化合物(7))の合成スキームを表す。図における置換基の略号及び略語は次の用語を意味する(図2、図3において同じ)。Me:メチル基、Ac:アセチル基、Ms:メタンスルホニル基、Ns:4-ニトロベンゼンスルホニル基、Cbz:ベンジルオキシカルボニル基、AcCl:塩化アセチル、DMAP:ジメチルアミノピリジン、PPTS:ピリジニウムp-トルエンスルホン酸、MsCl:メタンスルホニルクロリド、aq. NaHCO3:炭酸水素ナトリウム水溶液、THF:テトラヒドロフラン、HMPA:ヘキサメチルホスホルアミド、Et3N:トリエチルアミン、Ac2O:無水酢酸、PS-carbodiimide:ポリスチレン樹脂に担持されたカルボジイミド試薬、MeI:ヨウ化メチル、DMF:ジメチルホルムアミド。Compound of the present invention represented by general formula (1) (ISIR-040: Compound (3), ISIR-041: Compound (4), ISIR-042: Compound (5), ISIR-043: Compound (6), ISIR -044: This represents a synthesis scheme of the compound (7)). The abbreviations and abbreviations of substituents in the drawings mean the following terms (the same applies to FIGS. 2 and 3). Me: methyl group, Ac: acetyl group, Ms: methanesulfonyl group, Ns: 4-nitrobenzenesulfonyl group, Cbz: benzyloxycarbonyl group, AcCl: acetyl chloride, DMAP: dimethylaminopyridine, PPTS: pyridinium p-toluenesulfonic acid , MsCl: Methanesulfonyl chloride, aq. NaHCO 3 : Sodium bicarbonate aqueous solution, THF: Tetrahydrofuran, HMPA: Hexamethylphosphoramide, Et 3 N: Triethylamine, Ac 2 O: Acetic anhydride, PS-carbodiimide: Supported on polystyrene resin Carbodiimide reagent, MeI: methyl iodide, DMF: dimethylformamide. 一般式(1)で示される本発明の化合物(ISIR-042:化合物(5)、ISIR-062:化合物(8)、ISIR-072:化合物(9)、ISIR-082:化合物(10))の合成スキームを表す。The compound of the present invention represented by the general formula (1) (ISIR-042: Compound (5), ISIR-062: Compound (8), ISIR-072: Compound (9), ISIR-082: Compound (10)) Represents a synthesis scheme. 一般式(1)で示される本発明の化合物(ISIR-051:化合物(11)、ISIR-052:化合物(12))の合成スキームを表す。This represents a synthesis scheme of the compound of the present invention represented by the general formula (1) (ISIR-051: Compound (11), ISIR-052: Compound (12)). ヒト急性骨髄性白血病細胞(HL-60細胞)に対するISIR-040(化合物(3))及びコチレニンA(CN-A)の細胞分化誘導活性を示すグラフである(試験例1)。It is a graph which shows the cell differentiation-inducing activity of ISIR-040 (compound (3)) and cotylenin A (CN-A) with respect to human acute myeloid leukemia cells (HL-60 cells) (Test Example 1). ヒト単球性白血病細胞(U937細胞)に対するISIR-040(化合物(3))、ISIR-042(化合物(5))、ISIR-062(化合物(8))、ISIR-082(化合物(10))、ISIR-005、及びコチレニンA(CN-A)の細胞分化誘導活性を示すグラフである(試験例1)。ISIR-040 (compound (3)), ISIR-042 (compound (5)), ISIR-062 (compound (8)), ISIR-082 (compound (10)) for human monocytic leukemia cells (U937 cells) 1 is a graph showing the cell differentiation-inducing activity of ISIR-005 and Cochirenin A (CN-A) (Test Example 1). ヒト単球性白血病細胞(U937細胞)に対するISIR-041(化合物(4))、ISIR-042(化合物(5))、ISIR-043(化合物(6))、ISIR-044(化合物(7))、及びISIR-005の細胞分化誘導活性を示すグラフである(試験例1)。ISIR-041 (compound (4)), ISIR-042 (compound (5)), ISIR-043 (compound (6)), ISIR-044 (compound (7)) for human monocytic leukemia cells (U937 cells) 2 is a graph showing the cell differentiation-inducing activity of ISIR-005 (Test Example 1). ヒト単球性白血病細胞(U937細胞)に対するISIR-042(化合物(5))、及びISIR-072(化合物(9))の細胞分化誘導活性を示すグラフである(試験例1)。It is a graph which shows the cell differentiation-inducing activity of ISIR-042 (compound (5)) and ISIR-072 (compound (9)) against human monocytic leukemia cells (U937 cells) (Test Example 1). ISIR-042(化合物(5))とインターフェロンαとの併用による肺癌細胞(A549)増殖に対する阻害効果を、MTTアッセイによって評価した結果を示す(試験例2)。縦軸は、コントロールに対する生細胞数(%)を表す。The test result which evaluated the inhibitory effect with respect to the lung cancer cell (A549) proliferation by combined use of ISIR-042 (compound (5)) and interferon (alpha) is shown (test example 2). The vertical axis represents the number of viable cells (%) relative to the control. ISIR-042(化合物(5))の乳癌細胞(MCF-7)に対する増殖抑制作用を、通常の酸素濃度(21%)と低酸素下(1%)で測定した結果を示す(試験例3)。縦軸は、コントロールに対する生細胞数(%)を表す。The results of measuring the inhibitory effect of ISIR-042 (compound (5)) on breast cancer cells (MCF-7) under normal oxygen concentration (21%) and hypoxia (1%) are shown (Test Example 3). . The vertical axis represents the number of viable cells (%) relative to the control. 既知抗がん剤Gemcitabinの膵臓癌細胞(MiaPaca-2)に対する増殖抑制作用を、通常の酸素濃度(21%)と低酸素下(1%)で測定した結果を示す(試験例3)。縦軸は、コントロールに対する生細胞数(%)を表す。The growth inhibitory effect with respect to the pancreatic cancer cell (MiaPaca-2) of the known anticancer drug Gemcitabin is shown in a result of measurement under normal oxygen concentration (21%) and hypoxia (1%) (Test Example 3). The vertical axis represents the number of viable cells (%) relative to the control. ISIR-042、ISIR-005、およびCN-Aの膵臓癌細胞(MiaPaca-2)に対する増殖抑制作用を、通常の酸素濃度(21%)と低酸素下(1%)で測定した結果を示す(試験例3)。縦軸は、コントロールに対する生細胞数(%)を表す。The results of measuring the inhibitory effect of ISIR-042, ISIR-005, and CN-A on pancreatic cancer cells (MiaPaca-2) under normal oxygen concentration (21%) and hypoxia (1%) are shown ( Test Example 3). The vertical axis represents the number of viable cells (%) relative to the control. ISIR-042とISIR-041の膵臓癌細胞(Panc-1)に対する増殖抑制作用を、通常の酸素濃度(21%)と低酸素下(1%)で測定した結果を示す(試験例3)。縦軸は、コントロールに対する生細胞数(%)を表す。The results of measuring the growth inhibitory action of ISIR-042 and ISIR-041 on pancreatic cancer cells (Panc-1) under normal oxygen concentration (21%) and under hypoxia (1%) are shown (Test Example 3). The vertical axis represents the number of viable cells (%) relative to the control.
(I)12-デオキシフシコクシン糖鎖改変誘導体
 本発明が対象とする12-デオキシフシコクシン糖鎖改変誘導体は、下記の一般式(1)で示すことができる:
(I) 12-Deoxyfuscoccine sugar chain-modified derivative The 12-deoxyfusicoccin sugar chain-modified derivative targeted by the present invention can be represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(1)中、Rは炭素数1~6の直鎖状または分岐状のアルキル基、-N基、または下記一般式(2)で示されるアミノ基を意味する: In the above formula (1), R 1 means a linear or branched alkyl group having 1 to 6 carbon atoms, —N 3 group, or an amino group represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ここで、Rで示される炭素数1~6の直鎖状または分岐状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基、およびイソヘキシル基が含まれる。特に好ましくはメチル基である。 Here, examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, A hexyl group and an isohexyl group are included. Particularly preferred is a methyl group.
 また上記式(2)中、Rは水素原子または炭素数1~6の直鎖状または分岐状のアルキル基である。好ましくは水素原子である。ここで炭素数1~6の直鎖状または分岐状のアルキル基としては、前述するアルキル基を同様に挙げることができる。 In the above formula (2), R 2 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms. Preferably it is a hydrogen atom. Here, examples of the linear or branched alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups.
 さらに上記式(2)中、Rは水素原子、炭素数1~6の直鎖状または分岐状のアルキル基、炭素数1~7のアシル基、p-ニトロフェニルスルホニル基、またはアミジル基(-CNHNH)である。特に好ましくは水素原子である。 In the above formula (2), R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, a p-nitrophenylsulfonyl group, or an amidyl group ( -CNHNH 2 ). Particularly preferred is a hydrogen atom.
 ここで炭素数1~6の直鎖状または分岐状のアルキル基としては、前述するアルキル基を同様に挙げることができる。 Here, examples of the linear or branched alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups.
 Rで示される炭素数1~7のアシル基とは、CO-Rで示される基を意味する。ここでRは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、および炭素数2~6のアルキニル基を挙げることができる。ここで炭素数1~6のアルキル基としては、前述するアルキル基を同様に挙げることができる。好ましくはメチル基である。また炭素数2~6のアルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、およびヘキセニル基を挙げることができる。好ましくはビニル基である。また炭素数2~6のアルキニル基として、エチニル基、プロピニル基、ブチリル基、ペンチニル基、およびヘキシニル基を挙げることができる。好ましくはエチニル基である。 The acyl group having 1 to 7 carbon atoms represented by R 3 means a group represented by CO—R 4 . Here, R 4 includes an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 2 to 6 carbon atoms. Here, examples of the alkyl group having 1 to 6 carbon atoms include the above-described alkyl groups. A methyl group is preferred. Examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group. A vinyl group is preferred. Examples of the alkynyl group having 2 to 6 carbon atoms include ethynyl group, propynyl group, butyryl group, pentynyl group, and hexynyl group. An ethynyl group is preferable.
 アシル基として好ましくはRが炭素数1のメチル基であるアセチル基、およびRが炭素数2のエチニル基であるエチニルカルボニル基である。 The preferred acyl group acetyl group R 4 is a methyl group having one carbon atom, and R 4 is an ethynyl group or an ethynyl group having 2 carbon atoms.
 上記式(1)中、nは0~5の整数を示す。式(1)中、Rが炭素数1~6のアルキル基であるとき、nは好ましくは0である。また、Rが式(2)で示されるアミノ基であるとき、nは好ましくは2~5の整数である。 In the above formula (1), n represents an integer of 0 to 5. In the formula (1), when R 1 is an alkyl group having 1 to 6 carbon atoms, n is preferably 0. When R 1 is an amino group represented by the formula (2), n is preferably an integer of 2 to 5.
 式(1)で表される本発明の化合物の具体例としては下式(3)~(12)で示される化合物(以下、これらを化合物(3)~化合物(12)ともいう)を挙げることができる。 Specific examples of the compound of the present invention represented by the formula (1) include compounds represented by the following formulas (3) to (12) (hereinafter also referred to as compounds (3) to (12)). Can do.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記化合物(3)~(12)のうち、好ましくは式(1)においてnが2でRがアミノ基である化合物(4)、nが3でRがアミノ基である化合物(5)、及びnが3でRが式(2)においてRが水素原子でRがエチニルカルボニル基である化合物(9)である。より好ましくは化合物(5)及び化合物(9)である。 Of the above compounds (3) to (12), preferably compound (4) wherein n is 2 and R 1 is an amino group in formula (1), compound (5) where n is 3 and R 1 is an amino group , And n is 3 and R 1 is the compound (9) in which R 2 is a hydrogen atom and R 3 is an ethynylcarbonyl group in the formula (2). More preferred are compound (5) and compound (9).
 式(1)で表される本発明の化合物のうち、Rが-N基であるか、またはRがp-ニトロフェニルスルホニル基である化合物は、細胞分化誘導作用を有する本発明の化合物、特に上記化合物(3)~(12)の合成中間体として有用である。具体的には、Rが-N基である化合物(1)としては、例えばSI-05(製造例2(1))、SI-06(製造例3(1))、SI-07(製造例4(1))及びSI-08(製造例5(1))を挙げることができるが、これらはそれぞれ上記化合物(4)(ISIR-041:製造例2(2)参照)、化合物(5)(ISIR-042:製造例3(2)参照)、化合物(6)(ISIR-043:製造例4(2)参照)、及び化合物(7)(ISIR-044:製造例5(2)参照)の合成中間体である(図1参照)。また、Rがp-ニトロフェニルスルホニル基である化合物(1)としては、例えばSI-09(製造例9(1))及びSI-10(製造例9(2))を挙げることができるが、これらはいずれも上記化合物(10)(ISIR-082:製造例9(3)参照)の合成中間体である(図2参照)。 Among the compounds of the present invention represented by the formula (1), a compound in which R 1 is a —N 3 group or R 3 is a p-nitrophenylsulfonyl group is a compound of the present invention having a cell differentiation inducing action. It is useful as a synthetic intermediate for compounds, particularly the above compounds (3) to (12). Specifically, examples of the compound (1) in which R 1 is a —N 3 group include SI-05 (Production Example 2 (1)), SI-06 (Production Example 3 (1)), SI-07 ( Production Example 4 (1)) and SI-08 (Production Example 5 (1)) can be mentioned, and these are the above-mentioned compound (4) (see ISIR-041: Production Example 2 (2)), compound ( 5) (ISIR-042: See Preparation Example 3 (2)), Compound (6) (ISIR-043: See Preparation Example 4 (2)), and Compound (7) (ISIR-044: Preparation Example 5 (2) (See FIG. 1). Examples of the compound (1) in which R 3 is a p-nitrophenylsulfonyl group include SI-09 (Production Example 9 (1)) and SI-10 (Production Example 9 (2)). These are all synthetic intermediates of the above compound (10) (see ISIR-082: Production Example 9 (3)) (see FIG. 2).
 一般式(1)で表される本発明の化合物は、例えば図1及び2に示す合成スキームを基に、必要に応じて反応条件の変更、反応の追加、反応の省略等することにより製造することができる。 The compound of the present invention represented by the general formula (1) is produced, for example, by changing reaction conditions, adding a reaction, omitting a reaction, etc., if necessary, based on the synthetic scheme shown in FIGS. be able to.
 図1は特許文献3(国際公開公報WO2008/010324)に記載する4’,6’-イソプロピリデン-12-デオキシフシコクシンJ(ISIR-005)を出発物質とした合成スキームであり、図2は化合物(5)(ISIR-042)を出発原料とした合成スキームである。図3は化合物(4)(ISIR-041)および化合物(5)(ISIR-042)を出発原料とした合成スキームである。 FIG. 1 is a synthesis scheme using 4 ′, 6′-isopropylidene-12-deoxyfusicoccin J (ISIR-005) described in Patent Document 3 (International Publication WO2008 / 010324) as a starting material. Is a synthesis scheme starting from compound (5) (ISIR-042). FIG. 3 is a synthesis scheme using Compound (4) (ISIR-041) and Compound (5) (ISIR-042) as starting materials.
 なお、原料となるISIR-005は、特許文献3(国際公開公報WO2008/010324)に記載されているように、モモ枝折れ病菌(Phomopsis amygdali)により安定的に産生される天然フシコクシン類から合成することができる。また、天然フシコクシン類は、例えば(1) K.D. Barrow, D. H. R. Barton, Sir E. Chain, C. Conlay, T. C. Smale, R. Thomas, and E. S. Waight, J. Chem. Soc. (C), 1259 (1971); 又は(2) N. Tajima, M. Nukina, N.Kato, and T. Sassa, Biosci. Biotechnol. Biochem., 68, 1125 (2004)(日本産モモ枝折れ病菌Phomopsis amygdali Niigata 2-Aの培養に関する文献)に記載される方法により得ることができる。 In addition, ISIR-005 used as a raw material is synthesized from natural fusicoccins that are stably produced by Pomoopsis 病 amygdali, as described in Patent Document 3 (International Publication WO2008 / 010324). be able to. Natural fusicocins include, for example, (1) KD Barrow, D. H. R. Barton, Sir E. Chain, C. Conlay, T. C. Smale, R. Thomas, and E. S. Waight, J. Chem. Soc. (C), 1259 (1971); or (2) N. Tajima, M. Nukina, N.Kato, ukand T. Sassa, Biosci. Biotechnol. Biochem., 68, 1125 (2004) (Japan) It can be obtained by the method described in the literature on cultivation of peach branch rot fungus Phomopsis amygdali Niigata 2-A).
 図1、2及び3中に示す、化合物ISIR-040は前述する化合物(3)、ISIR-041~044は前述する化合物(4)~(7)、ISIR-062は前述する化合物(8)、化合物ISIR-072は前述する化合物(9)、ISIR-082は前述する化合物(10)、およびISIR-051とISIR-052は前述する化合物(11)と(12)にそれぞれ対応する。 In FIGS. 1, 2 and 3, the compound ISIR-040 is the compound (3) described above, ISIR-041 to 044 is the compound (4) to (7) described above, and ISIR-062 is the compound (8) described above. Compound ISIR-072 corresponds to compound (9) described above, ISIR-082 corresponds to compound (10) described above, and ISIR-051 and ISIR-052 correspond to compounds (11) and (12) described above, respectively.
 図1に示すように、例えば、Rが炭素数1~6のアルキル基を示す一般式(1)の化合物(化合物ISIR-040:化合物(3))は、例えば上記公知の化合物ISIR-005をアセチル化して化合物SI-01を生成させ、次いで開環反応(SI-02の生成)、スルホニル化(SI-03の生成)、脱アセチル化(SI-04の生成)、及び閉環反応を経て製造される。アセチル化、開環反応、スルホニル化、脱アセチル、及び閉環反応の反応条件は、公知の条件を広く適用することができる。具体的には後述する製造例1に記載する反応条件に従って製造することができる。また、図1に示すように、RがN-基を示す一般式(1)の化合物(化合物SI-05~08)は、上記方法で製造される化合物(3)(化合物ISIR-040)を、アジドアルカノールを用いてアジド化することで製造することができる。かかるアジド化反応の反応条件は、公知の条件を広く適用することができる。具体的には後述する製造例2~5に記載する反応条件に従って製造することができる。またここで得られる化合物(4)~(7)(化合物ISIR-041~044)は、製造例6に示す慣用の方法で塩の形態に調製することもできる。 As shown in FIG. 1, for example, the compound of the general formula (1) in which R 1 represents an alkyl group having 1 to 6 carbon atoms (compound ISIR-040: compound (3)) is, for example, the above known compound ISIR-005. Is then acetylated to form compound SI-01, followed by ring-opening reaction (generation of SI-02), sulfonylation (generation of SI-03), deacetylation (generation of SI-04), and ring-closing reaction Manufactured. As reaction conditions for acetylation, ring-opening reaction, sulfonylation, deacetylation, and ring-closing reaction, known conditions can be widely applied. Specifically, it can be produced according to the reaction conditions described in Production Example 1 described later. Further, as shown in FIG. 1, the compounds of the general formula (1) in which R 1 represents an N 3 — group (compounds SI-05 to 08) are compound (3) (compound ISIR-040) produced by the above method. ) Can be produced by azidation using an azidoalkanol. As the reaction conditions for the azidation reaction, known conditions can be widely applied. Specifically, it can be produced according to the reaction conditions described in Production Examples 2 to 5 described later. The compounds (4) to (7) (compounds ISIR-041 to 044) obtained here can also be prepared in the form of salts by a conventional method shown in Production Example 6.
 また図2に示すように、例えば、Rが一般式(2)(但し、Rは水素原子、Rは炭素数1~7のアシル基である)で示されるアミノ基である化合物(1)(化合物ISIR-062:化合物(8))は、例えば上記方法で製造された化合物ISIR-042(化合物(5))をアセチル化することで製造され、また、Rが上記と同じく一般式(2)で示されるアミノ基である化合物(化合物ISIR-072:化合物(9))は、例えば上記化合物ISIR-042(化合物(5))をエチニルカルボニル化することで製造することができる。 As shown in FIG. 2, for example, a compound in which R 1 is an amino group represented by the general formula (2) (wherein R 2 is a hydrogen atom and R 3 is an acyl group having 1 to 7 carbon atoms) ( 1) (Compound ISIR-062: Compound (8)) is produced, for example, by acetylating compound ISIR-042 (compound (5)) produced by the above method, and R 1 is generally the same as above. A compound (compound ISIR-072: compound (9)) which is an amino group represented by the formula (2) can be produced, for example, by ethynylcarbonylating the above compound ISIR-042 (compound (5)).
 また、Rが一般式(2)(但し、RまたはRのいずれか一方が水素原子で他方が炭素数1~6のアルキル基である)で示されるアミノ基である化合物(1)(化合物ISIR-082:化合物(10))は、上記方法で製造される上記化合物ISIR-042(化合物(5))をスルホニル化して化合物SI-09を生成し、次いでこれをメチル化(化合物SI-10を生成)し、脱スルホニル化することで製造することができる。 Compound (1) wherein R 1 is an amino group represented by the general formula (2) (wherein either R 2 or R 3 is a hydrogen atom and the other is an alkyl group having 1 to 6 carbon atoms) (Compound ISIR-082: Compound (10)) sulfonylates the compound ISIR-042 (compound (5)) produced by the above method to produce compound SI-09, which is then methylated (compound SI -10) and desulfonylation.
 さらに図3に示すように、例えば、Rが一般式(2)(但し、Rは水素原子、Rはアミジル基(-CNHNH))で示されるアミノ基である化合物(1)(化合物ISIR-051:化合物(11)および化合物ISIR-052:化合物(12))は、例えば上記方法で製造された化合物ISIR-041(化合物(4))および化合物ISIR-042(化合物(5))をアミジル化することでそれぞれ製造することができる。 Further, as shown in FIG. 3, for example, a compound (1) in which R 1 is an amino group represented by the general formula (2) (where R 2 is a hydrogen atom, R 3 is an amidyl group (—CNHNH 2 )) Compound ISIR-051: Compound (11) and Compound ISIR-052: Compound (12)) are, for example, compound ISIR-041 (compound (4)) and compound ISIR-042 (compound (5)) produced by the above-described method. Can be produced by amidylation.
 これらの化合物は、後述する試験例に示すように、細胞分化誘導活性を有しており、細胞分化誘導剤または抗腫瘍剤の有効成分として有用である。中でもISIR-041(化合物(4))とISIR-042(化合物(5))は、低酸素環境下でも各種の悪性腫瘍細胞(乳癌細胞、膵臓癌細胞、肺癌細胞、卵巣癌細胞)に対して細胞増殖抑制作用を発揮する(試験例3)。さらに、ISIR-042(化合物(5))は、インターフェロンαと併用して用いることで、悪性腫瘍細胞の増殖を顕著に抑制する作用を発揮する(試験例2)。 These compounds have cell differentiation-inducing activity and are useful as active ingredients of cell differentiation-inducing agents or antitumor agents, as shown in the test examples described later. Among them, ISIR-041 (compound (4)) and ISIR-042 (compound (5)) are effective against various malignant tumor cells (breast cancer cells, pancreatic cancer cells, lung cancer cells, ovarian cancer cells) even in a hypoxic environment. Demonstrate cell growth inhibitory effect (Test Example 3). Furthermore, ISIR-042 (compound (5)) exhibits an effect of significantly suppressing the growth of malignant tumor cells when used in combination with interferon α (Test Example 2).
 なお、図1、2及び3中に示す化合物のうちSIで示される化合物は、抗腫瘍剤の有効成分となりえる上記化合物(3)~(12)の中間体として有用である。 Of the compounds shown in FIGS. 1, 2 and 3, the compound represented by SI is useful as an intermediate of the above compounds (3) to (12) which can be an active ingredient of an antitumor agent.
 これらの化合物のうち、アミノ基を持つ(4)~(7)及び(10)、グアニジル基を持つは(11)及び(12)は、遊離または塩の形態を有することができる。ここで塩としては、通常、医薬上許容される塩、たとえば無機酸、有機酸、または酸性アミノ酸などの酸付加塩等を挙げることができる。 Among these compounds, (4) to (7) and (10) having an amino group, and (11) and (12) having a guanidyl group can have a free or salt form. Examples of the salt include pharmaceutically acceptable salts such as acid addition salts such as inorganic acids, organic acids, or acidic amino acids.
 酸付加塩を形成する無機酸としては、たとえば、塩酸、臭化水素酸、硝酸、硫酸、リン酸等を挙げることができる。有機酸としては、たとえば、ギ酸、酢酸、乳酸、トリフルオロ酢酸、フマール酸、シュウ酸、酒石酸、マレイン酸、安息香酸、クエン酸、コハク酸、リンゴ酸、アスコルビン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等を挙げることができる。酸性アミノ酸としては、たとえば、アスパラギン酸、グルタミン酸等を挙げることができる。 Examples of inorganic acids that form acid addition salts include hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, and the like. Examples of organic acids include formic acid, acetic acid, lactic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, benzoic acid, citric acid, succinic acid, malic acid, ascorbic acid, methanesulfonic acid, ethanesulfonic acid Benzenesulfonic acid, p-toluenesulfonic acid and the like. Examples of acidic amino acids include aspartic acid and glutamic acid.
 (II)薬剤、細胞分化誘導剤および抗腫瘍剤
 一般式(1)で表される本発明の化合物は細胞分化誘導活性を有する。特に上記(3)~(12)の化合物は、後述するヒト白血病細胞(ヒト骨髄性白血病HL-60細胞もしくはヒト単球性白血病U937細胞)を用いた細胞分化誘導活性試験(試験性1)において、コチレニンAと類似の活性を示し、腫瘍細胞等の異常細胞から成熟細胞への細胞分化誘導作用を有する。細胞分化誘導活性は細胞の分化を誘導するため、本発明の化合物(1)は腫瘍細胞等の異常な分化を示す細胞の増殖を抑制できる。したがって、一般式(1)で表される本発明の化合物は細胞分化誘導剤として有用である。また、細胞分化誘導活性に基づいて、腫瘍細胞の増殖を抑制することができるので、薬剤、具体的には抗腫瘍剤としても有用である。対象とする腫瘍には、良性腫瘍および悪性腫瘍が含まれる。好ましくは悪性腫瘍(癌)である。
(II) Drug, cell differentiation inducer and antitumor agent The compound of the present invention represented by the general formula (1) has cell differentiation induction activity. In particular, the compounds (3) to (12) are used in the cell differentiation-inducing activity test (testability 1) using human leukemia cells (human myeloid leukemia HL-60 cells or human monocytic leukemia U937 cells) described later. It exhibits an activity similar to that of cotylenin A and has an effect of inducing cell differentiation from abnormal cells such as tumor cells to mature cells. Since the cell differentiation inducing activity induces cell differentiation, the compound (1) of the present invention can suppress the proliferation of cells exhibiting abnormal differentiation such as tumor cells. Therefore, the compound of the present invention represented by the general formula (1) is useful as a cell differentiation inducer. Moreover, since proliferation of tumor cells can be suppressed based on cell differentiation-inducing activity, it is also useful as a drug, specifically as an antitumor agent. The target tumors include benign tumors and malignant tumors. A malignant tumor (cancer) is preferred.
 本発明の化合物(1)の細胞分化誘導活性による細胞増殖抑制作用が効果的に作用する細胞としては、白血病細胞、悪性リンパ腫、悪性骨髄腫をはじめとする血液悪性腫瘍等の腫瘍細胞が挙げられる。増殖抑制の対象として好ましいのは白血病細胞、悪性リンパ腫、悪性骨髄腫であり、より好ましいのは白血病細胞(急性骨髄性白血病細胞、単球性白血病細胞)である。また、乳癌、膵臓癌、肺癌、卵巣癌などの固形癌も対象とすることができる。 Examples of the cells in which the cell growth inhibitory action by the cell differentiation-inducing activity of the compound (1) of the present invention is effective include tumor cells such as leukemia cells, malignant lymphomas, and hematological malignancies including malignant myeloma. . Leukemia cells, malignant lymphoma, and malignant myeloma are preferable as growth inhibition targets, and leukemia cells (acute myeloid leukemia cells, monocytic leukemia cells) are more preferable. In addition, solid cancers such as breast cancer, pancreatic cancer, lung cancer, and ovarian cancer can also be targeted.
 さらに、本発明の化合物(1)は、インターフェロンαと組み合わせて使用することもできる。中でも化合物(5)は、試験例2に示すように、インターフェロンαと併用することで、インターフェロンαの抗腫瘍活性を相乗的に増強させることができる。このため、本発明の化合物は、インターフェロンαの抗腫瘍活性増強剤として使用することができ、またインターフェロンαと組み合わせて抗腫瘍剤として使用することができる。ここで組み合わせる態様は、特に制限されず、最初から本発明の化合物とインターフェロンαとを混合した組成物(合剤)の形態とする態様、本発明の化合物とインターフェロンαをそれぞれ別個の製剤包装形態とし、使用時に両者を組み合わせて用いる態様(組み合わせキット)のいずれであってもよい。 Furthermore, the compound (1) of the present invention can also be used in combination with interferon α. Among them, as shown in Test Example 2, compound (5) can synergistically enhance the antitumor activity of interferon α when used in combination with interferon α. Therefore, the compound of the present invention can be used as an antitumor activity enhancer of interferon α, or can be used as an antitumor agent in combination with interferon α. The embodiment to be combined here is not particularly limited, and is an embodiment in which the compound of the present invention and interferon α are mixed in the form of a composition (mixture) from the beginning, and the compound of the present invention and interferon α are separately packaged in packaging form. And any of the aspects (combination kit) used combining both at the time of use may be sufficient.
 試験例3で示すように、本発明の化合物(1)のなかでも、特に化合物(5)はHypoxia状態でがん細胞の増殖を顕著に抑制する。一般にがん組織内部は低酸素状態にあり、化学療法剤に対して抵抗性を示すことが知られている。従って、上記特徴を有する本発明化合物は、より有効に抗腫瘍作用を発揮する抗腫瘍剤(抗癌剤)として極めて有効である。 As shown in Test Example 3, among the compounds (1) of the present invention, particularly the compound (5) remarkably suppresses the growth of cancer cells in the Hypoxia state. In general, it is known that cancer tissue is hypoxic and resistant to chemotherapeutic agents. Therefore, the compound of the present invention having the above characteristics is extremely effective as an antitumor agent (anticancer agent) that exhibits an antitumor action more effectively.
 また本発明の化合物(1)のうち、アミノ基を持つ化合物(4)~(7)及び(10)、グアニジル基を持つは(11)及び(12)、ならびにそれらの薬学的に許容される塩は、十分な水溶性を有し、注射剤などの液剤として調製することができる。 Of the compounds (1) of the present invention, compounds (4) to (7) and (10) having an amino group, those having a guanidyl group (11) and (12), and pharmaceutically acceptable compounds thereof The salt has sufficient water solubility and can be prepared as a liquid such as an injection.
 本発明の化合物は、公知の方法、公知の単位投与量で、公知の担体あるいは賦形剤または薬学的に許容された添加剤等とともに医薬組成物として、ヒトまたはヒトを除く哺乳類に経口または非経口的(例えば筋肉内、皮下、静脈内への注射や点滴、経肺投与)、または局所(粘膜投与剤)または外用剤(坐剤、軟膏剤、クリーム剤、貼付剤等)として投与することができる。 The compound of the present invention can be orally or non-humanly administered to humans or mammals other than humans in a known manner, in known unit dosages, and as a pharmaceutical composition together with known carriers or excipients or pharmaceutically acceptable additives. Administer orally (eg, intramuscular, subcutaneous, intravenous injection or infusion, transpulmonary administration), or topical (mucosal administration) or external preparation (suppository, ointment, cream, patch, etc.) Can do.
 経口投与の場合、本発明化合物を通常の医薬製剤、例えば、錠剤、カプセル剤、顆粒剤、細粒剤、散剤、ロゼンジ、トローチ、ゼリーなどの固体製剤;または溶液剤、乳剤(油中水型乳剤など)、懸濁剤、シロップ剤などの液剤として用いる。錠剤または他の固体製剤を製造するには、本発明の化合物の一種あるいは二種以上を通常の賦形剤(クエン酸ナトリウム、ラクトース、微結晶セルロース、スターチなど)、潤滑剤(無水ケイ酸、水添ヒマシ油、ステアリン酸マグネシウム、ラウリル硫酸ナトリウム、タルクなど)、結合剤(スターチペースト、グルコース、ラクトース、アラビアゴム、ゼラチン、マンニトールなど)およびその他の通常の添加剤(フレーバー、着色剤、抗酸化剤を含む保存剤、界面活性剤、懸濁剤、乳化剤およびその他同種のもの)と混合し、該混合物を公知の方法で製剤化する。液剤の製造には、水、生理的食塩水、油などの公知の液体担体を用いる。 In the case of oral administration, the compound of the present invention is converted into a conventional pharmaceutical preparation, for example, a solid preparation such as tablet, capsule, granule, fine granule, powder, lozenge, troche, jelly; or solution, emulsion (water-in-oil type) Emulsions, etc.), suspensions, syrups, etc. To produce tablets or other solid preparations, one or more of the compounds of the present invention can be combined with conventional excipients (sodium citrate, lactose, microcrystalline cellulose, starch, etc.), lubricants (anhydrous silicic acid, Hydrogenated castor oil, magnesium stearate, sodium lauryl sulfate, talc, etc.), binders (starch paste, glucose, lactose, gum arabic, gelatin, mannitol, etc.) and other normal additives (flavors, colorants, antioxidants) Preservatives including surfactants, surfactants, suspending agents, emulsifiers and the like), and the mixture is formulated by a known method. For the production of the liquid preparation, a known liquid carrier such as water, physiological saline or oil is used.
 非経口投与の場合、本発明の化合物を無菌の油性または水性製剤として用いる。注射剤は通常、本発明の化合物を注射用蒸留水に溶かし、必要ならば、次いでグルコース、食塩水などで緩衝化あるいは等張化して製造する。外用剤としては、軟膏剤が好ましいが、リニメント剤、ローション剤、水中油型もしくは油中水型乳剤(例えばクリーム)、溶液剤、懸濁剤、または同種のものが含まれる。軟膏剤は公知の方法により、通常の軟膏基剤、例えば脂肪、脂肪酸(オリーブ油、ゴマ油、中鎖脂肪酸のトリグリセライドなど)、ラノリン、ロウ、パラフィン、グリコール、高級アルコール、界面活性剤およびその他同種のものとともに製造することができる。 For parenteral administration, the compound of the present invention is used as a sterile oily or aqueous preparation. Injections are usually prepared by dissolving the compound of the present invention in distilled water for injection and then buffering or isotonizing with glucose, saline, etc. if necessary. The external preparation is preferably an ointment, but includes liniments, lotions, oil-in-water or water-in-oil emulsions (for example, creams), solutions, suspensions, and the like. Ointments are prepared in a known manner by conventional ointment bases such as fats, fatty acids (olive oil, sesame oil, triglycerides of medium chain fatty acids, etc.), lanolin, wax, paraffin, glycols, higher alcohols, surfactants and the like. Can be manufactured together.
 本発明の化合物または医薬組成物の投与量は投与方法、患者の性別および年令、症状の程度などによって異なるが、例えば皮下注入等、非経口的に投与する場合、成人1日当り、該化合物として1~100mg/kg程度、好ましくは3~40mg/kg程度を用いる。また、経口的に投与する場合、制限されないが、成人1日当り、該化合物として3~300mg/kg、好ましくは9~120mg/kg程度を用いることができる。 The dose of the compound or pharmaceutical composition of the present invention varies depending on the administration method, the sex and age of the patient, the degree of symptoms, etc., but when administered parenterally, such as subcutaneous injection, About 1 to 100 mg / kg, preferably about 3 to 40 mg / kg is used. When administered orally, although not limited, 3 to 300 mg / kg, preferably about 9 to 120 mg / kg, of the compound can be used per day for an adult.
 本発明の化合物は単独であるいは他の抗腫瘍剤(例えばインターフェロンα)と併用で投与してもよい。本発明の化合物を他の抗腫瘍剤と併用する場合、その使用量は、当該他の抗腫瘍剤の抗腫瘍作用が増強される限り特に制限されないが、好ましくは他の抗腫瘍剤100重量部に対して0.0001~500重量部、より好ましくは0.001~300重量部である。 The compound of the present invention may be administered alone or in combination with another antitumor agent (for example, interferon α). When the compound of the present invention is used in combination with another antitumor agent, the amount used is not particularly limited as long as the antitumor action of the other antitumor agent is enhanced, but preferably 100 parts by weight of the other antitumor agent 0.0001 to 500 parts by weight, more preferably 0.001 to 300 parts by weight.
 以下、本発明を製造例および試験例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to production examples and test examples, but the present invention is not limited thereto.
 図1、図2および図3に示した合成スキームを基に本発明の化合物を製造した。なお、出発原料であるISIR-005は特許文献3(国際公開公報WO2008/010324)に記載する方法に従って合成した。 The compound of the present invention was produced based on the synthetic schemes shown in FIG. 1, FIG. 2 and FIG. The starting material ISIR-005 was synthesized according to the method described in Patent Document 3 (International Publication WO2008 / 010324).
 製造例1 化合物(3)の製造(図1、ISIR-040)
(1)SI-01の合成
 198 mg(0.37 mmol)のISIR-005をジクロロメタン4 mLに溶解し、氷冷下に181 mg (1.48 mmol)のジメチルアミノピリジン(DMAP)と60μL(0.85 mmol)の塩化アセチル(AcCl)を加え、45分間撹拌した。飽和NH4Cl水溶液で反応を終了させ、ジクロロメタンで抽出し、有機層をMgSO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:2)で分離、精製を行ない、229 mgのSI-01を定量的に得た。SI-01の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.4, 18.9, 20.6, 20.8, 20.9, 21.0, 26.7, 26.8, 27.7, 27.9, 28.9, 35.8, 40.5, 40.8, 42.5, 48.4, 52.5, 58.6, 62.3, 63.9, 69.7, 71.7, 72.0, 76.2, 77.6, 78.4, 99.7, 100.0, 132.9, 135.0, 138.7, 149.8, 169.7, and 170.1.
ESI-MS: m/z 643.3434 (M+Na+)。
Production Example 1 Production of Compound (3) (FIG. 1, ISIR-040)
(1) Synthesis of SI-01 198 mg (0.37 mmol) of ISIR-005 was dissolved in 4 mL of dichloromethane, and 181 mg (1.48 mmol) of dimethylaminopyridine (DMAP) and 60 μL (0.85 mmol) of ice were cooled. Acetyl chloride (AcCl) was added and stirred for 45 minutes. The reaction was terminated with saturated aqueous NH 4 Cl, extracted with dichloromethane, and the organic layer was dried over MgSO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2) to quantitatively obtain 229 mg of SI-01. The 13 C-NMR data and ESI-MS data of SI-01 are shown below.
13 C-NMR (CDCl 3 ): δ 9.4, 18.9, 20.6, 20.8, 20.9, 21.0, 26.7, 26.8, 27.7, 27.9, 28.9, 35.8, 40.5, 40.8, 42.5, 48.4, 52.5, 58.6, 62.3, 63.9, 69.7, 71.7, 72.0, 76.2, 77.6, 78.4, 99.7, 100.0, 132.9, 135.0, 138.7, 149.8, 169.7, and 170.1.
ESI-MS: m / z 643.3434 (M + Na + ).
 (2)SI-02の合成
 上記で合成したSI-01(215 mg(0.35 mmol))のメタノール(10 mL)に、氷冷下、53 mg(0.21 mmol)のピリジニウムp-トルエンスルホン酸(PPTS)を加えた。50 ℃で2時間撹拌した後、飽和KHSO4水溶液で希釈し、ジクロロメタンで抽出し、有機層を飽和NaHCO3で洗浄した。MgSO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)で分離、精製を行ない、191 mgのSI-02を得た。
収率94%。
SI-02の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.4, 20.7, 20.8, 20.9, 21.3, 26.6, 26.9, 27.7, 28.0, 35.8, 40.7, 40.9, 42.4, 48.5, 52.4, 58.7, 61.6, 69.5, 70.6, 71.8, 73.6, 76.2, 77.9, 78.3, 99.5, 132.9, 135.2, 138.7, 149.7, 169.6, and 172.1.
ESI-MS: m/z 603.3165 (M+Na+)。 
(2) Synthesis of SI-02 To SI-01 (215 mg (0.35 mmol)) synthesized in methanol (10 mL), 53 mg (0.21 mmol) of pyridinium p-toluenesulfonic acid (PPTS) was cooled with ice. ) Was added. After stirring at 50 ° C. for 2 hours, the mixture was diluted with saturated aqueous KHSO 4 solution, extracted with dichloromethane, and the organic layer was washed with saturated NaHCO 3 . The extract was dried over MgSO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1) to obtain 191 mg of SI-02.
Yield 94%.
The 13 C-NMR data and ESI-MS data of SI-02 are shown below.
13 C-NMR (CDCl 3 ): δ 9.4, 20.7, 20.8, 20.9, 21.3, 26.6, 26.9, 27.7, 28.0, 35.8, 40.7, 40.9, 42.4, 48.5, 52.4, 58.7, 61.6, 69.5, 70.6, 71.8, 73.6, 76.2, 77.9, 78.3, 99.5, 132.9, 135.2, 138.7, 149.7, 169.6, and 172.1.
ESI-MS: m / z 603.3165 (M + Na + ).
 (3)SI-03の合成
 上記で合成したSI-02(236 mg(0.41 mmol))を5 mLのジクロロメタンに溶解し、氷冷下に400μL(2.44 mmol)のトリエチルアミンと94μL(1.22 mmol)のメタンスルホニルクロリド(MsCl)を加え、室温で16時間撹拌した。反応溶液に飽和KHSO4を加え、ジクロロメタンで抽出を行い、有機層を飽和NaHCO3、NaCl水溶液の順で洗浄し、MgSO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=2:3)で分離、精製を行ない、255 mgのSI-03を得た。収率85%。
SI-03の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.4, 20.6, 20.8, 20.9, 21.2, 26.8, 26.9, 27.8, 28.0, 35.9, 37.6, 38.6, 40.6, 41.0, 42.3, 48.4, 52.4, 58.7, 65.8, 67.6, 69.2, 70.2, 73.3, 76.2, 77.8, 79.0, 99.0, 132.6, 135.3, 138.9, 150.0, 169.2, and 170.2.
ESI-MS: m/z 759.2691 (M+Na+)。
(3) Synthesis of SI-03 SI-02 (236 mg (0.41 mmol)) synthesized above was dissolved in 5 mL of dichloromethane, and 400 μL (2.44 mmol) triethylamine and 94 μL (1.22 mmol) were added under ice cooling. Methanesulfonyl chloride (MsCl) was added and stirred at room temperature for 16 hours. Saturated KHSO 4 was added to the reaction solution, followed by extraction with dichloromethane. The organic layer was washed with saturated NaHCO 3 and NaCl aqueous solution in this order, dried over MgSO 4 , and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 2: 3) to obtain 255 mg of SI-03. Yield 85%.
The 13 C-NMR data and ESI-MS data of SI-03 are shown below.
13 C-NMR (CDCl 3 ): δ 9.4, 20.6, 20.8, 20.9, 21.2, 26.8, 26.9, 27.8, 28.0, 35.9, 37.6, 38.6, 40.6, 41.0, 42.3, 48.4, 52.4, 58.7, 65.8, 67.6, 69.2, 70.2, 73.3, 76.2, 77.8, 79.0, 99.0, 132.6, 135.3, 138.9, 150.0, 169.2, and 170.2.
ESI-MS: m / z 759.2691 (M + Na + ).
 (4)SI-04の合成
 上記で合成したSI-03(126 mg(0.17 mmol))をメタノール5 mLに溶解し、飽和NaHCO3水溶液(0.5 mL)を加えて室温で4時間撹拌した。ジクロロメタンで抽出し、有機層を飽和NaCl水溶液で洗浄し、MgSO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=3:1)で分離、精製を行ない、109 mgのSI-04を得た。収率98%。
SI-04の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.5, 20.5, 21.5, 26.8, 26.9, 27.9, 28.0, 29.7, 36.0, 37.5, 38.7, 40.6, 41.9, 42.1, 48.2, 52.4, 58.7, 66.7, 67.5, 71.9, 72.3, 76.2, 78.1, 78.2, 100.6, 132.8, 135.7, 138.8, and 149.4.
ESI-MS: m/z 675.2464 (M+Na+)。
(4) Synthesis of SI-04 SI-03 (126 mg (0.17 mmol)) synthesized above was dissolved in 5 mL of methanol, a saturated aqueous NaHCO 3 solution (0.5 mL) was added, and the mixture was stirred at room temperature for 4 hours. The mixture was extracted with dichloromethane, and the organic layer was washed with a saturated aqueous NaCl solution, dried over MgSO 4 , and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 3: 1) to obtain 109 mg of SI-04. Yield 98%.
The 13 C-NMR data and ESI-MS data of SI-04 are shown below.
13 C-NMR (CDCl 3 ): δ 9.5, 20.5, 21.5, 26.8, 26.9, 27.9, 28.0, 29.7, 36.0, 37.5, 38.7, 40.6, 41.9, 42.1, 48.2, 52.4, 58.7, 66.7, 67.5, 71.9, 72.3, 76.2, 78.1, 78.2, 100.6, 132.8, 135.7, 138.8, and 149.4.
ESI-MS: m / z 675.2464 (M + Na + ).
 (5)ISIR-040(化合物(3))の合成
 上記で合成したSI-04(83 mg(0.13 mmol))をテトラヒドロフラン(THF: 2.0 mL)に溶解し、氷冷下にNaOMe(0.5 Mメタノール溶液:381μL)を加えて氷冷下24時間撹拌した。飽和NH4Cl水溶液で希釈し、酢酸エチルで抽出した。有機層をNa2SO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=3:2)で分離、精製を行ない、66 mgのISIR-040を定量的に得た。
ISIR-040の1H-NMRデータとESI-MSデータを下記に示す。
1H-NMR (CDCl3): δ 0.82 (3H, d, J = 7.0), 0.96 (3H, d, J = 7.0), 1.05 (3H, d, J = 7.0), 1.20 (3H, s), 1.47-1.60 (3H, m), 1.64-1.72 (2H, m), 1.75 (1H, m), 1.89-1.98 (2H. m), 2.09-2.13 (2H, m), 2.61 (1H, t, J = 7.0), 2.66 (1H, m), 2.79 (1H, m), 2.95 (1H, brs), 3.13 (1H, m, J = 7.0), 3.29 (2H, d, J = 8.1), 3.31 (3H, s), 3.35 (3H, s), 3.80 (1H, dd, J = 4.0, 10.3), 3.84 (1H, d, J = 10.3), 3.93 (1H, d, J = 10.3) 3.97 (1H, dd, J = 4.0, 10.3), 3.97 (1H, t, J = 4.0), 4.75 (1H, dd, J =4.0, 7.3), 5.01 (1H, d, J = 0), 5.06 (1H, d, J = 4.0), and 5.31 (1H, t, J = 1.7).
ESI-MS: m/z 515 (M+Na+)。
(5) Synthesis of ISIR-040 (compound (3)) SI-04 (83 mg (0.13 mmol)) synthesized above was dissolved in tetrahydrofuran (THF: 2.0 mL), and NaOMe (0.5 M methanol was added under ice cooling. (Solution: 381 μL) was added and stirred for 24 hours under ice cooling. Dilute with saturated aqueous NH 4 Cl and extract with ethyl acetate. The organic layer was dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 3: 2) to quantitatively obtain 66 mg of ISIR-040.
1 H-NMR data and ESI-MS data of ISIR-040 are shown below.
1 H-NMR (CDCl 3 ): δ 0.82 (3H, d, J = 7.0), 0.96 (3H, d, J = 7.0), 1.05 (3H, d, J = 7.0), 1.20 (3H, s), 1.47-1.60 (3H, m), 1.64-1.72 (2H, m), 1.75 (1H, m), 1.89-1.98 (2H.m), 2.09-2.13 (2H, m), 2.61 (1H, t, J = 7.0), 2.66 (1H, m), 2.79 (1H, m), 2.95 (1H, brs), 3.13 (1H, m, J = 7.0), 3.29 (2H, d, J = 8.1), 3.31 (3H , s), 3.35 (3H, s), 3.80 (1H, dd, J = 4.0, 10.3), 3.84 (1H, d, J = 10.3), 3.93 (1H, d, J = 10.3) 3.97 (1H, dd , J = 4.0, 10.3), 3.97 (1H, t, J = 4.0), 4.75 (1H, dd, J = 4.0, 7.3), 5.01 (1H, d, J = 0), 5.06 (1H, d, J = 4.0), and 5.31 (1H, t, J = 1.7).
ESI-MS: m / z 515 (M + Na + ).
 製造例2 化合物(4)の製造(図1、ISIR-041)
(1)SI-05の合成
 2-アジド-1-エタノール(601μL, 7.94 mmol)のテトラヒドロフラン(THF: 1.0 mL)溶液に、氷冷下、水素化ナトリウム(7.8 mg, 0.20 mmol)を加えた後、製造例1(4)で合成したSI-04(30 mg(0.046 mmol))を30μLのヘキサメチルホスホリックトリアミド(HMPA)を含有する2 mLのTHFに溶解した溶液を加えた。室温で24時間撹拌した後、飽和NH4Cl水溶液で希釈し、酢酸エチルで抽出した。有機層をMgSO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:アセトン:メタノール=100:5:1)で分離、精製を行ない、19.9 mgのSI-05を得た。収率74%。
SI-05の1H-NMRデータを下記に示す。
1H-NMR (CDCl3): δ 0.83 (3H, d, J=7.3 Hz), 0.97 (3H, d, J=6.8 Hz), 1.06 (3H, d, J=6.5 Hz), 1.20 (3H, s), 1.53 (1H, s), 1.63-1.81 (2H, m), 1.87-2.01 (2H, m), 2.12 (2H,dd, J=4.0 Hz, 4.8 Hz), 2.18 (1H, s), 2.65 (1H, d, J=9.9 Hz), 2.67 (2H, dd,J=7.7, 7.7 Hz), 2.76-2.90 (2H, m), 3.13 (1H, quint), 3.30 (2H, d, J=7.9 Hz), 3.35 (3H, s), 3.34-3.40 (3H, m), 3.60 (1H, quin), 3.76-3.89 (2H, m), 3.87 (1H, d, J=2.2 Hz), 3.95 (1H, dd, J=10.7, 11.0 Hz), 3.97 (1H, d, J=3.9 Hz), 4.75-4.83 (1H, m), 5.07 (1H, d, J=4.9 Hz), 5.16 (1H, s), and 5.32 (1H, s)。
Production Example 2 Production of Compound (4) (FIG. 1, ISIR-041)
(1) Synthesis of SI-05 Sodium hydride (7.8 mg, 0.20 mmol) was added to a solution of 2-azido-1-ethanol (601 μL, 7.94 mmol) in tetrahydrofuran (THF: 1.0 mL) under ice cooling. Then, a solution prepared by dissolving SI-04 (30 mg (0.046 mmol)) synthesized in Production Example 1 (4) in 2 mL of THF containing 30 μL of hexamethylphosphoric triamide (HMPA) was added. After stirring at room temperature for 24 hours, the mixture was diluted with saturated aqueous NH 4 Cl and extracted with ethyl acetate. The organic layer was dried over MgSO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (dichloromethane: acetone: methanol = 100: 5: 1) to obtain 19.9 mg of SI-05. Yield 74%.
The 1 H-NMR data of SI-05 is shown below.
1 H-NMR (CDCl 3 ): δ 0.83 (3H, d, J = 7.3 Hz), 0.97 (3H, d, J = 6.8 Hz), 1.06 (3H, d, J = 6.5 Hz), 1.20 (3H, s), 1.53 (1H, s), 1.63-1.81 (2H, m), 1.87-2.01 (2H, m), 2.12 (2H, dd, J = 4.0 Hz, 4.8 Hz), 2.18 (1H, s), 2.65 (1H, d, J = 9.9 Hz), 2.67 (2H, dd, J = 7.7, 7.7 Hz), 2.76-2.90 (2H, m), 3.13 (1H, quint), 3.30 (2H, d, J = 7.9 Hz), 3.35 (3H, s), 3.34-3.40 (3H, m), 3.60 (1H, quin), 3.76-3.89 (2H, m), 3.87 (1H, d, J = 2.2 Hz), 3.95 ( 1H, dd, J = 10.7, 11.0 Hz), 3.97 (1H, d, J = 3.9 Hz), 4.75-4.83 (1H, m), 5.07 (1H, d, J = 4.9 Hz), 5.16 (1H, s ), and 5.32 (1H, s).
 (2)ISIR-041(化合物(4))の合成
 (1)で合成したSI-05(19.9 mg (0.036 mmol) )のTHF溶液(1.0 mL)に、氷冷下、水素化リチウムアルミニウムのTHF溶液(180μL: 0.36 mmol)を加え、4時間撹拌した。そのまま無機化合物をろ過により除去し、溶媒を留去して得られた残渣を直接シリカゲルカラムクロマトグラフィー(エタノール:アンモニア水=100:1)で分離、精製を行ない、12.2 mgのISIR-041(化合物(4))を得た。収率65%。
ISIR-041の13C-NMRデータを下記に示す。
13C-NMR (CDCl3): δ 9.6,20.5, 21.3, 26., 27.7, 29.7, 31.4, 35.9, 36.5, 39.5, 40.4, 42.2, 42.8, 48.4, 52.3, 55.6, 58.7, 63.0, 71.6, 75.8, 76.2, 77.2, 81.2, 105.6, 107.5,132.6, 14.8, 138.4, and 150.3
(2) Synthesis of ISIR-041 (Compound (4 )) In a THF solution (1.0 mL) of SI-05 (19.9 mg (0.036 mmol)) synthesized in (1), THF of lithium aluminum hydride was added under ice cooling. The solution (180 μL: 0.36 mmol) was added and stirred for 4 hours. The inorganic compound was removed by filtration as it was, and the residue obtained by distilling off the solvent was directly separated and purified by silica gel column chromatography (ethanol: aqueous ammonia = 100: 1) to obtain 12.2 mg of ISIR-041 (compound (4)) was obtained. Yield 65%.
The 13 C-NMR data of ISIR-041 is shown below.
13 C-NMR (CDCl 3 ): δ 9.6,20.5, 21.3, 26., 27.7, 29.7, 31.4, 35.9, 36.5, 39.5, 40.4, 42.2, 42.8, 48.4, 52.3, 55.6, 58.7, 63.0, 71.6, 75.8 , 76.2, 77.2, 81.2, 105.6, 107.5, 132.6, 14.8, 138.4, and 150.3
 製造例3 化合物(5)の製造(図1、ISIR-042)
(1)SI-06の合成
 製造例2(1)に記載するSI-05の合成と同様にして、製造例1(4)で合成したSI-04(53 mg(0.081 mmol))を3-アジド-1-プロパノールと反応させ、37.7 mgのSI-06を得た。収率83%。
SI-06の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.5, 20.3, 21.2, 26.5, 26.9, 27.7, 28.3, 28.9, 35.9, 40.6, 41.9, 42.6, 48.4, 48.5, 52.4,56.6, 58.7, 63.9, 71.2, 75.8, 76.3, 76.6, 77.8, 81.0, 104.7, 107.2, 132.8, 135.4, 138.5, and 149.8.
ESI-MS: m/z 584.3317 (M+Na+)。
Production Example 3 Production of Compound (5) (FIG. 1, ISIR-042)
(1) Synthesis of SI-06 SI-04 (53 mg (0.081 mmol)) synthesized in Production Example 1 (4) was synthesized in the same manner as the synthesis of SI-05 described in Production Example 2 (1). Reaction with azido-1-propanol gave 37.7 mg of SI-06. Yield 83%.
The 13 C-NMR data and ESI-MS data of SI-06 are shown below.
13 C-NMR (CDCl 3 ): δ 9.5, 20.3, 21.2, 26.5, 26.9, 27.7, 28.3, 28.9, 35.9, 40.6, 41.9, 42.6, 48.4, 48.5, 52.4,56.6, 58.7, 63.9, 71.2, 75.8, 76.3, 76.6, 77.8, 81.0, 104.7, 107.2, 132.8, 135.4, 138.5, and 149.8.
ESI-MS: m / z 584.3317 (M + Na + ).
 (2)ISIR-042(式(5)の化合物)の合成
 製造例2(2)に記載するISIR-041と同様にして、48 mg(0.086 mmol)の上記SI-06を水素化リチウムアルミニウムで還元し、31.9 mgのISIR-042(化合物(5))を得た。収率70%。
ISIR-042の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.5, 20.1, 20.6, 26.1, 26.7, 26.8, 27.5, 27.8, 35.8, 35.8, 40.3, 42.6, 48.2, 52.0, 55.9, 58.5, 65.3, 71.4, 75.0, 76.2, 76.3, 77.4, 77.6, 81.2, 104.9, 107.0, 132.7, 134.6, 138.2, and 150.7.
ESI-MS: m/z 536.3571 (M+Na+)。
(2) Synthesis of ISIR-042 (compound of formula (5)) In the same manner as ISIR-041 described in Production Example 2 (2), 48 mg (0.086 mmol) of SI-06 was replaced with lithium aluminum hydride. Reduction to obtain 31.9 mg of ISIR-042 (compound (5)). Yield 70%.
The 13 C-NMR data and ESI-MS data of ISIR-042 are shown below.
13 C-NMR (CDCl 3 ): δ 9.5, 20.1, 20.6, 26.1, 26.7, 26.8, 27.5, 27.8, 35.8, 35.8, 40.3, 42.6, 48.2, 52.0, 55.9, 58.5, 65.3, 71.4, 75.0, 76.2, 76.3, 77.4, 77.6, 81.2, 104.9, 107.0, 132.7, 134.6, 138.2, and 150.7.
ESI-MS: m / z 536.3571 (M + Na + ).
 製造例4 化合物(6)の製造(図1、ISIR-043)
(1)SI-07の合成
 製造例2(1)のSI-05の合成と同様にして、製造例1(4)で合成したSI-04(17 mg(0.026 mmol))を4-アジド-1-ブタノールと反応させ、9.8 mgのSI-07を得た。収率66%。
SI-07の1H-NMRデータを下記に示す。
1H-NMR (CDCl3): δ 0.82 (3H, d, J=7.3 Hz), 0.97 (3H, d, J=6.9 Hz), 1.07 (3H, d, J=7.0 Hz), 1.20 (3H, s), 1.45-1.60 (3H, m), 1.60-1.70 (6H, m), 1.70-1.79 (1H, m), 1.87-2.00 (2H, m), 2.12 (2H, dd, J=3.4, 5.3 Hz), 2.61 (1H, t, J=6.7 Hz), 2.66 (1H, quin), 2.79 (1H, dd, J=6.2, 6.8 Hz), 3.13 (1H, quin), 3.29 (2H, d, J=7.7 Hz), 3.29 (2H, t, J=5.6 Hz), 3.35 (3H, s), 3.38-3.50 (1H, m), 3.65 (1H, dd, J=4.9,6.5 Hz), 3.69 (1H, t, J=6.2, 6.2 Hz), 3.76-3.87 (2H, m), 3.92-2-4.01 (3H, m), 4.76 (1H, dd, J=3.9, 7.8 Hz), 5.07 (1H, d, J=4.5 Hz), 5.10 (1H, s), and 5.32 (1H,s)。
Production Example 4 Production of Compound (6) (FIG. 1, ISIR-043)
(1) Synthesis of SI-07 SI-04 (17 mg (0.026 mmol)) synthesized in Production Example 1 (4) was converted to 4-azido-, similarly to the synthesis of SI-05 in Production Example 2 (1). Reaction with 1-butanol gave 9.8 mg of SI-07. Yield 66%.
The 1 H-NMR data of SI-07 is shown below.
1 H-NMR (CDCl 3 ): δ 0.82 (3H, d, J = 7.3 Hz), 0.97 (3H, d, J = 6.9 Hz), 1.07 (3H, d, J = 7.0 Hz), 1.20 (3H, s), 1.45-1.60 (3H, m), 1.60-1.70 (6H, m), 1.70-1.79 (1H, m), 1.87-2.00 (2H, m), 2.12 (2H, dd, J = 3.4, 5.3 Hz), 2.61 (1H, t, J = 6.7 Hz), 2.66 (1H, quin), 2.79 (1H, dd, J = 6.2, 6.8 Hz), 3.13 (1H, quin), 3.29 (2H, d, J = 7.7 Hz), 3.29 (2H, t, J = 5.6 Hz), 3.35 (3H, s), 3.38-3.50 (1H, m), 3.65 (1H, dd, J = 4.9,6.5 Hz), 3.69 (1H , t, J = 6.2, 6.2 Hz), 3.76-3.87 (2H, m), 3.92-2-4.01 (3H, m), 4.76 (1H, dd, J = 3.9, 7.8 Hz), 5.07 (1H, d , J = 4.5 Hz), 5.10 (1H, s), and 5.32 (1H, s).
 (2)ISIR-043(化合物(6))の合成
 製造例2(2)に記載するISIR-041の場合と同様にして、9.8 mg(0.017 mmol)の上記SI-07を水素化リチウムアルミニウムで還元し、6.1 mgのISIR-043(化合物(6))を得た。収率65%。
(2) Synthesis of ISIR-043 (Compound (6)) In the same manner as ISIR-041 described in Production Example 2 (2), 9.8 mg (0.017 mmol) of SI-07 was replaced with lithium aluminum hydride. Reduction gave 6.1 mg of ISIR-043 (compound (6)). Yield 65%.
 製造例5 化合物(7)の製造(図1、ISIR-044)
(1)SI-08の合成
 製造例2(1)のSI-05の合成と同様にして、製造例1(4)で合成したSI-04(19.5 mg(0.030 mmol))を4-アジド-1-ペンタノールと反応させ、11.5 mgのSI-08を得た。収率65%。
SI-08の13C-NMRデータを下記に示す。
13C-NMR (CDCl3): δ 9.6, 20.3, 21.3, 23.5, 26.6, 26.9, 27.7, 28.2, 28.6, 29.0, 35.9, 40.6, 42.0, 42.6, 48.4, 51.3, 52.4, 56.4, 58.7, 67.0, 71.1, 75.9, 76.3, 76.6, 77.8, 81.1, 104.8, 107.1, 132.8, 135.4, 138.5, and 149.7。
Production Example 5 Production of Compound (7) (FIG. 1, ISIR-044)
(1) Synthesis of SI-08 SI-04 (19.5 mg (0.030 mmol)) synthesized in Production Example 1 (4) was converted to 4-azido-, similarly to the synthesis of SI-05 in Production Example 2 (1). Reaction with 1-pentanol gave 11.5 mg of SI-08. Yield 65%.
The 13 C-NMR data of SI-08 is shown below.
13 C-NMR (CDCl 3 ): δ 9.6, 20.3, 21.3, 23.5, 26.6, 26.9, 27.7, 28.2, 28.6, 29.0, 35.9, 40.6, 42.0, 42.6, 48.4, 51.3, 52.4, 56.4, 58.7, 67.0, 71.1, 75.9, 76.3, 76.6, 77.8, 81.1, 104.8, 107.1, 132.8, 135.4, 138.5, and 149.7.
 (2)ISIR-044(化合物(7))の合成
 製造例2(2)に記載するISIR-041の場合と同様にして、11.5 mg(0.020 mmol)のSI-08を水素化リチウムアルミニウムで還元し、8.5 mgのISIR-044(化合物(7))を得た。収率75%。
ISIR-044の1H-NMRデータを下記に示す。
1H NMR (CDCl3): δ 0.80 (3H, d, J=7.0 Hz), 0.97 (3H, d, J=6.9 Hz), 1.07 (3H, d, J=6.6 Hz), 1.20 (3H, s), 1.38-1.92 (7H, m), 2.08-2.13 (2H, m), 2.60-2.72 (2H, m), 2.76-2.84 (3H, m), 3.03 (4H, t, J=7.1 Hz), 3.24 (1H, t, J=6.0 Hz), 3.28 (2H, d, J=6.9 Hz), 3.34 (3H, s), 3.44 (3H, dd, J=5.6, 6.0 Hz), 3.62-3.72 (4H, m), 3.82(2H, s), 3.86 (1H, d, J=10.6 Hz), 3.97-4.06 (3H, m), 4.80-4.84 (1H, m), 5.01 (1H, d, J=4.4 Hz), 5.21 (1H, s), and 5.30 (1H, s)。
(2) Synthesis of ISIR-044 (compound (7)) 11.5 mg (0.020 mmol) of SI-08 was reduced with lithium aluminum hydride in the same manner as ISIR-041 described in Production Example 2 (2). 8.5 mg of ISIR-044 (compound (7)) was obtained. Yield 75%.
The 1 H-NMR data of ISIR-044 is shown below.
1 H NMR (CDCl 3 ): δ 0.80 (3H, d, J = 7.0 Hz), 0.97 (3H, d, J = 6.9 Hz), 1.07 (3H, d, J = 6.6 Hz), 1.20 (3H, s ), 1.38-1.92 (7H, m), 2.08-2.13 (2H, m), 2.60-2.72 (2H, m), 2.76-2.84 (3H, m), 3.03 (4H, t, J = 7.1 Hz), 3.24 (1H, t, J = 6.0 Hz), 3.28 (2H, d, J = 6.9 Hz), 3.34 (3H, s), 3.44 (3H, dd, J = 5.6, 6.0 Hz), 3.62-3.72 (4H , m), 3.82 (2H, s), 3.86 (1H, d, J = 10.6 Hz), 3.97-4.06 (3H, m), 4.80-4.84 (1H, m), 5.01 (1H, d, J = 4.4 Hz), 5.21 (1H, s), and 5.30 (1H, s).
 製造例6 化合物(5)の塩(塩酸塩、アスコルビン酸、クエン酸塩、安息香酸塩)の製造
 製造例3(2)で合成した化合物(5)(ISIR-042)の無水ジエチルエーテル溶液に、当量の塩化水素エーテル溶液、アスコルビン酸、クエン酸または安息香酸を加え、石油エーテルで希釈することで生じる粉末をろ取することで、それぞれ対応する、化合物(5)の塩酸塩、アスコルビン酸塩、クエン酸塩または安息香酸塩を得た。
Production Example 6 Production of Compound (5) Salt (Hydrochloride, Ascorbic Acid, Citrate, Benzoate) Compound (5) (ISIR-042) synthesized in Production Example 3 (2) was added to an anhydrous diethyl ether solution. By adding the equivalent amount of hydrogen chloride ether solution, ascorbic acid, citric acid or benzoic acid and diluting with petroleum ether, the resulting powder is filtered to obtain the corresponding hydrochloride salt and ascorbate salt of compound (5). Citrate or benzoate was obtained.
 製造例7 化合物(8)の製造(図2、ISIR-062)
 製造例3(2)で合成した化合物(5)(ISIR-042)(23.8 mg、44μmol)を1.0 mLのジクロロメタンに溶解し、氷冷下、0.1 mLのピリジンと8.3μL(88μmol)の無水酢酸を加えた後、室温で1.5時間撹拌した。飽和NH4Cl水溶液で希釈し、ジクロロメタンで抽出した。有機層を飽和NaHCO3、NaCl水溶液の順で洗浄し、Na2SO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(メタノール:クロロホルム=1:40)で分離、精製を行ない、12.6 mgのISIR-062(化合物(8))を得た。収率50%。
ISIR-062の13C-NMRデータとESI-MSデータを下記に示す。
13C-NMR (CDCl3): δ 9.6, 20.3, 21.3, 23.3, 26.6, 26.9, 27.8, 28.2, 29.3, 36.0, 37.4, 40.7, 42.0, 42.6, 48.4, 52.4, 56.6, 58.7, 60.0, 65.6, 71.3, 76.4, 76.6, 77.8, 81.0, 105.1, 107.7, 132.9, 135.7, 138.7, 149.6, and 170.1.
ESI-MS: m/z 600.3522 (M+Na+)。
Production Example 7 Production of Compound (8) (Figure 2, ISIR-062)
Compound (5) (ISIR-042) (23.8 mg, 44 μmol) synthesized in Production Example 3 (2) is dissolved in 1.0 mL of dichloromethane, and 0.1 mL of pyridine and 8.3 μL (88 μmol) of acetic anhydride are dissolved under ice cooling. And then stirred at room temperature for 1.5 hours. Dilute with saturated aqueous NH 4 Cl and extract with dichloromethane. The organic layer was washed successively with saturated NaHCO 3 and aqueous NaCl solution, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (methanol: chloroform = 1: 40) to obtain 12.6 mg of ISIR-062 (compound (8)). Yield 50%.
The 13 C-NMR data and ESI-MS data of ISIR-062 are shown below.
13 C-NMR (CDCl 3 ): δ 9.6, 20.3, 21.3, 23.3, 26.6, 26.9, 27.8, 28.2, 29.3, 36.0, 37.4, 40.7, 42.0, 42.6, 48.4, 52.4, 56.6, 58.7, 60.0, 65.6, 71.3, 76.4, 76.6, 77.8, 81.0, 105.1, 107.7, 132.9, 135.7, 138.7, 149.6, and 170.1.
ESI-MS: m / z 600.3522 (M + Na + ).
 製造例8 化合物(9)の製造(図2、ISIR-072)
 製造例3(2)で合成した化合物(5)(ISIR-042)(21.4 mg、40μmol)を1.0 mLのジクロロメタンに溶解し、室温下、133 mg(0.2 mmol相当)のポリスチレン樹脂に固定化されたN-シクロヘキシルカルボジイミド(PS-Carbodiimide)と10 μL(0.160 mmol)のプロピオール酸を加え、13.5時間撹拌した。反応液のロ液を濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)で分離、精製を行ない、10.0 mgのISIR-072(化合物(9))を得た。収率43%。
ISIR-072の1H-NMR データを下記に示す。
1H-NMR (CDCl3): δ 0.82 (3H, d, J=7.3 Hz), 0.96 (3H, d, J=6.8 Hz), 1.07 (3H, d, J=6.8 Hz), 1.20 (3H, s), 1.26 (1H, s), 1.44-1.82 (8H, m), 1.87-2.00 (2H, m), 1.94 (3H, s), 2.03 (1H, d, J=7.6 Hz), 2.12 (2H, dd, J=4.6, 8.3 Hz), 2.64 (1H, t, J=7.1 Hz), 2.64-2.71 (1H, m), 2.75-2.83 (1H, m), 3.15 (1H, quin), 3.30 (2H, d, J=7.8 Hz), 3.35 (3H, s), 3.38-3.53 (2H, m), 3.67-3.76 (1H, m), 3.77-3.89 (2H, m), 3.92 (1H, d, J=10.5 Hz), 3.95-4.01 (2H, m), 4.78 (1H, dd, J=3.9, 6.8 Hz), 4.78 (1H, dd, J=3.9, 6.8 Hz), 5.07 (1H, d, J=4.2 Hz), 5.08 (1H, s), and 5.32 (1H, s)。
Production Example 8 Production of Compound (9) (FIG. 2, ISIR-072)
Compound (5) (ISIR-042) (21.4 mg, 40 μmol) synthesized in Production Example 3 (2) was dissolved in 1.0 mL of dichloromethane and immobilized at 133 mg (equivalent to 0.2 mmol) of polystyrene resin at room temperature. N-cyclohexylcarbodiimide (PS-Carbodiimide) and 10 μL (0.160 mmol) of propiolic acid were added and stirred for 13.5 hours. The reaction solution was concentrated. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1) to obtain 10.0 mg of ISIR-072 (compound (9)). Yield 43%.
The 1 H-NMR data of ISIR-072 is shown below.
1 H-NMR (CDCl 3 ): δ 0.82 (3H, d, J = 7.3 Hz), 0.96 (3H, d, J = 6.8 Hz), 1.07 (3H, d, J = 6.8 Hz), 1.20 (3H, s), 1.26 (1H, s), 1.44-1.82 (8H, m), 1.87-2.00 (2H, m), 1.94 (3H, s), 2.03 (1H, d, J = 7.6 Hz), 2.12 (2H , dd, J = 4.6, 8.3 Hz), 2.64 (1H, t, J = 7.1 Hz), 2.64-2.71 (1H, m), 2.75-2.83 (1H, m), 3.15 (1H, quin), 3.30 ( 2H, d, J = 7.8 Hz), 3.35 (3H, s), 3.38-3.53 (2H, m), 3.67-3.76 (1H, m), 3.77-3.89 (2H, m), 3.92 (1H, d, J = 10.5 Hz), 3.95-4.01 (2H, m), 4.78 (1H, dd, J = 3.9, 6.8 Hz), 4.78 (1H, dd, J = 3.9, 6.8 Hz), 5.07 (1H, d, J = 4.2 Hz), 5.08 (1H, s), and 5.32 (1H, s).
 製造例9 化合物(10)の製造(図2、ISIR-082)
(1)SI-09の合成
 製造例3(2)で合成した化合物(5)(ISIR-042)(19 mg、36 μmol)のジクロロメタン(1.0 mL)溶液に、氷冷下、10μLのトリエチルアミンと8.9 mg(40μmol)の4-ニトロベンゼンスルホニルクロリドを加え、2時間撹拌した。反応液を水で希釈し、ジクロロメタンで抽出した。有機層を飽和NaCl水溶液で洗浄し、Na2SO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=30:1)で分離、精製を行ない、22.7 mgのSI-09を得た。収率88%。
SI-09の1H-NMR データを下記に示す。
1H NMR (CDCl3): δ 0.83 (3H, d, J=7.2 Hz), 0.98 (3H, d, J=6.9 Hz), 1.08 (3H, d, J=6.6 Hz), 1.20 (3H, s), 1.52 (3H, t, J=1.1 Hz), 1.63-1.80 (5H, m), 1.88-2.00 (2H, m), 2.05 (1H, s), 2.13 (2H, dd, J=3.5, 4.9 Hz), 2.59 (1H, t, J=7.0), 2.67 (1H, s), 2.77-2.83 (1H, m), 3.09-3.20 (4H, m), 3.29 (2H, d, J=7.5 Hz), 3.35 (3H, s), 3.38-3.47 (1H, m), 3.66-3.77 (2H, m), 3.85 (1H, d, J=10.4 Hz), 3.93 (1H, d, J=9.9 Hz), 3.95-4.03 (2H, m), 4.77 (1H, dd, J=4.0, 7.3 Hz), 5.05 (1H, s), 5.07 (1H, d, J=4.8 Hz), 5.32 (1H, s), 8.04 (2H, d, J=9.0 Hz), and 9.03 (2H, d, J=9.0 Hz)。
Production Example 9 Production of Compound (10) (FIG. 2, ISIR-082)
(1) Synthesis of SI-09 To a solution of compound (5) (ISIR-042) (19 mg, 36 μmol) synthesized in Preparation Example 3 (2) in dichloromethane (1.0 mL), 10 μL of triethylamine and ice-cooled solution were added. 8.9 mg (40 μmol) of 4-nitrobenzenesulfonyl chloride was added and stirred for 2 hours. The reaction was diluted with water and extracted with dichloromethane. The organic layer was washed with a saturated aqueous NaCl solution, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (chloroform: methanol = 30: 1) to obtain 22.7 mg of SI-09. Yield 88%.
The 1 H-NMR data of SI-09 is shown below.
1 H NMR (CDCl 3 ): δ 0.83 (3H, d, J = 7.2 Hz), 0.98 (3H, d, J = 6.9 Hz), 1.08 (3H, d, J = 6.6 Hz), 1.20 (3H, s ), 1.52 (3H, t, J = 1.1 Hz), 1.63-1.80 (5H, m), 1.88-2.00 (2H, m), 2.05 (1H, s), 2.13 (2H, dd, J = 3.5, 4.9 Hz), 2.59 (1H, t, J = 7.0), 2.67 (1H, s), 2.77-2.83 (1H, m), 3.09-3.20 (4H, m), 3.29 (2H, d, J = 7.5 Hz) , 3.35 (3H, s), 3.38-3.47 (1H, m), 3.66-3.77 (2H, m), 3.85 (1H, d, J = 10.4 Hz), 3.93 (1H, d, J = 9.9 Hz), 3.95-4.03 (2H, m), 4.77 (1H, dd, J = 4.0, 7.3 Hz), 5.05 (1H, s), 5.07 (1H, d, J = 4.8 Hz), 5.32 (1H, s), 8.04 (2H, d, J = 9.0 Hz), and 9.03 (2H, d, J = 9.0 Hz).
 (2)SI-10の合成
 7.5 mg(10 μmol)の上記SI-09を、0.9 mLの ジメチルホルムアミドに溶解し、氷冷下、2.8 mgの炭酸カリウムと0.7μL(11μmol)のヨウ化メチルを加え、4.5時間撹拌した。反応液を水で希釈し、酢酸エチルで抽出した。有機層を飽和NaHCO3、NaCl水溶液の順で洗浄し、Na2SO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)で分離、精製を行ない、7.3 mgのSI-10を得た。収率99%。
SI-10の1H-NMR データを下記に示す。
1H-NMR (CDCl3): δ 0.82 (3H, d, J=7.1 Hz), 0.97 (3H, d, J=6.7 Hz), 1.07 (3H, d, J=6.7 Hz), 1.20 (3H, s), 1.51 (7H, t, J=1.0 Hz), 1.60-1.84 (5H, m), 1.88-2.00 (2H, m), 2.05 (1H, s), 2.12 (2H, dd, J=4.3, 8.3 Hz), 2.64 (2H, t, J=6.5), 2.78 (4H, s), 2.98-3.27 (1H, m), 3.29 (2H, d, J=8.1 Hz), 3.35 (3H, s), 3.40-3.48 (1H, m), 3.68-3.78 (1H, m), 3.80-3.89 (2H, m), 3.92 (1H, d, J=10.0 Hz), 3.94-4.03 (2H, m), 4.79 (1H, dd, J=4.2, 8.2 Hz), 5.07 (1H, d, J=4.1 Hz), 5.12 (1H, s), 5.32 (1H, s), 7.97 (2H, d, J=8.7 Hz), and 8.38 (2H, d, J=8.9 Hz)。
(2) Synthesis of SI-10 Dissolve 7.5 mg (10 μmol) of SI-09 in 0.9 mL of dimethylformamide, and under ice cooling, add 2.8 mg of potassium carbonate and 0.7 μL (11 μmol) of methyl iodide. The mixture was further stirred for 4.5 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed successively with saturated NaHCO 3 and aqueous NaCl solution, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1) to obtain 7.3 mg of SI-10. Yield 99%.
The 1 H-NMR data of SI-10 is shown below.
1 H-NMR (CDCl 3 ): δ 0.82 (3H, d, J = 7.1 Hz), 0.97 (3H, d, J = 6.7 Hz), 1.07 (3H, d, J = 6.7 Hz), 1.20 (3H, s), 1.51 (7H, t, J = 1.0 Hz), 1.60-1.84 (5H, m), 1.88-2.00 (2H, m), 2.05 (1H, s), 2.12 (2H, dd, J = 4.3, 8.3 Hz), 2.64 (2H, t, J = 6.5), 2.78 (4H, s), 2.98-3.27 (1H, m), 3.29 (2H, d, J = 8.1 Hz), 3.35 (3H, s), 3.40-3.48 (1H, m), 3.68-3.78 (1H, m), 3.80-3.89 (2H, m), 3.92 (1H, d, J = 10.0 Hz), 3.94-4.03 (2H, m), 4.79 ( 1H, dd, J = 4.2, 8.2 Hz), 5.07 (1H, d, J = 4.1 Hz), 5.12 (1H, s), 5.32 (1H, s), 7.97 (2H, d, J = 8.7 Hz), and 8.38 (2H, d, J = 8.9 Hz).
 (3)ISIR-082(化合物(10))の合成
 7.3 mg(10μmol)の上記SI-10を0.7 mLのジメチルホルムアミドに溶解し、氷冷下、4.1 mgの炭酸カリウムと1.2μL(12μmol)のチオフェノールを加えた後、60 ℃で48時間撹拌した。反応液を水で希釈し、酢酸エチルで抽出した。有機層を飽和NaCl水溶液で洗浄し、Na2SO4で乾燥後、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー(メタノール:クロロホルム=1:40)で分離、精製を行ない、3.8 mgのISIR-082(化合物(10))を得た。収率69%。
(3) Synthesis of ISIR-082 (Compound (10)) 7.3 mg (10 μmol) of the above SI-10 was dissolved in 0.7 mL of dimethylformamide, and ice-cooled with 4.1 mg of potassium carbonate and 1.2 μL (12 μmol). After adding thiophenol, the mixture was stirred at 60 ° C. for 48 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous NaCl solution, dried over Na 2 SO 4 and concentrated under reduced pressure. The crude product was separated and purified by silica gel column chromatography (methanol: chloroform = 1: 40) to obtain 3.8 mg of ISIR-082 (compound (10)). Yield 69%.
 製造例10 化合物(11)の製造(図3、ISIR-051)
(1)SI-11の合成
 製造例2(2)で合成した化合物(4)(ISIR-041)(18.0 mg, 34 μmol)に別途合成した試薬A(図3:reagent A)(20 mg, 54 μmol)のTHF溶液1.5 mlを加え、室温で22時間攪拌し、減圧濃縮した。反応液を水で希釈し、ジクロロメタンで抽出した。粗生成物をシリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=1 : 2)で分離、精製を行い、28.0 mgのSI-11を得た。収率99 %。
Production Example 10 Production of Compound (11) (FIG. 3, ISIR-051)
(1) Synthesis of SI-11 Reagent A (FIG. 3: reagent A) (20 mg, 20 mg, synthesized separately in compound (4) (ISIR-041) (18.0 mg, 34 μmol) synthesized in Production Example 2 (2) 54 μmol) of THF solution was added, and the mixture was stirred at room temperature for 22 hours and concentrated under reduced pressure. The reaction was diluted with water and extracted with dichloromethane. The crude product was separated and purified by silica gel chromatography (ethyl acetate: hexane = 1: 2) to obtain 28.0 mg of SI-11. Yield 99%.
 SI-11の1H-NMR、13C-NMR データを下記に示す。
1H-NMR (CDCl3): δ 0.82 (3H, d, J=6.8 Hz), 0.97 (3H, d, J=7.0 Hz), 1.08 (3H, d, J=6.5 Hz), 1.21 (3H, s), 1.46-1.61 (4H, m), 1.65-1.72 (1H, m), 1.73-1.79 (1H, m), 1.89-2.00 (3H, m), 2.12 (2H, q, J=4.9, 8.6 Hz), 2.62-2.68 (1H, m), 2.69 (1H, t, J=7.0), 2.80 (1H, t, J=6.0 Hz), 3.17 (1H, quin), 3.30 (2H, d, J=7.5 Hz), 3.35 (3H, s), 3.50-3.68 (4H, m), 3.69-3.75 (1H, m), 3.83 (2H, d, J=2.3), 3.92 (1H, d, J=9.9 Hz), 3.97 (2H, ddd, J=4.1, 10.8, 17.9 Hz), 4.79 (1H, tt), 5.04 (1H, d, J=4.2), 5.12 (3H, s), 5.17 (2H, d, J=0.9), 5.32 (1H, s), 7.29 (2H, d, J=7.1 Hz), 7.33 (2H, t, J=7.1 Hz), 7.37 (6H, quin), and 8.55 (1H, t, J=4.7 Hz)。
13C-NMR (CDCl3): δ 9.5, 14.1, 20.3, 21.0, 21.2, 26.6, 26.9, 27.7, 28.1, 35.9, 40.6, 40.8, 41.9, 42.6, 48.4, 52.3, 56.3, 58.6, 60.4, 65.2, 67.1, 68.1, 71.4, 76.2, 76.3, 76.4, 77.7, 80.8, 105.0, 107.2, 108.1, 127.9, 128.1, 128.4, 128.4, 128.6, 128.8, 132.8, 134.6, 135.4, 136.7, 138.5, 149.7, 153.7, 156.0, and 163.6。
The 1 H-NMR and 13 C-NMR data of SI-11 are shown below.
1 H-NMR (CDCl 3 ): δ 0.82 (3H, d, J = 6.8 Hz), 0.97 (3H, d, J = 7.0 Hz), 1.08 (3H, d, J = 6.5 Hz), 1.21 (3H, s), 1.46-1.61 (4H, m), 1.65-1.72 (1H, m), 1.73-1.79 (1H, m), 1.89-2.00 (3H, m), 2.12 (2H, q, J = 4.9, 8.6 Hz), 2.62-2.68 (1H, m), 2.69 (1H, t, J = 7.0), 2.80 (1H, t, J = 6.0 Hz), 3.17 (1H, quin), 3.30 (2H, d, J = 7.5 Hz), 3.35 (3H, s), 3.50-3.68 (4H, m), 3.69-3.75 (1H, m), 3.83 (2H, d, J = 2.3), 3.92 (1H, d, J = 9.9 Hz ), 3.97 (2H, ddd, J = 4.1, 10.8, 17.9 Hz), 4.79 (1H, tt), 5.04 (1H, d, J = 4.2), 5.12 (3H, s), 5.17 (2H, d, J = 0.9), 5.32 (1H, s), 7.29 (2H, d, J = 7.1 Hz), 7.33 (2H, t, J = 7.1 Hz), 7.37 (6H, quin), and 8.55 (1H, t, J = 4.7 Hz).
13 C-NMR (CDCl 3 ): δ 9.5, 14.1, 20.3, 21.0, 21.2, 26.6, 26.9, 27.7, 28.1, 35.9, 40.6, 40.8, 41.9, 42.6, 48.4, 52.3, 56.3, 58.6, 60.4, 65.2, 67.1, 68.1, 71.4, 76.2, 76.3, 76.4, 77.7, 80.8, 105.0, 107.2, 108.1, 127.9, 128.1, 128.4, 128.4, 128.6, 128.8, 132.8, 134.6, 135.4, 136.7, 138.5, 149.7, 153.7, 156.0, and 163.6.
 (2)ISIR-051の合成
 上記SI-11(28.0 mg, 34 μmol )を1.0 mlのメタノールに溶解し、39.6 mgのパラジウム炭素を加え、水素雰囲気下で2時間攪拌した。粗精製物をろ過し、減圧濃縮し、15.6 mgのISIR-051を得た。収率81 %。
(2) Synthesis of ISIR-051 The above SI-11 (28.0 mg, 34 μmol) was dissolved in 1.0 ml of methanol, 39.6 mg of palladium carbon was added, and the mixture was stirred under a hydrogen atmosphere for 2 hours. The crude product was filtered and concentrated under reduced pressure to obtain 15.6 mg of ISIR-051. Yield 81%.
 ISIR-051の1H-NMR データを下記に示す。
1H-NMR (CDCl3:特徴的シグナルのみを記す): δ 0.78 (3H, d), 0.95 (3H, d), 1.06 (3H, d), 1.19 (3H, s), 3.34 (3H, s), 4.99 (1H, d), 5.28 (1H, s), 5.29 (1H, s), 5.69 (1H, br), 7.04 (2H, br), and 7.66 (1H, br)。
The 1 H-NMR data of ISIR-051 is shown below.
1 H-NMR (CDCl 3 : shows only characteristic signal): δ 0.78 (3H, d), 0.95 (3H, d), 1.06 (3H, d), 1.19 (3H, s), 3.34 (3H, s ), 4.99 (1H, d), 5.28 (1H, s), 5.29 (1H, s), 5.69 (1H, br), 7.04 (2H, br), and 7.66 (1H, br).
 製造例11 化合物(12)の製造(図3、ISIR-052)
 製造例3(2)で合成した化合物(5)(ISIR-042)(76.0 mg, 14.2 μmol)を用い、製造例10と同様の方法により、SI-12を経て、ISIR-052を合成した。2段階収率65 %。
ISIR-052の1H-NMR データを下記に示す。
1H-NMR (CDCl3:特徴的シグナルのみを記す): δ 0.78 (3H, d), 0.94 (3H, d), 1.05 (3H, d), 1.19 (3H, s), 3.34 (3H, s), 4.95 (1H, d), 5.10 (1H, s), 6.36 (1H, t), and 7.62 (2H, d)。
Production Example 11 Production of Compound (12) (FIG. 3, ISIR-052)
ISIR-052 was synthesized via SI-12 by the same method as in Production Example 10 using Compound (5) (ISIR-042) (76.0 mg, 14.2 μmol) synthesized in Production Example 3 (2). Two-stage yield 65%.
The 1 H-NMR data of ISIR-052 is shown below.
1 H-NMR (CDCl 3 : shows only characteristic signal): δ 0.78 (3H, d), 0.94 (3H, d), 1.05 (3H, d), 1.19 (3H, s), 3.34 (3H, s ), 4.95 (1H, d), 5.10 (1H, s), 6.36 (1H, t), and 7.62 (2H, d).
 試験例1 細胞分化誘導活性の測定
(1)細胞および細胞培養
 ヒト急性骨髄性白血病細胞(HL-60細胞)、あるいは、ヒト単球性白血病細胞(U937細胞)を、10%ウシ胎児血清を添加したRPMI-1640培地に懸濁して5% CO2を含む37 ℃の加湿空気中で培養した。
Test Example 1 Measurement of cell differentiation inducing activity
(1) Cells and cell culture Suspend human acute myeloid leukemia cells (HL-60 cells) or human monocytic leukemia cells (U937 cells) in RPMI-1640 medium supplemented with 10% fetal bovine serum. The cells were cultured in humidified air at 37 ° C. containing 5% CO 2 .
 (2)分化した細胞の測定
 分化誘導活性を測定するために、白血病細胞(5 x 104細胞/mL)を所定の時間、試験化合物(ISIR-040(化合物(3))、ISIR-042(化合物(5))、ISIR-062(化合物(8))、ISIR-072(化合物(9))、ISIR-082(化合物(10)、ISIR-005、コチレニンA(CN-A))の存在下又は非存在下で培養した。細胞に12-O-テトラデカノイルホルボール-13-アセテート(TPA)を促進剤として加え、NBTを還元する能力を指標としてスーパーオキシドを発生させるオキシダーゼ活性を測定した。NBT還元能は、細胞をNBT(1 mg/mL)およびTPA(100 ng/ml)を含むRPMI-1640培地中で37 ℃、60分間インキュベートすることにより測定した。反応終了後、遠心により細胞を集め、細胞内に反応によって生じたフォルマザン沈殿物をジメチルスルホキシドにより溶解し、比色定量(波長560 nmまたは 570 nm)した。活性は107個細胞あたりの吸光度で表した。
(2) Measurement of differentiated cells In order to measure differentiation-inducing activity, leukemia cells (5 × 10 4 cells / mL) were added to test compounds (ISIR-040 (compound (3)), ISIR-042 ( Compound (5)), ISIR-062 (Compound (8)), ISIR-072 (Compound (9)), ISIR-082 (Compound (10), ISIR-005, Cotyrenin A (CN-A)) Alternatively, the cells were cultured in the absence of 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter, and the oxidase activity to generate superoxide was measured using the ability to reduce NBT as an indicator. NBT reducing ability was measured by incubating the cells in RPMI-1640 medium containing NBT (1 mg / mL) and TPA (100 ng / ml) for 60 minutes at 37 ° C. After the reaction was completed, the cells were centrifuged. The formazan precipitate generated by the reaction in the cells was dissolved in dimethyl sulfoxide and colorimetric (wavelength 560 nm or The activity was expressed as absorbance per 10 7 cells.
 図4に、HL-60細胞に対するISIR-040(化合物(3))の評価結果を、コチレニンA(CN-A)の結果とともに示す。また図5に、U937細胞に対するISIR-040(化合物(3))、ISIR-042(化合物(5))、ISIR-062(化合物(8))、およびISIR-082(化合物(9))の評価結果を、CN-A及びISIR-005の結果ともに示す。図6に、U937細胞に対するISIR-041(化合物(3))、ISIR-042(化合物(5))、ISIR-043(化合物(6))、およびISIR-044(化合物(7))の評価結果を、ISIR-005の結果ともに示す。図7に、U937細胞に対するISIR-042(化合物(5))とISIR-072(化合物(9))の評価結果を示す。 FIG. 4 shows the evaluation results of ISIR-040 (compound (3)) on HL-60 cells, together with the results of cotylenin A (CN-A). FIG. 5 shows the evaluation of ISIR-040 (compound (3)), ISIR-042 (compound (5)), ISIR-062 (compound (8)), and ISIR-082 (compound (9)) on U937 cells. The results are shown together with the results of CN-A and ISIR-005. FIG. 6 shows the evaluation results of ISIR-041 (compound (3)), ISIR-042 (compound (5)), ISIR-043 (compound (6)), and ISIR-044 (compound (7)) on U937 cells. Is shown together with the result of ISIR-005. FIG. 7 shows the evaluation results of ISIR-042 (compound (5)) and ISIR-072 (compound (9)) on U937 cells.
 この結果からわかるように本発明が対象とする化合物の全てについて、その分化誘導活性は、コチレニンAより強かった。また、ISIR-041(化合物(4))、ISIR-042(化合物(5))、ISIR-072(化合物(9))、ISIR-082(化合物(10))については、特許文献3に記載するISIR-005よりも強い細胞分化誘導活性を示した。 As can be seen from these results, the differentiation-inducing activity of all the compounds targeted by the present invention was stronger than that of Cochirenin A. In addition, ISIR-041 (compound (4)), ISIR-042 (compound (5)), ISIR-072 (compound (9)), and ISIR-082 (compound (10)) are described in Patent Document 3. It showed stronger cell differentiation-inducing activity than ISIR-005.
 試験例2 ISIR-042とインターフェロンαとの併用による癌細胞増殖に対する阻害効果
 本発明化合物とインターフェロンα(IFNα)との併用により得られる細胞増殖抑制作用を測定した。被験細胞として肺癌細胞(A549)を使用し、この細胞をRPMI 1640培地中で前培養した。この細胞液(1×104細胞/mL)に、所定濃度(0, 3, 4, 5, 6, 7 μg/mL)のISIR-042と所定濃度(0, 100, 200, 400 units/mL)のIFNαを加え、7日間培養し、生細胞数を評価した。生細胞数の評価は、MTTアッセイによって行った。MTT のPBS溶液(1 mg/mL)を加え、4時間インキュベートし、遠心処理後、沈殿物を1 mLのDMSOに溶解し、その560 nmにおける吸光度を測定した。測定結果を図8に示す。
Test Example 2 Inhibitory effect on cancer cell proliferation by combined use of ISIR-042 and interferon α The cell growth inhibitory effect obtained by the combined use of the compound of the present invention and interferon α (IFNα) was measured. Lung cancer cells (A549) were used as test cells, and these cells were precultured in RPMI 1640 medium. In this cell solution (1 × 10 4 cells / mL), ISIR-042 at a predetermined concentration (0, 3, 4, 5, 6, 7 μg / mL) and a predetermined concentration (0, 100, 200, 400 units / mL) ) IFNα was added and cultured for 7 days to evaluate the number of viable cells. The number of viable cells was evaluated by MTT assay. A PBS solution (1 mg / mL) of MTT was added and incubated for 4 hours. After centrifugation, the precipitate was dissolved in 1 mL of DMSO, and the absorbance at 560 nm was measured. The measurement results are shown in FIG.
 肺癌細胞A549細胞の増殖を50%阻害するのに要する濃度を、ISIR-005単独の場合と400 units/mLのインターフェロンαとの併用の場合で算出すると、前者の場合、> 7μg/mL以上であるのに対して、後者では4.5μg/mLであり、顕著な相乗作用を示した。 The concentration required to inhibit the growth of lung cancer cell A549 cells by 50% is calculated with ISIR-005 alone and in combination with 400 units / mL interferon α. In the former case, the concentration is> 7μg / mL or more. In contrast, the latter was 4.5 μg / mL, indicating a significant synergistic effect.
 なお、ISIR-041、ISIR-043及びISIR-044に対しても同様の評価を行ったところ、いずれの場合も同様の相乗効果を確認したが、その程度はISIR-042に及ばなかった。 In addition, when the same evaluation was performed on ISIR-041, ISIR-043, and ISIR-044, the same synergistic effect was confirmed in all cases, but the degree did not reach ISIR-042.
 試験例3 低酸素下(Hypoxia)におけるISIR-042(化合物(5))の癌細胞増殖に対する阻害効果
 本発明化合物の細胞増殖抑制作用を通常の酸素濃度(21%)と低酸素(1%)の条件下で測定した。被験細胞として乳癌細胞(MCF-7)を使用し、この細胞をRPMI 1640培地中で前培養した。この細胞液(1×104 細胞/mL)に、所定濃度(0, 0.5, 1.0, 1.5, 2.0, 2.5μg/mL)のISIR-042を加え、7日間培養し、生細胞数を評価した。生細胞数の評価は、MTTアッセイによって行った。MTT のPBS溶液(1 mg/mL)を加え、4時間インキュベートし、遠心処理後、沈殿物を1 mLのDMSOに溶解し、その560 nmにおける吸光度を測定した。図9にISIR-042の測定結果をCN-A及びISIR-005の結果ともに示した。乳癌細胞MCF-7の増殖を50%阻害するのに要する濃度を、低酸素下で測定するとISIR-042の場合は1.0 μg/mLであるのに対して、通常の酸素濃度下では2.5μg/mLよりはるかに高濃度を要した。これらの効果は、CN-AやISIR-005においては観察されなかった。また既知の抗がん剤であるgemcitabineにおいては、むしろ低酸素下では増殖抑制効果が低下していた(図10参照b)。
Test Example 3 Inhibitory effect of ISIR-042 (compound (5)) on cancer cell growth under hypoxia (Hypoxia) The cell growth inhibitory action of the compound of the present invention was reduced to normal oxygen concentration (21%) and hypoxia (1%) The measurement was performed under the following conditions. Breast cancer cells (MCF-7) were used as test cells, and these cells were precultured in RPMI 1640 medium. To this cell solution (1 × 10 4 cells / mL), ISIR-042 at a predetermined concentration (0, 0.5, 1.0, 1.5, 2.0, 2.5 μg / mL) was added, cultured for 7 days, and the number of viable cells was evaluated. . The number of viable cells was evaluated by MTT assay. A PBS solution (1 mg / mL) of MTT was added and incubated for 4 hours. After centrifugation, the precipitate was dissolved in 1 mL of DMSO, and the absorbance at 560 nm was measured. FIG. 9 shows the measurement results of ISIR-042 together with the results of CN-A and ISIR-005. The concentration required to inhibit the growth of breast cancer cell MCF-7 by 50% is 1.0 μg / mL for ISIR-042 when measured under hypoxia, while 2.5 μg / mL under normal oxygen concentration. A much higher concentration was required than mL. These effects were not observed with CN-A or ISIR-005. In addition, in the case of gemcitabine, which is a known anticancer agent, the growth inhibitory effect was rather lowered under hypoxia (see FIG. 10 b).
 乳癌細胞(MCF-7)以外の癌細胞、例えば、膵臓癌細胞(Panc-1、MiaPaca-2)、肺癌細胞(A549、PC14)、卵巣癌細胞(SK-OV3)においても同様の効果が認められた。図11に、上記と同様に測定した、膵臓癌細胞(MiaPaca-2)に対するISIR-042(化合物(5))の効果とISIR-005およびCN-Aの効果とを対比した結果を示す。 Similar effects were observed in cancer cells other than breast cancer cells (MCF-7), such as pancreatic cancer cells (Panc-1, MiaPaca-2), lung cancer cells (A549, PC14), and ovarian cancer cells (SK-OV3). It was. FIG. 11 shows the results of comparing the effects of ISIR-042 (compound (5)) with the effects of ISIR-005 and CN-A on pancreatic cancer cells (MiaPaca-2), measured in the same manner as described above.
 以上のように、ISIR-042(化合物(5))は低酸素下でより顕著に癌細胞の増殖を抑制するという、前例のない特異な性質を有することが明らかになった。図12に膵臓癌細胞(Panc-1)に対するISIR-042(化合物(5))とISIR-041(化合物(4))の効果を示す。これからわかるように、効果は若干劣るが、ISIR-041(化合物(4))もISIR-042(化合物(5))と同様の性質を有した。 As described above, it has been clarified that ISIR-042 (compound (5)) has an unprecedented unique property of significantly suppressing the growth of cancer cells under hypoxia. FIG. 12 shows the effects of ISIR-042 (compound (5)) and ISIR-041 (compound (4)) on pancreatic cancer cells (Panc-1). As can be seen, ISIR-041 (compound (4)) had the same properties as ISIR-042 (compound (5)), although the effect was slightly inferior.
 本発明の化合物(1)は、細胞分化誘導剤、抗癌剤などの医薬品の有効成分として、またフシコクシン誘導体、各種医薬品の中間体等の分野で有用である。 The compound (1) of the present invention is useful as an active ingredient of pharmaceuticals such as cell differentiation inducers and anticancer agents, and in the fields of fusicoccin derivatives and intermediates of various pharmaceuticals.

Claims (12)

  1.  一般式(1)で示される化合物またはその塩:
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは0~5の整数、Meはメチル基、Rは炭素数1~6のアルキル基、-N基または下式で示されるアミノ基:
    Figure JPOXMLDOC01-appb-C000002
    [上記式中、Rは水素原子または炭素数1~6のアルキル基;Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基、p-ニトロフェニルスルホニル基またはアミジル基(-CNHNH)を示す。]
    を示す。)
    Compound represented by the general formula (1) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is an integer of 0 to 5, Me is a methyl group, R 1 is an alkyl group having 1 to 6 carbon atoms, —N 3 group or an amino group represented by the following formula:
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; R 3 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or a p-nitrophenylsulfonyl group. Alternatively, it represents an amidyl group (—CNHNH 2 ). ]
    Indicates. )
  2.  一般式(1)において、
    nが0で、Rがメチル基であるか
    または、
    nが2~5の整数で、Rが下式(2)で示されるアミノ基:
    Figure JPOXMLDOC01-appb-C000003
    [上記式中、Rは水素原子;Rは水素原子、炭素数1~6のアルキル基、炭素数1~7のアシル基またはアミジル基を示す。]
    である、請求項1に記載する化合物またはその塩。
    In general formula (1),
    n is 0 and R 1 is a methyl group, or
    n is an integer of 2 to 5, and R 1 is an amino group represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 2 represents a hydrogen atom; R 3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 7 carbon atoms, or an amidyl group. ]
    The compound or its salt of Claim 1 which is these.
  3.  一般式(1)で示される化合物が下式(3)~(12)のいずれかで示される化合物である、請求項1に記載する化合物:
    Figure JPOXMLDOC01-appb-C000004
    2. The compound according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by any one of the following formulas (3) to (12):
    Figure JPOXMLDOC01-appb-C000004
  4.  請求項1~3のいずれかに記載する化合物またはその薬学的に許容される塩を有効成分とする医薬組成物。 A pharmaceutical composition comprising the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt thereof as an active ingredient.
  5.  請求項1~3のいずれかに記載する化合物またはその薬学的に許容される塩を有効成分とする細胞分化誘導剤。 A cell differentiation inducer comprising the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt thereof as an active ingredient.
  6.  請求項1~3のいずれかに記載の化合物またはその薬学的に許容される塩を有効成分とする血液悪性腫瘍または固形癌に対する抗腫瘍剤。 An antitumor agent against hematological malignancy or solid cancer comprising the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt thereof as an active ingredient.
  7.  血液悪性腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかであり、また固形癌が乳癌、膵臓癌、肺癌及び卵巣癌からなる群から選択されるいずれかである、請求項6に記載の抗腫瘍剤。 The hematological malignancy is any selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, and the solid cancer is any selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer, The antitumor agent according to claim 6.
  8.  請求項1~3のいずれかに記載する化合物または薬学的に許容される塩及びインターフェロンαを組み合わせてなる医薬品。 A pharmaceutical comprising a combination of the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt and interferon α.
  9.  請求項1~3のいずれかに記載する化合物または薬学的に許容される塩とインターフェロンαとを含有する組成物である、請求項8記載の医薬品。 A pharmaceutical product according to claim 8, which is a composition comprising the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt and interferon α.
  10.  請求項1~3のいずれかに記載する化合物または薬学的に許容される塩を有効成分とする薬剤とインターフェロンαを有効成分とする薬剤を、それぞれ別個に包装された組み合わせキットとして有する、請求項8記載の医薬品。 A combination kit in which the drug containing the compound according to any one of claims 1 to 3 or a pharmaceutically acceptable salt and the drug containing interferon α as an active ingredient are packaged separately. 8. The pharmaceutical product according to 8.
  11.  抗腫瘍剤である請求項8乃至10のいずれかに記載する医薬品。 The pharmaceutical product according to any one of claims 8 to 10, which is an antitumor agent.
  12.  対象とする腫瘍が、白血病、悪性リンパ腫及び悪性骨髄腫からなる群から選択されるいずれかの血液悪性腫瘍であるか、または乳癌、膵臓癌、肺癌及び卵巣癌からなる群から選択されるいずれかの固形癌である、請求項11に記載する医薬品。
     
    The target tumor is any hematological malignancy selected from the group consisting of leukemia, malignant lymphoma and malignant myeloma, or any one selected from the group consisting of breast cancer, pancreatic cancer, lung cancer and ovarian cancer The pharmaceutical product according to claim 11, which is a solid cancer.
PCT/JP2010/051537 2009-02-06 2010-02-03 12-deoxyfusicoccin sugar chain-modified derivatives and uses thereof WO2010090234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-025853 2009-02-06
JP2009025853 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090234A1 true WO2010090234A1 (en) 2010-08-12

Family

ID=42542127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051537 WO2010090234A1 (en) 2009-02-06 2010-02-03 12-deoxyfusicoccin sugar chain-modified derivatives and uses thereof

Country Status (1)

Country Link
WO (1) WO2010090234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143140A1 (en) * 2017-01-31 2018-08-09 国立大学法人大阪大学 Fusicoccin compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010324A1 (en) * 2006-07-19 2008-01-24 Osaka University 12-deoxyfusicoccin derivative and cell differentiation-inducing agent containing the same as active ingredient

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010324A1 (en) * 2006-07-19 2008-01-24 Osaka University 12-deoxyfusicoccin derivative and cell differentiation-inducing agent containing the same as active ingredient

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KASSOU, M. ET AL.: "Ring Contraction vs Fragmentation in the Intramolecular Reactions of 3-0-(Trifluoromethanesulfonyl)pyranosides. Efficient Synthesis of Branched-Chain Furanosides", JOURNAL OF ORGANIC CHEMISTRY, vol. 60, no. 14, 1995, pages 4353 - 4358 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143140A1 (en) * 2017-01-31 2018-08-09 国立大学法人大阪大学 Fusicoccin compound

Similar Documents

Publication Publication Date Title
EP2272854B1 (en) Novel glycolipid and use thereof
JP2763894B2 (en) Biologically active carboxylic esters
EP2805955B1 (en) 1-oxo/acylation-14-acylated oridonin derivative, preparation method therefor and application thereof
JP5087052B2 (en) Improved therapeutic agent
AU2014324634A1 (en) Methods and compositions for treating and/or preventing mucositis
EP2933250A1 (en) Phenyl c-glucoside derivative containing deoxyglucose structure, preparation method and use thereof
EP3248981A1 (en) C14-hydroxyl esterified amino acid derivatives of triptolide, and preparation method and use thereof
EP3252039B1 (en) Compound containing indoleacetic acid core structure and use thereof
KR101629077B1 (en) Stilbenoid compound as inhibitor for squamous carcinoma and heptoma and uses thereof
EP2862869B1 (en) Acylated derivatives of polyphyllin i, preparation method therefor and application thereof
JP6667008B2 (en) C-Glucoside derivative containing a fused phenyl ring or a pharmaceutically acceptable salt thereof, a method for producing the same, and a pharmaceutical composition containing the same
EP1958951A1 (en) Phosphine transition metal complex, method for producing same and antitumor agent containing same
EP2133326A1 (en) Novel pseudoglycolipid and use thereof
WO2010090234A1 (en) 12-deoxyfusicoccin sugar chain-modified derivatives and uses thereof
US9828406B2 (en) Antitumor agent
JP2015533128A (en) Novel flavonoid compounds and uses thereof
EP2786989B1 (en) 2-alkyl-or-aryl-substituted tanshinone derivatives, and preparation method and application thereof
JP2008513376A (en) Substituted chroman derivatives, pharmaceuticals, and therapeutic uses
JP2005511550A (en) Etoposide and analog derivatives, and pharmaceutical compositions containing the same
US20220110962A1 (en) Analogues of oleuropein and oleacein and uses thereof
JP6173440B2 (en) New whitening agent
EP3967684A1 (en) Antitumoral ascorbic acid esters
EP3498712B1 (en) Spirocyclic indolone polyethylene glycol carbonate compound, composition, preparation method and use thereof
JP5083681B2 (en) New anticancer drug
WO1995023796A1 (en) Guanylhydrazone derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP