WO2010090074A1 - Polymer actuator and manufacturing method therefor - Google Patents

Polymer actuator and manufacturing method therefor Download PDF

Info

Publication number
WO2010090074A1
WO2010090074A1 PCT/JP2010/050677 JP2010050677W WO2010090074A1 WO 2010090074 A1 WO2010090074 A1 WO 2010090074A1 JP 2010050677 W JP2010050677 W JP 2010050677W WO 2010090074 A1 WO2010090074 A1 WO 2010090074A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive filler
density
conductive
layer
electrode layer
Prior art date
Application number
PCT/JP2010/050677
Other languages
French (fr)
Japanese (ja)
Inventor
斎 関
宣明 芳賀
功 高橋
欣志 安積
Original Assignee
アルプス電気株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社, 独立行政法人産業技術総合研究所 filed Critical アルプス電気株式会社
Publication of WO2010090074A1 publication Critical patent/WO2010090074A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to an actuator that is deformed when a potential difference is applied between electrode layers, and more particularly to a polymer actuator having an improved electrode layer structure and a method for manufacturing the same.
  • Patent Document 1 there is known a polymer actuator having an electrolyte layer containing an ionic liquid and electrode layers on both sides of the electrolyte layer.
  • An electrode layer is comprised by the gel form containing a carbon nanotube and an ionic liquid. When a potential difference is generated between the electrode layers, ions move, the electrode layer expands and contracts, and the polymer actuator is deformed.
  • the electrode layer has electrode characteristics that can attract and strongly attract ions to the electrode layer side when a potential difference is applied between the electrode layers.
  • the adhesion between the electrode layer and the substrate was improved if the density of the carbon nanotubes was high.
  • the electrode layer having a high density of carbon nanotubes has high rigidity and is brittle, the electrode layer cannot be easily and appropriately peeled off from the substrate in combination with the above-described adhesion.
  • the present invention is for solving the above-described conventional problems.
  • the present invention has high electrode characteristics, can improve responsiveness as compared with the prior art, and can easily peel the electrode layer from the substrate. It is an object of the present invention to provide a molecular actuator and a manufacturing method thereof.
  • the present invention has an electrolyte layer and a pair of electrode layers including a conductive filler provided on both surfaces in the thickness direction of the electrolyte layer, and a polymer that deforms when a voltage is applied between the pair of electrode layers.
  • the density of the conductive filler contained in at least one of the pair of electrode layers is low on the interface side with the electrolyte layer and high on the outer surface side opposite to the interface. .
  • the conductive filler having a small aspect ratio is added to the interface side, and the conductive filler having a large aspect ratio is added to the outer surface side.
  • the content per unit volume of the conductive filler is small on the interface side and large on the outer surface side. Accordingly, the density of the conductive filler can be appropriately and easily reduced on the interface side with the electrolyte layer and increased on the outer surface side.
  • the density of the conductive filler is preferably increased continuously or stepwise from the interface side toward the outer surface side.
  • the electrode layer has a structure in which a plurality of conductive layers having different conductive filler densities are stacked.
  • the conductive filler is preferably a carbon nanotube.
  • the present invention has an electrolyte layer and a first electrode layer and a second electrode layer provided on both surfaces in the thickness direction of the electrolyte layer, and a voltage is applied between the first electrode layer and the second electrode layer.
  • the density of the conductive filler contained in the first electrode layer is low on the interface side with the substrate and high on the outer surface side opposite to the interface.
  • the density of the conductive filler contained in the first electrode layer is low on the interface side with the substrate and high on the outer surface side, the adhesion between the first electrode layer and the substrate can be reduced. The layer can be easily and properly peeled from the substrate.
  • the conductive filler having a small aspect ratio is added to the interface side
  • the conductive filler having a large aspect ratio is added to the outer surface side
  • the content per unit volume of the conductive filler is added to the interface side. And less on the outer surface side. Accordingly, the density of the conductive filler can be appropriately and easily reduced on the interface side with the electrolyte layer and increased on the outer surface side.
  • the conductive filler is preferably a carbon nanotube.
  • the present invention good electrode characteristics are provided, responsiveness can be improved as compared with the conventional case, and the electrode layer can be easily peeled from the substrate.
  • disconnected the polymer actuator in this embodiment from the thickness direction Sectional drawing which fixedly supported one end of the polymer actuator shown in FIG. Sectional drawing which expanded and showed the internal structure of the polymer actuator in this embodiment, Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, Process drawing (sectional view) showing a method for producing a polymer actuator in the present embodiment,
  • FIG. 1 is a cross-sectional view of the polymer actuator in the present embodiment cut from the thickness direction
  • FIG. 2 is a cross-sectional view in which one end of the polymer actuator shown in FIG. 1 is fixedly supported
  • FIGS. It is sectional drawing which expanded and showed the internal structure of the polymer actuator.
  • the polymer actuator 10 in this embodiment includes an electrolyte layer 11, and a first electrode layer 12 and a second electrode layer 13 formed on both surfaces in the thickness direction (Z direction) of the electrolyte layer 11. .
  • the electrolyte layer 11 includes, for example, an ionic liquid and a resin material (polymer).
  • the electrode layers 12 and 13 include a conductive filler, an ionic liquid, and a resin material (polymer).
  • PVDF polyvinylidene fluoride
  • PMMA polymethyl methacrylate
  • the conductive filler carbon nanotubes, carbon nanofibers, gold particles, platinum particles, nickel particles, and the like can be presented.
  • the polymer actuator 10 formed of a cross-sectional structure having an electrolyte layer 11 and electrode layers 12 and 13 on both surfaces thereof has, for example, a dimension in the length direction (Y direction) in the width direction ( The rectangular shape is longer than the dimension in the X direction) and the dimension in the thickness direction (Z direction).
  • one end portion 14 of the polymer actuator 10 in the Y direction is fixedly supported by the support 15.
  • the support 15 is, for example, a base substrate, and the conductive connection portion of the base substrate and the electrode layers 12 and 13 of the polymer actuator 10 are in contact with each other.
  • the first electrode layer 12 and the second electrode layer 13 formed on both surfaces of the electrolyte layer 11 in the thickness direction (Z direction in the drawing) are respectively low-density conductive layers in which the density of the conductive filler is low. 20 and 22 and a high-density conductive layer 21 and 23 having a higher density of the conductive filler than the low-density conductive layers 20 and 22.
  • the low density conductive layers 20 and 22 are formed between the electrolyte layer 11 and the high density conductive layers 21 and 23.
  • the density of the conductive filler contained in each of the electrode layers 12 and 13 is low on the interface 24 side with the electrolyte layer 11 and high on the outer surface 25 side opposite to the interface 24.
  • the density change of the conductive filler is the largest near the interface 26 between the low-density conductive layers 20 and 22 and the high-density conductive layers 21 and 23, and the conductive filler in each of the conductive layers 20 to 23
  • the density is substantially constant, or the density change is small compared to the vicinity of the interface 26 between the conductive layers 20-23.
  • the density of the conductive fillers of the first electrode layer 12 and the second electrode layer 13 changes stepwise from the interface 24 side toward the outer surface 25 side.
  • the first electrode layer 12 and the second electrode layer 13 have a two-layer structure, but may have three or more layers. As viewed from the interface 24 side, the density of the conductive filler is set higher in the order of the first conductive layer, the second conductive layer, the third conductive layer,.
  • the interface 26 in which the density of the conductive filler rapidly changes does not exist in the first electrode layer 12 and the second electrode layer 13.
  • the density of the conductive filler in the electrode layers 12 and 13 increases substantially continuously from the interface 24 side to the electrolyte layer 11 to the outer surface 25 side.
  • the electrode layers 12 and 13 are composed of a single layer.
  • the density change is shown by a straight line, but may be a curve change or the like, and is not intended to limit the density change curve.
  • the embodiment of FIG. 5 is a combination of the embodiment of FIG. 3 and the embodiment of FIG. That is, in the embodiment of FIG. 5, the continuous change conductive layer 30 in which the density of the conductive filler continuously changes as shown in FIG. 4 is provided on the interface 24 side with the electrolyte layer 11, and the outer surfaces of the continuous change conductive layers 30 and 31. Intermediate density conductive layers 32 and 33 and high density conductive layers 34 and 35 are formed. In this embodiment, the density of the conductive fillers of the intermediate density conductive layers 32 and 33 is defined to be equal to or higher than the maximum density of the conductive fillers of the continuously changing conductive layers 30 and 31.
  • the continuous change conductive layer 30 is provided on the interface 24 side with the electrolyte layer 11, but it may be provided on the outer surface 25 side of the electrode layers 12 and 13, or the electrode layers 12 and 13 are laminated with three or more layers. In the case of the structure, the continuous change conductive layer 30 may be provided in the intermediate layer.
  • the first electrode layer 12 is formed with a laminated structure of conductive layers 20 and 21 as in FIG. 3, and the density of the conductive filler is low on the interface 24 side with the electrolyte layer 11 and the outer surface 25. It is higher on the side.
  • the second electrode layer 13 is formed with a single-layer structure of the low-density conductive layer 22, and the density of the conductive filler is not changed between the interface 24 side and the outer surface 25 side with the electrolyte layer 11.
  • the 6 can be preferably applied to, for example, a usage pattern in which the polymer actuator 10 is deformed only in one direction without changing the polarity of the electrodes.
  • a usage pattern in which the polymer actuator 10 is deformed only in one direction without changing the polarity of the electrodes.
  • the polymer actuator 10 is deformed by utilizing the above-described principle that a difference in swelling occurs between the electrodes due to ion movement, when the potential difference is generated, the radius of the attracted ions is large and the electrode layer (the first layer) It is necessary to provide a density change of the conductive filler on the one electrode layer 12 side.
  • the other electrode layer (second electrode layer 13) side is preferably formed of the low-density conductive layer 22 so as not to hinder the deformation operation.
  • the first electrode layer 12 can also be formed with the configuration of FIGS.
  • the density of the conductive filler of the electrode layers 12 and 13 as described above can be adjusted by changing the aspect ratio of the conductive filler. That is, a conductive filler having a small aspect ratio is added to the interface 24 side, and a conductive filler having a large aspect ratio is added to the outer surface 25 side. As the aspect ratio increases, the cross-sectional area is constant, and the length dimension orthogonal to the cross-section is formed longer. Therefore, if a conductive filler having a large aspect ratio is added, the density of the conductive filler can be increased as compared to adding a conductive filler having a small aspect ratio. Therefore, for example, in the embodiment of FIG.
  • the aspect ratio of the conductive filler included in the high-density conductive layers 21 and 23 is larger than the aspect ratio of the conductive filler included in the low-density conductive layers 20 and 22.
  • the aspect ratio of the conductive filler included in the high-density conductive layers 21 and 23 is 1000
  • the aspect ratio of the conductive filler included in the low-density conductive layers 20 and 22 is 200000.
  • the content (the number) of the conductive filler per unit volume may be decreased on the interface 24 side of the electrode layers 12 and 13 and increased on the outer surface 25 side to change the density of the conductive filler.
  • the same conductive filler is used, and in the form of FIG. 3, the content (content number) per unit volume of the conductive filler contained in the low density conductive layers 20 and 22 is small and contained in the high density conductive layers 21 and 23.
  • Increasing the content (content number) per unit volume of the conductive filler Thereby, the density of the conductive filler of the electrode layers 12 and 13 can be lowered on the interface 24 side and increased on the outer surface 25 side.
  • the method of making the density of the conductive filler of the electrode layers 12 and 13 low on the interface 24 side and high on the outer surface 25 side may be other than the above.
  • carbon nanotubes are suitable for improving the electrode characteristics of the electrode layers 12 and 13 of the polymer actuator 10. Further, as described above, when changing the aspect ratio of the conductive filler, for example, carbon nanotubes by HiPCO method are used for the low density conductive layers 20 and 21, and a small amount of water is present in the high density conductive layers 21 and 23. If carbon nanotubes obtained by the CVD method below are used, it is possible to easily provide a difference in the aspect ratio of the conductive filler.
  • the density of the conductive filler contained in the electrode layers 12 and 13 is low on the interface 24 side with the electrolyte layer 11 and high on the outer surface 25 side.
  • the electrode layers 12 and 13 are provided with a region having a high density of the conductive filler, and the density of the conductive filler on the interface 24 side is reduced, so that a potential difference is applied between the electrode layers 12 and 13.
  • ions can be smoothly moved into the electrode layers 12 and 13 from the interface 24 toward the outer surface 25, providing good electrode characteristics and improving responsiveness (response speed). .
  • FIG. 10 is a cross-sectional view of the polymer actuator 10 during the manufacturing process.
  • a low density conductive layer 41 containing a conductive filler is formed on a substrate 40 made of quartz or the like.
  • the low density conductive layer 41 is formed by a casting method. First, a ionic liquid, a conductive filler, and a resin material (polymer) are dissolved in a solvent to prepare a just liquid.
  • the cast solution is cast on the substrate 40 and vacuum-dried to evaporate the solvent, whereby the low density conductive layer 41 is obtained.
  • a high-density conductive layer 42 containing a conductive filler is formed on the low-density conductive layer 41.
  • the density of the conductive filler of the high-density conductive layer 42 is adjusted to be higher than the density of the conductive filler of the low-density conductive layer 41.
  • the density of the conductive fillers of the conductive layers 41 and 42 can be changed by changing the aspect ratio of the conductive filler and the content (content number) per unit volume.
  • This high-density conductive layer 42 can also be formed by a casting method in the same manner as the low-density conductive layer 41. Note that the low-density conductive layer 41 and the high-density conductive layer 42 can be formed by a method other than the casting method such as a screen printing method.
  • carbon nanotubes as the conductive filler contained in the conductive layers 41 and 42.
  • carbon nanotubes by HiPCO method are used for the low density conductive layer 41
  • carbon nanotubes by CVD method are used for the high density conductive layer 42.
  • the aspect ratio of carbon nanotubes by CVD is larger than the aspect ratio of carbon nanotubes by HiPCO. Therefore, according to the above, the density of the conductive fillers of the conductive layers 41 and 42 can be easily changed.
  • the first electrode layer 12 including the low density conductive layer 41 and the high density conductive layer 42 is formed.
  • the first electrode layer 12 is peeled from the substrate 40.
  • the second electrode layer 13 is also formed in a two-layer structure including a low density conductive layer 41 and a high density conductive layer 42 in the same process as described above.
  • the first electrode layer 12 and the second electrode layer 13 are opposed to the low-density conductive layer 41 side on the upper and lower surfaces in the thickness direction of the electrolyte layer 11.
  • the electrolyte layer 11 includes an ionic liquid and a resin material (polymer), and can be formed by a casting method in the same manner as the electrode layers 12 and 13.
  • the upper and lower surfaces of the electrolyte layer 11 are connected to the electrode layers 12 and 13 by thermocompression bonding between the electrolyte layer 11 and the first electrode layer 12 and between the electrolyte layer 11 and the second electrode layer 13, respectively.
  • a polymer actuator 10 having a laminated structure sandwiched between the layers can be obtained.
  • the low density conductive layer 41 is first formed on the substrate 40, and then the high density conductive layer 42 is formed. Since the low-density conductive layer 41 is formed directly on the substrate 40, the adhesion with the substrate 40 can be reduced as compared with the case where the high-density conductive layer 42 is formed directly on the substrate 40.
  • a low-density conductive layer 41 that is softer than the high-density conductive layer 42 is provided between the high-rigidity and fragile high-density conductive layer 42 and the substrate 40.
  • the electrode layers 12 and 13 including the low-density conductive layer 41 and the high-density conductive layer 42 can be easily peeled from the substrate 40. Therefore, it is possible to easily and appropriately manufacture a polymer actuator having good electrode characteristics and excellent response (response speed).
  • the density of the conductive filler contained in the electrode layers 12 and 13 is increased in the conductive layer farther from the substrate 40, and after the film formation, the drying process and the heating process are performed on all the conductive layers.

Abstract

Disclosed are a polymer actuator, which can be endowed with particularly good electrode characteristics, can improve responsiveness compared with the past, and whereby an electrode layer can be easily peeled from a substrate, and a manufacturing method therefor. In an polymer actuator, which possesses an electrolyte layer (11), and a pair of electrode layers (12, 13), which are disposed on both sides in the thickness direction of the aforementioned electrolyte layer (11) and are constituted containing a conductive filler, and which deforms when a voltage is applied between the aforementioned pair of electrodes (12, 13), the electrode layers (12, 13) have a laminated structure consisting of low-density conductive layers (20, 22), in which the density of the conductive filler is low, and high-density conductive layers (21, 23), in which the density of the conductive filler is high, wherein the low-density conductive layers (20, 22) are disposed between the high-density conductive layers (21, 23) and the electrolyte layer (11).

Description

高分子アクチュエータ及びその製造方法Polymer actuator and manufacturing method thereof
 本発明は、電極層間に電位差を与えると変形を生じるアクチュエータに係り、特に、電極層の構成を改良した高分子アクチュエータ及びその製造方法に関する。 The present invention relates to an actuator that is deformed when a potential difference is applied between electrode layers, and more particularly to a polymer actuator having an improved electrode layer structure and a method for manufacturing the same.
 下記特許文献1に示すように、イオン液体を含む電解質層と、電解質層の両面に電極層とを有して構成された高分子アクチュエータが知られている。 As shown in Patent Document 1 below, there is known a polymer actuator having an electrolyte layer containing an ionic liquid and electrode layers on both sides of the electrolyte layer.
 電極層は、カーボンナノチューブ及びイオン液体を含有したゲル状で構成される。
 電極層間に電位差が生じると、イオンが移動し、電極層が伸縮して、高分子アクチュエータが変形する。
An electrode layer is comprised by the gel form containing a carbon nanotube and an ionic liquid.
When a potential difference is generated between the electrode layers, ions move, the electrode layer expands and contracts, and the polymer actuator is deformed.
 ところで、電極層は、電極層間に電位差を与えたときに、イオンを電極層側に多く且つ強く引き付けることが出来る電極特性を備えることが、アクチュエータ特性を向上させる上で重要と考えられた。 By the way, it has been considered that it is important to improve the actuator characteristics that the electrode layer has electrode characteristics that can attract and strongly attract ions to the electrode layer side when a potential difference is applied between the electrode layers.
 そして、電極層に含まれるカーボンナノチューブの密度を高くすることで、上記した電極特性を向上できると期待されたが、電極層に引き付けられたイオンが電極層と電解質層との界面から外面方向に向けて電極層の内部にスムーズに移動できなくなり、その結果、応答性(応答速度)が低下する問題があった。 And, it was expected that the above-mentioned electrode characteristics could be improved by increasing the density of the carbon nanotubes contained in the electrode layer, but the ions attracted to the electrode layer moved outward from the interface between the electrode layer and the electrolyte layer. As a result, there has been a problem that the response (response speed) is lowered.
 また、電極層を基板上に形成し、この電極層を基板から剥離するとき、カーボンナノチューブの密度が高いと、電極層と基板間の密着性が良くなった。また、カーボンナノチューブの密度が高い電極層は剛性が高く脆いため、上記した密着性と合わせて、簡単且つ適切に電極層を基板から剥離できなかった。 Also, when the electrode layer was formed on the substrate and this electrode layer was peeled from the substrate, the adhesion between the electrode layer and the substrate was improved if the density of the carbon nanotubes was high. In addition, since the electrode layer having a high density of carbon nanotubes has high rigidity and is brittle, the electrode layer cannot be easily and appropriately peeled off from the substrate in combination with the above-described adhesion.
特開2005-176428号公報JP 2005-176428 A
 そこで本発明は、上記従来の課題を解決するためのものであり、特に、良好な電極特性を備えるとともに、従来に比べて応答性を向上でき、また、簡単に電極層を基板から剥離できる高分子アクチュエータ及びその製造方法を提供することを目的としている。 Therefore, the present invention is for solving the above-described conventional problems. In particular, the present invention has high electrode characteristics, can improve responsiveness as compared with the prior art, and can easily peel the electrode layer from the substrate. It is an object of the present invention to provide a molecular actuator and a manufacturing method thereof.
 本発明は、電解質層と、前記電解質層の厚さ方向の両面に設けられた、導電フィラーを含んでなる一対の電極層を有し、前記一対の電極層間に電圧を付与すると変形する高分子アクチュエータにおいて、
 前記一対の電極層のうちの少なくとも一方に含まれる導電フィラーの密度は、前記電解質層との界面側で低く、前記界面と反対側の外面側で高くなっていることを特徴とするものである。
The present invention has an electrolyte layer and a pair of electrode layers including a conductive filler provided on both surfaces in the thickness direction of the electrolyte layer, and a polymer that deforms when a voltage is applied between the pair of electrode layers. In the actuator
The density of the conductive filler contained in at least one of the pair of electrode layers is low on the interface side with the electrolyte layer and high on the outer surface side opposite to the interface. .
 これにより、電極層間に電圧を付与したときに、イオンを、電極層と電解質層との界面から外面方向に向けて電極層内部でスムーズに移動させることができ、良好な電極特性を備えるとともに、応答性(応答速度)を向上させることができる。 Thereby, when a voltage is applied between the electrode layers, ions can be smoothly moved in the electrode layer from the interface between the electrode layer and the electrolyte layer toward the outer surface direction, and with good electrode characteristics, Responsiveness (response speed) can be improved.
 本発明では、例えば、前記界面側にアスペクト比が小さい前記導電フィラーが添加され、前記外面側に前記アスペクト比が大きい前記導電フィラーが添加される。あるいは、前記導電フィラーの単位体積あたりの含有量は、前記界面側で少なく、前記外面側で多くなっている。これにより、適切且つ簡単に、導電フィラーの密度を、電解質層との界面側で低く、外面側で高くできる。 In the present invention, for example, the conductive filler having a small aspect ratio is added to the interface side, and the conductive filler having a large aspect ratio is added to the outer surface side. Alternatively, the content per unit volume of the conductive filler is small on the interface side and large on the outer surface side. Accordingly, the density of the conductive filler can be appropriately and easily reduced on the interface side with the electrolyte layer and increased on the outer surface side.
 本発明では、前記導電フィラーの密度は、前記界面側から前記外面側に向けて連続的にあるいは段階的に高くなっていることが好ましい。 In the present invention, the density of the conductive filler is preferably increased continuously or stepwise from the interface side toward the outer surface side.
 また本発明では、例えば、前記電極層は、前記導電フィラーの密度が異なる複数の導電層を積層した構成である。 In the present invention, for example, the electrode layer has a structure in which a plurality of conductive layers having different conductive filler densities are stacked.
 また本発明では、前記導電フィラーは、カーボンナノチューブであることが好ましい。
 本発明は、電解質層と、前記電解質層の厚さ方向の両面に設けられた第1電極層及び第2電極層を有し、前記第1電極層及び前記第2電極層間に電圧を付与すると変形する高分子アクチュエータの製造方法において、
 少なくとも基板上に前記第1電極層を形成するとき、前記第1電極層に含まれる導電フィラーの密度が、前記基板との界面側で低く、前記界面と反対側の外面側で高くなるように前記第1電極層を形成する工程、
 前記第1電極層を前記基板から剥離する工程、
 前記第1電極層の前記導電フィラーの密度が低い前記界面側を前記電解質層と対向させて、前記電解質層の両面を前記第1電極層と前記第2電極層とで挟んで積層する工程、
 を有することを特徴とするものである。このように本発明では。第1電極層に含まれる導電フィラーの密度を、基板との界面側で低く、外面側で高くしているので、第1電極層と基板間の密着性を低下させることができ、第1電極層を基板から容易且つ適切に剥離できる。
In the present invention, the conductive filler is preferably a carbon nanotube.
The present invention has an electrolyte layer and a first electrode layer and a second electrode layer provided on both surfaces in the thickness direction of the electrolyte layer, and a voltage is applied between the first electrode layer and the second electrode layer. In the method for producing a deformable polymer actuator,
At least when the first electrode layer is formed on the substrate, the density of the conductive filler contained in the first electrode layer is low on the interface side with the substrate and high on the outer surface side opposite to the interface. Forming the first electrode layer;
Peeling the first electrode layer from the substrate;
A step of laminating both surfaces of the electrolyte layer between the first electrode layer and the second electrode layer with the interface side of the first electrode layer having a low density of the conductive filler facing the electrolyte layer;
It is characterized by having. Thus, in the present invention. Since the density of the conductive filler contained in the first electrode layer is low on the interface side with the substrate and high on the outer surface side, the adhesion between the first electrode layer and the substrate can be reduced. The layer can be easily and properly peeled from the substrate.
 本発明では、アスペクト比が小さい前記導電フィラーを前記界面側に、アスペクト比が大きい前記導電フィラーを前記外面側に添加したり、あるいは、前記導電フィラーの単位体積あたりの含有量を、前記界面側で少なく、前記外面側で多くする。これにより、適切且つ簡単に、導電フィラーの密度を、電解質層との界面側で低く、外面側で高くできる。 In the present invention, the conductive filler having a small aspect ratio is added to the interface side, the conductive filler having a large aspect ratio is added to the outer surface side, or the content per unit volume of the conductive filler is added to the interface side. And less on the outer surface side. Accordingly, the density of the conductive filler can be appropriately and easily reduced on the interface side with the electrolyte layer and increased on the outer surface side.
 本発明では、前記基板上に前記導電フィラーの密度が異なる複数の導電層を積層し、このとき前記界面側よりも前記外面側に近い前記導電層ほど前記導電フィラーの密度が高くなるように形成することが好ましい。
 また本発明では、前記導電フィラーは、カーボンナノチューブであることが好ましい。
In the present invention, a plurality of conductive layers having different densities of the conductive filler are laminated on the substrate, and at this time, the conductive layer closer to the outer surface side than the interface side is formed to have a higher density of the conductive filler. It is preferable to do.
In the present invention, the conductive filler is preferably a carbon nanotube.
 本発明では、良好な電極特性を備えるとともに、従来に比べて応答性を向上でき、また、簡単に電極層を基板から剥離できる。 In the present invention, good electrode characteristics are provided, responsiveness can be improved as compared with the conventional case, and the electrode layer can be easily peeled from the substrate.
本実施形態における高分子アクチュエータを厚さ方向から切断した断面図、Sectional drawing which cut | disconnected the polymer actuator in this embodiment from the thickness direction, 図1に示す高分子アクチュエータの一端を固定支持した断面図、Sectional drawing which fixedly supported one end of the polymer actuator shown in FIG. 本実施形態における高分子アクチュエータの内部構成を拡大して示した断面図、Sectional drawing which expanded and showed the internal structure of the polymer actuator in this embodiment, 他の実施形態における高分子アクチュエータの内部構成を拡大して示した断面図、Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, 他の実施形態における高分子アクチュエータの内部構成を拡大して示した断面図、Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, 他の実施形態における高分子アクチュエータの内部構成を拡大して示した断面図、Sectional drawing which expanded and showed the internal structure of the polymer actuator in other embodiments, 本実施形態における高分子アクチュエータの製造方法を示す工程図(断面図)、Process drawing (sectional view) showing a method for producing a polymer actuator in the present embodiment,
 図1は本実施形態における高分子アクチュエータを厚さ方向から切断した断面図、図2は図1に示す高分子アクチュエータの一端を固定支持した断面図、図3~図6は、本実施形態における高分子アクチュエータの内部構成を拡大して示した断面図である。 FIG. 1 is a cross-sectional view of the polymer actuator in the present embodiment cut from the thickness direction, FIG. 2 is a cross-sectional view in which one end of the polymer actuator shown in FIG. 1 is fixedly supported, and FIGS. It is sectional drawing which expanded and showed the internal structure of the polymer actuator.
 本実施形態における高分子アクチュエータ10は、電解質層11と、電解質層11の厚さ方向(Z方向)の両側表面に形成される第1電極層12と第2電極層13を備えて構成される。 The polymer actuator 10 in this embodiment includes an electrolyte layer 11, and a first electrode layer 12 and a second electrode layer 13 formed on both surfaces in the thickness direction (Z direction) of the electrolyte layer 11. .
 電解質層11は、例えば、イオン液体と、樹脂材料(ポリマー)を有して構成される。
 また電極層12,13は、導電フィラー、イオン液体及び樹脂材料(ポリマー)とを有して構成される。
The electrolyte layer 11 includes, for example, an ionic liquid and a resin material (polymer).
The electrode layers 12 and 13 include a conductive filler, an ionic liquid, and a resin material (polymer).
 樹脂材料としては、ポリフッ化ビニリデン(PVDF)や、ポリメチルメタクリレート(PMMA)等を提示できる。 As the resin material, polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA) or the like can be presented.
 また、導電フィラーとしては、カーボンナノチューブ、カーボンナノファイバー、金粒子、白金粒子、ニッケル粒子等を提示できる。 Further, as the conductive filler, carbon nanotubes, carbon nanofibers, gold particles, platinum particles, nickel particles, and the like can be presented.
 図1に示すように電解質層11と、その両表面に電極層12,13を有する断面構造で形成された高分子アクチュエータ10は、例えば、長さ方向(Y方向)への寸法が幅方向(X方向)への寸法や厚さ方向(Z方向)への寸法に比べて長い長方形状である。 As shown in FIG. 1, the polymer actuator 10 formed of a cross-sectional structure having an electrolyte layer 11 and electrode layers 12 and 13 on both surfaces thereof has, for example, a dimension in the length direction (Y direction) in the width direction ( The rectangular shape is longer than the dimension in the X direction) and the dimension in the thickness direction (Z direction).
 図2に示すように例えば高分子アクチュエータ10のY方向における一端部14が支持体15に固定支持されている。支持体15は例えばベース基板であり、ベース基板の導電性の接続部と高分子アクチュエータ10の電極層12、13とが接触している。 As shown in FIG. 2, for example, one end portion 14 of the polymer actuator 10 in the Y direction is fixedly supported by the support 15. The support 15 is, for example, a base substrate, and the conductive connection portion of the base substrate and the electrode layers 12 and 13 of the polymer actuator 10 are in contact with each other.
 高分子アクチュエータ10を構成する電極層12,13間に電圧を印加すると、電解質層11内のイオン移動などによって電解質層11の上下にて膨潤差が生じ、曲げ応力が発生して、例えば図2の点線で示すように変形部16が上方向に湾曲する。イオン移動で電極間に膨潤の差が生じる原理は一般に一義的ではないとされているが、代表的な原理要因の1つに、陽イオンと陰イオンのイオン半径の差で膨潤に差が生じることが知られている。 When a voltage is applied between the electrode layers 12 and 13 constituting the polymer actuator 10, a swelling difference is generated above and below the electrolyte layer 11 due to ion movement or the like in the electrolyte layer 11, and a bending stress is generated. For example, FIG. As shown by the dotted line, the deformable portion 16 curves upward. The principle that the difference in swelling between the electrodes due to ion transfer is generally not unambiguous, but one of the typical principles is that the difference in swelling occurs due to the difference in the ionic radius between the cation and the anion. It is known.
 以下、本実施形態における高分子アクチュエータ10の特徴的構成について説明する。
 図3の構成では、電解質層11の厚さ方向(図示Z方向)の両面に形成された第1電極層12と第2電極層13とが、夫々、導電フィラーの密度が低い低密度導電層20,22と、導電フィラーの密度が低密度導電層20,22に比べて高い高密度導電層21,23との積層構造で形成されている。低密度導電層20,22は、電解質層11と高密度導電層21,23の間に形成される。
Hereinafter, a characteristic configuration of the polymer actuator 10 in the present embodiment will be described.
In the configuration of FIG. 3, the first electrode layer 12 and the second electrode layer 13 formed on both surfaces of the electrolyte layer 11 in the thickness direction (Z direction in the drawing) are respectively low-density conductive layers in which the density of the conductive filler is low. 20 and 22 and a high-density conductive layer 21 and 23 having a higher density of the conductive filler than the low-density conductive layers 20 and 22. The low density conductive layers 20 and 22 are formed between the electrolyte layer 11 and the high density conductive layers 21 and 23.
 図3の構成により、各電極層12,13に含まれる導電フィラーの密度は、電解質層11との界面24側で低く、界面24と反対側の外面25側で高くなっている。 3, the density of the conductive filler contained in each of the electrode layers 12 and 13 is low on the interface 24 side with the electrolyte layer 11 and high on the outer surface 25 side opposite to the interface 24.
 図3の実施形態では、低密度導電層20,22と高密度導電層21,23との界面26付近で最も導電フィラーの密度変化が大きくなり、各導電層20~23内での導電フィラーの密度はほぼ一定か、あるいは、密度変化は、各導電層20~23間の界面26付近に比べて小さい。このように、図3の実施形態では、第1電極層12及び第2電極層13の導電フィラーの密度が界面24側から外面25側に向けて段階的に変化する。 In the embodiment of FIG. 3, the density change of the conductive filler is the largest near the interface 26 between the low-density conductive layers 20 and 22 and the high-density conductive layers 21 and 23, and the conductive filler in each of the conductive layers 20 to 23 The density is substantially constant, or the density change is small compared to the vicinity of the interface 26 between the conductive layers 20-23. Thus, in the embodiment of FIG. 3, the density of the conductive fillers of the first electrode layer 12 and the second electrode layer 13 changes stepwise from the interface 24 side toward the outer surface 25 side.
 図3の実施形態では、第1電極層12及び第2電極層13が2層構造であったが3層以上であってもよい。界面24側から見て、1層目の導電層、2層目の導電層、3層目の導電層・・・の順に導電フィラーの密度を高く設定する。 In the embodiment of FIG. 3, the first electrode layer 12 and the second electrode layer 13 have a two-layer structure, but may have three or more layers. As viewed from the interface 24 side, the density of the conductive filler is set higher in the order of the first conductive layer, the second conductive layer, the third conductive layer,.
 図4の実施形態では、図3と違って、第1電極層12内及び第2電極層13内には、導電フィラーの密度が急激に変化する界面26が存在せず、図4の右図(グラフ)に示すように、電極層12,13内の導電フィラーの密度は、電解質層11との界面24側から外面25側にかけてほぼ連続的に高くなっている。例えば図4の実施形態では電極層12、13は単一の層で構成される。なお図4では密度変化を直線で示したが、湾曲変化等であってもよく、密度変化曲線を限定する意図ではない。 In the embodiment of FIG. 4, unlike FIG. 3, the interface 26 in which the density of the conductive filler rapidly changes does not exist in the first electrode layer 12 and the second electrode layer 13. As shown in the graph, the density of the conductive filler in the electrode layers 12 and 13 increases substantially continuously from the interface 24 side to the electrolyte layer 11 to the outer surface 25 side. For example, in the embodiment of FIG. 4, the electrode layers 12 and 13 are composed of a single layer. In FIG. 4, the density change is shown by a straight line, but may be a curve change or the like, and is not intended to limit the density change curve.
 図5の実施形態は、図3の実施形態と図4の実施形態とを組み合わせたものである。すなわち図5の実施形態では、電解質層11との界面24側に図4のように導電フィラーの密度が連続的に変化する連続変化導電層30が設けられ、連続変化導電層30,31の外面に中間密度導電層32,33及び高密度導電層34,35が形成される。この形態における中間密度導電層32,33の導電フィラーの密度は、連続変化導電層30,31の導電フィラーの最大密度以上に規定される。 The embodiment of FIG. 5 is a combination of the embodiment of FIG. 3 and the embodiment of FIG. That is, in the embodiment of FIG. 5, the continuous change conductive layer 30 in which the density of the conductive filler continuously changes as shown in FIG. 4 is provided on the interface 24 side with the electrolyte layer 11, and the outer surfaces of the continuous change conductive layers 30 and 31. Intermediate density conductive layers 32 and 33 and high density conductive layers 34 and 35 are formed. In this embodiment, the density of the conductive fillers of the intermediate density conductive layers 32 and 33 is defined to be equal to or higher than the maximum density of the conductive fillers of the continuously changing conductive layers 30 and 31.
 図5では、連続変化導電層30を電解質層11との界面24側に設けたが、電極層12,13の外面25側に設けてもよいし、電極層12,13が3層以上の積層構造である場合に、その中間層に連続変化導電層30を設けてもよい。 In FIG. 5, the continuous change conductive layer 30 is provided on the interface 24 side with the electrolyte layer 11, but it may be provided on the outer surface 25 side of the electrode layers 12 and 13, or the electrode layers 12 and 13 are laminated with three or more layers. In the case of the structure, the continuous change conductive layer 30 may be provided in the intermediate layer.
 図6の実施形態では、第1電極層12は、図3と同じように導電層20,21の積層構造で形成され、導電フィラーの密度が電解質層11との界面24側で低く、外面25側で高くなっている。一方、第2電極層13は低密度導電層22の単層構造で形成されており、導電フィラーの密度を、電解質層11との界面24側と外面25側とで変化させていない。 In the embodiment of FIG. 6, the first electrode layer 12 is formed with a laminated structure of conductive layers 20 and 21 as in FIG. 3, and the density of the conductive filler is low on the interface 24 side with the electrolyte layer 11 and the outer surface 25. It is higher on the side. On the other hand, the second electrode layer 13 is formed with a single-layer structure of the low-density conductive layer 22, and the density of the conductive filler is not changed between the interface 24 side and the outer surface 25 side with the electrolyte layer 11.
 図6の形態は、例えば、電極の極性を変えず、高分子アクチュエータ10を一方向にのみ変形させるような使用形態に好ましく適用できる。例えば上記した、イオン移動で電極間に膨潤の差が生じる原理を利用して、高分子アクチュエータ10を変形させる場合、電位差が生じたときに、引き寄せられるイオンの半径が大きく、伸びる電極層(第1電極層12)側に導電フィラーの密度変化を持たせることが必要である。もう一方の電極層(第2電極層13)側は、変形動作の妨げにならないように、低密度導電層22で形成することが好適である。 6 can be preferably applied to, for example, a usage pattern in which the polymer actuator 10 is deformed only in one direction without changing the polarity of the electrodes. For example, when the polymer actuator 10 is deformed by utilizing the above-described principle that a difference in swelling occurs between the electrodes due to ion movement, when the potential difference is generated, the radius of the attracted ions is large and the electrode layer (the first layer) It is necessary to provide a density change of the conductive filler on the one electrode layer 12 side. The other electrode layer (second electrode layer 13) side is preferably formed of the low-density conductive layer 22 so as not to hinder the deformation operation.
 なお、図6の実施形態において、第1電極層12を図4や図5の構成で形成することも出来る。 In the embodiment of FIG. 6, the first electrode layer 12 can also be formed with the configuration of FIGS.
 上記のように電極層12,13の導電フィラーの密度を変化させるには、例えば、導電フィラーのアスペクト比を変えることで調整できる。すなわち、界面24側にアスペクト比が小さい導電フィラーが添加され、外面25側にアスペクト比が大きい導電フィラーが添加されている。アスペクト比が大きいほど、断面積が一定であるとして、その断面に直交する長さ寸法が長く形成される。よって、アスペクト比が大きい導電フィラーを添加すれば、アスペクト比が小さい導電フィラーを添加するのに比べて導電フィラーの密度を高くできる。したがって、例えば、図3の実施形態では、高密度導電層21,23に含まれる導電フィラーのアスペクト比は、低密度導電層20,22に含まれる導電フィラーのアスペクト比に比べて大きくされる。例えば、高密度導電層21,23に含まれる導電フィラーのアスペクト比は1000で、低密度導電層20,22に含まれる導電フィラーのアスペクト比は200000である。 In order to change the density of the conductive filler of the electrode layers 12 and 13 as described above, for example, it can be adjusted by changing the aspect ratio of the conductive filler. That is, a conductive filler having a small aspect ratio is added to the interface 24 side, and a conductive filler having a large aspect ratio is added to the outer surface 25 side. As the aspect ratio increases, the cross-sectional area is constant, and the length dimension orthogonal to the cross-section is formed longer. Therefore, if a conductive filler having a large aspect ratio is added, the density of the conductive filler can be increased as compared to adding a conductive filler having a small aspect ratio. Therefore, for example, in the embodiment of FIG. 3, the aspect ratio of the conductive filler included in the high-density conductive layers 21 and 23 is larger than the aspect ratio of the conductive filler included in the low-density conductive layers 20 and 22. For example, the aspect ratio of the conductive filler included in the high-density conductive layers 21 and 23 is 1000, and the aspect ratio of the conductive filler included in the low-density conductive layers 20 and 22 is 200000.
 あるいは、導電フィラーの単位体積当たりの含有量(含有数)を、電極層12,13の界面24側で少なく、外面25側で多くして、導電フィラーの密度に変化を与えてもよい。例えば、同じ導電フィラーを用い、図3の形態において、低密度導電層20,22に含まれる導電フィラーの単位体積当たりの含有量(含有数)を少なく、高密度導電層21,23に含まれる導電フィラーの単位体積当たりの含有量(含有数)を多くする。これによって、電極層12,13の導電フィラーの密度を、界面24側で低く、外面25側で高くすることができる。 Alternatively, the content (the number) of the conductive filler per unit volume may be decreased on the interface 24 side of the electrode layers 12 and 13 and increased on the outer surface 25 side to change the density of the conductive filler. For example, the same conductive filler is used, and in the form of FIG. 3, the content (content number) per unit volume of the conductive filler contained in the low density conductive layers 20 and 22 is small and contained in the high density conductive layers 21 and 23. Increasing the content (content number) per unit volume of the conductive filler. Thereby, the density of the conductive filler of the electrode layers 12 and 13 can be lowered on the interface 24 side and increased on the outer surface 25 side.
 なお、電極層12,13の導電フィラーの密度を、界面24側で低く、外面25側で高くする方法は上記以外であってもよい。 In addition, the method of making the density of the conductive filler of the electrode layers 12 and 13 low on the interface 24 side and high on the outer surface 25 side may be other than the above.
 導電フィラーには、カーボンナノチューブを用いることが好適である。カーボンナノチューブは、高分子アクチュエータ10の電極層12,13の電極特性を向上させるに適している。また、上記したように、導電フィラーのアスペクト比を変える場合に、例えば低密度導電層20,21には、HiPCO法によるカーボンナノチューブを用い、高密度導電層21,23には、微量の水分存在下でのCVD法によるカーボンナノチューブを用いれば、容易に導電フィラーのアスペクト比に差を設けることが可能である。 It is preferable to use carbon nanotubes as the conductive filler. The carbon nanotube is suitable for improving the electrode characteristics of the electrode layers 12 and 13 of the polymer actuator 10. Further, as described above, when changing the aspect ratio of the conductive filler, for example, carbon nanotubes by HiPCO method are used for the low density conductive layers 20 and 21, and a small amount of water is present in the high density conductive layers 21 and 23. If carbon nanotubes obtained by the CVD method below are used, it is possible to easily provide a difference in the aspect ratio of the conductive filler.
 以上のように本実施形態では、電極層12,13に含まれる導電フィラーの密度は、電解質層11との界面24側で低く、外面25側で高くなっている。このように本実施形態では、電極層12、13に導電フィラーの密度が高い領域を設けるとともに、界面24側での導電フィラーの密度を低くしたため、電極層12、13間に電位差を与えたときに、イオンを、界面24から外面25方向に向けて電極層12,13の内部にスムーズに移動させることができ、良好な電極特性を備えるとともに、応答性(応答速度)を向上させることができる。 As described above, in the present embodiment, the density of the conductive filler contained in the electrode layers 12 and 13 is low on the interface 24 side with the electrolyte layer 11 and high on the outer surface 25 side. As described above, in this embodiment, the electrode layers 12 and 13 are provided with a region having a high density of the conductive filler, and the density of the conductive filler on the interface 24 side is reduced, so that a potential difference is applied between the electrode layers 12 and 13. In addition, ions can be smoothly moved into the electrode layers 12 and 13 from the interface 24 toward the outer surface 25, providing good electrode characteristics and improving responsiveness (response speed). .
 図7を用いて、本実施形態の高分子アクチュエータ10の製造方法を説明する。各図は、高分子アクチュエータ10の製造工程中における断面図である。 The manufacturing method of the polymer actuator 10 of this embodiment is demonstrated using FIG. Each drawing is a cross-sectional view of the polymer actuator 10 during the manufacturing process.
 図7(a)の工程では、石英等で形成された基板40上に、導電フィラーを含む低密度導電層41を形成する。例えば、低密度導電層41をキャスト法にて形成する。まず、イオン液体、導電フィラー、及び樹脂材料(ポリマー)を溶媒に溶かしてしてャスト液を作製する。 7A, a low density conductive layer 41 containing a conductive filler is formed on a substrate 40 made of quartz or the like. For example, the low density conductive layer 41 is formed by a casting method. First, a ionic liquid, a conductive filler, and a resin material (polymer) are dissolved in a solvent to prepare a just liquid.
 続いて、上記キャスト液を基板40上にキャストし、真空乾燥して溶媒を蒸発させ、低密度導電層41を得る。 Subsequently, the cast solution is cast on the substrate 40 and vacuum-dried to evaporate the solvent, whereby the low density conductive layer 41 is obtained.
 次に、図7(b)に示す工程では、低密度導電層41上に導電フィラーを含む高密度導電層42を形成する。このとき、高密度導電層42の導電フィラーの密度を、低密度導電層41の導電フィラーの密度よりも高くなるように調製する。 Next, in the step shown in FIG. 7B, a high-density conductive layer 42 containing a conductive filler is formed on the low-density conductive layer 41. At this time, the density of the conductive filler of the high-density conductive layer 42 is adjusted to be higher than the density of the conductive filler of the low-density conductive layer 41.
 例えば、既に述べたように、導電フィラーのアスペクト比や単位体積あたりの含有量(含有数)を変えることで、導電層41,42の導電フィラーの密度を変えることが出来る。 For example, as described above, the density of the conductive fillers of the conductive layers 41 and 42 can be changed by changing the aspect ratio of the conductive filler and the content (content number) per unit volume.
 この高密度導電層42も、低密度導電層41と同じようにキャスト法で形成できる。
 なお低密度導電層41や高密度導電層42をスクリーン印刷法等、キャスト法以外で形成することも可能である。
This high-density conductive layer 42 can also be formed by a casting method in the same manner as the low-density conductive layer 41.
Note that the low-density conductive layer 41 and the high-density conductive layer 42 can be formed by a method other than the casting method such as a screen printing method.
 また、導電層41,42に含まれる導電フィラーにはカーボンナノチューブを用いることが好適である。例えば、低密度導電層41には、HiPCO法によるカーボンナノチューブを用い、高密度導電層42には、CVD法によるカーボンナノチューブを用いる。CVD法によるカーボンナノチューブのアスペクト比は、HiPCO法によるカーボンナノチューブのアスペクト比より大きい。よって、上記により、容易に、導電層41,42の導電フィラーの密度を異ならせることが出来る。 Further, it is preferable to use carbon nanotubes as the conductive filler contained in the conductive layers 41 and 42. For example, carbon nanotubes by HiPCO method are used for the low density conductive layer 41, and carbon nanotubes by CVD method are used for the high density conductive layer 42. The aspect ratio of carbon nanotubes by CVD is larger than the aspect ratio of carbon nanotubes by HiPCO. Therefore, according to the above, the density of the conductive fillers of the conductive layers 41 and 42 can be easily changed.
 以上により、低密度導電層41と高密度導電層42から成る第1電極層12を形成する。 Thus, the first electrode layer 12 including the low density conductive layer 41 and the high density conductive layer 42 is formed.
 次に図7(c)の工程では、第1電極層12を基板40から剥離する。
 なお第2電極層13も上記と同じ工程にて、低密度導電層41と高密度導電層42から成る2層構造で形成する。
Next, in the step of FIG. 7C, the first electrode layer 12 is peeled from the substrate 40.
The second electrode layer 13 is also formed in a two-layer structure including a low density conductive layer 41 and a high density conductive layer 42 in the same process as described above.
 次に図7(d)の工程では、電解質層11の厚さ方向の上下面に、第1電極層12及び第2電極層13の低密度導電層41側を対向させる。電解質層11はイオン液体と樹脂材料(ポリマー)を含み、電極層12,13と同様にキャスト法にて形成できる。 Next, in the step of FIG. 7D, the first electrode layer 12 and the second electrode layer 13 are opposed to the low-density conductive layer 41 side on the upper and lower surfaces in the thickness direction of the electrolyte layer 11. The electrolyte layer 11 includes an ionic liquid and a resin material (polymer), and can be formed by a casting method in the same manner as the electrode layers 12 and 13.
 そして図7(e)の工程では、電解質層11と第1電極層12間、電解質層11と第2電極層13間を加熱圧着することで、電解質層11の上下面を電極層12,13で挟んだ積層構造からなる高分子アクチュエータ10を得ることが出来る。 7E, the upper and lower surfaces of the electrolyte layer 11 are connected to the electrode layers 12 and 13 by thermocompression bonding between the electrolyte layer 11 and the first electrode layer 12 and between the electrolyte layer 11 and the second electrode layer 13, respectively. A polymer actuator 10 having a laminated structure sandwiched between the layers can be obtained.
 上記した実施形態では、基板40上にまず低密度導電層41を形成し、続いて高密度導電層42を形成する。基板40上に直接形成するのは低密度導電層41であるため、高密度導電層42を基板40上に直接、形成する場合に比べて、基板40との密着性を低下できる。また高剛性で脆い高密度導電層42と基板40との間に高密度導電層42よりも軟質な低密度導電層41を設けている。 In the above-described embodiment, the low density conductive layer 41 is first formed on the substrate 40, and then the high density conductive layer 42 is formed. Since the low-density conductive layer 41 is formed directly on the substrate 40, the adhesion with the substrate 40 can be reduced as compared with the case where the high-density conductive layer 42 is formed directly on the substrate 40. A low-density conductive layer 41 that is softer than the high-density conductive layer 42 is provided between the high-rigidity and fragile high-density conductive layer 42 and the substrate 40.
 以上により本実施形態では、容易に低密度導電層41と高密度導電層42から成る電極層12,13を基板40から剥離できる。よって、良好な電極特性を備えるとともに、応答性(応答速度)に優れた高分子アクチュエータを簡単且つ適切に製造することが可能である。 As described above, in this embodiment, the electrode layers 12 and 13 including the low-density conductive layer 41 and the high-density conductive layer 42 can be easily peeled from the substrate 40. Therefore, it is possible to easily and appropriately manufacture a polymer actuator having good electrode characteristics and excellent response (response speed).
 図4のように、電極層12,13に含まれる導電フィラーの密度が界面24側から外面25側に向けて連続的に変化するようにするには、例えば、基板40上に複数の導電層を重ね塗りし、このとき、基板40から離れる導電層ほど導電フィラーの密度を高くし、成膜後、全導電層に対して乾燥工程や加熱工程を施す。 As shown in FIG. 4, in order to continuously change the density of the conductive filler contained in the electrode layers 12 and 13 from the interface 24 side toward the outer surface 25 side, for example, a plurality of conductive layers on the substrate 40. At this time, the density of the conductive filler is increased in the conductive layer farther from the substrate 40, and after the film formation, the drying process and the heating process are performed on all the conductive layers.
10 高分子アクチュエータ
11 電解質層
12 第1電極層
13 第2電極層
20,22,41 低密度導電層
21,23,34,35,42 高密度導電層
24,26 界面
25 外面
30,31 連続変化導電層
32,33 中間密度導電層
40 基板
DESCRIPTION OF SYMBOLS 10 Polymer actuator 11 Electrolyte layer 12 1st electrode layer 13 2nd electrode layer 20,22,41 Low density conductive layer 21,23,34,35,42 High density conductive layer 24,26 Interface 25 Outer surface 30,31 Continuous change Conductive layers 32 and 33 Intermediate density conductive layer 40 Substrate

Claims (11)

  1.  電解質層と、前記電解質層の厚さ方向の両面に設けられた、導電フィラーを含んでなる一対の電極層を有し、前記一対の電極層間に電圧を付与すると変形する高分子アクチュエータにおいて、
     前記一対の電極層のうちの少なくとも一方に含まれる導電フィラーの密度は、前記電解質層との界面側で低く、前記界面と反対側の外面側で高くなっていることを特徴とする高分子アクチュエータ。
    In a polymer actuator having an electrolyte layer and a pair of electrode layers including a conductive filler provided on both surfaces in the thickness direction of the electrolyte layer, and deforming when a voltage is applied between the pair of electrode layers,
    The polymer actuator characterized in that the density of the conductive filler contained in at least one of the pair of electrode layers is low on the interface side with the electrolyte layer and high on the outer surface side opposite to the interface. .
  2.  前記界面側にアスペクト比が小さい前記導電フィラーが添加され、前記外面側に前記アスペクト比が大きい前記導電フィラーが添加される請求項1記載の高分子アクチュエータ。 The polymer actuator according to claim 1, wherein the conductive filler having a small aspect ratio is added to the interface side, and the conductive filler having a large aspect ratio is added to the outer surface side.
  3.  前記導電フィラーの単位体積あたりの含有量は、前記界面側で少なく、前記外面側で多くなっている請求項1又は2に記載の高分子アクチュエータ。 The polymer actuator according to claim 1 or 2, wherein a content per unit volume of the conductive filler is small on the interface side and large on the outer surface side.
  4.  前記導電フィラーの密度は、前記界面側から前記外面側に向けて連続的にあるいは段階的に高くなっている請求項1ないし3のいずれかに記載の高分子アクチュエータ。 4. The polymer actuator according to claim 1, wherein the density of the conductive filler increases continuously or stepwise from the interface side toward the outer surface side.
  5.  前記電極層は、前記導電フィラーの密度が異なる複数の導電層を積層した構成である請求項1ないし4のいずれかに記載の高分子アクチュエータ。 The polymer actuator according to any one of claims 1 to 4, wherein the electrode layer has a structure in which a plurality of conductive layers having different densities of the conductive filler are laminated.
  6.  前記導電フィラーは、カーボンナノチューブである請求項1ないし5のいずれかに記載の高分子アクチュエータ。 The polymer actuator according to any one of claims 1 to 5, wherein the conductive filler is a carbon nanotube.
  7.  電解質層と、前記電解質層の厚さ方向の両面に設けられた第1電極層及び第2電極層を有し、前記第1電極層及び前記第2電極層間に電圧を付与すると変形する高分子アクチュエータの製造方法において、
     少なくとも基板上に前記第1電極層を形成するとき、前記第1電極層に含まれる導電フィラーの密度が、前記基板との界面側で低く、前記界面と反対側の外面側で高くなるように前記第1電極層を形成する工程、
     前記第1電極層を前記基板から剥離する工程、
     前記第1電極層の前記導電フィラーの密度が低い前記界面側を前記電解質層と対向させて、前記電解質層の両面を前記第1電極層と前記第2電極層とで挟んで積層する工程、
     を有することを特徴とする高分子アクチュエータの製造方法。
    A polymer having an electrolyte layer and a first electrode layer and a second electrode layer provided on both surfaces of the electrolyte layer in a thickness direction, and deforms when a voltage is applied between the first electrode layer and the second electrode layer In the manufacturing method of the actuator,
    At least when the first electrode layer is formed on the substrate, the density of the conductive filler contained in the first electrode layer is low on the interface side with the substrate and high on the outer surface side opposite to the interface. Forming the first electrode layer;
    Peeling the first electrode layer from the substrate;
    A step of laminating both surfaces of the electrolyte layer between the first electrode layer and the second electrode layer with the interface side of the first electrode layer having a low density of the conductive filler facing the electrolyte layer;
    A method for producing a polymer actuator, comprising:
  8.  アスペクト比が小さい前記導電フィラーを前記界面側に、アスペクト比が大きい前記導電フィラーを前記外面側に添加する請求項7記載の高分子アクチュエータの製造方法。 The method for producing a polymer actuator according to claim 7, wherein the conductive filler having a small aspect ratio is added to the interface side, and the conductive filler having a large aspect ratio is added to the outer surface side.
  9.  前記導電フィラーの単位体積あたりの含有量を、前記界面側で少なく、前記外面側で多くする請求項7又は8に記載の高分子アクチュエータの製造方法。 The method for producing a polymer actuator according to claim 7 or 8, wherein the content per unit volume of the conductive filler is decreased on the interface side and increased on the outer surface side.
  10.  前記基板上に前記導電フィラーの密度が異なる複数の導電層を積層して前記電極層を形成し、このとき前記界面側よりも前記外面側に近い前記導電層ほど前記導電フィラーの密度を高くする請求項7ないし9のいずれかに記載の高分子アクチュエータの製造方法。 The electrode layer is formed by laminating a plurality of conductive layers having different conductive filler densities on the substrate, and at this time, the conductive layer closer to the outer surface side than the interface side is made higher in density of the conductive filler. A method for producing a polymer actuator according to claim 7.
  11.  前記導電フィラーは、カーボンナノチューブである請求項7ないし10のいずれかに記載の高分子アクチュエータの製造方法。 The method for producing a polymer actuator according to any one of claims 7 to 10, wherein the conductive filler is a carbon nanotube.
PCT/JP2010/050677 2009-02-06 2010-01-21 Polymer actuator and manufacturing method therefor WO2010090074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-025782 2009-02-06
JP2009025782A JP2012080595A (en) 2009-02-06 2009-02-06 Polymer actuator and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010090074A1 true WO2010090074A1 (en) 2010-08-12

Family

ID=42541978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050677 WO2010090074A1 (en) 2009-02-06 2010-01-21 Polymer actuator and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2012080595A (en)
WO (1) WO2010090074A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930533B2 (en) * 2012-06-08 2016-06-08 アルプス電気株式会社 Polymer actuator and manufacturing method thereof
DE102020000887B4 (en) 2020-02-12 2021-10-28 Alexander Kutnik vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084796A2 (en) * 2006-01-23 2007-07-26 Hitachi Chemical Research Center, Inc. Ionic polymer devices and methods of fabricating the same
JP2008148452A (en) * 2006-12-11 2008-06-26 Japan Aviation Electronics Industry Ltd Actuator
JP2008266532A (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial & Technology Actuator element with highly orienting electrode using carbon nano-tube having high aspect ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007084796A2 (en) * 2006-01-23 2007-07-26 Hitachi Chemical Research Center, Inc. Ionic polymer devices and methods of fabricating the same
JP2008148452A (en) * 2006-12-11 2008-06-26 Japan Aviation Electronics Industry Ltd Actuator
JP2008266532A (en) * 2007-04-24 2008-11-06 National Institute Of Advanced Industrial & Technology Actuator element with highly orienting electrode using carbon nano-tube having high aspect ratio

Also Published As

Publication number Publication date
JP2012080595A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5243118B2 (en) Polymer actuator and manufacturing method thereof
Cheng et al. Stretchable thin‐film electrodes for flexible electronics with high deformability and stretchability
US8384271B2 (en) Electroactive polymer actuator and method of manufacturing the same
JP5855915B2 (en) Multilayer electroactive polymer device and manufacturing method thereof
JP5959807B2 (en) Actuator and actuator structure
KR20110095943A (en) Ferroelectret double and multilayer composite and method for production thereof
US8203254B2 (en) Polymer actuator device
JP5162664B2 (en) Polymer actuator and polymer actuator mounted device
JP5097853B2 (en) Actuator device and input device
WO2010090074A1 (en) Polymer actuator and manufacturing method therefor
US9832572B2 (en) Electroactive sound transducer foil having a structured surface
JP2008010419A5 (en)
JP5224113B2 (en) Multilayer actuator and manufacturing method thereof
WO2010010873A1 (en) Polymer actuator
JP6338185B2 (en) Polymer actuator and manufacturing method thereof
JP2016189651A (en) Stacked actuator
JP5687278B2 (en) Multilayer piezoelectric actuator
JP6423763B2 (en) Polymer element manufacturing method, conductive laminated structure manufacturing method, current collecting layer manufacturing method, polymer element, actuator element, sensor element, and conductive laminated structure
JP5930533B2 (en) Polymer actuator and manufacturing method thereof
JP5709674B2 (en) Bendable transparent conductive layer
JP2011204651A (en) Terminal structure of electric contact, and contact switch equipped with the same
JP5311252B2 (en) Manufacturing method of ion conductive actuator
JP2010246181A (en) Polymer actuator apparatus and input device
JP6626667B2 (en) Polymer element
JP2016146716A (en) Polymer actuator element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP