WO2010090054A1 - Overfilling prevention device for dme fuel tank - Google Patents

Overfilling prevention device for dme fuel tank Download PDF

Info

Publication number
WO2010090054A1
WO2010090054A1 PCT/JP2010/050255 JP2010050255W WO2010090054A1 WO 2010090054 A1 WO2010090054 A1 WO 2010090054A1 JP 2010050255 W JP2010050255 W JP 2010050255W WO 2010090054 A1 WO2010090054 A1 WO 2010090054A1
Authority
WO
WIPO (PCT)
Prior art keywords
dme fuel
diaphragm
fuel tank
outlet
filling
Prior art date
Application number
PCT/JP2010/050255
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 稲垣
恵司 岩月
Original Assignee
中央精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央精機株式会社 filed Critical 中央精機株式会社
Publication of WO2010090054A1 publication Critical patent/WO2010090054A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/021Special adaptations of indicating, measuring, or monitoring equipment having the height as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks

Definitions

  • the present invention relates to an overfilling prevention device for a DME fuel tank that is provided in a DME fuel tank that stores DME (dimethyl ether) as fuel and prevents overfilling of the DME fuel into the DME fuel tank.
  • DME dimethyl ether
  • liquefied gas fuel liquefied petroleum gas (hereinafter referred to as LPG) fuel
  • DME dimethyl ether
  • This DME fuel has an excellent advantage that it has a high cetane number, and can significantly reduce the emission amount of PM and NOx, and is also highly expected as a low pollution measure.
  • a liquid level display device for confirming the storage amount of the LPG fuel, or a predetermined value when filling the fuel tank with the LPG fuel.
  • An overfilling prevention device or the like for preventing the filling from exceeding the specified maximum filling amount is attached.
  • the overfill prevention device for example, as in Patent Document 1, a float that floats according to the liquid level of the LPG fuel stored in the fuel tank is provided, and the float becomes the maximum filling amount of the fuel tank.
  • the filling of LPG fuel is forcibly stopped when the liquid level is reached.
  • a diaphragm is provided in the interior of the inflow port into which the LPG fuel flows, and an outflow port through which the LPG fuel flows out on one side of the diaphragm, the inflow port,
  • An annular inflow chamber that communicates with the diaphragm chamber, and a diaphragm chamber provided on the other side of the diaphragm, further comprising a pore communicating with the annular inflow chamber, and a pilot valve interlocked with a float in the tank; It has become.
  • the float rises and closes the pilot valve, so that the pressure in the diaphragm chamber is increased by the LPG fuel flowing into the diaphragm chamber from the pores, and the diaphragm passes through the outlet. Close.
  • the diaphragm-type overfill prevention device that prevents overfilling by the operation of the diaphragm, when filling the LPG fuel, forcibly closes the outlet when the maximum filling amount is reached so as to prevent further filling. ing.
  • this DME fuel is a high-pressure gas similar to the LPG fuel, it is possible to utilize the equipment for the LPG fuel. That is, the fuel tank provided with the liquid level display device and the overfill prevention device described above is used.
  • the overfilling prevention device disposed in the fuel tank for LPG fuel in the case of the configuration provided with the above-described diaphragm, generally, the diaphragm is synthesized so as to exhibit high sealing performance.
  • a structure formed of rubber or a structure in which a metal plate is embedded in a synthetic rubber is applied.
  • synthetic rubbers those using nitrile rubber (NBR) are well known.
  • the present invention proposes an overfilling prevention device for a DME fuel tank that is disposed in a DME fuel tank that stores DME fuel and that can operate accurately and stably so as not to fill the DME fuel beyond the maximum filling amount.
  • the present invention is connected to a gas flow path for allowing DME fuel to flow into the DME fuel tank by opening a filling valve disposed outside the DME fuel tank, and is disposed in the DME fuel tank.
  • a casing body for preventing overfilling of DME fuel comprising a connecting pipe connected to a gas flow path, and a main outlet through which the DME fuel flows into the DME fuel tank via the connecting pipe
  • a variable closed region that is disposed behind the main flow outlet in the casing body and is hermetically partitioned from the main flow outlet side, and is converted into a closed position for closing the main flow outlet and an open position for opening the main flow outlet
  • a diaphragm that is provided in the casing body and that always communicates with the variable closed region and the connecting pipe line, and is supported by the casing body and follows the liquid surface height of the liquefied gas stored in the liquefied gas container.
  • the diaphragm is formed by laminating a synthetic rubber plate and a metal plate in the plate thickness direction.
  • the DME fuel that has flowed into the movable closed region via the narrow channel by the filling of the DME fuel is floated.
  • the DME fuel flows out from the secondary outlet that opens against the valve urging means, and DME fuel flows out from the main outlet with the diaphragm at the open position.
  • the DME fuel tank is filled with DME fuel.
  • the valve body closes the secondary outlet according to the valve urging means, so that the diaphragm is repositioned to the closed position by the DME fuel flowing into the movable closed region via the narrow channel. .
  • the filling of the DME fuel is forcibly stopped so as not to exceed the maximum filling amount.
  • DME is dimethyl ether.
  • the synthetic rubber of the diaphragm tends to swell on the variable closed region side.
  • the volume of the variable closed region becomes narrow due to swelling of the diaphragm, it is difficult for the DME fuel to flow into the variable closed region, which may cause malfunction.
  • the volume of the variable closed area is reduced, DME fuel will not easily flow out from the secondary outlet. It is easy to cause the malfunction of not doing.
  • the malfunction of the overfilling prevention device may be caused.
  • the problems caused by swelling of the synthetic rubber described above can occur in the same manner because the front and back surfaces are made of synthetic rubber.
  • the DME fuel in the fuel tank for LPG fuel, in the configuration in which the overfill prevention device including the diaphragm formed of synthetic rubber or the diaphragm in which the metal plate is embedded in the synthetic rubber is disposed, the DME fuel It is clear that the fuel cannot be charged accurately and stably when the fuel is stored. Based on the results of this study, the inventors of the present invention have studied an overfill prevention device that can stably fill fuel even when DME fuel is stored, and as a result of earnest study, the DME according to the present invention has been studied. It came to invent the overfill prevention device for fuel tanks.
  • the present invention has a configuration in which a diaphragm formed by laminating a metal plate and a synthetic rubber plate in the thickness direction is arranged so that the metal plate is on the variable closed region side.
  • the metal plate can prevent the DME fuel that has flowed into the variable closing position from contacting the synthetic rubber plate, so that the synthetic rubber plate can be prevented from swelling in the variable closing region.
  • the area can be maintained. Therefore, when DME fuel is filled, the DME fuel that has flowed into the variable closed region can appropriately flow out from the auxiliary outlet, and the diaphragm can be stably maintained at the open position.
  • the sub-flow outlet When the maximum filling amount is reached, the sub-flow outlet is closed, so that the internal pressure in the variable closing region increases and the diaphragm can be accurately and stably converted to the closed position. As a result, the DME fuel is not filled beyond the maximum filling amount. As described above, since the diaphragm is accurately and stably converted into the open position and the closed position, the function of filling DME fuel and preventing overfilling can be stably performed.
  • the synthetic rubber plate the above-mentioned nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), or the like can be suitably used.
  • NBR nitrile rubber
  • HNBR hydrogenated nitrile rubber
  • the hydrogenated nitrile rubber by appropriately setting the amount of acrylonitrile and the like, the resistance to DME fuel can be improved, so that the hydrogenated nitrile rubber can be used more suitably.
  • a metal plate plates, such as carbon steel, stainless steel, and an aluminum alloy, can be used.
  • the narrow channel can be either a configuration provided in the casing body or a configuration provided in the diaphragm. In the case of the latter, what is comprised by the narrow flow hole which penetrates in the plate
  • a circular or elliptical plate-like configuration can be suitably used as the shape of the diaphragm.
  • the elliptical configuration can be used more suitably because the main flow outlet can be similarly elliptical to increase the outflow rate, and the filling time can be shortened.
  • the metal plate constituting the diaphragm is formed in a larger area than the main outlet so as to cover the main outlet through the synthetic rubber plate at the closed position. It can be suitably used. In such a configuration, due to the rigidity of the metal plate, the diaphragm can be stably converted between the open position and the closed position, and when the main outlet is closed, the diaphragm made of synthetic rubber is sufficient. Sealability can be exhibited stably.
  • a configuration in which the portion of the synthetic rubber plate exposed to the variable closed region side is made as small as possible by using a metal plate is preferable. Thereby, the swelling of the synthetic rubber plate can be further suppressed, and the above-described effects are further improved.
  • the present invention is a diaphragm-type overfill prevention device, in which the diaphragm is formed by laminating a synthetic rubber plate and a metal plate in the thickness direction, and the metal plate is placed in a variable closed region. Since it is set as the structure arrange
  • FIG. 1 is a cross-sectional view of a DME fuel tank 1.
  • FIG. It is sectional drawing showing the state during fuel filling of the overfill prevention apparatus 2 of a present Example. It is sectional drawing showing the filling completion state of the overfilling prevention apparatus 2 same as the above.
  • the diaphragm 7 is (A) a plan view of the main outlet side 16, (B) a plan view of the auxiliary outlet side 17, and (C) a longitudinal sectional view.
  • a DME fuel tank 1 for storing DME fuel is disposed in a vehicle such as a truck, for example, and as shown in FIG. 1, a cylindrical body 1a and a body 1a.
  • the DME fuel tank 1 is fixed to a vehicle by a fixing member (not shown), and a valve provided with a filling valve 45 and a filling valve opening / closing handle 41 for opening and closing the filling valve 45 on one mirror portion 1b.
  • a device 40 is provided.
  • the valve device 40 is attached to the mirror portion 1b by fixing the attached member 43 provided on the valve device 40 to an attachment member 48 disposed on the mirror portion 1b.
  • the filling valve 45 is provided with a supply port 46 for supplying DME fuel from the outside. When DME fuel is filled, the DME fuel is supplied from the supply port 46 at a predetermined filling pressure. And is filled with fuel.
  • a gas filling pipe 42 communicating with the above-described filling valve 45 is disposed in the DME fuel tank 1, and overfill prevention device 2 is connected to the tip.
  • the gas flow path 9 according to the present invention is constituted by the inside of the gas filling pipe 42.
  • This overfilling prevention device 2 includes a casing body 3 and a float 10 as shown in FIGS.
  • the casing body 3 includes a casing main body 3a connected to the gas filling pipe 42 and a casing sub body 3b attached to the upper portion of the casing main body 3a.
  • a connecting pipe part 4 that opens downward is provided at the lower part of the casing main body 3a, and the connecting pipe part 4 is fitted around the tip of the gas filling rod 42 and fixed by caulking or the like.
  • the overfill prevention device 2 is connected to the gas filling rod 42.
  • the connecting pipe portion 4 is provided in the vertical direction along the distal end portion of the gas filling rod 42, and the connecting pipe line 11 is constituted by the inside thereof, and the connecting pipe line 11 communicates with the gas flow path 9.
  • an elliptical annular wall 13 is provided along the horizontal direction so as to be substantially perpendicular to the longitudinal direction (vertical direction) of the connection pipe line 11, and surrounds the outer side of the elliptical annular wall 13.
  • an elliptical annular channel 12 communicating with the connecting pipe 11 is formed.
  • An elliptical main outlet 16 that opens into the DME fuel tank 1 is formed by the inside of the elliptical annular wall 13.
  • the casing sub body 3b is attached to and integrated with the casing main body 3a so as to cover the annular flow path 12 and the elliptical annular wall 13 of the casing main body 3a. Thereby, the casing body 3 is formed.
  • An operating air region 20 having a substantially elliptical cross section in which a diaphragm 7 described later operates is formed between the casing main body 3a and the casing sub body 3b.
  • the working airspace 20 communicates with the annular flow path 12 and the main outlet 16 inside the elliptical annular wall 13, and also communicates with the connecting pipe line 11 via the annular flow path 12.
  • An inner end 13 a of the elliptical annular wall 13 is disposed in the working air space 20.
  • the casing sub-body 3b is provided with a sub-outlet 17 that opens into the DME fuel tank 1 so as to face the main outlet 16 in a state of being integrated with the casing main body 3a.
  • the operating air region 20 and the inside of the DME fuel tank 1 communicate with each other.
  • An elliptical plate-like diaphragm 7 is disposed in the working airspace 20 formed inside the casing body 3 so as to divide the working airspace 20 into an elliptical annular wall 13 side and a secondary outlet 17 side. Yes.
  • the diaphragm 7 is composed of an elliptical main plate portion 7a and an outer peripheral support edge portion 7b formed on the outer side of the main plate portion 7a (see FIG. 4).
  • the diaphragm 7 is fixed to the casing body 3 by sandwiching and supporting the outer peripheral support portion 7b between the casing main body 3a and the casing sub body 3b.
  • the diaphragm 7 is formed in a hermetically sealed manner with the variable outlet region 21 on the side of the auxiliary air outlet 17 of the working air region 20.
  • the diaphragm 7, the main flow outlet 16 (elliptical annular wall 13), and the sub-flow outlet 17 are arranged so that their center positions are on the same line.
  • the outer peripheral support edge portion 7b of the diaphragm 7 is formed of a thin synthetic rubber, the diaphragm 7 is closed to close the main outlet 16 in close contact with the inner end 13a of the elliptical annular wall 13 (see FIG. 3) and an open position (see FIG. 2) that is separated from the inner end 13a and communicates with the main outlet 16 and the annular basin 12.
  • the diaphragm 7 is formed with a trickle hole 7c penetrating in the plate thickness direction at the outer edge of the main plate part 7a facing the annular flow path 12, and the trickle hole 7c is in a closed position. Also, the annular flow path 12 and the variable closed region 21 are communicated.
  • the narrow channel 7c constitutes a narrow channel according to the present invention.
  • the diaphragm 7 is a main part of the present invention and will be described in detail later.
  • a coil-like spring 22 that urges the diaphragm 7 in the direction of the closed position is disposed in the variable closed region 21.
  • the major axis direction of the elliptical main flow outlet 16 is provided along the longitudinal direction of the connecting pipe portion 4 (longitudinal direction of the distal end portion of the gas filling pipe 42). This is so that the overfilling prevention device 2 and the gas filling pipe 42 can be inserted into the DME fuel tank 1 through an opening (not shown) for attaching the valve device 40 to the mirror portion 1b of the DME fuel tank 1. It is to do. Since the elliptical main flow outlet 16 has an increased opening area in the major axis direction, it has the advantage that the amount of DME fuel flowing out is large and the filling time required for filling can be shortened. Yes.
  • a valve body 24 having a valve portion 24 a for opening and closing the auxiliary outlet 17 is disposed at the auxiliary outlet 17 of the casing body 3.
  • the valve body 24 is connected to the auxiliary outlet by a coiled spring 25. It is urged to close 17.
  • the spring 25 constitutes the valve biasing means according to the present invention.
  • a tilting plate 27 that abuts on the outer end 24b of the valve body 24 described above is pivotally supported on the casing body 3 on the outside thereof.
  • the lower portion of the tilting plate 27 abuts on the outer end portion 24 b of the valve body 24, and the substantially central portion thereof is pivotally supported by the casing sub body 3 b constituting the casing body 3.
  • a support rod 29 provided with the above-described float 10 at the tip is connected to the upper portion of the tilting plate 27.
  • the float 10 floats according to the liquid level of the DME fuel stored in the DME fuel tank 1.
  • the tilting plate 27 pushes the valve body 24 into the casing body 3 against the urging force of the spring 25, and opens the auxiliary outlet 17.
  • the casing body 3 is provided with a stop piece 28 for defining the lowest lowered position of the float 10.
  • the tilting plate 27 defines the position where the valve body 24 is pushed most.
  • the tilting plate 27 tilts in a method of reducing the load acting on the valve body 24 (direction away from the valve body 24). Thereby, the valve body 24 moves in the direction of closing the auxiliary outlet 17 according to the urging force of the spring 25.
  • the DME fuel tank 1 has 85% of the tank capacity set as the maximum filling amount of DME fuel.
  • the tilting plate 27 tilts to the tilting position where the auxiliary outlet 17 is closed by the valve body 24.
  • the auxiliary outlet 17 is open, the internal pressures of the variable closed region 21 and the DME fuel tank 1 are the same. Therefore, the diaphragm 7 is moved from the closed position to the open position against the biasing force of the spring 22 by the filling pressure, and the main outlet 16 is opened as shown in FIG. As a result, the DME fuel that has flowed from the gas flow path 9 of the gas filling pipe 42 flows out from the main outlet 16 into the DME fuel tank 1 through the connection pipe line 11 and the annular flow path 12 of the casing body 3. Further, the DME fuel also flows into the variable closed region 21 through the trickle hole 7 c of the diaphragm 7 and flows out into the DME fuel tank 1 from the auxiliary outlet 17.
  • the float 10 moves up.
  • the force that pushes the valve body 24 by the tilting plate 27 is reduced, and the valve body 24 is accordingly sub-flow outlet according to the biasing force of the spring 25. It moves gradually in the direction of closing 17.
  • the valve body 24 closes the auxiliary outlet 17 according to the urging force of the spring 25 as shown in FIG.
  • the internal pressure of the variable closed region 21 is increased by the DME fuel flowing from the trickle hole 7c of the diaphragm 7, and the diaphragm 7 is converted into the closed position by the internal pressure. Since the DME fuel flowing in from the gas filling pipe 42 cannot flow out from the main outlet 16 and the filling of the DME fuel into the DME fuel tank 1 is forcibly stopped, charging exceeding the maximum filling amount is performed. Can be prevented.
  • the diaphragm 7 is formed by laminating a synthetic rubber plate 31 and a metal plate 33 so as to overlap each other in the plate thickness direction and bonding them together to be integrated.
  • the synthetic rubber plate 31 is composed of an elliptical main plate portion 32 and the outer peripheral support edge portion 7b formed around the outer periphery of the main plate portion 32. Is formed.
  • the main plate portion 32 is formed to be thicker than the outer peripheral support edge portion 7b, has a flat surface with a uniform back surface on which the metal plate 33 is superimposed, and protrudes outward in the center of the surface.
  • a head-cone-shaped protrusion 32a is provided.
  • the metal plate 33 has substantially the same elliptical shape as the main plate portion 32 of the synthetic rubber plate 31 described above, and the surface to be bonded to the back surface of the main plate portion 32 has a flat surface shape.
  • a protrusion 33a that protrudes in a columnar shape toward the back is provided at the center of the back surface on the opposite side. The protrusion 33a is positioned by fitting the tip of the spring 22 described above.
  • the metal plate 33 and the main plate portion 32 of the synthetic rubber plate 31 constitute the main plate portion 7a of the diaphragm 7 described above. Further, the main plate portion 32 of the synthetic rubber plate 31 and the metal plate 33 form an elliptical shape similar to the elliptical shape constituting the elliptical annular wall 13 of the casing body 3. The size and shape is one size larger than that. Therefore, in the state where the diaphragm 7 is in the closed position in the casing body 3, the outer peripheral edge portion of the metal plate 33 passes through the annular flow path 12 of the casing body 3 outside the main plate portion 32 of the synthetic rubber plate 31. It is made to cover partially (or entirely) through the peripheral edge (see FIG. 3).
  • the metal plate 33 is made of steel steel.
  • the synthetic rubber plate 31 is made of hydrogenated nitrile rubber (HNBR).
  • HNBR hydrogenated nitrile rubber
  • This hydrogenated nitrile rubber is obtained by chemically hydrogenating unsaturated bonds contained in the main chain of nitrile rubber (NBR).
  • NBR nitrile rubber
  • the amount of acrylonitrile is appropriately adjusted so as to improve the resistance to DME fuel, and the swelling phenomenon caused by exposure to DME fuel can be suppressed as much as possible. Therefore, by applying as a constituent material of the diaphragm, the durability of the diaphragm is improved, and the overfill prevention device operates appropriately and stably.
  • a plate thickness ratio between the plate thickness of the metal plate 33 and the plate thickness of the synthetic rubber plate 31 is set.
  • the synthetic rubber plate 31 is about 2.5 times as large as the metal plate 33.
  • the plate thickness ratio is preferably set so that the plate thickness of the synthetic rubber plate 31 with respect to the metal plate 33 is 1.0 to 5.0. This is because when the plate thickness ratio is smaller than 1.0, the plate thickness of the synthetic rubber plate 31 is reduced, so that the resistance to DME fuel is reduced, or when the plate thickness of the metal plate 33 is increased, the weight is increased. To increase.
  • the plate thickness ratio is larger than 5.0, the plate thickness of the metal plate 33 becomes thin, so that the rigidity decreases, or if the plate thickness of the synthetic rubber plate 31 becomes thick, the weight increases.
  • the diaphragm 7 formed by integrating the metal plate 33 and the synthetic rubber plate 31 is formed on the casing body 3 such that the metal plate 33 side becomes the side outlet 17 (casing side body 3b) side. Arranged in the operating airspace 20. Specifically, when the casing main body 3a and the casing sub body 3b are attached and integrated, the outer peripheral support edge portion 7b of the diaphragm 7 is sandwiched between the casing main body 3a and the casing sub body 3b, thereby The diaphragm 7 is disposed in the working air space 20 formed in the casing body 3. As a result, a variable closed region 21 is formed in the working air region 20 formed in the casing body 3 in a sealed manner from the main outlet 16 side.
  • the metal plate 33 is on the side of the auxiliary outlet 17, and the main plate portion 32 of the synthetic rubber plate 31 is on the side of the main outlet 16.
  • the metal plate 33 and the main plate portion 32 of the synthetic rubber plate 31 are provided with the pores 33b and 32b having the same dimensions and constituting the narrow flow holes 7c of the diaphragm 7 in the plate thickness direction. As shown in FIG. By integrating the metal plate 33 and the synthetic rubber plate 31, both the pores 32b and 33b communicate with each other to form the trickle hole 7c.
  • the trickle hole 7c is formed at the outer peripheral edge of the diaphragm 7 so as to be opposed to the annular flow path 12, and is variable.
  • the closed region 21 is always in communication with the gas flow path 9 of the gas filling pipe 42 via the annular flow path 12 and the connection pipe line 11 of the connection pipe portion 4.
  • the diaphragm 7 arranged in the casing body 3 as described above moves to the side of the auxiliary outlet 17 by receiving a filling pressure from the annular flow path 12 when filling with DME fuel. Then, the protrusion 33a of the metal plate 33 is positioned at a position where the auxiliary outlet 17 is not closed by the biasing force of the spring 22 that biases the diaphragm 7 toward the closed position. This positioned position is an open position. That is, the minimum volume of the variable closed region 21 is determined by the filling pressure of DME fuel and the biasing force of the spring 22.
  • the DME fuel flows from the annular flow region 12 to the inside of the elliptical annular wall 13 by the synthetic rubber plate 31 of the diaphragm 7 and flows out from the main outlet 16.
  • the frustoconical protrusion 32a is formed at the center of the synthetic rubber plate 31, the DME flows from the annular basin 12 toward the center along the surface of the synthetic rubber plate 31. The fuel is easy to flow toward the main outlet 16.
  • the metal plate 33 of the diaphragm 7 is exposed to the DME fuel by the DME fuel that has flowed into the variable closed region 21 through the trickle hole 7c of the diaphragm 7. Further, the metal plate 33 of the diaphragm 7 is exposed to the DME fuel stored in the variable closed region 21 even when the DME fuel reaches the maximum filling amount and the auxiliary outlet 17 is closed. Thus, even if the metal plate 33 of the diaphragm 7 is exposed to the DME fuel, the metal plate 33 is hardly eroded, so that the operation of converting the position of the diaphragm 7 between the open position and the closed position can be stably performed.
  • the synthetic rubber constituting the diaphragm is exposed in the variable closed region. Therefore, the synthetic rubber swells by repeated and continuous exposure to the DME fuel.
  • the synthetic rubber tends to swell easily due to the structure in which the metal plate is arranged inside. If the synthetic rubber swells, the volume of the variable closed area will be reduced, so that the DME fuel that has flowed into the variable closed area becomes difficult to flow in from the secondary outlet, resulting in malfunction of the diaphragm. Can occur.
  • the overfilling prevention device 2 swells the synthetic rubber by the DME fuel because the metal plate 33 is exposed to the variable closed region 21 side as described above. Can be sufficiently suppressed. Therefore, the diaphragm 7 can be operated accurately and stably with the maximum filling amount, and the DME fuel can be stably filled via the overfilling prevention device 2.
  • the surface of the diaphragm 7 on the side of the main flow outlet 16 is exposed to the DME fuel when DME fuel is filled, but the diaphragm 7 is in an open position at other times than filling. Little contact with DME fuel. Therefore, swelling of the synthetic rubber plate 31 can be suppressed over a relatively long period.
  • the effect of suppressing the swelling is further increased because the hydrogenated nitrile rubber has improved resistance to DME fuel. As a result, the overfill prevention device can operate accurately and stably over a long period of time.
  • the diaphragm 7 is dimensioned so that the metal plate 33 partially (or entirely) covers the annular basin 12 as described above, the diaphragm 7 is made of DME fuel. In the case of operating to the open position upon receiving the filling pressure, the position can be stably changed by the rigidity of the metal plate 33 in any case of operating to the closed position due to the increase in the internal pressure of the variable closed region 21. .
  • the present invention is not limited to the above-described embodiments, and can be appropriately used within the scope of the gist of the present invention.
  • a configuration in which the spring 25 that urges the diaphragm 7 is not provided may be employed.
  • a leaf spring or the like can be used instead of the coiled springs 22 and 25.

Abstract

An overfilling prevention device for a DME fuel tank, capable of operating accurately and stably so that a DME fuel tank is not filled with DME fuel to a level exceeding a maximum filling level of the DME fuel tank. A diaphragm type overfilling prevention device, configured in such a manner that a diaphragm provided on the rear side of a main outlet, from which a DME fuel flows into a DME fuel tank, and forming a variable closed region which is separated in a sealed manner from the main outlet side is formed by layering a synthetic rubber plate and a metallic plate on each other in the thickness direction of the diaphragm, with the metallic plate provided on the variable closed region side.  The configuration enables the diaphragm to operate accurately and stably even if filling of the tank with the DME fuel and consumption of the DME fuel are repeatedly performed, and also enables both a function of filling the tank with the DME fuel and a function of preventing overfilling of the tank with the DME fuel to be stably performed for a relatively long period.

Description

DME燃料タンク用過充填防止装置Overfill prevention device for DME fuel tank
 本発明は、DME(ジメチルエーテル)を燃料として貯留するDME燃料タンクに設けられ、DME燃料タンクへのDME燃料の過充填を防止するDME燃料タンク用過充填防止装置に関する。 The present invention relates to an overfilling prevention device for a DME fuel tank that is provided in a DME fuel tank that stores DME (dimethyl ether) as fuel and prevents overfilling of the DME fuel into the DME fuel tank.
 例えば自動車などの車両は、近年の排ガス規制強化に伴って、低公害を目的として液化ガス燃料を用いる車両が増加する傾向にある。この液化ガス燃料としては、液化石油ガス(以下、LPGという)燃料が主流であるが、ジメチルエーテル(以下、DMEという)燃料も着目されている。このDME燃料は、セタン価が高く、PMやNOxの排出量を極めて少なくできるという優れた利点を有し、低公害対策としての期待も高い。 For example, vehicles such as automobiles tend to increase the number of vehicles using liquefied gas fuel for the purpose of low pollution in accordance with the recent tightening of exhaust gas regulations. As the liquefied gas fuel, liquefied petroleum gas (hereinafter referred to as LPG) fuel is mainstream, but dimethyl ether (hereinafter referred to as DME) fuel is also attracting attention. This DME fuel has an excellent advantage that it has a high cetane number, and can significantly reduce the emission amount of PM and NOx, and is also highly expected as a low pollution measure.
 ところで、上記したLPG燃料を貯留する燃料タンクにあっては、一般的に、該LPG燃料の貯留量を確認するための液面表示装置や、LPG燃料を燃料タンク内に充填する際に予め定められた最大充填量を超えて充填しないようにするための過充填防止装置などが取り付けられている。 By the way, in the fuel tank for storing the LPG fuel described above, generally, a liquid level display device for confirming the storage amount of the LPG fuel, or a predetermined value when filling the fuel tank with the LPG fuel. An overfilling prevention device or the like for preventing the filling from exceeding the specified maximum filling amount is attached.
 ここで、過充填防止装置としては、例えば特許文献1のように、燃料タンクに貯留するLPG燃料の液面高さに従って浮動するフロートを備えており、該フロートが燃料タンクの最大充填量となる液面高さ位置に達するとLPG燃料の充填を強制的に停止するようにしたものが提案されている。この特許文献1の過充填防止装置にあっては、LPG燃料が流入する流入口の内奥にダイヤフラムが設けられ、該ダイヤフラムの一側に、LPG燃料を流出する流出口と、前記流入口と連通する環状流入室とが配設され、さらにダイヤフラムの他側に設けられたダイヤフラム室に、前記環状流入室と連通する細孔と、タンク内のフロートと連動するパイロット弁とを備えた構成となっている。この構成では、LPG燃料を充填する場合、フロートが低下していることから、パイロット弁が開放しているため、細孔からダイヤフラム室に流入したLPG燃料は、パイロット弁とその弁座の隙間からタンク内へ流出する。この際に、ダイヤフラムの両側にはほぼ同等の圧力が作用するため、該ダイヤフラムにより流出口が開放して維持され、流入口から流入したLPG燃料が環状流入室を介して流出口からタンク内へ流出する。一方、LPG燃料が最大充填量に達すると、フロートが上昇してパイロット弁を閉鎖するため、細孔からダイヤフラム室に流入したLPG燃料によって該ダイヤフラム室の圧力が増加して、ダイヤフラムが流出口を閉鎖する。このようにダイヤフラムの作動により過充填を防止するダイヤフラム式の過充填防止装置は、LPG燃料を充填する際に、最大充填量に達すると流出口を強制的に閉鎖してこれ以上充填しないようにしている。 Here, as the overfill prevention device, for example, as in Patent Document 1, a float that floats according to the liquid level of the LPG fuel stored in the fuel tank is provided, and the float becomes the maximum filling amount of the fuel tank. There has been proposed one in which the filling of LPG fuel is forcibly stopped when the liquid level is reached. In the overfilling prevention device of Patent Document 1, a diaphragm is provided in the interior of the inflow port into which the LPG fuel flows, and an outflow port through which the LPG fuel flows out on one side of the diaphragm, the inflow port, An annular inflow chamber that communicates with the diaphragm chamber, and a diaphragm chamber provided on the other side of the diaphragm, further comprising a pore communicating with the annular inflow chamber, and a pilot valve interlocked with a float in the tank; It has become. In this configuration, when the LPG fuel is filled, since the float is lowered, the pilot valve is open, so the LPG fuel that has flowed into the diaphragm chamber from the pores is removed from the gap between the pilot valve and its valve seat. It flows out into the tank. At this time, since substantially the same pressure acts on both sides of the diaphragm, the outlet is opened and maintained by the diaphragm, and the LPG fuel flowing in from the inlet enters the tank from the outlet through the annular inlet chamber. leak. On the other hand, when the LPG fuel reaches the maximum filling amount, the float rises and closes the pilot valve, so that the pressure in the diaphragm chamber is increased by the LPG fuel flowing into the diaphragm chamber from the pores, and the diaphragm passes through the outlet. Close. In this way, the diaphragm-type overfill prevention device that prevents overfilling by the operation of the diaphragm, when filling the LPG fuel, forcibly closes the outlet when the maximum filling amount is reached so as to prevent further filling. ing.
特開2001-263598号公報JP 2001-263598 A
 上記したDME燃料を用いる場合にあって、このDME燃料はLPG燃料と同様の高圧ガスであるため、LPG燃料の設備を活用することが可能である。すなわち、上述した液面表示装置や過充填防止装置などを備えた燃料タンクを用いる。ここで、LPG燃料用の燃料タンクに配設される過充填防止装置にあって、上述したダイヤフラムを備えた構成の場合、一般的に、該ダイヤフラムには、高いシール性を発揮するように合成ゴムにより形成された構成や、合成ゴムの内部に金属プレートを埋設した構成などが適用されている。そして、合成ゴムとしては、ニトリルゴム(NBR)を用いたものがよく知られている。 In the case of using the DME fuel described above, since this DME fuel is a high-pressure gas similar to the LPG fuel, it is possible to utilize the equipment for the LPG fuel. That is, the fuel tank provided with the liquid level display device and the overfill prevention device described above is used. Here, in the overfilling prevention device disposed in the fuel tank for LPG fuel, in the case of the configuration provided with the above-described diaphragm, generally, the diaphragm is synthesized so as to exhibit high sealing performance. A structure formed of rubber or a structure in which a metal plate is embedded in a synthetic rubber is applied. As synthetic rubbers, those using nitrile rubber (NBR) are well known.
 ところが、ニトリルゴムからなるダイヤフラムを備えた過充填防止装置が配設されたLPG燃料用の燃料タンクに、DME燃料を貯留した場合、該DME燃料の充填と消費とを繰り返して使用期間が経過するに従って、過充填防止装置の作動が不安定となり易い。具体的には、過充填防止装置が、DME燃料を充填する際に、規定されている最大充填量に達しても作動せずに、該最大充填量を越えて過充填してしまうことが懸念される。このようにLPG燃料用の燃料タンクにDME燃料を貯留すると、使用期間の経過に伴って、過充填防止装置が正常に作動しなくなるという問題の発生が懸念される。 However, when DME fuel is stored in a fuel tank for LPG fuel provided with an overfilling prevention device having a diaphragm made of nitrile rubber, the usage period elapses by repeatedly filling and consuming the DME fuel. Accordingly, the operation of the overfill prevention device tends to become unstable. Specifically, there is a concern that when the overfill prevention device fills DME fuel, it does not operate even when the specified maximum fill amount is reached, and overfills beyond the maximum fill amount. Is done. If the DME fuel is stored in the fuel tank for LPG fuel in this way, there is a concern that the problem that the overfill prevention device does not operate normally with the passage of the use period is concerned.
 本発明は、DME燃料を貯留するDME燃料タンクに配設され、最大充填量を越えてDME燃料を充填しないように正確且つ安定して作動し得るDME燃料タンク用過充填防止装置を提案する。 The present invention proposes an overfilling prevention device for a DME fuel tank that is disposed in a DME fuel tank that stores DME fuel and that can operate accurately and stably so as not to fill the DME fuel beyond the maximum filling amount.
 本発明は、DME燃料タンク外に配設された充填バルブの開作動によりDME燃料タンク内にDME燃料を流出させるガス流路と接続されてDME燃料タンク内に配設され、DME燃料タンク内のDME燃料の過充填を防止するものであって、ガス流路と接続される接続管路と、該接続管路を介してDME燃料をDME燃料タンク内へ流出する主流出口とを具備するケーシング体と、ケーシング体内で主流出口の背方に配設されて、主流出口側と密閉状に区画される可変閉鎖域を形成し、且つ主流出口を閉鎖する閉鎖位置と開放する開放位置とに位置変換するダイヤフラムと、ケーシング体内に設けられ、前記可変閉鎖域と接続管路とを常時連通する細流路と、ケーシング体に軸支され、液化ガス容器内に貯留する液化ガスの液面高さに従って浮動するフロートと、該フロートの浮動に伴って、可変閉鎖域に流入したDME燃料をDME燃料タンク内へ流出する副流出口を開閉する弁体と、該弁体を、副流出口を閉鎖する方向へ付勢する弁付勢手段とを備えてなるDME燃料タンク用過充填防止装置において、ダイヤフラムが、合成ゴム製プレートと金属製プレートとを板厚方向に積層してなり、該金属製プレートを可変閉鎖域側としてケーシング体内に配設されていることを特徴とするDME燃料タンク用過充填防止装置である。 The present invention is connected to a gas flow path for allowing DME fuel to flow into the DME fuel tank by opening a filling valve disposed outside the DME fuel tank, and is disposed in the DME fuel tank. A casing body for preventing overfilling of DME fuel, comprising a connecting pipe connected to a gas flow path, and a main outlet through which the DME fuel flows into the DME fuel tank via the connecting pipe And a variable closed region that is disposed behind the main flow outlet in the casing body and is hermetically partitioned from the main flow outlet side, and is converted into a closed position for closing the main flow outlet and an open position for opening the main flow outlet A diaphragm that is provided in the casing body and that always communicates with the variable closed region and the connecting pipe line, and is supported by the casing body and follows the liquid surface height of the liquefied gas stored in the liquefied gas container. A float that floats, a valve body that opens and closes a secondary outlet that allows the DME fuel that has flowed into the variable closed region to flow into the DME fuel tank as the float floats, and the secondary outlet that is closed In the overfilling prevention device for a DME fuel tank provided with a valve urging means for urging in the direction to be moved, the diaphragm is formed by laminating a synthetic rubber plate and a metal plate in the plate thickness direction. An overfilling prevention device for a DME fuel tank, characterized in that the plate is disposed in the casing body with the variable closing region side.
 本発明の構成にあっては、DME燃料タンク内の燃料貯留量が所定の最大充填量未満の場合に、DME燃料の充填によって、細流路を介して可動閉鎖領域に流入したDME燃料を、フロートにより弁付勢手段に抗して開放している副流出口から流出すると共に、ダイヤフラムを開放位置として主流出口からDME燃料を流出する。これにより、DME燃料タンク内へDME燃料を充填していく。そして、前記最大充填量に達すると、弁付勢手段に従って弁体が副流出口を閉鎖することにより、前記細流路を介して可動閉鎖領域に流入したDME燃料によりダイヤフラムを閉鎖位置へ位置変換する。これにより、DME燃料の充填を強制的に停止し、最大充填量を越えて充填しないようにしている。尚、本発明にあって、DMEはジメチルエーテル(dimethyl ether)である。 In the configuration of the present invention, when the amount of fuel stored in the DME fuel tank is less than the predetermined maximum filling amount, the DME fuel that has flowed into the movable closed region via the narrow channel by the filling of the DME fuel is floated. As a result, the DME fuel flows out from the secondary outlet that opens against the valve urging means, and DME fuel flows out from the main outlet with the diaphragm at the open position. As a result, the DME fuel tank is filled with DME fuel. When the maximum filling amount is reached, the valve body closes the secondary outlet according to the valve urging means, so that the diaphragm is repositioned to the closed position by the DME fuel flowing into the movable closed region via the narrow channel. . As a result, the filling of the DME fuel is forcibly stopped so as not to exceed the maximum filling amount. In the present invention, DME is dimethyl ether.
 ここで、上述した従来の、ダイヤフラム式の過充填防止装置にあって、LPG(液化石油ガス)燃料用の燃料タンクに用いられるものについて、本発明者らがDME燃料の適合性を検討した結果を説明する。
 DMEは、有機化合物に対して高い溶解性を有することから、プラスチックやゴムなどへの浸食性を有する。そのため、合成ゴム(例えば、ニトリルゴム)により形成されたダイヤフラムを備えた従来構成の過充填防止装置を配設した燃料タンクに、DME燃料を充填すると、DME燃料がダイヤフラムに直に接触することから、該ダイヤフラムを膨潤してしまう。特に、可変閉鎖域には、充填時だけでなく、充填停止して副流出口が閉鎖している間も、DME燃料が存在するため、可変閉鎖域側でダイヤフラムの合成ゴムが膨潤し易い。そして、ダイヤフラムが膨潤することによって可変閉鎖域の容積が狭くなると、該可変閉鎖域にDME燃料が流入し難くなり、作動不良を生じてしまうことが懸念される。例えば、可変閉鎖域の容積が狭くなると、DME燃料が副流出口から流出し難くなるため、該可変閉鎖域の内圧が上昇せずに、最大充填量に達してもダイヤフラムが閉鎖位置へ位置変換しないという作動不良を生じ易い。このように、ダイヤフラムを構成する合成ゴムの膨潤によって可変閉鎖域の容積が狭くなると、当該過充填防止装置の作動不良を生じてしまうことがあり得る。一方、合成ゴムの内部に金属プレートを埋設したダイヤフラムを備えた従来構成にあっても、表裏面が合成ゴムにより構成されているため、前記した合成ゴムの膨潤による問題が同様に生じ得る。
Here, as a result of the examination of the suitability of DME fuel by the present inventors regarding the above-described diaphragm-type overfill prevention device used for a fuel tank for LPG (liquefied petroleum gas) fuel Will be explained.
Since DME is highly soluble in organic compounds, it has erosion properties into plastics and rubbers. Therefore, if DME fuel is filled in a fuel tank provided with a conventional overfill prevention device having a diaphragm formed of a synthetic rubber (for example, nitrile rubber), the DME fuel comes into direct contact with the diaphragm. The diaphragm will swell. In particular, since the DME fuel is present in the variable closed region not only at the time of filling but also when the filling outlet is stopped and the secondary outlet is closed, the synthetic rubber of the diaphragm tends to swell on the variable closed region side. When the volume of the variable closed region becomes narrow due to swelling of the diaphragm, it is difficult for the DME fuel to flow into the variable closed region, which may cause malfunction. For example, if the volume of the variable closed area is reduced, DME fuel will not easily flow out from the secondary outlet. It is easy to cause the malfunction of not doing. As described above, when the volume of the variable closed region is reduced due to the swelling of the synthetic rubber constituting the diaphragm, it is possible that the malfunction of the overfilling prevention device may be caused. On the other hand, even in the conventional configuration provided with a diaphragm in which a metal plate is embedded inside a synthetic rubber, the problems caused by swelling of the synthetic rubber described above can occur in the same manner because the front and back surfaces are made of synthetic rubber.
 以上のことから、LPG燃料用の燃料タンクにあって、合成ゴムから形成されたダイヤフラム又は合成ゴムの内部に金属プレートを埋設したダイヤフラムを備えた過充填防止装置を配設した構成では、DME燃料を貯留した場合に、燃料充填を正確且つ安定して行うことができないことが明らかである。この検討結果に基づいて、本発明の発明者らは、DME燃料を貯留しても安定して燃料充填することができる過充填防止装置について検討を行い、鋭意研鑽した結果、本発明にかかるDME燃料タンク用過充填防止装置を発明するに至った。 In view of the above, in the fuel tank for LPG fuel, in the configuration in which the overfill prevention device including the diaphragm formed of synthetic rubber or the diaphragm in which the metal plate is embedded in the synthetic rubber is disposed, the DME fuel It is clear that the fuel cannot be charged accurately and stably when the fuel is stored. Based on the results of this study, the inventors of the present invention have studied an overfill prevention device that can stably fill fuel even when DME fuel is stored, and as a result of earnest study, the DME according to the present invention has been studied. It came to invent the overfill prevention device for fuel tanks.
 本発明は、金属製プレートと合成ゴム製プレートとを板厚方向に重ね合わせて積層してなるダイヤフラムを、その金属製プレートが可変閉鎖域側となるように配設した構成である。かかる構成では、金属製プレートにより、可変閉鎖位置内に流入したDME燃料と合成ゴム製プレートとの接触を防ぎ得るため、可変閉鎖域内に合成ゴム製プレートが膨潤することを抑制でき、該可変閉鎖域の広さを維持することができ得る。そのため、DME燃料の充填時には、可変閉鎖域に流入したDME燃料が副流出口から適正に流出し、ダイヤフラムを開放位置に安定して維持することができる。そして、最大充填量に達すると、副流出口が閉鎖するため、可変閉鎖域の内圧が増加してダイヤフラムを閉鎖位置に正確かつ安定して位置変換することができる。これにより、最大充填量を越えてDME燃料が充填されない。このように、ダイヤフラムが開放位置と閉鎖位置とに正確かつ安定して位置変換することから、DME燃料を充填および過充填防止する機能が安定して発揮され得る。 The present invention has a configuration in which a diaphragm formed by laminating a metal plate and a synthetic rubber plate in the thickness direction is arranged so that the metal plate is on the variable closed region side. In such a configuration, the metal plate can prevent the DME fuel that has flowed into the variable closing position from contacting the synthetic rubber plate, so that the synthetic rubber plate can be prevented from swelling in the variable closing region. The area can be maintained. Therefore, when DME fuel is filled, the DME fuel that has flowed into the variable closed region can appropriately flow out from the auxiliary outlet, and the diaphragm can be stably maintained at the open position. When the maximum filling amount is reached, the sub-flow outlet is closed, so that the internal pressure in the variable closing region increases and the diaphragm can be accurately and stably converted to the closed position. As a result, the DME fuel is not filled beyond the maximum filling amount. As described above, since the diaphragm is accurately and stably converted into the open position and the closed position, the function of filling DME fuel and preventing overfilling can be stably performed.
 ここで、合成ゴム製プレートとしては、上記したニトリルゴム(NBR)や水素化ニトリルゴム(HNBR)などが好適に用い得る。特に、水素化ニトリルゴムとして、そのアクリルニトリル量等を適正に設定することにより、DME燃料に対する耐性を向上することができるため、当該水素化ニトリルゴムが一層好適に用い得る。また、金属製プレートとしては、炭素鋼やステンレス鋼、アルミニウム合金などのプレートを用いることができる。 Here, as the synthetic rubber plate, the above-mentioned nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), or the like can be suitably used. In particular, as the hydrogenated nitrile rubber, by appropriately setting the amount of acrylonitrile and the like, the resistance to DME fuel can be improved, so that the hydrogenated nitrile rubber can be used more suitably. Moreover, as a metal plate, plates, such as carbon steel, stainless steel, and an aluminum alloy, can be used.
 また、細流路としては、ケーシング体に設けられる構成、ダイヤフラムに設けられる構成のいずれとすることもできる。後者の場合には、ダイヤフラムの板厚方向に貫通して可変閉鎖域と接続管路とを常時連通する細流孔により構成されるものが好適に用い得る。 Also, the narrow channel can be either a configuration provided in the casing body or a configuration provided in the diaphragm. In the case of the latter, what is comprised by the narrow flow hole which penetrates in the plate | board thickness direction of a diaphragm and always connects a variable closed area and a connecting pipe line can be used suitably.
 また、ダイヤフラムの形状としては、円形や楕円形の板状の構成が好適に用い得る。特に、楕円形の構成は、主流出口を同様に楕円形として流出量を増加できることから、充填時間を短縮できるために、一層好適に用い得る。 Also, as the shape of the diaphragm, a circular or elliptical plate-like configuration can be suitably used. In particular, the elliptical configuration can be used more suitably because the main flow outlet can be similarly elliptical to increase the outflow rate, and the filling time can be shortened.
 さらに、ダイヤフラムを構成する金属製プレートが、閉鎖位置で、合成ゴム製プレートを介して主流出口を覆うように、該主流出口に比して大きな面積に形成されてなるものであるとした構成が好適に用い得る。かかる構成にあっては、金属製プレートの剛性により、当該ダイヤフラムが開放位置と閉鎖位置とに安定して位置変換することができると共に、主流出口を閉鎖する際に、合成ゴム製プレートによる充分なシール性を安定して発揮することができる。 Further, the metal plate constituting the diaphragm is formed in a larger area than the main outlet so as to cover the main outlet through the synthetic rubber plate at the closed position. It can be suitably used. In such a configuration, due to the rigidity of the metal plate, the diaphragm can be stably converted between the open position and the closed position, and when the main outlet is closed, the diaphragm made of synthetic rubber is sufficient. Sealability can be exhibited stably.
 また、金属製プレートにより、可変閉鎖域側に露出する合成ゴム製プレートの部位を可及的に小さくするようにした構成が好適である。これにより、合成ゴム製プレートの膨潤を一層抑制することができ、上述した作用効果がさらに向上する。 Further, a configuration in which the portion of the synthetic rubber plate exposed to the variable closed region side is made as small as possible by using a metal plate is preferable. Thereby, the swelling of the synthetic rubber plate can be further suppressed, and the above-described effects are further improved.
 本発明は、上述したように、ダイヤフラム式の過充填防止装置であって、ダイヤフラムが、合成ゴム製プレートと金属製プレートとを板厚方向に積層してなり、該金属製プレートを可変閉鎖域側として配設された構成としたものであるから、金属製プレートにより、可変閉鎖域に流入したDME燃料による合成ゴム製プレートの膨潤を抑制することができる。これにより、DME燃料の充填と消費とを繰り返し行っても、ダイヤフラムが正確かつ安定して作動し、DME燃料を充填する機能と過充填を防止する機能とが比較的長期に亘って安定して発揮され得る。 As described above, the present invention is a diaphragm-type overfill prevention device, in which the diaphragm is formed by laminating a synthetic rubber plate and a metal plate in the thickness direction, and the metal plate is placed in a variable closed region. Since it is set as the structure arrange | positioned as a side, the swelling of the synthetic rubber plate by the DME fuel which flowed into the variable closed region can be suppressed by the metal plate. As a result, even when DME fuel is repeatedly charged and consumed, the diaphragm operates accurately and stably, and the function of filling DME fuel and the function of preventing overfilling are stable over a relatively long period of time. Can be demonstrated.
DME燃料タンク1の断面図である。1 is a cross-sectional view of a DME fuel tank 1. FIG. 本実施例の過充填防止装置2の、燃料充填中の状態を表す断面図である。It is sectional drawing showing the state during fuel filling of the overfill prevention apparatus 2 of a present Example. 同上の過充填防止装置2の、充填完了状態を表す断面図である。It is sectional drawing showing the filling completion state of the overfilling prevention apparatus 2 same as the above. ダイヤフラム7の、(A)主流出口側16の平面図、(B)副流出口側17の平面図、(C)縦断面図である。The diaphragm 7 is (A) a plan view of the main outlet side 16, (B) a plan view of the auxiliary outlet side 17, and (C) a longitudinal sectional view.
 本発明の実施例を添付図面を用いて詳述する。
 本実施例にあって、DME燃料を貯留するDME燃料タンク1は、例えばトラック等の車両に配設されるものであり、図1のように、円筒形状の胴部1aと、該胴部1aの両側開口に接合された半球形状の鏡部1b(片側は図示省略)とから構成されている。このDME燃料タンク1は、固定部材(図示省略)により車両に固定されており、その一方の鏡部1bに、充填バルブ45と該充填バルブ45を開閉する充填バルブ開閉ハンドル41とを備えたバルブ装置40が配設されている。バルブ装置40は、該バルブ装置40に設けられた被取付部材43が、鏡部1bに配設された取付部材48に固定されることによって、鏡部1bに取り付けられている。そして、この充填バルブ45には、外部からDME燃料が供給される供給口46が配設されており、DME燃料を充填する場合には、この供給口46から所定の充填圧力によってDME燃料が供給されて燃料充填される。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings.
In this embodiment, a DME fuel tank 1 for storing DME fuel is disposed in a vehicle such as a truck, for example, and as shown in FIG. 1, a cylindrical body 1a and a body 1a. The hemispherical mirror portion 1b (not shown on one side) joined to both side openings. The DME fuel tank 1 is fixed to a vehicle by a fixing member (not shown), and a valve provided with a filling valve 45 and a filling valve opening / closing handle 41 for opening and closing the filling valve 45 on one mirror portion 1b. A device 40 is provided. The valve device 40 is attached to the mirror portion 1b by fixing the attached member 43 provided on the valve device 40 to an attachment member 48 disposed on the mirror portion 1b. The filling valve 45 is provided with a supply port 46 for supplying DME fuel from the outside. When DME fuel is filled, the DME fuel is supplied from the supply port 46 at a predetermined filling pressure. And is filled with fuel.
 DME燃料タンク1内には、上記した充填バルブ45と連通するガス充填管42が配設されている。そして、このガス充填管42は、その先端がDME燃料タンク1内の上部に配されており、当該先端に過充填防止装置2が接続されている。尚、ガス充填管42の内部により、本発明にかかるガス流路9を構成している。 In the DME fuel tank 1, a gas filling pipe 42 communicating with the above-described filling valve 45 is disposed. And the tip of this gas filling pipe 42 is arranged in the upper part in DME fuel tank 1, and overfill prevention device 2 is connected to the tip. The gas flow path 9 according to the present invention is constituted by the inside of the gas filling pipe 42.
 この過充填防止装置2は、図2,3のように、ケーシング体3とフロート10とを備えている。このケーシング体3は、上記ガス充填管42に接続するケーシング主体3aと、該ケーシング主体3aの上部に取り付けられるケーシング副体3bとから構成されている。ここで、ケーシング主体3aの下部に、下方開口する接続管部4が設けられ、該接続管部4が上記ガス充填菅42の先端に外嵌してカシメ等により固結されることによって、当該過充填防止装置2がガス充填菅42に接続される。接続管部4は、ガス充填菅42の先端部に沿って上下方向に設けられており、その内部により接続管路11を構成し、該接続管路11が上記ガス流路9と連通する。ケーシング主体3aの上部には、接続管路11の長手方向(上下方向)と略直行するように水平方向に沿って楕円環状壁13が設けられており、該楕円環状壁13の外側を囲むように、接続管路11と連通する楕円環形の環状流路12が形成されている。前記の楕円環状壁13の内側により、DME燃料タンク1内へ開口する楕円状の主流出口16が形成されている。 This overfilling prevention device 2 includes a casing body 3 and a float 10 as shown in FIGS. The casing body 3 includes a casing main body 3a connected to the gas filling pipe 42 and a casing sub body 3b attached to the upper portion of the casing main body 3a. Here, a connecting pipe part 4 that opens downward is provided at the lower part of the casing main body 3a, and the connecting pipe part 4 is fitted around the tip of the gas filling rod 42 and fixed by caulking or the like. The overfill prevention device 2 is connected to the gas filling rod 42. The connecting pipe portion 4 is provided in the vertical direction along the distal end portion of the gas filling rod 42, and the connecting pipe line 11 is constituted by the inside thereof, and the connecting pipe line 11 communicates with the gas flow path 9. At the upper part of the casing main body 3a, an elliptical annular wall 13 is provided along the horizontal direction so as to be substantially perpendicular to the longitudinal direction (vertical direction) of the connection pipe line 11, and surrounds the outer side of the elliptical annular wall 13. In addition, an elliptical annular channel 12 communicating with the connecting pipe 11 is formed. An elliptical main outlet 16 that opens into the DME fuel tank 1 is formed by the inside of the elliptical annular wall 13.
 上記のケーシング副体3bは、ケーシング主体3aの環状流路12と楕円環状壁13とを覆うように、該ケーシング主体3aに取り付けられて一体化される。これにより、ケーシング体3が形成される。そして、ケーシング主体3aとケーシング副体3bとの間に、後述するダイヤフラム7が作動する断面略楕円形の作動空域20が形成される。そして、この作動空域20は、環状流路12と楕円環状壁13の内側の主流出口16と連通しており、環状流路12を介して接続管路11とも連通している。尚、作動空域20内に、楕円環状壁13の内端13aが配されている。 The casing sub body 3b is attached to and integrated with the casing main body 3a so as to cover the annular flow path 12 and the elliptical annular wall 13 of the casing main body 3a. Thereby, the casing body 3 is formed. An operating air region 20 having a substantially elliptical cross section in which a diaphragm 7 described later operates is formed between the casing main body 3a and the casing sub body 3b. The working airspace 20 communicates with the annular flow path 12 and the main outlet 16 inside the elliptical annular wall 13, and also communicates with the connecting pipe line 11 via the annular flow path 12. An inner end 13 a of the elliptical annular wall 13 is disposed in the working air space 20.
 ケーシング副体3bには、ケーシング主体3aと一体化した状態で、主流出口16と対向するように、DME燃料タンク1内へ開口する副流出口17が設けられており、該副流出口17によっても作動空域20とDME燃料タンク1内とが連通している。 The casing sub-body 3b is provided with a sub-outlet 17 that opens into the DME fuel tank 1 so as to face the main outlet 16 in a state of being integrated with the casing main body 3a. In addition, the operating air region 20 and the inside of the DME fuel tank 1 communicate with each other.
 ケーシング体3の内部に形成された作動空域20には、該作動空域20を楕円環状壁13側と副流出口17側とに区画するように、楕円形板状のダイヤフラム7が配設されている。ダイヤフラム7は、楕円形の主板部7aと、該主板部7aの外側に周成された外周支持縁部7bとから構成されている(図4参照)。この外周支持援部7bが、上記したケーシング主体3aとケーシング副体3bとの間に挟まれて支持されることによって、当該ダイヤフラム7がケーシング体3に固定される。そして、ダイヤフラム7によって、作動空域20の副流出口17側を可変閉鎖域21として密閉状に区画形成している。尚、ダイヤフラム7、主流出口16(楕円環状壁13)、副流出口17とは、夫々の中心位置が同一線上に位置するように配設されている。また、ダイヤフラム7は、その外周支持縁部7bが薄肉厚の合成ゴムにより形成されていることから、前記した楕円環状壁13の内端13aに密接して主流出口16を閉鎖する閉鎖位置(図3参照)と、前記内端13aから離間して主流出口16と環状流域12とを連通する開放位置(図2参照)とに位置変換するように作動可能となっている。 An elliptical plate-like diaphragm 7 is disposed in the working airspace 20 formed inside the casing body 3 so as to divide the working airspace 20 into an elliptical annular wall 13 side and a secondary outlet 17 side. Yes. The diaphragm 7 is composed of an elliptical main plate portion 7a and an outer peripheral support edge portion 7b formed on the outer side of the main plate portion 7a (see FIG. 4). The diaphragm 7 is fixed to the casing body 3 by sandwiching and supporting the outer peripheral support portion 7b between the casing main body 3a and the casing sub body 3b. Then, the diaphragm 7 is formed in a hermetically sealed manner with the variable outlet region 21 on the side of the auxiliary air outlet 17 of the working air region 20. The diaphragm 7, the main flow outlet 16 (elliptical annular wall 13), and the sub-flow outlet 17 are arranged so that their center positions are on the same line. Further, since the outer peripheral support edge portion 7b of the diaphragm 7 is formed of a thin synthetic rubber, the diaphragm 7 is closed to close the main outlet 16 in close contact with the inner end 13a of the elliptical annular wall 13 (see FIG. 3) and an open position (see FIG. 2) that is separated from the inner end 13a and communicates with the main outlet 16 and the annular basin 12.
 このダイヤフラム7には、その主板部7aの、環状流路12と対向する外縁部に、板厚方向へ貫通する細流孔7cが形成されており、該細流孔7cは、閉鎖位置にある場合にも環状流路12と可変閉鎖域21とを連通している。この細流孔7cにより、本発明にかかる細流路が構成されている。尚、ダイヤフラム7は、本発明の要部にかかり、詳しくは後述する。 The diaphragm 7 is formed with a trickle hole 7c penetrating in the plate thickness direction at the outer edge of the main plate part 7a facing the annular flow path 12, and the trickle hole 7c is in a closed position. Also, the annular flow path 12 and the variable closed region 21 are communicated. The narrow channel 7c constitutes a narrow channel according to the present invention. The diaphragm 7 is a main part of the present invention and will be described in detail later.
 また、可変閉鎖域21には、ダイヤフラム7を上記の閉鎖位置方向へ付勢するコイル状のバネ22が配設されている。 Further, a coil-like spring 22 that urges the diaphragm 7 in the direction of the closed position is disposed in the variable closed region 21.
 尚、ケーシング体3は、楕円形の主流出口16の長軸方向が、接続管部4の長手方向(ガス充填管42の先端部の長手方向)に沿って設けられている。これは、DME燃料タンク1の鏡部1bにバルブ装置40を取り付ける開口(図示省略)により、当該過充填防止装置2とガス充填管42とをDME燃料タンク1の内部へ入れることができるようにするためである。そして、楕円形の主流出口16は、その長軸方向に開口面積が増大していることから、DME燃料の流出量が多く、充填に要する充填時間を短縮することができるという利点を有している。 In the casing body 3, the major axis direction of the elliptical main flow outlet 16 is provided along the longitudinal direction of the connecting pipe portion 4 (longitudinal direction of the distal end portion of the gas filling pipe 42). This is so that the overfilling prevention device 2 and the gas filling pipe 42 can be inserted into the DME fuel tank 1 through an opening (not shown) for attaching the valve device 40 to the mirror portion 1b of the DME fuel tank 1. It is to do. Since the elliptical main flow outlet 16 has an increased opening area in the major axis direction, it has the advantage that the amount of DME fuel flowing out is large and the filling time required for filling can be shortened. Yes.
 ケーシング体3の副流出口17には、該副流出口17を開閉する弁部24aを備えた弁体24が配設されており、該弁体24が、コイル状のバネ25により副流出口17を閉鎖する方向へ付勢されている。ここで、バネ25により、本発明にかかる弁付勢手段が構成されている。 A valve body 24 having a valve portion 24 a for opening and closing the auxiliary outlet 17 is disposed at the auxiliary outlet 17 of the casing body 3. The valve body 24 is connected to the auxiliary outlet by a coiled spring 25. It is urged to close 17. Here, the spring 25 constitutes the valve biasing means according to the present invention.
 また、ケーシング体3には、その外部に、上記した弁体24の外端部24bに当接する傾動板27が軸支されている。この傾動板27は、その下部が弁体24の外端部24bに当接し、その略中央部がケーシング体3を構成するケーシング副体3bに軸支されている。さらに、傾動板27の上部には、上記したフロート10を先端に備えた支持杆29が接続されている。このフロート10は、DME燃料タンク1内に貯留するDME燃料の液面高さに従って浮動する。 Further, a tilting plate 27 that abuts on the outer end 24b of the valve body 24 described above is pivotally supported on the casing body 3 on the outside thereof. The lower portion of the tilting plate 27 abuts on the outer end portion 24 b of the valve body 24, and the substantially central portion thereof is pivotally supported by the casing sub body 3 b constituting the casing body 3. Further, a support rod 29 provided with the above-described float 10 at the tip is connected to the upper portion of the tilting plate 27. The float 10 floats according to the liquid level of the DME fuel stored in the DME fuel tank 1.
 ここで、DME燃料が少ない場合には、フロート10が降下して、傾動板27がバネ25の付勢力に抗して弁体24をケーシング体3の内部へ押し込み、副流出口17を開放する。尚、本実施例にあっては、フロート10の最降下位置を規定するための停止片28が、ケーシング体3に設けられている。これにより、傾動板27が、弁体24を最も押し込む位置を規定している。一方、DME燃料の充填によりフロート10が上昇するに伴って、傾動板27が弁体24に作用する負荷を軽減する方法(弁体24から離れる方向)へ傾動する。これにより、弁体24が、バネ25の付勢力に従って副流出口17を閉鎖する方向へ移動する。尚、DME燃料タンク1は、そのタンク容量の85%を、DME燃料の最大充填量として設定している。そして、上記フロート10が、最大充填量で貯留しているDME燃料の液面高さで浮かぶ位置となると、傾動板27が、弁体24により副流出口17を閉鎖する傾動位置へ傾動する。 Here, when there is little DME fuel, the float 10 descends, the tilting plate 27 pushes the valve body 24 into the casing body 3 against the urging force of the spring 25, and opens the auxiliary outlet 17. . In the present embodiment, the casing body 3 is provided with a stop piece 28 for defining the lowest lowered position of the float 10. Thereby, the tilting plate 27 defines the position where the valve body 24 is pushed most. On the other hand, as the float 10 rises due to the filling of DME fuel, the tilting plate 27 tilts in a method of reducing the load acting on the valve body 24 (direction away from the valve body 24). Thereby, the valve body 24 moves in the direction of closing the auxiliary outlet 17 according to the urging force of the spring 25. The DME fuel tank 1 has 85% of the tank capacity set as the maximum filling amount of DME fuel. When the float 10 comes to a position where it floats at the level of the DME fuel stored at the maximum filling amount, the tilting plate 27 tilts to the tilting position where the auxiliary outlet 17 is closed by the valve body 24.
 このような過充填防止装置2の作動について説明する。
 DME燃料タンク1内に貯留するDME燃料が、上記した最大充填量より少ない状態では、フロート10が降下しているため、該フロート10に連係して傾動板27により弁体24を押し込んで副流出口17を開放している(図2参照)。この状態では、バネ22の付勢力によってダイヤフラム7を閉鎖位置で維持している(図示省略)。そして、DME燃料を充填すると、充填バルブ45からガス充填管42と通じて流入するDME燃料の充填圧力が、ケーシング体3の環状流路12を介してダイヤフラム7に作用する。ここで、副流出口17が開放していることから、可変閉鎖域21と当該DME燃料タンク1との内圧が同じである。そのため、前記充填圧力によって、バネ22の付勢力に抗してダイヤフラム7を閉鎖位置から開放位置へ位置変換して、図2のように、主流出口16を開放する。これにより、ガス充填管42のガス流路9から流入したDME燃料が、ケーシング体3の接続管路11と環状流路12とを通じて主流出口16から当該DME燃料タンク1内へ流出する。さらに、DME燃料は、ダイヤフラム7の細流孔7cを介して可変閉鎖域21へも流入し、副流出口17から当該DME燃料タンク1内へ流出する。
The operation of such an overfill prevention device 2 will be described.
When the DME fuel stored in the DME fuel tank 1 is smaller than the above-mentioned maximum filling amount, the float 10 is lowered. Therefore, the valve body 24 is pushed by the tilting plate 27 in conjunction with the float 10 and the side flow is performed. The outlet 17 is opened (see FIG. 2). In this state, the diaphragm 7 is maintained in the closed position by the urging force of the spring 22 (not shown). When the DME fuel is filled, the filling pressure of the DME fuel flowing from the filling valve 45 through the gas filling pipe 42 acts on the diaphragm 7 via the annular flow path 12 of the casing body 3. Here, since the auxiliary outlet 17 is open, the internal pressures of the variable closed region 21 and the DME fuel tank 1 are the same. Therefore, the diaphragm 7 is moved from the closed position to the open position against the biasing force of the spring 22 by the filling pressure, and the main outlet 16 is opened as shown in FIG. As a result, the DME fuel that has flowed from the gas flow path 9 of the gas filling pipe 42 flows out from the main outlet 16 into the DME fuel tank 1 through the connection pipe line 11 and the annular flow path 12 of the casing body 3. Further, the DME fuel also flows into the variable closed region 21 through the trickle hole 7 c of the diaphragm 7 and flows out into the DME fuel tank 1 from the auxiliary outlet 17.
 そして、DME燃料タンク1内に貯留するDME燃料が増加して、その液面高さ位置が上昇するに伴って、フロート10が昇動する。フロート10の昇動に連係して傾動板27を傾動することにより、該傾動板27による弁体24を押し込む力が低減し、これに伴って弁体24がバネ25の付勢力に従って副流出口17を閉鎖する方向へ徐々に移動する。そして、DME燃料が最大充填量に達すると、図3のように、弁体24がバネ25の付勢力に従って副流出口17を閉鎖する。これにより、ダイヤフラム7の細流孔7cから流入したDME燃料によって可変閉鎖域21の内圧が増加し、当該内圧によりダイヤフラム7が閉鎖位置に位置変換する。そして、ガス充填管42から流入したDME燃料が、主流出口16から流出できず、当該DME燃料タンク1へのDME燃料の充填が強制的に停止するため、最大充填量を越えて充填することを防止することができる。 Then, as the DME fuel stored in the DME fuel tank 1 increases and the liquid level height rises, the float 10 moves up. By tilting the tilting plate 27 in conjunction with the ascent of the float 10, the force that pushes the valve body 24 by the tilting plate 27 is reduced, and the valve body 24 is accordingly sub-flow outlet according to the biasing force of the spring 25. It moves gradually in the direction of closing 17. When the DME fuel reaches the maximum filling amount, the valve body 24 closes the auxiliary outlet 17 according to the urging force of the spring 25 as shown in FIG. Thereby, the internal pressure of the variable closed region 21 is increased by the DME fuel flowing from the trickle hole 7c of the diaphragm 7, and the diaphragm 7 is converted into the closed position by the internal pressure. Since the DME fuel flowing in from the gas filling pipe 42 cannot flow out from the main outlet 16 and the filling of the DME fuel into the DME fuel tank 1 is forcibly stopped, charging exceeding the maximum filling amount is performed. Can be prevented.
 その後、DME燃料を消費すると、フロート10が降動することにより、傾動板27が弁体24をケーシング体3の内部へ押し込み、副流出口17が開放する。この際には、充填バルブ45からDME燃料の充填が停止していることから、ダイヤフラム7へ充填圧力が作用しないため、該ダイヤフラム7がバネ22の付勢力によって閉鎖位置で維持される。 Thereafter, when the DME fuel is consumed, the float 10 descends, so that the tilting plate 27 pushes the valve body 24 into the casing body 3 and the auxiliary outlet 17 is opened. At this time, since the filling of the DME fuel from the filling valve 45 is stopped, the filling pressure does not act on the diaphragm 7, so that the diaphragm 7 is maintained in the closed position by the urging force of the spring 22.
 次に、本発明にかかるダイヤフラム7について詳述する。
 ダイヤフラム7は、図4のように、合成ゴム製プレート31と金属製プレート33とを板厚方向に重ね合わせて積層して両者を面接着して一体化してなる。ここで、合成ゴム製プレート31は、楕円形状の主プレート部32と、該主プレート部32の外周に亘って周成された前記外周支持縁部7bとから構成されており、両者が一体に形成されている。主プレート部32は、外周支持縁部7bに比して肉厚に形成されており、金属製プレート33を重ね合わせる裏面が整一な平面形状であり、表面の中央に表方へ突出する截頭円錐形の突出部32aを備えている。
Next, the diaphragm 7 according to the present invention will be described in detail.
As shown in FIG. 4, the diaphragm 7 is formed by laminating a synthetic rubber plate 31 and a metal plate 33 so as to overlap each other in the plate thickness direction and bonding them together to be integrated. Here, the synthetic rubber plate 31 is composed of an elliptical main plate portion 32 and the outer peripheral support edge portion 7b formed around the outer periphery of the main plate portion 32. Is formed. The main plate portion 32 is formed to be thicker than the outer peripheral support edge portion 7b, has a flat surface with a uniform back surface on which the metal plate 33 is superimposed, and protrudes outward in the center of the surface. A head-cone-shaped protrusion 32a is provided.
 上記の金属製プレート33は、上記した合成ゴム製プレート31の主プレート部32とほぼ同じ楕円形状を成し、該主プレート部32の裏面と接着される面が整一な平面形状であり、その反対側の裏面中央に裏方へ円柱状に突出する突部33aが設けられている。この突部33aは、上記したバネ22の先端部分を外嵌して位置決めしている。 The metal plate 33 has substantially the same elliptical shape as the main plate portion 32 of the synthetic rubber plate 31 described above, and the surface to be bonded to the back surface of the main plate portion 32 has a flat surface shape. A protrusion 33a that protrudes in a columnar shape toward the back is provided at the center of the back surface on the opposite side. The protrusion 33a is positioned by fitting the tip of the spring 22 described above.
 そして、金属製プレート33と合成ゴム製プレート31の主プレート部32とにより、上記したダイヤフラム7の主板部7aを構成している。さらに、上記した合成ゴム製プレート31の主プレート部32と金属製プレート33とは、ケーシング体3の楕円環状壁13を構成する楕円形と相似の楕円形を成し、該楕円環状壁13に比して一回り大きな寸法形状としている。そのため、ケーシング体3内でダイヤフラム7を閉鎖位置とした状態で、金属製プレート33の外周縁部が、該ケーシング体3の環状流路12を、合成ゴム製プレート31の主プレート部32の外周縁部を介して、部分的(又は全体的)に覆うようにしている(図3参照)。 The metal plate 33 and the main plate portion 32 of the synthetic rubber plate 31 constitute the main plate portion 7a of the diaphragm 7 described above. Further, the main plate portion 32 of the synthetic rubber plate 31 and the metal plate 33 form an elliptical shape similar to the elliptical shape constituting the elliptical annular wall 13 of the casing body 3. The size and shape is one size larger than that. Therefore, in the state where the diaphragm 7 is in the closed position in the casing body 3, the outer peripheral edge portion of the metal plate 33 passes through the annular flow path 12 of the casing body 3 outside the main plate portion 32 of the synthetic rubber plate 31. It is made to cover partially (or entirely) through the peripheral edge (see FIG. 3).
 ここで、本実施例にあっては、金属製プレート33が、スチール鋼から形成されている。また、合成ゴム製プレート31が、水素化ニトリルゴム(HNBR)から形成されている。この水素化ニトリルゴムは、ニトリルゴム(NBR)の主鎖に含まれる不飽和結合を化学的に水素化してなるものである。本実施例では、DME燃料に対する耐性を向上するように、適切にアクリルニトリル量等を調整しており、DME燃料に曝されて生ずる膨潤現象を可及的に抑制することができる。そのため、ダイヤフラムの構成材料として適用することにより、ダイヤフラムの耐久性が向上し、過充填防止装置が適切かつ安定して作動する。 Here, in the present embodiment, the metal plate 33 is made of steel steel. The synthetic rubber plate 31 is made of hydrogenated nitrile rubber (HNBR). This hydrogenated nitrile rubber is obtained by chemically hydrogenating unsaturated bonds contained in the main chain of nitrile rubber (NBR). In this embodiment, the amount of acrylonitrile is appropriately adjusted so as to improve the resistance to DME fuel, and the swelling phenomenon caused by exposure to DME fuel can be suppressed as much as possible. Therefore, by applying as a constituent material of the diaphragm, the durability of the diaphragm is improved, and the overfill prevention device operates appropriately and stably.
 さらに、金属製プレート33の板厚と合成ゴム製プレート31の板厚との板厚比を設定している。本実施例にあっては、金属製プレート33に対して合成ゴム製プレート31が約2.5倍となるようにしている。尚、この板厚比としては、金属製プレート33に対する合成ゴム製プレート31の板厚が、1.0~5.0となるように設定することが好適である。これは、板厚比が1.0より小さいと、合成ゴム製プレート31の板厚が薄くなるためにDME燃料に対する耐性が低減し、又は、金属製プレート33の板厚が厚くなると、重量が増加する。一方、板厚比が5.0より大きいと、金属製プレート33の板厚が薄くなるために剛性が低下し、又は、合成ゴム製プレート31の板厚が厚くなると、重量が増加する。 Furthermore, a plate thickness ratio between the plate thickness of the metal plate 33 and the plate thickness of the synthetic rubber plate 31 is set. In this embodiment, the synthetic rubber plate 31 is about 2.5 times as large as the metal plate 33. The plate thickness ratio is preferably set so that the plate thickness of the synthetic rubber plate 31 with respect to the metal plate 33 is 1.0 to 5.0. This is because when the plate thickness ratio is smaller than 1.0, the plate thickness of the synthetic rubber plate 31 is reduced, so that the resistance to DME fuel is reduced, or when the plate thickness of the metal plate 33 is increased, the weight is increased. To increase. On the other hand, if the plate thickness ratio is larger than 5.0, the plate thickness of the metal plate 33 becomes thin, so that the rigidity decreases, or if the plate thickness of the synthetic rubber plate 31 becomes thick, the weight increases.
 上記した金属製プレート33と合成ゴム製プレート31とを一体化してなるダイヤフラム7を、その金属製プレート33側を副流出口17(ケーシング副体3b)側となるようにして、ケーシング体3の作動空域20に配設する。詳述すると、ケーシング主体3aとケーシング副体3bとを取り付けて一体化する際に、ダイヤフラム7の外周支持縁部7bを、該ケーシング主体3aとケーシング副体3bとの間に挟み込むことにより、当該ダイヤフラム7を、ケーシング体3に形成された作動空域20内に配設する。これにより、ケーシング体3内に形成された作動空域20に、主流出口16側から密閉状に区画された可変閉鎖域21を形成する。ここで、ダイヤフラム7は、その金属製プレート33が副流出口17側となり、合成ゴム製プレート31の主プレート部32が主流出口16側となる。 The diaphragm 7 formed by integrating the metal plate 33 and the synthetic rubber plate 31 is formed on the casing body 3 such that the metal plate 33 side becomes the side outlet 17 (casing side body 3b) side. Arranged in the operating airspace 20. Specifically, when the casing main body 3a and the casing sub body 3b are attached and integrated, the outer peripheral support edge portion 7b of the diaphragm 7 is sandwiched between the casing main body 3a and the casing sub body 3b, thereby The diaphragm 7 is disposed in the working air space 20 formed in the casing body 3. As a result, a variable closed region 21 is formed in the working air region 20 formed in the casing body 3 in a sealed manner from the main outlet 16 side. Here, in the diaphragm 7, the metal plate 33 is on the side of the auxiliary outlet 17, and the main plate portion 32 of the synthetic rubber plate 31 is on the side of the main outlet 16.
 また、金属製プレート33と合成ゴム製プレート31の主プレート部32とには、ダイヤフラム7の細流孔7cを構成する同じ寸法形状の細孔33bと細孔32bとが、板厚方向に貫通するように、夫々に穿設されている。金属製プレート33と合成ゴム製プレート31とを一体化することにより、両細孔32b,33bとが連通して細流孔7cを構成する。そして、ダイヤフラム7をケーシング体3に配設した状態で、上述したように、細流孔7cは、環状流路12に対向する位置となるように、ダイヤフラム7の外周縁に形成されており、可変閉鎖域21を、環状流路12と接続管部4の接続管路11とを介してガス充填管42のガス流路9と常時連通している。 In addition, the metal plate 33 and the main plate portion 32 of the synthetic rubber plate 31 are provided with the pores 33b and 32b having the same dimensions and constituting the narrow flow holes 7c of the diaphragm 7 in the plate thickness direction. As shown in FIG. By integrating the metal plate 33 and the synthetic rubber plate 31, both the pores 32b and 33b communicate with each other to form the trickle hole 7c. In the state where the diaphragm 7 is disposed in the casing body 3, as described above, the trickle hole 7c is formed at the outer peripheral edge of the diaphragm 7 so as to be opposed to the annular flow path 12, and is variable. The closed region 21 is always in communication with the gas flow path 9 of the gas filling pipe 42 via the annular flow path 12 and the connection pipe line 11 of the connection pipe portion 4.
 このようにケーシング体3に配設されたダイヤフラム7は、上述したように、DME燃料が充填される際に、環状流路12から充填圧力を受けることにより、副流出口17側へ移動する。そして、ダイヤフラム7を閉鎖位置方向へ付勢するバネ22の付勢力によって、金属製プレート33の突部33aが副流出口17を閉鎖しない位置に位置決めされる。この位置決めされた位置が、開放位置である。すなわち、DME燃料の充填圧力とバネ22の付勢力とにより、可変閉鎖域21の最小容積が決まっている。 As described above, the diaphragm 7 arranged in the casing body 3 as described above moves to the side of the auxiliary outlet 17 by receiving a filling pressure from the annular flow path 12 when filling with DME fuel. Then, the protrusion 33a of the metal plate 33 is positioned at a position where the auxiliary outlet 17 is not closed by the biasing force of the spring 22 that biases the diaphragm 7 toward the closed position. This positioned position is an open position. That is, the minimum volume of the variable closed region 21 is determined by the filling pressure of DME fuel and the biasing force of the spring 22.
 そして、DME燃料が充填されている際には、DME燃料が環状流域12からダイヤフラム7の合成ゴム製プレート31により楕円環状壁13の内側へ流れて、主流出口16から流出する。ここで、合成ゴム製プレート31の中央には截頭円錐形の突出部32aが形成されていることから、環状流域12から合成ゴム製プレート31の表面に沿うように中心方向へ流れてくるDME燃料を主流出口16方向へ流れ易くしている。 When the DME fuel is filled, the DME fuel flows from the annular flow region 12 to the inside of the elliptical annular wall 13 by the synthetic rubber plate 31 of the diaphragm 7 and flows out from the main outlet 16. Here, since the frustoconical protrusion 32a is formed at the center of the synthetic rubber plate 31, the DME flows from the annular basin 12 toward the center along the surface of the synthetic rubber plate 31. The fuel is easy to flow toward the main outlet 16.
 また、DME燃料の充填中では、ダイヤフラム7の細流孔7cを介して可変閉鎖域21に流入したDME燃料により、ダイヤフラム7の金属製プレート33がDME燃料に曝される。さらに、DME燃料が最大充填量に達して、副流出口17が閉鎖している状態でも、可変閉鎖域21に貯留するDME燃料に、ダイヤフラム7の金属製プレート33が曝される。このようにダイヤフラム7の金属製プレート33がDME燃料に曝されても、金属製プレート33がほとんど浸食されないため、ダイヤフラム7の開放位置と閉鎖位置とに位置変換する作動を安定して実行できる。 Further, during the filling of the DME fuel, the metal plate 33 of the diaphragm 7 is exposed to the DME fuel by the DME fuel that has flowed into the variable closed region 21 through the trickle hole 7c of the diaphragm 7. Further, the metal plate 33 of the diaphragm 7 is exposed to the DME fuel stored in the variable closed region 21 even when the DME fuel reaches the maximum filling amount and the auxiliary outlet 17 is closed. Thus, even if the metal plate 33 of the diaphragm 7 is exposed to the DME fuel, the metal plate 33 is hardly eroded, so that the operation of converting the position of the diaphragm 7 between the open position and the closed position can be stably performed.
 ここで、上述したように、金属製プレートを内部に埋設した合成ゴム製のダイヤフラムを備えた従来構成の過充填防止装置では、その可変閉鎖域にダイヤフラムを構成する合成ゴムが露出していることから、DME燃料に繰り返し及び継続して曝されることによって、合成ゴムが膨潤してしまう。特に、このダイヤフラムは、内部に金属製プレートを配している構造上、合成ゴムが膨潤し易い傾向にある。そして、合成ゴムが膨潤すると、可変閉鎖域の容積を低減してしまうこととなるため、可変閉鎖域に流入したDME燃料が副流出口から流入し難くなる等の不具合を生じ、ダイヤフラムの作動不良が生じ得る。 Here, as described above, in the overfilling prevention device having a synthetic rubber diaphragm in which a metal plate is embedded, the synthetic rubber constituting the diaphragm is exposed in the variable closed region. Therefore, the synthetic rubber swells by repeated and continuous exposure to the DME fuel. In particular, in this diaphragm, the synthetic rubber tends to swell easily due to the structure in which the metal plate is arranged inside. If the synthetic rubber swells, the volume of the variable closed area will be reduced, so that the DME fuel that has flowed into the variable closed area becomes difficult to flow in from the secondary outlet, resulting in malfunction of the diaphragm. Can occur.
 このような従来構成に対して、本発明にかかる過充填防止装置2は、上述したように、金属製プレート33が可変閉鎖域21側に露出していることから、DME燃料による合成ゴムの膨潤を充分に抑制することができる。そのため、最大充填量で正確且つ安定してダイヤフラム7を作動でき、過充填防止装置2を介してDME燃料の充填を安定して行うことができる。 In contrast to such a conventional configuration, the overfilling prevention device 2 according to the present invention swells the synthetic rubber by the DME fuel because the metal plate 33 is exposed to the variable closed region 21 side as described above. Can be sufficiently suppressed. Therefore, the diaphragm 7 can be operated accurately and stably with the maximum filling amount, and the DME fuel can be stably filled via the overfilling prevention device 2.
 尚、ダイヤフラム7の、主流出口16側の表面は、DME燃料の充填時に、該DME燃料に曝されることとなっているが、充填時以外では、ダイヤフラム7が開放位置に在ること等によって、DME燃料とほとんど接触しない。そのため、合成ゴム製プレート31の膨潤を比較的長期に亘って抑制することができる。特に、本実施例では、DME燃料に対する耐性を向上した水素化ニトリルゴムから形成していることから、前記膨潤を抑制する効果が一層高い。これにより、過充填防止装置は、長期に亘って正確かつ安定して作動することができ得る。 The surface of the diaphragm 7 on the side of the main flow outlet 16 is exposed to the DME fuel when DME fuel is filled, but the diaphragm 7 is in an open position at other times than filling. Little contact with DME fuel. Therefore, swelling of the synthetic rubber plate 31 can be suppressed over a relatively long period. In particular, in the present embodiment, the effect of suppressing the swelling is further increased because the hydrogenated nitrile rubber has improved resistance to DME fuel. As a result, the overfill prevention device can operate accurately and stably over a long period of time.
 さらにまた、ダイヤフラム7は、金属製プレート33が、上述したように、環状流域12を部分的(又は全体的)に覆うように寸法形状が設定されていることから、環状流域12からDME燃料による充填圧力を受けて開放位置へ作動する場合、可変閉鎖域21の内圧増加により閉鎖位置へ作動する場合のいずれにあっても、金属製プレート33の有する剛性によって安定して位置変換することができる。 Furthermore, since the diaphragm 7 is dimensioned so that the metal plate 33 partially (or entirely) covers the annular basin 12 as described above, the diaphragm 7 is made of DME fuel. In the case of operating to the open position upon receiving the filling pressure, the position can be stably changed by the rigidity of the metal plate 33 in any case of operating to the closed position due to the increase in the internal pressure of the variable closed region 21. .
 本発明は、上述した実施例に限定されるものではなく、本発明の要旨の範囲内で適宜用いることができる。例えば、ダイヤフラム7を付勢するバネ25を備えない構成とすることもできる。また、コイル状のバネ22,25に代えて、板バネなどを用いることも可能である。 The present invention is not limited to the above-described embodiments, and can be appropriately used within the scope of the gist of the present invention. For example, a configuration in which the spring 25 that urges the diaphragm 7 is not provided may be employed. Further, a leaf spring or the like can be used instead of the coiled springs 22 and 25.
  1 DME燃料タンク
  2 過充填防止装置
  3 ケーシング体
  7 ダイヤフラム
  7c 細流孔(細流路)
  9 ガス流路
 10 フロート
 11 接続管路
 16 主流出口
 17 副流出口
 21 可変閉鎖域
 24 弁体
 25 バネ(弁付勢手段)
 31 合成ゴム製プレート
 33 金属製プレート
1 DME fuel tank 2 Overfill prevention device 3 Casing body 7 Diaphragm 7c Narrow flow hole (narrow flow path)
DESCRIPTION OF SYMBOLS 9 Gas flow path 10 Float 11 Connection pipe line 16 Main outflow port 17 Sub outflow port 21 Variable closed area 24 Valve body 25 Spring (valve biasing means)
31 Synthetic rubber plate 33 Metal plate

Claims (1)

  1.  DME燃料タンク外に配設された充填バルブの開作動によりDME燃料タンク内にDME燃料を流出させるガス流路と接続されてDME燃料タンク内に配設され、DME燃料タンク内のDME燃料の過充填を防止するものであって、
    ガス流路と接続される接続管路と、該接続管路を介してDME燃料をDME燃料タンク内へ流出する主流出口とを具備するケーシング体と、
    ケーシング体内で主流出口の背方に配設されて、主流出口側と密閉状に区画される可変閉鎖域を形成し、且つ主流出口を閉鎖する閉鎖位置と開放する開放位置とに位置変換するダイヤフラムと、
    ケーシング体内に設けられ、前記可変閉鎖域と接続管路とを常時連通する細流路と、
    ケーシング体に軸支され、液化ガス容器内に貯留する液化ガスの液面高さに従って浮動するフロートと、
    該フロートの浮動に伴って、可変閉鎖域に流入したDME燃料をDME燃料タンク内へ流出する副流出口を開閉する弁体と、
    該弁体を、副流出口を閉鎖する方向へ付勢する弁付勢手段と
    を備えてなるDME燃料タンク用過充填防止装置において、
     ダイヤフラムが、合成ゴム製プレートと金属製プレートとを板厚方向に積層してなり、該金属製プレートを可変閉鎖域側としてケーシング体内に配設されていることを特徴とするDME燃料タンク用過充填防止装置。
    When the filling valve provided outside the DME fuel tank is opened, the DME fuel tank is connected to a gas flow path for allowing the DME fuel to flow into the DME fuel tank, and is disposed in the DME fuel tank. To prevent filling,
    A casing body comprising a connecting pipe line connected to the gas flow path, and a main outlet through which the DME fuel flows into the DME fuel tank via the connecting pipe line;
    A diaphragm that is disposed behind the main flow outlet in the casing body, forms a variable closed region that is hermetically partitioned from the main flow outlet side, and changes the position between a closed position that closes the main flow outlet and an open position that opens. When,
    A narrow channel that is provided in the casing and always communicates with the variable closed region and the connecting pipe;
    A float that is pivotally supported by the casing body and floats according to the liquid level of the liquefied gas stored in the liquefied gas container;
    A valve body that opens and closes a secondary outlet that allows the DME fuel flowing into the variable closed region to flow into the DME fuel tank as the float floats;
    In an overfilling prevention device for a DME fuel tank comprising valve urging means for urging the valve body in a direction to close the auxiliary outlet.
    A diaphragm for a DME fuel tank, characterized in that a diaphragm is formed by laminating a synthetic rubber plate and a metal plate in the plate thickness direction, and the metal plate is disposed in the casing body with the variable plateau side. Filling prevention device.
PCT/JP2010/050255 2009-02-04 2010-01-13 Overfilling prevention device for dme fuel tank WO2010090054A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-023428 2009-02-04
JP2009023428A JP2010180921A (en) 2009-02-04 2009-02-04 Overfilling prevention device for dme fuel tank

Publications (1)

Publication Number Publication Date
WO2010090054A1 true WO2010090054A1 (en) 2010-08-12

Family

ID=42541961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050255 WO2010090054A1 (en) 2009-02-04 2010-01-13 Overfilling prevention device for dme fuel tank

Country Status (2)

Country Link
JP (1) JP2010180921A (en)
WO (1) WO2010090054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235597A (en) * 2014-09-12 2014-12-24 张家港富瑞特种装备股份有限公司 Horizontal overcharge preventing LNG storage tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601481B1 (en) * 2014-09-01 2016-03-08 현대자동차주식회사 Apparatus for preventing urea over pour of SCR system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098280A (en) * 1983-10-31 1985-06-01 Toto Ltd Ball tap for water storage tank
JPS62177386A (en) * 1986-01-31 1987-08-04 Gasutaa:Kk Fluid control valve
JPS63135100U (en) * 1987-02-25 1988-09-05
JPH0272271A (en) * 1988-09-05 1990-03-12 Fujikura Rubber Ltd Diaphragm
JPH0322182U (en) * 1989-05-06 1991-03-06
JP2001263598A (en) * 2000-03-15 2001-09-26 Katakura Chikkarin Co Ltd Liquid overfilling preventive device
JP2005187718A (en) * 2003-12-26 2005-07-14 Nichias Corp Dimethyl ether-resistant sealing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098280A (en) * 1983-10-31 1985-06-01 Toto Ltd Ball tap for water storage tank
JPS62177386A (en) * 1986-01-31 1987-08-04 Gasutaa:Kk Fluid control valve
JPS63135100U (en) * 1987-02-25 1988-09-05
JPH0272271A (en) * 1988-09-05 1990-03-12 Fujikura Rubber Ltd Diaphragm
JPH0322182U (en) * 1989-05-06 1991-03-06
JP2001263598A (en) * 2000-03-15 2001-09-26 Katakura Chikkarin Co Ltd Liquid overfilling preventive device
JP2005187718A (en) * 2003-12-26 2005-07-14 Nichias Corp Dimethyl ether-resistant sealing material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235597A (en) * 2014-09-12 2014-12-24 张家港富瑞特种装备股份有限公司 Horizontal overcharge preventing LNG storage tank
CN104235597B (en) * 2014-09-12 2016-03-30 张家港富瑞特种装备股份有限公司 A kind of anti-overcharge horizontal LNG air cylinder

Also Published As

Publication number Publication date
JP2010180921A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4499098B2 (en) Seal member
EP1803997A1 (en) Connector structure with lock mechanism
KR101821597B1 (en) Solenoid Valve for Fluid Control
US7111653B2 (en) Expansion tank
TW201522767A (en) Lubrication system automatic refill shutoff
US8678218B2 (en) Fuel tank for vehicles
US8578914B2 (en) Fuel tank valve structure controlling emission gas in hybrid vehicle
EP2518302B1 (en) Valve device for fuel tank
JPH07293384A (en) Float valve for fuel tank
GB0803249D0 (en) Road tanker fluid storage tank fill cover assembly
WO2010090054A1 (en) Overfilling prevention device for dme fuel tank
JP2013142312A (en) Fuel tank system
JP7314049B2 (en) float valve
JP2012007624A (en) Over-filling prevention device
KR101668051B1 (en) Storage bag and lpg fuel store
US8622101B2 (en) Filler tube assembly
CN113124223B (en) Combined valve for automobile fuel tank
JP2011102098A (en) Fuel shut-off valve
EP1676063B1 (en) Overfill protection device
KR20090024350A (en) The fuel cartridge for the fuel cell
KR101008906B1 (en) An inward form regulator
JP6196762B2 (en) Fuel cell cartridge
JP4739250B2 (en) Relief valve
CN216643112U (en) Flange type double-isolation discharge valve
JP2005165667A (en) Regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738393

Country of ref document: EP

Kind code of ref document: A1