WO2010089880A1 - ターボファンエンジン - Google Patents

ターボファンエンジン Download PDF

Info

Publication number
WO2010089880A1
WO2010089880A1 PCT/JP2009/052083 JP2009052083W WO2010089880A1 WO 2010089880 A1 WO2010089880 A1 WO 2010089880A1 JP 2009052083 W JP2009052083 W JP 2009052083W WO 2010089880 A1 WO2010089880 A1 WO 2010089880A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
low
fan
pressure compressor
turbofan engine
Prior art date
Application number
PCT/JP2009/052083
Other languages
English (en)
French (fr)
Inventor
正治 安田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/052083 priority Critical patent/WO2010089880A1/ja
Priority to US13/148,064 priority patent/US20120023899A1/en
Priority to JP2010549319A priority patent/JP5287873B2/ja
Publication of WO2010089880A1 publication Critical patent/WO2010089880A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/068Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type being characterised by a short axial length relative to the diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbofan engine used for an aircraft or the like.
  • a fan is provided on the front end side of the engine, and a compressor, an engine core unit, and a turbine are arranged on the downstream side of the fan. Things are known.
  • the engine includes a counter rotating fan driven by a counter rotating low pressure turbine rotor.
  • an object of the present invention is to provide a turbofan engine that can effectively use air flowing in a region on the inner diameter side of a fan on the front end side.
  • the turbofan engine according to the present invention is a turbofan engine in which a fan is disposed on the tip side, and includes a first compressor disposed on the upstream side of the fan.
  • the present invention by providing the first compressor disposed on the upstream side of the fan, it is possible to operate the first compressor by effectively using the air flowing through the rotation center portion of the fan. For this reason, air can be used efficiently and engine output can be improved.
  • the first compressor is directly connected to a turbine disposed in the engine core portion.
  • the first compressor is provided so as to rotate at a higher speed than the fan.
  • the first compressor is disposed on the inner diameter side of the fan.
  • the first compressor since the first compressor is disposed on the inner diameter side of the fan, even if the first compressor is disposed on the upstream side of the fan, there is little influence on the rotation of the fan.
  • the first compressor can be operated by effectively using the air flowing through the rotation center portion on the side. For this reason, the output of the engine can be improved. Therefore, the propulsion efficiency can be improved and the fuel consumption can be reduced.
  • the turbofan engine according to the present invention preferably includes a second compressor disposed downstream of the first compressor and on an inner diameter side of the fan.
  • the boost compression mechanism by the multistage compression can be formed by providing the second compressor disposed downstream of the first compressor and on the inner diameter side of the fan. For this reason, the burden per stage can be reduced. Further, the engine output can be improved by effectively using the air flow on the inner diameter side of the fan.
  • the second compressor has a blade row separated by a shroud on the inner diameter side of the fan.
  • the second compressor is provided so as to be rotated in reverse with respect to the first compressor.
  • the second compressor since the second compressor is provided so as to rotate in reverse with respect to the first compressor, it is possible to form a counter-rotating boost compression mechanism using a plurality of stages of compression. For this reason, the burden per stage can be reduced by double inversion. Further, the engine output can be improved by effectively using the air flow on the inner diameter side of the fan.
  • the first compressor is provided so as to rotate at a higher speed than the second compressor.
  • the first compressor has first blades arranged along a circumferential direction, and the radius of the first blade is increased from the inlet side toward the outlet side. Preferably it is formed.
  • the first moving blade of the first compressor is formed larger from the inlet side toward the outlet side, so that the air formed by the first compressor flows along the direction of the centrifugal force. That is, as the rotational speed of the first compressor increases, the air flow becomes stronger due to the centrifugal force. For this reason, an appropriate peripheral speed corresponding to the rotational speed can be obtained.
  • the turbofan engine according to the present invention preferably includes a third compressor that rotates integrally with at least one of the first compressor or the second compressor.
  • a multistage reversing compression mechanism can be comprised by providing the 3rd compressor which rotates integrally with at least one of said 1st compressor or said 2nd compressor. For this reason, a pressure ratio can be raised and favorable fuel efficiency and the thrust per weight can be raised.
  • FIG. 1 is a schematic configuration diagram of a turbofan engine according to a first embodiment of the present invention. It is the figure which showed the prior art as a comparative example. It is a structure schematic diagram of the turbofan engine which concerns on 2nd embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a turbofan engine according to a first embodiment of the present invention.
  • a turbofan engine 1 is a front fan type turbofan engine in which a fan 2 is arranged on the tip side.
  • a bypass path 4 is formed around the engine core portion 3. Air A1 generated by the fan 2 is caused to flow through the bypass 4 and bears a part of the propulsive force.
  • the engine core section 3 constitutes a turbo jet, and a core flow path 5 through which air A2 flows is formed.
  • the engine core unit 3 is provided with a first low-pressure compressor 6 and a second low-pressure compressor 7.
  • the first low-pressure compressor 6 is disposed on the upstream side of the fan 2, and is disposed, for example, on the front end side of the fan 2.
  • the first low-pressure compressor 6 is provided on the inner diameter side of the fan 2. That is, the first low-pressure compressor 6 is disposed on the inner peripheral side where the fan 2 is disposed.
  • the first low-pressure compressor 6 is configured by arranging a plurality of first rotor blades 6a along the circumferential direction around the engine rotation axis.
  • the first moving blade 6 a is disposed in the core flow path 5. That is, the air A ⁇ b> 2 is circulated behind the core flow path 5 by being disposed at the inlet portion of the core flow path 5 and rotating.
  • the first moving blade 6a is formed so that its radius increases from the inlet side toward the outlet side. That is, the diameter of the core flow path 5 in which the first rotor blade 6a is disposed is increased toward the outlet side. Thereby, the air A2 formed by the first low-pressure compressor 6 flows along the direction of the centrifugal force. For this reason, as the rotational speed of the first low-pressure compressor 6 increases, the flow of the air A2 becomes stronger due to the centrifugal force, which is advantageous for the compressor performance and suitable for the second low-pressure compressor 7. Peripheral speed is obtained.
  • the first low-pressure compressor 6 is directly connected to a low-pressure turbine 8 installed behind the first low-pressure compressor 6.
  • the first low-pressure compressor 6 is mechanically connected to the low-pressure turbine 8 via the first shaft 9 and is provided so as to rotate integrally with the low-pressure turbine 8.
  • the first low-pressure compressor 6 is preferably provided so as to rotate at a higher speed than the fan 2.
  • the fan 2 is configured to rotate with respect to the first low-pressure compressor 6 via the speed reducer 10.
  • the speed reducer 10 for example, a planetary gear mechanism is used.
  • the speed reducer 10 receives the rotational input of the first shaft 9 that rotates together with the first low pressure compressor 6, decelerates the output, and rotates the fan 2 via the second low pressure compressor 7 and the shroud 11.
  • the reduction ratio of the speed reducer 10 is set to 1: 1 to 4: 1, preferably 2: 1 to 4: 1.
  • the second low-pressure compressor 7 is provided in the core flow path 5 and is arranged on the downstream side of the first low-pressure compressor 6.
  • the second low-pressure compressor 7 is disposed on the inner diameter side of the fan 2 via the shroud 11 and rotates integrally with the fan 2.
  • the second low-pressure compressor 7 is configured by arranging a plurality of second moving blades 7a along the circumferential direction around the engine rotation axis.
  • the 2nd moving blade 7a is arrange
  • the second moving blade 7a is formed so that its radius increases from the inlet side toward the outlet side. That is, the diameter of the core flow path 5 in which the second rotor blade 7a is disposed is increased toward the outlet side. Thereby, the air A2 formed by the second low-pressure compressor 7 flows along the direction of the centrifugal force. For this reason, as the rotational speed of the second low-pressure compressor 7 increases, the flow of the air A2 becomes stronger due to the centrifugal force, and an appropriate peripheral speed corresponding to the rotational speed is obtained.
  • the first low-pressure compressor 6 and the second low-pressure compressor 7 can form a boost compression mechanism by multiple stages of compression. For this reason, the compression burden per stage can be reduced, and the durability is excellent. Further, the output of the engine 1 can be improved by effectively using the air A2 on the inner diameter side of the fan 2.
  • the second low-pressure compressor 7 rotates in response to the rotational output of the speed reducer 10, but is provided so as to be reversed with respect to the first low-pressure compressor 6.
  • the second low-pressure compressor 7 can be reversed with respect to the first low-pressure compressor 6 by setting the rotation output of the speed reducer 10 to be opposite to that of the first low-pressure compressor 6.
  • the second low-pressure compressor 7 By inverting the second low-pressure compressor 7 with respect to the first low-pressure compressor 6, it is possible to form a counter-rotating boost compression mechanism using multiple stages of compression. For this reason, the burden per stage can be reduced by double inversion. In addition, the double reversal eliminates the need to provide a stationary vane, thereby reducing the size and cost. Further, the output of the engine 1 can be improved by effectively utilizing the flow of the air A2 on the inner diameter side of the fan 2.
  • a high-pressure compressor 15, a combustor 16, and a high-pressure turbine 17 are provided on the downstream side of the second low-pressure compressor 7 in the core flow path 5.
  • the high-pressure compressor 15 is connected to the high-pressure turbine 17 through the second shaft 18 and rotates integrally with the high-pressure turbine 17.
  • a low pressure turbine 8 is disposed downstream of the high pressure turbine 17.
  • An oil sump chamber 20 is provided between the high pressure compressor 15 and the second low pressure compressor 7.
  • the oil sump chamber 20 incorporates a shaft bearing, a speed reducer, a gear mechanism, and the like.
  • the first low-pressure compressor 6 and the second low-pressure compressor 7 are arranged on the front end side of the engine core portion 3, so that there is no gap between the low-pressure compressors 6, 7 and the high-pressure compressor.
  • Two oil sump chambers 20 can be provided, and the turbofan engine 1 can be reduced in size (shorter overall length) and reduced in weight.
  • the first shaft 9 rotates and the first low-pressure compressor 6 rotates.
  • the air A2 flows through the core channel 5.
  • the first low-pressure compressor 6 is arranged on the upstream side of the fan 2 and on the inner diameter side of the fan 2.
  • the air flow in the place where the spinner is disposed can be used effectively, and the compression efficiency can be increased to improve the engine output.
  • the first low-pressure compressor 6 rotates at a higher speed than the fan 2 and rotates at a higher speed than the spinner of a normal turbofan engine, effective air compression can be performed.
  • the rotational force decelerated through the speed reducer 10 is transmitted to the second low pressure compressor 7.
  • the second low-pressure compressor 7 When the second low-pressure compressor 7 is rotationally driven, a double reversal boost is achieved, and high compression of the air A2 can be performed without difficulty. Moreover, the compression burden per stage of the compressor can be reduced. Further, by reversing the rotation directions of the first low-pressure compressor 6 and the second low-pressure compressor 7, there is no need to provide a stationary blade, and the engine can be reduced in size and weight.
  • the first low-pressure compressor 6 and the second low-pressure compressor 7 are provided at positions where the core flow path 5 expands, the air flows in the direction of the centrifugal force of the first low-pressure compressor 6 and the second low-pressure compressor 7. A2 flows, and when the rotational speed increases, the flow of the air A2 becomes smooth and the compression efficiency becomes high.
  • the rotation center portion of the fan 2 is provided by including the first low-pressure compressor 6 disposed on the upstream side where the fan 2 is disposed on the tip side.
  • the first low-pressure compressor 6 can be operated by effectively using the flowing air. For this reason, air can be used efficiently and engine output can be improved. Therefore, the propulsion efficiency can be improved and the fuel consumption can be reduced.
  • the first low-pressure compressor 6 is disposed on the inner diameter side of the fan 2, even if the first low-pressure compressor 6 is disposed on the upstream side of the fan 2, the influence on the rotation of the fan 2 is exerted.
  • the first compressor can be operated by effectively using the air flowing through the rotation center portion on the inner diameter side of the fan 2.
  • the burden per stage can be reduced. Further, the output of the engine can be improved by effectively utilizing the air flow on the inner diameter side of the fan 2.
  • the second compressor is provided so as to rotate in reverse with respect to the first compressor, it is possible to form a counter-rotating boost compression mechanism using a plurality of stages of compression. For this reason, the burden per stage can be reduced by double inversion.
  • the air A2 formed by the first low-pressure compressor 6 follows the direction of centrifugal force. As the rotational speed of the first low-pressure compressor 6 increases, the flow of the air A2 becomes stronger due to the centrifugal force. For this reason, an appropriate peripheral speed corresponding to the rotational speed can be obtained.
  • FIG. 3 is a cross-sectional view showing a configuration outline of the turbofan engine according to the present embodiment.
  • the turbofan engine according to this embodiment is configured in substantially the same manner as the turbofan engine 1 according to the first embodiment, but three or more low-pressure compressors are provided upstream from the position of the fan 2. This is different from the turbofan engine 1 according to the first embodiment.
  • the turbofan engine 1 a includes a third low-pressure compressor 21 and a fourth low-pressure compressor 22 in addition to the first low-pressure compressor 6 and the second low-pressure compressor 7. ing.
  • the third low-pressure compressor 21 is connected to the second low-pressure compressor 7 and rotates integrally therewith, and is arranged downstream of the first low-pressure compressor 6 and upstream of the second low-pressure compressor 7. It is installed.
  • the third low-pressure compressor 21 is configured similarly to the second low-pressure compressor 7 in that it includes a plurality of moving blades.
  • the fourth low-pressure compressor 22 is connected to the first low-pressure compressor 6 and rotates integrally therewith, and is arranged downstream of the third low-pressure compressor 21 and upstream of the second low-pressure compressor 7. It is installed.
  • the fourth low-pressure compressor 22 is configured similarly to the first low-pressure compressor 6 in that it includes a plurality of moving blades.
  • the first low-pressure compressor 6, the second low-pressure compressor 7, the third low-pressure compressor 21, and the fourth low-pressure compressor 22 are used to provide a multistage counter-rotating compression mechanism. Is configured. For this reason, the compression ratio can be increased by these low-pressure compressors 6, 7, 21, and 22. Thus, the fuel consumption can be improved and the propulsive force per weight can be improved.
  • the turbofan engine 1a since the space efficiency is good and the amount of increase of the members is small, the multistage It is possible to suppress an increase in size and weight of the engine while using a multiple inversion compression mechanism.
  • the pressure ratio can be increased, and good fuel efficiency and thrust per weight can be increased. it can.
  • this embodiment demonstrated the case where it was set as the compression mechanism of a two-stage counterclockwise reversal, you may abbreviate
  • FIG. Also, a three-stage or more counter-rotating compression mechanism may be used.
  • turbofan engine according to the present invention shows an example of a turbofan engine according to the present invention.
  • the turbofan engine according to the present invention is not limited to the turbofan engine according to this embodiment, and the turbofan engine according to the embodiment may be modified or otherwise changed without changing the gist described in each claim. It may be applied to the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 本発明は、先端側のファンの内径側の領域を流れるエアーを有効利用できるターボファンエンジンを提供することを目的とする。本発明に係るターボファンエンジンは、先端側にファンを配置したターボファンエンジンであって、ファンの上流側であってその内径側に第一低圧圧縮機を備えて構成されている。これにより、ファンの回転中心部分を流れるエアーを有効に利用して第一低圧圧縮機を作動させることができる。このため、効率よくエアーを利用できエンジン出力を向上させることができる。

Description

ターボファンエンジン
 本発明は、航空機などに用いられるターボファンエンジンに関するものである。
 従来、ターボファンエンジンに関するものとして、特開2003-286857号公報に示すように、エンジンの先端側にファンを設け、そのファンの下流側に圧縮機、エンジンコア部及びタービンを配置して構成されるものが知られている。このエンジンは、二重反転式の低圧タービンロータによって駆動される二重反転式ファンを備えて構成されている。
特開2003-286857号公報
 しかしながら、このようなエンジンにあっては、先端側のファンの内径側の領域を流れるエアーを有効利用することができないという問題点がある。すなわち、ファンの内径側にはスピンナが設置されており、圧縮機を配置することができない。このため、ファンの内径側のエアーの流れを用いてエアーの圧縮効率を高めることが困難である。
 そこで本発明は、このような技術課題を解決するためになされたものであって、先端側のファンの内径側の領域を流れるエアーを有効利用できるターボファンエンジンを提供することを目的とする。
 すなわち本発明に係るターボファンエンジンは、先端側にファンを配置したターボファンエンジンにおいて、前記ファンの上流側に配置された第一圧縮機を備えて構成されている。
 この発明によれば、ファンの上流側に配置された第一圧縮機を備えることにより、ファンの回転中心部分を流れるエアーを有効に利用して第一圧縮機を作動させることができる。このため、効率よくエアーを利用できエンジン出力を向上させることができる。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機は、エンジンコア部に配置されるタービンと直結されていることが好ましい。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機は、前記ファンよりも高速に回転するように設けられていることが好ましい。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機は、前記ファンの内径側に配設されていることが好ましい。この場合、第一圧縮機がファンの内径側に配設されていることにより、この第一圧縮機がファンの上流側に配置されていても、ファンの回転に与える影響が少なく、ファンの内径側の回転中心部分を流れるエアーを有効利用して第一圧縮機を作動させることができる。このため、エンジンの出力向上が図れる。従って、推進効率の向上が図れ、燃費の低減が図れる。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機の下流側であって前記ファンの内径側に配設される第二圧縮機を備えることが好ましい。この発明によれば、第一圧縮機の下流側であってファンの内径側に配設される第二圧縮機を備えることにより、複数段の圧縮によるブースト圧縮機構を形成することができる。このため、一段あたりの負担軽減が図れる。また、ファンの内径側のエアーの流れを有効利用してエンジンの出力の向上が図れる。
 また本発明に係るターボファンエンジンにおいて、前記第二圧縮機は、前記ファンの内径側にシュラウドによって分離される翼列を有していることが好ましい。
 また本発明に係るターボファンエンジンにおいて、前記第二圧縮機は、前記第一圧縮機に対し反転して回転するように設けられていることが好ましい。この発明によれば、第二圧縮機が第一圧縮機に対し反転して回転するように設けられていることにより、複数段の圧縮による二重反転ブースト圧縮機構を形成することができる。このため、二重反転によって段あたりの負担軽減が図れる。また、ファンの内径側のエアーの流れを有効利用してエンジンの出力の向上が図れる。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機は、前記第二圧縮機よりも高速に回転するように設けられていることが好ましい。
 また本発明に係るターボファンエンジンにおいて、前記第一圧縮機は、周方向に沿って配列される第一動翼を有し、その第一動翼の半径が入口側から出口側に向けて大きく形成されていることが好ましい。この発明によれば、第一圧縮機の第一動翼が入口側から出口側に向けて大きく形成されていることにより、第一圧縮機により形成されるエアーが遠心力の方向に沿って流れることとなり、第一圧縮機の回転速度が上がるに連れて遠心力によってエアーの流れが強くなる。このため、回転速度に応じた適切な周速が得られる。
 また本発明に係るターボファンエンジンにおいて、少なくとも前記第一圧縮機又は前記第二圧縮機の一方と一体となって回転する第三圧縮機を備えることが好ましい。この発明によれば、少なくとも前記第一圧縮機又は前記第二圧縮機の一方と一体となって回転する第三圧縮機を備えることにより、多段の反転圧縮機構を構成することができる。このため、圧力比を高めることができ、良好な燃費効率、重量あたりの推力を高めることができる。
 本発明によれば、先端側のファンの内径側の領域を流れるエアーを有効利用してエンジン出力の向上を図ることができる。
本発明の第一実施形態に係るターボファンエンジンの構成概要図である。 比較例として従来技術を示した図である。 本発明の第二実施形態に係るターボファンエンジンの構成概要図である。
発明を実施するための形態
 以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第一実施形態)
 図1は本発明の第一実施形態に係るターボファンエンジンの構成概要を表す断面図である。
 図1に示すように、本実施形態に係るターボファンエンジン1は、先端側にファン2を配置したフロントファン型のターボファンエンジンである。ターボファンエンジン1には、エンジンコア部3の周囲にバイパス路4が形成されている。ファン2により生成されるエアーA1がバイパス路4に流されて推進力の一部を担っている。
 エンジンコア部3は、ターボジェットを構成するものであり、エアーA2を流すコア流路5が形成されている。エンジンコア部3には、第一低圧圧縮機6、第二低圧圧縮機7が設けられている。第一低圧圧縮機6は、ファン2の上流側に配置され、例えばファン2より先端側に配置されている。また、第一低圧圧縮機6は、ファン2の内径側に設けられている。すなわち、第一低圧圧縮機6は、ファン2が配置される内周側に配設されている。
 第一低圧圧縮機6は、エンジン回転軸周りにおいて、周方向に沿って複数の第一動翼6aを配列して構成されている。第一動翼6aは、コア流路5内に配設されている。すなわち、コア流路5の入口部分に配設され、回転することによりコア流路5の後方へエアーA2を流通させている。
 第一動翼6aは、その半径が入口側から出口側に向けて大きくなるように形成されている。すなわち、第一動翼6aが配置されるコア流路5が出口側に向けて拡径している。これにより、第一低圧圧縮機6により形成されるエアーA2が遠心力の方向に沿って流れることとなる。このため、第一低圧圧縮機6の回転速度が上がるに連れて遠心力によってエアーA2の流れが強くなり、圧縮機性能として有利になると共に、第二低圧圧縮機7に必要とされる適切な周速が得られる。
 第一低圧圧縮機6は、その後方に設置される低圧タービン8と直結されている。例えば、第一低圧圧縮機6は、第一シャフト9を介して低圧タービン8と機械的に連結され、低圧タービン8と一体となって回転するように設けられている。
 また、第一低圧圧縮機6は、ファン2より高速に回転するように設けることが好ましい。例えば、第一低圧圧縮機6に対し減速機10を介してファン2が回転するように構成される。減速機10としては、例えば遊星歯車機構が用いられる。減速機10は、第一低圧圧縮機6と一緒に回転する第一シャフト9の回転入力を受け、減速して出力し、第二低圧圧縮機7及びシュラウド11を介してファン2を回転させる。減速機10の減速比は、1:1~4:1に設定され、好ましくは2:1~4:1に設定される。
 第二低圧圧縮機7は、コア流路5内に設けられ、第一低圧圧縮機6の下流側に配置されている。第二低圧圧縮機7は、シュラウド11を介してファン2の内径側に配設されており、ファン2と一体に回転する。
 第二低圧圧縮機7は、エンジン回転軸周りにおいて、周方向に沿って複数の第二動翼7aを配列して構成されている。第二動翼7aは、コア流路5内に配設され、第一動翼6aの下流側に配置されている。
 第二動翼7aは、その半径が入口側から出口側に向けて大きくなるように形成されている。すなわち、第二動翼7aが配置されるコア流路5が出口側に向けて拡径している。これにより、第二低圧圧縮機7により形成されるエアーA2が遠心力の方向に沿って流れることとなる。このため、第二低圧圧縮機7の回転速度が上がるに連れて遠心力によってエアーA2の流れが強くなり、回転速度に応じた適切な周速が得られる。
 この第二低圧圧縮機7が設けられることにより、第一低圧圧縮機6と第二低圧圧縮機7により複数段の圧縮によるブースト圧縮機構を形成することができる。このため、一段あたりの圧縮負担を軽減することができ、耐久性に優れたものとなる。また、ファン2の内径側のエアーA2を有効に利用して、エンジン1の出力向上が図れる。
 第二低圧圧縮機7は、減速機10の回転出力を受けて回転するが、第一低圧圧縮機6に対し反転するように設けられている。例えば、減速機10の回転出力を第一低圧圧縮機6と反対回転とすることにより、第二低圧圧縮機7を第一低圧圧縮機6に対し反転させることができる。
 第二低圧圧縮機7を第一低圧圧縮機6に対し反転させることにより、複数段の圧縮による二重反転ブースト圧縮機構を形成することができる。このため、二重反転によって段あたりの負担軽減が図れる。また、二重反転とすることにより、静翼を設ける必要がなくなり、小型化及び低コスト化が図れる。さらに、ファン2の内径側のエアーA2の流れを有効利用してエンジン1の出力の向上が図れる。
 コア流路5内の第二低圧圧縮機7の下流側には、高圧圧縮機15、燃焼器16、高圧タービン17が設けられている。高圧圧縮機15は、第二シャフト18を介して高圧タービン17と連結されており、高圧タービン17と一体に回転する。高圧タービン17の下流側には、低圧タービン8が配置されている。
 高圧圧縮機15と第二低圧圧縮機7の間には、オイルサンプ室20が設けられている。オイルサンプ室20は、シャフト軸受け、減速機、歯車機構などを内蔵したものである。ターボファンエンジン1にあっては、第一低圧圧縮機6及び第二低圧圧縮機7をエンジンコア部3の先端側へ配置することにより、低圧圧縮機6、7と高圧圧縮機の間に一つのオイルサンプ室20を設けることができ、ターボファンエンジン1の小型化(全長の短縮化)及び軽量化が図れる。
 例えば、図2に示すように、高圧圧縮機101の前側に低圧圧縮機102を設け、その低圧圧縮機102の前側に減速機103を配置してファン104を駆動させるタイプのエンジン100の場合、高圧圧縮機101の軸受けのためのオイルサンプ室110とファン駆動のためのオイルサンプ室111を複数設ける必要があり、エンジン100の大型化、重量増加となってしまう。
 次に、本実施形態に係るターボファンエンジン1の動作について説明する。
 図1において、燃焼器16から燃焼により生じた高熱排気が噴出すると、その排気によって高圧タービン17が回転し、低圧タービン8が回転する。高圧タービン17の回転に伴って高圧圧縮機15が回転し、エアーA2が圧縮されてコア流路5を流通する。
 一方、低圧タービン8の回転に伴い第一シャフト9が回転し、第一低圧圧縮機6が回転する。第一低圧圧縮機6が回転することによって、コア流路5にエアーA2が流通する。このとき、第一低圧圧縮機6がファン2の上流側であってファン2の内径側に配置されている。このため、通常のターボファンエンジンではスピンナが配置されている場所のエアーの流れが有効に利用でき、圧縮効率を高めてエンジン出力の向上を図ることができる。また、第一低圧圧縮機6はファン2より高速で回転しており、通常のターボファンエンジンのスピンナより高速回転となっているため、有効なエアー圧縮を行うことができる。
 また、第一シャフト9が回転することにより、減速機10を通じて減速された回転力が第二低圧圧縮機7に伝達される。第二低圧圧縮機7が回転駆動することにより、二重反転ブーストとなり、無理なくエアーA2の高圧縮を行うことができる。また、圧縮機の一段あたりの圧縮負担を軽減することができる。また、第一低圧圧縮機6と第二低圧圧縮機7の回転方向を反転させることにより、静翼を設ける必要がなくなり、エンジンの小型化、軽量化が図れる。
 第一低圧圧縮機6及び第二低圧圧縮機7はコア流路5が拡径する位置に設けられているため、第一低圧圧縮機6及び第二低圧圧縮機7の遠心力の方向へエアーA2が流れることとなり、回転速度が上がった場合にエアーA2の流れがスムーズとなり、圧縮効率が高いものとなる。
 さらに、第一シャフト9が回転することにより、減速機10を通じて減速された回転力がファン2に伝達される。ファン2が回転することにより、バイパス流路4にエアーA1が流通し、推進力を生じさせる。
 以上のように、本実施形態に係るターボファンエンジン1によれば、先端側にファン2を配置した上流側に配置された第一低圧圧縮機6を備えることにより、ファン2の回転中心部分を流れるエアーを有効に利用して第一低圧圧縮機6を作動させることができる。このため、効率よくエアーを利用できエンジン出力を向上させることができる。従って、推進効率の向上が図れ、燃費の低減が図れる。
 また、ファン2の内径側に配置される第一低圧圧縮機6がファン2よりも高速で回転することにより、内径側でありながら第一低圧圧縮機6によって所望の周速を得ることができ、有効なエアーの圧縮が行える。
 また、第一低圧圧縮機6がファン2の内径側に配設されていることにより、この第一低圧圧縮機6がファン2の上流側に配置されていても、ファン2の回転に与える影響が少なく、ファン2の内径側の回転中心部分を流れるエアーを有効利用して第一圧縮機を作動させることができる。
 また、第一低圧圧縮機6の下流側に第二低圧圧縮機7を備えることにより、一段あたりの負担軽減が図れる。また、ファン2の内径側のエアーの流れを有効利用してエンジンの出力の向上が図れる。
 また、第二圧縮機が第一圧縮機に対し反転して回転するように設けられていることにより、複数段の圧縮による二重反転ブースト圧縮機構を形成することができる。このため、二重反転によって段あたりの負担軽減が図れる。
 さらに、第一低圧圧縮機6の第一動翼6aが入口側から出口側に向けて大きく形成されていることにより、第一低圧圧縮機6により形成されるエアーA2が遠心力の方向に沿って流れることとなり、第一低圧圧縮機6の回転速度が上がるに連れて遠心力によってエアーA2の流れが強くなる。このため、回転速度に応じた適切な周速が得られる。
(第二実施形態)
 次に本発明の第二実施形態に係るターボファンエンジンについて説明する。
 図3は、本実施形態に係るターボファンエンジンの構成概要を表す断面図である。本実施形態に係るターボファンエンジンは、第一実施形態に係るターボファンエンジン1とほぼ同様に構成されるものであるが、ファン2の位置からその上流側において低圧圧縮機が三つ以上備えられている点で第一実施形態に係るターボファンエンジン1と異なっている。
 図3に示すように、本実施形態に係るターボファンエンジン1aは、第一低圧圧縮機6、第二低圧圧縮機7のほかに、第三低圧圧縮機21、第四低圧圧縮機22を備えている。第三低圧圧縮機21は、第二低圧圧縮機7と連結され一体となって回転するものであり、第一低圧圧縮機6の下流側であって第二低圧圧縮機7の上流側に配設されている。この第三低圧圧縮機21は、複数の動翼を備えている点は、第二低圧圧縮機7と同様に構成されている。
 第四低圧圧縮機22は、第一低圧圧縮機6と連結され一体となって回転するものであり、第三低圧圧縮機21の下流側であって第二低圧圧縮機7の上流側に配設されている。この第四低圧圧縮機22は、複数の動翼を備えている点は、第一低圧圧縮機6と同様に構成されている。
 このような本実施形態に係るターボファンエンジン1aによれば、第一低圧圧縮機6、第二低圧圧縮機7、第三低圧圧縮機21、第四低圧圧縮機22によって多段二重反転圧縮機構が構成される。このため、これらの低圧圧縮機6、7、21、22によって圧縮比を高めることができ、燃費の向上、重量あたりの推進力の向上が図れる。
 また、圧縮比の段数を増やすと、エンジンの全長が長くなりエンジン重量が増加することとなるが、本実施形態に係るターボファンエンジン1aでは、スペース効率がよく部材の増加量も少ないため、多段多重反転圧縮機構としながらエンジンの大型化、重量増加を抑えることができる。
 以上のように、本実施形態に係るターボファンエンジン1aによれば、多段の反転圧縮機構を構成することにより、圧力比を高めることができ、良好な燃費効率、重量あたりの推力を高めることができる。
 なお、本実施形態では、二段二重反転の圧縮機構とした場合について説明したが、第三低圧圧縮機21、第四低圧圧縮機22の一方の設置を省略して構成してもよい。また、三段以上の二重反転圧縮機構としてもよい。
 上述した各実施形態は本発明に係るターボファンエンジン一例を示すものである。本発明に係るターボファンエンジンは、この実施形態に係るターボファンエンジンに限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係るターボファンエンジンを変形し、又は他のものに適用したものであってもよい。
 本発明によれば、先端側のファンの内径側の領域を流れるエアーを有効利用してエンジン出力の向上を図ることができる。
符号の説明
 1…ターボファンエンジン、2…ファン、3…エンジンコア部、4…バイパス流路、5…コア流路、6…第一低圧圧縮機、7…第二低圧圧縮機、8…低圧タービン。

Claims (10)

  1.  先端側にファンを配置したターボファンエンジンにおいて、
     前記ファンの上流側に配置された第一圧縮機を備えること、
    を特徴とするターボファンエンジン。
  2.  前記第一圧縮機は、エンジンコア部に配置されるタービンと直結されている、
    請求項1に記載のターボファンエンジン。
  3.  前記第一圧縮機は、前記ファンよりも高速に回転するように設けられている、
    請求項1に記載のターボファンエンジン。
  4.  前記第一圧縮機は、前記ファンの内径側に配設されている、
    請求項1~3のいずれか一項に記載のターボファンエンジン。
  5.  前記第一圧縮機の下流側であって前記ファンの内径側に配設される第二圧縮機を備える、
    請求項1~4のいずれか一項に記載のターボファンエンジン。
  6.  前記第二圧縮機は、前記ファンの内径側にシュラウドによって分離される翼列を有している、
    請求項5に記載のターボファンエンジン。
  7.  前記第二圧縮機は、前記第一圧縮機に対し反転して回転するように設けられている、
    請求項5又は6に記載のターボファンエンジン。
  8.  前記第一圧縮機は、前記第二圧縮機よりも高速に回転するように設けられている、
    請求項5~7のいずれか一項に記載のターボファンエンジン。
  9.  前記第一圧縮機は、周方向に沿って配列される第一動翼を有し、その第一動翼の半径が入口側から出口側に向けて大きく形成されている、
    請求項1~8のいずれか一項に記載のターボファンエンジン。
  10.  少なくとも前記第一圧縮機又は前記第二圧縮機の一方と一体となって回転する第三圧縮機を備える、
    請求項1~9のいずれかに記載のターボファンエンジン。
PCT/JP2009/052083 2009-02-06 2009-02-06 ターボファンエンジン WO2010089880A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/052083 WO2010089880A1 (ja) 2009-02-06 2009-02-06 ターボファンエンジン
US13/148,064 US20120023899A1 (en) 2009-02-06 2009-02-06 Turbofan engine
JP2010549319A JP5287873B2 (ja) 2009-02-06 2009-02-06 ターボファンエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052083 WO2010089880A1 (ja) 2009-02-06 2009-02-06 ターボファンエンジン

Publications (1)

Publication Number Publication Date
WO2010089880A1 true WO2010089880A1 (ja) 2010-08-12

Family

ID=42541802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052083 WO2010089880A1 (ja) 2009-02-06 2009-02-06 ターボファンエンジン

Country Status (3)

Country Link
US (1) US20120023899A1 (ja)
JP (1) JP5287873B2 (ja)
WO (1) WO2010089880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506442A (ja) * 2012-01-31 2015-03-02 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 高速の低圧タービン部を備えるガスタービンエンジン
JP2018135889A (ja) * 2012-11-14 2018-08-30 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジン

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228535B2 (en) 2012-07-24 2016-01-05 United Technologies Corporation Geared fan with inner counter rotating compressor
BR112015007733B1 (pt) 2012-10-08 2022-05-03 United Technologies Corporation Motores de turbina a gás, e, método para distribuir peso entre um conjunto de propulsor e um conjunto de gerador de gás de um motor de turbina a gás
FR3061480B1 (fr) * 2016-12-30 2019-05-31 Airbus Operations Ensemble moteur pour aeronef comprenant une attache moteur avant facilitant son montage
US11549373B2 (en) 2020-12-16 2023-01-10 Raytheon Technologies Corporation Reduced deflection turbine rotor
US11549463B2 (en) * 2021-02-22 2023-01-10 General Electric Company Compact low-pressure compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825688B1 (ja) * 1968-09-27 1973-07-31
JPS5233323B1 (ja) * 1971-01-08 1977-08-27
JP2000002155A (ja) * 1998-04-13 2000-01-07 Nikkiso Co Ltd タ―ボファンエンジン
JP2003286857A (ja) * 2002-03-01 2003-10-10 General Electric Co <Ge> 高い全圧力比の圧縮機を備えた二重反転式航空機用ガスタービンエンジン

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134535A (en) * 1960-11-09 1964-05-26 Daimler Benz Ag Construction and arrangement of compressor drive shafts in gas turbine propulsion units
US3903690A (en) * 1973-02-12 1975-09-09 Gen Electric Turbofan engine lubrication means
US3861139A (en) * 1973-02-12 1975-01-21 Gen Electric Turbofan engine having counterrotating compressor and turbine elements and unique fan disposition
GB2195712B (en) * 1986-10-08 1990-08-29 Rolls Royce Plc A turbofan gas turbine engine
US4934901A (en) * 1989-04-21 1990-06-19 Duchesneau Jerome G Pitch change actuation system
FR2646473B1 (fr) * 1989-04-26 1991-07-05 Snecma Moteur a soufflantes contrarotatives tractrices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825688B1 (ja) * 1968-09-27 1973-07-31
JPS5233323B1 (ja) * 1971-01-08 1977-08-27
JP2000002155A (ja) * 1998-04-13 2000-01-07 Nikkiso Co Ltd タ―ボファンエンジン
JP2003286857A (ja) * 2002-03-01 2003-10-10 General Electric Co <Ge> 高い全圧力比の圧縮機を備えた二重反転式航空機用ガスタービンエンジン

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506442A (ja) * 2012-01-31 2015-03-02 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 高速の低圧タービン部を備えるガスタービンエンジン
JP2018084236A (ja) * 2012-01-31 2018-05-31 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジンおよびガスタービンエンジンのタービン部
JP2020073796A (ja) * 2012-01-31 2020-05-14 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジンおよびガスタービンエンジンのタービン部
JP2018135889A (ja) * 2012-11-14 2018-08-30 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジン

Also Published As

Publication number Publication date
JPWO2010089880A1 (ja) 2012-08-09
US20120023899A1 (en) 2012-02-02
JP5287873B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
US9926885B2 (en) Efficient, low pressure ratio propulsor for gas turbine engines
JP5155648B2 (ja) ターボファンエンジンアセンブリ
EP1921290B1 (en) Turbofan engine assembly
JP5179039B2 (ja) 二重反転ファン組立体及び二重反転ファン組立体を備えるガスタービンエンジン組立体
JP5111825B2 (ja) 二重反転ファン組立体及び二重反転ファン組立体を備えるガスタービンエンジン組立体
US6209311B1 (en) Turbofan engine including fans with reduced speed
JP4906311B2 (ja) 二重反転ガスタービンエンジン及びそれを組立てる方法
JP4624145B2 (ja) タービンエンジン構造及びタービンエンジン
JP5287873B2 (ja) ターボファンエンジン
US9297270B2 (en) Gas turbine engine driving multiple fans
EP2543866B1 (en) Propulsion fan for gas turbine engine
JP2013238244A (ja) ガスタービンエンジン組立方法
JP2016509153A (ja) 逆回転一体型駆動装置及びベーンレスタービンを備えたエンジン構成
JP2007113576A (ja) 二重反転ファン組立体及びそれを含むガスタービンエンジン組立体
WO2014109787A1 (en) Two spool gas generator with mount ring
JP2000002155A (ja) タ―ボファンエンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549319

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13148064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839657

Country of ref document: EP

Kind code of ref document: A1