WO2010089873A1 - Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both - Google Patents

Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both Download PDF

Info

Publication number
WO2010089873A1
WO2010089873A1 PCT/JP2009/051978 JP2009051978W WO2010089873A1 WO 2010089873 A1 WO2010089873 A1 WO 2010089873A1 JP 2009051978 W JP2009051978 W JP 2009051978W WO 2010089873 A1 WO2010089873 A1 WO 2010089873A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
gelatin
oil
water
crosslinked
Prior art date
Application number
PCT/JP2009/051978
Other languages
French (fr)
Japanese (ja)
Inventor
石黒智之
Original Assignee
ニチバン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチバン株式会社 filed Critical ニチバン株式会社
Priority to PCT/JP2009/051978 priority Critical patent/WO2010089873A1/en
Priority to JP2010549313A priority patent/JP5351183B2/en
Publication of WO2010089873A1 publication Critical patent/WO2010089873A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • C08J2389/04Products derived from waste materials, e.g. horn, hoof or hair

Definitions

  • a physiologically active factor for example, basic fibroblast growth factor (bFGF) having an angiogenesis-inducing effect is known.
  • bFGF basic fibroblast growth factor
  • the effect is reduced in a relatively short period of time, so that it is difficult to achieve the therapeutic purpose.
  • the cross-linked gelatin carrying a bioactive factor is administered by a method of embedding in a living body or injecting into a living body using a syringe, the bioactive factor is released slowly.
  • the active factor is administered as an aqueous solution, the effect can be maintained for a long period of time.
  • the photo-initiator is used to start the cross-linking reaction, and the cross-linking reaction is terminated by adding a reaction terminator to stop the photo-initiator activity. It is necessary to let However, since photoreaction initiators and reaction terminators are chemical substances, they have the same problems as the chemical crosslinking method.
  • Example 9 of Patent Document 1 a W / O type emulsion is prepared by adding olive oil to an alkali-treated gelatin aqueous solution and stirring, and then adding 1-ethyl 3-ethyl ether as a crosslinking agent. It has been shown that (3-dimethylaminopropyl) carbodiimide hydrochloride was added and the gelatin was cross-linked continuously overnight to obtain a cross-linked gelatin gel.
  • Example 10 of Patent Document 1 a W / O emulsion was prepared by adding an alkali-treated gelatin aqueous solution to olive oil and stirring, and then 1-ethyl 3- (3-dimethylaminopropyl) carbosiimide hydrochloride was added thereto. It has been shown that salt was added and stirring continued for about 15 hours to crosslink the gelatin.
  • Example 10 of Patent Document 1 after the chemical crosslinking reaction, acetone was added to the reaction mixture and stirred for 1 hour, and then the crosslinked gelatin particles were collected by centrifugation, and the collected crosslinked gelatin particles were washed with acetone. Then, it was shown that the crosslinking reaction by the remaining crosslinking agent was stopped by immersing in isopropanol containing 0.004N HCl at 37 ° C. for 1 hour. Furthermore, in Example 10 of Patent Document 1, the crosslinked gelatin particles were washed 5 times with isopropanol, then once with distilled water containing 0.1% Tween 80 (surfactant), and then 2 times with distilled water. It is described that it was washed twice.
  • Tween 80 surfactant
  • the method for producing cross-linked gelatin particles using the cross-linking agent disclosed in Patent Document 1 requires a great deal of time and labor to ensure safety by cross-linking reaction and purification, and there is a limit to reducing the product cost. there were. Even if the crosslinked gelatin particles are produced by employing the crosslinking method by ultraviolet irradiation or heat treatment taught in Patent Document 1, such a production method has the problems as described above.
  • Patent Document 3 In Japanese Patent Application Laid-Open No. 2008-150596 (Patent Document 3), an aqueous solution of a polymer such as gelatin is introduced as a droplet into a solvent having a water solubility of 1 to 50% by mass, and the water in the droplet is discharged. A method of transferring to a solvent to form particles containing the polymer in the solvent is disclosed. Patent Document 3 discloses a method of applying ejection energy by ink jet as means for introducing an aqueous polymer solution into a solvent as droplets.
  • Patent Document 3 describes that polymer particles can be crosslinked by various crosslinking methods.
  • Examples of Patent Document 3 include examples in which dry particles (dry magnetic particles) of gelatin containing iron oxide fine particles are heated and incompletely crosslinked (Examples 56 to 58), and dry magnetic particles in acetone. Only an example of incomplete crosslinking by reacting with a crosslinking agent (Example 59) is shown.
  • an aqueous solution of a water-soluble polymer such as gelatin is dispersed as droplets in oil having a kinematic viscosity within a specific range.
  • An emulsion is prepared, and then the W / O type emulsion is formed into a layer having a thickness through which radiation can be transmitted, and then the W / O type emulsion layer is irradiated with radiation to dissolve water in the droplets.
  • crosslinked water-soluble polymer particles can be formed by crosslinking a functional polymer.
  • the crosslinked water-soluble polymer particles can be recovered by adding an organic solvent that is soluble in the oil to the W / O emulsion layer and removing the oil component. it can.
  • an electron beam is used as radiation, crosslinked water-soluble polymer particles can be efficiently produced by a production method including continuous steps.
  • cross-linking droplets of water-soluble polymers such as gelatin by irradiation there is no need to use any chemical substances such as cross-linking agents, reaction terminators, and photoinitiators, and the remaining chemicals. Since a complicated purification step for removing substances is not required, a crosslinked water-soluble polymer particle body excellent in biological safety can be efficiently produced.
  • the crosslinking method by irradiation with radiation is relatively easy to operate and the crosslinking treatment time is short.
  • the following steps 1 to 6 (1) An oil having a kinematic viscosity within a range of 20 to 6,000 mm 2 / s at a measurement temperature of 37.8 ° C. and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred.
  • a water-soluble polymer such as gelatin can be produced as a starting material without using chemical substances such as a crosslinking agent, and crosslinked water-soluble polymer particles having excellent safety for living bodies, The efficient manufacturing method is provided.
  • Irradiated cross-linked water-soluble polymer particles such as irradiated cross-linked gelatin particles of the present invention do not use a cross-linking agent that has been used in the conventional chemical cross-linking method, so that they are highly safe to the living body and are chemically
  • the complicated chemical cross-linking and purification steps that have been carried out by the cross-linking method can be largely omitted.
  • gelatin is particularly preferred from the viewpoints of solubility in water, crosslinkability by radiation, suitability for use as a crosslinked gel preparation and cosmetic ingredients, and the like. Therefore, hereinafter, gelatin will be mainly described as the water-soluble polymer, but technical matters applicable to gelatin can also be applied to other water-soluble polymers that can be cross-linked by irradiation with radiation.
  • the concentration of the gelatin aqueous solution is too low, it is difficult to form crosslinked gelatin particles having a sufficient crosslinking density. If the concentration of the gelatin aqueous solution is too high, the viscosity of the aqueous solution becomes too high, and it becomes difficult to form uniform droplets, and thus it is difficult to form crosslinked gelatin particles having a desired average particle size. .
  • radiation refers to ⁇ rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo ⁇ decay), ⁇ rays (negative electrons and positrons emitted from nuclei), electron beams (almost constant).
  • Ionizing radiation such as short-wave electromagnetic waves emitted and absorbed by
  • the radiation does not include ultraviolet rays.
  • the oil used for preparing the W / O emulsion in the present invention has a kinematic viscosity within a predetermined range and does not cause crosslinking or decomposition under irradiation conditions of radiation.
  • This oil what is excellent in biological safety is preferable. If oil with excellent biological safety is used, even if a small amount of oil remains in the crosslinked water-soluble polymer particles (hereinafter sometimes referred to as “crosslinked particles”), the biological safety of the crosslinked particles is impaired. There is nothing.
  • the kinematic viscosity of the oil measured at 37.8 ° C. is in the range of 20 to 6,000 mm 2 / s, preferably 30 to 5,500 mm 2 / s, more preferably 40 to 5,000 mm 2 / s.
  • a W / O emulsion in which water droplets of an aqueous solution of a water-soluble polymer such as gelatin are uniformly dispersed can be formed.
  • the HLB of the surfactant is preferably in the range of 1.8 to 20.0, more preferably 2.0 to 17.0, and still more preferably 2.1 to 16.7.
  • the HLB of the surfactant is within the above range, the dispersibility by emulsifying droplets of a water-soluble polymer aqueous solution such as gelatin can be improved.
  • oil amount 100% by mass
  • concentration of the surfactant is within the above range, it becomes easy to form droplets having a uniform particle diameter of a water-soluble polymer aqueous solution such as gelatin. If the concentration of the surfactant is too low, the effect of the addition becomes small, and if it is too high, droplet aggregation of the water-soluble polymer aqueous solution tends to occur during storage of the W / O emulsion.
  • the electron beam irradiation dose is usually in the range of 5 to 3,000 kGy, preferably 5 to 2,000 kGy, more preferably 10 to 1,000 kGy.
  • the optimum value of the electron beam irradiation dose varies depending on the acceleration voltage and the characteristics of the irradiated object. For example, when the acceleration voltage is 200 kV, good crosslinked particles can be formed at an irradiation dose of 10 to 1,000 kGy. At an acceleration voltage of 800 kV, good crosslinked particles can be formed at an irradiation dose of 5 to 600 kGy.
  • a gelatin derivative having a functional group having an electrical or steric hindrance added to the side chain it is preferable to select a relatively large irradiation dose because of poor crosslinking efficiency.
  • step E the crosslinked water-soluble polymer particles are separated from the mixed solution of the W / O emulsion and the organic solvent.
  • the blade is pressed to recover the mixed solution from the support. Thereafter, the mixed solution is sufficiently stirred, and the rotational speed is preferably 1,000 to 10,000 rpm, more preferably 2,000 to 8,000 rpm, using a centrifuge (for example, “KUBOTA 2010” manufactured by Kubota Seisakusho).
  • the crosslinked particles are precipitated by centrifuging for 1 to 30 minutes, preferably 5 to 15 minutes.
  • Recovery rate [recovered gelatin particle amount (g) / gelatin input amount (g)] ⁇ 100
  • Example 3 Electron beam irradiation crosslinking treatment and purification treatment were carried out under the same conditions as in Example 1 except that the silicone oil was replaced with olive oil (Japanese Pharmacopoeia, manufactured by Tokai Pharmaceutical Co., Ltd.). The results are shown in Table 1.
  • Comparative Example 4 In Comparative Example 3, the cross-linking treatment and the purification treatment were carried out under the same conditions except that the 2.5% aqueous solution of glutaraldehyde was replaced with 40 ml of the aqueous 1.25% aqueous solution of glutaraldehyde. Gelatin particles were obtained. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.

Abstract

Irradiation-crosslinked particles of a water-soluble polymer which are prepared by crosslinking droplets made of an aqueous solution of a water-soluble polymer by irradiation with a radiation, having the properties (a) to (e): (a) the crosslinked particles take the form of dry particles having substantially independent shapes in a dry state; (b) the mean particle diameter of the dry particles falls within the range of 0.5μm to 5mm; (c) the water content of the dry particles falls within the range of 50 to 99%; (d) when the dry particles are immersed in water at 37°C for 24 hours, the particles are not dissolved in water but can keep particulate shapes in a water-swollen state; and (e) when the color of the dry particles is determined according to the L*a*b* color specification system with a color difference meter, the particles exhibit a hue specified by an L*value of 90.00 or above and a b* value of 9.00 or below; and a process for the production of the crosslinked particles by irradiation with a radiation such as an electron beam or γ rays.

Description

照射架橋水溶性高分子粒子及び照射架橋ゼラチン粒子並びにこれらの製造方法Irradiated crosslinked water-soluble polymer particles, irradiated crosslinked gelatin particles, and methods for producing them
 本発明は、電子線やγ線などの放射線の照射により架橋された照射架橋水溶性高分子粒子とその製造方法に関する。特に、本発明は、水溶性高分子としてゼラチンを放射線の照射により架橋処理してなる照射架橋ゼラチン粒子とその製造方法に関する。本発明の照射架橋ゼラチン粒子は、架橋剤や架橋反応停止剤などの化学物質を含有しないため、生体安全性が極めて高く、医療分野や化粧品分野を含む広範な技術分野において好適に利用することができる。 The present invention relates to an irradiation-crosslinked water-soluble polymer particle crosslinked by irradiation with radiation such as an electron beam or γ-ray, and a production method thereof. In particular, the present invention relates to irradiated crosslinked gelatin particles obtained by subjecting gelatin as a water-soluble polymer to crosslinking treatment by irradiation with radiation, and a method for producing the same. Since the irradiated crosslinked gelatin particles of the present invention do not contain chemical substances such as a crosslinking agent and a crosslinking reaction terminator, they have extremely high biological safety and can be suitably used in a wide range of technical fields including the medical field and cosmetic field. it can.
 ゼラチンは、生体安全性が高く、しかも生体内で分解性を示すため、医療品や化粧品の用途に適した水溶性高分子材料である。ゼラチンは、架橋を施すことにより、架橋ゼラチンを形成することができる。架橋ゼラチンは、板状、円柱状、角柱状、シート状、ディスク状、球状などの各種形状に形成することができる。架橋ゼラチンは、水分を吸収するとハイドロゲルを形成する。そのため、架橋ゼラチンは、架橋ゼラチンゲルと呼ばれることがある。 Gelatin is a water-soluble polymer material suitable for medical and cosmetic applications because it has high biological safety and exhibits degradability in vivo. Gelatin can be crosslinked to form crosslinked gelatin. The cross-linked gelatin can be formed into various shapes such as a plate shape, a column shape, a prism shape, a sheet shape, a disk shape, and a spherical shape. Cross-linked gelatin forms a hydrogel when it absorbs moisture. Therefore, the crosslinked gelatin is sometimes called a crosslinked gelatin gel.
 架橋ゼラチンは、生体内で分解性を示し、その分解速度は、架橋度によって制御することができる。架橋ゼラチンの架橋度は、その含水率にほぼ逆比例する。架橋ゼラチンの含水率が小さいほど、その架橋度が高いことを示す。 Crosslinked gelatin exhibits degradability in vivo, and the degradation rate can be controlled by the degree of crosslinking. The degree of crosslinking of crosslinked gelatin is almost inversely proportional to its moisture content. The smaller the water content of the crosslinked gelatin, the higher the degree of crosslinking.
 架橋ゼラチンは、生体適合性が良好である上、生理活性因子などの電荷を持つ薬剤を担持することができる。生理活性因子を担持した架橋ゼラチンを生体内に投与すると、架橋ゼラチンが生体内で分解するにつれて、担持した生理活性因子が徐々に放出される。 Cross-linked gelatin has good biocompatibility and can carry a charged drug such as a bioactive factor. When cross-linked gelatin carrying a bioactive factor is administered into a living body, the carried bioactive factor is gradually released as the cross-linked gelatin is degraded in the living body.
 生理活性因子として、例えば、血管新生誘導効果を持つ塩基性線維芽細胞増殖因子(bFGF)が知られている。このような生理活性因子を、水溶液としてヒトなどの生体内に投与すると、比較的短期間でその効果が低下するため、治療目的を達成することが困難である。これに対して、生理活性因子を担持した架橋ゼラチンを、生体内に埋め込んだり、注射器を用いて生体内に注入したりする方法により投与すると、該生理活性因子が徐放されるため、該生理活性因子を水溶液で投与した場合に比べて、長期間にわたって効果を持続させることができる。 As a physiologically active factor, for example, basic fibroblast growth factor (bFGF) having an angiogenesis-inducing effect is known. When such a physiologically active factor is administered as an aqueous solution to a living body such as a human, the effect is reduced in a relatively short period of time, so that it is difficult to achieve the therapeutic purpose. In contrast, when the cross-linked gelatin carrying a bioactive factor is administered by a method of embedding in a living body or injecting into a living body using a syringe, the bioactive factor is released slowly. Compared with the case where the active factor is administered as an aqueous solution, the effect can be maintained for a long period of time.
 ゼラチンは、コラーゲンを親物質とする動物性タンパク質である。そのため、架橋ゼラチンは、薬剤徐放キャリアとしての用途だけではなく、化粧品への用途展開も期待されている。この他、架橋ゼラチンは、工業用などの広範な用途に用いることができる。しかし、従来の架橋ゼラチンには、解決すべき重要な諸問題が残されている。 Gelatin is an animal protein whose parent substance is collagen. Therefore, the crosslinked gelatin is expected not only for use as a drug sustained release carrier but also for use in cosmetics. In addition, the crosslinked gelatin can be used for a wide range of applications such as industrial use. However, the conventional cross-linked gelatin still has important problems to be solved.
 第一の問題は、従来のゼラチンの架橋方法が、架橋剤を用いる化学架橋法に実質的に限定されていることにある。化学架橋法は、生産性に劣ることや架橋度の正確な制御が困難であることに加えて、残留する架橋剤や反応停止剤などの化学物質による生体への悪影響が懸念されるという問題を有している。 The first problem is that the conventional gelatin crosslinking method is substantially limited to a chemical crosslinking method using a crosslinking agent. The chemical cross-linking method has a problem that in addition to being inferior in productivity and difficult to accurately control the degree of cross-linking, there are concerns about adverse effects on the living body due to residual chemicals such as cross-linking agents and reaction terminators. Have.
 国際公開第1994/27630号パンフレット(特許文献1)には、ゼラチンを架橋して得られた架橋ゼラチンに、bFGFを担持させた架橋ゼラチンゲル製剤が提案されている。特許文献1には、ゼラチンの架橋には、架橋剤を用いた化学架橋法の他に、熱処理や紫外線照射による架橋法を採用することもできると記載されている。しかし、特許文献1の実施例には、グルタルアルデヒドや1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩などの架橋剤を用いた化学架橋法が示されているだけである。 International Publication No. 1994/27630 (Patent Document 1) proposes a crosslinked gelatin gel preparation in which bFGF is supported on a crosslinked gelatin obtained by crosslinking gelatin. Patent Document 1 describes that, in addition to a chemical crosslinking method using a crosslinking agent, a crosslinking method by heat treatment or ultraviolet irradiation can be adopted for gelatin crosslinking. However, the Examples of Patent Document 1 only show a chemical crosslinking method using a crosslinking agent such as glutaraldehyde or 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride.
 ゼラチンの化学架橋法では、化学物質からなる架橋剤を使用して架橋反応を行い、かつ、架橋反応を終了させるために、反応系内に化学物質からなる反応停止剤を加える必要がある。低毒性の架橋剤や反応停止剤を用いた場合であっても、これらは、化学物質であるため、微量であっても生体への悪影響の虞がある。そのため、架橋ゼラチンに架橋剤や反応停止剤が残留しないように十分に精製するなど、安全性の確保に注意する必要がある。 In the chemical crosslinking method of gelatin, it is necessary to add a reaction terminator made of a chemical substance in the reaction system in order to carry out a crosslinking reaction using a crosslinking agent made of a chemical substance and to terminate the crosslinking reaction. Even when a low-toxic crosslinking agent or reaction terminator is used, since these are chemical substances, there is a risk of adverse effects on the living body even in trace amounts. Therefore, it is necessary to pay attention to ensuring safety, for example, by sufficiently purifying the crosslinked gelatin so that no crosslinking agent or reaction terminator remains.
 特許文献1には、架橋剤を用いて得られた架橋ゼラチンを、蒸留水、エタノール、イソプロパノール、アセトンなどの有機溶媒で洗浄する方法が記載されている。より具体的に、特許文献1の実施例1には、架橋剤を用いて得られた架橋ゼラチンを、蒸留水により、37℃で12時間洗浄したことが記載されている。特許文献1の実施例1では、架橋反応にも24時間という長時間を費やしている。したがって、架橋剤を用いた架橋ゼラチンの製造方法は、架橋反応や安全性の確保に多大の時間と労力を要する。 Patent Document 1 describes a method of washing crosslinked gelatin obtained using a crosslinking agent with an organic solvent such as distilled water, ethanol, isopropanol, and acetone. More specifically, Example 1 of Patent Document 1 describes that crosslinked gelatin obtained using a crosslinking agent was washed with distilled water at 37 ° C. for 12 hours. In Example 1 of Patent Document 1, a long time of 24 hours is also spent for the crosslinking reaction. Therefore, the method for producing a crosslinked gelatin using a crosslinking agent requires a great amount of time and labor for ensuring a crosslinking reaction and safety.
 ゼラチンに紫外線を照射して架橋する方法では、光反応開始剤を用いて架橋反応を開始させ、そして、架橋反応を終了させるには、反応停止剤を添加して光反応開始剤の活性を停止させる必要がある。ところが、光反応開始剤や反応停止剤は、化学物質であるため、化学架橋法と同様の問題を有している。 In the method of cross-linking gelatin by irradiating with ultraviolet light, the photo-initiator is used to start the cross-linking reaction, and the cross-linking reaction is terminated by adding a reaction terminator to stop the photo-initiator activity. It is necessary to let However, since photoreaction initiators and reaction terminators are chemical substances, they have the same problems as the chemical crosslinking method.
 熱処理によりゼラチンを架橋する方法は、架橋に長時間を要する上、架橋度の制御が難しく、所望の架橋度を持つ架橋ゼラチンを安定的に得ることが困難である。そのため、熱処理により得られた架橋ゼラチンに生理活性因子などの薬剤を担持させても、所望の徐放性を安定して発揮する架橋ゼラチンゲル製剤を得ることが困難である。 The method of crosslinking gelatin by heat treatment requires a long time for crosslinking, and it is difficult to control the degree of crosslinking, and it is difficult to stably obtain a crosslinked gelatin having a desired degree of crosslinking. Therefore, it is difficult to obtain a crosslinked gelatin gel preparation that stably exhibits a desired sustained release property even when a drug such as a physiologically active factor is supported on the crosslinked gelatin obtained by heat treatment.
 第二の問題は、従来の架橋ゼラチンの製造方法では、毒性の虞がある残留化学物質を含まず、所望の架橋度を有する架橋ゼラチンを、粒子の形状で効率的に製造することが困難なことにある。 The second problem is that it is difficult to efficiently produce a cross-linked gelatin having a desired degree of cross-linking in the form of particles in the conventional method for producing cross-linked gelatin, which does not contain residual chemical substances that may be toxic. There is.
 薬剤を担持した架橋ゼラチンは、投与手段によっては粒子の形状であることが望ましいことがある。架橋ゼラチン粒子は、他成分との均一な混合が容易であるため、化粧品などの用途にも適している。 It may be desirable that the cross-linked gelatin carrying a drug is in the form of particles depending on the administration means. The crosslinked gelatin particles are suitable for cosmetics and the like because they can be easily mixed with other components.
 特許文献1には、粒子状の架橋ゼラチンの製造方法として、ゼラチン水溶液とオリーブ油などのオイルとを混合し撹拌して、ゼラチン水溶液を微粒子化したW/O型エマルジョンを調製し、これに架橋剤水溶液を添加して架橋反応させる方法が開示されている。特許文献1には、化学架橋反応後、遠心分離により架橋ゼラチン粒子を回収し、アセトン、酢酸エチル等で洗浄し、さらに、イソプロパノール、エタノール等に浸漬して、架橋反応を停止させる方法が示されている。 In Patent Document 1, as a method for producing particulate cross-linked gelatin, an aqueous gelatin solution and an oil such as olive oil are mixed and stirred to prepare a W / O emulsion in which the aqueous gelatin solution is finely divided, and a cross-linking agent is added thereto. A method of adding an aqueous solution to cause a crosslinking reaction is disclosed. Patent Document 1 discloses a method in which, after a chemical crosslinking reaction, crosslinked gelatin particles are collected by centrifugation, washed with acetone, ethyl acetate or the like, and further immersed in isopropanol, ethanol or the like to stop the crosslinking reaction. ing.
 より具体的に、特許文献1の実施例9には、アルカリ処理ゼラチン水溶液にオリーブ油を加えて撹拌することによりW/O型エマルジョンを調製し、次いで、これに、架橋剤として1-エチル3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩を加えて、一昼夜続けてゼラチンを架橋し、架橋ゼラチンゲルを得たことが示されている。特許文献1の実施例10には、オリーブ油にアルカリ処理ゼラチン水溶液を加えて撹拌することによりW/O型エマルジョンを調製し、次いで、これに1-エチル3-(3-ジメチルアミノプロピル)カルボシイミド塩酸塩を加えて、約15時間撹拌を続けてゼラチンを架橋したことが示されている。 More specifically, in Example 9 of Patent Document 1, a W / O type emulsion is prepared by adding olive oil to an alkali-treated gelatin aqueous solution and stirring, and then adding 1-ethyl 3-ethyl ether as a crosslinking agent. It has been shown that (3-dimethylaminopropyl) carbodiimide hydrochloride was added and the gelatin was cross-linked continuously overnight to obtain a cross-linked gelatin gel. In Example 10 of Patent Document 1, a W / O emulsion was prepared by adding an alkali-treated gelatin aqueous solution to olive oil and stirring, and then 1-ethyl 3- (3-dimethylaminopropyl) carbosiimide hydrochloride was added thereto. It has been shown that salt was added and stirring continued for about 15 hours to crosslink the gelatin.
 特許文献1の実施例10には、前記の化学架橋反応後、反応混合物にアセトンを加えて1時間攪拌した後、遠心分離により架橋ゼラチン粒子を回収し、回収した架橋ゼラチン粒子をアセトンにて洗浄し、その後、0.004NのHClを含むイソプロパノール中に37℃で1時間浸漬することにより、残存する架橋剤による架橋反応を停止させたことが示されている。さらに、特許文献1の実施例10には、架橋ゼラチン粒子をイソプロパノールにて5回洗浄した後、0.1%Tween 80(界面活性剤)を含む蒸留水で1回、次いで、蒸留水で2回洗浄したことが記載されている。 In Example 10 of Patent Document 1, after the chemical crosslinking reaction, acetone was added to the reaction mixture and stirred for 1 hour, and then the crosslinked gelatin particles were collected by centrifugation, and the collected crosslinked gelatin particles were washed with acetone. Then, it was shown that the crosslinking reaction by the remaining crosslinking agent was stopped by immersing in isopropanol containing 0.004N HCl at 37 ° C. for 1 hour. Furthermore, in Example 10 of Patent Document 1, the crosslinked gelatin particles were washed 5 times with isopropanol, then once with distilled water containing 0.1% Tween 80 (surfactant), and then 2 times with distilled water. It is described that it was washed twice.
 したがって、特許文献1に開示されている架橋剤を用いた架橋ゼラチン粒子の製造方法は、架橋反応と精製による安全性の確保に多大の時間と労力を要し、製品コストの低減化に限界があった。特許文献1に教示されている紫外線の照射や熱処理による架橋方法を採用して、架橋ゼラチン粒子を製造したとしても、このような製造方法は、前述の如き諸問題を抱えている。 Therefore, the method for producing cross-linked gelatin particles using the cross-linking agent disclosed in Patent Document 1 requires a great deal of time and labor to ensure safety by cross-linking reaction and purification, and there is a limit to reducing the product cost. there were. Even if the crosslinked gelatin particles are produced by employing the crosslinking method by ultraviolet irradiation or heat treatment taught in Patent Document 1, such a production method has the problems as described above.
 特開2005-325075号公報(特許文献2)には、bFGFを架橋ゼラチンゲルに担持させてなる半月板損傷治療剤に関する発明が開示されている。特許文献2にも、粒子状の架橋ゼラチンゲルを得る方法として、ゼラチン水溶液とオリーブ油などの油とを混合し、撹拌して、W/O型エマルジョンを形成し、これに架橋剤水溶液を添加して架橋反応させ、遠心分離により架橋ゼラチンゲルを回収し、繰り返し洗浄して精製する方法が開示されている。 Japanese Patent Application Laid-Open No. 2005-325075 (Patent Document 2) discloses an invention relating to a meniscal injury therapeutic agent comprising bFGF supported on a crosslinked gelatin gel. Also in Patent Document 2, as a method of obtaining a particulate crosslinked gelatin gel, an aqueous gelatin solution and an oil such as olive oil are mixed and stirred to form a W / O emulsion, and an aqueous crosslinking agent solution is added thereto. A method is disclosed in which a cross-linking reaction is performed, and a cross-linked gelatin gel is recovered by centrifugation, washed repeatedly and purified.
 特開2008-150596号公報(特許文献3)には、ゼラチンなどの高分子の水溶液を、水の溶解度が1~50質量%の溶媒中に液滴として投入し、該液滴中の水を溶媒中に移行させて、該溶媒中に該高分子を含有する粒子を形成させる方法が開示されている。特許文献3には、溶媒中に高分子水溶液を液滴として投入する手段として、インクジェットにより吐出エネルギーを付与する方法などが示されている。 In Japanese Patent Application Laid-Open No. 2008-150596 (Patent Document 3), an aqueous solution of a polymer such as gelatin is introduced as a droplet into a solvent having a water solubility of 1 to 50% by mass, and the water in the droplet is discharged. A method of transferring to a solvent to form particles containing the polymer in the solvent is disclosed. Patent Document 3 discloses a method of applying ejection energy by ink jet as means for introducing an aqueous polymer solution into a solvent as droplets.
 特許文献3には、高分子粒子を各種架橋法によって架橋することができると記載されている。しかし、特許文献3の実施例には、酸化鉄微粒子を含有するゼラチンの乾燥粒子(乾燥磁性粒子)を加熱して不完全架橋した例(実施例56~58)や、乾燥磁性粒子をアセトン中で架橋剤と反応させて不完全架橋した例(実施例59)が示されているだけである。 Patent Document 3 describes that polymer particles can be crosslinked by various crosslinking methods. However, Examples of Patent Document 3 include examples in which dry particles (dry magnetic particles) of gelatin containing iron oxide fine particles are heated and incompletely crosslinked (Examples 56 to 58), and dry magnetic particles in acetone. Only an example of incomplete crosslinking by reacting with a crosslinking agent (Example 59) is shown.
 国際公開第2008/016163号パンフレット(特許文献4)には、酸素雰囲気下でゼラチンが電子線の照射により架橋された架橋ゼラチンゲル層の複数層が互いに隣接して配置された層構成を有する架橋ゼラチンゲル多層構造体とその製造方法が開示されている。 WO 2008/016163 pamphlet (Patent Document 4) describes a cross-linked structure in which a plurality of cross-linked gelatin gel layers in which gelatin is cross-linked by electron beam irradiation in an oxygen atmosphere are arranged adjacent to each other. A gelatin gel multilayer structure and a method for producing the same are disclosed.
国際公開第1994/27630号パンフレット(米国特許第6,831,058 B1明細書に対応)International Publication No. 1994/27630 pamphlet (corresponding to US Pat. No. 6,831,058 B1 specification) 特開2005-325075号公報JP 2005-325075 A 特開2008-150596号公報JP 2008-150596 A 国際公開第2008/016163号パンフレットInternational Publication No. 2008/016163 Pamphlet
 本発明の課題は、ゼラチンなどの水溶性高分子を出発原料として、架橋剤などの化学物質を使用することなく製造することができ、生体に対する安全性に優れた架橋水溶性高分子粒子と、その効率的な製造方法を提供することにある。 An object of the present invention is to use a water-soluble polymer such as gelatin as a starting material without using a chemical substance such as a cross-linking agent, and crosslinked water-soluble polymer particles excellent in safety for a living body, It is to provide an efficient manufacturing method.
 より具体的に、本発明の課題は、ゼラチンなどの水溶性高分子を出発原料として、電子線やγ線などの放射線の照射によって架橋された架橋水溶性高分子粒子と、その効率的な製造方法を提供することにある。 More specifically, the object of the present invention is to provide crosslinked water-soluble polymer particles that are crosslinked by irradiation with radiation such as electron beams and γ rays, starting from a water-soluble polymer such as gelatin, and efficient production thereof. It is to provide a method.
 特に、本発明の課題は、アルカリ処理ゼラチンや酸処理ゼラチン、ゼラチン誘導体などのゼラチンを出発原料とし、生体に対する安全性に優れ、医療や化粧品分野などの用途に適した架橋ゼラチン粒子と、電子線やγ線などの放射線の照射による架橋法を採用した架橋ゼラチン粒子の効率的な製造方法を提供することにある。 In particular, an object of the present invention is to provide crosslinked gelatin particles that are excellent in safety for living bodies and suitable for uses in the medical and cosmetic fields, starting with gelatin such as alkali-treated gelatin, acid-treated gelatin, and gelatin derivatives, and electron beams. Another object of the present invention is to provide an efficient method for producing crosslinked gelatin particles employing a crosslinking method by irradiation with radiation such as γ rays.
 本発明者らは、前記課題を解決するために鋭意研究した結果、ゼラチンなどの水溶性高分子の水溶液を、特定の範囲内の動粘度を有するオイル中に液滴として分散したW/O型エマルジョンを調製し、次いで、該W/O型エマルジョンを、放射線が透過することができる厚みの層に形成した後、該W/O型エマルジョン層に放射線を照射して、該液滴中の水溶性高分子を架橋させることにより、架橋水溶性高分子粒子を形成し得ることを見出した。 As a result of diligent research to solve the above-mentioned problems, the present inventors have found that an aqueous solution of a water-soluble polymer such as gelatin is dispersed as droplets in oil having a kinematic viscosity within a specific range. An emulsion is prepared, and then the W / O type emulsion is formed into a layer having a thickness through which radiation can be transmitted, and then the W / O type emulsion layer is irradiated with radiation to dissolve water in the droplets. It has been found that crosslinked water-soluble polymer particles can be formed by crosslinking a functional polymer.
 放射線の照射による架橋後、該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、オイル成分を除去することにより、架橋水溶性高分子粒子を回収することができる。放射線として電子線を用いると、連続的な諸工程を含む製造方法により、効率的に架橋水溶性高分子粒子を製造することができる。 After crosslinking by irradiation with radiation, the crosslinked water-soluble polymer particles can be recovered by adding an organic solvent that is soluble in the oil to the W / O emulsion layer and removing the oil component. it can. When an electron beam is used as radiation, crosslinked water-soluble polymer particles can be efficiently produced by a production method including continuous steps.
 放射線の照射によりゼラチンなどの水溶性高分子の液滴を架橋させる方法によれば、架橋剤や反応停止剤、光反応開始剤などの化学物質の使用を一切必要とせず、かつ、残留する化学物質除去のための煩雑な精製工程を要しないため、生体安全性に優れた架橋水溶性高分子粒子体を効率的に製造することができる。放射線の照射による架橋法は、操作が比較的簡単であり、架橋処理時間も短い。 According to the method of cross-linking droplets of water-soluble polymers such as gelatin by irradiation, there is no need to use any chemical substances such as cross-linking agents, reaction terminators, and photoinitiators, and the remaining chemicals. Since a complicated purification step for removing substances is not required, a crosslinked water-soluble polymer particle body excellent in biological safety can be efficiently produced. The crosslinking method by irradiation with radiation is relatively easy to operate and the crosslinking treatment time is short.
 化学架橋法によれば、精製後にも、微量の架橋剤などの化学物質が架橋ゼラチン粒子などの架橋水溶性高分子粒子中に封じ込まれた状態で残留し、着色の原因となる。これに対して、放射線に照射架橋法によれば、残留する化学物質による着色のない、色相に優れた架橋ゼラチン粒子などの架橋水溶性高分子粒子を得ることができる。色相に優れた架橋ゼラチン粒子などは、化粧品の用途などに好適である。本発明は、これらの知見に基づいて完成するに至ったものである。 According to the chemical cross-linking method, even after purification, a small amount of a chemical substance such as a cross-linking agent remains encapsulated in the cross-linked water-soluble polymer particles such as cross-linked gelatin particles, which causes coloring. On the other hand, cross-linking water-soluble polymer particles such as cross-linked gelatin particles excellent in hue without coloring due to residual chemical substances can be obtained by the radiation cross-linking method. Cross-linked gelatin particles having excellent hue are suitable for cosmetic applications. The present invention has been completed based on these findings.
 本発明によれば、水溶性高分子の水溶液からなる複数個の液滴が放射線の照射により架橋処理されて形成された照射架橋水溶性高分子粒子であって、
a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、
c)乾燥粒子の含水率が50~99%の範囲内であり、
d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す
ことを特徴とする照射架橋水溶性高分子粒子が提供される。
According to the present invention, irradiation-crosslinked water-soluble polymer particles formed by crosslinking a plurality of droplets made of an aqueous solution of a water-soluble polymer by irradiation with radiation,
a) in the dry state, forming dry particles having a substantially independent shape;
b) the average particle size of the dry particles is in the range from 0.5 μm to 5 mm;
c) the moisture content of the dry particles is in the range of 50-99%;
d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
e) When the L * a * b * color system of dry particles is measured using a color difference meter, the L * value is 90.00 or more and the b * value is 9.00 or less. Irradiated crosslinked water-soluble polymer particles are provided.
 また、本発明によれば、下記の工程A乃至E:
(A)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%の水溶性高分子の水溶液とを混合し、撹拌して、該オイル中に該水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを形成する工程A;
(B)該W/O型エマルジョンを、放射線が透過することができる厚みの層に形成する工程B;
(C)該W/O型エマルジョン層に放射線を照射して、該液滴中の水溶性高分子を架橋させることにより、架橋水溶性高分子粒子を形成する工程C;
(D)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程D;及び
(E)該混合液から架橋水溶性高分子粒子を分離する工程E;
の各工程を含むことを特徴とする照射架橋水溶性高分子粒子の製造方法が提供される。
Moreover, according to the present invention, the following steps A to E:
(A) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous solution of a water-soluble polymer having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O emulsion in which droplets of the water-soluble polymer aqueous solution are dispersed in the oil;
(B) Step B of forming the W / O emulsion into a layer having a thickness that allows radiation to pass through;
(C) Step C of forming crosslinked water-soluble polymer particles by irradiating the W / O emulsion layer with radiation to crosslink the water-soluble polymer in the droplets;
(D) Step D of adding an organic solvent having solubility to the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and (E) Step E of separating the crosslinked water-soluble polymer particles from the mixed solution;
There is provided a method for producing irradiation-crosslinked water-soluble polymer particles characterized by comprising the steps of:
 さらに、本発明によれば、下記の工程1乃至6:
(1)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程1;
(2)支持体上に、該W/O型エマルジョンを塗工して、厚みが5μmから3mmまでの範囲内の塗工層を形成する工程2;
(3)該塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、該液滴中のゼラチンを架橋することにより、架橋ゼラチン粒子を形成する工程3;
(4)該塗工層に、該オイルに対して溶解性を有する有機溶媒を加えて、該塗工層のW/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程4;
(5)該混合液を支持体上から回収する工程5;及び
(6)回収した混合液から架橋ゼラチン粒子を分離する工程6;
の各工程を含むことを特徴とする電子線照射架橋ゼラチン粒子の製造方法が提供される。前記工程2乃至5は、それぞれ連続的な工程とすることができる。
Furthermore, according to the present invention, the following steps 1 to 6:
(1) An oil having a kinematic viscosity within a range of 20 to 6,000 mm 2 / s at a measurement temperature of 37.8 ° C. and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil;
(2) Step 2 of coating the W / O emulsion on the support to form a coating layer having a thickness in the range of 5 μm to 3 mm;
(3) A step of forming crosslinked gelatin particles by irradiating the coating layer with an electron beam so that an irradiation dose is within a range of 5 to 3,000 kGy and crosslinking gelatin in the droplets. 3;
(4) Step 4 of adding an organic solvent soluble in the oil to the coating layer to form a mixed solution containing the W / O emulsion of the coating layer and the organic solvent;
(5) Step 5 for recovering the mixed solution from the support; and (6) Step 6 for separating the crosslinked gelatin particles from the recovered mixed solution;
There is provided a method for producing electron beam-irradiated crosslinked gelatin particles comprising the steps of: The steps 2 to 5 can be continuous steps.
 さらにまた、本発明によれば、下記の工程I乃至V:
(I)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程I;
(II)該W/O型エマルジョンを容器内に注入して、W/O型エマルジョン層を形成する工程II;
(III)該W/O型エマルジョン層に、照射線量が5~3,000kGyの範囲内となるようにγ線を照射して、該液滴中のゼラチンを架橋する工程III;
(IV)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程IV;及び
(V)該混合液から架橋ゼラチン粒子を分離する工程V;
の各工程を含むことを特徴とするγ線照射架橋ゼラチン粒子の製造方法が提供される。
Furthermore, according to the present invention, the following steps I to V:
(I) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil; I;
(II) Step II of injecting the W / O emulsion into a container to form a W / O emulsion layer;
(III) Step III of irradiating the W / O type emulsion layer with γ rays so that the irradiation dose is in the range of 5 to 3,000 kGy to crosslink gelatin in the droplets;
(IV) Step IV of adding an organic solvent having solubility in the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and
(V) Step V of separating crosslinked gelatin particles from the mixed solution;
A method for producing γ-irradiated crosslinked gelatin particles is provided.
 本発明によれば、ゼラチンなどの水溶性高分子を出発原料として、架橋剤などの化学物質を使用することなく製造することができ、生体に対する安全性に優れた架橋水溶性高分子粒子と、その効率的な製造方法が提供される。 According to the present invention, a water-soluble polymer such as gelatin can be produced as a starting material without using chemical substances such as a crosslinking agent, and crosslinked water-soluble polymer particles having excellent safety for living bodies, The efficient manufacturing method is provided.
 本発明の照射架橋ゼラチン粒子などの照射架橋水溶性高分子粒子は、従来から行われている化学架橋法で使用されている架橋剤を用いていないため、生体への安全性が高く、しかも化学架橋法で行われていた煩雑な化学架橋と精製工程を大幅に省略することができる。 Irradiated cross-linked water-soluble polymer particles such as irradiated cross-linked gelatin particles of the present invention do not use a cross-linking agent that has been used in the conventional chemical cross-linking method, so that they are highly safe to the living body and are chemically The complicated chemical cross-linking and purification steps that have been carried out by the cross-linking method can be largely omitted.
 特に、電子線の照射による架橋法を採用すると、連続的な工程により、照射架橋ゼラチン粒子などの照射架橋水溶性高分子粒子を製造することができる。本発明の放射線の照射により架橋されたゼラチン粒子などの照射架橋水溶性高分子粒子は、架橋剤などの毒性のある残留化学物質を含むことがなく、生体に対する安全性に優れ、色相にも優れているため、薬物の担体や化粧品の成分などの用途に好適に利用することができる。 In particular, when a crosslinking method by electron beam irradiation is employed, irradiated crosslinked water-soluble polymer particles such as irradiated crosslinked gelatin particles can be produced in a continuous process. Irradiated cross-linked water-soluble polymer particles such as gelatin particles cross-linked by irradiation of the present invention do not contain toxic residual chemical substances such as cross-linking agents, and are excellent in safety to the living body and in hue. Therefore, it can be suitably used for applications such as drug carriers and cosmetic ingredients.
図1は、電子線照射架橋ゼラチン粒子(乾燥粒子)のSEM写真(6000倍)である。FIG. 1 is an SEM photograph (6000 times) of electron beam irradiated crosslinked gelatin particles (dry particles).
 水溶性高分子としては、例えば、ゼラチン、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリ乳酸、ポリカプロラクトン、ラクチドとグリコリドとの共重合体などが挙げられる。水溶性高分子としては、水に1~80質量%、好ましくは3~60質量%の濃度で溶解し得るものであることが好ましい。水溶性高分子としては、放射線の照射によって架橋し得るものが用いられるが、電子線またはγ線の照射によって架橋し得るものであることが好ましい。これらの水溶性高分子の中でも、水に対する溶解性、放射線による架橋性、架橋ゲル製剤や化粧品の成分としての用途への適性などの観点から、ゼラチンが特に好ましい。そこで、以下、水溶性高分子として、主としてゼラチンを取り上げて説明するが、ゼラチンに適用可能な技術的事項は、放射線の照射により架橋可能な他の水溶性高分子にも適用することができる。 Examples of the water-soluble polymer include gelatin, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polylactic acid, polycaprolactone, and a copolymer of lactide and glycolide. The water-soluble polymer is preferably one that can be dissolved in water at a concentration of 1 to 80% by mass, preferably 3 to 60% by mass. As the water-soluble polymer, those that can be cross-linked by irradiation with radiation are used, but those that can be cross-linked by irradiation with electron beams or γ rays are preferable. Among these water-soluble polymers, gelatin is particularly preferred from the viewpoints of solubility in water, crosslinkability by radiation, suitability for use as a crosslinked gel preparation and cosmetic ingredients, and the like. Therefore, hereinafter, gelatin will be mainly described as the water-soluble polymer, but technical matters applicable to gelatin can also be applied to other water-soluble polymers that can be cross-linked by irradiation with radiation.
 ゼラチンには、アルカリ処理ゼラチン、酸処理ゼラチン、及びゼラチン誘導体が含まれる。ゼラチンは、主として、牛骨、牛皮、及び豚皮を原料として生産されている。これらの原料の中でゼラチンに転化される親物質は、コラーゲンと呼ばれるタンパク質である。コラーゲンは、難溶性の物質であるが、これを酸やアルカリで前処理した後、加熱すると、3本鎖螺旋の分子構造が壊れて、ランダムな3本の分子に分かれる。このようにして熱変性し、可溶化されたコラーゲンを狭義のゼラチンと呼ぶ。 Gelatin includes alkali-treated gelatin, acid-treated gelatin, and gelatin derivatives. Gelatin is mainly produced from cow bone, cow skin, and pig skin. Among these raw materials, the parent substance that is converted into gelatin is a protein called collagen. Collagen is a poorly soluble substance, but when this is pretreated with acid or alkali and then heated, the molecular structure of the triple-stranded helix is broken and divided into three random molecules. Collagen thus heat-denatured and solubilized is called gelatin in a narrow sense.
 コラーゲン原料から高品質のゼラチンを抽出するために、塩酸や硫酸などの無機酸または石灰(アルカリ)を用いて、原料の前処理を行う。原料の前処理条件により、前者を酸処理ゼラチン、後者をアルカリ処理ゼラチンと称する。ゼラチンは、両性電解質である。両性電解質は、その溶液のpHによって荷電状態が大きく変化するが、特定のpHでは、分子内の正と負がつり合い、全体として荷電がゼロとなる。このときのpHを等電点という。本発明の架橋ゼラチン粒子の原料となるゼラチンには、例えば、等電点が5付近のアルカリ処理ゼラチン、及び等電点が9付近の酸処理ゼラチンが含まれる。 In order to extract high-quality gelatin from the collagen raw material, the raw material is pretreated with an inorganic acid such as hydrochloric acid or sulfuric acid or lime (alkali). The former is called acid-treated gelatin and the latter is called alkali-treated gelatin, depending on the raw material pretreatment conditions. Gelatin is an ampholyte. The amphoteric electrolyte has a large change in charge state depending on the pH of the solution, but at a specific pH, the positive and negative in the molecule balance and the charge becomes zero as a whole. The pH at this time is called an isoelectric point. Examples of the gelatin used as the raw material for the crosslinked gelatin particles of the present invention include alkali-treated gelatin having an isoelectric point of around 5 and acid-treated gelatin having an isoelectric point of around 9.
 ゼラチンには、ゼラチン側鎖を変性または修飾したゼラチン誘導体がある。ゼラチン誘導体としては、酸処理ゼラチンに、エチレンジアミン、スペルミジンまたはスペルミンをカルボジイミドでグラフト重合したカチオン化ゼラチン誘導体;ゼラチンの側鎖にコハク酸を導入したサクシニル化ゼラチン誘導体;などが代表的なものである。 Gelatin includes gelatin derivatives with modified or modified gelatin side chains. Typical examples of gelatin derivatives include cationized gelatin derivatives obtained by graft polymerization of ethylenediamine, spermidine or spermine with carbodiimide on acid-treated gelatin; succinylated gelatin derivatives obtained by introducing succinic acid into the side chain of gelatin; and the like.
 本発明では、水溶性高分子として、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンを用いることが好ましい。 In the present invention, it is preferable to use at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives as the water-soluble polymer.
 ゼラチンとしては、入手が容易な市販品を用いることができる。市販のゼラチンとしては、例えば、新田ゼラチン社製の等電点が4.9または5.0のアルカリ処理ゼラチン;新田ゼラチン社製の等電点が9.0の酸処理ゼラチン;ニチバン株式会社製のカチオン化ゼラチン誘導体(等電点が9.0の酸処理ゼラチンにエチレンジアミンをカルボジイミドでグラフトしたゼラチン誘導体);などが挙げられる。 As the gelatin, a commercially available product that can be easily obtained can be used. Commercially available gelatin includes, for example, alkali-treated gelatin with an isoelectric point of 4.9 or 5.0 manufactured by Nitta Gelatin Co .; acid-treated gelatin with an isoelectric point of 9.0 manufactured by Nitta Gelatin Co .; And a cationized gelatin derivative (a gelatin derivative obtained by grafting ethylenediamine with carbodiimide on acid-treated gelatin having an isoelectric point of 9.0);
 ゼラチンなどの水溶性高分子の水溶液の濃度は、1~80質量%、好ましくは3~60質量%、より好ましくは5~50質量%、特に好ましくは7~40質量%の範囲内である。ゼラチン水溶液の濃度は、ゼラチン種に応じて、それぞれに適した範囲内とすることが好ましい。例えば、平均分子量が100,000以上の高分子量ゼラチンの場合は、溶液粘度が高いため、その水溶液の濃度は、5~30質量%の範囲内が好ましい。ゼラチン誘導体は、一般に溶液粘度が低いため、その水溶液の濃度は、好ましくは7~60質量%、より好ましくは10~50質量%、特に好ましくは15~40質量%の範囲内である。ゼラチン水溶液の濃度が低すぎると、十分な架橋密度を持つ架橋ゼラチン粒子を形成することが困難である。ゼラチン水溶液の濃度が高すぎると、その水溶液粘度が高くなりすぎて、均一な液滴を形成することが困難となり、ひいては、所望の平均粒径を有する架橋ゼラチン粒子を形成することが困難となる。 The concentration of an aqueous solution of a water-soluble polymer such as gelatin is 1 to 80% by mass, preferably 3 to 60% by mass, more preferably 5 to 50% by mass, and particularly preferably 7 to 40% by mass. The concentration of the gelatin aqueous solution is preferably within a range suitable for each gelatin type. For example, in the case of high molecular weight gelatin having an average molecular weight of 100,000 or more, since the solution viscosity is high, the concentration of the aqueous solution is preferably in the range of 5 to 30% by mass. Since gelatin derivatives generally have a low solution viscosity, the concentration of the aqueous solution is preferably 7 to 60% by mass, more preferably 10 to 50% by mass, and particularly preferably 15 to 40% by mass. If the concentration of the gelatin aqueous solution is too low, it is difficult to form crosslinked gelatin particles having a sufficient crosslinking density. If the concentration of the gelatin aqueous solution is too high, the viscosity of the aqueous solution becomes too high, and it becomes difficult to form uniform droplets, and thus it is difficult to form crosslinked gelatin particles having a desired average particle size. .
 本発明の照射架橋水溶性高分子粒子は、水溶性高分子の水溶液からなる複数個の液滴が放射線の照射により架橋処理されて形成された照射架橋粒子である。水溶性高分子水溶液からなる複数個の液滴を形成するには、オイル中に水溶性高分子水溶液を分散させて、該水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを調製する方法を好適に採用することができる。 The irradiation-crosslinked water-soluble polymer particles of the present invention are irradiation-crosslinked particles formed by crosslinking a plurality of droplets made of an aqueous solution of a water-soluble polymer by irradiation with radiation. To form a plurality of droplets made of a water-soluble polymer aqueous solution, a water-soluble polymer aqueous solution is dispersed in oil to prepare a W / O type emulsion in which the water-soluble polymer aqueous solution droplets are dispersed. The method to do can be used suitably.
 本発明において、放射線とは、α線(α崩壊を行う放射性核種から放出されるヘリウム-4の原子核の粒子線)、β線(原子核から放出される陰電子及び陽電子)、電子線(ほぼ一定の運動エネルギーを持つ電子ビーム;一般に、熱電子を真空中で加速してつくる)などの粒子線;γ線(原子核、素粒子のエネルギー準位間の遷移や素粒子の対消滅、対生成などによって放出・吸収される波長の短い電磁波)などの電離放射線;を意味する。本発明において、放射線には、紫外線は含まれないものとする。 In the present invention, radiation refers to α rays (particle beams of helium-4 nuclei emitted from radionuclides that undergo α decay), β rays (negative electrons and positrons emitted from nuclei), electron beams (almost constant). Electron beams with kinetic energy of the following; Particle beams such as generally generated by accelerating thermionic electrons in a vacuum; gamma rays (transitions between energy levels of nuclei and elementary particles, elementary particle annihilation, pair production, etc.) Ionizing radiation such as short-wave electromagnetic waves emitted and absorbed by In the present invention, the radiation does not include ultraviolet rays.
 本発明において、架橋水溶性高分子粒子の製造工程での作業性、取扱性などの観点から、放射線の中でも電子線及びγ線が好ましく、電子線がより好ましい。水溶性高分子の水溶液からなる複数個の液滴を放射線の照射により架橋処理するには、該W/O型エマルジョンを所定厚みの層に形成し、該W/O型エマルジョン層に放射線を照射する方法を採用することができる。 In the present invention, from the viewpoints of workability and handling in the production process of the crosslinked water-soluble polymer particles, among the radiation, electron beams and γ rays are preferable, and electron beams are more preferable. To crosslink a plurality of droplets made of an aqueous solution of a water-soluble polymer by irradiation with radiation, the W / O emulsion is formed in a layer having a predetermined thickness, and the W / O emulsion layer is irradiated with radiation. The method to do can be adopted.
 電子線は、被照射物を透過し得る範囲が短いため、該W/O型エマルジョン層の厚みが比較的薄い場合に適用することが好ましい。電子線の照射は、被照射物を移動させながら連続的に行うことができるため、該W/O型エマルジョンの塗工層を載せた支持体を走行させながら、連続的に電子線を照射する方法を採用することにより、効率良く架橋粒子を製造することができる。γ線の照射は、一般に、バッチ式で行われ、被照射物を透過し得る範囲も長いため、粒径の大きな架橋粒子の製造に適している。 The electron beam is preferably applied when the thickness of the W / O type emulsion layer is relatively thin because the range in which the irradiation object can be transmitted is short. Since the irradiation with the electron beam can be performed continuously while moving the object to be irradiated, the electron beam is continuously irradiated while the support on which the coating layer of the W / O emulsion is carried is traveled. By adopting the method, crosslinked particles can be efficiently produced. Irradiation with γ-rays is generally carried out batchwise and is suitable for the production of crosslinked particles having a large particle size because the range that can pass through the irradiated object is long.
 ゼラチンなどの水溶性高分子の水溶液からなる複数個の液滴を放射線の照射により架橋処理すると、水分を含有する架橋水溶性高分子ゲル粒子(例えば、架橋ゼラチンゲル粒子)を得ることができる。架橋水溶性高分子ゲル粒子を乾燥すれば、乾燥粒子を得ることができる。架橋水溶性高分子粒子において、水溶性高分子は、架橋によって水溶性が実質的に失われる。 When a plurality of droplets made of an aqueous solution of a water-soluble polymer such as gelatin are crosslinked by irradiation with radiation, crosslinked water-soluble polymer gel particles containing water (for example, crosslinked gelatin gel particles) can be obtained. Dry particles can be obtained by drying the crosslinked water-soluble polymer gel particles. In the crosslinked water-soluble polymer particles, the water-soluble polymer is substantially lost in water solubility by crosslinking.
 本発明の照射架橋水溶性高分子粒子は、
a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、
c)乾燥粒子の含水率が50~99%の範囲内であり、
d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示すものである。
Irradiated crosslinked water-soluble polymer particles of the present invention,
a) in the dry state, forming dry particles having a substantially independent shape;
b) the average particle size of the dry particles is in the range from 0.5 μm to 5 mm;
c) the moisture content of the dry particles is in the range of 50-99%;
d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
e) When the L * a * b * color system of dry particles is measured using a color difference meter, the hue of the L * value is 90.00 or more and the b * value is 9.00 or less.
 本発明の照射架橋水溶性高分子粒子は、下記の工程A乃至Eを含む方法によって製造することができる。 The irradiation-crosslinked water-soluble polymer particles of the present invention can be produced by a method including the following steps A to E.
(A)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%の水溶性高分子の水溶液とを混合し、撹拌して、該オイル中に該水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを形成する工程A;
(B)該W/O型エマルジョンを、放射線が透過することができる厚みの層に形成する工程B;
(C)該W/O型エマルジョン層に放射線を照射して、該液滴中の水溶性高分子を架橋させることにより、架橋水溶性高分子粒子を形成する工程C;
(D)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程D;及び
(E)該混合液から架橋水溶性高分子粒子を分離する工程E。
(A) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous solution of a water-soluble polymer having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O emulsion in which droplets of the water-soluble polymer aqueous solution are dispersed in the oil;
(B) Step B of forming the W / O emulsion into a layer having a thickness that allows radiation to pass through;
(C) Step C of forming crosslinked water-soluble polymer particles by irradiating the W / O emulsion layer with radiation to crosslink the water-soluble polymer in the droplets;
(D) Step D of adding an organic solvent having solubility to the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and (E) Step E of separating the crosslinked water-soluble polymer particles from the mixed solution.
 本発明でW/O型エマルジョンを調製するのに用いるオイルとしては、所定の範囲内の動粘度を有し、放射線の照射条件下で架橋または分解を引き起こさないものである。該オイルとしては、生体安全性に優れるものが好ましい。生体安全性に優れるオイルを用いると、仮に架橋水溶性高分子粒子(以下、「架橋粒子」と略記することがある)中に微量のオイルが残留しても、架橋粒子の生体安全性を損なうことがない。 The oil used for preparing the W / O emulsion in the present invention has a kinematic viscosity within a predetermined range and does not cause crosslinking or decomposition under irradiation conditions of radiation. As this oil, what is excellent in biological safety is preferable. If oil with excellent biological safety is used, even if a small amount of oil remains in the crosslinked water-soluble polymer particles (hereinafter sometimes referred to as “crosslinked particles”), the biological safety of the crosslinked particles is impaired. There is nothing.
 オイルの具体例としては、例えば、シリコーン油、高級脂肪酸エステルなどの合成油;例えば、ヒマワリ油、グレープシード油、ゴマ油、コーン油、アプリコット油、ひまし油、アボカド油、オリーブ油、小麦胚芽油、スイートアーモンド油、ヤシ油、西洋アブラナ油、綿実油、ヘーゼルナッツ油、マカデミア油、なたね油、からしな油等の植物油;が挙げられる。これらのオイルの中でも、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルが好ましい。 Specific examples of the oil include, for example, synthetic oils such as silicone oil and higher fatty acid esters; for example, sunflower oil, grape seed oil, sesame oil, corn oil, apricot oil, castor oil, avocado oil, olive oil, wheat germ oil, sweet almond And vegetable oils such as oil, coconut oil, rapeseed oil, cottonseed oil, hazelnut oil, macadamia oil, rapeseed oil and mustard oil. Among these oils, at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil is preferable.
 シリコーン油としては、ジメチルシリコーンオイルが好ましい。市販のシリコーン油としては、例えば、信越化学工業社製のシリコーンオイルKF-96-500cs、KF-96-1,000cs、KF-96-3,000cs、KF-96-5,000cs、KF-96H-6,000csなどが挙げられる。500csなどの市販品の動粘度は、25℃で測定した値である。 As the silicone oil, dimethyl silicone oil is preferable. Examples of commercially available silicone oils include silicone oils KF-96-500cs, KF-96-1,000cs, KF-96-3,000cs, KF-96-5,000cs, KF-96H manufactured by Shin-Etsu Chemical Co., Ltd. -6,000 cs. The kinematic viscosity of commercial products such as 500 cs is a value measured at 25 ° C.
 これらのオイルは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができるが、架橋処理後のオイルの回収や再利用の観点からは、それぞれ単独で使用することが望ましい場合が多い。 These oils can be used alone or in combination of two or more, but it is often desirable to use them individually from the viewpoint of recovery and reuse of the oil after the crosslinking treatment.
 オイルの37.8℃で測定した動粘度は、20~6,000mm/s、好ましくは30~5,500mm/s、より好ましくは40~5,000mm/sの範囲内である。動粘度が上記範囲内にあるオイルを用いると、ゼラチンなどの水溶性高分子の水溶液の液滴が合一することなく均一に分散したW/O型エマルジョンを形成することができる。さらに、動粘度が上記範囲内にあるオイルを用いると、架橋粒子同士の合一、架橋粒子の機壁や装置各部への付着、架橋粒子の沈殿などを抑制することができる。 The kinematic viscosity of the oil measured at 37.8 ° C. is in the range of 20 to 6,000 mm 2 / s, preferably 30 to 5,500 mm 2 / s, more preferably 40 to 5,000 mm 2 / s. When an oil having a kinematic viscosity within the above range is used, a W / O emulsion in which water droplets of an aqueous solution of a water-soluble polymer such as gelatin are uniformly dispersed can be formed. Further, when oil having a kinematic viscosity within the above range is used, coalescence of the crosslinked particles, adhesion of the crosslinked particles to the machine wall and each part of the apparatus, precipitation of the crosslinked particles, and the like can be suppressed.
 オイルの動粘度が低すぎると、架橋粒子の機壁や装置各部への付着、架橋粒子の沈殿などが生じて、架橋粒子の収率が著しく低下する。オイルの動粘度が高すぎると、ゼラチンなどの水溶性高分子の水溶液の液滴が合一することなく均一に分散したW/O型エマルジョンを形成することが困難となり、回収時の掻き取りも困難となる。オイル及びW/O型エマルジョンは、架橋処理の際に比較的高温に保持されることが多いため、オイルの動粘度の測定温度を37.8℃に設定した。 If the kinematic viscosity of the oil is too low, adhesion of the crosslinked particles to the machine walls and parts of the apparatus, precipitation of the crosslinked particles, etc. occur, and the yield of the crosslinked particles is significantly reduced. If the kinematic viscosity of the oil is too high, it will be difficult to form a uniformly dispersed W / O emulsion without causing droplets of an aqueous solution of a water-soluble polymer such as gelatin to coalesce, and scraping during recovery It becomes difficult. Since oil and W / O type emulsions are often kept at a relatively high temperature during the crosslinking treatment, the temperature for measuring the kinematic viscosity of the oil was set at 37.8 ° C.
 前記工程Aでは、測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%の水溶性高分子の水溶液とを混合し、撹拌して、該オイル中に該水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを形成する。 In the step A, an oil having a kinematic viscosity within a range of 20 to 6,000 mm 2 / s at a measurement temperature of 37.8 ° C. and an aqueous solution of a water-soluble polymer having a concentration of 1 to 80% by mass are mixed. , Stirring to form a W / O type emulsion in which droplets of the water-soluble polymer aqueous solution are dispersed in the oil.
 ゼラチンなどの水溶性高分子の水溶液の量は、W/O型エマルジョンの全量を基準にして、通常、1~40質量%、好ましくは1.3~30質量%、より好ましくは1.5~20質量%の範囲内である。W/O型エマルジョン中の水溶性高分子水溶液の量が少なすぎると、架橋粒子の収率が低下する。W/O型エマルジョン中の水溶性高分子水溶液の量が多すぎると、均一な粒子径の液滴を有するW/O型エマルジョンを形成することが困難となり、W/O型エマルジョンの形成自体が困難になることもある。 The amount of the aqueous solution of the water-soluble polymer such as gelatin is usually 1 to 40% by mass, preferably 1.3 to 30% by mass, more preferably 1.5 to 30% by mass based on the total amount of the W / O emulsion. It is in the range of 20% by mass. When the amount of the water-soluble polymer aqueous solution in the W / O type emulsion is too small, the yield of the crosslinked particles is lowered. If the amount of the water-soluble polymer aqueous solution in the W / O emulsion is too large, it becomes difficult to form a W / O emulsion having droplets with a uniform particle size, and the formation of the W / O emulsion itself is difficult. It can be difficult.
 W/O型エマルジョンを調製するには、ゼラチンなどの水溶性高分子水溶液の温度を、通常、20~45℃、好ましくは25~43℃の範囲内に調節する。次いで、40~70℃の範囲内の温度に調節したオイルを含有する容器内に水溶性高分子水溶液を投入し、撹拌装置で撹拌して、オイル中に水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを調製する。W/O型エマルジョンの調製を小規模で行う場合には、例えば、三つ口丸底フラスコ内にオイルを入れて40~70℃の範囲内の温度に調節し、次いで、ゼラチンなどの水溶性高分子水溶液を投入し、撹拌用モータに取り付けた攪拌用プロペラ等で通常100~1,000rpm、好ましくは200~600rpm程度の回転数で均一に攪拌する。W/O型エマルジョン中でのゼラチンなどの水溶性高分子水溶液の粒子径は、0.5μmから5mmの範囲内で任意に調整することができる。 To prepare a W / O type emulsion, the temperature of a water-soluble polymer aqueous solution such as gelatin is usually adjusted to a range of 20 to 45 ° C., preferably 25 to 43 ° C. Next, the water-soluble polymer aqueous solution is put into a container containing oil adjusted to a temperature within the range of 40 to 70 ° C., and stirred with a stirrer, so that the droplets of the water-soluble polymer aqueous solution are dispersed in the oil. A prepared W / O emulsion is prepared. When the W / O type emulsion is prepared on a small scale, for example, oil is placed in a three-necked round bottom flask and adjusted to a temperature in the range of 40 to 70 ° C., and then water-soluble such as gelatin. A polymer aqueous solution is introduced and stirred uniformly with a stirring propeller attached to a stirring motor at a rotation speed of usually about 100 to 1,000 rpm, preferably about 200 to 600 rpm. The particle diameter of the water-soluble polymer aqueous solution such as gelatin in the W / O type emulsion can be arbitrarily adjusted within the range of 0.5 μm to 5 mm.
 W/O型エマルジョンの調製に際し、オイル中に界面活性剤を含有させることができる。オイル中に界面活性剤を含有させることにより、ゼラチンなどの水溶性高分子水溶液の均一な液滴を形成させることが容易となる上、W/O型エマルジョンの経時的な安定性を向上させることができ、架橋粒子の合一を抑制することもできる。 In preparing the W / O emulsion, a surfactant can be contained in the oil. Inclusion of a surfactant in the oil facilitates the formation of uniform droplets of an aqueous solution of water-soluble polymer such as gelatin and improves the stability of the W / O emulsion over time. And coalescence of the crosslinked particles can be suppressed.
 界面活性剤としては、低毒性または無毒性のものが好ましい。界面活性剤のHLBは、好ましくは1.8~20.0、より好ましくは2.0~17.0、さらに好ましくは2.1~16.7の範囲内である。界面活性剤のHLBが上記範囲内にあることによって、ゼラチンなどの水溶性高分子水溶液の液滴の乳化による分散性を良好にすることができる。 As the surfactant, those having low toxicity or non-toxicity are preferable. The HLB of the surfactant is preferably in the range of 1.8 to 20.0, more preferably 2.0 to 17.0, and still more preferably 2.1 to 16.7. When the HLB of the surfactant is within the above range, the dispersibility by emulsifying droplets of a water-soluble polymer aqueous solution such as gelatin can be improved.
 界面活性剤の具体例としては、ソルビタンモノオレエート〔和光純薬工業社製「Span80」(登録商標);HLB=4.3)、ソルビタンモノラウレート〔和光純薬工業社製「Span20」(登録商標)HLB=8.6〕、ソルビタンモノステアレート(HLB=4.7)などのソルビタンモノ脂肪酸エステル;
ポリオキシエチレン(20)ソルビタンモノラウレート〔和光純薬工業社製「Tween20」(登録商標)、HLB=16.7〕、ポリオキシエチレン(4)ソルビタンモノステアレート(HLB=9.6)、ポリオキシエチレン(5)ソルビタンモノオレエート(HLB=10.0)、ポリオキシエチレン(4)ソルビタントリステアレート(HLB=10.5)、ポリオキシエチレン(4)ソルビタントリオレエート(HLB=11.0)、ポリオキシエチレン(20)ソルビタンモノステアレート(HLB=14.9)などのポリオキシエチレンソルビタン脂肪酸エステル;などを挙げることができる。
Specific examples of the surfactant include sorbitan monooleate (“Span80” (registered trademark) manufactured by Wako Pure Chemical Industries, Ltd .; HLB = 4.3), sorbitan monolaurate [“Span20” manufactured by Wako Pure Chemical Industries, Ltd. ( Sorbitan monofatty acid esters such as (registered trademark) HLB = 8.6], sorbitan monostearate (HLB = 4.7);
Polyoxyethylene (20) sorbitan monolaurate [“Wween 20” (registered trademark), HLB = 16.7, manufactured by Wako Pure Chemical Industries, Ltd.], polyoxyethylene (4) sorbitan monostearate (HLB = 9.6), Polyoxyethylene (5) sorbitan monooleate (HLB = 10.0), polyoxyethylene (4) sorbitan tristearate (HLB = 10.5), polyoxyethylene (4) sorbitan trioleate (HLB = 1.11. 0), polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene (20) sorbitan monostearate (HLB = 14.9), and the like.
 界面活性剤を添加する場合、その濃度は、オイル量を基準として(オイル量=100質量%)、好ましくは0.1~15質量%、より好ましくは0.5~10質量%、さらに好ましくは1~5質量%の範囲内である。界面活性剤の濃度が上記範囲内にあることによって、ゼラチンなどの水溶性高分子水溶液の均一な粒子径を持つ液滴を形成することが容易となる。界面活性剤の濃度が低すぎると、その添加による効果が小さくなり、高すぎると、W/O型エマルジョンの保存中に水溶性高分子水溶液の液滴の凝集が発生し易くなる。 When a surfactant is added, the concentration is based on the amount of oil (oil amount = 100% by mass), preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, and still more preferably It is within the range of 1 to 5% by mass. When the concentration of the surfactant is within the above range, it becomes easy to form droplets having a uniform particle diameter of a water-soluble polymer aqueous solution such as gelatin. If the concentration of the surfactant is too low, the effect of the addition becomes small, and if it is too high, droplet aggregation of the water-soluble polymer aqueous solution tends to occur during storage of the W / O emulsion.
 工程Bでは、W/O型エマルジョンを、放射線が透過することができる厚みの層に形成する。W/O型エマルジョン層を形成するには、キャリアフィルム等の支持体上に塗工したり、容器(「鋳型」と呼ばれることがある)内に注入したりする方法を採用することができる。W/O型エマルジョンを塗工または流延するには、均一な厚みの層を迅速に形成する観点から、該W/O型エマルジョンを25~40℃の範囲内の温度に保持しておくことが好ましい。 In step B, the W / O emulsion is formed into a layer having a thickness that allows radiation to pass through. In order to form the W / O type emulsion layer, a method of coating on a support such as a carrier film or pouring into a container (sometimes referred to as “mold”) can be employed. In order to apply or cast the W / O emulsion, the W / O emulsion is kept at a temperature within the range of 25 to 40 ° C. from the viewpoint of rapidly forming a layer having a uniform thickness. Is preferred.
 W/O型エマルジョンを支持体上に塗工する方法では、通常、0.5μmから3mmの厚みの層を形成することが好ましい。層厚が厚すぎると、支持体上から塗工液が流れ落ちたり、均一な厚みの層を形成することが困難になったりする。層厚が薄すぎると、架橋効率や架橋処理後のW/O型エマルジョンの回収効率が低下する。 In the method of coating the W / O emulsion on the support, it is usually preferable to form a layer having a thickness of 0.5 μm to 3 mm. If the layer thickness is too thick, the coating solution may flow down from the support or it may be difficult to form a layer having a uniform thickness. When the layer thickness is too thin, the crosslinking efficiency and the recovery efficiency of the W / O emulsion after the crosslinking treatment are lowered.
 他方、W/O型エマルジョンを容器内に注入する方法は、電子線照射では減衰による透過能力不足により十分な深度にまで電子線が到達せず、架橋体を得るに至らないため不向きであり、通常はγ線照射により架橋粒子を作製するのに用いる。γ線照射によりゼラチン架橋粒子を作製する際には、W/O型エマルジョンを容器内に注入してバッチ処理を行うが、容器の高さ及びW/O型エマルジョンの層厚は、通常用いられる範囲内において特に制限はなく、例えば、150mm程度の高さの容器に、層厚が10mmから150mm程度までのW/O型エマルジョンを注入することができる。γ線照射によりゼラチン架橋粒子を作製する際には、放射線の透過度が電子線より強いため、減衰を問題にすることなく、平均粒子径の大きな架橋粒子を容易に製造することができる。 On the other hand, the method of injecting the W / O type emulsion into the container is unsuitable because the electron beam does not reach a sufficient depth due to insufficient transmission ability due to attenuation, and a crosslinked product cannot be obtained. Usually used for preparing crosslinked particles by γ-ray irradiation. When gelatin crosslinked particles are produced by γ-ray irradiation, batch processing is performed by injecting a W / O type emulsion into a container. The height of the container and the layer thickness of the W / O type emulsion are usually used. There is no particular limitation within the range, and for example, a W / O emulsion having a layer thickness of about 10 mm to 150 mm can be injected into a container having a height of about 150 mm. When gelatin crosslinked particles are produced by γ-ray irradiation, since the radiation transmittance is stronger than that of electron beams, crosslinked particles having a large average particle diameter can be easily produced without causing attenuation.
 工程Cでは、該W/O型エマルジョン層に放射線を照射して、該液滴中の水溶性高分子を架橋させることにより、架橋水溶性高分子粒子を形成する。放射線としては、電子線及びγ線が好ましい。放射線の種類は、その透過度(厚み方向の減衰率)や架橋処理条件(例えば、連続的処理またはバッチ式処理)などに応じて選択することが好ましい。 In step C, crosslinked water-soluble polymer particles are formed by irradiating the W / O emulsion layer with radiation to crosslink the water-soluble polymer in the droplets. As the radiation, electron beams and γ rays are preferable. The type of radiation is preferably selected in accordance with its transmittance (attenuation rate in the thickness direction), crosslinking treatment conditions (for example, continuous treatment or batch treatment), and the like.
 電子線の照射には、汎用の電子線照射装置を用いることができる。電子線の照射には、例えば、NHVコーポレーション製の電子線照射装置〔CURETRON EBC-200-20-15(登録商標)〕を用いた加速電圧の上限値が200kVでの電子線照射;NHVコーポレーション製電子線照射装置〔EPS-800(登録商標)〕を用いた加速電圧の上限値800kVでの電子線照射を挙げることができるが、これらに限定されない。 A general-purpose electron beam irradiation apparatus can be used for electron beam irradiation. For electron beam irradiation, for example, electron beam irradiation using an electron beam irradiation apparatus [CURETRON EBC-200-20-15 (registered trademark)] manufactured by NHV Corporation at an upper limit of an acceleration voltage of 200 kV; manufactured by NHV Corporation Examples include, but are not limited to, electron beam irradiation using an electron beam irradiation apparatus [EPS-800 (registered trademark)] at an upper limit of 800 kV of acceleration voltage.
 架橋粒子の製造には、電子線照射装置の特性による制約を受けることがある。例えば、加速電圧200kVの電子線照射装置を用いて、W/O型エマルジョン層に電子線を照射したとき、表面の吸収線量を100%とすると、200μmの深さの箇所では、約45%まで相対線量が減衰する。加速電圧800kVの電子線照射装置では、2,500μmの深さの箇所では、相対線量が約28%まで減衰する。深部での相対線量が減衰すると、そこでの電子線照射による液滴中の水溶性高分子の架橋度が低下する。均一な架橋及び/または高い架橋度を達成するには、高い相対線量が得られるような加速電圧で電子線照射を行うか、W/O型エマルジョン層の厚みを調整することが望ましい。 The production of crosslinked particles may be restricted by the characteristics of the electron beam irradiation device. For example, when an electron beam irradiation apparatus with an acceleration voltage of 200 kV is used to irradiate a W / O type emulsion layer with an electron beam, if the absorbed dose on the surface is 100%, the depth of 200 μm is up to about 45%. The relative dose is attenuated. In an electron beam irradiation apparatus with an acceleration voltage of 800 kV, the relative dose is attenuated to about 28% at a depth of 2500 μm. When the relative dose in the deep part is attenuated, the degree of crosslinking of the water-soluble polymer in the droplet caused by electron beam irradiation there decreases. In order to achieve uniform crosslinking and / or a high degree of crosslinking, it is desirable to perform electron beam irradiation at an accelerating voltage so as to obtain a high relative dose, or to adjust the thickness of the W / O emulsion layer.
 電子線の照射線量は、通常、5~3,000kGy、好ましくは5~2,000kGy、より好ましくは10~1,000kGyの範囲内である。電子線の照射線量の最適値は、加速電圧と被照射物の特性などに依存して変動する。例えば、加速電圧200kVでは、照射線量10~1,000kGyで良好な架橋粒子を形成することができる。加速電圧800kVでは、照射線量5~600kGyで良好な架橋粒子を形成することができる。側鎖に電気的あるいは立体的障害を有する官能基を付加したゼラチン誘導体を用いる場合には、架橋効率が劣るため、比較的大きな照射線量を選択することが好ましい。 The electron beam irradiation dose is usually in the range of 5 to 3,000 kGy, preferably 5 to 2,000 kGy, more preferably 10 to 1,000 kGy. The optimum value of the electron beam irradiation dose varies depending on the acceleration voltage and the characteristics of the irradiated object. For example, when the acceleration voltage is 200 kV, good crosslinked particles can be formed at an irradiation dose of 10 to 1,000 kGy. At an acceleration voltage of 800 kV, good crosslinked particles can be formed at an irradiation dose of 5 to 600 kGy. When a gelatin derivative having a functional group having an electrical or steric hindrance added to the side chain is used, it is preferable to select a relatively large irradiation dose because of poor crosslinking efficiency.
 W/O型エマルジョンをキャリアフィルム等の支持体上に塗工し、該支持体を水平方向に走行させながら連続的に電子線照射を行う場合には、電子流(mA)と照射域のW/O型エマルジョン層の移動速度(m/分)とから規定される所望の照射線量(kGy)の電子線を照射して、ゼラチンなどの水溶性高分子の架橋を行う。電子線の照射は、オゾンの発生を避けたり、架橋効率を上げたりするために、窒素などの不活性ガス雰囲気下で行うことが好ましい。 When the W / O type emulsion is coated on a support such as a carrier film and the electron beam is continuously irradiated while the support is running in the horizontal direction, the electron current (mA) and the W A water-soluble polymer such as gelatin is crosslinked by irradiating an electron beam with a desired irradiation dose (kGy) defined by the moving speed (m / min) of the / O type emulsion layer. The electron beam irradiation is preferably performed in an inert gas atmosphere such as nitrogen in order to avoid generation of ozone or increase the crosslinking efficiency.
 γ線照射を行う場合には、γ線照射装置を用いて、通常、5~3,000kGy、好ましくは5~2,000kGy、より好ましくは10~1,000kGyの範囲内の照射線量となるように、W/O型エマルジョン層にγ線を照射する。γ線の照射は、バッチ式で行うことができる。γ線は、厚みが大きいW/O型エマルジョン層でも透過することができるので、容器内の底部に厚みのあるW/O型エマルジョン層を形成し、バッチ式で照射する方式に適している。 When γ-ray irradiation is performed, the irradiation dose is usually within a range of 5 to 3,000 kGy, preferably 5 to 2,000 kGy, more preferably 10 to 1,000 kGy, using a γ-ray irradiation apparatus. Further, γ rays are irradiated to the W / O type emulsion layer. Irradiation with γ rays can be performed in a batch manner. Since γ-rays can be transmitted through a thick W / O emulsion layer, a thick W / O emulsion layer is formed at the bottom of the container, and is suitable for a batch irradiation method.
 工程Dでは、放射線照射による架橋処理後のW/O型エマルジョン層に、その中のオイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する。有機溶媒は、オイルを溶解させることにより、水溶性高分子水溶液の液滴中で架橋処理されて生成した架橋ゲル粒子をオイル成分から分離するために使用する。W/O型エマルジョンを支持体上に塗工して塗工層を形成している場合には、架橋処理後、該塗工層上から有機溶媒を滴下する方法が好ましい。 In Step D, an organic solvent having solubility in the oil therein is added to the W / O type emulsion layer after the crosslinking treatment by radiation irradiation, and the W / O type emulsion and the organic solvent are contained. A mixture is formed. The organic solvent is used to separate from the oil component the crosslinked gel particles produced by crosslinking in the droplets of the water-soluble polymer aqueous solution by dissolving the oil. When the coating layer is formed by coating the W / O emulsion on the support, a method of dropping an organic solvent from the coating layer after the crosslinking treatment is preferable.
 W/O型エマルジョン層中で架橋粒子を製造後、オイル成分を除去するために用いる有機溶媒としては、オイルに対する溶解性があり、オイルを溶解して除去することができるものであればよい。このような有機溶媒としては、アセトンなどのケトン系溶媒;トルエンなどの芳香族系溶媒;などが好ましい。W/O型エマルジョンと有機溶媒との容量比は、通常、1:2~1:99、好ましくは1:4~1:80、より好ましくは1:5~1:50である。W/O型エマルジョンに対する有機溶媒の容量比を上記範囲内とすることによって、架橋粒子間の凝集を抑制しつつ、オイル成分を有機溶媒に溶解させて、架橋ゲル粒子から分離し除去することが容易となる。 The organic solvent used for removing the oil component after producing the crosslinked particles in the W / O type emulsion layer may be any one that has solubility in oil and can be removed by dissolving the oil. As such an organic solvent, ketone solvents such as acetone; aromatic solvents such as toluene are preferable. The volume ratio of the W / O emulsion to the organic solvent is usually 1: 2 to 1:99, preferably 1: 4 to 1:80, more preferably 1: 5 to 1:50. By setting the volume ratio of the organic solvent to the W / O emulsion within the above range, the oil component can be dissolved in the organic solvent and separated and removed from the crosslinked gel particles while suppressing aggregation between the crosslinked particles. It becomes easy.
 工程Eでは、W/O型エマルジョンと有機溶媒との混合液から架橋水溶性高分子粒子を分離する。W/O型エマルジョンを支持体上に塗工して塗工層を形成している場合には、例えば、ブレードを押し当てて、支持体上から混合液を回収する。その後、混合溶液を十分に攪拌し、遠心分離器(例えば、久保田製作所製「KUBOTA2010」)を用いて、好ましくは1,000~10,000rpm、より好ましくは2,000~8,000rpmの回転速度で、通常、1~30分間、好ましくは5~15分間遠心分離を行い、架橋粒子を沈殿させる。 In step E, the crosslinked water-soluble polymer particles are separated from the mixed solution of the W / O emulsion and the organic solvent. When the coated layer is formed by coating the W / O emulsion on the support, for example, the blade is pressed to recover the mixed solution from the support. Thereafter, the mixed solution is sufficiently stirred, and the rotational speed is preferably 1,000 to 10,000 rpm, more preferably 2,000 to 8,000 rpm, using a centrifuge (for example, “KUBOTA 2010” manufactured by Kubota Seisakusho). In general, the crosslinked particles are precipitated by centrifuging for 1 to 30 minutes, preferably 5 to 15 minutes.
 架橋粒子が沈殿した混合液から上清を除去する。沈殿物に有機溶媒を加えて、超音波洗浄装置(例えば、エスエヌディ社製「iuchi、US-4」、高周波電力200W、発振周波数38kHz)を用いて、室温(20±5℃)で、例えば、20秒間から1分間、超音波を発振し、架橋粒子の懸濁液を形成する。その後、前記と同様の操作で遠心分離を行い架橋粒子を沈殿させる。この上清を除去して有機溶媒を添加し、超音波洗浄を行う。この操作は、更に必要であれば、2~4回程度繰り返し、W/O型エマルジョン中の架橋粒子(架橋ゲル粒子)からオイル成分の除去を行う。 上清 Remove the supernatant from the mixed solution in which the crosslinked particles are precipitated. An organic solvent is added to the precipitate, and an ultrasonic cleaning apparatus (for example, “iuchi, US-4” manufactured by SND, high frequency power 200 W, oscillation frequency 38 kHz) is used at room temperature (20 ± 5 ° C.), for example, Ultrasonic waves are oscillated for 20 seconds to 1 minute to form a suspension of crosslinked particles. Thereafter, centrifugation is performed in the same manner as described above to precipitate crosslinked particles. The supernatant is removed, an organic solvent is added, and ultrasonic cleaning is performed. If necessary, this operation is repeated about 2 to 4 times to remove the oil component from the crosslinked particles (crosslinked gel particles) in the W / O emulsion.
 上記で得られた架橋粒子は、薬剤の担持や長期間保存のために、減圧乾燥または凍結乾燥させることができる。凍結乾燥は、例えば、架橋粒子を蒸留水に入れ、液体窒素中で30分間以上または-80℃で1時間以上凍結させた後、凍結乾燥機で1~3日間乾燥させることにより行う。 The crosslinked particles obtained above can be dried under reduced pressure or freeze-dried for drug loading and long-term storage. Lyophilization is performed, for example, by placing the crosslinked particles in distilled water and freezing them in liquid nitrogen for 30 minutes or more or at -80 ° C. for 1 hour or more and then drying them in a freeze dryer for 1 to 3 days.
 このようにして、前記a)~e)に示される特性を持つ架橋粒子を得ることができる。図1に、本件明細書の実施例1で得られた架橋ゼラチンゲル粒子を乾燥した水分を実質的に含まない乾燥粒子の走査型電子顕微鏡(SEM)写真(倍率=6000倍)を示す。図1から明らかなように、架橋ゼラチン粒子は、乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成している。該乾燥粒子は、乾燥状態では互いに付着している場合があるように見えるが、粒子の独立した形状自体は明確である。乾燥粒子を水で膨潤させて架橋ゼラチンゲル粒子を形成すれば、乾燥状態で互いに付着した部分が存在していても、撹拌や超音波等による外力などによって、実質的に個々に独立した膨潤粒子を容易に形成することができる。 In this way, crosslinked particles having the characteristics shown in a) to e) can be obtained. FIG. 1 shows a scanning electron microscope (SEM) photograph (magnification = 6000 times) of dried particles substantially free of moisture obtained by drying the crosslinked gelatin gel particles obtained in Example 1 of the present specification. As is clear from FIG. 1, the crosslinked gelatin particles form dry particles having a substantially independent shape in a dry state. The dry particles appear to adhere to each other in the dry state, but the independent shape of the particles themselves is clear. If the dried gelatin particles are swollen with water to form crosslinked gelatin gel particles, even if there are parts adhered to each other in the dry state, the swollen particles are substantially independent due to external forces such as stirring and ultrasonic waves. Can be easily formed.
 架橋ゼラチン粒子などの架橋粒子は、その乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内である。架橋粒子の平均粒子径は、W/O型エマルジョンの調製工程、架橋処理条件などを適宜選択することによって、小粒子径から大粒子径まで変化させることができる。目的に応じて、適宜必要な粒子径を持つ乾燥粒子を、シーブを用いて篩い分けして使用することもできる。架橋ゼラチン粒子を生体内に局所投与する場合は、平均粒子径が0.5~150μmの乾燥粒子を用いるのが好ましい。 Cross-linked particles such as cross-linked gelatin particles have an average particle diameter of dry particles in the range of 0.5 μm to 5 mm. The average particle size of the crosslinked particles can be changed from a small particle size to a large particle size by appropriately selecting the preparation process of the W / O emulsion, the crosslinking treatment conditions, and the like. Depending on the purpose, dry particles having a necessary particle size can be used by sieving using a sieve. When the cross-linked gelatin particles are locally administered into the living body, it is preferable to use dry particles having an average particle size of 0.5 to 150 μm.
 架橋ゼラチン粒子は、乾燥状態では、内部まで多数の孔を有する球状のスポンジ様物質である。そのため、架橋粒子は、水で膨潤させることができる。架橋ゼラチン粒子などの架橋粒子の含水率は、通常、50~99%、好ましくは60~98%、多くの場合、92~97%の範囲内である。架橋粒子の架橋度が高くなるほど、その含水率は低くなる。 The crosslinked gelatin particle is a spherical sponge-like substance having a large number of pores in the inside in a dry state. Therefore, the crosslinked particles can be swollen with water. The water content of crosslinked particles such as crosslinked gelatin particles is usually in the range of 50 to 99%, preferably 60 to 98%, and in many cases 92 to 97%. The higher the degree of crosslinking of the crosslinked particles, the lower the water content.
 含水率の測定は、以下の方法により行うことができる。アセトンなどの有機溶媒で洗浄後の水分を実質的に含まない乾燥粒子(乾燥した架橋ゼラチン粒子)の平均粒子径を計測する。該乾燥粒子を、温度5℃で3日間蒸留水に浸漬して膨潤させる。水膨潤した架橋粒子の平均粒子径を測定する。各平均粒子径から、下記の式により、各粒子の体積を算出する。 The moisture content can be measured by the following method. The average particle diameter of dry particles (dried crosslinked gelatin particles) substantially free of water after washing with an organic solvent such as acetone is measured. The dried particles are immersed in distilled water for 3 days at a temperature of 5 ° C. to swell. The average particle diameter of the water-swollen crosslinked particles is measured. From each average particle diameter, the volume of each particle is calculated by the following formula.
 乾燥粒子の体積=(4/3)×π×(乾燥粒子の平均直径/2)3 
 水膨潤粒子の体積=(4/3)×π×(水膨潤粒子の平均直径/2)3 
Volume of dry particles = (4/3) × π × (average diameter of dry particles / 2) 3
Volume of water swollen particles = (4/3) × π × (average diameter of water swollen particles / 2) 3
 含水率は、下記式に従って算出する。
 含水率(%)=[〔(水膨潤粒子の体積)-(乾燥粒子の体積)〕/(水膨潤粒子の体積)]×100
The moisture content is calculated according to the following formula.
Water content (%) = [[(volume of water swollen particles) − (volume of dry particles)] / (volume of water swollen particles)] × 100
 本発明の架橋ゼラチン粒子などの架橋粒子は、乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができる。 The crosslinked particles such as the crosslinked gelatin particles of the present invention can maintain the particle shape in a swollen state with water without dissolving when the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours.
 本発明の架橋ゼラチン粒子などの架橋粒子は、色差計を用いてL表色系を測定したとき、L値が90.00以上、好ましくは91.00以上で、b値が9.00以下、好ましくは8.00以下の色相を示す。W/O型エマルジョン中で、電子線などの放射線の照射により架橋して得られた架橋ゼラチン粒子などの架橋粒子は、架橋剤等の化学物質の残留がなく、高温での熱履歴も受けていないため、明るさが強く(L値が90.00以上)、かつ、黄色味が弱い(b値が9.00以下)という独特の色相を示す。L値の上限値は、通常、96.00、多くの場合、95.00である。b値の下限値は、通常、3.00、好ましくは3.30である。 Crosslinked particles, such as crosslinked gelatin particles of the present invention, when measuring the L * a * b * color system by using a color difference meter, L * value is 90.00 or more, preferably 91.00 or higher, b * The hue is 9.00 or less, preferably 8.00 or less. Cross-linked particles such as cross-linked gelatin particles obtained by cross-linking by irradiating radiation such as electron beams in W / O type emulsions have no residual chemical substances such as cross-linking agents, and also have a thermal history at high temperatures. Therefore, it shows a unique hue with high brightness (L * value of 90.00 or more) and weak yellowness (b * value of 9.00 or less). The upper limit of the L * value is usually 96.00, and in many cases 95.00. The lower limit of the b * value is usually 3.00, preferably 3.30.
 これに対して、例えば、グルタルアルデヒドなどの架橋剤を用いて、化学架橋法により架橋して得られた架橋ゼラチン粒子などの架橋粒子は、架橋構造中に架橋剤が架橋骨格として取り込まれるため、架橋剤の量に応じて、明るさが弱く(L値が90.00未満)、かつ、黄色味が強い(b値が9.00超過)色相を示す。このような傾向は、高架橋度(低含水率)品になるほど顕著に現れる。 In contrast, for example, crosslinked particles such as crosslinked gelatin particles obtained by crosslinking by a chemical crosslinking method using a crosslinking agent such as glutaraldehyde are incorporated as a crosslinked skeleton in the crosslinked structure. Depending on the amount of the crosslinking agent, the hue is weak (L * value is less than 90.00) and yellowish (b * value is more than 9.00). Such a tendency becomes more prominent as the product has a higher degree of cross-linking (low water content).
 電子線の照射により、W/O型エマルジョン中のゼラチン水溶液の液滴を架橋処理するには、下記の工程1乃至6を含む製造方法を採用することが好ましい。 In order to crosslink the gelatin aqueous solution droplets in the W / O emulsion by electron beam irradiation, it is preferable to employ a production method including the following steps 1 to 6.
(1)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程1;
(2)支持体上に、該W/O型エマルジョンを塗工して、厚みが5μmから3mmまでの範囲内の塗工層を形成する工程2;
(3)該塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、該液滴中のゼラチンを架橋することにより、架橋ゼラチン粒子を形成する工程3;
(4)該塗工層に、該オイルに対して溶解性を有する有機溶媒を加えて、該塗工層のW/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程4;
(5)該混合液を支持体上から回収する工程5;及び
(6)回収した混合液から架橋ゼラチン粒子を分離する工程6。
(1) An oil having a kinematic viscosity within a range of 20 to 6,000 mm 2 / s at a measurement temperature of 37.8 ° C. and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil;
(2) Step 2 of coating the W / O emulsion on the support to form a coating layer having a thickness in the range of 5 μm to 3 mm;
(3) A step of forming crosslinked gelatin particles by irradiating the coating layer with an electron beam so that an irradiation dose is within a range of 5 to 3,000 kGy and crosslinking gelatin in the droplets. 3;
(4) Step 4 of adding an organic solvent soluble in the oil to the coating layer to form a mixed solution containing the W / O emulsion of the coating layer and the organic solvent;
(5) Step 5 for recovering the mixed solution from the support; and (6) Step 6 for separating the crosslinked gelatin particles from the recovered mixed solution.
 ゼラチンとしては、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンを用いることが好ましい。オイルとしては、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルを用いることが好ましい。オイルとして、該オイル中にHLBが1.8~20.0の範囲内にある界面活性剤を含有するものを用いることが好ましい。 As the gelatin, it is preferable to use at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives. As the oil, it is preferable to use at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil. It is preferable to use an oil containing a surfactant having an HLB in the range of 1.8 to 20.0.
 前記工程1及び6は、前述の照射架橋水溶性高分子粒子の製造工程A及びEと同様の工程とすることができる。前記工程2乃至5は、連続的な処理工程で実施することが好ましい。連続的な処理工程とすることにより、化学架橋法で行われていた煩雑な工程を大幅に省略することができる。 The steps 1 and 6 can be the same steps as the manufacturing steps A and E of the irradiation-crosslinked water-soluble polymer particles described above. The steps 2 to 5 are preferably performed in a continuous processing step. By setting it as a continuous treatment process, the complicated process performed by the chemical crosslinking method can be largely omitted.
 具体的には、該工程2が、水平方向に走行する支持体上に、該W/O型エマルジョンを塗工して、厚みが5μmから3mmまでの範囲内の塗工層を連続的に形成する工程であり、該工程3が、水平方向に走行する支持体上の塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、該液滴中のゼラチンを連続的に架橋する工程であり、該工程4が、水平方向に走行する塗工層に、該オイルに対して溶解性を有する有機溶媒を連続的に加えて、該塗工層のW/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程であり、かつ、該工程5が、該混合液を支持体上から連続的に回収する工程である連続的な処理工程である。 Specifically, in the step 2, the W / O type emulsion is coated on a support traveling in the horizontal direction to continuously form a coating layer having a thickness in the range of 5 μm to 3 mm. In this step 3, the coating layer on the support traveling in the horizontal direction is irradiated with an electron beam so that the irradiation dose is in the range of 5 to 3,000 kGy. A step of continuously cross-linking the gelatin of the step, wherein the step 4 comprises continuously adding an organic solvent having solubility in the oil to the coating layer running in the horizontal direction. A continuous treatment step, which is a step of forming a mixed solution containing a W / O type emulsion and the organic solvent, and wherein Step 5 is a step of continuously recovering the mixed solution from the support. It is.
 電子線照射装置を用いると、連続的な架橋処理を行うことができる。他方、キャリアフィルム等の支持体上にW/O型エマルジョンの塗工層を形成するには、その厚みを5μmから3mmまでの範囲、好ましくは10μmから2.5mmまでの範囲、より好ましくは20~1,000μm、多くの場合、50~400μmの範囲内に調節することが好ましい。塗工層の厚みが薄すぎると、架橋ゼラチン粒子の生産効率が低下したり、所望の平均粒子径を有する架橋ゼラチン粒子を得ることが困難になることがある。塗工層の厚みが厚すぎると、支持体上から塗工液が垂れ落ちたり、均一な厚みの塗工層の形成が困難になったり、あるいは電子線の連続的な照射による均一な架橋が困難になったりする。 When an electron beam irradiation apparatus is used, continuous crosslinking treatment can be performed. On the other hand, in order to form a coating layer of W / O emulsion on a support such as a carrier film, the thickness is in the range of 5 μm to 3 mm, preferably in the range of 10 μm to 2.5 mm, more preferably 20 It is preferable to adjust within the range of ˜1,000 μm and in many cases 50 to 400 μm. If the thickness of the coating layer is too thin, the production efficiency of crosslinked gelatin particles may be reduced, or it may be difficult to obtain crosslinked gelatin particles having a desired average particle diameter. If the coating layer is too thick, the coating solution may drip from the support, it may be difficult to form a coating layer with a uniform thickness, or uniform crosslinking may occur due to continuous irradiation of electron beams. It becomes difficult.
 水平方向に走行する支持体としては、駆動装置によって回転するエンドレスベルト、該エンドレスベルト上に載置したキャリアフィルム等が挙げられる。キャリアフィルムは、W/O型エマルジョンを塗工して塗工層を形成する際にキャリアとして用いられる。キャリアフィルムの材質としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;ポリエチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66などのポリアミド樹脂;などの各種プラスチック材料を挙げることができるが、これらに限定されない。キャリアフィルムは、未延伸フィルムであっても、延伸フィルムであってもよい。キャリアフィルムは、単層フィルムであっても、他のプラスチックフィルムや紙などとの多層フィルムであってもよい。キャリアフィルムは、W/O型エマルジョンを弾くことなく塗工することができるものであることが好ましい。キャリアフィルムの表面特性を改質するために、コロナ放電処理などの表面処理を行ってもよい。 Examples of the support that travels in the horizontal direction include an endless belt that is rotated by a driving device, and a carrier film that is placed on the endless belt. The carrier film is used as a carrier when a W / O emulsion is applied to form a coating layer. Examples of the material of the carrier film include, but are not limited to, various plastic materials such as polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate; polyamide resins such as nylon 6 and nylon 66; The carrier film may be an unstretched film or a stretched film. The carrier film may be a single layer film or a multilayer film with other plastic film or paper. The carrier film is preferably one that can be applied without repelling the W / O emulsion. In order to modify the surface properties of the carrier film, surface treatment such as corona discharge treatment may be performed.
 工程3では、支持体上の塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、液滴中のゼラチンを架橋することにより、架橋ゼラチン粒子を形成する。照射線量は、好ましくは5~2,000kGy、より好ましくは10~1,000kGyの範囲内である。支持体を水平方向に走行させながら連続的に電子線照射を行う場合には、電子流(mA)と照射域のW/O型エマルジョン層の移動速度(m/分)とから規定される所望の照射線量の電子線を照射する。 In step 3, the coated layer on the support is irradiated with an electron beam so that the irradiation dose is in the range of 5 to 3,000 kGy to crosslink the gelatin in the droplets, thereby cross-linking gelatin particles. Form. The irradiation dose is preferably in the range of 5 to 2,000 kGy, more preferably 10 to 1,000 kGy. In the case where the electron beam irradiation is continuously performed while the support is traveling in the horizontal direction, a desired value defined by the electron current (mA) and the moving speed (m / min) of the W / O type emulsion layer in the irradiation region. Irradiate an electron beam with a dose of.
 工程4では、架橋処理後の塗工層に、オイルに対して溶解性を有する有機溶媒を加えて、塗工層のW/O型エマルジョンと有機溶媒とを含有する混合液を形成する。工程4において、水平方向に走行する支持体上の塗工層に有機溶媒を連続的に加えて、塗工層のW/O型エマルジョンと有機溶媒とを含有する混合液を形成するには、塗工層の上から有機溶媒を連続的に滴下する方法を採用することが好ましい。W/O型エマルジョンと有機溶媒との容量比は、通常、1:2~1:99、好ましくは1:4~1:80、より好ましくは1:5~1:50である。 In step 4, an organic solvent having solubility in oil is added to the coating layer after the crosslinking treatment to form a mixed solution containing the W / O type emulsion of the coating layer and the organic solvent. In step 4, an organic solvent is continuously added to the coating layer on the support traveling in the horizontal direction to form a mixed solution containing the W / O emulsion of the coating layer and the organic solvent. It is preferable to employ a method in which an organic solvent is continuously dropped from above the coating layer. The volume ratio of the W / O emulsion to the organic solvent is usually 1: 2 to 1:99, preferably 1: 4 to 1:80, more preferably 1: 5 to 1:50.
 工程5では、該混合液を支持体上から回収する。工程5において、混合液を支持体上から連続的に回収するには、例えば、ステンレス製の板からなるドクターブレードを塗工面に押し当てて、支持体上から混合液を回収する方法を採用することが好ましい。 In step 5, the mixture is recovered from the support. In step 5, in order to continuously recover the mixed solution from the support, for example, a method of recovering the mixed solution from the support by pressing a doctor blade made of a stainless steel plate against the coating surface is adopted. It is preferable.
 工程6では、回収した混合液から架橋ゼラチン粒子を分離する。前述の照射架橋水溶性高分子粒子の製造工程Eと同様、混合溶液を十分に攪拌し、遠心分離器を用いて、好ましくは1,000~10,000rpm、より好ましくは2,000~8,000rpmの回転速度で、通常、1~30分間、好ましくは5~15分間遠心分離を行い、架橋粒子を沈殿させる。架橋粒子が沈殿した混合液から上清を除去する。沈殿物に有機溶媒を加えて、超音波洗浄装置を用いて、室温で20秒間から1分間超音波を発振し、架橋粒子の懸濁液を形成する。その後、再び遠心分離を行い架橋粒子を沈殿させる。この上清を除去してから有機溶媒を添加し、超音波洗浄を行う。この操作を、必要に応じて2~4回程度繰り返し、W/O型エマルジョン中の架橋ゼラチン粒子(架橋ゼラチンゲル粒子)からオイル成分の除去を行う。トルエンなどの有機溶媒を減圧除去すれば、電子線の照射により架橋した水分を含まない乾燥ゼラチン粒子を得ることができる。 In step 6, the crosslinked gelatin particles are separated from the collected mixed solution. As in the above-mentioned production step E of the radiation-crosslinked water-soluble polymer particles, the mixed solution is sufficiently agitated, and preferably 1,000 to 10,000 rpm, more preferably 2,000 to 8, using a centrifuge. Centrifugation is usually performed at a rotational speed of 000 rpm for 1 to 30 minutes, preferably 5 to 15 minutes, to precipitate the crosslinked particles. The supernatant is removed from the mixed solution in which the crosslinked particles are precipitated. An organic solvent is added to the precipitate, and ultrasonic waves are oscillated at room temperature for 20 seconds to 1 minute using an ultrasonic cleaning device to form a suspension of crosslinked particles. Thereafter, centrifugation is performed again to precipitate the crosslinked particles. After removing the supernatant, an organic solvent is added and ultrasonic cleaning is performed. This operation is repeated about 2 to 4 times as necessary, and the oil component is removed from the crosslinked gelatin particles (crosslinked gelatin gel particles) in the W / O emulsion. If an organic solvent such as toluene is removed under reduced pressure, dry gelatin particles containing no water crosslinked by irradiation with an electron beam can be obtained.
 前記各工程1~6を順次実施することにより、a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、b)乾燥粒子の平均粒子径が0.5μmから2mmまでの範囲内であり、c)乾燥粒子の含水率が50~99%の範囲内であり、d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す電子線照射架橋ゼラチン粒子を得ることができる。 By sequentially carrying out the steps 1 to 6, a) dry particles having a substantially independent shape are formed in a dry state, and b) the average particle diameter of the dry particles is in the range from 0.5 μm to 2 mm. C) the moisture content of the dried particles is in the range of 50 to 99%, and d) when the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles are not dissolved but are swollen with water. The shape can be maintained, and e) when the L * a * b * color system of the dried particles is measured using a colorimeter, the L * value is 90.00 or more and the b * value is 9. Electron beam irradiated crosslinked gelatin particles having a hue of 00 or less can be obtained.
 乾燥粒子(水分を含まない架橋ゼラチン粒子)の平均粒子径は、0.5μmから2mmまでの範囲、好ましくは0.5μmから1.5mmまでの範囲、より好ましくは0.5~1,000μm、多くの場合、0.5~400μmまたは0.5~150μmの範囲内に調節することが好ましい。 The average particle diameter of the dry particles (crosslinked gelatin particles not containing water) is in the range of 0.5 μm to 2 mm, preferably in the range of 0.5 μm to 1.5 mm, more preferably 0.5 to 1,000 μm, In many cases, it is preferable to adjust within the range of 0.5 to 400 μm or 0.5 to 150 μm.
 電子線の照射により架橋ゼラチン粒子を製造する方法の利点は、工程の殆どを連続的な工程で行うことができる点にある。従来から行われている化学架橋法では、架橋剤の添加工程、反応停止剤の添加工程、及び架橋剤などの化学物質の洗浄工程が必要となるため、連続的な工程で実施することができない。 The advantage of the method for producing crosslinked gelatin particles by electron beam irradiation is that most of the steps can be performed in a continuous step. The conventional chemical cross-linking method requires a cross-linking agent addition step, a reaction terminator addition step, and a cleaning step for chemical substances such as a cross-linking agent, and therefore cannot be carried out in a continuous process. .
 化学架橋法では、ゼラチンなどの水溶性高分子を水で膨潤させた状態で架橋反応を行うため、有機溶媒を投入したり、水洗したり、乾燥したりする際に、著しい粒子の収縮や変形、破裂が生じやすく、形状が不安定な架橋粒子が得られやすい。これに対して、W/O型エマルジョン層に電子線を照射して架橋する方法では、架橋粒子の大きさの変化が小さく、球状を維持した架橋ゼラチン粒子を製造することができる。 In the chemical cross-linking method, the water-soluble polymer such as gelatin is swollen with water, so that when the organic solvent is added, washed with water, or dried, significant shrinkage or deformation of particles occurs. , It is easy to rupture, and it is easy to obtain crosslinked particles having an unstable shape. On the other hand, in the method of crosslinking by irradiating the W / O type emulsion layer with an electron beam, it is possible to produce crosslinked gelatin particles having a small change in size of the crosslinked particles and maintaining a spherical shape.
 γ線の照射により、W/O型エマルジョン中のゼラチン水溶液の液滴を架橋処理するには、下記の工程I乃至Vを含む製造方法を採用することが好ましい。 In order to crosslink the gelatin aqueous solution droplets in the W / O emulsion by γ-ray irradiation, it is preferable to employ a production method including the following steps I to V.
(I)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程I;
(II)該W/O型エマルジョンを容器内に注入して、W/O型エマルジョン層を形成する工程II;
(III)該W/O型エマルジョン層に、照射線量が5~3,000kGyの範囲内となるようにγ線を照射して、該液滴中のゼラチンを架橋する工程III;
(IV)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程IV;及び
(V)該混合液から架橋ゼラチン粒子を分離する工程V。
(I) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil; I;
(II) Step II of injecting the W / O emulsion into a container to form a W / O emulsion layer;
(III) Step III of irradiating the W / O type emulsion layer with γ rays so that the irradiation dose is in the range of 5 to 3,000 kGy to crosslink gelatin in the droplets;
(IV) Step IV of adding an organic solvent having solubility in the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and
(V) Step V of separating the crosslinked gelatin particles from the mixed solution.
 ゼラチンとしては、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンを用いることが好ましい。オイルとしては、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルを用いることが好ましい。オイルとして、該オイル中にHLBが1.8~20.0の範囲内にある界面活性剤を含有するものを用いることが好ましい。 As the gelatin, it is preferable to use at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives. As the oil, it is preferable to use at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil. It is preferable to use an oil containing a surfactant having an HLB in the range of 1.8 to 20.0.
 γ線の照射によりゼラチン粒子を架橋する場合、電子線の照射の場合とほぼ同様の操作で架橋ゼラチン粒子を製造することができる。γ線の照射架橋の場合には、γ線の照射空間が他の工程とは隔離されていること、γ線の照射効率が低く長時間の照射が必要となることなどから、連続的な工程での架橋処理を避けて、バッチ式で架橋処理を行うことが好ましい。 When cross-linking gelatin particles by γ-ray irradiation, cross-linked gelatin particles can be produced by substantially the same operation as in the case of electron beam irradiation. In the case of γ-ray irradiation cross-linking, the γ-ray irradiation space is isolated from other processes, the γ-ray irradiation efficiency is low and long-time irradiation is required. It is preferable to carry out the cross-linking treatment in a batch manner while avoiding the cross-linking treatment in step (b).
 他方、γ線は、厚み方向の透過性に優れるので、バッチ式でも大量に架橋ゼラチン粒子を製造したり、平均粒子径が大きい架橋ゼラチン粒子を製造したりすることが可能である。 On the other hand, γ-rays are excellent in permeability in the thickness direction, so that it is possible to produce a large amount of crosslinked gelatin particles even in a batch type or to produce crosslinked gelatin particles having a large average particle diameter.
 前記工程IIでは、W/O型エマルジョンを、ガラス、金属、各種プラスチック材料(例えば、ポリオレフィン樹脂、ポリエステル樹脂など)から形成された容器(鋳型)内に注入して、W/O型エマルジョン層を形成する。容器の形状としては、円筒状、立方体状、直方体状の容器が好ましい。例えば、金属容器としては、半径50mm、高さ150mmのアルミニウム缶を挙げることができる。γ線は、貫通力が強いため、容器の厚みやW/O型エマルジョン層の厚みを任意に設定することができる。W/O型エマルジョン層の厚みは、通常、5μmから140mmまでの範囲内とすることができるが、この範囲内に限定されない。W/O型エマルジョン層の厚みは、操作性の観点から、好ましくは10mmから140mmまで、より好ましくは15mmから120mmまで、特に好ましくは20mmから100mmまでの範囲内に調節することができる。W/O型エマルジョン層の厚みが薄すぎると、架橋ゼラチン粒子の生産効率が低下したり、所望の平均粒子径を有する架橋ゼラチン粒子を得ることが困難になることがある。 In the step II, the W / O emulsion is injected into a container (mold) formed from glass, metal, or various plastic materials (for example, polyolefin resin, polyester resin, etc.) to form a W / O emulsion layer. Form. As the shape of the container, a cylindrical, cubic or rectangular parallelepiped container is preferable. For example, examples of the metal container include an aluminum can having a radius of 50 mm and a height of 150 mm. Since the γ-ray has a strong penetrating force, the thickness of the container and the thickness of the W / O emulsion layer can be arbitrarily set. The thickness of the W / O type emulsion layer can usually be in the range of 5 μm to 140 mm, but is not limited to this range. From the viewpoint of operability, the thickness of the W / O type emulsion layer is preferably adjusted within the range of 10 mm to 140 mm, more preferably 15 mm to 120 mm, and particularly preferably 20 mm to 100 mm. If the thickness of the W / O emulsion layer is too thin, the production efficiency of the crosslinked gelatin particles may be reduced, or it may be difficult to obtain crosslinked gelatin particles having a desired average particle size.
 工程IIIにおけるガンマ線の照射は、例えば、W/O型エマルジョンを注入した容器をベルトコンベア上に載せて、γ線照射物質の周りを周回させる方法を採用することが好ましい。γ線を必要な照射線量で照射するには、該容器を、γ線照射物質の周りを複数回にわたって周回させることが好ましい。γ線の照射による架橋処理を行った後、トルエンなどのオイルを溶解できる有機溶媒を加えて、混合液を形成し、次いで、該混合液の遠心分離を行ってオイルを除去し、さらに必要に応じて有機溶媒による前記の如き精製処理を繰り返し行うことにより、γ線照射架橋ゼラチン粒子を得ることができる。 For the irradiation of gamma rays in Step III, for example, it is preferable to employ a method in which a container filled with a W / O emulsion is placed on a belt conveyor and circulated around the γ-ray irradiation substance. In order to irradiate the γ-ray with a necessary irradiation dose, it is preferable that the container is circulated around the γ-irradiated substance a plurality of times. After the crosslinking treatment by γ-ray irradiation, an organic solvent capable of dissolving oil such as toluene is added to form a mixed solution, and then the mixed solution is centrifuged to remove the oil, and further required Accordingly, γ-irradiated crosslinked gelatin particles can be obtained by repeatedly performing the above purification treatment with an organic solvent.
 前記各工程を順次実施することにより、a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、c)乾燥粒子の含水率が50~99%の範囲内であり、d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示すγ線照射架橋ゼラチン粒子を得ることができる。 By sequentially carrying out each of the above steps, a) dry particles having a substantially independent shape are formed in a dry state, and b) the average particle diameter of the dry particles is in the range from 0.5 μm to 5 mm. C) The moisture content of the dried particles is in the range of 50 to 99%. D) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles retain their shape in a swollen state without being dissolved. E) When the L * a * b * color system of dry particles is measured using a color difference meter, the L * value is 90.00 or more and the b * value is 9.00 or less. Gamma-irradiated crosslinked gelatin particles exhibiting a hue can be obtained.
 乾燥粒子(水分を含まない架橋ゼラチン粒子)の平均粒子径は、0.5μmから5mmまでの範囲、好ましくは0.5μmから4mmまでの範囲、より好ましくは0.5μmから3mmまでの範囲内に調節することが好ましい。 The average particle size of the dry particles (crosslinked gelatin particles not containing water) is in the range of 0.5 μm to 5 mm, preferably in the range of 0.5 μm to 4 mm, more preferably in the range of 0.5 μm to 3 mm. It is preferable to adjust.
 架橋粒子は、凍結乾燥することができる。架橋ゼラチン粒子の凍結乾燥は、例えば、架橋ゼラチン粒子を蒸留水に入れ、液体窒素中で30分間以上または-80℃で1時間以上凍結させた後、凍結乾燥機で1~3日間乾燥させて、水分を除去することにより行うことができる。凍結乾燥した架橋ゼラチン粒子は、薬液の含浸性や保持性に優れている。 The crosslinked particles can be freeze-dried. The freeze-drying of the crosslinked gelatin particles is performed, for example, by placing the crosslinked gelatin particles in distilled water and freezing them in liquid nitrogen for 30 minutes or more or at −80 ° C. for 1 hour or more and then drying them in a freeze dryer for 1 to 3 days. This can be done by removing moisture. The freeze-dried crosslinked gelatin particles are excellent in chemical solution impregnation and retention.
 オイル成分の除去と洗浄に用いたアセトンなどの有機溶媒を減圧乾燥により除去して得られた乾燥架橋ゼラチン粒子や凍結乾燥した架橋ゼラチン粒子は、多種の溶媒や溶液を含浸することが可能である。架橋ゼラチン粒子は、生体内において代謝によって分解する特性を有している。 Dry crosslinked gelatin particles and freeze-dried crosslinked gelatin particles obtained by removing an organic solvent such as acetone used for oil component removal and washing by drying under reduced pressure can be impregnated with various solvents and solutions. . Crosslinked gelatin particles have the property of being degraded by metabolism in vivo.
 本発明の架橋ゼラチン粒子などの架橋水溶性高分子粒子には、様々な生理活性因子を担持させることができる。生理活性因子としては、例えば、塩基性線維芽細胞増殖因子(bFGF)、トランスフォーミング増殖因子(TGF-β1)、肝細胞増殖因子(HGF)、血小板由来増殖因子(PDGF-BB)、角化細胞増殖因子(KGF)、骨形成因子(BMP-2)、血管内皮増殖因子(VEGF)、これらをコードするプラスミドなどが挙げられる。この他、抗癌剤(アドリアマイシン)、アンジオテンシンII受容体拮抗剤、カンデサルタン、バルサルタン、エリスロポエチンなどの生理活性因子を、架橋ゼラチン粒子に担持させることができる。 The crosslinked water-soluble polymer particles such as the crosslinked gelatin particles of the present invention can carry various physiologically active factors. Examples of physiologically active factors include basic fibroblast growth factor (bFGF), transforming growth factor (TGF-β1), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF-BB), keratinocytes Examples include growth factor (KGF), bone morphogenetic factor (BMP-2), vascular endothelial growth factor (VEGF), and plasmids encoding these. In addition, physiologically active factors such as anticancer agents (adriamycin), angiotensin II receptor antagonists, candesartan, valsartan, and erythropoietin can be supported on the crosslinked gelatin particles.
 本発明の架橋ゼラチン粒子などの架橋水溶性高分子粒子は、化粧品の成分として利用することができる他、工業用等多くの技術分野で使用することができる。 The crosslinked water-soluble polymer particles such as the crosslinked gelatin particles of the present invention can be used as cosmetic ingredients and can be used in many technical fields such as industrial use.
 以下に実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。以下の実施例及び比較例中の部及び%は、特に断りのない限り、それぞれ質量部及び質量%を示す。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited only to these examples. Unless otherwise indicated, the part and% in a following example and a comparative example show a mass part and mass%, respectively.
 本発明における各種物性及び特性の測定法、試験法などは、次の通りである。 The measurement methods and test methods for various physical properties and characteristics in the present invention are as follows.
(1)オイルの動粘度:
 オイルの動粘度は、日本工業規格のJIS Z 8803に規定されている液体の粘度測定方法により、温度37.8℃で、毛細管粘度計を用いて測定した。
(1) Oil kinematic viscosity:
The kinematic viscosity of the oil was measured using a capillary viscometer at a temperature of 37.8 ° C. by a liquid viscosity measuring method specified in JIS Z 8803 of the Japanese Industrial Standard.
(2)平均粒子径:
 乾燥した架橋ゼラチン粒子をプレパラート上に載せ、レーザー顕微鏡(オリンパス製の走査型共焦点レーザー顕微鏡OLS1200)を用いて、任意の100個を観察し、粒子径を計測し、その平均値(平均粒子径)と標準偏差を求めた。
(2) Average particle size:
The dried cross-linked gelatin particles are placed on a slide, and arbitrary 100 particles are observed using a laser microscope (OLYMPUS scanning confocal laser microscope OLS1200), the particle diameter is measured, and the average value (average particle diameter) ) And standard deviation.
(3)回収率:
 架橋ゼラチン粒子の回収率(%)は、次式に基づいて算出した。
 回収率(%)=〔回収ゼラチン粒子量(g)/ゼラチン投入量(g)〕×100
(3) Recovery rate:
The recovery rate (%) of the crosslinked gelatin particles was calculated based on the following formula.
Recovery rate (%) = [recovered gelatin particle amount (g) / gelatin input amount (g)] × 100
(4)含水率:
 電子線の照射により架橋処理を行い、次いで、オイル成分を除去し、アセトンで精製した後、減圧乾燥することにより得られた水分を含有しない乾燥架橋ゼラチン粒子の平均粒子径を測定した。乾燥架橋ゼラチン粒子を温度5℃で3日間蒸留水に浸漬して膨潤させた。水膨潤した架橋ゼラチン粒子の平均粒子径を測定した。各平均粒子径から、前記の式により、各粒子の体積を算出した。含水率は、下記式に従って算出した。
 含水率(%)=[〔(水膨潤粒子の体積)-(乾燥粒子の体積)〕/(水膨潤粒子の体積)]×100
(4) Moisture content:
Cross-linking treatment was performed by electron beam irradiation, and then the oil component was removed, and after purification with acetone, the average particle size of dry cross-linked gelatin particles containing no moisture obtained by drying under reduced pressure was measured. The dried crosslinked gelatin particles were immersed in distilled water for 3 days at a temperature of 5 ° C. to swell. The average particle size of the water-swollen crosslinked gelatin particles was measured. From the average particle diameter, the volume of each particle was calculated by the above formula. The water content was calculated according to the following formula.
Water content (%) = [[(volume of water swollen particles) − (volume of dry particles)] / (volume of water swollen particles)] × 100
(5)耐溶解性:
 乾燥した架橋ゼラチン粒子を温度37℃の水中に24時間浸漬し、溶解することなく、水による膨潤状態で粒子形状を保持しているか、それとも溶解してしまうのかを観察した。
(5) Dissolution resistance:
The dried crosslinked gelatin particles were immersed in water at a temperature of 37 ° C. for 24 hours, and it was observed whether the particle shape was maintained in a swollen state with water or dissolved without dissolving.
(6)L表色系の測定:
 色差計〔コニカミノルタセンシング株式会社製色差計「CM-2600d」〕を用いて、乾燥架橋ゼラチン粒子のL表色系を測定した。凹凸面があるサンプルとして、SCE(正反射光除去)の条件で、黒色ボード(T89)上にサンプルをおいて測定した。光源としてD65(太陽光に近い光)を用いて、視野角2度で測定した。サンプルの使用量は、約2mgであった。このサンプル量は、3mmφの観察視野中から黒色ボードの黒色が見えない程度に均一に散布できる量である。色差(ΔEab)は、実施例11のL値を基準とし、ΔEab=√〔(ΔL+(Δa+(Δb〕の式により求めた相対的な値である。
(6) L * a * b * Color system measurement:
The L * a * b * color system of the dried crosslinked gelatin particles was measured using a color difference meter (color difference meter “CM-2600d” manufactured by Konica Minolta Sensing Co., Ltd.). As a sample having an uneven surface, measurement was performed by placing the sample on a black board (T89) under the condition of SCE (regular reflection light removal). Measurement was performed at a viewing angle of 2 degrees using D65 (light close to sunlight) as a light source. The amount of sample used was about 2 mg. This sample amount is an amount that can be uniformly distributed to the extent that the black color of the black board cannot be seen from the observation field of 3 mmφ. The color difference (ΔE * ab) is based on the L * a * b * value of Example 11 and is based on the equation: ΔE * ab = √ [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] The relative value obtained.
[実施例1]
1.W/O型エマルジョンの調製:
 シリコーン油(信越化学工業社製「KF-96-500cs」)390gに、界面活性剤としてソルビタンモノオレエート〔HLB=4.3、ICI社製のSpan80(登録商標)相当品、和光純薬工業(株)製〕10gを配合し、溶解した。該シリコーン油を60℃に保温して撹拌用モーター(新東科学社製、スリーワンモーター、「EYELA mini D.C. Stirrer」)とテフロン(登録商標)製撹拌用プロペラを三つ口丸底フラスコに取り付け、これらを固定した装置にて400rpmで撹拌した。ここに、60℃に保温した10%アルカリ処理ゼラチン水溶液(アルカリ処理ゼラチンの等電点=5.0、分子量99,000)8gを投入し、撹拌してW/O型エマルジョンを調製した。
[Example 1]
1. Preparation of W / O emulsion:
390 g of silicone oil (“KF-96-500cs” manufactured by Shin-Etsu Chemical Co., Ltd.) and sorbitan monooleate (HLB = 4.3, Span 80 (registered trademark) equivalent manufactured by ICI, Wako Pure Chemical Industries, Ltd.) as a surfactant. Made by Co., Ltd.] 10 g was mixed and dissolved. The silicone oil was kept at 60 ° C., and a stirring motor (manufactured by Shinto Kagaku Co., Ltd., Three One Motor, “EYELA mini DC Stirrer”) and a Teflon (registered trademark) stirring propeller were attached to a three-necked round bottom flask, These were agitated at 400 rpm with a fixed apparatus. 8 g of a 10% alkali-treated gelatin aqueous solution (isoelectric point of alkali-treated gelatin = 5.0, molecular weight 99,000) kept at 60 ° C. was added thereto and stirred to prepare a W / O emulsion.
2.電子線の照射による架橋:
 上記で得られたW/O型エマルジョンを40℃の温度で保温した状態下で、ポリエステルフィルム上に塗工し、厚み100μmのW/O型エマルジョン層を形成した。NHVコーポレーション製電子線照射装置(CURETRON EBC-200-20-15)を用いて、窒素雰囲気下で加速電圧上限200kVで、照射線量が60kGyとなるようにW/O型エマルジョン層上から電子線を照射した。
2. Cross-linking by electron beam irradiation:
The W / O type emulsion obtained above was coated on a polyester film while being kept at a temperature of 40 ° C. to form a W / O type emulsion layer having a thickness of 100 μm. Using an electron beam irradiation apparatus (CURETRON EBC-200-20-15) manufactured by NHV Corporation, an electron beam is applied from above the W / O emulsion layer so that the irradiation dose is 60 kGy at an acceleration voltage upper limit of 200 kV in a nitrogen atmosphere. Irradiated.
3.回収:
 塗工層上にトルエンを滴下し、次いで、塗工層にステンレス製の板であるドクターブレードを押し当てて、W/O型エマルジョンとトルエンとの混合液を回収した。トルエンの滴下量は、W/O型エマルジョン5mLに対して、45mLとした。
3. Recovery:
Toluene was dropped onto the coating layer, and then a doctor blade, which was a stainless steel plate, was pressed against the coating layer to recover a mixed solution of the W / O emulsion and toluene. The dripping amount of toluene was 45 mL with respect to 5 mL of the W / O type emulsion.
3.洗浄:
 W/O型エマルジョンとトルエンとの混合液を撹拌した後、遠心分離機〔株式会社久保田製作所製「KUBOTA2010」〕にて4,000rpmで10分間遠心分離を行い、架橋ゼラチン粒子を沈殿させた。上清を除去した後、トルエンを添加して、超音波洗浄(株式会社エスエヌディ社製「iuchi、US-4」、高周波電力200W、発振周波数38kHz)にて、再度、架橋ゼラチン粒子を懸濁液とした。この懸濁液を遠心分離機で4,000rpmで10分間遠心分離を行い、架橋ゼラチン粒子を沈殿させた。この上清を除去した後、トルエンを添加し、超音波洗浄、遠心分離の操作を行った。この操作は、2度繰り返し行った。これらの操作により、架橋ゼラチン粒子からオイル成分のシリコーン油を除去した。
3. Washing:
After the mixed solution of the W / O emulsion and toluene was stirred, the mixture was centrifuged at 4,000 rpm for 10 minutes in a centrifuge (“KUBOTA 2010” manufactured by Kubota Corporation) to precipitate crosslinked gelatin particles. After removing the supernatant, toluene is added, and the crosslinked gelatin particles are again suspended by ultrasonic cleaning (“iuchi, US-4”, high frequency power 200 W, oscillation frequency 38 kHz, manufactured by SND Corporation). It was. This suspension was centrifuged with a centrifuge at 4,000 rpm for 10 minutes to precipitate crosslinked gelatin particles. After removing the supernatant, toluene was added, and ultrasonic cleaning and centrifugation were performed. This operation was repeated twice. By these operations, the silicone oil as the oil component was removed from the crosslinked gelatin particles.
4.乾燥:
 沈殿部よりトルエンを減圧除去して、電子線照射架橋した水分を含まない状態(ドライ)の架橋ゼラチン粒子を得た。この架橋ゼラチン粒子のSEM写真(6000倍)を図1に示す。結果を表1に示す。
4). Dry:
Toluene was removed under reduced pressure from the precipitation part to obtain crosslinked gelatin particles containing no water (dry) by electron beam irradiation crosslinking. An SEM photograph (6000 times) of the crosslinked gelatin particles is shown in FIG. The results are shown in Table 1.
[実施例2]
 シリコーン油を、KF-96-500csからKF-96H-6000cs〔信越化学工業(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 2]
The electron beam irradiation crosslinking treatment and the purification treatment were performed under the same conditions as in Example 1 except that the silicone oil was changed from KF-96-500cs to KF-96H-6000cs (manufactured by Shin-Etsu Chemical Co., Ltd.). The results are shown in Table 1.
[実施例3]
 シリコーン油をオリーブ油〔日本薬局方、東海製薬(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 3]
Electron beam irradiation crosslinking treatment and purification treatment were carried out under the same conditions as in Example 1 except that the silicone oil was replaced with olive oil (Japanese Pharmacopoeia, manufactured by Tokai Pharmaceutical Co., Ltd.). The results are shown in Table 1.
[実施例4]
 界面活性剤を、ソルビタンモノオレエートからソルビタントリステアレート〔HLB=2.1、和光純薬工業(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 4]
Except that the surfactant was changed from sorbitan monooleate to sorbitan tristearate [HLB = 2.1, manufactured by Wako Pure Chemical Industries, Ltd.], electron beam irradiation crosslinking treatment was performed under the same conditions as in Example 1. A purification treatment was performed. The results are shown in Table 1.
[実施例5]
 界面活性剤を、ソルビタンモノオレエートからソルビタンモノラウレート〔HLB=8.6、ICI社「Span20」(登録商標)相当品、和光純薬工業(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 5]
Except for changing the surfactant from sorbitan monooleate to sorbitan monolaurate (HLB = 8.6, equivalent to “Span20” (registered trademark) of ICI, manufactured by Wako Pure Chemical Industries, Ltd.) Electron beam irradiation crosslinking treatment and purification treatment were performed under the same conditions as in Example 1. The results are shown in Table 1.
[実施例6]
 界面活性剤を、ソルビタンモノオレエートからポリオキシエチレン(20)ソルビタンモノラウレート〔HLB=16.7、ICI社「Tween20」(登録商標)相当品、和光純薬工業(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 6]
The surfactant is changed from sorbitan monooleate to polyoxyethylene (20) sorbitan monolaurate (HLB = 16.7, ICI “Tween20” (registered trademark) equivalent, manufactured by Wako Pure Chemical Industries, Ltd.). Except that, electron beam irradiation crosslinking treatment and purification treatment were performed under the same conditions as in Example 1. The results are shown in Table 1.
[実施例7]
 アルカリ処理ゼラチンをカチオン化ゼラチン誘導体(エチレンジアミンをカルボジイミドで等電点9.0の酸処理ゼラチンにグラフトしたゼラチン誘導体;ニチバン(株)製〕に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 7]
Except that the alkali-treated gelatin was replaced with a cationized gelatin derivative (a gelatin derivative obtained by grafting ethylenediamine with an acid-treated gelatin having an isoelectric point of 9.0 with carbodiimide; manufactured by Nichiban Co., Ltd.) The irradiation irradiation crosslinking treatment and the purification treatment were performed, and the results are shown in Table 1.
[実施例8]
 界面活性剤を添加しなかったこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Example 8]
An electron beam irradiation crosslinking treatment and a purification treatment were performed under the same conditions as in Example 1 except that the surfactant was not added. The results are shown in Table 1.
[比較例1]
 電子線を照射しなかったこと以外は、実施例1と同条件で処理を行い、未架橋の乾燥ゼラチン粒子を得た。結果を表1に示す。
[Comparative Example 1]
The treatment was performed under the same conditions as in Example 1 except that the electron beam was not irradiated to obtain uncrosslinked dry gelatin particles. The results are shown in Table 1.
[比較例2]
 シリコーン油を信越化学工業社製「KF-96-500cs」から信越化学工業社製「KF-96L-5cs」に代えたこと以外は、実施例1と同条件で電子線照射架橋処理と精製処理を行った。結果を表1に示す。
[Comparative Example 2]
Electron beam irradiation crosslinking treatment and purification treatment under the same conditions as in Example 1 except that the silicone oil was changed from “KF-96-500cs” manufactured by Shin-Etsu Chemical Co., Ltd. to “KF-96L-5cs” manufactured by Shin-Etsu Chemical Co., Ltd. Went. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<考察>
 実施例1~8では、50%前後の回収率で架橋ゼラチン粒子が得られたが、比較例2では架橋ゼラチン粒子の器壁への付着や、沈殿のため、十分な回収量が得られず回収率が激減し、産業的な製造方法としては不適であった。
<Discussion>
In Examples 1 to 8, crosslinked gelatin particles were obtained with a recovery rate of around 50%, but in Comparative Example 2, a sufficient amount of collection could not be obtained due to adhesion of the crosslinked gelatin particles to the vessel wall or precipitation. The recovery rate was drastically reduced, making it unsuitable as an industrial production method.
 電子線を照射しなかった比較例1以外は、電子線の照射により架橋ゼラチン粒子の得られたことが確認できた。比較例1の未照射ゼラチン粒子は、37℃の温水に溶解してしまうことが確認された。 Except for Comparative Example 1 where no electron beam was irradiated, it was confirmed that crosslinked gelatin particles were obtained by electron beam irradiation. It was confirmed that the unirradiated gelatin particles of Comparative Example 1 were dissolved in warm water at 37 ° C.
 実施例1~8の電子線照射架橋ゼラチン粒子は、いずれもL値が90.00以上で、かつ、b値が9.00以下であり、色相に優れていることが確認された。 Each of the electron beam irradiated crosslinked gelatin particles of Examples 1 to 8 had an L * value of 90.00 or more and a b * value of 9.00 or less, and was confirmed to be excellent in hue.
[実施例9]
 実施例3において、電子線の加速電圧300kVで、照射線量200kGyの電子線を照射したこと以外は、同じ条件で架橋処理と精製処理を行い、含水率93%の架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。
[Example 9]
In Example 3, cross-linking treatment and purification treatment were performed under the same conditions except that the electron beam was irradiated with an electron beam acceleration voltage of 300 kV and an irradiation dose of 200 kGy to obtain cross-linked gelatin particles having a water content of 93%. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.
[実施例10]
 実施例9において、電子線の照射線量を200kGyから100kGyに変えたこと以外は、同じ条件で架橋処理と精製処理を行い、含水率95%の架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。
[Example 10]
In Example 9, except that the electron beam irradiation dose was changed from 200 kGy to 100 kGy, a crosslinking treatment and a purification treatment were performed under the same conditions to obtain crosslinked gelatin particles having a water content of 95%. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.
[実施例11]
 実施例9において、電子線の照射線量を200kGyから20kGyに変えたこと以外は、同じ条件で架橋処理と精製処理を行い、含水率99%の架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。
[Example 11]
In Example 9, except that the electron beam irradiation dose was changed from 200 kGy to 20 kGy, a crosslinking treatment and a purification treatment were performed under the same conditions to obtain crosslinked gelatin particles having a water content of 99%. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.
[比較例3]
 比較例1と同じ操作により得られた未架橋の乾燥ゼラチン粒子を4℃の水で膨潤させ、次いで、余剰水分を除去して、水膨潤ゼラチン粒子を調製した。該水膨潤ゼラチン粒子を、濃度2.5容量%グルタルアルデヒド水溶液40mlに加え、一昼夜4℃にて撹拌を続けてゼラチンを架橋した。架橋反応後、水洗を繰り返し、乾燥して、含水率90%の化学架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。濃度2.5容量%グルタルアルデヒド水溶液は、濃度25容量%グルタルアルデヒド水溶液〔ナカライテスク(株)製電子顕微鏡用グルタルアルデヒド水溶液〕4mlに、総量40mlになるまでイオン交換水を加えて調製し、4℃に冷却したものである。
[Comparative Example 3]
Uncrosslinked dry gelatin particles obtained by the same operation as in Comparative Example 1 were swollen with water at 4 ° C., and then excess water was removed to prepare water-swollen gelatin particles. The water-swelled gelatin particles were added to 40 ml of a 2.5% by volume aqueous solution of glutaraldehyde, and the gelatin was crosslinked by continuing stirring at 4 ° C. overnight. After the crosslinking reaction, washing with water was repeated and dried to obtain chemically crosslinked gelatin particles having a water content of 90%. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference. A 2.5% strength by volume glutaraldehyde aqueous solution was prepared by adding ion exchange water to 4 ml of a 25% strength by volume glutaraldehyde aqueous solution [Nacalai Tesque Co., Ltd. electron microscope glutaraldehyde aqueous solution] until the total amount reached 40 ml. Cooled to ℃.
[比較例4]
 比較例3において、濃度2.5容量%グルタルアルデヒド水溶液を濃度1.25容量%グルタルアルデヒド水溶液40mlに代えたこと以外は、同じ条件で架橋処理と精製処理を行い、含水率95%の化学架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。
[Comparative Example 4]
In Comparative Example 3, the cross-linking treatment and the purification treatment were carried out under the same conditions except that the 2.5% aqueous solution of glutaraldehyde was replaced with 40 ml of the aqueous 1.25% aqueous solution of glutaraldehyde. Gelatin particles were obtained. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.
[比較例5]
 比較例3において、濃度2.5容量%グルタルアルデヒド水溶液を濃度0.0063容量%グルタルアルデヒド水溶液に代えたこと以外は、同じ条件で架橋処理と精製処理を行い、含水率99%の化学架橋ゼラチン粒子を得た。平均粒子径、含水率、色相、及び色差の測定結果を表2に示す。
[Comparative Example 5]
In Comparative Example 3, the cross-linking treatment and the purification treatment were carried out under the same conditions except that the 2.5 vol% glutaraldehyde aqueous solution was replaced with the 0.0063 vol% glutaraldehyde aqueous solution. Particles were obtained. Table 2 shows the measurement results of average particle diameter, water content, hue, and color difference.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<考察>
 表2の結果から明らかなように、電子線の照射により架橋した架橋ゼラチン粒子は、いずれもL値が90.00以上で、かつ、b値が9.00以下であり、色相に優れていることが確認された。これに対して、化学架橋ゼラチン粒子は、L値が90.00未満で、かつ、b値が9.00超過であり、色相に劣るものであった。これらの結果は、両者の色差の値の差が大きいことからも明らかである。
<Discussion>
As is apparent from the results in Table 2, all the crosslinked gelatin particles crosslinked by electron beam irradiation have an L * value of 90.00 or more and a b * value of 9.00 or less, and are excellent in hue. It was confirmed that In contrast, the chemically crosslinked gelatin particles had an L * value of less than 90.00 and a b * value of more than 9.00, and were inferior in hue. These results are also clear from the large difference between the color difference values.
[実施例12]
 実施例1で調製したW/O型エマルジョンを、半径が50mmで高さが150mmのアルミニウム缶中に注入して、厚み30mmのW/O型エマルジョン層を形成し、次いで、γ線を照射線量100kGyで照射すると、含水率が95%のγ線照射架橋ゼラチン粒子が得られる。
[Example 12]
The W / O type emulsion prepared in Example 1 is injected into an aluminum can having a radius of 50 mm and a height of 150 mm to form a W / O type emulsion layer having a thickness of 30 mm, and then γ rays are irradiated. When irradiated with 100 kGy, γ-irradiated crosslinked gelatin particles having a moisture content of 95% are obtained.
 本発明の電子線照射架橋ゼラチン粒子やγ線照射架橋ゼラチン粒子などの照射架橋水溶性高分子粒子は、生理活性因子などの薬剤の担体、化粧品の成分、各種工業用途などの技術分野で利用することができる。 The irradiation-crosslinked water-soluble polymer particles such as electron beam-irradiated crosslinked gelatin particles and γ-irradiated crosslinked gelatin particles of the present invention are used in technical fields such as pharmaceutical carriers such as physiologically active factors, cosmetic ingredients, and various industrial applications. be able to.

Claims (20)

  1.  水溶性高分子の水溶液からなる複数個の液滴が放射線の照射により架橋処理されて形成された照射架橋水溶性高分子粒子であって、
    a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
    b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、
    c)乾燥粒子の含水率が50~99%の範囲内であり、
    d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
    e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す
    ことを特徴とする照射架橋水溶性高分子粒子。
    Irradiated crosslinked water-soluble polymer particles formed by crosslinking a plurality of droplets made of an aqueous solution of a water-soluble polymer by radiation irradiation,
    a) in the dry state, forming dry particles having a substantially independent shape;
    b) the average particle size of the dry particles is in the range from 0.5 μm to 5 mm;
    c) the moisture content of the dry particles is in the range of 50-99%;
    d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
    e) When the L * a * b * color system of dry particles is measured using a color difference meter, the L * value is 90.00 or more and the b * value is 9.00 or less. Irradiated crosslinked water-soluble polymer particles.
  2.  該水溶性高分子が、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンである請求項1記載の照射架橋水溶性高分子粒子。 The radiation-crosslinked water-soluble polymer particles according to claim 1, wherein the water-soluble polymer is at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives.
  3.  電子線照射架橋水溶性高分子粒子またはγ線照射架橋水溶性高分子粒子である請求項1記載の照射架橋水溶性高分子粒子。 The irradiation crosslinked water-soluble polymer particles according to claim 1, which are electron beam irradiation crosslinked water-soluble polymer particles or γ-ray irradiation crosslinked water-soluble polymer particles.
  4.  下記の工程A乃至E:
    (A)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%の水溶性高分子の水溶液とを混合し、撹拌して、該オイル中に該水溶性高分子水溶液の液滴が分散したW/O型エマルジョンを形成する工程A;
    (B)該W/O型エマルジョンを、放射線が透過することができる厚みの層に形成する工程B;
    (C)該W/O型エマルジョン層に放射線を照射して、該液滴中の水溶性高分子を架橋させることにより、架橋水溶性高分子粒子を形成する工程C;
    (D)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程D;及び
    (E)該混合液から架橋水溶性高分子粒子を分離する工程E;
    の各工程を含むことを特徴とする照射架橋水溶性高分子粒子の製造方法。
    Steps A to E below:
    (A) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous solution of a water-soluble polymer having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O emulsion in which droplets of the water-soluble polymer aqueous solution are dispersed in the oil;
    (B) Step B of forming the W / O emulsion into a layer having a thickness that allows radiation to pass through;
    (C) Step C of forming crosslinked water-soluble polymer particles by irradiating the W / O emulsion layer with radiation to crosslink the water-soluble polymer in the droplets;
    (D) Step D of adding an organic solvent having solubility to the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and (E) Step E of separating the crosslinked water-soluble polymer particles from the mixed solution;
    A process for producing irradiation-crosslinked water-soluble polymer particles, comprising the steps of:
  5.  該水溶性高分子が、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンである請求項4記載の製造方法。 The production method according to claim 4, wherein the water-soluble polymer is at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives.
  6.  該オイルが、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルである請求項4記載の製造方法。 The method according to claim 4, wherein the oil is at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil.
  7.  該工程Aで使用するオイルが、該オイル中にHLBが1.8~20.0の範囲内にある界面活性剤を含有するものである請求項4記載の製造方法。 The production method according to claim 4, wherein the oil used in the step A contains a surfactant having an HLB in the range of 1.8 to 20.0 in the oil.
  8.  該放射線が、電子線またはγ線である請求項4記載の製造方法。 The manufacturing method according to claim 4, wherein the radiation is an electron beam or a gamma ray.
  9.  前記各工程を順次実施することにより、
    a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
    b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、
    c)乾燥粒子の含水率が50~99%の範囲内であり、
    d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
    e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す
    照射架橋水溶性高分子粒子を得る請求項4記載の製造方法。
    By sequentially carrying out the above steps,
    a) in the dry state, forming dry particles having a substantially independent shape;
    b) the average particle size of the dry particles is in the range from 0.5 μm to 5 mm;
    c) the moisture content of the dry particles is in the range of 50-99%;
    d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
    e) Irradiation cross-linking water-solubility showing a hue with an L * value of 90.00 or more and a b * value of 9.00 or less when the L * a * b * color system of dry particles is measured using a color difference meter The production method according to claim 4, wherein polymer particles are obtained.
  10.  下記の工程1乃至6:
    (1)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程1;
    (2)支持体上に、該W/O型エマルジョンを塗工して、厚みが5μmから3mmまでの範囲内の塗工層を形成する工程2;
    (3)該塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、該液滴中のゼラチンを架橋することにより、架橋ゼラチン粒子を形成する工程3;
    (4)該塗工層に、該オイルに対して溶解性を有する有機溶媒を加えて、該塗工層のW/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程4;
    (5)該混合液を支持体上から回収する工程5;及び
    (6)回収した混合液から架橋ゼラチン粒子を分離する工程6;
    の各工程を含むことを特徴とする電子線照射架橋ゼラチン粒子の製造方法。
    Steps 1 to 6 below:
    (1) An oil having a kinematic viscosity within a range of 20 to 6,000 mm 2 / s at a measurement temperature of 37.8 ° C. and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil;
    (2) Step 2 of coating the W / O emulsion on the support to form a coating layer having a thickness in the range of 5 μm to 3 mm;
    (3) A step of forming crosslinked gelatin particles by irradiating the coating layer with an electron beam so that an irradiation dose is within a range of 5 to 3,000 kGy and crosslinking gelatin in the droplets. 3;
    (4) Step 4 of adding an organic solvent soluble in the oil to the coating layer to form a mixed solution containing the W / O emulsion of the coating layer and the organic solvent;
    (5) Step 5 for recovering the mixed solution from the support; and (6) Step 6 for separating the crosslinked gelatin particles from the recovered mixed solution;
    A process for producing electron beam-irradiated crosslinked gelatin particles, comprising the steps of:
  11.  該ゼラチンが、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンである請求項10記載の製造方法。 The method according to claim 10, wherein the gelatin is at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives.
  12.  該オイルが、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルである請求項10記載の製造方法。 The method according to claim 10, wherein the oil is at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil.
  13.  該工程1において使用するオイルが、該オイル中にHLBが1.8~20.0の範囲内にある界面活性剤を含有するものである請求項10記載の製造方法。 11. The production method according to claim 10, wherein the oil used in the step 1 contains a surfactant having an HLB in the range of 1.8 to 20.0 in the oil.
  14.  該工程2が、水平方向に走行する支持体上に、該W/O型エマルジョンを塗工して、厚みが5μmから3mmまでの範囲内の塗工層を連続的に形成する工程であり、
     該工程3が、水平方向に走行する支持体上の塗工層に、照射線量が5~3,000kGyの範囲内となるように電子線を照射して、該液滴中のゼラチンを連続的に架橋する工程であり、
     該工程4が、水平方向に走行する塗工層に、該オイルに対して溶解性を有する有機溶媒を連続的に加えて、該塗工層のW/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程であり、かつ、
     該工程5が、該混合液を支持体上から連続的に回収する工程である
    請求項10記載の製造方法。
    The step 2 is a step of continuously forming a coating layer having a thickness in the range of 5 μm to 3 mm by coating the W / O type emulsion on a support traveling in the horizontal direction.
    In step 3, the coating layer on the support traveling in the horizontal direction is irradiated with an electron beam so that the irradiation dose is in the range of 5 to 3,000 kGy, and the gelatin in the droplets is continuously applied. Cross-linking to
    Step 4 contains a W / O emulsion of the coating layer and the organic solvent by continuously adding an organic solvent soluble in the oil to the coating layer that runs in the horizontal direction. Forming a mixed liquid, and
    The method according to claim 10, wherein the step 5 is a step of continuously recovering the mixed solution from the support.
  15.  前記各工程を順次実施することにより、
    a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
    b)乾燥粒子の平均粒子径が0.5μmから2mmまでの範囲内であり、
    c)乾燥粒子の含水率が50~99%の範囲内であり、
    d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
    e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す
    電子線照射架橋ゼラチン粒子を得る請求項10記載の製造方法。
    By sequentially carrying out the above steps,
    a) in the dry state, forming dry particles having a substantially independent shape;
    b) the average particle size of the dry particles is in the range from 0.5 μm to 2 mm;
    c) the moisture content of the dry particles is in the range of 50-99%;
    d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
    e) Electron beam irradiation cross-linking showing a hue of L * value of 90.00 or more and b * value of 9.00 or less when the L * a * b * color system of dry particles is measured using a color difference meter. The method according to claim 10, wherein gelatin particles are obtained.
  16.  下記の工程I乃至V:
    (I)測定温度37.8℃での動粘度が20~6,000mm/sの範囲内にあるオイルと、濃度が1~80質量%のゼラチンの水溶液とを混合し、撹拌して、該オイル中に該ゼラチン水溶液の液滴が分散したW/O型エマルジョンを形成する工程I;
    (II)該W/O型エマルジョンを容器内に注入して、W/O型エマルジョン層を形成する工程II;
    (III)該W/O型エマルジョン層に、照射線量が5~3,000kGyの範囲内となるようにγ線を照射して、該液滴中のゼラチンを架橋する工程III;
    (IV)該W/O型エマルジョン層に、該オイルに対して溶解性を有する有機溶媒を加えて、該W/O型エマルジョンと該有機溶媒とを含有する混合液を形成する工程IV;及び
    (V)該混合液から架橋ゼラチン粒子を分離する工程V;
    の各工程を含むことを特徴とするγ線照射架橋ゼラチン粒子の製造方法。
    Steps I to V below:
    (I) An oil having a kinematic viscosity at a measurement temperature of 37.8 ° C. within a range of 20 to 6,000 mm 2 / s and an aqueous gelatin solution having a concentration of 1 to 80% by mass are mixed and stirred. Forming a W / O type emulsion in which droplets of the gelatin aqueous solution are dispersed in the oil; I;
    (II) Step II of injecting the W / O emulsion into a container to form a W / O emulsion layer;
    (III) Step III of irradiating the W / O type emulsion layer with γ rays so that the irradiation dose is in the range of 5 to 3,000 kGy to crosslink gelatin in the droplets;
    (IV) Step IV of adding an organic solvent having solubility in the oil to the W / O emulsion layer to form a mixed solution containing the W / O emulsion and the organic solvent; and
    (V) Step V of separating crosslinked gelatin particles from the mixed solution;
    A method for producing γ-irradiated crosslinked gelatin particles, comprising the steps of:
  17.  該ゼラチンが、アルカリ処理ゼラチン、酸処理ゼラチン、カチオン化ゼラチン誘導体、及びサクシニル化ゼラチン誘導体からなる群より選ばれる少なくとも一種のゼラチンである請求項16記載の製造方法。 The method according to claim 16, wherein the gelatin is at least one gelatin selected from the group consisting of alkali-treated gelatin, acid-treated gelatin, cationized gelatin derivatives, and succinylated gelatin derivatives.
  18.  該オイルが、シリコーン油、オリーブ油、ひまし油、なたね油、及びからしな油からなる群より選ばれる少なくとも一種のオイルである請求項16記載の製造方法。 The method according to claim 16, wherein the oil is at least one oil selected from the group consisting of silicone oil, olive oil, castor oil, rapeseed oil, and mustard oil.
  19.  該工程Iにおいて使用するオイルが、該オイル中にHLBが1.8~20.0の範囲内にある界面活性剤を含有するものである請求項16記載の製造方法。 The production method according to claim 16, wherein the oil used in the step I contains a surfactant having an HLB in the range of 1.8 to 20.0 in the oil.
  20.  前記各工程を順次実施することにより、
    a)乾燥状態で、実質的に独立した形状を持つ乾燥粒子を形成し、
    b)乾燥粒子の平均粒子径が0.5μmから5mmまでの範囲内であり、
    c)乾燥粒子の含水率が50~99%の範囲内であり、
    d)乾燥粒子を温度37℃の水中に24時間浸漬したとき、溶解することなく、水による膨潤状態で粒子形状を保持することができ、かつ、
    e)色差計を用いて乾燥粒子のL表色系を測定したとき、L値が90.00以上で、b値が9.00以下の色相を示す
    γ線照射架橋ゼラチン粒子を得る請求項16記載の製造方法。
    By sequentially carrying out the above steps,
    a) in the dry state, forming dry particles having a substantially independent shape;
    b) the average particle size of the dry particles is in the range from 0.5 μm to 5 mm;
    c) the moisture content of the dry particles is in the range of 50-99%;
    d) When the dried particles are immersed in water at a temperature of 37 ° C. for 24 hours, the particles can be retained in a swollen state with water without dissolving, and
    e) γ-ray irradiation crosslinking showing a hue of L * value of 90.00 or more and b * value of 9.00 or less when the L * a * b * color system of dry particles is measured using a color difference meter. The method according to claim 16, wherein gelatin particles are obtained.
PCT/JP2009/051978 2009-02-05 2009-02-05 Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both WO2010089873A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/051978 WO2010089873A1 (en) 2009-02-05 2009-02-05 Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both
JP2010549313A JP5351183B2 (en) 2009-02-05 2009-02-05 Irradiated crosslinked water-soluble polymer particles and method for producing irradiated crosslinked gelatin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051978 WO2010089873A1 (en) 2009-02-05 2009-02-05 Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both

Publications (1)

Publication Number Publication Date
WO2010089873A1 true WO2010089873A1 (en) 2010-08-12

Family

ID=42541795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051978 WO2010089873A1 (en) 2009-02-05 2009-02-05 Irradiation-crosslinked particles of water-soluble polymer, irradiation-crosslinked gelatin particles, and processes for production of both

Country Status (2)

Country Link
JP (1) JP5351183B2 (en)
WO (1) WO2010089873A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259927A (en) * 1990-03-08 1991-11-20 Konika Zerachin Kk Gel composition and its production
WO1994027630A1 (en) * 1993-05-31 1994-12-08 Kaken Pharmaceutical Co., Ltd. Cross-linked gelatin gel preparation containing basic fibroblast growth factor
JP2004263022A (en) * 2003-02-28 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for producing protein product
JP2004339395A (en) * 2003-05-16 2004-12-02 Japan Atom Energy Res Inst Gelatinous heat resistant molded body manufacturing method, and gelatinous heat resistant molded body
JP2005325075A (en) * 2004-05-14 2005-11-24 Yasuhiko Tabata Meniscus injury therapeutic agent using crosslinked gelatin gel as carrier
JP2008001763A (en) * 2006-06-21 2008-01-10 Gunma Univ Method for producing gel composition stably containing deoxyribonucleic acid and the resultant gel composition
WO2008016163A1 (en) * 2006-08-01 2008-02-07 Nichiban Co., Ltd. Crosslinked gelatin gel multilayered structure, carrier for bioactive factor, preparation for release of bioactive factor, and their production methods
WO2008072379A1 (en) * 2006-12-13 2008-06-19 Fujifilm Corporation Method for producing modified biopolymer and method for crosslinking biopolymers
JP2008150596A (en) * 2006-11-24 2008-07-03 Canon Inc Production method of particle, and particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259927A (en) * 1990-03-08 1991-11-20 Konika Zerachin Kk Gel composition and its production
WO1994027630A1 (en) * 1993-05-31 1994-12-08 Kaken Pharmaceutical Co., Ltd. Cross-linked gelatin gel preparation containing basic fibroblast growth factor
JP2004263022A (en) * 2003-02-28 2004-09-24 Ishikawajima Harima Heavy Ind Co Ltd Method for producing protein product
JP2004339395A (en) * 2003-05-16 2004-12-02 Japan Atom Energy Res Inst Gelatinous heat resistant molded body manufacturing method, and gelatinous heat resistant molded body
JP2005325075A (en) * 2004-05-14 2005-11-24 Yasuhiko Tabata Meniscus injury therapeutic agent using crosslinked gelatin gel as carrier
JP2008001763A (en) * 2006-06-21 2008-01-10 Gunma Univ Method for producing gel composition stably containing deoxyribonucleic acid and the resultant gel composition
WO2008016163A1 (en) * 2006-08-01 2008-02-07 Nichiban Co., Ltd. Crosslinked gelatin gel multilayered structure, carrier for bioactive factor, preparation for release of bioactive factor, and their production methods
JP2008150596A (en) * 2006-11-24 2008-07-03 Canon Inc Production method of particle, and particle
WO2008072379A1 (en) * 2006-12-13 2008-06-19 Fujifilm Corporation Method for producing modified biopolymer and method for crosslinking biopolymers

Also Published As

Publication number Publication date
JP5351183B2 (en) 2013-11-27
JPWO2010089873A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
Yan et al. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery
Champeau et al. Drug loading of polymer implants by supercritical CO2 assisted impregnation: A review
Ng et al. Novel microencapsulation of potential drugs with low molecular weight and high hydrophilicity: hydrogen peroxide as a candidate compound
Mandal et al. Silk fibroin/gelatin multilayered films as a model system for controlled drug release
De Geest et al. Ultrasound-triggered release from multilayered capsules
De Geest et al. Layer-by-layer coating of degradable microgels for pulsed drug delivery
CN111437438A (en) Intelligent drug-loaded hydrogel responding to inflammatory microenvironment and preparation method and application thereof
US20190046429A1 (en) Dermal filler composed of macroporous chitosan microbeads and cross-linked hyaluronic acid
Yang et al. Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers
EP2793962B1 (en) Process for modifying the surface morphology of a medical device
Gavini et al. Frontal polymerization as a new method for developing drug controlled release systems (DCRS) based on polyacrylamide
Ghandforoushan et al. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro
JP5514222B2 (en) In vivo drug sustained release carrier material comprising hydrogel crosslinked with ionizing radiation and method for producing the same
CN105283207B (en) Use the osteanagenesis and its application of degradable polymer based nano composite material
Argenta et al. Hydrogel nanocomposite systems: physico-chemical characterization and application for drug-delivery systems
JP2022534787A (en) Tunable degradation of hydrogel microparticles
Dobos et al. Parallel fabrication of macroporous scaffolds
Xue et al. Biomimetic synthesis of novel polyvinyl alcohol/hydroxyapatite composite microspheres for biomedical applications
Adala et al. Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release
JP5351183B2 (en) Irradiated crosslinked water-soluble polymer particles and method for producing irradiated crosslinked gelatin particles
CN110051652B (en) PLGA/FK506 drug-loaded nano-microsphere as well as preparation method and application thereof
CN115920126A (en) Plant exosome-loaded polyhydroxyalkanoate microspheres and preparation method thereof
CN105073151B (en) Biodegradable polymer nanocomposites and uses thereof
WO2009054853A1 (en) Loadable polymeric particles for cosmetic and reconstructive tissue augmentation applications and methods of preparing and using the same
US11801222B2 (en) Manufacturing method for granule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839650

Country of ref document: EP

Kind code of ref document: A1