WO2010088989A1 - Procede de correction d'images obtenues par une matrice de points photosensibles - Google Patents

Procede de correction d'images obtenues par une matrice de points photosensibles Download PDF

Info

Publication number
WO2010088989A1
WO2010088989A1 PCT/EP2009/066683 EP2009066683W WO2010088989A1 WO 2010088989 A1 WO2010088989 A1 WO 2010088989A1 EP 2009066683 W EP2009066683 W EP 2009066683W WO 2010088989 A1 WO2010088989 A1 WO 2010088989A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
photosensitive
signals
charges
line
Prior art date
Application number
PCT/EP2009/066683
Other languages
English (en)
Inventor
Thibaut Wirth
Benoît CANDIARD
Jean-Michel Vignolle
Original Assignee
Trixell S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trixell S.A.S. filed Critical Trixell S.A.S.
Priority to CN200980157833.6A priority Critical patent/CN102405640B/zh
Priority to JP2011548554A priority patent/JP5688592B2/ja
Priority to CA2751816A priority patent/CA2751816A1/fr
Priority to EP09771341.6A priority patent/EP2394424B1/fr
Priority to US13/147,960 priority patent/US8780246B2/en
Publication of WO2010088989A1 publication Critical patent/WO2010088989A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current

Definitions

  • the invention relates to a method for correcting an image obtained by a photosensitive device comprising a matrix of photosensitive points, for example made by semiconductor material deposition techniques. It applies mainly, but not exclusively, to the photosensitive devices used for the detection of radiological images.
  • the invention finds particular utility when the photosensitive device is subjected to an electromagnetic disturbance.
  • a scintillator screen for converting the X-ray radiation into light radiation in the wavelength band at which the photosensitive spots are sensitive.
  • the photosensitive spots that form these matrices generally comprise a photosensitive element associated with an element that performs a switch function.
  • the photosensitive dot is mounted between an inline conductor and a column conductor.
  • the photosensitive device then comprises a plurality of photosensitive points arranged in matrix or bar.
  • the photosensitive element is commonly constituted by a diode, connected in series with the switch element.
  • the switch element can be for example a so-called switching diode whose "closed” or “on” state corresponds to the polarization which puts it in direct conduction, and whose "open” or “blocked” state corresponds to its polarization in reverse.
  • the two diodes are mounted with opposite directions of conduction, in a so-called "head-to-tail” configuration.
  • Such an arrangement is well known, in particular from the French patent application 86 14058 (Publication No.
  • the amorphous semiconductor material produces remanence. This is related to its amorphous structure which has a large number of traps, much more than in crystalline materials. These traps are structural defects that extend over the entire bandgap. They retain charges generated during a useful image, especially during an exposure of photosensitive points to light radiation. The material stores an image corresponding to a given light radiation and renders charges relating to this image during the reading of the next image or of several subsequent images. The quality of the images suffers.
  • the semiconductor components used in a matrix or a strip of photosensitive points are not all identical and the photosensitive device incorporating this matrix or this strip then inherently has inhomogeneities which result in altered zones that vary. in time.
  • a correction of the useful image is carried out from a so-called offset image known under the French black image denomination, taken for example at the beginning of a cycle. of operation or following a useful image capture.
  • This offset image is the image obtained while the photosensitive device is exposed to a signal of zero intensity and corresponds to a kind of background image.
  • the offset image varies according to the electrical state of the components of the photosensitive spots and the dispersion of their electrical characteristics.
  • the useful image is that read while the photosensitive device has been exposed to a useful signal which corresponds for example to an exposure of the scintillator to X-radiation. It includes the offset image.
  • the correction of the useful image then consists in subtracting the offset image from the useful image. This correction is reliable only if the offset image has not varied between the moment it was taken and the moment when the useful image is taken. This implies that the photosensitive spots are in the same electrical state just before the offset image is taken and just before that of the useful image.
  • the photosensitive spots are generally sensitive to electromagnetic disturbances.
  • the electromagnetic disturbances are inevitable. This is for example the case when the photosensitive device is used simultaneously with an electrocautery as part of an interventional radiography. Therefore, the electrical state of the photosensitive spots is likely to vary between the useful picture taking and the offset picture taking. If the disturbance is permanent and periodic, streaks may appear on the image formed by the photosensitive device, unless the frequency of the electromagnetic disturbance is very slow compared to the imaging frequency.
  • a third solution is to correct the image obtained by filtering, for example by means of image correction software.
  • filtering can lead to losing or modifying medical information.
  • An object of the invention is in particular to overcome all or part of the aforementioned drawbacks by proposing a method for correcting an image obtained by a photosensitive device of the impact of any type of electromagnetic disturbance without adding any constraint in the design of the photosensitive device .
  • the subject of the invention is a method of correcting an image obtained by a photosensitive device comprising photosensitive points organized in a matrix of NI lines by Nc columns. Each photosensitive point is capable of accumulating charges when exposed to light radiation.
  • the invention makes it possible to effectively correct an image obtained by a matrix of photosensitive points subjected to an electromagnetic disturbance, in particular when this disturbance is permanent and periodic.
  • FIG. 2 a second example of passive photosensitive device to which the invention can be applied
  • FIG. 3 an example of an active photosensitive device to which the invention can be applied
  • FIG. 4 possible steps for the correction method according to the invention.
  • FIG. 5 possible sub-steps for a line-by-line reading of charges accumulated in a photosensitive device
  • FIG. 6 possible sub-steps for determining offset signals to be subtracted from useful signals.
  • FIG. 1 represents a simplified diagram of a photosensitive device 1 comprising a matrix 2 conventionally organized.
  • the matrix 2 comprises photosensitive points Pi to P 9 , each formed by a photosensitive diode Dp and a switching diode Dc connected in series in a back-to-back configuration.
  • the matrix comprises in-line conductors Y 1 to Y 3 crossed with column conductors X 1 to X 3 , with at each crossing a photosensitive point Pi to P 9 connected between an on-line conductor Y 1 to Y 3 and a column conductor Xi at X 3 .
  • the photosensitive points Pi to P 9 are thus arranged along lines L 1 to L 3 and columns Ch to Cl 3 . They are also called pixels.
  • the photosensitive device 1 comprises a line control circuit 3, whose outputs SY-i, SY 2 and SY 3 are respectively connected to the line conductors Y 1 , Y 2 and Y 3 .
  • the line control circuit 3 has different elements, not shown, such as, for example, clock circuit, switching circuits, shift register, which enable it to perform a sequential addressing of the line conductors Yi to Y 3 .
  • the photosensitive device 1 further comprises a voltage source 4, delivering to the line control circuit 3 a voltage V, for defining the amplitude of so-called reading pulses applied to the line conductors Y 1 to Y 3 .
  • the two diodes Dp and Dc are interconnected either by their anode, as shown in Figure 1, or by their cathode.
  • the cathode of the photodiode Dp is connected to a column conductor Xi to X 3, and the cathode of the switching diode Dc is connected to a row conductor Yi to Y 3.
  • the two diodes Dp and Dc are designed so that the capacitance presented by the photodiode Dp is the strongest, of the order for example of 50 times.
  • the two diodes Dp and Dc of each photosensitive point Pi to P 9 are polarized in reverse. In this state, they each constitute a capacity. Charges are generated in the photodiode Dp by the exposure of the photosensitive point Pi to P 9 to which it belongs. These charges, whose quantity is a function of the intensity of exposure, accumulate at a point A on the node formed at the junction point of the two diodes Dp and Dc.
  • the reading of the photosensitive points Pi to P 9 is carried out line by line, simultaneously for all the photosensitive points connected to the same line conductor Yi to Y 3 .
  • the line control circuit 3 applies to each line conductor Y 1 to Y 3 addressed, a reading pulse of a given amplitude.
  • In-line drivers that are not addressed are maintained at a reference potential V r or idle potential.
  • This reference potential V r is for example the mass. It can be the same potential that is applied to column drivers Xi to
  • the possible accumulation of charges at the point A of a photosensitive point Pi to P 9 causes at this point a decrease in the voltage, that is to say a decrease in the reverse bias voltage of the photodiode Dp.
  • the application of a reading pulse to an on-line conductor Y 1 to Y 3 has the effect of restoring to the potential of the point A of all the photosensitive points connected to this line conductor, the level of polarization that it had before exposure to useful light radiation. This results in a circulation in each of the column conductors Xi to X 3 of a current proportional to the accumulated charges at the corresponding point A.
  • the column conductors X 1 to X 3 are connected to a read circuit CL comprising, in the example of FIG. 1, an integrator circuit 5, a multiplexer circuit 6, a video amplifier 7 and an analog-digital converter 8.
  • integrator circuit 5 comprises as many amplifiers as column conductors Xi to X 3, or in the example of FIG. 1, three amplifiers Gi to G 3 . It further comprises an integration capacitance Ci to C 3 and a switch element I 1 to I 3 for each amplifier Gi to G 3 .
  • Each column conductor X 1 to X 3 is connected to a negative input "-" of an amplifier Gi to G 3 mounted as an integrator.
  • An integration capacitance Ci to C 3 is connected between the negative input "-" and an output Si to S 3 of each amplifier.
  • a second "+" input of each amplifier Gi to G 3 is connected to a potential which, in the example of FIG. 1, is the reference potential V 1 -. As a result, this potential is imposed on all conductors in column X 1 to X 3 .
  • a reset switch element I 1 to I 3 is connected in parallel with each integration capacitor C 1 to C 3 .
  • the switch elements I 1 to I 3 are, for example, MOS type transistors.
  • the integrator circuit 5 thus transforms the charges flowing on the conductors in column X 1 to X 3 in voltages.
  • the outputs S 1 to S 3 of the amplifiers G 1 to G 3 are connected to inputs Ent-i to Ent 3 of the multiplexer circuit 6.
  • the multiplexer circuit 6 is for example formed of a shift register with parallel inputs and serial output which can be of the charge-coupled type, more commonly called CCD. of the English expression "Charged-Coupled Device”. This conventional arrangement makes it possible to deliver "in series” and line after line (from L 1 to L 3 ), at the output of the multiplexer 6, voltages which represent the charges accumulated at the points A of all the photosensitive points P 1 to P 9 . These voltages are called SM multiplex signal.
  • the multiplexed signal SM can then be amplified by the video amplifier 7 and converted into a digital signal SN by an analog-to-digital converter 8. It should be noted that it is also known, in order to fulfill the switch function which, in the example of FIG. 1, is held by the switching diode Dc, to use a transistor. The latter has a greater complexity of connection with the diode, but it offers advantages in the quality of its "passing" state.
  • FIG. 2 diagrammatically illustrates a photosensitive device 1 'which differs from that of FIG. 1 mainly in that it comprises a matrix 2' in which the switching diodes Dc are replaced by transistors T, for example made by means of FIGS. deposit of films in thin layers.
  • TFT Thin Film Transistor
  • the transistor T is connected by its source S to the cathode of the photodiode Dp, that is to say at point A its gate G is connected to the line conductor Y 1 to Y 3 to which the photosensitive point P 1 to P 9 belongs, and its drain D is connected to the column conductor X 1 to X 3 to which the photosensitive point P 1 to P 9 belongs.
  • the anodes of all the photodiodes Dp are connected to an output SY 4 of the line control circuit 3.
  • the output SY 4 delivers a so-called polarization voltage V p0 iar, negative with respect to the reference potential V r or mass, of the order for example - 5 volts.
  • This bias voltage V p0 serves to constitute the reverse bias of the photodiodes Dp.
  • the line control circuit 3 receives for example this bias voltage of a power source 13.
  • FIGS. 1 and 2 describe exemplary embodiments of photosensitive devices 1 and 1 'in which the photosensitive points Pi to P 9 are said to be passive.
  • the invention is particularly applicable to photosensitive devices in which the photosensitive spots are said to be active, ie photosensitive spots in which the charges accumulated during an acquisition phase of an image are converted into voltages at the pixels and not outside the matrix in an integrator circuit.
  • FIG. 3 illustrates such a photosensitive device 1 "comprising a matrix 2" of two lines L 1 and L 2 by two columns Ch and Cl 2 of photosensitive points Pi to P 4 .
  • the line control circuit 3 has two outputs SY 1 and SY 2 respectively connected to two line conductors Y 1 and Y 2 . It further comprises two outputs S RA zi and S RA z2 respectively connected to two reset conductors Y RA zi and Y RA z2-
  • Each photosensitive point Pi to P 4 comprises a photodiode Dp and three transistors T 1 , T 2 and T 3 .
  • the first transistor T 1 of each photosensitive point P 1 to P 4 is connected by its gate G to the reset conductor Y RA zi or Y RA z2 of the line L 1 or L 2 to which the photosensitive point P 1 to P 4 , by its drain D to a voltage source 31 subjecting the drain D to a resetting potential V RAZ and its source S to the cathode of the photodiode Dp belonging to the photosensitive point P 1 to P 4 considered.
  • the anodes of all the photodiodes Dp are connected to a common potential, for example the mass.
  • the same point A can be defined between the source S of the transistor T 1 and the cathode of the photodiode Dp.
  • This point A is further connected to the gate G of the second transistor T 2 of the same photosensitive point P 1 to P 4 .
  • the source S of this transistor T 2 is connected to the source S of the third transistor T 3 of the same photosensitive point P 1 to P 4 and the drains D of all the transistors T 2 are connected to a voltage source 32 subjecting the drains D at a supply potential V dd -
  • the third transistor T 3 of each photosensitive point P 1 to P 4 is further connected by its gate G to the line conductor Y 1 or Y 2 of the line L 1 or L 2 to which belongs the photosensitive point P 1 to P 4 considered and its drain D to the conductor in column X 1 or X 2 of the column Cl 1 or Cl 2 to which belongs the photosensitive point P 1 to P 4 considered.
  • the transistors T 1 make it possible to return the photosensitive points P 1 to P 4 in their original state, that is to say in the state they had before being exposed to radiation. More particularly, the transistors T 1 make it possible, when a reset pulse is sent by the line control circuit 3 on a resetting conductor Y RAZ1 or Y RA z2, to reduce the potential of the point A of all the photosensitive points P 1 to P 4 of the line L 1 or L 2 considered at the starting potential, in this case the resetting potential V RAZ .
  • Transistors T 2 enable to isolate the points A of the conductors in column Xi and X 2 .
  • the transistors T 3 make it possible to connect the sources S of the different transistors T 2 to the column conductors Xi or X 2 to which the corresponding transistors T 3 are connected.
  • the reading of the photosensitive points Pi to P 4 is also performed line by line.
  • the line control circuit 3 successively applies a read pulse to each line conductor Y 1 and Y 2 .
  • the voltages at the point A of the photosensitive points Pi to P 4 belonging to the line L 1 or L 2 which is read are then copied onto the column conductors Xi and X 2 via the transistors T 2 .
  • the photosensitive device 1 "does not include integrating circuit, the charges accumulated at point A are integrated in voltage at the transistor T 2.
  • Xi columnar conductors and X 2 are directly connected to the inputs Enti and Ent 2 of the multiplexer 6.
  • the multiplexer 6 outputs a multiplexed signal SM which can also be amplified by a video amplifier 7 and digitized by an analog-digital converter 8 to provide a digital signal SN .
  • FIG. 3 is made with reference to a photosensitive device 1 "comprising only two lines and two columns of photosensitive dots. ⁇ br/> ⁇ br/> Naturally, the invention applies to matrices of much greater capacity. more than three transistors and the supply voltages V dd and reset V RA z may differ for each photosensitive point.
  • the charges are accumulated during an exposure of the photosensitive points Pi to P 9 by photodiodes Dp.
  • these charges can be accumulated by any photosensitive element. , for example phototransistors.
  • FIG. 4 illustrates possible steps for the correction method according to the invention.
  • the correction method applies for example to an image obtained by one of the photosensitive devices 1, 1 'and 1 "described with reference to FIGS. 1 to 3. It may comprise a first step E 1 acquisition of an image in which each photosensitive point Pi to P 9 is capable of accumulating charges due to an exposure of the matrix 2, 2 'or 2 "to a useful light radiation. for example from a scintillator receiving X-rays having passed through a part of the body of a patient whose radiological image is to be obtained.
  • the correction method comprises a second step E 2 of line-by-line reading of signals representative of the accumulated charges. in each photosensitive point P to P 9.
  • the signals of one line are read concurrently for all vertical Ch Cl 3 of the matrix 2, 2 'or 2 ".
  • the principle of successively acquiring for each line a useful signal and an offset signal is known as correlated double sampling, the useful signals and the offset signals are for example constructed from digital signal SN from the analog-to-digital converter 8.
  • Useful signals and offset signals are then considered column by column. This column by column treatment makes it possible to take into account the fact that an electromagnetic disturbance does not necessarily have a uniform effect on the entire matrix.
  • the useful signals form a discrete signal X reel ⁇ n) and the offset signals form a discrete signal 0F (n) .
  • OFX ⁇ n signals called fictitious offset signals, are determined by correcting the 0F (n) signals.
  • the relation (1) makes it possible not only to correct the red X ⁇ n signals) of the offset signals 0F (n), but also charges generated due of an electromagnetic disturbance, the set of corrected useful signals s ⁇ n) then makes it possible to build a corrected image.
  • FIG. 5 illustrates a particular embodiment of step E 2 of reading line by line.
  • the step E 2 comprises the following successive sub-steps, these substeps being successively repeated for each row of the matrix 2, 2 'or 2 "to be read: a substep E 20 i of reading the accumulated charges at each photosensitive point Pi to P 9 of the line in question, a substep E 202 for converting these charges into analog signals representative of these charges, and a substep E 203 for digitizing these signals.
  • the substep E 20 i for reading the charges of a line comprises sending a read pulse on the line conductor Y 1 to Y 3 of said line, according to the invention, the substeps E 20 i to E 203 are repeated a second time for each line before considering the next line
  • This handover photosensitive points in their original electrical state is performed simultaneously with the substep E 20 i for reading charges for a photosensitive device comprising passive photosensitive spots, such as for example shown in FIGS. 1 and 2
  • the reset can be carried out by sending a resetting pulse on the resetting conductor Y RA zi or Y RA z2 of the considered line.
  • the repetition of substeps E 20 i to E 203 is performed by using a counter Cpt whose value indicates a current read iteration number.
  • this counter Cpt takes only two values, for example '1' for the first reading and '2' for the second reading.
  • the substep E 2 oi can thus be preceded by a substep E 204 of initialization of the value of the counter Cpt, for example to the value '1'.
  • a test is performed in a substep E 205 to determine whether the value of the counter Cpt is equal to the value '2'.
  • the value of the counter Cpt is incremented by one unit in a sub-step E 20 6 and the substeps E 20 i to E 20 5 are then reiterated. If the value of the counter Cpt is equal to the value '2', the next line is considered to be read.
  • the reading line by line is carried out by the use of a second counter n whose value indicates the number of the current line. Therefore, as indicated previously, the counter n takes integer values between 0 and N-1, with N an integer between 2 and the number of lines NI of the matrix 2, 2 'or 2 ".
  • substep E 20 i or, where appropriate, substep E 204 is preceded by a substep E 207 of initialization of the value of counter n to the value n 0 , with n 0 an integer between 0 and N-2
  • the integer n 0 indicates the number of the first line to be read, this first line generally corresponding to the first physical line of the matrix 2, 2 'or 2 ".
  • a test is performed in substep E 208 to determine whether the value of the counter n is equal to the N-1 value. If this is not the case, the value of the counter n is incremented by one unit in a sub-step E 20 g and the process resumes in the substep E 201 or, if applicable, in the substep E 2 o 4 - If the value of the counter n is equal to the value N-1, the step E 2 line-by-line reading is terminated in a sub-step E 210 and the method resumes in the substep E 3 .
  • the step E 2 comprises a substep E 211 of multiplexing, either analog signals from the substep E 202 , as shown in FIG. 5, or digital signals coming from the substep E 203 .
  • the multiplexing is for example carried out by the multiplexer 6 represented in FIGS. 1 to 3.
  • the step E 2 may also comprise an amplification sub-step E 212 .
  • the amplification can particularly relate to the analog signals, the multiplexed signal and / or the digitized signal.
  • FIG. 6 illustrates a particular embodiment of the step
  • E 3 for determining the signals 0FX (n). According to this particular embodiment, it is sought to determine a "phase" of a disturbance signal that is sought to suppress the discrete signal X reel ⁇ n). This disturbance signal being obviously unknown, it is sought to determine a "phase" of the discrete signal X reel ⁇ n).
  • the phase of a signal can only be defined with respect to a periodic reference function of known frequency.
  • a discrete Fourier transform of the signals X red ⁇ n) is carried out in a sub-step E 31 in order to give, for each column of the matrix, a signal X red ⁇ k).
  • the signals X red ⁇ k) are obtained according to the relation:
  • a phase ⁇ k is determined for each non-zero frequency component of each signal X red ⁇ k) associated with a column of the matrix, according to the relation
  • an OFX signal (k) is determined for each signal OF (k) from the frequency components of the signal OF (k) and the phases ⁇ k of the frequency components of the real signals X (k), according to the relation:
  • the OFX signals (k) correspond to the discrete Fourier transforms of the OFX ⁇ n) signals.
  • Each signal 0FX (n) can thus be determined in a substep E 35 by a inverse discrete Fourier transform of the OFX signal ⁇ k) of the column in question, in accordance with the relation:
  • This frequency F N corresponds to the Nyquist frequency of the sampled signals X real ⁇ n) and OF ⁇ n).
  • the presence of the second factor Vz is due to the fact that the samples of each signal are spaced apart by a duration 2T samplmg , and not by the duration T samplmg , because of the double reading on each line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne un procédé de correction d'une image obtenue par une matrice de points photosensibles. Elle trouve une utilité particulière lorsque la matrice est soumise à une perturbation électromagnétique. Selon l'invention, le procédé de correction comprend une première étape (E2) de lecture ligne par ligne de la matrice. Les signaux lus lors d'une première lecture de chaque ligne représentent les charges accumulées suite à une exposition de la matrice à un rayonnement lumineux et permettent de former, pour chaque colonne de la matrice, un signal discret X réel (n). Les signaux lus lors d'une deuxième lecture représentent les charges accumulées en l'absence d'exposition et forment, pour chaque colonne de la matrice, un signal discret OF (n) . Dans une deuxième étape (E3) du procédé, un signal OFX(n) correspondant sensiblement au signal OF(n) qui aurait été formé au temps de la première lecture en l'absence d'exposition est déterminé. Dans une troisième étape (E4), le signal OFX(n) est soustrait colonne par colonne du signal X réel (n).

Description

Procédé de correction d'images obtenues par une matrice de points photosensibles
L'invention concerne un procédé de correction d'une image obtenue par un dispositif photosensible comportant une matrice de points photosensibles, par exemple réalisés par des techniques de dépôt de matériaux semi-conducteurs. Elle s'applique essentiellement, mais non exclusivement, aux dispositifs photosensibles utilisés pour la détection d'images radiologiques. L'invention trouve une utilité particulière lorsque le dispositif photosensible est soumis à une perturbation électromagnétique.
Les techniques de dépôt en films minces de matériaux semiconducteurs tels que le silicium amorphe hydrogéné (aSiH), sur des supports isolants en verre par exemple, permettent de réaliser des matrices de points photosensibles pouvant produire une image à partir d'un rayonnement visible ou proche du visible. Ces matrices peuvent néanmoins être utilisées dans le cadre de la détection d'images radiologiques. Pour cela, il suffit d'interposer entre le rayonnement X et la matrice un écran scintillateur pour convertir le rayonnement X en rayonnement lumineux dans la bande de longueurs d'onde auxquelles les points photosensibles sont sensibles.
Les points photosensibles qui forment ces matrices comprennent généralement un élément photosensible associé à un élément remplissant une fonction d'interrupteur. Le point photosensible est monté entre un conducteur en ligne et un conducteur en colonne. Selon les besoins, le dispositif photosensible comporte alors une pluralité de points photosensibles agencés en matrice ou en barrette.
L'élément photosensible est couramment constitué par une diode, montée en série avec l'élément interrupteur. L'élément interrupteur peut être par exemple une diode dite de commutation dont l'état "fermé" ou "passant" correspond à la polarisation qui la met en conduction directe, et dont l'état "ouvert" ou "bloqué" correspond à sa polarisation en inverse. Les deux diodes sont montées avec des sens de conduction opposés, dans une configuration dite "tête-bêche". Une telle disposition est bien connue, notamment de la demande de brevet français 86 14058 (n° de publication 2 605 166) dans laquelle sont décrits une matrice de points photosensibles du type à deux diodes en configuration "tête-bêche", un procédé de lecture des points photosensibles et une manière de réaliser un tel dispositif photosensible. Le matériau semi-conducteur amorphe produit de la rémanence. Ceci est lié à sa structure amorphe qui comporte un grand nombre de pièges, bien plus que dans les matériaux cristallins. Ces pièges sont des défauts de structure qui s'étendent sur toute la bande interdite. Ils retiennent des charges engendrées lors d'une prise d'image utile, en particulier lors d'une exposition des points photosensibles à un rayonnement lumineux. Le matériau mémorise une image correspondant à un rayonnement lumineux donné et restitue des charges relatives à cette image au cours de la lecture de l'image suivante voire de plusieurs images suivantes. La qualité des images s'en ressent.
Par ailleurs, les composants semi-conducteurs utilisés dans une matrice ou une barrette de points photosensibles ne sont pas tous identiques et le dispositif photosensible intégrant cette matrice ou cette barrette possède alors de manière inhérente des inhomogénéités qui se traduisent par des zones altérées et qui varient dans le temps.
Pour essayer d'obtenir une image utile de qualité optimale, on effectue une correction de l'image utile à partir d'une image dite d'offset connue sous la dénomination française d'image noire, prise par exemple en début d'un cycle de fonctionnement ou à la suite d'une prise d'image utile. Cette image d'offset est l'image obtenue alors que le dispositif photosensible est exposé à un signal d'intensité nulle et correspond à une sorte d'image de fond. L'image d'offset varie en fonction de l'état électrique des composants des points photosensibles et de la dispersion de leurs caractéristiques électriques. L'image utile est celle lue alors que le dispositif photosensible a été exposé à un signal utile qui correspond par exemple à une exposition du scintillateur à un rayonnement X. Elle englobe l'image d'offset. La correction de l'image utile consiste alors à effectuer une soustraction de l'image d'offset à l'image utile. Cette correction n'est fiable que si l'image d'offset n'a pas varié entre le moment où elle a été prise et le moment où l'image utile est prise. Cela implique que les points photosensibles sont dans le même état électrique juste avant la prise d'image d'offset et juste avant celle de l'image utile.
Cependant, les points photosensibles sont généralement sensibles aux perturbations électromagnétiques. Dans certains cas d'utilisation du dispositif photosensible, les perturbations électromagnétiques sont inévitables. Ceci est par exemple le cas lorsque le dispositif photosensible est utilisé simultanément avec un bistouri électrique dans le cadre d'une radiographie interventionnelle. Par conséquent, l'état électrique des points photosensibles est susceptible de varier entre la prise d'image utile et la prise d'image d'offset. Si la perturbation est permanente et périodique, des stries peuvent apparaître sur l'image formée par le dispositif photosensible, sauf si la fréquence de la perturbation électromagnétique est très lente comparée à la fréquence de prise d'images.
Pour diminuer l'impact des perturbations électromagnétiques sur les images formées par un dispositif photosensible, il est possible de rendre le dispositif photosensible insensible à ces perturbations, notamment en réalisant un blindage et en supprimant les boucles de courant. Cependant, cela n'est pas toujours possible en présence de fortes contraintes, par exemple mécaniques (poids, encombrement) ou électriques (isolation). Il est également possible de synchroniser les prises d'images avec la perturbation afin de soustraire, par l'intermédiaire de l'image d'offset, la même amplitude de perturbation qu'au moment de la prise d'image utile. Cette synchronisation n'est possible qu'en présence d'une seule perturbation électromagnétique ou éventuellement en présence de plusieurs perturbations électromagnétiques dont les fréquences sont multiples les unes des autres. En outre, il est nécessaire de caractériser la perturbation et de séquencer précisément la commande du dispositif photosensible en fonction de cette perturbation, ce qui impose de nombreuses contraintes sur la conception du dispositif photosensible. Une troisième solution consiste à corriger l'image obtenue par filtrage, par exemple au moyen d'un logiciel de correction d'image. Le filtrage peut cependant conduire à perdre ou à modifier l'information médicale. De plus, il est difficilement adaptable à un large spectre de fréquences de perturbations électromagnétiques.
Un but de l'invention est notamment de pallier tout ou partie des inconvénients précités en proposant un procédé permettant de corriger une image obtenue par un dispositif photosensible de l'impact de tout type de perturbation électromagnétique sans ajouter de contrainte dans la conception du dispositif photosensible. A cet effet, l'invention a pour objet un procédé de correction d'une image obtenue par un dispositif photosensible comportant des points photosensibles organisés en une matrice de NI lignes par Nc colonnes. Chaque point photosensible est susceptible d'accumuler des charges lors d'une exposition à un rayonnement lumineux. Selon l'invention, le procédé comprend : - une première étape de lecture ligne par ligne à des instants t = 2n et t = 2n+1 de signaux représentatifs des charges accumulées en chaque point photosensible avec n un entier compris entre 0 et N-1 , où N est un entier compris entre 2 et le nombre NI de lignes de la matrice, les signaux d'une même ligne étant lus simultanément, une durée déterminée Tsamphng séparant deux instants de lecture successifs, les signaux lus aux instants t = 2n, appelés signaux utiles, représentant les charges accumulées aux différents points photosensibles suite à une exposition de ces points à un rayonnement lumineux utile, les signaux lus aux instants t = 2n+1 , appelés signaux d'offset, représentant les charges accumulées aux différents points photosensibles en l'absence d'exposition à un rayonnement, pour chaque colonne de la matrice, les signaux utiles formant un signal discret Xreel{n) et les signaux d'offset formant un signal discret 0F(n),
- une deuxième étape de détermination, pour chaque signal 0F(n) correspondant à une colonne de la matrice, d'un signal 0FX(n) qui aurait été formé par les signaux d'offset s'ils avaient été lus aux instants t = 2n, ces signaux 0FX(n) étant déterminés en corrigeant les signaux
0F{n) ,
- une troisième étape de soustraction, pour chaque colonne de la matrice, du signal OFX {n) au signal Xred{n) correspondant.
L'invention permet de corriger efficacement une image obtenue par une matrice de points photosensibles soumis à une perturbation électromagnétique, en particulier lorsque cette perturbation est permanente et périodique.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation donné à titre d'exemple, description faite en regard de dessins annexés qui représentent : - la figure 1 , un premier exemple de dispositif photosensible passif auquel peut s'appliquer l'invention ;
- la figure 2, un deuxième exemple de dispositif photosensible passif auquel peut s'appliquer l'invention ; - la figure 3, un exemple de dispositif photosensible actif auquel peut s'appliquer l'invention ;
- la figure 4, des étapes possibles pour le procédé de correction selon l'invention ;
- la figure 5, des sous-étapes possibles pour une lecture ligne par ligne de charges accumulées dans un dispositif photosensible ;
- la figure 6, des sous-étapes possibles pour une détermination de signaux d'offset à soustraire de signaux utiles.
La figure 1 représente un schéma simplifié d'un dispositif photosensible 1 comportant une matrice 2 organisée de façon classique. La matrice 2 comporte des points photosensibles Pi à P9, formés chacun par une diode photosensible Dp et une diode de commutation Dc montées en série suivant une configuration tête-bêche. La matrice comporte des conducteurs en ligne Yi à Y3 croisés avec des conducteurs en colonne Xi à X3, avec à chaque croisement, un point photosensible Pi à P9 connecté entre un conducteur en ligne Yi à Y3 et un conducteur en colonne Xi à X3. Les points photosensibles Pi à P9 sont ainsi disposés suivant des lignes L1 à L3 et des colonnes Ch à Cl3. Ils sont également appelés pixels.
Dans l'exemple de la figure 1 , seulement trois lignes et trois colonnes sont représentées qui définissent neuf points photosensibles Pi à P9, mais une telle matrice peut avoir une capacité beaucoup plus grande, pouvant aller jusqu'à plusieurs millions de points. Il est courant par exemple de réaliser de telles matrices ayant des points photosensibles disposés suivant 3000 lignes et 3000 colonnes (dans une surface de l'ordre de 40 cm x 40 cm), ou bien disposés suivant une unique colonne et plusieurs lignes pour constituer une barrette de détection.
Le dispositif photosensible 1 comporte un circuit de commande ligne 3, dont des sorties SY-i, SY2 et SY3 sont reliées respectivement aux conducteurs en ligne Y-i, Y2 et Y3. Le circuit de commande ligne 3 dispose de différents éléments, non représentés, tels que par exemple, circuit d'horloge, circuits de commutation, registre à décalage, qui lui permettent de réaliser un adressage séquentiel des conducteurs en ligne Yi à Y3. Le dispositif photosensible 1 comporte en outre une source de tension 4, délivrant au circuit de commande ligne 3 une tension V, servant à définir l'amplitude d'impulsions dites de lecture appliquées aux conducteurs en ligne Yi à Y3.
Dans chaque point photosensible Pi à P9, les deux diodes Dp et Dc sont reliées entre elles soit par leur anode, comme représenté à la figure 1 , soit par leur cathode. La cathode de la photodiode Dp est reliée à un conducteur en colonne Xi à X3, et la cathode de la diode de commutation Dc est reliée à un conducteur en ligne Yi à Y3. Il est à noter que généralement les deux diodes Dp et Dc sont conçues pour que la capacité présentée par la photodiode Dp soit la plus forte, de l'ordre par exemple de 50 fois.
Durant une phase d'exposition de la matrice 2 à un rayonnement lumineux dit "utile", les deux diodes Dp et Dc de chaque point photosensible Pi à P9 sont polarisées en inverse. Dans cet état, elles constituent chacune une capacité. Des charges sont engendrées dans la photodiode Dp par l'exposition du point photosensible Pi à P9 auquel elle appartient. Ces charges, dont la quantité est fonction de l'intensité d'exposition, s'accumulent en un point A sur le nœud formé au point de jonction des deux diodes Dp et Dc. La lecture des points photosensibles Pi à P9 s'effectue ligne par ligne, simultanément pour tous les points photosensibles reliés à un même conducteur en ligne Yi à Y3. A cet effet, le circuit de commande ligne 3 applique à chaque conducteur en ligne Yi à Y3 adressé, une impulsion de lecture d'une amplitude donnée. Les conducteurs en ligne qui ne sont pas adressés sont maintenus à un potentiel de référence Vr ou potentiel de repos. Ce potentiel de référence Vr est par exemple la masse. Il peut être le même potentiel que celui qui est appliqué aux conducteurs en colonne Xi à
X3.
L'éventuelle accumulation de charges au point A d'un point photosensible Pi à P9 entraîne en ce point une diminution de la tension, c'est-à-dire une diminution de la tension de polarisation inverse de la photodiode Dp. L'application d'une impulsion de lecture à un conducteur en ligne Y1 à Y3 a pour effet de restituer au potentiel du point A de tous les points photosensibles reliés à ce conducteur en ligne, le niveau de polarisation qu'il possédait avant l'exposition au rayonnement lumineux utile. II en résulte une circulation dans chacun des conducteurs en colonne Xi à X3 d'un courant proportionnel aux charges accumulées au point A correspondant.
Les conducteurs en colonne Xi à X3 sont reliés à un circuit de lecture CL comprenant, dans l'exemple de la figure 1 , un circuit intégrateur 5, un circuit multiplexeur 6, un amplificateur vidéo 7 et un convertisseur analogique-numérique 8. Le circuit intégrateur 5 comprend autant d'amplificateurs que de conducteurs en colonne Xi à X3 soit, dans l'exemple de la figure 1 , trois amplificateurs Gi à G3. Il comprend en outre une capacité d'intégration Ci à C3 et un élément interrupteur I1 à I3 pour chaque amplificateur Gi à G3. Chaque conducteur en colonne Xi à X3 est relié à une entrée négative " - " d'un amplificateur Gi à G3 monté en intégrateur. Une capacité d'intégration Ci à C3 est montée entre l'entrée négative " - " et une sortie Si à S3 de chaque amplificateur. Une seconde entrée " + " de chaque amplificateur Gi à G3 est reliée à un potentiel qui, dans l'exemple de la figure 1 , est le potentiel de référence V1-. Par suite, ce potentiel est imposé à tous les conducteurs en colonne Xi à X3. Un élément interrupteur I1 à I3 dit de remise à zéro est monté en parallèle avec chaque capacité d'intégration C1 à C3. Les éléments interrupteurs I1 à I3 sont par exemple des transistors du type MOS. Le circuit intégrateur 5 transforme ainsi les charges circulant sur les conducteurs en colonne X1 à X3 en tensions.
Les sorties S1 à S3 des amplificateurs G1 à G3 sont reliées à des entrées Ent-i à Ent3 du circuit multiplexeur 6. Le circuit multiplexeur 6 est par exemple formé d'un registre à décalage à entrées parallèles et sortie série pouvant être du type à couplage de charges, plus communément appelé CCD. de l'expression anglo-saxonne "Charged-Coupled Device". Cette disposition classique permet de délivrer "en série" et ligne après ligne (de L1 à L3), en sortie du multiplexeur 6, des tensions qui représentent les charges accumulées aux points A de tous les points photosensibles P1 à P9. Ces tensions sont appelées signal multiplexe SM.
Le signal multiplexe SM peut ensuite être amplifié par l'amplificateur vidéo 7 et converti en un signal numérique SN par un convertisseur analogique-numérique 8. II est à noter qu'il est connu aussi, pour remplir la fonction d'interrupteur qui, dans l'exemple de la figure 1 , est tenue par la diode de commutation Dc, d'utiliser un transistor. Ce dernier présente par rapport à la diode une plus grande complexité de connexion, mais il offre des avantages dans la qualité de son état "passant".
La figure 2 illustre schématiquement un dispositif photosensible 1 ' qui diffère de celui de la figure 1 principalement en ce qu'il comporte une matrice 2' dans laquelle les diodes de commutation Dc sont remplacées par des transistors T, par exemple réalisés par des techniques de dépôt de films en couches minces. Ces techniques sont connues dans la littérature anglo- saxonne sous le terme de "Thin Film Transistor" (TFT). Ces techniques peuvent être utilisées pour réaliser l'ensemble des matrices 2 et 2' représentées aux figures 1 et 2.
Dans le schéma montré à la figure 2 à titre d'exemple, dans chaque point photosensible Pi à P9, le transistor T est relié par sa source S à la cathode de la photodiode Dp, c'est-à-dire au point A, sa grille G est reliée au conducteur en ligne Yi à Y3 auquel appartient le point photosensible Pi à P9, et son drain D est relié au conducteur en colonne Xi à X3 auquel appartient le point photosensible Pi à P9. Les anodes de toutes les photodiodes Dp sont reliées à une sortie SY4 du circuit de commande ligne 3. La sortie SY4 délivre une tension dite de polarisation Vp0iar, négative par rapport au potentiel de référence Vr ou masse, de l'ordre par exemple de - 5 volts. Cette tension de polarisation Vp0iar sert à constituer la polarisation en inverse des photodiodes Dp. Le circuit de commande ligne 3 reçoit par exemple cette tension de polarisation d'une source d'alimentation 13.
Pour mieux comprendre le fonctionnement général des dispositifs représentés aux figures 1 et 2, on peut se reporter aux demandes de brevets français publiées sous les numéros FR 2 760 585 et FR 2 605 166.
Les figures 1 et 2 décrivent des exemples de réalisation de dispositifs photosensibles 1 et 1 ' dans lesquels les points photosensibles Pi à P9 sont dits passifs. L'invention s'applique cependant particulièrement bien à des dispositifs photosensibles dans lesquels les points photosensibles sont dits actifs, c'est-à-dire des points photosensibles dans lesquels les charges accumulées pendant une phase d'acquisition d'une image sont converties en tensions au niveau des pixels et non à l'extérieur de la matrice dans un circuit intégrateur.
La figure 3 illustre un tel dispositif photosensible 1 " comportant une matrice 2" de deux lignes L1 et L2 par deux colonnes Ch et Cl2 de points photosensibles Pi à P4. Le circuit de commande ligne 3 comporte deux sorties SY1 et SY2 reliées respectivement à deux conducteurs en ligne Yi et Y2. Il comporte en outre deux sorties SRAzi et SRAz2 reliées respectivement à deux conducteurs de remise à zéro YRAzi et YRAz2- Chaque point photosensible Pi à P4 comporte une photodiode Dp et trois transistors T1, T2 et T3. Le premier transistor T1 de chaque point photosensible P1 à P4 est relié par sa grille G au conducteur de remise à zéro YRAzi ou YRAz2 de la ligne L1 ou L2 à laquelle appartient le point photosensible P1 à P4 considéré, par son drain D à une source de tension 31 soumettant le drain D à un potentiel de remise à zéro VRAZ et par sa source S à la cathode de la photodiode Dp appartenant au point photosensible P1 à P4 considéré. Les anodes de toutes les photodiodes Dp sont reliées à un potentiel commun, par exemple la masse. Le même point A peut être défini entre la source S du transistor T1 et la cathode de la photodiode Dp. Ce point A est de plus relié à la grille G du deuxième transistor T2 du même point photosensible P1 à P4. La source S de ce transistor T2 est reliée à la source S du troisième transistor T3 du même point photosensible P1 à P4 et les drains D de tous les transistors T2 sont reliés à une source de tension 32 soumettant les drains D à un potentiel d'alimentation Vdd- Le troisième transistor T3 de chaque point photosensible P1 à P4 est de plus relié par sa grille G au conducteur en ligne Y1 ou Y2 de la ligne L1 ou L2 à laquelle appartient le point photosensible P1 à P4 considéré et par son drain D au conducteur en colonne X1 ou X2 de la colonne Cl1 ou Cl2 à laquelle appartient le point photosensible P1 à P4 considéré.
Les transistors T1 permettent de remettre les points photosensibles P1 à P4 dans leur état d'origine, c'est-à-dire dans l'état qu'ils avaient avant d'être exposés à un rayonnement. Plus particulièrement, les transistors T1 permettent, lorsqu'une impulsion de remise à zéro est envoyée par le circuit de commande ligne 3 sur un conducteur de remise à zéro YRAZ1 ou YRAz2, de ramener le potentiel du point A de tous les points photosensibles P1 à P4 de la ligne L1 ou L2 considérée au potentiel de départ, en l'occurrence le potentiel de remise à zéro VRAZ. Les transistors T2 permettent d'isoler les points A des conducteurs en colonne Xi et X2. Les transistors T3 permettent de relier les sources S des différents transistors T2 aux conducteurs en colonne Xi ou X2 auxquels sont reliés les transistors T3 correspondants. La lecture des points photosensibles Pi à P4 s'effectue également ligne par ligne. Le circuit de commande ligne 3 applique successivement une impulsion de lecture à chaque conducteur en ligne Yi et Y2. Les tensions au point A des points photosensibles Pi à P4 appartenant à la ligne L1 ou L2 qui est lue sont alors recopiées sur les conducteurs en colonne Xi et X2 par l'intermédiaire des transistors T2.
Contrairement aux dispositifs photosensibles 1 et 1 ' des figures 1 et 2, le dispositif photosensible 1 " ne comporte pas de circuit intégrateur, les charges accumulées au point A étant intégrées en tension au niveau des transistors T2. Les conducteurs en colonnes Xi et X2 sont directement reliés aux entrées Enti et Ent2 du multiplexeur 6. Le multiplexeur 6 délivre en sortie un signal multiplexe SM qui peut également être amplifié par un amplificateur vidéo 7 et numérisé par un convertisseur analogique-numérique 8 afin de fournir un signal numérique SN.
La figure 3 est faite en référence à un dispositif photosensible 1 " comportant uniquement deux lignes et deux colonnes de points photosensibles. Bien entendu, l'invention s'applique à des matrices de capacité beaucoup plus importante. En outre, chaque point photosensible peut comporter plus de trois transistors et les tensions d'alimentation Vdd et de remise à zéro VRAz peuvent différer pour chaque point photosensible.
Dans les dispositifs photosensibles 1 , 1 ' et 1 " des figures 1 à 3, on considère que les charges sont accumulées pendant une exposition des points photosensibles Pi à P9 par des photodiodes Dp. Cependant, ces charges peuvent être accumulées par tout élément photosensible, par exemple des phototransistors.
La figure 4 illustre des étapes possibles pour le procédé de correction selon l'invention. Le procédé de correction s'applique par exemple à une image obtenue par l'un des dispositifs photosensibles 1 , 1 ' et 1 " décrits en référence aux figures 1 à 3. Il peut comporter une première étape E1 d'acquisition d'une image au cours de laquelle chaque point photosensible Pi à P9 est susceptible d'accumuler des charges du fait d'une exposition de la matrice 2, 2' ou 2" à un rayonnement lumineux utile. Ce rayonnement lumineux provient par exemple d'un scintillateur recevant des rayons X ayant traversé une partie du corps d'un patient dont on souhaite obtenir une image radiologique. Le procédé de correction comprend une deuxième étape E2 de lecture ligne par ligne de signaux représentatifs des charges accumulées en chaque point photosensible Pi à P9. Autrement dit, les signaux d'une même ligne sont lus simultanément pour toutes les colonnes Ch à Cl3 de la matrice 2, 2' ou 2". Les signaux sont lus à des instants t = 2n et t = 2n+1 , avec n un entier compris entre 0 et N-1 où N est un entier compris entre 2 et le nombre de lignes NI de la matrice 2, 2' ou 2". Une durée déterminée Tsampiιng sépare deux instants successifs de lecture t et t+1. Selon l'invention, les signaux lus aux instants t = 2n représentent les charges accumulées aux différents points photosensibles Pi à P9 lors de l'étape E1. Ces signaux sont appelés signaux utiles. Les signaux lus aux instants t = 2n+1 représentent les charges accumulées entre les instants t = 2n et t = 2n+1 en l'absence d'exposition à un rayonnement. Ces signaux sont appelés signaux d'offset. Le principe consistant à acquérir successivement pour chaque ligne un signal utile et un signal d'offset est connu sous le terme de double échantillonnage corrélé. Les signaux utiles et les signaux d'offset sont par exemple construits à partir du signal numérique SN issu du convertisseur analogique-numérique 8. Les signaux utiles et les signaux d'offset sont ensuite considérés colonne par colonne. Ce traitement colonne par colonne permet notamment de prendre en compte le fait qu'une perturbation électromagnétique n'a pas forcément un effet uniforme sur toute la matrice.
Pour chaque colonne Ch à Cl3 de la matrice 2, 2' ou 2", les signaux utiles forment un signal discret Xreel{n) et les signaux d'offset forment un signal discret 0F(n). Dans une troisième étape E3, pour chaque signal 0F(n) correspondant à une colonne Ch à Cl3 de la matrice 2, 2' ou 2", un signal 0FX(n) qui aurait été formé par les signaux d'offset s'ils avaient été lus aux instants t = 2n est déterminé. Ces signaux OFX {n), appelés signaux d'offset fictifs, sont déterminés en corrigeant les signaux 0F(n). Ils représentent les quantités de charges accumulées dans les points photosensibles aux instants de lecture des signaux utiles mais en l'absence d'exposition de la matrice 2, 2' ou 2" à un rayonnement lumineux utile. Autrement dit, ils correspondent aux signaux d'offset aux instants de lecture t = 2n. Certaines des charges accumulées dans les points photosensibles peuvent être générées du fait d'une perturbation électromagnétique. Si cela est le cas, la part d'amplitude de chaque signal Xred{n) correspondant à la quantité de charges d'origine électromagnétique sera identique à la part d'amplitude correspondante de chaque signal OFX (n). Dans une quatrième étape E4, le signal OFX {n) est soustrait colonne par colonne du signal Xml{n), conformément à la relation : S{n) = Xreel {n)- 0FX{n), (1 ) où s(n) représente le signal utile corrigé de la colonne Ch à Cl3 considérée. Cette relation (1 ) permet non seulement de corriger les signaux Xred{n) des signaux d'offset 0F(n), mais également des charges générées du fait d'une perturbation électromagnétique. L'ensemble des signaux utiles corrigés s{n) permet alors de construire une image corrigée.
La figure 5 illustre une forme particulière de réalisation de l'étape E2 de lecture ligne par ligne. Selon cette forme particulière de réalisation, l'étape E2 comprend les sous-étapes successives suivantes, ces sous-étapes étant répétées successivement pour chaque ligne de la matrice 2, 2' ou 2" devant être lue : une sous-étape E20i de lecture des charges accumulées en chaque point photosensible Pi à P9 de la ligne considérée, une sous-étape E202 de conversion de ces charges en signaux analogiques représentatifs de ces charges et, une sous-étape E203 de numérisation de ces signaux. La sous-étape E20i de lecture des charges d'une ligne comprend l'envoi d'une impulsion de lecture sur le conducteur en ligne Yi à Y3 de ladite ligne. Conformément à l'invention, les sous-étapes E20i à E203 sont répétées une deuxième fois pour chaque ligne avant de considérer la ligne suivante. Ainsi, les charges lues lors de la première lecture aux instants t = 2n correspondent aux charges accumulées suite à une exposition des points photosensibles Pi à P9 à un rayonnement lumineux utile lors de l'étape E1, et les charges lues lors de la deuxième lecture aux instants t = 2n+1 correspondent aux charges accumulées en l'absence d'exposition, dans la mesure où les points photosensibles de la ligne considérée ont été remis dans leur état électrique d'origine préalablement à la deuxième lecture des charges. Cette remise des points photosensibles dans leur état électrique d'origine, appelée remise à zéro, est effectuée simultanément à la sous-étape E20i de lecture des charges pour un dispositif photosensible comportant des points photosensibles passifs, tel que par exemple représenté aux figures 1 et 2. Pour un dispositif photosensible comportant des points photosensibles actifs, tel que par exemple représenté à la figure 3, la remise à zéro peut être effectuée par l'envoi d'une impulsion de remise à zéro sur le conducteur de remise à zéro YRAzi ou YRAz2 de la ligne considérée.
Dans un mode particulier de réalisation, représenté à la figure 5, la répétition des sous-étapes E20i à E203 est effectuée par l'utilisation d'un compteur Cpt dont une valeur indique un numéro d'itération courante de lecture. En l'occurrence, ce compteur Cpt ne prend que deux valeurs, par exemple '1 ' pour la première lecture et '2' pour la deuxième lecture. La sous- étape E2oi peut ainsi être précédée d'une sous-étape E204 d'initialisation de la valeur du compteur Cpt, par exemple à la valeur '1 '. A l'issue de la sous- étape E203 de numérisation, un test est effectué dans une sous-étape E205 pour déterminer si la valeur du compteur Cpt est égale à la valeur '2'. Si tel n'est pas le cas, la valeur du compteur Cpt est incrémentée d'une unité dans une sous-étape E206 et les sous-étapes E20i à E205 sont alors réitérées. Si la valeur du compteur Cpt est égale à la valeur '2', la ligne suivante est alors considérée afin d'être lue.
Dans un mode particulier de réalisation, représenté à la figure 5, la lecture ligne par ligne est effectuée par l'utilisation d'un deuxième compteur n dont une valeur indique le numéro de la ligne courante. Par conséquent, comme indiqué précédemment, le compteur n prend des valeurs entières comprises entre 0 et N-1 , avec N un entier compris entre 2 et le nombre de lignes NI de la matrice 2, 2' ou 2". Selon ce mode particulier de réalisation, la sous-étape E20i ou, le cas échéant, la sous-étape E204, est précédée d'une sous-étape E207 d'initialisation de la valeur du compteur n à la valeur n0, avec n0 un entier compris entre 0 et N-2. L'entier n0 indique le numéro de la première ligne devant être lue, cette première ligne correspondant généralement à la première ligne physique de la matrice 2, 2' ou 2". A l'issue de la sous-étape E203 de numérisation ou, le cas échéant, de la sous-étape E205, un test est effectué dans une sous-étape E208 afin de déterminer si la valeur du compteur n est égale à la valeur N-1. Si tel n'est pas le cas, la valeur du compteur n est incrémentée d'une unité dans une sous-étape E20g et le procédé reprend à la sous-étape E201 ou, le cas échéant, à la sous- étape E2o4- Si la valeur du compteur n est égale à la valeur N-1 , il est mis fin à l'étape E2 de lecture ligne par ligne dans une sous-étape E210 et le procédé reprend à la sous-étape E3.
Toujours dans un mode particulier de réalisation, l'étape E2 comprend une sous-étape E211 de multiplexage, soit des signaux analogiques issus de la sous-étape E202, comme représenté à la figure 5, soit des signaux numériques issus de la sous-étape E203. Le multiplexage est par exemple réalisé par le multiplexeur 6 représenté aux figures 1 à 3. L'étape E2 peut également comporter une sous-étape E212 d'amplification. L'amplification peut notamment concerner les signaux analogiques, le signal multiplexe et/ou le signal numérisé.
La figure 6 illustre une forme particulière de réalisation de l'étape
E3 de détermination des signaux 0FX(n). Selon cette forme particulière de réalisation, on cherche à déterminer une "phase" d'un signal de perturbation que l'on cherche à supprimer du signal discret Xreel{n). Ce signal de perturbation étant évidemment inconnu, on cherche à déterminer une "phase" du signal discret Xreel{n). La phase d'un signal ne peut cependant être définie que par rapport à une fonction de référence périodique de fréquence connue. Pour cela, on réalise dans une sous-étape E31 une transformation de Fourier discrète des signaux Xred{n) afin de donner, pour chaque colonne de la matrice, un signal Xred{k). Les signaux Xred{k) sont obtenus conformément à la relation :
N-I -ι2π — n
XreÀk) = ∑Xred(n).e " t (2)
B=O avec k un indice de composante fréquentielle variant de 0 à N-1. Dans une sous-étape E32, on détermine une phase ψk pour chaque composante fréquentielle non nulle de chaque signal Xred{k) associé à une colonne de la matrice, conformément à la relation
Vfc e [0,iV -l],
Figure imgf000016_0001
De manière analogue à la sous-étape E31 , on réalise dans une sous-étape E33 une transformation de Fourier discrète des signaux OF {n) afin de donner, pour chaque colonne de la matrice, un signal OF(k), conformément à la relation :
OF(k) = ∑OF(n).e N (4)
B=O
Dans une sous-étape E34, un signal OFX(k) est déterminé pour chaque signal OF(k) à partir des composantes fréquentielles du signal OF(k) et des phases ψk des composantes fréquentielles des signaux Xréel {k), conformément à la relation :
Figure imgf000017_0001
Chaque signal OFX {k) correspond sensiblement à la transformée de Fourier discrète du signal OF (n) de la colonne considérée qui aurait été formé par les signaux d'offset s'ils avaient été lus aux instants t = 2n. Autrement dit, les signaux OFX (k) correspondent aux transformées de Fourier discrètes des signaux OFX {n). Chaque signal 0FX(n) peut ainsi être déterminé dans une sous-étape E35 par une transformation de Fourier discrète inverse du signal OFX {k) de la colonne considérée, conformément à la relation :
OFX(n) = ±-∑OFX(k).e 2πN" (6)
Selon une forme particulière de réalisation, pour chaque colonne
Ch à Cl3 de la matrice 2, 2' ou 2", les signaux Xréel {n) et OF {n) sont filtrés au voisinage d'une fréquence FN déterminée par la relation :
FN = 1Ε ' V T samphng Ï ' (7)
Cette fréquence FN correspond à la fréquence de Nyquist des signaux échantillonnés Xréel {n) et OF {n) . Dans la relation (7), la présence du deuxième facteur Vz est due au fait que les échantillons de chaque signal sont espacés d'une durée 2Tsamplmg , et non de la durée Tsamplmg , en raison de la double lecture sur chaque ligne.

Claims

REVENDICATIONS
1. Procédé de correction d'une image obtenue par un dispositif photosensible (1 , 1 ', 1 ") comportant des points photosensibles (Pi à P9) organisés en une matrice (2, 2', 2") de NI lignes (L1 à L3) par Nc colonnes (Ch à Cl3), chaque point photosensible (Pi à P9) étant susceptible d'accumuler des charges lors d'une exposition à un rayonnement lumineux, le procédé étant caractérisé en ce qu'il comprend :
- une première étape (E2) de lecture ligne par ligne à des instants t = 2n et t = 2n+1 de signaux représentatifs des charges accumulées en chaque point photosensible (Pi à P9) avec n un entier compris entre 0 et N-1 , où N est un entier compris entre 2 et le nombre NI de lignes (L1 à L3) de la matrice (2, 2', 2"), les signaux d'une même ligne (L1 à L3) étant lus simultanément, une durée déterminée Tsamplmg séparant deux instants de lecture successifs, les signaux lus aux instants t = 2n, appelés signaux utiles, représentant les charges accumulées aux différents points photosensibles (P1 à P9) suite à une exposition de ces points (P1 à P9) à un rayonnement lumineux utile, les signaux lus aux instants t = 2n+1 , appelés signaux d'offset, représentant les charges accumulées aux différents points photosensibles (P1 à P9) en l'absence d'exposition à un rayonnement, pour chaque colonne (Cl1 à Cl3) de la matrice (2, 2', 2"), les signaux utiles formant un signal discret Xred{n) et les signaux d'offset formant un signal discret
0F{n) ,
- une deuxième étape (E3) de détermination, pour chaque signal 0F(n) correspondant à une colonne (Cl1 à Cl3) de la matrice (2, 2', 2"), d'un signal 0FX(n) qui aurait été formé par les signaux d'offset s'ils avaient été lus aux instants t = 2n, ces signaux 0FX(n) étant déterminés en corrigeant les signaux OF (n),
- une troisième étape (E4) de soustraction, pour chaque colonne (Cl1 à Cl3) de la matrice (2, 2', 2"), du signal 0FX(n) au signal Xreel(n) correspondant.
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape (E2) de lecture ligne par ligne comprend les sous-étapes successives suivantes, ces sous-étapes étant répétées successivement pour chaque ligne (L1 à L3) devant être lue : - une sous-étape (E2oi) de lecture des charges accumulées en chaque point photosensible (Pi à P9) de la ligne considérée suite à une exposition des points photosensibles (Pi à P9) à un rayonnement lumineux,
- une sous-étape (E202) de conversion de ces charges en signaux analogiques représentatifs de ces charges,
- une sous-étape (E203) de numérisation des signaux analogiques représentatifs des charges,
- une sous-étape (E20i) de lecture des charges accumulées en chaque point photosensible (Pi à P9) de ladite ligne suite à une remise desdits points photosensibles (Pi à P9) dans leur état électrique d'origine,
- une sous-étape (E202) de conversion de ces charges en signaux analogiques représentatifs de ces charges,
- une sous-étape (E203) de numérisation des signaux analogiques représentatifs des charges.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la deuxième étape (E3) comporte, pour chaque colonne (Ch à Cl3) de la matrice (2, 2', 2"), les sous-étapes suivantes :
- une transformation de Fourier discrète (E31) du signal Xred{n) en un signal Xreel{k), avec k un indice de composante fréquentielle variant de
O à N-1 ,
- une détermination (E32) d'une phase ψk pour chaque composante fréquentielle non nulle du signal Xree[{k),
- une transformation de Fourier discrète (E33) du signal 0F(n) en un signal OF(k),
- une détermination (E34), à partir des composantes fréquentielles du signal OF(k) et des phases ψk des composantes fréquentielles du signal Xree[{k), d'un signal OFX {k) par la relation :
Vk ' lθ,N -l],
Figure imgf000019_0001
- une détermination (E35) du signal 0FX(n) par une transformation de Fourier discrète inverse du signal OFX(k).
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, pour chaque colonne (Ch à Cl3) de la matrice (2, 2', 2"), les signaux Xréel(n) et 0F(n) sont filtrés au voisinage d'une fréquence FN déterminée par la relation :
' V samphng '
PCT/EP2009/066683 2009-02-06 2009-12-09 Procede de correction d'images obtenues par une matrice de points photosensibles WO2010088989A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980157833.6A CN102405640B (zh) 2009-02-06 2009-12-09 用于校正通过光敏点阵列获得的图像的方法
JP2011548554A JP5688592B2 (ja) 2009-02-06 2009-12-09 感光点のアレイによって取得される画像の補正方法
CA2751816A CA2751816A1 (fr) 2009-02-06 2009-12-09 Procede de correction d'images obtenues par une matrice de points photosensibles
EP09771341.6A EP2394424B1 (fr) 2009-02-06 2009-12-09 Procédé de correction d'images obtenues par une matrice de points photosensibles
US13/147,960 US8780246B2 (en) 2009-02-06 2009-12-09 Method for correcting images obtained by an array of photosensitive points

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950771A FR2942093B1 (fr) 2009-02-06 2009-02-06 Procede de correction d'images obtenues par une matrice de points photosensibles.
FR0950771 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010088989A1 true WO2010088989A1 (fr) 2010-08-12

Family

ID=41065402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066683 WO2010088989A1 (fr) 2009-02-06 2009-12-09 Procede de correction d'images obtenues par une matrice de points photosensibles

Country Status (7)

Country Link
US (1) US8780246B2 (fr)
EP (1) EP2394424B1 (fr)
JP (1) JP5688592B2 (fr)
CN (1) CN102405640B (fr)
CA (1) CA2751816A1 (fr)
FR (1) FR2942093B1 (fr)
WO (1) WO2010088989A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767459B2 (ja) * 2010-11-29 2015-08-19 キヤノン株式会社 放射線撮影装置、その制御方法、制御システム、およびプログラム
DE102014224638A1 (de) * 2014-12-02 2016-06-02 Olympus Soft Imaging Solutions Gmbh Digitales Bilderfassungssystem und Verfahren zur Fehlerkorrektur in einem solchen System

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276508A (en) * 1992-11-05 1994-01-04 Eastman Kodak Company Analog signal processor for electronic imaging system providing highly accurate reproduction of images
US20070236590A1 (en) * 2006-03-31 2007-10-11 Cypress Semiconductor Corporation Output auto-zero for CMOS active pixel sensors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605166B1 (fr) 1986-10-09 1989-02-10 Thomson Csf Dispositif photosensible a l'etat solide, procede de lecture et procede de fabrication
JPH03135177A (ja) * 1989-10-20 1991-06-10 Hitachi Ltd 信号読み出し装置
JP2551366B2 (ja) * 1993-11-04 1996-11-06 日本電気株式会社 画像ドリフト制御回路
JPH0965347A (ja) * 1995-08-24 1997-03-07 Sony Corp 撮像装置及び撮像結果の処理方法
FR2760585B1 (fr) 1997-03-07 1999-05-28 Thomson Tubes Electroniques Procede de commande d'un dispositif photosensible a faible remanence, et dispositif photosensible mettant en oeuvre le procede
FR2826219B1 (fr) * 2001-06-19 2003-11-07 Trixell Sas Procede de commande d'un dispositif photosensible
US7426792B2 (en) * 2002-05-09 2008-09-23 Nike, Inc. Footwear sole component with an insert
JP2004290607A (ja) * 2003-03-28 2004-10-21 Konica Minolta Holdings Inc 放射線画像処理装置及び放射線画像処理方法
JP4470700B2 (ja) * 2004-02-23 2010-06-02 ソニー株式会社 Ad変換方法およびad変換装置並びに物理量分布検知の半導体装置および電子機器
JP5072423B2 (ja) * 2007-05-01 2012-11-14 キヤノン株式会社 ノイズ除去装置、及びノイズ除去方法
JP2009141631A (ja) * 2007-12-05 2009-06-25 Canon Inc 光電変換装置及び撮像装置
US7649979B2 (en) * 2008-05-21 2010-01-19 General Electric Company Artifact reduction system and method for radiological imaging system
JP5732707B2 (ja) * 2008-12-16 2015-06-10 ナム タイ,ヒョク ノイズキャンセリングの撮像素子およびその方法
JP5521721B2 (ja) * 2009-08-28 2014-06-18 ソニー株式会社 撮像素子およびカメラシステム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276508A (en) * 1992-11-05 1994-01-04 Eastman Kodak Company Analog signal processor for electronic imaging system providing highly accurate reproduction of images
US20070236590A1 (en) * 2006-03-31 2007-10-11 Cypress Semiconductor Corporation Output auto-zero for CMOS active pixel sensors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IRSIGLER R; ANDERSSON J; ALVERBRO J; FAKOOR-BINIAZ Z; FROJDH C; HELANDER P; MARTIJN H; MEIKLE D; OSTLUND M; O'SHEA V; SMITH K: "320x240 GaAs pixel detectors with improved X-ray imaging quality", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A:ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, ELSEVIER, AMSTERDAM, NL, vol. 460, no. 1, 11 March 2001 (2001-03-11), pages 67 - 71, XP004230595, ISSN: 0168-9002 *
JUNG M; REIBEL Y; CUNIN B; DRAMAN C: "RDS and IRDS Filters for High-Speed CCD Video Sensors", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 47, no. 9, 1 September 2000 (2000-09-01), XP011013284, ISSN: 1057-7130 *

Also Published As

Publication number Publication date
US20120033112A1 (en) 2012-02-09
JP2012517168A (ja) 2012-07-26
JP5688592B2 (ja) 2015-03-25
FR2942093B1 (fr) 2011-04-15
EP2394424A1 (fr) 2011-12-14
FR2942093A1 (fr) 2010-08-13
CN102405640B (zh) 2014-11-05
US8780246B2 (en) 2014-07-15
EP2394424B1 (fr) 2018-02-21
CA2751816A1 (fr) 2010-08-12
CN102405640A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
EP0237365B1 (fr) Dispositif photosensible
EP0245147A1 (fr) Panneau de prise de vue radiologique, et procédé de fabrication
FR2817106A1 (fr) Dispositif photosensible et procede de commande du dispositif photosensible
EP0233104A1 (fr) Matrice d'élements photosensibles et son procédé de fabrication, procédé de lecture associé, et application de cette matrice à la prise de vue d'images
EP0367650A1 (fr) Dispositif photosensible du type à amplification du signal au niveau des points photosensibles
WO2008034677A1 (fr) Capteur d'image lineaire cmos a fonctionnement de type transfert de charges
EP2394424B1 (fr) Procédé de correction d'images obtenues par une matrice de points photosensibles
EP0965224A1 (fr) Procede de commande d'un dispositif photosensible a faible remanence, et dispositif photosensible mettant en oeuvre le procede
CA2539506C (fr) Procede de commande d'un dispositif photosensible
EP1425903B1 (fr) Procede de commande d'un dispositif photosensible
EP2486724B1 (fr) Procédé pour la réduction du bruit dans le signal d'image d'un dispositif photosensible
EP3026890B1 (fr) Contrôle de la durée d'intégration dans un dispositif photosensible
EP1195049A1 (fr) Procede de commande d'un dispositif photosensible apte a produire des images de bonne qualite
FR3119707A1 (fr) Détecteur numérique à intégration numérique de charges
WO2014195622A1 (fr) Capteur CMOS à photosites standard
EP2664132A1 (fr) Capteur d'image lineaire en technologie cmos a compensation d'effet de file
FR3018017A1 (fr) Procede et dispositif d'acquisition numerique de signal, notamment d'image, permettant une reduction de bruit electronique
FR2800549A1 (fr) Procede et dispositif d'acquisition de pixels

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157833.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09771341

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009771341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011548554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2751816

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13147960

Country of ref document: US