WO2010087980A2 - Bicyclic amide derivatives for the treatment of respiratory depression - Google Patents

Bicyclic amide derivatives for the treatment of respiratory depression Download PDF

Info

Publication number
WO2010087980A2
WO2010087980A2 PCT/US2010/000254 US2010000254W WO2010087980A2 WO 2010087980 A2 WO2010087980 A2 WO 2010087980A2 US 2010000254 W US2010000254 W US 2010000254W WO 2010087980 A2 WO2010087980 A2 WO 2010087980A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
compounds
treatment
respiratory depression
pharmaceutically acceptable
Prior art date
Application number
PCT/US2010/000254
Other languages
French (fr)
Other versions
WO2010087980A3 (en
Inventor
Rudolf Mueller
Leslie J. Street
Original Assignee
Cortex Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cortex Pharmaceuticals, Inc. filed Critical Cortex Pharmaceuticals, Inc.
Publication of WO2010087980A2 publication Critical patent/WO2010087980A2/en
Publication of WO2010087980A3 publication Critical patent/WO2010087980A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/537Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/08Bridged systems

Definitions

  • This invention relates to compounds, pharmaceutical compositions and methods for use in the prevention and treatment of cerebral insufficiency, including enhancement of receptor functioning in synapses in brain networks responsible for breathing. Imbalances in neuronal activities between different brain regions may lead to a number of disorders, including respiratory depression.
  • the invention relates to compounds useful for treatment of respiratory depression and methods of using these compounds for such treatment.
  • AMPA neuropeptide kinase kinase
  • NMDA N-methyl-D-aspartic acid
  • AMPA receptors mediate a voltage independent fast excitatory rjost-synaptic current (the fast EPSC)
  • the fast EPSC rjost-synaptic current
  • NMDA receptors generate a voltage-dependent, slow excitatory current.
  • the AMPA receptor mediated fast EPSC is generally the dominant component by far at most glutamatergic synapses, and activation of AMPA receptors is usually a prerequisite for NMDA receptors activation.
  • AMPA receptors are expressed throughout the central nervous system. These receptors are found in high concentrations in the superficial layers of neocortex, in each of the major synaptic zones of hippocampus, and in the striatal complex, as reported by Monaghan et al., in Brain Research 324:160-164 (1984). AMPA receptors are expressed in brain regions that regulate the inspiratory drive responsible for control of breathing (Paarmann et al, Journal of Neurochemistry, IA: 1335-1345 (2000).
  • drugs that modulate and thereby enhance the functioning of AMPA receptors could have significant benefits for reversal of respiratory depression induced by pharmacological agents such as opioids and opiates, or other means.
  • Drugs that enhance the functioning of the AMPA receptor can effectively reverse opioid- and barbiturate-induced respiratory depression without reversing the analgesic response (Ren et al, American Journal of Respiratory and Critical Care Medicine, 174: 1384-1391 (2006). Therefore these drugs may be useful in preventing or reversing opioid-induced respiratory depression and for alleviating other forms of respiratory depression including sedative use.
  • the present invention includes, in one aspect, a compound as shown by structure A and other structures and described in Section 11 of the Detailed Description, which follows.
  • Administration of compounds of this class has been found to enhance AMPA mediated glutamatergic synaptic responses in vivo and this assay has proven useful in assessing the efficacy of compounds in the reversal of opiod induced respiratory depression. This activity translates into pharmaceutical compounds and corresponding methods of use, including treatment methods.
  • Compounds within the present invention demonstrate improved pharmacokinetic properties compared with previously described compounds and have good oral bioavailability.
  • the invention includes a method for reducing or inhibiting respiratory depression in a subject having respiratory depression, comprising administering to the subject an amount of a compound of the invention, the amount being sufficient to reduce or inhibit respiratory depression.
  • the subject is a human.
  • the subject is a mammal.
  • a method for reducing or inhibiting respiratory depression comprising administering to the subject an amount of a compound of the invention in combination with an opioid analgesic; examples of such opiates include but are not limited to, alfentanil and fentanyl.
  • compound is used herein to refer to any specific chemical compound disclosed herein. Within its use in context, the term generally refers to a single stable compound, but in certain instances may also refer to stereoisomers and/or optical isomers (including enantiopure compounds, enantiomerically enriched compounds and racemic mixtures) of disclosed compounds.
  • an effective amount refers to the amount of a selected compound of formula I that is used within the context of its intended use to effect an intended result, for example, to enhance glutamatergic synaptic response by increasing AMPA receptor activity.
  • the precise amount used will vary depending upon the particular compound selected and its intended use, the age and weight of the subject, route of administration, and so forth, but may be easily determined by routine experimentation. In the case of the treatment of a condition or disease state, an effective amount is that amount which is used to effectively treat the particular condition or disease state.
  • pharmaceutically acceptable carrier refers to a carrier or excipient which is not unacceptably toxic to the subject to which it is administered. Pharmaceutically acceptable excipients are described at length by E. W. Martin, in “Remington's Pharmaceutical Sciences.”
  • a "pharmaceutically acceptable salt" of an amine compound is an ammonium salt having as counter ion an inorganic anion such as chloride, bromide, iodide, sulfate, sulfite, nitrate, nitrite, phosphate, and the like, or an organic anion such as acetate, malonate, pyruvate, propionate, fumarate, cinnamate, tosylate, and the like.
  • patient or “subject” is used throughout the specification to describe an animal, generally a mammalian animal, including a human, to whom treatment or use with the compounds or compositions according to the present invention is provided.
  • an animal generally a mammalian animal, including a human, to whom treatment or use with the compounds or compositions according to the present invention is provided.
  • the term patient or subject refers to that particular animal.
  • brain network is used to describe different anatomical regions of the brain that communicate with one another via the synaptic activity of neuronal cells.
  • AMPA receptor refers to an aggregate of proteins found in some membranes, which allows positive ions to cross the membrane in response to the binding of glutamate or AMPA (DL- ⁇ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), but not NMDA.
  • excitatory synapse is used to describe a cell-cell junction at which release of a chemical messenger by one cell causes depolarization of the external membrane of the other cell.
  • An excitatory synapse describes a postsynaptic neuron which has a reversal potential that is more positive than the threshold potential and consequently, in such a synapse, a neurotransmitter increases the probability that an excitatory post synaptic potential will result (a neuron will fire producing an action potential).
  • Reversal potentials and threshold potentials determine postsynaptic excitation and inhibition.
  • the reversal potential for a post synaptic potential is more positive than the action potential threshold, the effect of a transmitter is excitatory and produces an excitatory post synaptic potential (“EPSP”) and the firing of an action potential by the neuron.
  • the reversal potential for a post synaptic potential is more negative than the action potential threshold, the transmitter is inhibitory and may generate inhibitory post synaptic potentials (IPSP), thus reducing the likelihood that a synapse will fire an action potential.
  • the general rule for postsynaptic action is: if the reversal potential is more positive than threshold, excitation results; inhibition occurs if the reversal potential is more negative than threshold. See, for example, Chapter 7, NEUROSCIENCE, edited by Dale Purves, Sinauer Associates, Inc., Sunderland, MA 1997.
  • synaptic response is used to describe biophysical reactions in one cell as a consequence of the release of chemical messengers by another cell with which it is in close contact.
  • Impaired is used to describe a function working at a level that is less than normal. Impaired functions can be significantly impacted such that a function is barely being carried out, is virtually non-existent or is working in a fashion that is significantly less than normal. Impaired functions may also be sub-optimal. The impairment of function will vary in severity from patient to patient and the condition to be treated.
  • respiratory depression refers to a variety of conditions characterized by reduced respiratory frequency and inspiratory drive to cranial and spinal motor neurons. Specifically, respiratory depression refers to conditions where the medullary neural network associated with respiratory rhythm generating activity does not respond to accumulating levels Of PCO 2 (or decreasing levels of PO 2 ) in the blood and subsequently under stimulates motorneurons controlling lung musculature.
  • the present invention is directed to compounds having the property of enhancing AMPA receptor function.
  • a preferred embodiment includes a compound of formula B, below:
  • a further preferred embodiment includes compounds of formula C, below:
  • X O, or CH 2 , or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
  • the present invention provides compounds of Formula A selected from: [2,l,3]-benzoxadiazol-5-yl(3-oxa-8-azabicyclo[3.2.1]oct-8-yl)methanone,
  • the carboxylic acid 3 was transformed to the acid chloride 4 by refluxing with thionyl chloride and a catalytic amount of DMF in toluene.
  • the carboxylic acid 3 can be transformed into bicyclic amides A by reaction with the appropriate aminobicycles using standard coupling conditions like CDI, EDCI, HBTU in a suitable solvent.
  • acid chloride 4 can be transformed into bicyclic amides A under standard coupling conditions with bicyclic amines in the presence of a base for example triethylamine or aqueous sodium hydroxide, among others in a suitable solvent, for example dichloromethane.
  • a method for treating a mammalian subject suffering from deficiencies in the number or strength of excitatory synapses or in the number of AMPA receptors.
  • the invention provides a method for reducing or inhibiting respiratory depression in a subject having such a condition, comprising administering to the subject an amount of a compound of the invention, the amount being sufficient to reduce or inhibit respiratory depression.
  • a method for reducing or inhibiting respiratory depression comprising administering to the subject an amount of a compound of the invention in combination with an opiate; examples of such opiates include but are not limited to, alfentanil and fentanyl.
  • the method of treatment comprises administering to the subject in need of treatment, in a pharmaceutically acceptable earner, an effective amount of a compound having the Formula A below:
  • Synaptic responses mediated by AMPA receptors are increased according to the method of the invention, using the compounds described herein.
  • the electrophysiological effects of the invention compounds were tested in vivo in anesthetized animals according to the following procedures.
  • Animals are maintained under anesthesia by phenobarbital administered using a Hamilton syringe pump.
  • Stimulating and recording electrodes are inserted into the perforant path and dentate gyrus of the hippocampus, respectively.
  • a stable baseline of evoked responses are elicited using single monophasic pulses (100 ⁇ s pulse duration) delivered at 3/min to the stimulating electrode.
  • Field EPSPs are monitored until a stable baseline is achieved (about 20-30 min), after which a solution of test compound is injected intraperitoneally and evoked field potentials are recorded.
  • dosages and routes of administration of the compound will be determined according to the size and condition of the subject, according to standard pharmaceutical practices. Dose levels employed can vary widely, and can readily be determined by those of skill in the art. Typically, amounts in the milligram up to gram quantities are employed.
  • the composition may be administered to a subject by various routes, e.g. orally, transdermally, perineurally or parenterally, that is, by intravenous, subcutaneous, intraperitoneal, or intramuscular injection, among others, including buccal, rectal and transdermal administration.
  • Subjects contemplated for treatment according to the method of the invention include humans, companion animals, laboratory animals, and the like.
  • Formulations containing the compounds according to the present invention may take the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as, for example, tablets, capsules, powders, sustained-release formulations, solutions, suspensions, emulsions, suppositories, creams, ointments, lotions, aerosols, patches or the like, preferably in unit dosage forms suitable for simple administration of precise dosages.
  • compositions according to the present invention comprise an effective amount of one or more compounds according to the present invention and typically include a conventional pharmaceutical carrier or excipient and may additionally include other medicinal agents, carriers, adjuvants, additives and the like.
  • the composition will be about 0.5 to 75% by weight or more of a compound or compounds of the invention, with the remainder consisting essentially of suitable pharmaceutical excipients.
  • excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like.
  • the composition may also contain minor amounts of non-toxic auxiliary substances such as wetting agents, emulsifying agents, or buffers.
  • Liquid compositions can be prepared by dissolving or dispersing the compounds (about 0.5% to about 20% by weight or more), and optional pharmaceutical adjuvants, in a carrier, such as, for example, beta-hydroxypropylcyclodextrin, aqueous saline, aqueous dextrose, glycerol, or ethanol, to form a solution or suspension.
  • a carrier such as, for example, beta-hydroxypropylcyclodextrin, aqueous saline, aqueous dextrose, glycerol, or ethanol
  • the composition may be prepared as a solution, suspension, emulsion, or syrup, being supplied either in liquid form or a dried form suitable for hydration in water or normal saline.
  • the preparations may be tablets, granules, powders, capsules or the like.
  • the composition is typically formulated with additives, e.g. an excipient such as a saccharide or cellulose preparation, a binder such as starch paste or methyl cellulose, a filler, a disintegrator, and other additives typically used in the manufacture of medical preparations.
  • An injectable composition for parenteral administration will typically contain the compound in a suitable i.v. solution, such as sterile physiological salt solution.
  • the composition may also be formulated as a suspension in a lipid or phospholipid, in a liposomal suspension, or in an aqueous emulsion.
  • composition to be administered will contain a quantity of the selected compound in a pharmaceutically effective amount for effecting increased AMPA receptor currents in a subject.
  • KOH 72.46g
  • ethanol 250 ml
  • water 250 ml
  • 4-Amino-3- nitrobenzoic acid 10Og
  • the resulting suspension was stirred at the same temperature for 45 minutes and cooled to 0°C +5 ° C within 30 minutes.
  • a commercially available (13% w/w) solution of sodium hypochlorite (448.93g) was added drop wise within 1.5 hours at 0°C +5°C.
  • reaction mixture was stirred at the same temperature for 2 hours and controlled by TLC (CHCl 3 100/ acetone 2/ acetic acid 1). Water (350 ml) was added within 15 minutes at 0°C +5 ° C to give a fine yellow suspension. The reaction mixture was then acidified with a 6N HCl solution (239 ml) until 0.5 ⁇ pH ⁇ 1 was reached. NaCl (58.44g) was added and the resulting suspension was stirred at 0 0 C +5 0 C for 1.5 hours under nitrogen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Psychology (AREA)
  • Pulmonology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

This invention relates to compounds, pharmaceutical compositions and methods for use in the prevention and treatment of disorders of respiration such as overdose of an alcohol, an opiate, an opioid, a barbiturate, an anesthetic, or a nerve toxin. In a particular aspect, the invention relates to bicyclic amide compounds useful for treatment of such conditions, and methods of using these compounds for such treatment.

Description

BICYCLIC AMIDE DERIVATIVES FOR THE TREATMENT OF RESPIRATORY DEPRESSION
Field of the Invention This invention relates to compounds, pharmaceutical compositions and methods for use in the prevention and treatment of cerebral insufficiency, including enhancement of receptor functioning in synapses in brain networks responsible for breathing. Imbalances in neuronal activities between different brain regions may lead to a number of disorders, including respiratory depression. In a particular aspect, the invention relates to compounds useful for treatment of respiratory depression and methods of using these compounds for such treatment.
Background of the Invention
The release of glutamate at synapses at many sites in mammalian forebrain stimulates two classes of postsynaptic ionotropic glutamate receptors. These classes are usually referred to as AMPA and N-methyl-D-aspartic acid (NMDA) receptors. AMPA receptors mediate a voltage independent fast excitatory rjost-synaptic current (the fast EPSC), whereas NMDA receptors generate a voltage-dependent, slow excitatory current. Studies carried out in slices of hippocampus or cortex, indicate that the AMPA receptor mediated fast EPSC is generally the dominant component by far at most glutamatergic synapses, and activation of AMPA receptors is usually a prerequisite for NMDA receptors activation.
AMPA receptors are expressed throughout the central nervous system. These receptors are found in high concentrations in the superficial layers of neocortex, in each of the major synaptic zones of hippocampus, and in the striatal complex, as reported by Monaghan et al., in Brain Research 324:160-164 (1984). AMPA receptors are expressed in brain regions that regulate the inspiratory drive responsible for control of breathing (Paarmann et al, Journal of Neurochemistry, IA: 1335-1345 (2000).
For the reasons set forth above, drugs that modulate and thereby enhance the functioning of AMPA receptors could have significant benefits for reversal of respiratory depression induced by pharmacological agents such as opioids and opiates, or other means. Drugs that enhance the functioning of the AMPA receptor can effectively reverse opioid- and barbiturate-induced respiratory depression without reversing the analgesic response (Ren et al, American Journal of Respiratory and Critical Care Medicine, 174: 1384-1391 (2006). Therefore these drugs may be useful in preventing or reversing opioid-induced respiratory depression and for alleviating other forms of respiratory depression including sedative use.
Certain substituted [2.1.3] benzoxadiazole compounds have been found to be significantly more potent in animal models of breathing disorders than previously disclosed compounds in US 2002/0055508 and US 2002/0099050. This novel class of bicyclic amides (A), described in greater detail herein, display significant activity for enhancing AMPA mediated glutamateric synaptic responses.
Figure imgf000003_0001
Summary of the Invention The present invention includes, in one aspect, a compound as shown by structure A and other structures and described in Section 11 of the Detailed Description, which follows. Administration of compounds of this class has been found to enhance AMPA mediated glutamatergic synaptic responses in vivo and this assay has proven useful in assessing the efficacy of compounds in the reversal of opiod induced respiratory depression. This activity translates into pharmaceutical compounds and corresponding methods of use, including treatment methods. Compounds within the present invention demonstrate improved pharmacokinetic properties compared with previously described compounds and have good oral bioavailability.
hi another aspect, the invention includes a method for reducing or inhibiting respiratory depression in a subject having respiratory depression, comprising administering to the subject an amount of a compound of the invention, the amount being sufficient to reduce or inhibit respiratory depression. In one embodiment of the invention, the subject is a human. In another embodiment, the subject is a mammal. Also claimed is a method for reducing or inhibiting respiratory depression comprising administering to the subject an amount of a compound of the invention in combination with an opioid analgesic; examples of such opiates include but are not limited to, alfentanil and fentanyl.
According to the methods, such a subject is treated with an effective amount of a compound as shown by structure A, and described in Section II of the Detailed Description, following, in a pharmaceutically acceptable earner. These and other objects and features of the invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.
Detailed Description of the Invention
I. Definitions
The terms below have the following meanings unless indicated otherwise. Other terms that are used to describe the present invention have the same definitions as those terms are generally used by those skilled in the art.
The term "compound" is used herein to refer to any specific chemical compound disclosed herein. Within its use in context, the term generally refers to a single stable compound, but in certain instances may also refer to stereoisomers and/or optical isomers (including enantiopure compounds, enantiomerically enriched compounds and racemic mixtures) of disclosed compounds.
The term "effective amount" refers to the amount of a selected compound of formula I that is used within the context of its intended use to effect an intended result, for example, to enhance glutamatergic synaptic response by increasing AMPA receptor activity. The precise amount used will vary depending upon the particular compound selected and its intended use, the age and weight of the subject, route of administration, and so forth, but may be easily determined by routine experimentation. In the case of the treatment of a condition or disease state, an effective amount is that amount which is used to effectively treat the particular condition or disease state. The term "pharmaceutically acceptable carrier" refers to a carrier or excipient which is not unacceptably toxic to the subject to which it is administered. Pharmaceutically acceptable excipients are described at length by E. W. Martin, in "Remington's Pharmaceutical Sciences."
A "pharmaceutically acceptable salt" of an amine compound, such as those contemplated in the current invention, is an ammonium salt having as counter ion an inorganic anion such as chloride, bromide, iodide, sulfate, sulfite, nitrate, nitrite, phosphate, and the like, or an organic anion such as acetate, malonate, pyruvate, propionate, fumarate, cinnamate, tosylate, and the like.
The term "patient" or "subject" is used throughout the specification to describe an animal, generally a mammalian animal, including a human, to whom treatment or use with the compounds or compositions according to the present invention is provided. For treatment or use witlVor of those conditions or disease states which are specific for a specific animal (especially, for example, a human subject or patient), the term patient or subject refers to that particular animal.
The term "brain network" is used to describe different anatomical regions of the brain that communicate with one another via the synaptic activity of neuronal cells.
The term "AMPA receptor" refers to an aggregate of proteins found in some membranes, which allows positive ions to cross the membrane in response to the binding of glutamate or AMPA (DL-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), but not NMDA.
The term "excitatory synapse" is used to describe a cell-cell junction at which release of a chemical messenger by one cell causes depolarization of the external membrane of the other cell. An excitatory synapse describes a postsynaptic neuron which has a reversal potential that is more positive than the threshold potential and consequently, in such a synapse, a neurotransmitter increases the probability that an excitatory post synaptic potential will result (a neuron will fire producing an action potential). Reversal potentials and threshold potentials determine postsynaptic excitation and inhibition. If the reversal potential for a post synaptic potential ("PSP") is more positive than the action potential threshold, the effect of a transmitter is excitatory and produces an excitatory post synaptic potential ("EPSP") and the firing of an action potential by the neuron. If the reversal potential for a post synaptic potential is more negative than the action potential threshold, the transmitter is inhibitory and may generate inhibitory post synaptic potentials (IPSP), thus reducing the likelihood that a synapse will fire an action potential. The general rule for postsynaptic action is: if the reversal potential is more positive than threshold, excitation results; inhibition occurs if the reversal potential is more negative than threshold. See, for example, Chapter 7, NEUROSCIENCE, edited by Dale Purves, Sinauer Associates, Inc., Sunderland, MA 1997.
The term "synaptic response" is used to describe biophysical reactions in one cell as a consequence of the release of chemical messengers by another cell with which it is in close contact.
The term "impaired" is used to describe a function working at a level that is less than normal. Impaired functions can be significantly impacted such that a function is barely being carried out, is virtually non-existent or is working in a fashion that is significantly less than normal. Impaired functions may also be sub-optimal. The impairment of function will vary in severity from patient to patient and the condition to be treated.
The term "respiratory depression" as used herein refers to a variety of conditions characterized by reduced respiratory frequency and inspiratory drive to cranial and spinal motor neurons. Specifically, respiratory depression refers to conditions where the medullary neural network associated with respiratory rhythm generating activity does not respond to accumulating levels Of PCO2 (or decreasing levels of PO2) in the blood and subsequently under stimulates motorneurons controlling lung musculature.
II. Compounds of the Present Invention
The present invention is directed to compounds having the property of enhancing AMPA receptor function. These include compounds having the structure A, below:
Figure imgf000007_0001
wherein:
Figure imgf000007_0002
n = 0 or 1, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
A preferred embodiment includes a compound of formula B, below:
Figure imgf000007_0003
B
or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
A further preferred embodiment includes compounds of formula C, below:
Figure imgf000007_0004
wherein:
X = O, or CH2, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
In a further aspect, the present invention provides compounds of Formula A selected from: [2,l,3]-benzoxadiazol-5-yl(3-oxa-8-azabicyclo[3.2.1]oct-8-yl)methanone,
[2,l,3]-Benzoxadiazol-5-yl(3-oxa-9-azabicyclo[3.3.1]non-9-yl)methanone and [2,l,3]-Benzoxadiazol-5-yl(3,7-dioxa-9-azabicyclo[3.3.1]non-9-yl)methanone III. Synthesis
The synthesis of the compounds of the invention, are preferably carried out by the following Scheme. Alternative syntheses by analogy relying on methodology that exists in the art also may be used. Each compound may be made using the described synthesis by following the proposed chemistry as presented herein or by making minor modifications in the synthetic chemistry relying on well known methods available in the art. The approach to synthesis is rather facile and may be readily modified within the scope of the present teachings. Acid chloride 4 is synthesized starting with 4-amino-3-nitrobenzoic acid 1 by firstly oxidizing using bleach to give intermediate 2 and then reducing with tri ethyl phosphite (P(OEt)3) to give benzofurazan carboxylic acid 3. The carboxylic acid 3 was transformed to the acid chloride 4 by refluxing with thionyl chloride and a catalytic amount of DMF in toluene. The carboxylic acid 3 can be transformed into bicyclic amides A by reaction with the appropriate aminobicycles using standard coupling conditions like CDI, EDCI, HBTU in a suitable solvent. Alternatively, acid chloride 4 can be transformed into bicyclic amides A under standard coupling conditions with bicyclic amines in the presence of a base for example triethylamine or aqueous sodium hydroxide, among others in a suitable solvent, for example dichloromethane.
Scheme
Figure imgf000008_0001
rV. Method of Treatment
According to one aspect of the invention, a method is provided for treating a mammalian subject suffering from deficiencies in the number or strength of excitatory synapses or in the number of AMPA receptors.
The invention provides a method for reducing or inhibiting respiratory depression in a subject having such a condition, comprising administering to the subject an amount of a compound of the invention, the amount being sufficient to reduce or inhibit respiratory depression. In a further aspect of the invention, a method is provided for reducing or inhibiting respiratory depression comprising administering to the subject an amount of a compound of the invention in combination with an opiate; examples of such opiates include but are not limited to, alfentanil and fentanyl.
In the present invention, the method of treatment comprises administering to the subject in need of treatment, in a pharmaceutically acceptable earner, an effective amount of a compound having the Formula A below:
Figure imgf000009_0001
wherein:
X = O, or (CH2)n n = 0 or 1, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
V. Biological Activity
Enhancement of AMPA Receptor Function In Vivo.
Synaptic responses mediated by AMPA receptors are increased according to the method of the invention, using the compounds described herein.
The electrophysiological effects of the invention compounds were tested in vivo in anesthetized animals according to the following procedures. Animals are maintained under anesthesia by phenobarbital administered using a Hamilton syringe pump. Stimulating and recording electrodes are inserted into the perforant path and dentate gyrus of the hippocampus, respectively. Once electrodes are implanted, a stable baseline of evoked responses are elicited using single monophasic pulses (100 μs pulse duration) delivered at 3/min to the stimulating electrode. Field EPSPs are monitored until a stable baseline is achieved (about 20-30 min), after which a solution of test compound is injected intraperitoneally and evoked field potentials are recorded. Evoked potentials were recorded for approximately 2 h following drug administration or until the amplitude of the field EPSP returns to baseline. Li the latter instance, it is common that an iv administration is also carried out with an appropriate dose of the same test compound. Invention compounds were assayed in the in vivo electrophysiology assay described above and data for representative test compounds is shown in the Table.
Table
Figure imgf000010_0001
1. % increase in the amplitude of the field EPSP in the dentate gyrus of rat @ lOmpk i.p.
NT = Not tested
Vl. Administration, Dosages, and Formulation
Generally, dosages and routes of administration of the compound will be determined according to the size and condition of the subject, according to standard pharmaceutical practices. Dose levels employed can vary widely, and can readily be determined by those of skill in the art. Typically, amounts in the milligram up to gram quantities are employed. The composition may be administered to a subject by various routes, e.g. orally, transdermally, perineurally or parenterally, that is, by intravenous, subcutaneous, intraperitoneal, or intramuscular injection, among others, including buccal, rectal and transdermal administration. Subjects contemplated for treatment according to the method of the invention include humans, companion animals, laboratory animals, and the like.
Formulations containing the compounds according to the present invention may take the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as, for example, tablets, capsules, powders, sustained-release formulations, solutions, suspensions, emulsions, suppositories, creams, ointments, lotions, aerosols, patches or the like, preferably in unit dosage forms suitable for simple administration of precise dosages.
Pharmaceutical compositions according to the present invention comprise an effective amount of one or more compounds according to the present invention and typically include a conventional pharmaceutical carrier or excipient and may additionally include other medicinal agents, carriers, adjuvants, additives and the like. Preferably, the composition will be about 0.5 to 75% by weight or more of a compound or compounds of the invention, with the remainder consisting essentially of suitable pharmaceutical excipients. For oral administration, such excipients include pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, gelatin, sucrose, magnesium carbonate, and the like. If desired, the composition may also contain minor amounts of non-toxic auxiliary substances such as wetting agents, emulsifying agents, or buffers.
Liquid compositions can be prepared by dissolving or dispersing the compounds (about 0.5% to about 20% by weight or more), and optional pharmaceutical adjuvants, in a carrier, such as, for example, beta-hydroxypropylcyclodextrin, aqueous saline, aqueous dextrose, glycerol, or ethanol, to form a solution or suspension. For use in oral liquid preparation, the composition may be prepared as a solution, suspension, emulsion, or syrup, being supplied either in liquid form or a dried form suitable for hydration in water or normal saline.
When the composition is employed in the form of solid preparations for oral administration, the preparations may be tablets, granules, powders, capsules or the like. In a tablet formulation, the composition is typically formulated with additives, e.g. an excipient such as a saccharide or cellulose preparation, a binder such as starch paste or methyl cellulose, a filler, a disintegrator, and other additives typically used in the manufacture of medical preparations. An injectable composition for parenteral administration will typically contain the compound in a suitable i.v. solution, such as sterile physiological salt solution. The composition may also be formulated as a suspension in a lipid or phospholipid, in a liposomal suspension, or in an aqueous emulsion.
Methods for preparing such dosage forms are known or will be apparent to those skilled in the art; for example, see Remington's Pharmaceutical Sciences (17th Ed., Mack Pub. Co., 1985). The composition to be administered will contain a quantity of the selected compound in a pharmaceutically effective amount for effecting increased AMPA receptor currents in a subject.
The following examples illustrate but are not intended in any way to limit the invention. Unless otherwise stated, all temperatures are given in degrees Celsius. Unless otherwise stated, all NMR spectra are 1H NMR spectra and were obtained in deuterochloroform or deuterated DMSO as solvent using tetramethylsilane as an internal standard. All names of Example compounds conform to IUPAC nomenclature as provided by the computer software ChemSketch by ACD Labs.
I. CHEMICAL METHODS
INTERMEDIATE 1 |2,l,31-Benzoxadiazole-5-carboxylie acid
Figure imgf000013_0001
In a 3 L reactor fitted with mechanical stirring, reflux condenser, thermometer and nitrogen inlet, KOH (72.46g) was dissolved in ethanol (250 ml) and water (250 ml). 4-Amino-3- nitrobenzoic acid (10Og) was added and the orange suspension was heated to 65-70°C within 30 minutes. The resulting suspension was stirred at the same temperature for 45 minutes and cooled to 0°C +5°C within 30 minutes. A commercially available (13% w/w) solution of sodium hypochlorite (448.93g) was added drop wise within 1.5 hours at 0°C +5°C. The reaction mixture was stirred at the same temperature for 2 hours and controlled by TLC (CHCl3 100/ acetone 2/ acetic acid 1). Water (350 ml) was added within 15 minutes at 0°C +5°C to give a fine yellow suspension. The reaction mixture was then acidified with a 6N HCl solution (239 ml) until 0.5 < pH < 1 was reached. NaCl (58.44g) was added and the resulting suspension was stirred at 00C +50C for 1.5 hours under nitrogen. The solid was collected by filtration, washed with 3x400 ml water and dried (40°C, 30 mbars, 12 hours) to yield 83.6g (88.8% yield) of [2,l,3]-benzoxadiazole-5-carboxylic acid TV-oxide.
In a 2 L reactor fitted with mechanical stirring, thermometer, addition funnel, reflux condenser and nitrogen inlet, [2, l,3]-benzoxadiazole-5-carboxylic acid TV-oxide (80 g) was dissolved in absolute ethanol (800 ml). To this solution triethyl phosphite (114.05 g) was added within 10 minutes at 70°C +20C. The resulting mixture was heated to reflux (76-78°C) and maintained for 2 hours. TLC monitoring (CHCl3 100/ acetone 2/ acetic acid 1) showed complete reaction. The solvent was removed under vacuum (30 mbars, 40°C) which yielded a black oil (180 g). Water (400 ml) was added and the mixture was extracted with ethyl acetate (400 and 160 ml). The organic phase was extracted with 850 ml water containing NaOH (9.5<pH<10). The aqueous phase was separated and extracted with ethyl acetate (3x240 ml). The aqueous phase was acidified (78 ml 6 N HCl) to l<pH<2 at 5°C +2°C which resulted in the crystallization of the yellow product, which was filtered off and dried (40°C, 30 mbars, 12 hours) to yield 65.56g (90% yield) [2,l ,3]-benzoxadiazole-5-carboxylic acid: mp = 160- 161 °C, 1H NMR (300 MHz, DMSO) δ 13.8 (s, I H); 8.57 (s, IH); 8.56 (d, IH, J = 0.6 Hz); 7.87 ppm (d, IH, J = 0.6 Hz).
INTERMEDIATE 2 IZJ^l-Benzoxadiazole-S-carbonylcliloi ide
Figure imgf000014_0001
In a 500 ml reactor fitted with mechanical stirring, thermometer, addition funnel, reflux condenser and nitrogen inlet, [2,l,3]-benzoxadiazole-5-carboxylic acid (28 g) was suspended in toluene (245 ml). To this suspension was added thionyl chloride (39.4 g) and DMF (0.35 ml). The resulting mixture was heated to reflux and maintained for 3 hours. A short pass column was installed and toluene was distilled (atmospheric pressure, 124 ml) off to remove excess reagent. After cooling the remaining toluene was distilled off, which resulted in a thick oil. This oil was distilled (90°C, 2mm Hg) to remove impurities and the product crystallized on standing (79.8% yield), mp: 55-58°C.
EXAMPLE 1 [ZJ^I-Benzoxadiazol-S-vlO-oxa-S-azabicvcloβ.Z.lloct-δ-vOmethanone
Figure imgf000014_0002
C/s-l-Benzyl-2,5-(dihydroxymethyl)pyrrolidine hydrochloride (3.0g, 13.5 mmol, see: US 7012074) was dissolved in concentrated H2SO4 (10 ml) and heated to 120°C for 9 hours. The cooled solution was basified with ION NaOH (to pH 10) and extracted with ethyl acetate (2 x 100 ml). The organic phase was dried over sodium sulfate, and concentrated under vacuum to yield 1.5g of a colorless oil. The preceding product was dissolved in dichloromethane (50 ml) and methanol (50 ml), and 10% Pd/C (0.5g) was added. The mixture was hydrogenated at 60 psi over night. The solids were filtered off, a solution of HCl in dioxane (2 ml, 4N) was added and the solvent evaporated. The residue was dissolved in dichloromethane (100 ml) and triethylamine (3 ml) and a solution of [2,l ,3]-benzoxadiazole-5-carbonylchloride (1.27g ,7mmol) in dichloromethane (10 ml) was added. After stirring the mixture for 0.3h, water (100 ml) and HCl (> pH2) were added and the organic phase washed with sodium bicarbonate solution (100 ml), dried over magnesium sulfate, and concentrated under vacuum. The material was purified by silica gel chromatography eluting with hexane/THF (60/40), to give after crystallization from dichloromethane/MTBE 847 mg of the title compound as a white solid : mp = 139-1400C, LC-MS, MH+ = 260.2; 1H NMR (300 MHz, CDCl3) δ 7.96- 7.92 (m, 2H); 7.56-7.52 (m, I H); 4.82-4.69 (s, I H); 4.06-3.60 (m, 5H); 2.18-1.95 ppm (m, 4H).
EXAMPLE 2 flJ^I-Benzoxadiazol-S-vKS-oxa^-azabicvcIofSJ.llnon-P-vQmethanone
Figure imgf000015_0001
9-Benzyl-3-oxa-9-azabicyclo-(3.3.1)nonane (3.0g, 13.8 mmol, see: WO 03004503) was dissolved in ethanol (100 ml), and 10% Pd/C (0.56g) was added. The mixture was hydrogenated at 100 psi over night. The solids were filtered off, a solution of HCl in dioxane (4 ml, 4N) was added and the solvent evaporated. The residue was dissolved in dichloromethane (100 ml) and triethylamine (8 ml) and a solution of [2,l,3]-benzoxadiazole- 5-carbonylchloride (3.5g, 19.2 mmol) in dichloromethane (10 ml) was added. After stirring the mixture for 20 minutes, water (100 ml) and H2SO4 (> pH2) were added and the organic phase washed with sodium bicarbonate solution (100 ml), the aqueous was re-extracted with dichloromethane (100 ml) and the combined organic phase was dried over magnesium sulfate, and concentrated under vacuum. The crude material was purified by silica gel chromatography eluting with hexane/THF (70/30). The product crystallized, when the solvent was evaporated slowly, which yielded the title compound as a white solid (3.13g): mp = 128- 13O0C, LC-MS, MH+ = 274.2; 1 H NMR (300 MHz, CDCl3) δ 7.94 (dd, 2H, J = 9.0 and 1.2 Hz); 7.89 (t, IH, J = 1.2 Hz); 7.47 (dd, IH, J = 9.0 and 1.2 Hz); 4.62 (s, IH); 4.05 (d, IH, J = 11.7 Hz); 3.95-3.89 (m, 2H); 3.79 (d, IH, J = 1 1.7 Hz); 3.66 (s, IH); 2.71-2.54 (m, IH); 2.14- 1.69 ppm (m, 5H).
EXAMPLE 3
Figure imgf000016_0001
9-Benzyl-3,7-dioxa-9-azabicyclo-(3.3.1)nonane (650 mg, 2.96 mmol, see: JOC, Vol.71, No.l, 2006, 413-415) was dissolved in methanol (20 ml) and formic acid (4ml). 10% Pd/C (0.3g) was added and the mixture was hydrogenated over night. The solids were filtered off, and the solvent evaporated. The residue was dissolved in methanol (20 ml) and a solution of HCl in dioxane (2 ml, 4N) was added and the solvent evaporated. The residue was dissolved in dichloromethane (80 ml), THF (20 ml) and triethylamine (3 ml) and a solution of [2,1,3]- benzoxadiazole-5-carbonylchloride (1.Og, 5.5 mmol) in dichloromethane (10 ml) was added. After stirring the mixture for 0.5h, water (100 ml) and H2SO4 (^ pH2) were added and the organic phase extracted with sodium bicarbonate solution (100 ml), the aqueous was re- extracted with dichloromethane (50 ml) and the combined organics were dried over magnesium sulfate, and concentrated under vacuum. The crude product was purified by silica gel chromatography eluting with hexane/THF (50/50). The product was crystallized from dichloromethane/ethanol, which gave the title compound as an off white solid (590mg): mp = 197-199°C, LC-MS, MH+ - 276.2; 1H NMR (300 MHz, CDCl3) δ 7.98 (dd, 2H, J = 9.0 and 1.2 Hz); 7.94 (t, IH, J = 1.2 Hz); 7.50 (dd, IH, J = 9.0 and 1.2 Hz); 4.52 (s, 2H); 4.21 (d, 2H, J = 1 1.4 Hz); 4.09-4.02 (m, 4H); 3.90 (dd, 2H, J = 10.8 and 2.4 Hz); 3.61 ppm (s, 2H).
H. BIOLOGICAL METHODS
In Vivo Electrophvsiology
The electrophysiological effects of invention compounds were tested in vivo in anesthetized animals according to the following procedures. Animals are maintained under anesthesia by phenobarbital administered using a Hamilton syringe pump. Stimulating and recording electrodes are inserted into the perforant path and dentate gyrus of the hippocampus, respectively. Once electrodes are implanted, a stable baseline of evoked responses are elicited using single nionophasic pulses (100 μs pulse duration) delivered at 3/min to the stimulating electrode. Field EPSPs are monitored until a stable baseline is achieved (about 20-30 min), after which a solution of test compound is injected intraperitoneal Iy and evoked field potentials are recorded. Evoked potentials are recorded for approximately 2 h following drug administration or until the amplitude of the field EPSP returns to baseline. In the latter instance, it is common that an iv administration is also carried out with an appropriate dose of the same test compound.
While the invention has been described with reference to specific methods and embodiments, it will be appreciated that various modifications may be made without departing from the invention.

Claims

Claims
1. A method of treating respiratory depression in a patient in need thereof, said method comprising administering to said patient an effective amount of a compound according to to formula A:
Figure imgf000018_0001
wherein:
X = O, or (CH2),, n = 0 or 1, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
2. The method according to claim 1 wherein said compound is a structure according to formula B:
Figure imgf000018_0002
B or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
3. The method according to claim 1 wherein said compound is a structure according to formula C:
Figure imgf000018_0003
wherein: X = O, or CH2, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
4. The method according to claim 1 wherein said compound is 2,l,3-benzoxadiazol-5-yl(3-oxa-8-azabicyclo[3.2.1]oct-8-yl)methanone, 2,l,3-Benzoxadiazol-5-yl(3-oxa-9-azabicyclo[3.3.1]non-9-yl)methanone or 2,l,3-Benzoxadiazol-5-yl(3,7-dioxa-9-azabicyclo[3.3. l]non-9-yl)methanone.
5. The method according to any of claims I -4 wherein said compound is administered in combination with an opiate or opioid analgesic.
6. The method according ot any of claims 1-4 wherein said compound is administered in in combination with an anesthetic agent.
7. The method according to claim 6 wherein said anesthetic agent is selected from the group consisting of propofol and barbiturates.
8. Use of a compound in the manufacture of a medicament for the treatment of respiratory depression in a patient in need thereof, said compound having a chemical structure according to formula A:
Figure imgf000019_0001
wherein: X = O, or (CH2)n n = 0 or 1, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
9. Use according to claim 8 wherein said compound has a structure according to formula B:
Figure imgf000019_0002
B or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
10. Use according to claim 8 wherein said compound has a structure according to formula C:
Figure imgf000020_0001
wherein:
X = O, or CH2, or a pharmaceutically acceptable salt, solvate, or polymorph thereof.
11. Use according to claim 1 wherein said compound is 2,l,3-benzoxadiazol-5-yl(3-oxa-8-azabicyclo[3.2.1]oct-8-yl)methanone, 2,l,3-Benzoxadiazol-5-yl(3-oxa-9-azabicyclo[3.3.1]non-9-yl)methanone or 2,l,3-Benzoxadiazol-5-yl(3,7-dioxa-9-azabicyclo[3.3.1]non-9-yl)methanone.
12. Use according to any of claims 8-11 wherein said compound is combined with an opiate or opioid analgesic.
13. Use according to any of claims 8-12 wherein said compound is combined with an anesthetic agent.
14. Use according to claim 14 wherein said anesthetic agent is propofol or a barbiturate.
PCT/US2010/000254 2009-02-02 2010-01-29 Bicyclic amide derivatives for the treatment of respiratory depression WO2010087980A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20664209P 2009-02-02 2009-02-02
US61/206,642 2009-02-02

Publications (2)

Publication Number Publication Date
WO2010087980A2 true WO2010087980A2 (en) 2010-08-05
WO2010087980A3 WO2010087980A3 (en) 2011-02-24

Family

ID=42396261

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2010/000254 WO2010087980A2 (en) 2009-02-02 2010-01-29 Bicyclic amide derivatives for the treatment of respiratory depression
PCT/US2010/000255 WO2010087981A2 (en) 2009-02-02 2010-01-29 Bicyclic amide derivatives for enhancing glutamatergic synaptic responses

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2010/000255 WO2010087981A2 (en) 2009-02-02 2010-01-29 Bicyclic amide derivatives for enhancing glutamatergic synaptic responses

Country Status (12)

Country Link
EP (1) EP2391621A4 (en)
JP (1) JP2012516845A (en)
KR (1) KR20110115139A (en)
CN (1) CN102369201A (en)
AU (1) AU2010208646A1 (en)
BR (1) BRPI1005316A2 (en)
CA (1) CA2751285A1 (en)
EA (1) EA018994B1 (en)
IL (1) IL214392A0 (en)
MX (1) MX2011008060A (en)
SG (1) SG173168A1 (en)
WO (2) WO2010087980A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020055508A1 (en) * 1997-02-13 2002-05-09 Cortex Pharmaceuticals, Inc. Benzofurazan compounds which enhance AMPA receptor activity
US20020099050A1 (en) * 1993-07-23 2002-07-25 Lynch Gary S. Drugs that enhance synaptic responses mediated by AMPA receptors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE215079T1 (en) * 1992-07-24 2002-04-15 Univ California DRUGS THAT INCREASE THE SYNAPTIC RESPONSE MEDIATED BY AMPA RECEPTORS
ES2258825T3 (en) * 1997-10-27 2006-09-01 Cortex Pharmaceuticals, Inc. TREATMENT OF CHICHOPHRENIA WITH AMPAKINAS AND NEUROLEPTICS.
KR101599661B1 (en) * 2007-05-17 2016-03-03 코텍스 파마슈티칼스, 인크. Di-substituted amides for enhancing glutamatergic synaptic responses
SG163526A1 (en) * 2007-08-10 2010-08-30 Cortex Pharma Inc Bicyclic amides for enhancing glutamatergic synaptic responses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020099050A1 (en) * 1993-07-23 2002-07-25 Lynch Gary S. Drugs that enhance synaptic responses mediated by AMPA receptors
US20020055508A1 (en) * 1997-02-13 2002-05-09 Cortex Pharmaceuticals, Inc. Benzofurazan compounds which enhance AMPA receptor activity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN REN ET AL.: 'Ampakines alleviate respiratory depression in rats' AM. J. CRIT. CARE MED. vol. 174, 2006, pages 1384 - 1391 *

Also Published As

Publication number Publication date
EP2391621A2 (en) 2011-12-07
EA018994B1 (en) 2013-12-30
JP2012516845A (en) 2012-07-26
BRPI1005316A2 (en) 2019-09-24
KR20110115139A (en) 2011-10-20
EP2391621A4 (en) 2012-07-25
AU2010208646A1 (en) 2011-09-01
SG173168A1 (en) 2011-08-29
WO2010087981A3 (en) 2011-03-24
EA201101162A1 (en) 2012-01-30
WO2010087980A3 (en) 2011-02-24
WO2010087981A2 (en) 2010-08-05
IL214392A0 (en) 2011-09-27
CA2751285A1 (en) 2010-08-05
MX2011008060A (en) 2011-09-09
CN102369201A (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US8110584B2 (en) Methods for the treatment of respiratory depression
US8642633B2 (en) Di-substituted amides for enhancing glutamatergic synaptic responses
US20100267728A1 (en) 3-substituted-1,2,3-triazin-4-one&#39;s and 3 substituted 1,3-pyrimidinone&#39;s for enhancing glutamatergic synaptic responses
EP1428534B1 (en) Benzofurazan derivatives for enhancing glutamatergic synaptic responses
EP2233140A1 (en) Bicyclic amides for enhancing glutamatergic synaptic responses
US8168632B2 (en) Bicyclic amide derivatives for the treatment of respiratory disorders
WO2010087980A2 (en) Bicyclic amide derivatives for the treatment of respiratory depression
US10759822B2 (en) Brain-targeting prodrug for AMPA receptor synergist, and pharmaceutical applications thereof
AU2013205446A1 (en) Bicyclic amides for enhancing glutamatergic synaptic responses

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10736149

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10736149

Country of ref document: EP

Kind code of ref document: A2