WO2010087689A2 - Generador eólico con dos turbinas de palas planas - Google Patents

Generador eólico con dos turbinas de palas planas Download PDF

Info

Publication number
WO2010087689A2
WO2010087689A2 PCT/MX2009/000008 MX2009000008W WO2010087689A2 WO 2010087689 A2 WO2010087689 A2 WO 2010087689A2 MX 2009000008 W MX2009000008 W MX 2009000008W WO 2010087689 A2 WO2010087689 A2 WO 2010087689A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind
turbines
blades
gondola
degrees
Prior art date
Application number
PCT/MX2009/000008
Other languages
English (en)
French (fr)
Other versions
WO2010087689A3 (es
Inventor
Boris Voronin
Original Assignee
Boris Voronin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boris Voronin filed Critical Boris Voronin
Priority to PCT/MX2009/000008 priority Critical patent/WO2010087689A2/es
Publication of WO2010087689A2 publication Critical patent/WO2010087689A2/es
Publication of WO2010087689A3 publication Critical patent/WO2010087689A3/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the energy installations which produce the electrical energy through the use of mechanical wind energy and especially with the horizontal axis wind generators.
  • the wind generator presented in this patent has a tower on which the gondola and the orientation mechanism are mounted.
  • the gondola is equipped with the electric generator and with two aligned turbines that are installed at the ends of the gondola at a distance between them, one to windward and the other to leeward.
  • the turbines are formed by two or three blades made in the form of a propeller and can have the same direction of rotation.
  • the transmission of the mechanical energy from the turbines to the rotor of the electric generator is carried out by means of the mechanical transmission that contains a multiplier mechanism in its structure.
  • the multiplier mechanism represents a compound gear train, which is a mechanism with motionless gear shafts, or a planetarium, which has gears with moving shafts.
  • the imperfection of the mentioned generator, as well as of the others, consists in low efficiency of the use of wind mechanical energy, high complexity of turbine manufacturing, therefore, high cost of them, and high complexity of mechanical transmission. .
  • the first cause is that in the wind generators mentioned, the turbines are shaped like a propeller and rotate in the plane perpendicular to the wind direction. Then so that the wind produces the tangent force, which is capable of rotating the turbine, the faces of the blades are inclined to the plane of the rotating movement.
  • the angle of incidence of the wind flow varies between 45 and 54 degrees in the root of the blades and between 76 and 82 degrees in the maximum diameter of the turbine. Since the turbine rotates in the plane perpendicular to the wind direction, then most of its mechanical energy causes the axial force of magnitude proportional to bcosa, where b is the width of the blade. This force increases with the increase of the diameter and is parasitic since loading the bearings of the mechanical transmission produces losses of energy that are transformed into heat. The smaller part generates the tangential force that turns the turbine, its magnitude is proportional to bsena. The tangential force performs the useful work but its magnitude is much smaller than that of the axial. For this reason, turbines made in the form of a propeller use no more than 30 percent of the mechanical energy of the wind.
  • the second cause is that the leeward turbine, aligned with the windward one, receives the wind flow used by it and therefore a smaller amount of energy Actually, the leeward turbine receives no more than 12 percent of the energy that the windward one receives.
  • the high complexity of the manufacture of the turbines is that the blades, which define the geometry of the turbine, are manufactured in the form of a propeller that represents a three-dimensional figure. This causes the use of very complex equipment, which influences the cost of the turbines.
  • Figure 1 is the general view of the wind generator.
  • Figure 2 is the structural scheme of the gondola and its union with the multiplier mechanism and the electric generator.
  • Figure 3 is the plan view illustrating the orientation of the gondola with respect to the wind direction.
  • Figure 4 is the view A, which is the side view of the gondola in the direction perpendicular to the wind direction.
  • FIG. 1 The general construction of the wind generator is shown in the scheme presented in Figure 1 which is composed of the tower 1 on which the gondola 2 and the orientation mechanism 3 are installed.
  • the conical gears 11 and 12 engaged with the 13 and 14 respectively are installed inside the gondola 2 at the inner ends of the arrows 5 and 6, the conical gears 11 and 12 engaged with the 13 and 14 respectively are installed.
  • the gears are made so that the 11 and 13 form a gear of the size smaller than the 12 and 14 and that the geometric axis of the gear 13 coincides with that of 14.
  • the arrow of the gear 14 is made hollow inside the one that installs the arrow of the gear 13.
  • the arrow of the gear 13 is coupled with the arm 15 of the multiplier and Ia of the gear 14 with the housing 16 thereof. Inside the multiplier in the arm 15 is placed the satellite 17 meshed at the same time - with the sun gear 18 and with the crown gear 19 that forms a single link with the casing 16 of the mechanism. The arrow of the sun gear 18 is connected by the coupling
  • the wind generator works as follows.
  • the orientation mechanism 3 the gondola 2 is oriented at an angle 45 degrees with respect to the wind direction, which is shown in figures 3 and 4. It is assumed that at this time the blades C and G occupy the vertical position and the horizontal E and F. Since all the blades are installed at an angle 45 degrees with respect to the plane of rotation of the turbine and have the same direction of orientation, then the blades G, opposite the C, and the F, opposite the E, form a angle equal to 90 degrees between them.
  • the angle of incidence of the wind flow for the blades C will be equal to 90 degrees, since they are oriented perpendicularly to the wind direction, for G equal to zero, since they are parallel to it, and for E and F equal to 45 degrees.
  • the multiplier mechanism shown in Figure 2, is a differential gear train that is represented as a planetary train but with all the movable links.
  • the planetary train has a degree of freedom and the differential two degrees of freedom.
  • the closing or joining of the arm 15 and the housing 16 by means of gears with motionless gear shafts converts the differential mechanism into a closed differential that has a degree of freedom and, therefore, a single input link, which is arm 15, and an output link, which is the sun gear 18.
  • the transmission ratio of the bevel gears is equal to 1
  • the ratio The transmission ratio of the planetary mechanism multiplied by two will have the magnitude of transmission of the multiplier, which is sufficient for most cases.
  • the first component is that due to the orientation of the blades at about 45 degrees with respect to the plane of rotation of the turbine and the orientation of the gondola at about 45 degrees with respect to the wind direction the angle of incidence of the flow of the wind on the face of each blade, in a revolution of the turbine, varies from 0 to 90 degrees.
  • the force, with which the wind acts on the faces of the blades is proportional to the projection of the area A of the blades on the plane perpendicular to the wind direction, that is to say proportional to pr.A.
  • This force is broken down into two equals, one axial, proportional to the angle of orientation of the gondola, that is pr.A - eos 45 °, and another tangential, proportional to pr.A - sen 45 °. With this it turns out that, with the same conditions, the new turbine generates the tangential force essentially larger than the helical one.
  • the second is that, with the corresponding choice of the distance between the turbines, the orientation of the gondola at about 45 degrees with respect to the wind direction excludes influence of the flow used by the front turbine at the rear. Then the rear turbine will receive the mechanical energy of the wind practically equal to that of the front.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

El generador eólico se relaciona con el equipamiento que produce la energía eléctrica mediante el uso de la energía mecánica del viento. Éste incluye una torre sobre la que se monta la góndola dentro de que se colocan dos flechas unidas mediante el acoplamiento. En los extremos exteriores de las flechas se instalan dos turbinas que representan palas de cara plana inclinadas a un ángulo 45 grados con respecto al plano de rotación de las turbinas y la góndola se orienta a 45 grados con respecto a la dirección del viento. La superioridad de la invención consiste en que en éste generador eólico se une la simplicidad de la fabricación de las palas con alta eficiencia del uso de la energía mecánica del viento. Además en la transmisión mecánica se emplea el mecanismo diferencial cerrado como el mecanismo multiplicador, Io que permite transmitir al rotor del generador eléctrico alta velocidad mediante un mecanismo de una sola etapa.

Description

GENERADOR EÓLICO CON DOS TURBINAS DE PALAS PLANAS
ANTECEDENTES DE LA INVENCIÓN
La invención se relaciona con las instalaciones energéticas las que producen Ia energía eléctrica mediante el uso de Ia energía mecánica del viento y especialmente con los generadores eólicos de ejes horizontales.
La resolución técnica de éstos en Ia actualidad está expresada en numerosas patentes, tales como: No 2154189, publicado el 10.08.2000, No 2272932, publicado el 20.11.2002, No 2247860, publicado el 10.03.2005, No RU2052154 publicado el 10.01.1996, No RU2272932, publicado el 27.03.2006, No RU2282051, publicado el 20.08.2006, No EP1960663 publicado el 27.08.2008, No EP1944505, publicado el 16.07.2008, No CA2618259, publicado el 06.08.2008, No GB2186033 publicado el 05.08.1987, No CA2625947, publicado el 19.04.2007, No DK200701852 publicado el 05.07.2008, No US2008199315, publicado el 21.08.2008, No US2008226450, publicado el 18.09.2008, No US20050718662P publicado el 29.03.2007, No BR2007PI01888, publicado el 23.09.2008, etc.
Entre éstos Ia patente No BRPI0701888, publicada el 23.09.2008, es Ia más cercana por Ia resolución técnica. El generador eólico presentado en esta patente tiene una torre sobre Ia que se monta Ia góndola y el mecanismo de orientación. La góndola está equipada con el generador eléctrico y con dos turbinas alineadas que se instalan en los extremos de Ia góndola a una distancia entre ellas, una a barlovento y Ia otra a sotavento. Las turbinas están formadas por dos o tres palas hechas en forma de una hélice y pueden tener el mismo sentido de rotación. La transmisión de Ia energía mecánica desde las turbinas hacia el rotor del generador eléctrico se realiza mediante Ia transmisión mecánica que contiene un mecanismo multiplicador en su estructura. Es común que el mecanismo multiplicador representa un tren de engranes compuesto, el que es un mecanismo con los ejes inmóviles de engranes, o un planetario, el que tiene engranes con ejes móviles. La imperfección del generador mencionado, así como de los demás, consiste en baja eficiencia del uso de Ia energía mecánica del viento, alta complejidad de Ia fabricación de las turbinas, por consiguiente, en alto costo de ellas, y alta complejidad de Ia transmisión mecánica.
La baja eficiencia del uso de Ia energía mecánica del viento tiene dos causas:
La primera causa consiste en que en los generadores eólicos mencionados las turbinas tienen Ia forma de hélice y giran en el plano perpendicular a Ia dirección del viento. Entonces para que el viento produzca Ia fuerza tangente, que sea capaz de girar Ia turbina, las caras de las palas se inclinan al plano del movimiento giratorio. El ángulo α de inclinación de Ia cara con respecto a este plano se relaciona con el diámetro d mediante tana = s/πd (en donde s es el paso de Ia hélice). Ya que el paso s, para una turbina, es un parámetro determinado entonces el ángulo a se toma más grande en Ia raíz de Ia pala y con el aumento del diámetro automáticamente disminuye. Por consiguiente el ángulo de incidencia del flujo del viento varía entre 45 y 54 grados en Ia raíz de las palas y entre 76 y 82 grados en el diámetro máximo de Ia turbina. Ya que Ia turbina gira en el plano perpendicular a Ia dirección del viento, entonces Ia mayor parte de su energía mecánica provoca Ia fuerza axial de magnitud proporcional a bcosa , en donde b es el ancho de Ia pala. Esta fuerza se incrementa con el aumento del diámetro y es parásita ya que cargando los rodamientos de Ia transmisión mecánica produce pérdidas de energía que se transforman en calor. La parte menor genera Ia fuerza tangencial que hace girar Ia turbina, su magnitud es proporcional a bsena . La fuerza tangencial realiza el trabajo útil pero su magnitud es mucho menor que Ia de Ia axial. Por esta razón las turbinas hechas en Ia forma de una hélice utilizan no más de 30 por ciento de Ia energía mecánica del viento.
La segunda causa consiste en que Ia turbina de sotavento, alineada a Ia de barlovento, recibe el flujo del viento usado por ésta y por consiguiente una cantidad de energía menor. Realmente Ia turbina de sotavento recibe no más de 12 por ciento de Ia energía que recibe Ia de barlovento.
La alta complejidad de Ia fabricación de las turbinas consiste en que las palas, que definen Ia geometría de Ia turbina, se fabrican en forma de una hélice que representa una figura tridimensional. Esto provoca el empleo de un equipo muy complejo, Io que influye al costo de las turbinas.
Además el empleo en Ia transmisión mecánica del mecanismo multiplicador en forma de un tren de engranes compuesto o de un planetario complica Ia construcción de ésta ya que exige el empleo de mecanismos de varias etapas.
Con Ia finalidad de suprimir estos y otros inconvenientes, se pensó en el desarrollo del presente generador eólico, que se pretende proteger por medio de Ia presente solicitud, pues se trata de un generador eólico que con las turbinas y Ia transmisión mecánica más simples trabaja con mayor eficiencia.
DESCRIPCIÓN DE LA INVENCIÓN
Los detalles característicos de este novedoso generador eólico se muestran claramente en Ia siguiente descripción y en los dibujos que se acompañan, así como una ilustración de aquel y siguiendo los mismos signos de referencia para indicar las partes y las figuras mostradas.
La figura 1 es Ia vista general del generador eólico.
La figura 2 es el esquema estructural de Ia góndola y de su unión con el mecanismo multiplicador y el generador eléctrico.
La figura 3 es Ia vista de planta que ilustra Ia orientación de Ia góndola con respecto a Ia dirección del viento.
La figura 4 es Ia vista A, que es Ia vista lateral de Ia góndola en Ia dirección perpendicular a Ia dirección del viento.
La construcción general del generador eólico se aprecia en el esquema presentado en Ia figura 1 el que está compuesto de Ia torre 1 sobre Ia que está instalada Ia góndola 2 y el mecanismo de orientación 3.
Dentro de Ia góndola 2, presentada en Ia figura 2, en los soportes 4 están colocadas dos flechas 5 y 6 unidas mediante el acoplamiento 7. En los extremos exteriores de las flechas están instaladas dos turbinas que representan los cubos 8 sobre los que a un ángulo 45 grados con respecto al plano de rotación de éstas en sentido igual están fijadas las palas 9. Las palas, en general, pueden tener Ia forma del perfil rectangular, trapezoidal, ovalado o algún otro, pero Ia forma de Ia cara plana. El frente de los cubos con el objetivo de disminución de Ia resistencia aerodinámica está cubierto por los carenajes 10.
Dentro de Ia góndola 2 en los extremos interiores de las flechas 5 y 6 están instalados los engranes cónicos 11 y 12 engranados con los 13 y 14 respectivamente. Los engranes están hechos de modo que los 11 y 13 forman un engranaje del tamaño menor que los 12 y 14 y que el eje geométrico del engrane 13 coincide con el del 14. Con todo eso Ia flecha del engrane 14 se realiza hueca dentro de Ia que se instala Ia flecha del engrane 13.
La flecha del engrane 13 está acoplada con el brazo 15 del multiplicador y Ia del engrane 14 con Ia carcasa 16 del mismo. Dentro del multiplicador en el brazo 15 está colocado el satélite 17 engranado a Ia vez-con el engrane sol 18 y con el engrane corona 19 que forma con Ia carcasa 16 del mecanismo un solo eslabón. La flecha del engrane sol 18 está unida mediante el acoplamiento
20 con el rotor del generador eléctrico 21 el que, en general, puede ser instalado dentro de Ia góndola, en Ia torre o en Ia base de Ia misma.
El generador eólico trabaja del siguiente modo. Mediante el mecanismo de orientación 3 Ia góndola 2 se orienta a un ángulo 45 grados con respecto a Ia dirección del viento, Io que está mostrado en las figuras 3 y 4. Se supone que en este momento las palas C y G ocupan Ia posición vertical y las E y F horizontal. Ya que todas las palas se instalan a un ángulo 45 grados con respecto al plano de rotación de Ia turbina y tienen el sentido de orientación igual, entonces las palas G, opuestas a las C, y las F, opuestas a las E, forman un ángulo igual a 90 grados entre ellas. Con esto, debido a Io que Ia góndola 2 está orientada a un ángulo 45 grados con respecto a Ia dirección del viento, el ángulo de incidencia del flujo del viento para las palas C va a ser igual a 90 grados, ya que están orientadas perpendicularmente a Ia dirección del viento, para las G igual a cero, ya que son paralelas a Ia misma, y para las E y F igual a 45 grados. Con este análisis se puede apreciar que el ángulo de incidencia del flujo del viento sobre Ia cara de cada pala, en una revolución de Ia turbina, varía de 0 a 90 grados.
La energía mecánica del flujo del viento genera el momento de torsión, que gira las flechas 5 y 6 y junto con éstas los engranes 11 y 12. Puesto que las flechas 5 y 6 están unidas mediante el acoplamiento 7, por consiguiente tienen el movimiento giratorio de igual sentido y de igual velocidad angular. Entonces los engranes 11 y 12 también van a girar en igual sentido con igual velocidad angular pero los 13 y 14 van a girar en sentidos opuestos. Con esto en sentidos opuestos van a girar el brazo 15 y Ia carcasa 16 del multiplicador.
El mecanismo multiplicador, mostrado en Ia figura 2, es un tren de engranes diferencial que se representa como un tren planetario pero con todos los eslabones móviles. El tren planetario tiene un grado de libertad y el diferencial dos grados de libertad. El cierre o unión del brazo 15 y de Ia carcasa 16 mediante los engranajes con ejes inmóviles de engranes (el engranaje de los engranes 11 y 13, y también de los 12 y 14) convierte el mecanismo diferencial en uno diferencial cerrado que tiene un grado de libertad y, por consiguiente, un solo eslabón de entrada, que es el brazo 15, y uno de salida, que es el engrane sol 18. Así pues, si Ia relación de transmisión de los engranajes cónicos es igual a 1 , Ia relación de transmisión del multiplicador va a tener Ia magnitud Ia relación de transmisión del mecanismo planetario multiplicado por dos, Io que es suficiente para Ia mayoría de los casos.
Por todo Io dicho anteriormente se puede afirmar que se creó un nuevo generador eólico el que, con el diseño más simple de las palas de las turbinas esencialmente aumenta Ia eficiencia del uso de Ia energía mecánica del viento. Además el empleo de un mecanismo diferencial cerrado como mecanismo multiplicador simplifica Ia construcción de Ia transmisión mecánica del generador eólico.
El aumento de Ia eficiencia del uso de Ia energía mecánica del viento tiene dos componentes:
La primera componente consiste en que debido a Ia orientación de las palas a unos 45 grados con respecto al plano de rotación de Ia turbina y Ia orientación de Ia góndola a unos 45 grados con respecto a Ia dirección del viento el ángulo de incidencia del flujo del viento sobre Ia cara de cada pala, en una revolución de Ia turbina, varía de 0 a 90 grados. La fuerza, con que actúa el viento sobre las caras de las palas, es proporcional a Ia proyección del área A de las palas sobre el plano perpendicular a Ia dirección del viento, es decir proporcional a pr.A. Esta fuerza se descompone en dos iguales, una axial, proporcional a cosenos del ángulo de orientación de Ia góndola, es decir pr.A - eos 45° , y otra tangencial, proporcional a pr.A - sen 45° . Con esto resulta que, con las condiciones iguales, Ia nueva turbina genera Ia fuerza tangencial esencialmente más grande que Ia helicoidal.
La segunda consiste en que, con Ia elección correspondiente de Ia distancia entre las turbinas, Ia orientación de Ia góndola a unos 45 grados con respecto a Ia dirección del viento excluye influencia del flujo usado por Ia turbina delantera en Ia trasera. Entonces Ia turbina trasera va a recibir Ia energía mecánica del viento prácticamente igual a Ia de Ia delantera.
V
La simplicidad de Ia fabricación de las turbinas es evidente ya que para éstas se emplean palas con Ia cara plana. Esto permite, para su fabricación, emplear el equipo más simple Io que va a disminuir el costo de Ia fabricación de las turbinas.
Además el uso de un mecanismo diferencial cerrado en Ia transmisión mecánica simplifica Ia construcción de ésta ya que con un mecanismo de una sola etapa se logra Ia relación de transmisión del tren de engranes compuesto o planetario de varias etapas.

Claims

REIVINDICACIONESHabiendo descrito suficientemente mi invención, considero como una novedad y por Io tanto como mi exclusiva propiedad, Io contenido en las siguientes cláusulas:
1. Generador eólico, que tiene una torre sobre Ia que se instala Ia góndola dentro de Ia que se colocan dos flechas unidas mediante el acoplamiento, las flechas junto con el mecanismo multiplicador, forman Ia transmisión mecánica, con todo eso en los extremos exteriores de las flechas están instaladas dos turbinas formadas por las palas, que se caracteriza por aquello que, con el objetivo del aumento de Ia eficiencia del uso de Ia energía mecánica del viento las palas se instalan a un ángulo 45 grados con respecto al plano de rotación de las turbinas y Ia góndola se orienta a un ángulo 45 grados con respecto a Ia dirección del viento.
2. Generador eólico de conformidad con Ia cláusula 1 , que se caracteriza por aquello que, con el objetivo de Ia simplificación de Ia fabricación de las palas y, por consiguiente, disminución del costo de las turbinas, las palas se fabrican con Ia forma del contorno rectangular, trapezoidal, ovalado o cualquier otro, pero con Ia cara plana.
3. Generador eólico de conformidad con Ia cláusula 1 , que se caracteriza por aquello que, con el objetivo de simplificación de Ia construcción de Ia transmisión mecánica, en ésta, como el mecanismo multiplicador, se emplea el mecanismo diferencial cerrado, el que representa uno diferencial en el cual Ia carcasa se acopla mediante un engranaje cónico con el extremo interior de una flecha y el brazo mediante otro engranaje cónico con el extremo interior de otra flecha.
PCT/MX2009/000008 2009-01-28 2009-01-28 Generador eólico con dos turbinas de palas planas WO2010087689A2 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2009/000008 WO2010087689A2 (es) 2009-01-28 2009-01-28 Generador eólico con dos turbinas de palas planas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2009/000008 WO2010087689A2 (es) 2009-01-28 2009-01-28 Generador eólico con dos turbinas de palas planas

Publications (2)

Publication Number Publication Date
WO2010087689A2 true WO2010087689A2 (es) 2010-08-05
WO2010087689A3 WO2010087689A3 (es) 2012-12-27

Family

ID=42396237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2009/000008 WO2010087689A2 (es) 2009-01-28 2009-01-28 Generador eólico con dos turbinas de palas planas

Country Status (1)

Country Link
WO (1) WO2010087689A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014124547A1 (es) * 2013-08-23 2014-08-21 Serani Mostazal Jorge Sistema de control electromecánico para un conjunto de turbinas de fluidos, bidireccionales generadoras de electricidad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1238582A (en) * 1984-02-20 1988-06-28 Andrej A. Kodric Wind turbine
DE10042430A1 (de) * 2000-08-30 2002-03-21 Sziede Karl Heinz Die kombinierte Windkraftanlage
US20050214117A1 (en) * 2004-03-27 2005-09-29 Selsam Douglas S Multi-rotor wind turbine with generator as counterweight

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1238582A (en) * 1984-02-20 1988-06-28 Andrej A. Kodric Wind turbine
DE10042430A1 (de) * 2000-08-30 2002-03-21 Sziede Karl Heinz Die kombinierte Windkraftanlage
US20050214117A1 (en) * 2004-03-27 2005-09-29 Selsam Douglas S Multi-rotor wind turbine with generator as counterweight

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014124547A1 (es) * 2013-08-23 2014-08-21 Serani Mostazal Jorge Sistema de control electromecánico para un conjunto de turbinas de fluidos, bidireccionales generadoras de electricidad

Also Published As

Publication number Publication date
WO2010087689A3 (es) 2012-12-27

Similar Documents

Publication Publication Date Title
KR101168724B1 (ko) 풍력발전기 타워 회전용 싸이클로이드 감속기
ES2906450T3 (es) Turbina eólica con tren de potencia compacto de una etapa
US8680705B2 (en) Vertical axis wind turbine
JP4822195B1 (ja) 風力発電機
KR101230324B1 (ko) 에이치 로우터 수직축 풍력발전
ES2659827T3 (es) Planta de generación eólica y método para el control de un generador de turbina eólica en una planta de generación eólica
ES2942175T3 (es) Rotor de turbina eólica y procedimientos de montaje del mismo
US20090257874A1 (en) Vertical axis windmill with weather vane positioning
WO2010087689A2 (es) Generador eólico con dos turbinas de palas planas
KR20120139154A (ko) 양력과 항력을 융합한 수직축 풍력발전기
KR101313201B1 (ko) 풍력발전기
ES2532535T3 (es) Turbina a sotavento con sistema de guiñada libre
JP3182162U (ja) 風力発電装置
ES2620927B2 (es) Aerogenerador de eje de rotación vertical con turbina eólica de álabes compuestos
JP6836769B2 (ja) 流体機械および発電装置
TWI580864B (zh) A wind power generator incorporating solar panels and a power generating device
KR101345391B1 (ko) 풍력발전기의 다단형 싸이클로이드 감속기
KR200271513Y1 (ko) 더블허브 프로펠러형 풍력발전기
ES2315091B1 (es) Dispositivo para la generacion de energia electrica a partir de un fluido.
WO2008120026A4 (en) Innovative horizontal axis wind turbine of high efficiency
TWI580862B (zh) Turbine power plant
WO2012055378A1 (es) Rotor de turbina eólica
CN103016251A (zh) 多轮式风力发电风车
KR101076553B1 (ko) 풍력 발전 장치
RU91602U1 (ru) Ветроагрегат "максан"

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839348

Country of ref document: EP

Kind code of ref document: A2