WO2010087290A1 - Anti-reflection film - Google Patents

Anti-reflection film Download PDF

Info

Publication number
WO2010087290A1
WO2010087290A1 PCT/JP2010/050821 JP2010050821W WO2010087290A1 WO 2010087290 A1 WO2010087290 A1 WO 2010087290A1 JP 2010050821 W JP2010050821 W JP 2010050821W WO 2010087290 A1 WO2010087290 A1 WO 2010087290A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
high refractive
resin
film
Prior art date
Application number
PCT/JP2010/050821
Other languages
French (fr)
Japanese (ja)
Inventor
裕 矢賀部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2010087290A1 publication Critical patent/WO2010087290A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to an antireflection film mainly used on the surface of a display device, and more particularly to an antireflection film having sufficient image clarity and surface hardness.
  • the display screen of a display device is often touched by the user's hand, and its surface may become dirty or scratched, making it difficult to see the displayed image, and its surface hardness needs to be improved. Yes.
  • the display screen of a display device is required to have an antireflection function because the visibility of a display image may be reduced due to a reflection image caused by reflection of external light from a fluorescent lamp. For this reason, conventionally, an antireflection film having an appropriate surface hardness may be applied to the display screen of a display device.
  • the antireflection film for example, a substrate film, a film provided on the substrate film, comprising a high refractive index layer, and a low refractive index layer provided on the high refractive index layer has been studied. Yes.
  • the high refractive index layer is also given a function as a hard coat layer in order to increase its surface hardness.
  • a curable material made of ultraviolet or thermosetting resin such as an acrylic oligomer or an acrylic urethane oligomer is used. It can be formed by curing.
  • Patent Document 1 discloses a composition in which, for example, scaly inorganic fine particles having an average particle diameter of 10 to 300 nm or less are added to a curable material for forming a hard coat layer. It is disclosed that a hard coat layer is formed using an object.
  • An object of the present invention is to provide an antireflection film having sufficient image clarity and surface hardness.
  • the present invention includes the following.
  • an antireflection film comprising a composition containing scaly inorganic particles having an average particle diameter of 3 to 10 ⁇ m, and the anti-reflection film has a clarity of image of 90% or more.
  • the antireflection film wherein the inorganic particles contain a silicon oxide component in an amount of 35% by weight or more.
  • the antireflection film, wherein the composition contains 3 to 30 parts by weight of the inorganic particles with respect to 100 parts by weight of the hard coat material.
  • the base film includes a first resin layer made of a composition including a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 ⁇ m or less, and the elasticity
  • the antireflection film which is a multilayer film having an average thickness of less than 100 ⁇ m, formed by a coextrusion method, and a second resin layer made of a thermoplastic resin not containing body particles.
  • the antireflection film of the present invention includes a high refractive index layer using a composition comprising a hard coat material as a main component and scaly or plate-like inorganic particles having an average particle diameter of 3 to 10 ⁇ m.
  • a composition comprising a hard coat material as a main component and scaly or plate-like inorganic particles having an average particle diameter of 3 to 10 ⁇ m.
  • display devices such as liquid crystal display devices, organic EL displays, plasma display devices, and touch panels.
  • the antireflection film of the present invention includes a base film, a high refractive index layer provided on the base film, and a low refractive index layer provided on the high refractive index layer, the refractive index R L and
  • the high refractive index layer includes a low refractive index layer in which a refractive index RH satisfies a relationship of (R H ⁇ 0.1) ⁇ RL .
  • the base film may be a single layer or a laminate composed of a plurality of layers.
  • a transparent resin having a thickness of 1 mm and a total light transmittance of 80% or more can be used.
  • the transparent resin include resins having an alicyclic structure, polyester resins, cellulose resins, polycarbonate resins, polysulfone resins, polyethersulfone resins, polystyrene resins, polyolefin resins, polyvinyl alcohol resins, polyvinyl chloride resins, and heat.
  • a plastic acrylic resin examples include a plastic acrylic resin.
  • a transparent resin used for the base film of the present invention a thermoplastic acrylic resin is preferable from the viewpoint of adhesion to a high refractive index layer described later.
  • Thermoplastic acrylic resins use (meth) acrylic acid ester as the main ingredient of raw material, and (meth) acrylic acid ester is derived from (meth) acrylic acid, alkanol having 1 to 15 carbon atoms and cycloalkanol. It is preferable that the structure be A structure derived from an alkanol having 1 to 8 carbon atoms is more preferable. When there are too many carbon numbers, the elongation at the time of the fracture
  • (meth) acrylic acid ester is methacrylic acid ester and acrylic acid ester.
  • thermoplastic acrylic resin a homopolymer of (meth) acrylic acid alkyl ester such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate; the hydrogen of the alkyl group is OH group, COOH group or NH 2 group
  • Homopolymer of (meth) acrylic acid alkyl ester substituted with a functional group such as: or (meth) acrylic acid alkyl ester and styrene, vinyl acetate, ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid, vinyl toluene Mention may be made of copolymers with ⁇ -methylstyrene and vinyl monomers having an unsaturated bond such as maleic anhydride.
  • thermoplastic acrylic resin only 1 type may be used among these and it may use it in combination of 2 or more type. More preferably, the thermoplastic acrylic resin contains a methyl methacrylate unit and a butyl methacrylate unit as monomer units.
  • the transparent resin may contain other compounding agents in addition to the elastic particles described later.
  • Other compounding agents include, for example, inorganic particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers, and other stabilizers; resin modifiers such as lubricants and plasticizers Agents; coloring agents such as dyes and pigments; antistatic agents and the like. These compounding agents can be used alone or in combination of two or more.
  • the compounding amount of the compounding agent can be appropriately selected within a range not impairing the object of the present invention, and usually 0 to 5 parts by weight, preferably 0 to 3 parts by weight with respect to 100 parts by weight of the transparent resin. Examples of the method of incorporating these compounding agents include a method of previously compounding the compounding agent in a transparent resin, a method of directly supplying at the time of melt extrusion molding, and the like.
  • the base film preferably contains elastic particles having a number average particle diameter of 2.0 ⁇ m or less in addition to the transparent resin.
  • Elastic body particles are particles made of a rubber-like elastic body.
  • the rubber-like elastic material include an acrylate-based rubber-like polymer, a rubber-like polymer containing butadiene as a main component, and an ethylene-vinyl acetate copolymer.
  • the acrylic ester rubbery polymer include butyl acrylate, 2-ethylhexyl acrylate and the like as raw materials. Of these, acrylate polymers based on butyl acrylate and rubbery polymers based on butadiene are preferred.
  • the elastic particles may be formed by laminating two kinds of polymers, and representative examples thereof include an alkyl acrylate such as butyl acrylate and a grafted rubber elastic component of styrene, polymethyl Mention may be made of elastic particles in which a hard resin layer made of a methacrylate and / or a copolymer of methyl methacrylate and an alkyl acrylate forms a layer with a core-shell structure.
  • an alkyl acrylate such as butyl acrylate and a grafted rubber elastic component of styrene
  • polymethyl Mention may be made of elastic particles in which a hard resin layer made of a methacrylate and / or a copolymer of methyl methacrylate and an alkyl acrylate forms a layer with a core-shell structure.
  • the number average particle size of secondary particles dispersed in the transparent resin is 2.0 ⁇ m or less, preferably 0.1 to 1.0 ⁇ m, more preferably 0.1 to 0.5 ⁇ m. It is. Even if the primary particle size of the elastic particles is small, if the number average particle size of the secondary particles formed by aggregation or the like is large, the haze (cloudiness) of the base film becomes too high and the light transmittance becomes low. . Moreover, when the number average particle size becomes too small, the flexibility tends to decrease.
  • the base film is composed of a composition containing the transparent resin, preferably the thermoplastic acrylic resin or a resin having an alicyclic structure, and the elastic particles unevenly distributed in the thickness direction of the film.
  • the portion where the elastic particles are unevenly distributed may be a central portion in the thickness direction or a surface portion.
  • the elastic particles are unevenly distributed in the central portion, there are few elastic particles near the surface of the base film, and many elastic particles are distributed in the central portion in the thickness direction of the base film.
  • the elastic particles are unevenly distributed on the surface portion, there are few elastic particles in the central portion of the base film, and many elastic particles are distributed on at least one surface portion.
  • the distribution of the elastic particles may increase or decrease gradually from the surface toward the center, or may increase or decrease in stages.
  • the flexibility can be improved while sufficiently securing the surface hardness of the antireflection film.
  • the antireflection film of the present invention is bonded to a polarizing plate, a display device or the like, at least a high refractive index layer is laminated from the viewpoint of improving adhesion with a polarizer constituting the polarizing plate. It is preferable that a large amount of elastic particles be distributed on the surface of the base film opposite to the side.
  • a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 ⁇ m or less, A method of co-extrusion molding of a thermoplastic resin not containing the elastic particles; a composition comprising a thermoplastic resin and elastic particles having a number average particle size of 2.0 ⁇ m or less, and a thermoplastic not containing the elastic particles Examples thereof include a method of coextrusion molding with an acrylic resin or a resin having an alicyclic structure.
  • a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle diameter of 2.0 ⁇ m or less and a thermoplastic resin not containing the elastic particles are coextruded.
  • Coextrusion method is used.
  • the co-extrusion method include a co-extrusion T-die method, a co-extrusion inflation method, and a co-extrusion lamination method, and among them, the co-extrusion T-die method is preferable.
  • the co-extrusion T-die method includes a feed block method and a multi-manifold method, but the multi-manifold method is more preferable in that variation in the thickness of the layer 1 containing elastic particles can be reduced.
  • the total thickness of the base film is preferably 10 to 300 ⁇ m, more preferably 15 to 150 ⁇ m as the total thickness.
  • the base film is composed of a multilayer resin layer formed using a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle diameter of 2.0 ⁇ m or less
  • the total thickness of the layer composed of a plastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 ⁇ m or less is preferably 60 ⁇ m or less, and preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the total thickness of the thermoplastic resin layer not containing the elastic particles is preferably 20 ⁇ m or more, and preferably 20 ⁇ m or more and 60 ⁇ m or less. If the total thickness of the thermoplastic resin layer not containing elastic particles is less than 20 ⁇ m, heat resistance and strength are insufficient, and a thermoplastic acrylic resin or a resin having an alicyclic structure and a number average particle size of 2.0 ⁇ m or less. If the total thickness of the layers made of elastic particles is less than 20 ⁇ m, the flexibility becomes insufficient.
  • the “thermoplastic resin not containing elastic particles” can be a thermoplastic acrylic resin or a resin having an alicyclic structure.
  • the base film preferably has a residual solvent content of 0.01% by mass or less.
  • the residual solvent amount is in the above range, for example, it is possible to prevent the base film from being deformed in a high temperature / high humidity environment and to prevent the optical performance from being deteriorated.
  • the base film in which the residual solvent amount falls within the above range can be obtained, for example, by coextrusion molding of a plurality of resins. In the case of coextrusion molding, it is not necessary to go through a complicated process (for example, a drying process or a coating process). Therefore, there is little mixing of external foreign matters such as dust, and excellent optical performance can be exhibited.
  • the residual solvent content was determined by placing 50 mg of the base film in a glass tube sample container with an inner diameter of 4 mm from which moisture and organic substances adsorbed on the surface were completely removed, heating the container at a temperature of 200 ° C. for 30 minutes, This is a value obtained by continuously collecting the emitted gas and analyzing the collected gas with a thermal desorption gas chromatography mass spectrometer (TDS-GC-MS).
  • TDS-GC-MS thermal desorption gas chromatography mass spectrometer
  • the substrate film preferably has a moisture permeability of 10 g ⁇ m ⁇ 2 day ⁇ 1 or more and 200 g ⁇ m ⁇ 2 day ⁇ 1 or less. Adhesiveness with the layer laminated
  • the moisture permeability can be measured by the cup method described in JIS Z 0208 under the test conditions for 24 hours in an environment of 40 ° C. and 90% RH.
  • the surface of the base film may have a concavo-convex structure from the viewpoint of reducing interference unevenness.
  • the uneven structure may be formed only on one surface of the base film, or may be formed on both surfaces.
  • a method of imparting a concavo-convex structure on the surface of the base film a nip molding method using a shaping roll having concavo-convex, a sandwich lamination method using a film having concavo-convex, The blast method can be applied.
  • the surface on the uneven structure side can have an arithmetic average surface roughness (Ra) of 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the average period (Sm) of the structure can be 10 ⁇ m or more and 200 ⁇ m or less.
  • the arithmetic average surface roughness and average period of the base film are values measured in accordance with JIS B 0601: 2001.
  • the base film having an uneven structure on the surface preferably has a haze of 1% or more and less than 50%, and more preferably 3% or more and less than 40%.
  • the surface of the base film on the side where the high refractive index layer is provided can be subjected to surface modification treatment.
  • the surface modification treatment include energy beam irradiation treatment and chemical treatment.
  • the energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, and the like. Corona discharge treatment and plasma treatment are preferable from the viewpoint of treatment efficiency.
  • the chemical treatment include a method of immersing the agent film in an aqueous oxidizing agent solution such as potassium dichromate solution or concentrated sulfuric acid, and then sufficiently washing with water. When shaken in an immersed state, the treatment can be performed in a short time. However, if the treatment is carried out excessively, the surface is dissolved or the transparency is lowered.
  • the high refractive index layer is a composition containing a hard coat material as a main component and scaly inorganic particles having an average particle diameter of 3 to 10 ⁇ m (hereinafter sometimes referred to as a composition for forming a high refractive index layer). ).
  • the hard coat material an inorganic material, a resin material, or a mixture thereof can be used, but a resin material is preferable from the viewpoint of excellent productivity.
  • a resin material a material having sufficient strength as a film after the formation of the high refractive index layer and having transparency can be used.
  • the resin material include a thermosetting resin, a thermoplastic resin, and an ionizing radiation curable resin, and a thermosetting resin or an ionizing radiation curable resin is preferable in terms of film strength and workability. .
  • Thermosetting resins include phenolic resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea co-condensation resin, silicone resin, polysiloxane Resin. Moreover, you may add hardening agents, such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc. to these thermosetting resins as needed.
  • hardening agents such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc.
  • the ionizing radiation curable resin is a resin in which a prepolymer, oligomer and / or monomer having a polymerizable unsaturated bond or an epoxy group in the molecule is cured by irradiation with ionizing radiation.
  • Ionizing radiation refers to electromagnetic waves or charged particle beams having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet rays or electron beams are used.
  • Examples of the ultraviolet curable resin include a photopolymerizable prepolymer or a photopolymerizable monomer and a photopolymerization initiator or a photosensitizer, and examples of the electron beam curable resin include a photopolymerizable prepolymer or a photopolymer. The thing containing a polymerizable monomer is mentioned.
  • Examples of the photopolymerizable prepolymer include polyester acrylate, epoxy acrylate, urethane acrylate, and polyol acrylate. These photopolymerizable prepolymers may be used alone or in combination of two or more.
  • Examples of the photopolymerizable monomer include polymethylolpropane triacrylate, polymethylolpropane trimethacrylate, hexanediol acrylate, hexanediol methacrylate, tripropylene glycol diacrylate, tripropylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, Pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanedi
  • urethane acrylate as the prepolymer and dipentaerythritol hexaacrylate or dipentaerythritol hexamethacrylate as the monomer.
  • photopolymerization initiator examples include acetophenones, benzophenones, ⁇ -amyloxime esters, tetramethylchuram monosulfide, thioxanthones, and the like.
  • photosensitizer n-butylamine, triethylamine, poly-n-butylphosphine and the like can be used alone or in combination.
  • the composition for forming a high refractive layer contains scaly inorganic particles having an average particle diameter of 3 to 10 ⁇ m.
  • the average particle diameter of the inorganic particles can be determined by observing 100 inorganic particles using a scanning electron microscope (SEM), obtaining the length of the major axis, and averaging these major axes. .
  • the scaly shape can be said to be a thin shape, and the average aspect ratio between the thickness and the length in the long side direction (the length in the longest direction among the directions perpendicular to the thickness direction) is 40 to 200, the film thickness is 2 ⁇ m or less.
  • the inorganic particles preferably contain a silicon oxide component of 35% by weight or more.
  • a silicon oxide component of 35% by weight or more.
  • adhesion between the low refractive index layer and the layer can be further increased, and the surface strength can be further improved.
  • the low refractive index layer has a silicon oxide component of 40% by weight. In the case of including the above, there is an advantage that the adhesion can be further improved.
  • the upper limit of the content rate of a silicon oxide component is not specifically limited, It can be 80 weight% or less.
  • the inorganic particles are preferably contained in an amount of 3 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the hard coat material. By setting it as the said suitable range, surface hardness and image clarity can be improved further.
  • the inorganic particles include mascobite, phlogopite, biotite, fluorine phlogopite, kaolinite, talc, sericite, organically treated mica, silica, bentonite, montmorillonite, beidellite, nontronite, saponite, hectorite, and soconite. , Stevensite, vermicularite, and synthetic smectite. One of these may be used, or two or more may be used in combination. Moreover, you may provide a silane coupling agent to an inorganic particle.
  • the composition for forming a high refractive index layer may contain conductive fine particles in addition to the inorganic particles.
  • conductive fine particles By including the conductive fine particles, not only a function as a high refractive index layer but also a function as an antistatic layer can be imparted.
  • the conductive fine particles are not particularly limited as long as they are conductive fine particles, but metal oxide fine particles are preferable in terms of excellent transparency. Examples of the metal oxide include antimony pentoxide, tin oxide, tin oxide doped with phosphorus (PTO), tin oxide doped with antimony (ATO), indium oxide doped with tin (ITO), and zinc.
  • Indium oxide doped with IZO
  • zinc doped with aluminum AZO
  • tin doped with fluorine FTO
  • zinc oxide / aluminum oxide zinc antimonate, and the like.
  • metal oxide fine particles can be used singly or in combination of two or more.
  • antimony pentoxide fine particles and / or tin oxide fine particles doped with phosphorus are preferable because of excellent transparency.
  • the metal oxide fine particles fine particles imparted with conductivity by coating the surface of the metal oxide fine particles having no conductivity with a conductive metal oxide can also be used.
  • the surface of fine particles of titanium oxide, zirconium oxide, cerium oxide or the like having a high refractive index but no conductivity can be used by coating the conductive metal oxide to impart conductivity.
  • the number average particle diameter of the conductive fine particles is preferably 200 nm or less, more preferably 50 to 15 nm.
  • the number average particle size is determined by visual observation from a secondary electron emission image photograph obtained by a transmission electron microscope (TEM) or image processing of the image photograph, or a dynamic light scattering method, a static light scattering method, or the like. It can be measured by a particle size distribution meter using
  • the high refractive layer forming composition may contain other inorganic particles in addition to the inorganic particles.
  • inorganic particles inorganic oxides are generally used.
  • SiO 2 , Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 5 , MoO 3 , ZnO 2 , WO 3 or the like can be mentioned.
  • the number average particle diameter of the other inorganic particles is preferably 500 nm or less, more preferably 30 to 15 nm. The number average particle diameter can be measured in the same manner as described above.
  • the high refractive index layer is prepared by diluting the composition for forming a high refractive index layer with a solvent, and diluting the diluted product directly or on the surface of one surface of the base film, preferably the surface on which the concavo-convex structure is formed. It can be obtained by coating on another layer formed on the material film to obtain a coating film and irradiating the coating film with heat or ionizing radiation.
  • the solvent examples include alcohols such as methanol, ethanol, isopropanol, n-butanol, and isobutanol; glycols such as ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether; aromatic hydrocarbons such as toluene and xylene. Aliphatic hydrocarbons such as n-hexane and n-heptane; esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; and combinations of two or more of these; .
  • alcohols such as methanol, ethanol, isopropanol, n-butanol, and isobutanol
  • glycols such as ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether
  • aromatic hydrocarbons such as toluene and
  • a leveling agent or a dispersant may be contained for the purpose of improving the uniformity of the layer thickness or improving the adhesion.
  • the leveling agent include compounds that lower the surface tension, such as silicone oil, fluorinated polyolefin, and polyacrylic acid ester.
  • the dispersing agent include a surfactant and a silane coupling agent.
  • the refractive index of the high refractive index layer is preferably 1.5 to 1.7.
  • the refractive index can be obtained by measuring using, for example, a known spectroscopic ellipsometer.
  • the high refractive index layer preferably exhibits a hardness of “2H” or more at a load of 500 g of a pencil hardness test (test plate is a glass plate) shown in JIS K5600-5-4.
  • a pencil hardness test test plate is a glass plate
  • the high refractive index layer can also serve as a hard coat layer, and the thickness of the entire antireflection film can be reduced.
  • the average thickness of the high refractive index layer is usually 0.3 to 20 ⁇ m, preferably 0.8 to 10 ⁇ m.
  • the surface of the high refractive index layer can be subjected to surface treatment.
  • the surface treatment include the surface modification treatment exemplified in the above-described base film.
  • the antireflection film of the present invention includes a low refractive index layer provided on the high refractive index layer.
  • the refractive index RL of the low refractive index layer and the refractive index RH of the high refractive index layer satisfy the relationship of (R H ⁇ 0.1) ⁇ RL . That is, the refractive index of the low refractive index layer is 0.1 or more smaller than the refractive index of the high refractive index layer.
  • the material for forming the low refractive index layer (hereinafter sometimes referred to as a composition for forming a low refractive index layer) preferably contains mainly a thermosetting resin or an ionizing radiation type curable resin.
  • the silicon oxide component of the low refractive index layer is preferably 40% by weight or more. By setting it as such a suitable range, adhesiveness with a high refractive layer can be improved.
  • the upper limit of the content ratio of the silicon oxide component in the low refractive index layer is not particularly limited, but can be 60% by weight or less.
  • thermosetting resin R 1 nSi (OR 2 ) m (wherein R 1 is a monovalent hydrocarbon group which may have a substituent, OR 2 is a hydrolyzable group) N, m represents an integer, m is 1 to 4, and m + n is 4.)
  • R 1 nSi (OR 2 ) m (wherein R 1 is a monovalent hydrocarbon group which may have a substituent, OR 2 is a hydrolyzable group) N, m represents an integer, m is 1 to 4, and m + n is 4.)
  • a silicon compound obtained by hydrolyzing all or part of the silicon compound can be used. .
  • the monovalent hydrocarbon group which may have a substituent includes an alkyl group, a phenyl group, a cycloalkyl group, an aryl group, a haloalkyl group; an alkenylcarbonyloxyalkyl group; an alkyl group having an epoxy group, and a mercapto group.
  • Examples thereof include an alkyl group, an alkyl group having an amino group, and a perfluoroalkyl group.
  • an alkyl group having 1 to 4 carbon atoms, a phenyl group, and a perfluoroalkyl group are preferable from the viewpoint of ease of synthesis and availability.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent hydrocarbon group.
  • an alkoxyl group is preferable from the viewpoint of availability.
  • nSi (OR 2 ) m a silicon compound in which n is an integer of 0 to 2 is preferable.
  • Specific examples thereof include alkoxysilanes, acetoxysilanes, oxime silanes, enoxysilanes, aminosilanes, aminoxysilanes, amidosilanes and the like. Among these, alkoxysilanes are more preferable from the viewpoint of availability.
  • Examples of the tetraalkoxysilane in which n is 0 include tetramethoxysilane and tetraethoxysilane.
  • Examples of the organotrialkoxysilane in which n is 1 include methyltrimethoxysilane, methyltriethoxysilane, and methyltriisopropoxysilane.
  • Examples of the diorganodialkoxysilane in which n is 2 include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, and methylphenyldimethoxysilane.
  • the silicon compound preferably contains fluorine.
  • the silicon compound containing fluorine include fluorine-containing alkylalkoxysilanes.
  • trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxy Examples include silane. Of these, compounds in which n is 2 to 6 are preferred.
  • the silicon compounds may be used alone or in combination of two or more. Also, the order of mixing and hydrolysis of two or more silicon compounds may be sequential or simultaneous.
  • Resins curable by ionizing radiation curability include monomers having a glycidyl group such as glycidyl acrylate and glycidyl methacrylate; monomers having a carboxyl group such as acrylic acid and methacrylic acid; hydroxyl groups such as hydroxyalkyl acrylate and hydroxyalkyl methacrylate.
  • a monomer having a vinyl group such as allyl acrylate and allyl methacrylate; a monomer having an amino group; a monomer having a sulfonic acid group; and the like.
  • the composition for forming a low refractive index layer may contain a filler.
  • the filler is not particularly limited as long as it is fine particles of an inorganic compound.
  • an inorganic oxide is generally used.
  • ZnO 2 and WO 3 can be mentioned.
  • hollow fine particles may be added to the composition for forming a low refractive index layer.
  • the hollow fine particles have a hollow structure in which cavities are formed inside the outer shell.
  • silica-based hollow fine particles can be suitably used. By containing silica-based hollow fine particles, it is possible to improve scratch resistance in addition to low refractive index properties.
  • the hollow fine particles include (A) a single layer of an inorganic oxide, (B) a single layer of a composite oxide composed of different types of inorganic oxides, and (C) a double layer of the above (A) and (B). Things can be used.
  • the average particle diameter of the hollow fine particles is not particularly limited, but is preferably 5 to 2000 nm, and more preferably 20 to 100 nm. If it is smaller than 5 nm, the effect of lowering the refractive index due to hollowness is reduced. If it is larger than 2000 nm, the transparency is lowered and the contribution due to diffuse reflection is increased.
  • the average particle diameter can be determined by the number average particle diameter by observation with a transmission electron microscope.
  • the addition amount of the hollow fine particles is not particularly limited, but is preferably 40 to 200% by weight, more preferably 40 to 150% by weight, based on the solid content of the composition for forming a low refractive index layer. Within this range, both low refractive index properties and scratch resistance can be achieved.
  • the low refractive index layer is obtained by diluting the composition for forming a low refractive index layer with a solvent, coating the diluted product on the high refractive index layer, and then drying and curing the coating film. A cured film of a rate layer can be formed.
  • the coating method is not particularly limited, and includes usual methods such as a doctor blade method, a gravure roll coater method, a dipping method, a spin coating method, a brush coating method, a flexographic printing method, and the like.
  • a cured film having a low refractive index layer can be obtained by forming the obtained coating film by irradiating it with heat or ionizing radiation.
  • Examples of the solvent include the same solvents as those exemplified above for the composition for forming a high refractive index layer.
  • the solid content concentration in the composition for forming a low refractive index layer diluted with a solvent can be appropriately adjusted within a range not impairing the solution stability. Since the composition for forming a low refractive index layer is preferably formed into a thin film with a good thickness accuracy, it is usually from about 0.1 to 20% by weight, preferably from about 0.5 to 10% by weight because it is easy to handle. .
  • the composition for forming a low refractive index layer may contain other components.
  • other components include surfactants, photopolymerization initiators, dispersants such as silane coupling agents, leveling agents, and thickeners.
  • the content of the surfactant is preferably 500 ppm or more and more preferably 1000 ppm or more with respect to the solid content of the composition for forming a low refractive index layer.
  • the surfactant include a fluorine-based surfactant and a silicone-based surfactant.
  • Fluorosurfactants include non-ionic perfluoroalkylsulfonic acid amide group-containing nonions such as Fluorad FC-431 manufactured by 3M, MegaFac F-171, F-172, F-173, F manufactured by Dainippon Ink, Inc.
  • Perfluoroalkyl group-containing oligomers such as -176PF, F-470, and F-471.
  • silicone surfactant include polydimethylsiloxane in which the side chain or the end of the main chain is modified with various substituents such as oligomers such as ethylene glycol and propylene glycol.
  • photopolymerization initiator examples include known photopolymerization initiators. Specifically, aryl ketone photopolymerization initiators (for example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers) , Benzyldimethyl ketals, benzoylbenzoates, ⁇ -acyloxime esters, etc.); sulfur-containing photopolymerization initiators (for example, sulfides, thioxanthones, etc.); acylphosphine oxide photopolymerization initiators; other light There is a polymerization initiator.
  • aryl ketone photopolymerization initiators for example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers
  • sulfur-containing photopolymerization initiators for example, sulfides,
  • the photopolymerization initiator can also be used in combination with a photosensitizer such as amines.
  • the content of the photopolymerization initiator is 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin.
  • Curing can be performed by heating and / or actinic ray irradiation according to the composition for forming a low refractive index layer.
  • the drying conditions and curing conditions can be appropriately determined depending on the boiling point of the solvent to be used, the saturated vapor pressure, the type of the base material, and the like. In the case of irradiation, it is usually preferably 2 J / cm 2 or less.
  • the refractive index RL of the low refractive index layer and the refractive index RH of the high refractive index layer satisfy the relationship of (R H ⁇ 0.1) ⁇ RL . That is, the refractive index of the low refractive index layer is 0.1 or more smaller than that of the high refractive layer.
  • the refractive index of the low refractive index layer is preferably less than 1.4, preferably 1.25 to 1.38, more preferably 1.30 to 1.38. By setting the refractive index of the low refractive index layer in the above range, in addition to antireflection properties, scratch resistance can be imparted.
  • the average thickness of the low refractive index layer is usually 10 to 1000 nm, preferably 20 to 500 nm.
  • an antifouling layer may be provided on the low refractive index layer.
  • the antifouling layer is provided for protecting the low refractive index layer and enhancing the antifouling performance.
  • the material for forming the antifouling layer is not particularly limited as long as the function of the low refractive index layer is not inhibited and the required performance as the antifouling layer is satisfied.
  • a compound having a hydrophobic group can be preferably used.
  • a perfluoroalkylsilane compound, a perfluoropolyethersilane compound, or a fluorine-containing silicone compound can be used.
  • the antifouling layer for example, a physical vapor deposition method such as vapor deposition or sputtering; a chemical vapor deposition (CVD) method; a wet coating method;
  • the thickness of the antifouling layer is not particularly limited, but is usually preferably 20 nm or less, more preferably 1 to 10 nm.
  • the minimum value measured at an incident angle of 5 ° at a wavelength of 430 to 700 nm is less than 1.5%, and preferably 1.3% or less.
  • the image clarity of the antireflection film of the present invention is 90% or more. If it is less than 90%, the irregular reflection of the display image becomes intense and the visibility is lowered.
  • the upper limit of image clarity is not particularly limited, but can be 100% or less.
  • the antireflection film of the present invention includes a liquid crystal display (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), a cathode tube display (CRT), a field emission display (FED), electronic paper, a touch panel, and the like. It can be used by directly bonding to the display device or by replacing with a surface member incorporated in the display device such as a polarizing plate protective film or a front plate.
  • LCD liquid crystal display
  • PDP plasma display panel
  • ELD electroluminescence display
  • CRT cathode tube display
  • FED field emission display
  • the resin was molded into a single layer and measured using a prism coupler (product name “model 2010” manufactured by Metricon) under the conditions of a temperature of 20 ° C. ⁇ 2 ° C. and a humidity of 60 ⁇ 5%.
  • Image clarity According to JIS K 7105, measurement was performed with an optical comb having a width of 0.5 mm using a image clarity measuring device (manufactured by Suga Test Instruments Co., Ltd.). Higher values mean higher clarity.
  • the image clarity is measured through an optical comb that moves the transmitted light from the sample, and the value is obtained by calculation.
  • the slit image formed on the optical comb becomes thick due to the blur. Therefore, both ends of the slit image are applied to the opaque part at the position of the transmission part, and the amount of light is 100%. Decrease. Further, at the position of the opaque portion, light leaks from the opaque portion at both ends of the slit image, and the amount of light of 0% increases.
  • the sharpness value is defined by the following equation from the maximum value M of the transmitted light of the transparent portion of the optical comb and the minimum value m of the opaque portion.
  • the image clarity can be determined to be good when the following value C is 90% or more (more preferably 95% or more).
  • Value of map clarity C (%) ((M ⁇ m) / (M + m)) ⁇ 100
  • each layer constituting the base film 1 is such that the thickness of one surface layer (surface layer 1) is 5 ⁇ m, the intermediate layer is 10 ⁇ m, and the other surface layer (surface layer 2) is 5 ⁇ m.
  • the total thickness was 20 ⁇ m.
  • the refractive index of the surface layer 1 of the base film 1 was 1.49.
  • Production Example 2 Production of Substrate Film 2
  • a norbornene-based polymer (product name “ZEONOR 1420R”, manufactured by Nippon Zeon Co., Ltd .: glass transition temperature Tg 136 ° C.) is used to make 110 using a hot air dryer in which air is circulated. Dry at 4 ° C. for 4 hours. Thereafter, the pellet was melt-extruded at 260 ° C. using a single screw extruder to obtain a base film 2. Moreover, the film thickness of this base film 2 was 20 micrometers.
  • composition 1 for Forming High Refractive Layer To 100 parts of an oligomer containing acryloyl group (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “UV-1700B”), scaly inorganic particles (Yamaguchi mica) 7 parts by Sangyo Kogyo Co., Ltd., SJ-005, average particle size 5 ⁇ m, silicon oxide component 45%), 150 parts zirconia (Cai Kasei Co., Ltd., average particle size 20 nm), photopolymerization initiator (Ciba Specialty Chemicals) 2 parts of a product name “IRGACURE184” manufactured by the company) and another 1 part of methacryl-modified dimethyl silicone oil (trade name “X-22-164A” manufactured by Shin-Etsu Chemical Co., Ltd.) are added and stirred for 5 minutes at 5000 rpm with a stirrer. By doing this, the composition 1 for high refractive index layer
  • Production Example 4 Preparation of High Refractive Layer Forming Composition 2
  • a high refractive index layer forming composition 2 was obtained in the same manner as in Production Example 3 except that the scale-shaped inorganic particles were changed to 35 parts.
  • the refractive index was 1.63.
  • composition 5 for forming a high refractive layer Scale-like inorganic particles were replaced with other scale-like inorganic particles (manufactured by Coop Chemical Co., MK-300, average particle size 15 ⁇ m, silicon oxide component 52%).
  • a composition 5 for forming a high refractive index layer was obtained in the same manner as in Production Example 3, except for changing to.
  • the refractive index was 1.62.
  • composition 6 for forming a high refractive index layer For forming a high refractive index layer in the same manner as in Production Example 3 except that the scale-shaped inorganic particles were changed to a biotite pulverized product (average particle diameter 6 ⁇ m).
  • Composition 6 was obtained.
  • the biotite pulverized product is obtained by pulverizing biotite (manufactured by Lingju Prefectural Tianjin Mining Co., Ltd., silicon oxide component 35%) with a ball mill and passing through an 8 ⁇ m sieve to obtain an average particle size of 6 ⁇ m.
  • the refractive index was 1.62.
  • composition 1 for forming a low refractive index layer By adding 200 parts of ethanol to a four-necked reaction flask equipped with a reflux tube and adding 120 parts of oxalic acid to this ethanol in small amounts. An ethanol solution of oxalic acid was prepared. The solution was then heated to the reflux temperature, and a mixture of 20 parts tetraethoxysilane and 4 parts tridecafluorooctyltrimethoxysilane (GE Toshiba Silicone, trade name “TSL8257”) was added dropwise to the refluxed solution. did.
  • composition 3 for forming a low refractive index layer A composition 3 for forming a low refractive index layer was obtained in the same manner as in Production Example 10 except that the hollow silica fine particles were changed to 80 parts.
  • the silicon oxide component of the low refractive index layer obtained by drying this composition and forming a film was 42%.
  • the refractive index of the low refractive index layer was 1.43.
  • Production Example 13 Preparation of Low Refractive Index Layer Composition 4
  • a low refractive index layer composition 4 was obtained in the same manner as in Production Example 10 except that the hollow silica fine particles were changed to 60 parts.
  • the silicon oxide component of the low refractive index layer obtained by drying this composition and forming a film was 35%.
  • the refractive index of the low refractive index layer was 1.44.
  • Example 1 After applying the composition 1 for forming a high refractive layer obtained in Production Example 3 to the surface of the base film 1 obtained in Production Example 1 with a bar coater, using an ultraviolet irradiator. Ultraviolet irradiation was performed so that the integrated light amount was 200 mJ / cm 2, and a high refractive layer having a thickness of 5 ⁇ m was formed to obtain a laminate of base film / high refractive index layer. Next, on the high refractive index layer, the low refractive index layer forming composition 1 obtained in Production Example 10 was applied with a bar coater, and the obtained coating film was dried and cured at 60 ° C. for 1 minute, A low refractive index layer having a thickness of 100 nm was formed to obtain the antireflection film 1 of the present invention. The evaluation results of the antireflection film 1 are shown in Table 1.
  • Example 2 Example except that the low refractive index layer forming composition 2 obtained in Production Example 11 was used instead of the low refractive index layer forming composition 1 and the steps for forming the low refractive index layer were changed as follows.
  • an antireflection film 2 was obtained.
  • the low refractive index layer is formed by applying the low refractive index layer forming composition on the high refractive index layer with a bar coater, and drying the obtained coating film at 60 ° C. for 1 minute to obtain an integrated light amount of 100 mJ / cm 2 . It was obtained by curing with ultraviolet irradiation.
  • the evaluation results of the antireflection film 2 are shown in Table 1.
  • Example 3 instead of the base film 1, an antireflection film 3 was obtained in the same manner as in Example 1 except that the base film 2 obtained in Production Example 2 was used. The evaluation results of the antireflection film 3 are shown in Table 1.
  • Example 4 An antireflection film 4 was obtained in the same manner as in Example 1 except that the low refractive index layer forming composition 3 obtained in Production Example 13 was used instead of the low refractive index layer forming composition 1. The evaluation results of the antireflection film 4 are shown in Table 1.
  • Example 5 An antireflection film 5 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 6 obtained in Production Example 8 was used instead of the high refractive layer forming composition 1.
  • the evaluation results of the antireflection film 9 are shown in Table 1.
  • Example 1 An antireflection film 11 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 2 obtained in Production Example 4 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 11 are shown in Table 2.
  • Example 2 An antireflection film 12 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 3 obtained in Production Example 5 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 12 are shown in Table 2.
  • Example 3 An antireflection film 13 was obtained in the same manner as in Example 1, except that the high refractive layer forming composition 4 obtained in Production Example 6 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 13 are shown in Table 2.
  • Example 4 An antireflection film 14 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 5 obtained in Production Example 7 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 14 are shown in Table 2.
  • the antireflection films of Examples 1 to 4 have good adhesion, a minimum reflectance of 1.3% or less, a high surface strength of 3H or more, and image clarity. Is as high as 90% or more, it has sufficient image clarity and surface hardness. Therefore, it is understood that the visibility is difficult to be lowered when used in a display device. Moreover, although Example 5 is slightly lowered in terms of adhesion, there is no practical problem, and it can be seen that other points are sufficient. On the other hand, as shown in Comparative Examples 1 and 4, when the content of the scale-shaped inorganic particles is large or the particle diameter is larger than the predetermined range, it is found that the image clarity is inferior.
  • Comparative Examples 2 and 3 it can be seen that the surface hardness is insufficient when the content of the scale-like inorganic particles is small or the particle diameter is smaller than the predetermined range. Furthermore, as shown in Comparative Example 5, it can be seen that when the difference in refractive index is smaller than 0.1, the minimum reflectance is 1.5%, and the performance as an antireflection film is slightly inferior.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Disclosed is an anti-reflection film which comprises a base film, a high refractive index layer that is formed on the base film, and a low refractive index layer that is formed on the high refractive index layer. In the anti-reflection film, the refractive index (RL) of the low refractive index layer and the refractive index (RH) of the high refractive index layer satisfy the following relation: (RH - 0.1) ≥ RL. The high refractive index layer is configured from a composition that contains a hard coat material serving as the main component and scale-like inorganic particles having an average particle diameter of 3-10 μm. The anti-reflection film has an image clarity of not less than 90%.

Description

反射防止フィルムAntireflection film
 本発明は、主として表示装置の表面に用いられる反射防止フィルムに関し、特に、十分な写像鮮明性と表面硬度を有する反射防止フィルムに関する。 The present invention relates to an antireflection film mainly used on the surface of a display device, and more particularly to an antireflection film having sufficient image clarity and surface hardness.
 表示装置の表示画面は、使用者が手で触れたりする機会が多く、その表面が汚れたり、傷が付いたりして、表示画像が見にくくなることがあり、その表面硬度の向上が求められている。また、表示装置の表示画面には、蛍光灯の外光の映り込みによる反射像によって表示画像の視認性が低下することがあるため、反射防止機能が求められている。このため、従来、表示装置の表示画面には、適度な表面硬度を有する反射防止フィルムを貼付することが行われる場合がある。 The display screen of a display device is often touched by the user's hand, and its surface may become dirty or scratched, making it difficult to see the displayed image, and its surface hardness needs to be improved. Yes. In addition, the display screen of a display device is required to have an antireflection function because the visibility of a display image may be reduced due to a reflection image caused by reflection of external light from a fluorescent lamp. For this reason, conventionally, an antireflection film having an appropriate surface hardness may be applied to the display screen of a display device.
 前記反射防止フィルムとしては、例えば、基材フィルムと、この基材フィルム上に設けられ、高屈折率層と、この高屈折率層上に設けられる低屈折率層とを備えるものが検討されている。また、高屈折率層には、その表面硬度を高めるために、ハードコート層としての機能も付与される。ハードコート層を兼用する高屈折率層には、例えば、アクリル系オリゴマーやアクリルウレタン系オリゴマー等の紫外線もしくは熱硬化性樹脂からなる硬化材料が用いられ、この硬化材料を塗布した後、紫外線等で硬化させることにより形成できる。 As the antireflection film, for example, a substrate film, a film provided on the substrate film, comprising a high refractive index layer, and a low refractive index layer provided on the high refractive index layer has been studied. Yes. The high refractive index layer is also given a function as a hard coat layer in order to increase its surface hardness. For the high refractive index layer that also serves as the hard coat layer, for example, a curable material made of ultraviolet or thermosetting resin such as an acrylic oligomer or an acrylic urethane oligomer is used. It can be formed by curing.
 前記ハードコート層の表面硬度をより一層高める技術として、例えば特許文献1には、ハードコート層を形成する硬化材料に、平均粒子径10~300nm以下である例えば鱗片状の無機微粒子を添加した組成物を用いて、ハードコート層を形成することが開示されている。 As a technique for further increasing the surface hardness of the hard coat layer, for example, Patent Document 1 discloses a composition in which, for example, scaly inorganic fine particles having an average particle diameter of 10 to 300 nm or less are added to a curable material for forming a hard coat layer. It is disclosed that a hard coat layer is formed using an object.
特開2004-42653号公報JP 2004-42653 A
 しかしながら、硬化材料に平均粒子径が3μm以下の微粒子を添加した場合には、その粒子が細かすぎること等に起因して、必ずしも十分な表面硬度を得られない。また、十分な表面硬度を得るべく、前記微粒子を多量に添加することも考えられるが、その場合には、当該ハードコート層のヘイズが上昇して写像鮮明性が低下することにより表示装置への使用には適さないという問題がある。 However, when fine particles having an average particle diameter of 3 μm or less are added to the curable material, sufficient surface hardness cannot always be obtained due to the particles being too fine. Further, in order to obtain a sufficient surface hardness, it is conceivable to add a large amount of the fine particles, but in that case, the haze of the hard coat layer is increased and the image clarity is lowered, thereby reducing the display clarity. There is a problem that it is not suitable for use.
 本発明の目的は、十分な写像鮮明性と表面硬度とを有する反射防止フィルムを提供することである。 An object of the present invention is to provide an antireflection film having sufficient image clarity and surface hardness.
 本発明者は、上記課題を解決すべく鋭意検討した結果、反射防止フィルムの高屈折率層に所定の無機粒子を添加することにより、写像鮮明性と表面硬度に優れる反射防止フィルムが得られることを見出し、本発明を完成するに至った。本発明には、以下のものが含まれる。
(1)基材フィルムと、この基材フィルム上に設けられる高屈折率層と、この高屈折率層上に設けられる低屈折率層であって、その屈折率R及び前記高屈折率層の屈折率Rが(R-0.1)≧Rの関係を満たす低屈折率層とを備える反射防止フィルムであって、前記高屈折率層は、主成分であるハードコート材料と、平均粒子径が3~10μmである鱗片状の無機粒子とを含む組成物により構成され、当該反射防止フィルムの写像鮮明性が90%以上である反射防止フィルム。
(2)前記無機粒子は、酸化ケイ素成分を35重量%以上含む前記反射防止フィルム。
(3)前記組成物は、前記ハードコート材料100重量部に対して、前記無機粒子を3~30重量部を含む前記反射防止フィルム。
(4)前記基材フィルムは、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とを含む組成物からなる第1の樹脂層と、前記弾性体粒子を含まない熱可塑性樹脂からなる第2の樹脂層とを備え、共押出法により形成される平均厚さ100μm未満の多層フィルムである前記反射防止フィルム。
As a result of intensive studies to solve the above problems, the present inventor can obtain an antireflection film having excellent image clarity and surface hardness by adding predetermined inorganic particles to the high refractive index layer of the antireflection film. As a result, the present invention has been completed. The present invention includes the following.
(1) A base film, a high refractive index layer provided on the base film, and a low refractive index layer provided on the high refractive index layer, the refractive index RL and the high refractive index layer a antireflection film refractive index R H of and an (R H -0.1) satisfy the relationship of ≧ R L low-refractive index layer, the high refractive index layer, a hard coat material is the main component And an antireflection film comprising a composition containing scaly inorganic particles having an average particle diameter of 3 to 10 μm, and the anti-reflection film has a clarity of image of 90% or more.
(2) The antireflection film, wherein the inorganic particles contain a silicon oxide component in an amount of 35% by weight or more.
(3) The antireflection film, wherein the composition contains 3 to 30 parts by weight of the inorganic particles with respect to 100 parts by weight of the hard coat material.
(4) The base film includes a first resin layer made of a composition including a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 μm or less, and the elasticity The antireflection film, which is a multilayer film having an average thickness of less than 100 μm, formed by a coextrusion method, and a second resin layer made of a thermoplastic resin not containing body particles.
 本発明の反射防止フィルムによれば、主成分であるハードコート材料と、平均粒子径が3~10μmである鱗片状または板状の無機粒子とを含む組成物を用いた高屈折率層を備えることにより、十分な写像鮮明性と十分な表面硬度とを奏することができるという効果がある。また、このような反射防止フィルムは、液晶表示装置や、有機ELディスプレイ、プラズマディスプレイ装置、タッチパネル等の表示装置に好適に用いることができる。 The antireflection film of the present invention includes a high refractive index layer using a composition comprising a hard coat material as a main component and scaly or plate-like inorganic particles having an average particle diameter of 3 to 10 μm. Thus, there is an effect that sufficient image clarity and sufficient surface hardness can be achieved. Moreover, such an antireflection film can be suitably used for display devices such as liquid crystal display devices, organic EL displays, plasma display devices, and touch panels.
 本発明の反射防止フィルムは、基材フィルムと、この基材フィルム上に設けられる高屈折率層と、この高屈折率層上に設けられる低屈折率層であって、その屈折率R及び前記高屈折率層の屈折率Rが(R-0.1)≧Rの関係を満たす低屈折率層とを備えて構成される。 The antireflection film of the present invention includes a base film, a high refractive index layer provided on the base film, and a low refractive index layer provided on the high refractive index layer, the refractive index R L and The high refractive index layer includes a low refractive index layer in which a refractive index RH satisfies a relationship of (R H −0.1) ≧ RL .
<基材フィルム>
 基材フィルムは、単層であってもよいし、複数の層からなる積層体であってもよい。
 基材フィルムを構成する各層の材料としては、1mm厚で全光線透過率が80%以上となる透明樹脂を用いることができる。透明樹脂としては、例えば、脂環式構造を有する樹脂、ポリエステル樹脂、セルロース樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリスチレン系樹脂、ポリオレフィン樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂、および熱可塑性アクリル樹脂等を挙げることができる。これらの中でも、本発明の基材フィルムに用いる透明樹脂としては、後述する高屈折率層との密着性等の観点から、熱可塑性アクリル樹脂が好ましい。
<Base film>
The base film may be a single layer or a laminate composed of a plurality of layers.
As a material of each layer constituting the base film, a transparent resin having a thickness of 1 mm and a total light transmittance of 80% or more can be used. Examples of the transparent resin include resins having an alicyclic structure, polyester resins, cellulose resins, polycarbonate resins, polysulfone resins, polyethersulfone resins, polystyrene resins, polyolefin resins, polyvinyl alcohol resins, polyvinyl chloride resins, and heat. Examples thereof include a plastic acrylic resin. Among these, as a transparent resin used for the base film of the present invention, a thermoplastic acrylic resin is preferable from the viewpoint of adhesion to a high refractive index layer described later.
 熱可塑性アクリル樹脂には、原料主成分として(メタ)アクリル酸エステルが用いられるが、(メタ)アクリル酸エステルとしては、(メタ)アクリル酸と炭素数1~15のアルカノール及びシクロアルカノールから誘導される構造のものが好ましい。より好ましくは、炭素数1~8のアルカノールから誘導される構造のものである。炭素数が多すぎる場合は、得られる脆質フィルムの破断時の伸びが大きくなりすぎる。なお、(メタ)アクリル酸エステルとは、メタクリル酸エステルおよびアクリル酸エステルのことである。 Thermoplastic acrylic resins use (meth) acrylic acid ester as the main ingredient of raw material, and (meth) acrylic acid ester is derived from (meth) acrylic acid, alkanol having 1 to 15 carbon atoms and cycloalkanol. It is preferable that the structure be A structure derived from an alkanol having 1 to 8 carbon atoms is more preferable. When there are too many carbon numbers, the elongation at the time of the fracture | rupture of the brittle film obtained will become large too much. In addition, (meth) acrylic acid ester is methacrylic acid ester and acrylic acid ester.
 熱可塑性アクリル樹脂としては、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの(メタ)アクリル酸アルキルエステルの単独重合体;アルキル基の水素がOH基、COOH基もしくはNH基などの官能基によって置換された(メタ)アクリル酸アルキルエステルの単独重合体;または(メタ)アクリル酸アルキルエステルと、スチレン、酢酸ビニル、α,β-モノエチレン性不飽和カルボン酸、ビニルトルエン、α-メチルスチレン、および無水マレイン酸などの不飽和結合を有するビニル系モノマーとの共重合体を挙げることができる。熱可塑性アクリル樹脂としては、これらのうち1種のみを用いてもよいし、2種以上を組み合わせて用いてもよい。熱可塑性アクリル樹脂は、メタクリル酸メチル単位およびメタクリル酸ブチル単位が単量体単位として含まれているものがより好ましい。 As the thermoplastic acrylic resin, a homopolymer of (meth) acrylic acid alkyl ester such as methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate; the hydrogen of the alkyl group is OH group, COOH group or NH 2 group Homopolymer of (meth) acrylic acid alkyl ester substituted with a functional group such as: or (meth) acrylic acid alkyl ester and styrene, vinyl acetate, α, β-monoethylenically unsaturated carboxylic acid, vinyl toluene, Mention may be made of copolymers with α-methylstyrene and vinyl monomers having an unsaturated bond such as maleic anhydride. As a thermoplastic acrylic resin, only 1 type may be used among these and it may use it in combination of 2 or more type. More preferably, the thermoplastic acrylic resin contains a methyl methacrylate unit and a butyl methacrylate unit as monomer units.
 前記透明樹脂は、後述する弾性体粒子以外に、他の配合剤を含んでもよい。他の配合剤としては、例えば、無機粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;帯電防止剤等を挙げることができる。これらの配合剤は、単独で、あるいは2種以上を組み合わせて用いることができる。配合剤の配合量は、本発明の目的を損なわない範囲で適宜選択でき、通常は、透明樹脂100重量部に対して0~5重量部、好ましくは0~3重量部を含むことができる。これらの配合剤を含有させる方法としては、配合剤を予め透明樹脂中に配合する方法や、溶融押出成形時に直接供給する方法などを挙げることができる。 The transparent resin may contain other compounding agents in addition to the elastic particles described later. Other compounding agents include, for example, inorganic particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers, and other stabilizers; resin modifiers such as lubricants and plasticizers Agents; coloring agents such as dyes and pigments; antistatic agents and the like. These compounding agents can be used alone or in combination of two or more. The compounding amount of the compounding agent can be appropriately selected within a range not impairing the object of the present invention, and usually 0 to 5 parts by weight, preferably 0 to 3 parts by weight with respect to 100 parts by weight of the transparent resin. Examples of the method of incorporating these compounding agents include a method of previously compounding the compounding agent in a transparent resin, a method of directly supplying at the time of melt extrusion molding, and the like.
 また、基材フィルムは、前記透明樹脂の他に、数平均粒径2.0μm以下の弾性体粒子を含んでいることが好ましい。弾性体粒子とは、ゴム状弾性体からなる粒子である。ゴム状弾性体としては、アクリル酸エステル系ゴム状重合体、ブタジエンを主成分とするゴム状重合体、エチレン-酢酸ビニル共重合体等が挙げられる。アクリル酸エステル系ゴム状重合体としてはブチルアクリレ-ト、2-エチルヘキシルアクリレ-ト等を原料主成分とするものがある。これらのうち、ブチルアクリレ-トを原料主成分としたアクリル酸エステル系重合体及びブタジエンを主成分とするゴム状重合体が好ましい。弾性体粒子は、二種の重合体が層状になったものであってもよく、その代表例としては、ブチルアクリレ-ト等のアルキルアクリレ-トとスチレンのグラフト化ゴム弾性成分と、ポリメチルメタクリレ-ト及び/又はメチルメタクリレ-トとアルキルアクリレ-トの共重合体からなる硬質樹脂層とがコア-シェル構造で層を形成している弾性体粒子を挙げることができる。 The base film preferably contains elastic particles having a number average particle diameter of 2.0 μm or less in addition to the transparent resin. Elastic body particles are particles made of a rubber-like elastic body. Examples of the rubber-like elastic material include an acrylate-based rubber-like polymer, a rubber-like polymer containing butadiene as a main component, and an ethylene-vinyl acetate copolymer. Examples of the acrylic ester rubbery polymer include butyl acrylate, 2-ethylhexyl acrylate and the like as raw materials. Of these, acrylate polymers based on butyl acrylate and rubbery polymers based on butadiene are preferred. The elastic particles may be formed by laminating two kinds of polymers, and representative examples thereof include an alkyl acrylate such as butyl acrylate and a grafted rubber elastic component of styrene, polymethyl Mention may be made of elastic particles in which a hard resin layer made of a methacrylate and / or a copolymer of methyl methacrylate and an alkyl acrylate forms a layer with a core-shell structure.
 前記弾性体粒子としては、前記透明樹脂中に分散した状態における二次粒子の数平均粒径が2.0μm以下、好ましくは0.1~1.0μm、より好ましくは0.1~0.5μmである。弾性体粒子の一次粒子径が小さくても、凝集などによって形成される二次粒子の数平均粒径が大きいと、基材フィルムのヘイズ(曇り度)が高くなりすぎ、光線透過率が低くなる。また、数平均粒径が小さくなりすぎると可撓性が低下する傾向にある。 As the elastic particles, the number average particle size of secondary particles dispersed in the transparent resin is 2.0 μm or less, preferably 0.1 to 1.0 μm, more preferably 0.1 to 0.5 μm. It is. Even if the primary particle size of the elastic particles is small, if the number average particle size of the secondary particles formed by aggregation or the like is large, the haze (cloudiness) of the base film becomes too high and the light transmittance becomes low. . Moreover, when the number average particle size becomes too small, the flexibility tends to decrease.
 前記基材フィルムは、前記透明樹脂、好ましくは前記熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と、当該フィルムの厚さ方向で偏在する前記弾性体粒子とを含む組成物により構成されることが好ましい。前記弾性体粒子が偏在する箇所は、厚さ方向の中央部であっても良いし、表面部であっても良い。弾性体粒子が中央部に偏在する場合は、基材フィルム表面付近には弾性体粒子が少なく、基材フィルムの厚さ方向中央部に弾性体粒子が多く分布する。表面部に弾性体粒子が偏在する場合は、基材フィルム中央部に弾性体粒子が少なく、少なくとも一方の表面部分に弾性体粒子が多く分布する。弾性体粒子の分布は、表面から中央に向ってなだらかに増加又は減少するものであってもよいし、段階的に増加又は減少するものであってもよい。弾性体粒子が層の厚さ方向で偏在することにより、反射防止フィルムの表面硬度を十分に確保しつつ、その可撓性を向上できる。特に、本発明の反射防止フィルムを偏光板や表示装置等に貼り合わせる場合には、偏光板を構成する偏光子等との密着性が高まるとの観点から、少なくとも高屈折率層が積層される側とは反対側の基材フィルム表面に弾性体粒子が多く分布する構成とすることが好ましい。 The base film is composed of a composition containing the transparent resin, preferably the thermoplastic acrylic resin or a resin having an alicyclic structure, and the elastic particles unevenly distributed in the thickness direction of the film. Is preferred. The portion where the elastic particles are unevenly distributed may be a central portion in the thickness direction or a surface portion. When the elastic particles are unevenly distributed in the central portion, there are few elastic particles near the surface of the base film, and many elastic particles are distributed in the central portion in the thickness direction of the base film. When the elastic particles are unevenly distributed on the surface portion, there are few elastic particles in the central portion of the base film, and many elastic particles are distributed on at least one surface portion. The distribution of the elastic particles may increase or decrease gradually from the surface toward the center, or may increase or decrease in stages. When the elastic particles are unevenly distributed in the thickness direction of the layer, the flexibility can be improved while sufficiently securing the surface hardness of the antireflection film. In particular, when the antireflection film of the present invention is bonded to a polarizing plate, a display device or the like, at least a high refractive index layer is laminated from the viewpoint of improving adhesion with a polarizer constituting the polarizing plate. It is preferable that a large amount of elastic particles be distributed on the surface of the base film opposite to the side.
 このように弾性体粒子が偏在する基材フィルムを得る方法としては、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とからなる組成物と、当該弾性体粒子を含まない熱可塑性樹脂とを共押出成形する方法;熱可塑性樹脂と数平均粒径2.0μm以下の弾性体粒子とからなる組成物と、当該弾性体粒子を含まない熱可塑性アクリル樹脂又は脂環式構造を有する樹脂とを共押出成形する方法が挙げられる。好ましくは、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とからなる組成物と、当該弾性体粒子を含まない熱可塑性樹脂とを共押出成形する方法(共押出法)が採用される。共押出法としては、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等が挙げられ、中でも、共押出Tダイ法が好ましい。共押出Tダイ法にはフィードブロック方式、マルチマニホールド方式が挙げられるが、弾性体粒子を含む層1の厚さのばらつきを少なくできる点でマルチマニホールド方式がさらに好ましい。 As a method for obtaining a base film in which elastic particles are unevenly distributed, a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 μm or less, A method of co-extrusion molding of a thermoplastic resin not containing the elastic particles; a composition comprising a thermoplastic resin and elastic particles having a number average particle size of 2.0 μm or less, and a thermoplastic not containing the elastic particles Examples thereof include a method of coextrusion molding with an acrylic resin or a resin having an alicyclic structure. Preferably, a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle diameter of 2.0 μm or less and a thermoplastic resin not containing the elastic particles are coextruded. (Coextrusion method) is used. Examples of the co-extrusion method include a co-extrusion T-die method, a co-extrusion inflation method, and a co-extrusion lamination method, and among them, the co-extrusion T-die method is preferable. The co-extrusion T-die method includes a feed block method and a multi-manifold method, but the multi-manifold method is more preferable in that variation in the thickness of the layer 1 containing elastic particles can be reduced.
 基材フィルムの厚みは、合計の厚みとして、好ましくは10~300μm、より好ましくは15~150μmである。
 基材フィルムが、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とからなる組成物を用いて形成される多層の樹脂層からなる場合、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とからなる層の厚みの合計は60μm以下であることが好ましく、20μm以上60μm以下であることが好ましい。また、弾性体粒子を含まない熱可塑性樹脂層の厚みの合計は20μm以上であることが好ましく、20μm以上60μm以下であることが好ましい。弾性体粒子を含まない熱可塑性樹脂層の厚みの合計が20μm未満であると耐熱性及び強度が不足し、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子からなる層の厚みの合計が20μm未満であると可撓性が不十分となる。ここでの「弾性体粒子を含まない熱可塑性樹脂」は、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂とすることができる。
The total thickness of the base film is preferably 10 to 300 μm, more preferably 15 to 150 μm as the total thickness.
When the base film is composed of a multilayer resin layer formed using a composition comprising a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle diameter of 2.0 μm or less, The total thickness of the layer composed of a plastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 μm or less is preferably 60 μm or less, and preferably 20 μm or more and 60 μm or less. . Further, the total thickness of the thermoplastic resin layer not containing the elastic particles is preferably 20 μm or more, and preferably 20 μm or more and 60 μm or less. If the total thickness of the thermoplastic resin layer not containing elastic particles is less than 20 μm, heat resistance and strength are insufficient, and a thermoplastic acrylic resin or a resin having an alicyclic structure and a number average particle size of 2.0 μm or less. If the total thickness of the layers made of elastic particles is less than 20 μm, the flexibility becomes insufficient. Here, the “thermoplastic resin not containing elastic particles” can be a thermoplastic acrylic resin or a resin having an alicyclic structure.
 基材フィルムは、その残留溶剤含有量が0.01質量%以下であることが好ましい。残留溶剤量が上記範囲であることにより、例えば、高温・高湿度環境下において基材フィルムが変形するのを防止できるとともに、光学性能が劣化するのを防止できる。残留溶剤量が上記範囲となる基材フィルムは、例えば、複数の樹脂を共押出成形することによって得ることができる。共押出成形の場合には、複雑な工程(例えば、乾燥工程や塗工工程)を経なくてもよいため、ゴミなどの外部異物の混入が少なく、優れた光学性能を発揮できる。残留溶剤含有量は、表面に吸着していた水分や有機物を完全に除去した内径4mmのガラスチューブの試料容器に基材フィルム50mgを入れ、その容器を温度200℃で30分間加熱し、容器から出てきた気体を連続的に捕集し、捕集した気体を熱脱着ガスクロマトグラフィー質量分析計(TDS-GC-MS)で分析した値である。 The base film preferably has a residual solvent content of 0.01% by mass or less. When the residual solvent amount is in the above range, for example, it is possible to prevent the base film from being deformed in a high temperature / high humidity environment and to prevent the optical performance from being deteriorated. The base film in which the residual solvent amount falls within the above range can be obtained, for example, by coextrusion molding of a plurality of resins. In the case of coextrusion molding, it is not necessary to go through a complicated process (for example, a drying process or a coating process). Therefore, there is little mixing of external foreign matters such as dust, and excellent optical performance can be exhibited. The residual solvent content was determined by placing 50 mg of the base film in a glass tube sample container with an inner diameter of 4 mm from which moisture and organic substances adsorbed on the surface were completely removed, heating the container at a temperature of 200 ° C. for 30 minutes, This is a value obtained by continuously collecting the emitted gas and analyzing the collected gas with a thermal desorption gas chromatography mass spectrometer (TDS-GC-MS).
 基材フィルムは、その透湿度が10g・m-2day-1以上、200g・m-2day-1以下であることが好ましい。基材フィルムの透湿度を上記好適な範囲とすることにより、基材フィルムに積層する層との密着性を向上できる。透湿度は、40℃、90%RHの環境下で、24時間放置する試験条件で、JIS Z 0208に記載のカップ法により測定できる。 The substrate film preferably has a moisture permeability of 10 g · m −2 day −1 or more and 200 g · m −2 day −1 or less. Adhesiveness with the layer laminated | stacked on a base film can be improved by making the water vapor transmission rate of a base film into the said suitable range. The moisture permeability can be measured by the cup method described in JIS Z 0208 under the test conditions for 24 hours in an environment of 40 ° C. and 90% RH.
 基材フィルムの表面には、干渉むらを低減させる観点から、凹凸構造を備える構成としてもよい。凹凸構造は、基材フィルムの一方の表面のみに形成してもよいし、両表面に形成してもよい。基材フィルムの表面に凹凸構造を付与する方法としては、凹凸の無い基材フィルムに対して、凹凸を有する賦型ロールを用いたニップ成形法や、凹凸を有するフィルムを用いたサンドイッチラミネート法、ブラスト法などを適用できる。基材フィルムの表面に凹凸構造を形成した場合には、その凹凸構造側の面は、算術平均表面粗さ(Ra)が0.05μm以上0.5μm以下とすることができ、また、その凹凸構造の平均周期(Sm)を10μm以上200μm以下とすることができる。なお、本発明において、基材フィルムの算術平均表面粗さと平均周期は、JIS B 0601:2001の規定に従い測定される値である。表面に凹凸構造を有する基材フィルムは、ヘイズが1%以上50%未満であることが好ましく、3%以上40%未満であることがより好ましい。 The surface of the base film may have a concavo-convex structure from the viewpoint of reducing interference unevenness. The uneven structure may be formed only on one surface of the base film, or may be formed on both surfaces. As a method of imparting a concavo-convex structure on the surface of the base film, a nip molding method using a shaping roll having concavo-convex, a sandwich lamination method using a film having concavo-convex, The blast method can be applied. When the uneven structure is formed on the surface of the base film, the surface on the uneven structure side can have an arithmetic average surface roughness (Ra) of 0.05 μm or more and 0.5 μm or less. The average period (Sm) of the structure can be 10 μm or more and 200 μm or less. In the present invention, the arithmetic average surface roughness and average period of the base film are values measured in accordance with JIS B 0601: 2001. The base film having an uneven structure on the surface preferably has a haze of 1% or more and less than 50%, and more preferably 3% or more and less than 40%.
 また、基材フィルムにおける高屈折率層を設ける側の表面には、表面改質処理を施すことができる。表面改質処理としては、エネルギー線照射処理や、薬品処理等を挙げることができる。エネルギー線照射処理としては、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理等を挙げることができ、処理効率等の観点から、コロナ放電処理、プラズマ処理が好ましい。また、薬品処理としては、重クロム酸カリウム溶液、濃硫酸などの酸化剤水溶液中に、剤フィルムを浸漬し、その後、十分に水で洗浄する方法が挙げられる。浸漬した状態で振とうすると短時間で処理できるが、処理しすぎると表面が溶解したり、透明性が低下したりするので、適宜条件を調整することが好ましい。 Further, the surface of the base film on the side where the high refractive index layer is provided can be subjected to surface modification treatment. Examples of the surface modification treatment include energy beam irradiation treatment and chemical treatment. Examples of the energy ray irradiation treatment include corona discharge treatment, plasma treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, and the like. Corona discharge treatment and plasma treatment are preferable from the viewpoint of treatment efficiency. Examples of the chemical treatment include a method of immersing the agent film in an aqueous oxidizing agent solution such as potassium dichromate solution or concentrated sulfuric acid, and then sufficiently washing with water. When shaken in an immersed state, the treatment can be performed in a short time. However, if the treatment is carried out excessively, the surface is dissolved or the transparency is lowered.
<高屈折率層>
 高屈折率層は、主成分であるハードコート材料と、平均粒子径が3~10μmである鱗片状の無機粒子とを含む組成物(以下、高屈折率層形成用組成物と称する場合がある)により構成されている。
<High refractive index layer>
The high refractive index layer is a composition containing a hard coat material as a main component and scaly inorganic particles having an average particle diameter of 3 to 10 μm (hereinafter sometimes referred to as a composition for forming a high refractive index layer). ).
 前記ハードコート材料としては、無機材料、樹脂材料またはこれらの混合物を用いることができるが、生産性に優れるという観点から樹脂材料が好ましい。前記樹脂材料としては、高屈折率層形成後の皮膜として十分な強度を持ち、さらに透明性のあるものを使用できる。前記樹脂材料としては、熱硬化型樹脂、熱可塑性樹脂、および電離放射線硬化型樹脂を挙げることができるが、皮膜の強度、加工性の点で、熱硬化型樹脂又は電離放射線硬化型樹脂が好ましい。 As the hard coat material, an inorganic material, a resin material, or a mixture thereof can be used, but a resin material is preferable from the viewpoint of excellent productivity. As the resin material, a material having sufficient strength as a film after the formation of the high refractive index layer and having transparency can be used. Examples of the resin material include a thermosetting resin, a thermoplastic resin, and an ionizing radiation curable resin, and a thermosetting resin or an ionizing radiation curable resin is preferable in terms of film strength and workability. .
 熱硬化型樹脂としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、シリコーン樹脂、ポリシロキサン樹脂が挙げられる。また、これらの熱硬化型樹脂には、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等を必要に応じて加えてもよい。 Thermosetting resins include phenolic resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea co-condensation resin, silicone resin, polysiloxane Resin. Moreover, you may add hardening agents, such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc. to these thermosetting resins as needed.
 電離放射線硬化型樹脂は、分子中に重合性不飽和結合またはエポキシ基を有するプレポリマー、オリゴマーおよび/またはモノマーが、電離放射線の照射により硬化する樹脂である。電離放射線は、電磁波又は荷電粒子線のうち分子を重合又は架橋し得るエネルギー量子を有するものを指し、通常は紫外線又は電子線を用いる。紫外線または電子線により硬化する樹脂としては特に制限はなく、従来から使用されているものの中から、適宜選択して用いることができる。紫外線硬化型樹脂としては、光重合性プレポリマー、又は光重合性モノマーと光重合開始剤や光増感剤を含有するもの、また、電子線硬化型樹脂としては、光重合性プレポリマー又は光重合性モノマーを含有するものが挙げられる。 The ionizing radiation curable resin is a resin in which a prepolymer, oligomer and / or monomer having a polymerizable unsaturated bond or an epoxy group in the molecule is cured by irradiation with ionizing radiation. Ionizing radiation refers to electromagnetic waves or charged particle beams having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet rays or electron beams are used. There is no restriction | limiting in particular as resin hardened | cured with an ultraviolet-ray or an electron beam, It can select suitably from what is used conventionally and can use it. Examples of the ultraviolet curable resin include a photopolymerizable prepolymer or a photopolymerizable monomer and a photopolymerization initiator or a photosensitizer, and examples of the electron beam curable resin include a photopolymerizable prepolymer or a photopolymer. The thing containing a polymerizable monomer is mentioned.
 前記光重合性プレポリマーとしては、例えばポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系等が挙げられる。これらの光重合性プレポリマーは1種用いても良いし、2種以上を組み合わせて用いても良い。また,光重合性モノマーとしては、例えばポリメチロールプロパントリアクリレート、ポリメチロールプロパントリメタクリレート、ヘキサンジオールアクリレート、ヘキサンジオールメタクリレート、トリプロピレングリコールジアクリレート、トリプロピレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート等が挙げられる。本発明では、プレポリマーとしてウレタンアクリレート系、モノマーとしてジペンタエリスリトールヘキサアクリレート若しくはジペンタエリスリトールヘキサメタクリレートを用いることが好ましい。 Examples of the photopolymerizable prepolymer include polyester acrylate, epoxy acrylate, urethane acrylate, and polyol acrylate. These photopolymerizable prepolymers may be used alone or in combination of two or more. Examples of the photopolymerizable monomer include polymethylolpropane triacrylate, polymethylolpropane trimethacrylate, hexanediol acrylate, hexanediol methacrylate, tripropylene glycol diacrylate, tripropylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, Pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol diacrylate Methacrylate etc. It is. In the present invention, it is preferable to use urethane acrylate as the prepolymer and dipentaerythritol hexaacrylate or dipentaerythritol hexamethacrylate as the monomer.
 光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、チオキサントン類等が挙げられる。また、光増感剤としては、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等を単独又は混合して用いることができる。 Examples of the photopolymerization initiator include acetophenones, benzophenones, α-amyloxime esters, tetramethylchuram monosulfide, thioxanthones, and the like. As the photosensitizer, n-butylamine, triethylamine, poly-n-butylphosphine and the like can be used alone or in combination.
 前記高屈折層形成用組成物は、平均粒子径が3~10μmである鱗片状の無機粒子を含んでいる。平均粒子径が3μm未満の場合には、十分な表面硬度が得られず、また、平均粒子径が10μm超の場合には、ヘイズが高くなることにより、写像鮮明性が不十分(90%未満)となる。ここで、無機粒子の平均粒子径は、走査型電子顕微鏡(SEM)を用いて、無機粒子を100個観察して、その長径の長さを求め、これらの長径を平均して求めることができる。
 鱗片状の形状とは、薄片形状ともいえ、その厚さと、長辺方向の長さ(厚さ方向に垂直な方向のうち、最も長さの長い方向の長さ)との平均アスペクト比40~200、膜厚は2μm以下である。
The composition for forming a high refractive layer contains scaly inorganic particles having an average particle diameter of 3 to 10 μm. When the average particle size is less than 3 μm, sufficient surface hardness cannot be obtained, and when the average particle size is more than 10 μm, the haze becomes high, resulting in insufficient image clarity (less than 90% ) Here, the average particle diameter of the inorganic particles can be determined by observing 100 inorganic particles using a scanning electron microscope (SEM), obtaining the length of the major axis, and averaging these major axes. .
The scaly shape can be said to be a thin shape, and the average aspect ratio between the thickness and the length in the long side direction (the length in the longest direction among the directions perpendicular to the thickness direction) is 40 to 200, the film thickness is 2 μm or less.
 前記無機粒子は、酸化ケイ素成分を35重量%以上含むことが好ましい。上記好適な範囲とすることにより、低屈折率層との層間での密着をより高めることができて、その表面強度をより一層向上でき、特に、低屈折率層が酸化ケイ素成分を40重量%以上含む場合には、密着性をより一層向上できる利点がある。酸化ケイ素成分の含有割合の上限は、特に限定されないが80重量%以下とすることができる。 The inorganic particles preferably contain a silicon oxide component of 35% by weight or more. By setting the preferable range, adhesion between the low refractive index layer and the layer can be further increased, and the surface strength can be further improved. In particular, the low refractive index layer has a silicon oxide component of 40% by weight. In the case of including the above, there is an advantage that the adhesion can be further improved. Although the upper limit of the content rate of a silicon oxide component is not specifically limited, It can be 80 weight% or less.
 前記無機粒子は、ハードコート材料100重量部に対して、3~30重量部含有することが好ましく、5~20重量部含有することがより好ましい。上記好適な範囲とすることにより、表面硬度と写像鮮明性をより一層高めることができる。 The inorganic particles are preferably contained in an amount of 3 to 30 parts by weight, more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the hard coat material. By setting it as the said suitable range, surface hardness and image clarity can be improved further.
 前記無機粒子としては、例えば、マスコバイト、フロゴパイト、バイオタイト、フッ素金雲母、カオリナイト、タルク、セリサイト、有機処理雲母、シリカ、ベントナイト、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトナイト、ソーコナイト、スチーブンサイト、バーミュキュラライト、合成スメクタイトが挙げられ、これらの中の1種類でもよいし、2種以上併用してもよい。また、無機粒子には、シランカップリング剤を付与してもよい。 Examples of the inorganic particles include mascobite, phlogopite, biotite, fluorine phlogopite, kaolinite, talc, sericite, organically treated mica, silica, bentonite, montmorillonite, beidellite, nontronite, saponite, hectorite, and soconite. , Stevensite, vermicularite, and synthetic smectite. One of these may be used, or two or more may be used in combination. Moreover, you may provide a silane coupling agent to an inorganic particle.
 前記高屈折率層形成用組成物は、前記無機粒子の他に、導電性微粒子を含むこともできる。導電性微粒子を含むことにより、高屈折率層としての機能だけでなく、帯電防止層としての機能も付与できる。前記導電性微粒子は、導電性を有する微粒子であれば特に限定されないが、透明性に優れる点で、金属酸化物の微粒子が好ましい。前記金属酸化物としては、例えば、五酸化アンチモン、酸化スズ、リンがドープされた酸化スズ(PTO)、アンチモンがドープされた酸化スズ(ATO)、スズがドープされた酸化インジウム(ITO)、亜鉛がドープされた酸化インジウム(IZO)、アルミニウムがドープされた酸化亜鉛(AZO)、フッ素がドープされた酸化スズ(FTO)、酸化亜鉛/酸化アルミニウム、アンチモン酸亜鉛等を挙げることができる。これらの金属酸化物の微粒子は、一種単独で、または二種以上を組み合わせて用いることができる。これらの中でも、透明性に優れること等から、五酸化アンチモンの微粒子および/またはリンがドープされた酸化スズの微粒子が好ましい。 The composition for forming a high refractive index layer may contain conductive fine particles in addition to the inorganic particles. By including the conductive fine particles, not only a function as a high refractive index layer but also a function as an antistatic layer can be imparted. The conductive fine particles are not particularly limited as long as they are conductive fine particles, but metal oxide fine particles are preferable in terms of excellent transparency. Examples of the metal oxide include antimony pentoxide, tin oxide, tin oxide doped with phosphorus (PTO), tin oxide doped with antimony (ATO), indium oxide doped with tin (ITO), and zinc. Indium oxide doped with (IZO), zinc doped with aluminum (AZO), tin doped with fluorine (FTO), zinc oxide / aluminum oxide, zinc antimonate, and the like. These metal oxide fine particles can be used singly or in combination of two or more. Among these, antimony pentoxide fine particles and / or tin oxide fine particles doped with phosphorus are preferable because of excellent transparency.
 また、前記金属酸化物の微粒子としては、導電性を持たない金属酸化物の微粒子の表面に、導電性金属酸化物を被覆することによって、導電性を付与した微粒子も使用できる。例えば、屈折率は高いが導電性を有しない酸化チタン、酸化ジルコニウム、酸化セリウム等の微粒子の表面に、前記導電性金属酸化物を被覆して導電性を付与して用いることができる。また、導電性を持たない無機粒子と、導電性金属酸化物の微粒子を併用してもよい。 Further, as the metal oxide fine particles, fine particles imparted with conductivity by coating the surface of the metal oxide fine particles having no conductivity with a conductive metal oxide can also be used. For example, the surface of fine particles of titanium oxide, zirconium oxide, cerium oxide or the like having a high refractive index but no conductivity can be used by coating the conductive metal oxide to impart conductivity. Moreover, you may use together the inorganic particle which does not have electroconductivity, and the electroconductive metal oxide microparticles | fine-particles.
 前記導電性微粒子の数平均粒子径は、200nm以下であることが好ましく、より好ましくは50~15nmである。数平均粒子径は、透過型電子顕微鏡(TEM)等により得られる二次電子放出のイメージ写真からの目視やイメージ写真を画像処理することにより、又は動的光散乱法、静的光散乱法等を利用する粒度分布計等により計測できる。 The number average particle diameter of the conductive fine particles is preferably 200 nm or less, more preferably 50 to 15 nm. The number average particle size is determined by visual observation from a secondary electron emission image photograph obtained by a transmission electron microscope (TEM) or image processing of the image photograph, or a dynamic light scattering method, a static light scattering method, or the like. It can be measured by a particle size distribution meter using
 また、前記高屈折層形成用組成物には、前記無機粒子の他に、他の無機粒子を含んでいてもよい。他の無機粒子としては、無機酸化物が一般的であり、例えば、SiO、Al、B、TiO、ZrO、SnO、CeO、P、MoO、ZnO、WO等の一種または二種以上を挙げることができる。前記他の無機粒子の数平均粒子径は、500nm以下であることが好ましく、より好ましくは30~15nmである。数平均粒子径は、前述と同様にして計測できる。 Further, the high refractive layer forming composition may contain other inorganic particles in addition to the inorganic particles. As other inorganic particles, inorganic oxides are generally used. For example, SiO 2 , Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 5 , MoO 3 , ZnO 2 , WO 3 or the like can be mentioned. The number average particle diameter of the other inorganic particles is preferably 500 nm or less, more preferably 30 to 15 nm. The number average particle diameter can be measured in the same manner as described above.
 前記高屈折率層は、前記高屈折率層形成用組成物を溶媒で希釈し、この希釈物を、基材フィルムの一方の表面、好ましくは前記凹凸構造が形成された面に、直接又は基材フィルム上に形成された他の層の上に塗布して塗膜を得、この塗膜に熱又は電離放射線を照射することにより得ることができる。 The high refractive index layer is prepared by diluting the composition for forming a high refractive index layer with a solvent, and diluting the diluted product directly or on the surface of one surface of the base film, preferably the surface on which the concavo-convex structure is formed. It can be obtained by coating on another layer formed on the material film to obtain a coating film and irradiating the coating film with heat or ionizing radiation.
 前記溶媒としては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等のアルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のグリコール類;トルエン、キシレン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素;酢酸エチル、酢酸ブチル等のエステル類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;及びこれらの2種以上からなる組み合わせ;等が挙げられる。 Examples of the solvent include alcohols such as methanol, ethanol, isopropanol, n-butanol, and isobutanol; glycols such as ethylene glycol, ethylene glycol monobutyl ether, and ethylene glycol monoethyl ether; aromatic hydrocarbons such as toluene and xylene. Aliphatic hydrocarbons such as n-hexane and n-heptane; esters such as ethyl acetate and butyl acetate; ketones such as methyl ethyl ketone and methyl isobutyl ketone; and combinations of two or more of these; .
 高屈折率層形成用組成物には、層厚の均一性や密着性向上等を目的としてレベリング剤や分散剤を含有させてもよい。レベリング剤としては、シリコーンオイル、フッ素化ポリオレフィン、ポリアクリル酸エステル等の表面張力を低下させる化合物が挙げられ、分散剤としては、界面活性剤、シランカップリング剤等が挙げられる。 In the composition for forming a high refractive index layer, a leveling agent or a dispersant may be contained for the purpose of improving the uniformity of the layer thickness or improving the adhesion. Examples of the leveling agent include compounds that lower the surface tension, such as silicone oil, fluorinated polyolefin, and polyacrylic acid ester. Examples of the dispersing agent include a surfactant and a silane coupling agent.
 前記高屈折率層の屈折率は1.5~1.7であることが好ましい。高屈折率層の屈折率がこの範囲にあると、高屈折率層上に後述する低屈折率層を積層した場合に、外光の反射を抑制し、映り込みを防止することができる。屈折率は、例えば、公知の分光エリプソメータを用いて測定して求めることができる。 The refractive index of the high refractive index layer is preferably 1.5 to 1.7. When the refractive index of the high refractive index layer is within this range, reflection of external light can be suppressed and reflection can be prevented when a low refractive index layer described later is laminated on the high refractive index layer. The refractive index can be obtained by measuring using, for example, a known spectroscopic ellipsometer.
 前記高屈折率層は、JIS K5600-5-4で示す鉛筆硬度試験(試験板はガラス板)500g荷重において「2H」以上の硬度を示すことが好ましい。高屈折率層の鉛筆硬度が前記範囲であることにより、高屈折率層がハードコート層を兼ねることができ、反射防止フィルム全体の厚みを薄くすることができる。また、高屈折率層の平均厚みは、通常0.3~20μm、好ましくは0.8~10μmである。 The high refractive index layer preferably exhibits a hardness of “2H” or more at a load of 500 g of a pencil hardness test (test plate is a glass plate) shown in JIS K5600-5-4. When the pencil hardness of the high refractive index layer is in the above range, the high refractive index layer can also serve as a hard coat layer, and the thickness of the entire antireflection film can be reduced. The average thickness of the high refractive index layer is usually 0.3 to 20 μm, preferably 0.8 to 10 μm.
 また、高屈折率層の表面には、表面処理を施すことができる。表面処理の手段としては、前述の基材フィルムのところで例示した表面改質処理を挙げることができる。 Also, the surface of the high refractive index layer can be subjected to surface treatment. Examples of the surface treatment include the surface modification treatment exemplified in the above-described base film.
<低屈折率層>
 本発明の反射防止フィルムは、前記高屈折率層上に設けられる低屈折率層を備える。低屈折率層の屈折率Rと、高屈折率層の屈折率Rは、(R-0.1)≧Rの関係を満たす。即ち、低屈折率層の屈折率は、高屈折率層の屈折率より0.1以上小さい。
 低屈折率層を形成する材料(以下、低屈折率層形成用組成物と称する場合がある)は、熱硬化樹脂もしくは電離放射線型硬化樹脂を主として含むものが好ましい。
<Low refractive index layer>
The antireflection film of the present invention includes a low refractive index layer provided on the high refractive index layer. The refractive index RL of the low refractive index layer and the refractive index RH of the high refractive index layer satisfy the relationship of (R H −0.1) ≧ RL . That is, the refractive index of the low refractive index layer is 0.1 or more smaller than the refractive index of the high refractive index layer.
The material for forming the low refractive index layer (hereinafter sometimes referred to as a composition for forming a low refractive index layer) preferably contains mainly a thermosetting resin or an ionizing radiation type curable resin.
 低屈折率層の酸化ケイ素成分は40重量%以上であることが好ましい。このような好適な範囲とすることにより、高屈折層との密着性を高めることができる。低屈折率層の酸化ケイ素成分の含有割合の上限は特に限定されないが、60重量%以下とすることができる。 The silicon oxide component of the low refractive index layer is preferably 40% by weight or more. By setting it as such a suitable range, adhesiveness with a high refractive layer can be improved. The upper limit of the content ratio of the silicon oxide component in the low refractive index layer is not particularly limited, but can be 60% by weight or less.
 前記熱硬化性樹脂としては、一般式、RnSi(OR)m(式中、Rは置換基を有していてもよい一価の炭化水素基、ORは加水分解性基を表し、n、mは整数を表し、mは1~4であり、m+nは4である。)で表されるケイ素化合物を、全部又は部分的に加水分解して得られるものを用いることができる。 As the thermosetting resin, R 1 nSi (OR 2 ) m (wherein R 1 is a monovalent hydrocarbon group which may have a substituent, OR 2 is a hydrolyzable group) N, m represents an integer, m is 1 to 4, and m + n is 4.) A silicon compound obtained by hydrolyzing all or part of the silicon compound can be used. .
 置換基を有してもよい一価の炭化水素基としては、アルキル基、フェニル基、シクロアルキル基、アリール基、ハロアルキル基;アルケニルカルボニルオキシアルキル基;エポキシ基を有するアルキル基、メルカプト基を有するアルキル基、アミノ基を有するアルキル基、パーフルオロアルキル基等を挙げることができる。この中でも、合成の容易性、入手可能性等から、炭素数1~4のアルキル基、フェニル基、パーフルオロアルキル基が好ましい。 The monovalent hydrocarbon group which may have a substituent includes an alkyl group, a phenyl group, a cycloalkyl group, an aryl group, a haloalkyl group; an alkenylcarbonyloxyalkyl group; an alkyl group having an epoxy group, and a mercapto group. Examples thereof include an alkyl group, an alkyl group having an amino group, and a perfluoroalkyl group. Among these, an alkyl group having 1 to 4 carbon atoms, a phenyl group, and a perfluoroalkyl group are preferable from the viewpoint of ease of synthesis and availability.
 加水分解性基の具体例としては、メトキシ基、エトキシ基、プロポキシ基等のアルコキシル基;アセトキシ基、プロピオニルオキシ基等のアシルオキシ基;オキシム基(-O-N=C-R(R))、エノキシ基(-O-C(R)=C(R)R)、アミノ基、アミノキシ基(-O-N(R)R)、アミド基(-N(R)-C(=O)-R)等を挙げることができる。これらの基において、R,R,Rは、それぞれ独立して水素原子または一価の炭化水素基を表す。これらの中でも、入手容易性等の観点から、アルコキシル基が好ましい。 Specific examples of the hydrolyzable group include an alkoxyl group such as a methoxy group, an ethoxy group, and a propoxy group; an acyloxy group such as an acetoxy group and a propionyloxy group; an oxime group (—O—N═C—R 1 (R 2 ) ), Enoxy group (—O—C (R 1 ) ═C (R 2 ) R 3 ), amino group, aminoxy group (—O—N (R 1 ) R 2 ), amide group (—N (R 1 )) -C (= O) -R 2 ) and the like. In these groups, R 1 , R 2 and R 3 each independently represent a hydrogen atom or a monovalent hydrocarbon group. Among these, an alkoxyl group is preferable from the viewpoint of availability.
 RnSi(OR)mで表されるケイ素化合物としては、nが0~2の整数である珪素化合物が好ましい。その具体例としては、アルコキシシラン類、アセトキシシラン類、オキシムシラン類、エノキシシラン類、アミノシラン類、アミノキシシラン類、アミドシラン類等を挙げることができる。これらの中でも、入手容易性等からアルコキシシラン類がより好ましい。 As the silicon compound represented by R 1 nSi (OR 2 ) m, a silicon compound in which n is an integer of 0 to 2 is preferable. Specific examples thereof include alkoxysilanes, acetoxysilanes, oxime silanes, enoxysilanes, aminosilanes, aminoxysilanes, amidosilanes and the like. Among these, alkoxysilanes are more preferable from the viewpoint of availability.
 nが0であるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン等を例示でき、nが1であるオルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン等を例示できる。nが2であるジオルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン等を例示できる。 Examples of the tetraalkoxysilane in which n is 0 include tetramethoxysilane and tetraethoxysilane. Examples of the organotrialkoxysilane in which n is 1 include methyltrimethoxysilane, methyltriethoxysilane, and methyltriisopropoxysilane. And phenyltrimethoxysilane, phenyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane and the like. Examples of the diorganodialkoxysilane in which n is 2 include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, and methylphenyldimethoxysilane.
 前記ケイ素化合物は、フッ素を含有するものであることが好ましい。フッ素を含有するケイ素化合物としては含フッ素アルキルアルコキシシランが挙げられ、たとえば、一般式 CF(CF)nCHCHSi(OR(式中、Rは、炭素数1~5個のアルキル基を示し、nは0~12の整数を示す)で表される化合物があげられる。より具体的には、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどがあげられる。これらのなかでも前記nが2~6の化合物が好ましい。 The silicon compound preferably contains fluorine. Examples of the silicon compound containing fluorine include fluorine-containing alkylalkoxysilanes. For example, the general formula CF 3 (CF 2 ) nCH 2 CH 2 Si (OR 4 ) 3 (wherein R 4 has 1 to 5 carbon atoms) And n represents an integer of 0 to 12). More specifically, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxy Examples include silane. Of these, compounds in which n is 2 to 6 are preferred.
 前記ケイ素化合物は、それぞれ単独で、又は2種以上混合して用いることができる。また、2種以上のケイ素化合物の混合および加水分解の順番は、逐次であっても同時であってもよい。 The silicon compounds may be used alone or in combination of two or more. Also, the order of mixing and hydrolysis of two or more silicon compounds may be sequential or simultaneous.
 また、電離放射線硬化性により硬化する樹脂としては、グリシジルアクリレート、グリシジルメタクリレートなどのグリシジル基を有するモノマー;アクリル酸、メタクリル酸などのカルボキシル基を有するモノマー;ヒドロキシアルキルアクリレート、ヒドロキシアルキルメタクリレートなどのヒドロキシル基を有するモノマー;メチロールアクリレート、メチロールメタクリレート;アリルアクリレート、アリルメタクリレートなどのビニル基を有するモノマー;アミノ基を有するモノマー;スルホン酸基を有するモノマー;等を挙げることができる。 Resins curable by ionizing radiation curability include monomers having a glycidyl group such as glycidyl acrylate and glycidyl methacrylate; monomers having a carboxyl group such as acrylic acid and methacrylic acid; hydroxyl groups such as hydroxyalkyl acrylate and hydroxyalkyl methacrylate. A monomer having a vinyl group such as allyl acrylate and allyl methacrylate; a monomer having an amino group; a monomer having a sulfonic acid group; and the like.
 前記低屈折率層形成用組成物は、フィラーを含有してもよい。フィラーとしては、無機化合物の微粒子であれば、特に制限されない。この無機化合物としては、無機酸化物が一般的であり、例えば、SiO、Al、B、TiO、ZrO、SnO、CeO、P、MoO、ZnO、WO等の一種または二種以上を挙げることができる。 The composition for forming a low refractive index layer may contain a filler. The filler is not particularly limited as long as it is fine particles of an inorganic compound. As this inorganic compound, an inorganic oxide is generally used. For example, SiO 2 , Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 5 , MoO 3 , One or more of ZnO 2 and WO 3 can be mentioned.
 また、前記低屈折率層形成用組成物には、中空微粒子を添加してもよい。中空微粒子とは、外殻の内部に空洞が形成された中空の構造を有するものであり、例えば、シリカ系中空微粒子を好適に用いることができる。シリカ系中空微粒子を含有することにより、低屈折率性に加えて、耐擦傷性の向上も図ることができる。 Further, hollow fine particles may be added to the composition for forming a low refractive index layer. The hollow fine particles have a hollow structure in which cavities are formed inside the outer shell. For example, silica-based hollow fine particles can be suitably used. By containing silica-based hollow fine particles, it is possible to improve scratch resistance in addition to low refractive index properties.
 中空微粒子としては、(A)無機酸化物単一層、(B)種類の異なる無機酸化物からなる複合酸化物の単一層、(C)上記(A)と(B)との二重層を包含するものを利用できる。 The hollow fine particles include (A) a single layer of an inorganic oxide, (B) a single layer of a composite oxide composed of different types of inorganic oxides, and (C) a double layer of the above (A) and (B). Things can be used.
 中空微粒子の平均粒子径は、特に限定されないが、5~2000nmが好ましく、20~100nmがより好ましい。5nmよりも小さいと、中空によって低屈折率になる効果が小さくなる。2000nmより大きいと、透明性が低下し、拡散反射による寄与が大きくなってしまう。ここで、平均粒子径は、透過型電子顕微鏡観察による数平均粒子径で求めることができる。 The average particle diameter of the hollow fine particles is not particularly limited, but is preferably 5 to 2000 nm, and more preferably 20 to 100 nm. If it is smaller than 5 nm, the effect of lowering the refractive index due to hollowness is reduced. If it is larger than 2000 nm, the transparency is lowered and the contribution due to diffuse reflection is increased. Here, the average particle diameter can be determined by the number average particle diameter by observation with a transmission electron microscope.
 中空微粒子の添加量は、特に限定されないが、前記低屈折率層形成用組成物の固形分に対して40~200重量%であることが好ましく、より好ましくは40~150重量%である。この範囲であれば、低屈折率性と耐擦傷性とをともに奏することができる。 The addition amount of the hollow fine particles is not particularly limited, but is preferably 40 to 200% by weight, more preferably 40 to 150% by weight, based on the solid content of the composition for forming a low refractive index layer. Within this range, both low refractive index properties and scratch resistance can be achieved.
 前記低屈折率層は、前記低屈折率層形成用組成物を溶媒で希釈し、この希釈物を高屈折率層上に塗工し、その後、この塗膜を乾燥、硬化してなる低屈折率層の硬化膜を形成できる。 The low refractive index layer is obtained by diluting the composition for forming a low refractive index layer with a solvent, coating the diluted product on the high refractive index layer, and then drying and curing the coating film. A cured film of a rate layer can be formed.
 塗工方法は特に制限されず、通常の方法、例えば、ドクターブレード法、グラビアロールコーター法、ディッピング法、スピンコート法、刷毛塗り法フレキソ印刷法などがあげられる。得られた塗膜に、熱又は電離放射線を照射することで形成することで低屈折率層の硬化膜が得られる。 The coating method is not particularly limited, and includes usual methods such as a doctor blade method, a gravure roll coater method, a dipping method, a spin coating method, a brush coating method, a flexographic printing method, and the like. A cured film having a low refractive index layer can be obtained by forming the obtained coating film by irradiating it with heat or ionizing radiation.
 前記溶媒としては、前述の高屈折率層形成用組成物のところで例示した溶媒と同じものを挙げることができる。 Examples of the solvent include the same solvents as those exemplified above for the composition for forming a high refractive index layer.
 溶媒により希釈された低屈折率層形成用組成物中の固形分濃度は、溶液安定性を損なわない範囲で適宜調整することができる。低屈折率層形成用組成物を厚み精度よく薄膜に形成することが好ましいため、通常、0.1~20重量%、好ましくは0.5~10重量%の程度とするのが、取扱い易く好ましい。 The solid content concentration in the composition for forming a low refractive index layer diluted with a solvent can be appropriately adjusted within a range not impairing the solution stability. Since the composition for forming a low refractive index layer is preferably formed into a thin film with a good thickness accuracy, it is usually from about 0.1 to 20% by weight, preferably from about 0.5 to 10% by weight because it is easy to handle. .
(その他の成分)
 低屈折率層形成用組成物には、他の成分を含有していてもよい。他の成分としては、界面活性剤、光重合開始剤、シランカップリング剤等の分散剤、レベリング剤、増粘剤などが挙げられる。
(Other ingredients)
The composition for forming a low refractive index layer may contain other components. Examples of other components include surfactants, photopolymerization initiators, dispersants such as silane coupling agents, leveling agents, and thickeners.
 前記界面活性剤の含有量は、低屈折率層形成用組成物の固形分に対して500ppm以上が好ましく、1000ppm以上がより好ましい。界面活性剤の含有量が前記範囲よりも少ないと、塗布液の対流が発生し、低屈折率層表面の凹凸を小さくできない。界面活性剤としては、フッ素系界面活性剤やシリコーン系界面活性剤が挙げられる。フッ素系の界面活性剤としては、スリーエム社製のフロラードFC-431等のパーフルオロアルキルスルホン酸アミド基含有ノニオン、大日本インキ社製のメガファックF-171、F-172、F-173、F-176PF、F-470、F-471等のパーフルオロアルキル基含有オリゴマー等が挙げられる。シリコーン系界面活性剤としては、エチレングリコール、プロピレングリコール等のオリゴマー等の各種の置換基で側鎖や主鎖の末端が変性されたポリジメチルシロキサン等が挙げられる。 The content of the surfactant is preferably 500 ppm or more and more preferably 1000 ppm or more with respect to the solid content of the composition for forming a low refractive index layer. When the content of the surfactant is less than the above range, convection of the coating solution occurs, and the unevenness on the surface of the low refractive index layer cannot be reduced. Examples of the surfactant include a fluorine-based surfactant and a silicone-based surfactant. Fluorosurfactants include non-ionic perfluoroalkylsulfonic acid amide group-containing nonions such as Fluorad FC-431 manufactured by 3M, MegaFac F-171, F-172, F-173, F manufactured by Dainippon Ink, Inc. Perfluoroalkyl group-containing oligomers such as -176PF, F-470, and F-471. Examples of the silicone surfactant include polydimethylsiloxane in which the side chain or the end of the main chain is modified with various substituents such as oligomers such as ethylene glycol and propylene glycol.
 光重合開始剤としては、公知の光重合開始剤が挙げられ、具体的にはアリールケトン系光重合開始剤(例えば、アセトフェノン類、ベンゾフェノン類、アルキルアミノベンゾフェノン類、ベンジル類、ベンゾイン類、ベンゾインエーテル類、ベンジルジメチルケタール類、ベンゾイルベンゾエート類、α-アシロキシムエステル類など);含硫黄系光重合開始剤(例えば、スルフィド類、チオキサントン類など);アシルホスフィンオキシド系光重合開始剤;その他の光重合開始剤がある。また、光重合開始剤はアミン類などの光増感剤と組み合わせても使用できる。光重合開始剤の含有量は、電離放射線硬化樹脂100重量部に対して0.01~20重量部、好ましくは0.1~10重量部である。 Examples of the photopolymerization initiator include known photopolymerization initiators. Specifically, aryl ketone photopolymerization initiators (for example, acetophenones, benzophenones, alkylaminobenzophenones, benzyls, benzoins, benzoin ethers) , Benzyldimethyl ketals, benzoylbenzoates, α-acyloxime esters, etc.); sulfur-containing photopolymerization initiators (for example, sulfides, thioxanthones, etc.); acylphosphine oxide photopolymerization initiators; other light There is a polymerization initiator. The photopolymerization initiator can also be used in combination with a photosensitizer such as amines. The content of the photopolymerization initiator is 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin.
 硬化は、低屈折率層形成用組成物に応じて、加熱および/または活性光線照射により行うことができる。乾燥条件、硬化条件は使用する溶媒の沸点や飽和蒸気圧、基材の種類等により適宜に決定できるが、基材の着色や分解を抑えるため、加熱する場合には、通常160℃以下、UV照射する場合には通常2J/cm以下とするのが好ましい。 Curing can be performed by heating and / or actinic ray irradiation according to the composition for forming a low refractive index layer. The drying conditions and curing conditions can be appropriately determined depending on the boiling point of the solvent to be used, the saturated vapor pressure, the type of the base material, and the like. In the case of irradiation, it is usually preferably 2 J / cm 2 or less.
 低屈折率層の屈折率R及び前記高屈折率層の屈折率Rは、(R-0.1)≧Rの関係を満たす。即ち、低屈折率層の屈折率は、高屈折層より0.1以上小さい。低屈折率層の屈折率は1.4未満であることが好ましく、好ましくは1.25~1.38、さらに好ましくは1.30~1.38である。低屈折率層の屈折率を前記範囲にすることにより、反射防止性に加えて、耐擦傷性を付与することができる。また、低屈折率層の平均厚みは、通常10~1000nm、好ましくは20~500nmである。 The refractive index RL of the low refractive index layer and the refractive index RH of the high refractive index layer satisfy the relationship of (R H −0.1) ≧ RL . That is, the refractive index of the low refractive index layer is 0.1 or more smaller than that of the high refractive layer. The refractive index of the low refractive index layer is preferably less than 1.4, preferably 1.25 to 1.38, more preferably 1.30 to 1.38. By setting the refractive index of the low refractive index layer in the above range, in addition to antireflection properties, scratch resistance can be imparted. The average thickness of the low refractive index layer is usually 10 to 1000 nm, preferably 20 to 500 nm.
 本発明においては、低屈折率層の上に防汚層を有していても良い。防汚層は、低屈折率層を保護し、かつ、防汚性能を高めるために設けるものである。防汚層の形成材料としては、低屈折率層の機能が阻害されず、防汚層としての要求性能が満たされる限り特に制限はない。通常、疎水基を有する化合物を好ましく使用できる。
 具体的な例としては、パーフルオロアルキルシラン化合物、パーフルオロポリエーテルシラン化合物、フッ素含有シリコーン化合物を使用することができる。防汚層の形成方法は、形成する材料に応じて、例えば、蒸着、スパッタリング等の物理的気相成長法;化学的気相成長(CVD)法;湿式コーティング法;等を用いることができる。防汚層の厚みは特に制限はないが、通常20nm以下が好ましく、1~10nmであるのがより好ましい。
In the present invention, an antifouling layer may be provided on the low refractive index layer. The antifouling layer is provided for protecting the low refractive index layer and enhancing the antifouling performance. The material for forming the antifouling layer is not particularly limited as long as the function of the low refractive index layer is not inhibited and the required performance as the antifouling layer is satisfied. Usually, a compound having a hydrophobic group can be preferably used.
As specific examples, a perfluoroalkylsilane compound, a perfluoropolyethersilane compound, or a fluorine-containing silicone compound can be used. As a method for forming the antifouling layer, for example, a physical vapor deposition method such as vapor deposition or sputtering; a chemical vapor deposition (CVD) method; a wet coating method; The thickness of the antifouling layer is not particularly limited, but is usually preferably 20 nm or less, more preferably 1 to 10 nm.
 本発明の反射防止フィルムの反射率は、波長430~700nmにおける入射角5°で測定した最小値が1.5%未満であり、1.3%以下であることが好ましい。 As for the reflectance of the antireflection film of the present invention, the minimum value measured at an incident angle of 5 ° at a wavelength of 430 to 700 nm is less than 1.5%, and preferably 1.3% or less.
 また、本発明の反射防止フィルムの写像鮮明性は90%以上であり。90%未満であると表示画像の乱反射が激しくなり視認性が低下する。写像鮮明性の上限は、特に限定されないが、100%以下とすることができる。 The image clarity of the antireflection film of the present invention is 90% or more. If it is less than 90%, the irregular reflection of the display image becomes intense and the visibility is lowered. The upper limit of image clarity is not particularly limited, but can be 100% or less.
 本発明の反射防止フィルムは、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、陰極管表示装置(CRT)、フィールドエミッションディスプレイ(FED)、電子ペーパー,タッチパネルなどの表示装置に、直接に貼合することにより、または偏光板保護フィルム、前面板など表示装置に組み込まれる表面部材と置き換えることにより用いることができる。 The antireflection film of the present invention includes a liquid crystal display (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), a cathode tube display (CRT), a field emission display (FED), electronic paper, a touch panel, and the like. It can be used by directly bonding to the display device or by replacing with a surface member incorporated in the display device such as a polarizing plate protective film or a front plate.
 本発明について、実施例および比較例を用いてより詳細に説明する。ただし、本発明は以下の実施例に限定されない。なお、部及び%は特に断りのない限り重量基準である。 The present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the following examples. Parts and% are based on weight unless otherwise specified.
(基材フィルムの膜厚)
 フィルムをエポキシ樹脂に包埋したのち、ミクロトーム(大和工業社製、製品名「RUB-2100」)を用いてスライスし、走査電子顕微鏡を用いて断面を観察し、測定した。
(Thickness of base film)
After embedding the film in an epoxy resin, it was sliced using a microtome (manufactured by Daiwa Kogyo Co., Ltd., product name “RUB-2100”), and the cross-section was observed and measured using a scanning electron microscope.
(基材フィルムの屈折率)
 樹脂を単層成形し、プリズムカプラー(Metricon社製 製品名「model2010」)を用い、温度20℃±2℃、湿度60±5%の条件下で測定した。
(Refractive index of base film)
The resin was molded into a single layer and measured using a prism coupler (product name “model 2010” manufactured by Metricon) under the conditions of a temperature of 20 ° C. ± 2 ° C. and a humidity of 60 ± 5%.
(屈折率(高屈折率層、低屈折率層))
 高速分光エリプソメトリ(J.A.Woollam社製、製品名「M-2000U」)を用い、入射角度を55°、60°、及び65°、温度20℃±2℃、湿度60±5%の条件下で測定した場合の、波長領域400~1000nmのスペクトルから算出した。
(Refractive index (high refractive index layer, low refractive index layer))
Using high-speed spectroscopic ellipsometry (manufactured by JA Woollam, product name “M-2000U”) with incident angles of 55 °, 60 ° and 65 °, temperature of 20 ° C. ± 2 ° C., humidity of 60 ± 5% It was calculated from the spectrum in the wavelength region of 400 to 1000 nm when measured under the conditions.
(密着性(スチールウール試験))
 スチールウール#0000に荷重0.025MPaをかけた状態で、反射防止フィルムの低屈折率層の表面を10往復させ、往復させた後の表面状態を目視で観測した。
 優良:傷が認められない。
 良:若干のスジ傷が見られるものの、品質上問題はない。
 劣:スジ傷が8本以上ある。
(Adhesion (steel wool test))
In a state where a load of 0.025 MPa was applied to steel wool # 0000, the surface of the low refractive index layer of the antireflection film was reciprocated 10 times, and the surface state after the reciprocation was visually observed.
Excellent: No scratches are observed.
Good: Although some streaks are seen, there is no problem in quality.
Inferior: There are 8 or more streak scratches.
(最小反射率)
 分光光度計(日本分光社製、製品名「V-550」)を用いて、波長430~700nmにおける入射角5°での反射率を測定し(測定波長間隔は1nm)、前記波長域における最小反射率を算出した。最小反射率は、1.5%未満である場合に良好である。
(Minimum reflectance)
Using a spectrophotometer (manufactured by JASCO Corporation, product name “V-550”), the reflectance at a wavelength of 430 to 700 nm at an incident angle of 5 ° is measured (measurement wavelength interval is 1 nm), and the minimum in the above wavelength range The reflectance was calculated. The minimum reflectance is good when it is less than 1.5%.
(写像鮮明性(image clarity、透過鮮明性))
 JIS K 7105に準じ、写像鮮明性測定装置(スガ試験機社製)により、0.5mm幅の光学くしで測定した。数値が高いほど鮮明性が高いことを意味する。写像鮮明性は、試料からの透過光を移動する光学クシを通して測定し、その値を計算によって求めるものである。試料がボケを生じるものの場合、光学クシ上に結像されるスリットの像は、そのボケの影響で太くなるため、透過部の位置ではスリット像の両端が不透明部にかかり、100%あった光量が減少する。また、不透明部の位置ではスリット像の両端は不透明部から光が漏れて、0%の光量が増加する。鮮明性の値は、光学クシの透明部の透過光最大値Mと、不透明部の最小値mから次式によって定義される。写像鮮明性は、下記値Cが90(%)以上の場合(より好ましくは95%以上)に良好であると判断できる。
 写像鮮明性の値 C(%)=((M-m)/(M+m)) × 100
(Image clarity)
According to JIS K 7105, measurement was performed with an optical comb having a width of 0.5 mm using a image clarity measuring device (manufactured by Suga Test Instruments Co., Ltd.). Higher values mean higher clarity. The image clarity is measured through an optical comb that moves the transmitted light from the sample, and the value is obtained by calculation. When the sample is blurred, the slit image formed on the optical comb becomes thick due to the blur. Therefore, both ends of the slit image are applied to the opaque part at the position of the transmission part, and the amount of light is 100%. Decrease. Further, at the position of the opaque portion, light leaks from the opaque portion at both ends of the slit image, and the amount of light of 0% increases. The sharpness value is defined by the following equation from the maximum value M of the transmitted light of the transparent portion of the optical comb and the minimum value m of the opaque portion. The image clarity can be determined to be good when the following value C is 90% or more (more preferably 95% or more).
Value of map clarity C (%) = ((M−m) / (M + m)) × 100
(表面硬度(鉛筆硬度試験)
 荷重を500gにした以外はJIS K 5600-5-4に従って、鉛筆で、反射防止フィルムの表面の5箇所について、5mm程度引っかき、傷の付き具合を確認した。
(Surface hardness (pencil hardness test)
Except for a load of 500 g, according to JIS K 5600-5-4, the surface of the antireflection film was scratched by about 5 mm with a pencil and the degree of scratches was confirmed.
(製造例1) 基材フィルム1の作製
 2種3層の多層共押出装置を使用して、両表面層を構成する、弾性体粒子を含有するポリメチルメタクリレート樹脂(住友化学社製、商品名「スミペックスHT20Y」)、中間層を構成する、耐熱性の高いポリメチルメタクリレート樹脂(住友化学社製、商品名「スミペックスMH」)をそれぞれ、20kg/hr、10kg/hrの押出量でT型ダイスより吐出させた後に冷却して、3層構成の基材フィルム1を得た。
(Production Example 1) Production of base film 1 Polymethylmethacrylate resin containing elastic particles (commercial name, manufactured by Sumitomo Chemical Co., Ltd.) constituting both surface layers using a two-type three-layer multilayer coextrusion apparatus “SUMIPEX HT20Y”), a high-temperature-resistant polymethylmethacrylate resin (product name “SUMIPEX MH”), which constitutes the intermediate layer, is a T-type die at an extrusion rate of 20 kg / hr and 10 kg / hr, respectively. The substrate film 1 having a three-layer structure was obtained by cooling after discharging more.
 基材フィルム1を構成する各層の厚みは、一方の表面層(表面層1)の厚みが5μm、中間層が10μm、他方の表面層(表面層2)が5μmであり、基材フィルム1の総厚は20μmであった。基材フィルム1の表面層1の屈折率は1.49であった。 The thickness of each layer constituting the base film 1 is such that the thickness of one surface layer (surface layer 1) is 5 μm, the intermediate layer is 10 μm, and the other surface layer (surface layer 2) is 5 μm. The total thickness was 20 μm. The refractive index of the surface layer 1 of the base film 1 was 1.49.
(製造例2)基材フィルム2の作製
 ノルボルネン系重合体(製品名「ZEONOR 1420R」、日本ゼオン社製:ガラス転移温度Tg136℃)のペレットを、空気を流通させた熱風乾燥器を用いて110℃で4時間乾燥した。その後、このペレットを、単軸押出機を用いて、260℃で溶融押出しして基材フィルム2を得た。また、この基材フィルム2の膜厚は20μmであった。
Production Example 2 Production of Substrate Film 2 A norbornene-based polymer (product name “ZEONOR 1420R”, manufactured by Nippon Zeon Co., Ltd .: glass transition temperature Tg 136 ° C.) is used to make 110 using a hot air dryer in which air is circulated. Dry at 4 ° C. for 4 hours. Thereafter, the pellet was melt-extruded at 260 ° C. using a single screw extruder to obtain a base film 2. Moreover, the film thickness of this base film 2 was 20 micrometers.
(製造例3)高屈折層形成用組成物1の調製
 アクリロイル基を含有するオリゴマー(日本合成化学工業社製、商品名「UV-1700B」)の100部に、鱗片形状の無機粒子(山口雲母工業所社製、SJ-005、平均粒子径5μm、酸化ケイ素成分45%)7部と、ジルコニア(シーアイ化成社製、平均粒子径20nm)150部と、光重合開始剤(チバ・スペシャリティ・ケミカルズ社製 商品名「IRGACURE184」)2部とを加え、メタクリル変性ジメチルシリコーンオイル(信越化学工業社製、商品名「X-22-164A」)をさらに1部加え、攪拌機にて5000rpmで5分間攪拌することにより、高屈折率層形成用組成物1を得た。屈折率は1.62であった。
Production Example 3 Preparation of Composition 1 for Forming High Refractive Layer To 100 parts of an oligomer containing acryloyl group (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “UV-1700B”), scaly inorganic particles (Yamaguchi mica) 7 parts by Sangyo Kogyo Co., Ltd., SJ-005, average particle size 5 μm, silicon oxide component 45%), 150 parts zirconia (Cai Kasei Co., Ltd., average particle size 20 nm), photopolymerization initiator (Ciba Specialty Chemicals) 2 parts of a product name “IRGACURE184” manufactured by the company) and another 1 part of methacryl-modified dimethyl silicone oil (trade name “X-22-164A” manufactured by Shin-Etsu Chemical Co., Ltd.) are added and stirred for 5 minutes at 5000 rpm with a stirrer. By doing this, the composition 1 for high refractive index layer formation was obtained. The refractive index was 1.62.
(製造例4)高屈折層形成用組成物2の調製
 鱗片形状の無機粒子を35部に変えた以外は、製造例3と同様にして高屈折率層形成用組成物2を得た。屈折率は1.63であった。
Production Example 4 Preparation of High Refractive Layer Forming Composition 2 A high refractive index layer forming composition 2 was obtained in the same manner as in Production Example 3 except that the scale-shaped inorganic particles were changed to 35 parts. The refractive index was 1.63.
(製造例5)高屈折層形成用組成物3の調製
 鱗片形状の無機粒子7部を加える代わりに、鱗片形状の無機粒子をボールミルで砕き、1μmのふるいにかけ、平均粒子径0.7μmとしたもの7部を加えた以外は、製造例3と同様にして高屈折率層形成用組成物3を得た。屈折率は1.62であった。
Production Example 5 Preparation of High Refractive Layer Forming Composition 3 Instead of adding 7 parts of scale-shaped inorganic particles, the scale-shaped inorganic particles were crushed with a ball mill and passed through a 1 μm sieve to obtain an average particle diameter of 0.7 μm. Except having added 7 parts of thing, it carried out similarly to manufacture example 3, and obtained the composition 3 for high refractive index layer formation. The refractive index was 1.62.
(製造例6)高屈折層形成用組成物4の調製
 鱗片形状の無機粒子を加えなかった以外は、製造例3と同様にして高屈折率層形成用組成物4を得た。屈折率は1.58であった。
Production Example 6 Preparation of High Refractive Layer Forming Composition 4 A high refractive index layer forming composition 4 was obtained in the same manner as in Production Example 3 except that no scaly inorganic particles were added. The refractive index was 1.58.
(製造例7)高屈折層形成用組成物5の調製
 鱗片形状の無機粒子を、他の鱗片形状の無機粒子(コープケミカル社製、MK-300、平均粒径15μm、酸化ケイ素成分52%)に変更した以外は、製造例3と同様にして高屈折率層形成用組成物5を得た。屈折率は1.62であった。
(Production Example 7) Preparation of composition 5 for forming a high refractive layer Scale-like inorganic particles were replaced with other scale-like inorganic particles (manufactured by Coop Chemical Co., MK-300, average particle size 15 μm, silicon oxide component 52%). A composition 5 for forming a high refractive index layer was obtained in the same manner as in Production Example 3, except for changing to. The refractive index was 1.62.
(製造例8)高屈折層形成用組成物6の調製
 鱗片形状の無機粒子をバイオタイト粉砕物(平均粒子径6μm)に変更した以外は、製造例3と同様にして高屈折率層形成用組成物6を得た。なお、バイオタイト粉砕物はバイオタイト(霊寿県天將鉱業有限公司社製、酸化ケイ素成分35%)をボールミルで砕き、8μmのふるいにかけ、平均粒子径6μmとしたものである。屈折率は1.62であった。
(Production Example 8) Preparation of composition 6 for forming a high refractive index layer For forming a high refractive index layer in the same manner as in Production Example 3 except that the scale-shaped inorganic particles were changed to a biotite pulverized product (average particle diameter 6 μm). Composition 6 was obtained. The biotite pulverized product is obtained by pulverizing biotite (manufactured by Lingju Prefectural Tianjin Mining Co., Ltd., silicon oxide component 35%) with a ball mill and passing through an 8 μm sieve to obtain an average particle size of 6 μm. The refractive index was 1.62.
(製造例9)高屈折層形成用組成物7の調製
 鱗片形状の無機粒子を3部に変更した以外は、製造例3と同様にして高屈折率層形成用組成物7を得た。屈折率は1.52であった。
Production Example 9 Preparation of High Refractive Layer Forming Composition 7 A high refractive index layer forming composition 7 was obtained in the same manner as in Production Example 3 except that the scale-shaped inorganic particles were changed to 3 parts. The refractive index was 1.52.
(製造例10)低屈折率層形成用組成物1の調製
 還流管を備えつけた4つ口反応フラスコにエタノール200部を投入し、撹拌下にこのエタノールに蓚酸120部を少量づつ添加することにより、蓚酸のエタノール溶液を調製した。次いでこの溶液をその還流温度まで加熱し、還流下のこの溶液中にテトラエトキシシラン20部とトリデカフルオロオクチルトリメトキシシラン(GE東芝シリコーン社製、商品名「TSL8257」)4部の混合物を滴下した。滴下終了後も、還流下に加熱を5時間続けた後冷却し、メタノールにて固形分が1重量%になるように希釈することにより液1を調製した。
 次に、中空シリカ微粒子(数平均粒子径30nm、屈折率1.29)を前記液1の固形分(24重量部)に対し30重量部になるように添加し、低屈折率層形成用組成物1を調製した。この組成物を乾燥し成膜して得られた低屈折率層の酸化ケイ素成分は90%であった。低屈折率層の屈折率は1.37であった。
(Production Example 10) Preparation of composition 1 for forming a low refractive index layer By adding 200 parts of ethanol to a four-necked reaction flask equipped with a reflux tube and adding 120 parts of oxalic acid to this ethanol in small amounts. An ethanol solution of oxalic acid was prepared. The solution was then heated to the reflux temperature, and a mixture of 20 parts tetraethoxysilane and 4 parts tridecafluorooctyltrimethoxysilane (GE Toshiba Silicone, trade name “TSL8257”) was added dropwise to the refluxed solution. did. After completion of the dropwise addition, heating was continued for 5 hours under reflux, followed by cooling and dilution with methanol so that the solid content was 1% by weight, thereby preparing Liquid 1.
Next, hollow silica fine particles (number average particle diameter 30 nm, refractive index 1.29) are added so as to be 30 parts by weight with respect to the solid content (24 parts by weight) of the liquid 1, and a composition for forming a low refractive index layer. Product 1 was prepared. The silicon oxide component of the low refractive index layer obtained by drying this composition and forming a film was 90%. The refractive index of the low refractive index layer was 1.37.
(製造例11)低屈折率層形成用組成物2の調製
 アクリロイル基を含有するモノマー(旭電化工業社製、商品名「オプトマーKR566」)100部に光重合開始剤(チバ・スペシャリティ・ケミカルズ社製、商品名「IRGACURE184」)2部、中空シリカ微粒子(数平均粒子径30nm、屈折率1.29)150部と、メタクリル変性ジメチルシリコーンオイル(信越化学工業社製、商品名「X-22-164A」)10部を加え、攪拌機にて2000rpmで5分間攪拌することにより、低屈折率層形成用組成物2を得た。この組成物を乾燥し成膜して得られた低屈折率層の酸化ケイ素成分は58%であった。低屈折率層の屈折率は1.37であった。
(Production Example 11) Preparation of Composition 2 for Forming Low Refractive Index Layer 100 parts of a monomer containing acryloyl group (manufactured by Asahi Denka Kogyo Co., Ltd., trade name “Optomer KR566”) with a photopolymerization initiator (Ciba Specialty Chemicals) 2 parts, product name “IRGACURE184”), 150 parts of hollow silica fine particles (number average particle diameter 30 nm, refractive index 1.29), methacryl-modified dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “X-22-2”) 164A ") 10 parts was added, and the mixture was stirred for 5 minutes at 2000 rpm with a stirrer to obtain a composition 2 for forming a low refractive index layer. The silicon oxide component of the low refractive index layer obtained by drying this composition to form a film was 58%. The refractive index of the low refractive index layer was 1.37.
(製造例12)低屈折率層形成用組成物3の調製
 中空シリカ微粒子を80部に変えた以外は、製造例10と同様にして低屈折率層形成用組成物3を得た。この組成物を乾燥し成膜して得られた低屈折率層の酸化ケイ素成分は42%であった。低屈折率層の屈折率は1.43であった。
(Production Example 12) Preparation of composition 3 for forming a low refractive index layer A composition 3 for forming a low refractive index layer was obtained in the same manner as in Production Example 10 except that the hollow silica fine particles were changed to 80 parts. The silicon oxide component of the low refractive index layer obtained by drying this composition and forming a film was 42%. The refractive index of the low refractive index layer was 1.43.
(製造例13)低屈折率層形成用組成物4の調製
 中空シリカ微粒子を60部に変えた以外は、製造例10と同様にして低屈折率層形成用組成物4を得た。この組成物を乾燥し成膜して得られた低屈折率層の酸化ケイ素成分は35%であった。低屈折率層の屈折率は1.44であった。
Production Example 13 Preparation of Low Refractive Index Layer Composition 4 A low refractive index layer composition 4 was obtained in the same manner as in Production Example 10 except that the hollow silica fine particles were changed to 60 parts. The silicon oxide component of the low refractive index layer obtained by drying this composition and forming a film was 35%. The refractive index of the low refractive index layer was 1.44.
(実施例1)
 製造例1で得られた基材フィルム1における凹凸構造が形成された面に、製造例3で得られた高屈折層形成用組成物1をバーコーターで塗布した後、紫外線照射機を用いて積算光量200mJ/cmとなるように紫外線照射を行い硬化させ、厚み5μmの高屈折層を形成させて、基材フィルム/高屈折率層となる積層体を得た。次に、高屈折率層の上に、製造例10で得られた低屈折率層用形成組成物1をバーコーターで塗布し、得られた塗膜を60℃で1分間乾燥・硬化させ、厚み100nmの低屈折率層を形成し、本発明の反射防止フィルム1を得た。反射防止フィルム1の評価結果を表1に示す。
Example 1
After applying the composition 1 for forming a high refractive layer obtained in Production Example 3 to the surface of the base film 1 obtained in Production Example 1 with a bar coater, using an ultraviolet irradiator. Ultraviolet irradiation was performed so that the integrated light amount was 200 mJ / cm 2, and a high refractive layer having a thickness of 5 μm was formed to obtain a laminate of base film / high refractive index layer. Next, on the high refractive index layer, the low refractive index layer forming composition 1 obtained in Production Example 10 was applied with a bar coater, and the obtained coating film was dried and cured at 60 ° C. for 1 minute, A low refractive index layer having a thickness of 100 nm was formed to obtain the antireflection film 1 of the present invention. The evaluation results of the antireflection film 1 are shown in Table 1.
(実施例2)
 低屈折率層用形成組成物1の代わりに、製造例11で得られた低屈折率層用形成組成物2を用い、低屈折率層を形成する工程を下記の通り変更した以外は実施例1と同様にして反射防止フィルム2を得た。低屈折率層は、高屈折率層の上に、低屈折率層用形成組成物をバーコーターで塗布し、得られた塗膜を60℃で1分間乾燥させ、積算光量100mJ/cmとなるように紫外線照射を行い硬化させて得た。反射防止フィルム2の評価結果を表1に示す。
(Example 2)
Example except that the low refractive index layer forming composition 2 obtained in Production Example 11 was used instead of the low refractive index layer forming composition 1 and the steps for forming the low refractive index layer were changed as follows. In the same manner as in Example 1, an antireflection film 2 was obtained. The low refractive index layer is formed by applying the low refractive index layer forming composition on the high refractive index layer with a bar coater, and drying the obtained coating film at 60 ° C. for 1 minute to obtain an integrated light amount of 100 mJ / cm 2 . It was obtained by curing with ultraviolet irradiation. The evaluation results of the antireflection film 2 are shown in Table 1.
(実施例3)
 基材フィルム1の代わりに、製造例2で得られた基材フィルム2を用いた以外は実施例1と同様にして反射防止フィルム3を得た。反射防止フィルム3の評価結果を表1に示す。
(Example 3)
Instead of the base film 1, an antireflection film 3 was obtained in the same manner as in Example 1 except that the base film 2 obtained in Production Example 2 was used. The evaluation results of the antireflection film 3 are shown in Table 1.
(実施例4)
 低屈折率層用形成組成物1の代わりに、製造例13で得られた低屈折率層用形成組成物3を用いた以外は実施例1と同様にして反射防止フィルム4を得た。反射防止フィルム4の評価結果を表1に示す。
Example 4
An antireflection film 4 was obtained in the same manner as in Example 1 except that the low refractive index layer forming composition 3 obtained in Production Example 13 was used instead of the low refractive index layer forming composition 1. The evaluation results of the antireflection film 4 are shown in Table 1.
(実施例5)
 高屈折層用形成組成物1の代わりに、製造例8で得られた高屈折層用形成組成物6を用いた以外は実施例1と同様にして反射防止フィルム5を得た。反射防止フィルム9の評価結果を表1に示す。
(Example 5)
An antireflection film 5 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 6 obtained in Production Example 8 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 9 are shown in Table 1.
(比較例1)
 高屈折層用形成組成物1の代わりに、製造例4で得られた高屈折層用形成組成物2を用いた以外は実施例1と同様にして反射防止フィルム11を得た。反射防止フィルム11の評価結果を表2に示す。
(Comparative Example 1)
An antireflection film 11 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 2 obtained in Production Example 4 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 11 are shown in Table 2.
(比較例2)
 高屈折層用形成組成物1の代わりに、製造例5で得られた高屈折層用形成組成物3を用いた以外は実施例1と同様にして反射防止フィルム12を得た。反射防止フィルム12の評価結果を表2に示す。
(Comparative Example 2)
An antireflection film 12 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 3 obtained in Production Example 5 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 12 are shown in Table 2.
(比較例3)
 高屈折層用形成組成物1の代わりに、製造例6で得られた高屈折層用形成組成物4を用いた以外は実施例1と同様にして反射防止フィルム13を得た。反射防止フィルム13の評価結果を表2に示す。
(Comparative Example 3)
An antireflection film 13 was obtained in the same manner as in Example 1, except that the high refractive layer forming composition 4 obtained in Production Example 6 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 13 are shown in Table 2.
(比較例4)
 高屈折層用形成組成物1の代わりに、製造例7で得られた高屈折層用形成組成物5を用いた以外は実施例1と同様にして反射防止フィルム14を得た。反射防止フィルム14の評価結果を表2に示す。
(Comparative Example 4)
An antireflection film 14 was obtained in the same manner as in Example 1 except that the high refractive layer forming composition 5 obtained in Production Example 7 was used instead of the high refractive layer forming composition 1. The evaluation results of the antireflection film 14 are shown in Table 2.
(比較例5)
 高屈折層用形成組成物1の代わりに、製造例9で得られた高屈折層用形成組成物7を用い、低屈折率層用形成組成物1の代わりに、製造例12で得られた低屈折率層用形成組成物3を用いた以外は実施例1と同様にして反射防止フィルム15を得た。反射防止フィルム15の評価結果を表2に示す。
(Comparative Example 5)
Instead of the high refractive layer forming composition 1, the high refractive layer forming composition 7 obtained in Production Example 9 was used, and instead of the low refractive index layer forming composition 1, obtained in Production Example 12. An antireflection film 15 was obtained in the same manner as in Example 1 except that the composition 3 for low refractive index layer was used. The evaluation results of the antireflection film 15 are shown in Table 2.
 前記実施例1~5、比較例1~5の各反射防止フィルムについて、密着性、最小反射率、写像鮮明性、表面硬度を評価して、その結果を表1及び表2に示す。 The antireflection films of Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated for adhesion, minimum reflectance, image clarity, and surface hardness, and the results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、実施例1~4の反射防止フィルムは、密着性がよく、最小反射率が1.3%以下であり、かつ表面強度が3H以上と高く、写像鮮明性が90%以上と高いため、十分な写像鮮明性と表面硬度とを有しており、したがって、表示装置に用いた際に視認性を低下させにくいことがわかる。また、実施例5は、密着性の点で若干低下するものの実際上の問題はなく、また、その他の点では十分であることが分かる。これに対して、比較例1,4に示すように、鱗片形状の無機粒子の含有量が多いもしくは粒子径が所定範囲より大きい場合には、写像鮮明性の点で劣ることが分かる。さらに、比較例2,3に示すように、鱗片形状の無機粒子の含有量が少ないもしくは粒子径が所定範囲より小さい場合には、表面硬度が不十分であることが分かる。さらに、比較例5に示すように、屈折率差が0.1より小さい場合には、最小反射率が1.5%となり、反射防止フィルムとしての性能が若干であるが劣ることが分かる。 As shown in Tables 1 and 2, the antireflection films of Examples 1 to 4 have good adhesion, a minimum reflectance of 1.3% or less, a high surface strength of 3H or more, and image clarity. Is as high as 90% or more, it has sufficient image clarity and surface hardness. Therefore, it is understood that the visibility is difficult to be lowered when used in a display device. Moreover, although Example 5 is slightly lowered in terms of adhesion, there is no practical problem, and it can be seen that other points are sufficient. On the other hand, as shown in Comparative Examples 1 and 4, when the content of the scale-shaped inorganic particles is large or the particle diameter is larger than the predetermined range, it is found that the image clarity is inferior. Furthermore, as shown in Comparative Examples 2 and 3, it can be seen that the surface hardness is insufficient when the content of the scale-like inorganic particles is small or the particle diameter is smaller than the predetermined range. Furthermore, as shown in Comparative Example 5, it can be seen that when the difference in refractive index is smaller than 0.1, the minimum reflectance is 1.5%, and the performance as an antireflection film is slightly inferior.

Claims (4)

  1.  基材フィルムと、
     この基材フィルム上に設けられる高屈折率層と、
     この高屈折率層上に設けられる低屈折率層であって、その屈折率R及び前記高屈折率層の屈折率Rが(R-0.1)≧Rの関係を満たす低屈折率層と
     を備える反射防止フィルムであって、
     前記高屈折率層は、主成分であるハードコート材料と、平均粒子径が3~10μmである鱗片状の無機粒子とを含む組成物により構成され、
     当該反射防止フィルムの写像鮮明性が90%以上である反射防止フィルム。
    A base film;
    A high refractive index layer provided on the substrate film;
    A low refractive index layer provided on the high refractive index layer, wherein the refractive index RL and the refractive index RH of the high refractive index layer satisfy a relationship of (R H −0.1) ≧ R L. An antireflective film comprising a refractive index layer,
    The high refractive index layer is composed of a composition comprising a hard coat material as a main component and scaly inorganic particles having an average particle diameter of 3 to 10 μm,
    An antireflection film in which the image clarity of the antireflection film is 90% or more.
  2.  請求項1に記載の反射防止フィルムにおいて、
     前記無機粒子は、酸化ケイ素成分を35重量%以上含む反射防止フィルム。
    The antireflection film according to claim 1,
    The inorganic particles are antireflection films containing a silicon oxide component of 35% by weight or more.
  3.  請求項1に記載の反射防止フィルムにおいて、
     前記組成物は、前記ハードコート材料100重量部に対して、前記無機粒子を3~30重量部を含む反射防止フィルム。
    The antireflection film according to claim 1,
    The antireflection film, wherein the composition comprises 3 to 30 parts by weight of the inorganic particles with respect to 100 parts by weight of the hard coat material.
  4.  請求項1に記載の反射防止フィルムにおいて、
     前記基材フィルムは、熱可塑性アクリル樹脂又は脂環式構造を有する樹脂と数平均粒径2.0μm以下の弾性体粒子とを含む組成物からなる第1の樹脂層と、前記弾性体粒子を含まない熱可塑性樹脂からなる第2の樹脂層とを備え、共押出法により形成される多層フィルムである反射防止フィルム。
    The antireflection film according to claim 1,
    The base film includes a first resin layer made of a composition including a thermoplastic acrylic resin or a resin having an alicyclic structure and elastic particles having a number average particle size of 2.0 μm or less, and the elastic particles. An antireflection film which is a multilayer film comprising a second resin layer made of a thermoplastic resin which is not contained and formed by a coextrusion method.
PCT/JP2010/050821 2009-01-30 2010-01-22 Anti-reflection film WO2010087290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-020086 2009-01-30
JP2009020086A JP2012068271A (en) 2009-01-30 2009-01-30 Antireflection film

Publications (1)

Publication Number Publication Date
WO2010087290A1 true WO2010087290A1 (en) 2010-08-05

Family

ID=42395552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050821 WO2010087290A1 (en) 2009-01-30 2010-01-22 Anti-reflection film

Country Status (3)

Country Link
JP (1) JP2012068271A (en)
TW (1) TW201035585A (en)
WO (1) WO2010087290A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526650B1 (en) * 2012-11-21 2015-06-05 (주)엘지하우시스 Antireflection film with excellent optical characteristics
KR102280262B1 (en) 2018-05-18 2021-07-21 주식회사 엘지화학 Anti-reflective film, polarizing plate, and display apparatus
JPWO2020027085A1 (en) * 2018-07-31 2021-08-02 コニカミノルタ株式会社 Optical film, polarizing plate, and method for manufacturing optical film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275409A (en) * 2001-03-16 2002-09-25 Nippon Soda Co Ltd Hydrophilic hard coat film and method for producing the same
WO2007119560A1 (en) * 2006-03-31 2007-10-25 Zeon Corporation Polarizing plate, liquid crystal display and protective film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275409A (en) * 2001-03-16 2002-09-25 Nippon Soda Co Ltd Hydrophilic hard coat film and method for producing the same
WO2007119560A1 (en) * 2006-03-31 2007-10-25 Zeon Corporation Polarizing plate, liquid crystal display and protective film

Also Published As

Publication number Publication date
JP2012068271A (en) 2012-04-05
TW201035585A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
JP4145332B2 (en) Hard coat film, method for producing hard coat film, optical element and image display device
JP4510124B2 (en) Anti-glare hard coat film for image display device, polarizing plate and image display device using the same
JP4887013B2 (en) Antireflection film and display device using the same
US8124215B2 (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
JP4080520B2 (en) Antiglare hard coat film, method for producing antiglare hard coat film, optical element, polarizing plate and image display device
JP6404372B2 (en) Wavelength conversion member, backlight unit, image display device, and method of manufacturing wavelength conversion member
CN1261774C (en) Optical film
TW200525175A (en) Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
JP2007293303A (en) Light-scattering film, polarizing plate and image display
JP2007045142A (en) Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
CN102911539A (en) Coating composition for anti-glare and anti-reflection, and anti-glare and anti-reflection film, polarizing plate and display device using the same
KR20080008346A (en) Polarizing plate
CN1272641C (en) Optical film
CN101046520A (en) Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
TWI718535B (en) Anti-reflective film, polarizing plate, and display apparatus
US20120194907A1 (en) Antiglare film, polarizing plate, image display, and method for producing the antiglare film
CN104302693A (en) Article and method of making the same
JP2011232683A (en) Optical laminated body, polarizer, and display device
JP2010241937A (en) Curable resin composition for hard coat layer, hard coat film, and transmission type optical display
JP2009211061A (en) Antireflection film
JP5116166B2 (en) Hard coat film, optical element and image display device
WO2016152691A1 (en) Antireflection film, display device in which said antireflection film is used, and method for selecting antireflection film
KR102055018B1 (en) Method for procucing anti-glare film, anti-glare film, application liquid, polarizing plate, and image display
JP6558007B2 (en) Antireflection film, display device using the antireflection film, and method for selecting antireflection film
JP6561519B2 (en) Antireflection film, display device using the antireflection film, and method for selecting antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP