WO2010087260A1 - Anti-tuberculosis agent and use thereof - Google Patents

Anti-tuberculosis agent and use thereof Download PDF

Info

Publication number
WO2010087260A1
WO2010087260A1 PCT/JP2010/050665 JP2010050665W WO2010087260A1 WO 2010087260 A1 WO2010087260 A1 WO 2010087260A1 JP 2010050665 W JP2010050665 W JP 2010050665W WO 2010087260 A1 WO2010087260 A1 WO 2010087260A1
Authority
WO
WIPO (PCT)
Prior art keywords
disulfiram
drug
tuberculosis
ddc
drugs
Prior art date
Application number
PCT/JP2010/050665
Other languages
French (fr)
Japanese (ja)
Inventor
猛将 瀧井
康弘 堀田
衣美 稲垣
菊夫 小野嵜
Original Assignee
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人名古屋市立大学 filed Critical 公立大学法人名古屋市立大学
Priority to JP2010548473A priority Critical patent/JPWO2010087260A1/en
Publication of WO2010087260A1 publication Critical patent/WO2010087260A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7008Compounds having an amino group directly attached to a carbon atom of the saccharide radical, e.g. D-galactosamine, ranimustine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/133Amines having hydroxy groups, e.g. sphingosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/145Amines having sulfur, e.g. thiurams (>N—C(S)—S—C(S)—N< and >N—C(S)—S—S—C(S)—N<), Sulfinylamines (—N=SO), Sulfonylamines (—N=SO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an antituberculosis drug and its use (prevention or treatment of tuberculosis).
  • This application claims priority based on Japanese Patent Application No. 2009-21026 filed on Jan. 31, 2009, the entire contents of which are incorporated by reference.
  • tuberculosis is recognized in Japan as an infectious disease that needs to be addressed.
  • effective tuberculosis treatments such as streptomycin (SM), isoniazid (INH) and rifampicin (RFP) were developed, and the number of tuberculosis patients was steadily decreasing.
  • SM streptomycin
  • IH isoniazid
  • RFP rifampicin
  • MDR-TB multidrug-resistant tuberculosis
  • MAC avium-intracellulare complex
  • FQ fluoroquinolone
  • CPM capreomycin
  • an object of the present invention is to provide a novel antituberculosis drug and its use.
  • the present inventors paid attention to the drug disulfiram used as an anti-alcohol drug, and examined its action against Mycobacterium tuberculosis. As a result, it was revealed that disulfiram and its metabolite diethyldithiocarbamate (DDC) have a strong antibacterial activity against Mycobacterium tuberculosis H 37 Rv (MTB). The strength was intermediate between the first-line drugs and the second-line drugs, and the in vitro MIC was 0.78 to 1.56 ⁇ g / ml, which is equivalent to the existing second-line drugs for antituberculosis drugs. Disulfiram was reported as an aldehyde dehydrogenase inhibitory effect by Erik Jacobsen et al.
  • Non-patent Document 1 Methicillin resistant Staphylococcus aureus aureus aureus
  • Giardia Non-patent Document 2
  • Metronidazole-resistant Trichomonas vaginalis Meronidazole
  • fungi such as Aspergillus spp
  • An antituberculosis drug containing disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof as an active ingredient [2] an antituberculosis drug containing isoniazid, rifampicin, streptomycin, kanamycin, amikacin, ethambutol, or para-aminosalicylate as an active ingredient
  • the antituberculosis drug according to [1] which is administered in combination.
  • a method for preventing or treating tuberculosis comprising a step of administering the antituberculous drug according to [1] to a subject.
  • An antituberculosis drug containing isoniazid, ryfampicin, streptomycin, kanamycine, amikacin, ethambutol, or paraaminosalicylate (p-aminosalicylate) as an active ingredient The method for preventing or treating tuberculosis according to [3], which is administered in combination.
  • [5] Use of disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof for the manufacture of an antituberculosis drug.
  • BDT method antibacterial activity measurement method
  • the minimum inhibitory concentrations (MIC) of various antibacterial drugs are summarized in the table.
  • the minimum inhibitory concentrations (MIC) of disulfiram and DDC are summarized in the table.
  • INH isoniazid
  • RFP rifampicin
  • SM streptomycin
  • EB ethambutol
  • PAS paraaminosalicylic acid
  • AMK amikacin
  • KM kanamycin
  • GM gentamicin
  • TC tetracycline
  • DOXY doxycycline
  • CAM clarithromycin
  • CPFX cystein Profloxacin
  • VCM Vancomycin
  • PCG Benzylpenicillin
  • ABPC Ampicillin
  • C Toxicity to THP-1 cells.
  • the horizontal axis is the drug concentration (logarithm), and the vertical axis is the ratio (%) to the control.
  • INH isoniazid
  • RFP rifampicin
  • SM streptomycin
  • EB ethambutol
  • DDC diethyldithiocarbamate.
  • the graph which shows the antibacterial activity with respect to the tubercle bacillus parasitizing the host cell of disulfiram and DDC.
  • B Activity in A549 cells.
  • the horizontal axis represents the drug concentration, and the vertical axis represents the amount of decrease in the number of colonies (logarithm).
  • surface which shows the pH dependence of the antituberculous action of disulfiram and DDC.
  • CPFX Ciprofloxacin
  • DDC Diethyldithiocarbamate. Examination of the mode of action (bactericidal or bacteriostatic) of disulfiram on M. bovis BCG. The results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Mycobacterium bovis BCG.
  • A sensitivity to isoniazid
  • B sensitivity to ethambutol
  • C sensitivity to disulfiram
  • D sensitivity to DDC
  • E sensitivity to disulfiram
  • D sensitivity to DDC.
  • the horizontal axis is the number of days after drug addition.
  • the vertical axis of A to D is the absorbance at 530 nm.
  • the vertical axis of E and F is the number of colonies (CFU).
  • the results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Staphylococcus aureus.
  • the horizontal axis is the time after drug addition.
  • the vertical axis is the absorbance at 530 nm.
  • Examination of mode of action (bactericidal or bacteriostatic) of disulfiram against M. smegmatis. The results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Mycobacterium smegmatis.
  • the horizontal axis is the time after drug addition.
  • the vertical axis is the absorbance at 530 nm.
  • the horizontal axis of A is the drug concentration, and the vertical axis is the residual activity (%).
  • INH isoniazid
  • RFP rifampicin
  • SM streptomycin
  • EB ethambutol
  • KM kanamycin
  • PAS paraaminosalicylic acid
  • CPFX ciprofloxacin
  • DSF disulfiram
  • DDC diethyldithiocarbamate.
  • DSF Disulfiram
  • DDC Diethyldithiocarbamate. Table showing antibacterial activity of disulfiram and DDC against clinical isolates (drug-sensitive strains). Table showing antibacterial activity of disulfiram and DDC against clinical isolates (drug resistant strains).
  • INH isoniazid
  • RFP rifampicin
  • EB ethambutol
  • LVFX levofloxacin
  • SPFX spafloxacin
  • CPFX ciprofloxacin
  • KM kanamycin
  • SM streptomycin
  • PAS paraaminosalicylic acid
  • TH ethionamide
  • PZA pyrazinamide
  • DSF Disulfiram
  • DDC diethyldithiocarbamate. Table showing drug resistance frequency for disulfiram and DDC.
  • INH isoniazid
  • RFP rifampicin
  • SM streptomycin
  • EB ethambutol
  • KM kanamycin
  • CPFX ciprofloxacin
  • PAS paraaminosalicylic acid
  • DSF disulfiram
  • DDC diethyldithiocarbamate.
  • RFP rifampicin
  • DSF disulfiram
  • the graph which shows the weight change of a tuberculosis chronic infection model mouse.
  • A Rifampicillin was administered at 20 mg / kg (R20), 10 mg / kg (R10) or 5 mg / kg (R5), and changes in body weight were recorded.
  • Disulfiram was administered at 160 mg / kg (D160), 80 mg / kg (D80) or 40 mg / kg (D40), and changes in body weight were recorded.
  • the graph which shows the infection protective effect of disulfiram.
  • Disulfiram 40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)
  • rifampicin 5 mg / kg (R5), 10 mg / kg (R10) or 20 mg / kg (R20)
  • 5% gum arabic control group
  • Disulfiram 40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)
  • rifampicin 5 mg / kg (R5), 10 mg / kg (R10) or After administration of 20 mg / kg (R20)) or 5% gum arabic (control group), liver injury markers in the liver and serum were detected.
  • NS is not significantly different.
  • Disulfiram 40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)
  • rifampicin 5 mg / kg (R5), 10 mg / kg (R10) or After administration of 20 mg / kg (R20)) or 5% gum arabic (control group), liver injury markers in the liver and serum were detected.
  • ALP level left
  • ChE inhibitory effect right
  • NS is not significantly different.
  • the first aspect of the present invention relates to an antituberculosis drug.
  • disulfiram (1- (diethylthiocarbamoyldisulfanyl) -N, N-diethyl-methanethioamide) or its metabolite diethyldithiocarbamate or a salt thereof is used as an active ingredient.
  • the salt here is not particularly limited as long as it is pharmaceutically acceptable, and salts (inorganic acid salts) with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boric acid, formic acid, acetic acid, lactic acid, fumaric acid Examples thereof include salts (organic acid salts) with maleic acid, tartaric acid, citric acid and the like. These salts can be prepared by conventional means.
  • Disulfiram was reported as an aldehyde dehydrogenase inhibitory effect by Erik Jacobsen et al. In 1948 and is now widely used as a drug with indications for chronic alcoholism. The structure of disulfiram is shown below.
  • Disulfiram is known to be metabolized in vivo as follows.
  • Disulfiram is used clinically as an anti-alcohol drug and is readily available.
  • Mitsubishi Tanabe Pharma Co., Ltd., Nacalai Tesque Co., Ltd., Wako Pure Chemicals Co., Ltd., and SIGNA-ALORICHORI Group sell disulfiram. Diethyldithiocarbamate is available from Nacalai Tesque.
  • the active ingredient can be formulated according to a conventional method.
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like.
  • excipient lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used.
  • disintegrant starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer.
  • emulsifier gum arabic, sodium alginate, tragacanth and the like can be used.
  • suspending agent glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used.
  • soothing agent benzyl alcohol, chlorobutanol, sorbitol and the like can be used.
  • stabilizer propylene glycol, diethylin sulfite, ascorbic acid or the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • preservatives benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • the dosage form for formulation is not particularly limited, and can be prepared, for example, as tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories.
  • the drug of the present invention thus formulated can be applied to a subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intramuscular, intraperitoneal injection, etc.) depending on the form.
  • the “subject” here is not particularly limited, but preferably a human.
  • the content of the active ingredient in the antituberculosis drug of the present invention generally varies depending on the dosage form, but is, for example, about 0.001% by weight to about 90% by weight so as to achieve a desired dose.
  • anti-tuberculosis drugs including existing anti-tuberculosis drugs may be used. If drugs with different action points are combined, a multifaceted antituberculosis action can be exerted. When the same or similar drugs are combined, enhancement of antituberculous action can be expected.
  • existing anti-tuberculosis agents include Isoniazid, Rifampicin, Streptomycin, Kanamycin, Amikacin, Ethambutol, and para-aminosalicylate.
  • the treatment method of the present invention includes a step of administering the antituberculosis drug of the present invention to the living body.
  • the administration route is not particularly limited, and examples thereof include oral, intravenous, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, and transmucosal. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed). In addition, oral administration is preferable because administration is easy.
  • the dose of the antituberculosis drug varies depending on the symptom, age of the subject, sex, weight, etc., but a person skilled in the art can appropriately set an appropriate dose.
  • the dose can be set so that the amount of the active ingredient per day is about 100 mg to about 1000 mg, preferably about 250 mg to about 500 mg for an adult (body weight: about 60 kg).
  • the administration schedule for example, once to several times a day, once every two days, or once every three days can be adopted. In setting the administration schedule, it is possible to consider the condition of the administration subject, the duration of effect of the drug, and the like.
  • the antituberculosis drug of the present invention is administered alone or in combination with other antituberculosis drugs.
  • examples of other anti-tuberculosis drugs include Isoniazid, Rifampicin, Streptomycin, Kanamycin, Amikacin, Ethambutol, or para-aminosalicylate It is an anti-tuberculosis drug.
  • Disulfiram had a minimum inhibitory concentration of 0.78 to 1.56 ⁇ g / ml against M. tuberculosis® H37Rv. Disulfiram is metabolized to diethyldithiocarbamate (DDC) by glutathione reductase in the blood, excreted in the urine after hepatic metabolism. DDC was shown to be a narrow-spectrum compound with no antibacterial activity in M.Msmegmatis, Gram-positive bacteria S. aureus, and Gram-negative bacteria E. coli even in the same mycobacteria group . The MBC / MIC values of disulfiram and DDC were both 1, suggesting the possibility of bactericidal action (data not shown).
  • DDC diethyldithiocarbamate
  • Mycobacterium tuberculosis is one of the host body parasites. It is a latent infection in the phagosome of human M ⁇ s and relapses with aging and immunity, causing pulmonary tuberculosis. It is a fungus.
  • the phagosomes in the M ⁇ are slightly acidic (pH 6.1-6.5) and are in a restricted environment. With existing drugs, CAM, CPFX, INH, etc. have been found to decrease in activity under acidic conditions. Therefore, human M ⁇ -like cells were used to examine the intracellular migration of disulfiram, and the antibacterial activity of disulfiram under acidic conditions was examined.
  • Method THP-1 was treated with 100 ng / ml of PMA for 2 days, and spread in a 24-well plate at 1.0 ⁇ 10 6 cells / ml. After incubation for 1 day and infection with 5.0 ⁇ 10 7 cfu / ml of H37Rv for 4 hours, the cells were washed twice with HBSS and treated with SM for 20 hours. After washing twice with HBSS, a drug dilution series was made and added and treated for 4 hours. After washing twice with HBSS and lysing the cells with 0.1% SDS solution, a colony assay was performed. The cells were cultured for 14 days and evaluated by the number of colonies. The experiment was performed three times independently, and the average value was calculated.
  • Drug sensitivity test (1) Method (M. bovis BCG) The bacterial solution cultured in 7H9 liquid medium until the early log phase was dispensed in 3.6 ml aliquots. The drug was prepared so that the concentrations were 1 MIC, 10 MIC, and 50 MIC, 400 ⁇ l was added to a test tube containing the bacterial solution, and cultured at 37 ° C. Absorbance measurement and colony assay were performed on days 2, 4, 7, 10, 14, and 21 with day 0 as the day when the drug was added. The number of colonies after 14 days of culture was evaluated.
  • DTNB method To a 96-well plate, 150 ⁇ l of 0.01% DTNB (5,5′-dithiobis-2-nitrobenzoic acid) solution was sprinkled, and 5 ⁇ l of 5% acetylthiocholine iodide was added. A dilution series of each drug was prepared in advance using FBS (non-immobilized) as a solvent. 2 ⁇ l of this solution was added to the plate, cultured at 37 ° C., and after 10 minutes, the wavelength at an absorbance of 405 nm was measured. The cholinesterase inhibitory effect was evaluated by IC 50 . Neostigmine bromide was used as a positive control.
  • Dialkyldithiocarbamates have been reported to exhibit antibacterial activity against some acid-fast bacteria such as M. leprae (Vadim, 2006 J Antimicrob Chemother. 2006 Jun; 57 (6): 1134-8. Epub 2006 Apr 4. Synthesis and antileprosy activity of some dialkyldithiocarbamates.).
  • the MIC of disulfiram was 0.78 to 1.56 ⁇ g / ml, and the MIC of DDC was 1.56 to 3.13 ⁇ g / ml (FIG. 14).
  • the MIC of disulfiram for the drug-resistant strain (22 strains) was 0.78 to 1.56 ⁇ g / ml, and the MIC of DDC was 1.56 to 3.13 ⁇ g / ml (FIG. 15).
  • the MIC for drug-sensitive strains and the MIC for drug-resistant strains were equivalent, suggesting that disulfiram and DDC do not have cross-resistance with existing drugs. It was also shown that disulfiram and DDC have antibacterial activity against quinolone (MXFX, FXGFLX, LVFX) resistant strains, which are new drug candidate compounds.
  • a dilution series of 1.8 ⁇ 10 8 CFU / ml bacterial solution was prepared and 100 ⁇ l was added to each drug plate.
  • the resistance frequency was determined from the number of colonies after 2 weeks of culture. The experiment was performed twice in duplicate. Further, the obtained resistant bacteria were subcultured 3 times (6 weeks), and 10 strains were stored.
  • Tuberculosis is a chronic respiratory infection, and new anti-tuberculosis drugs are required to be orally administrable and cross-resistant with existing drugs, and have excellent pharmacokinetics in cells and lungs. Furthermore, it has a narrow spectrum that shows bactericidal activity against M. tuberculosis in both the logarithmic growth phase and the mitotic resting phase. The results indicate that disulfiram and DDC meet these conditions. Moreover, since it was effective also against drug resistant M. smegmatis (FIG. 11), it was suggested that an action point differs from the existing drug (data not shown). It was also found to have a lytic action specific to human and bovine tuberculosis.
  • disulfiram (antabuse) has been used as a treatment for chronic alcoholism.
  • antibacterial activity against pathogenic bacteria, parasitic protists, and fungi has been reported. It has also been proven effective in vivo against Trichomonas muris and Candida albicans.
  • disulfiram is effective against Mycobacterium tuberculosis.
  • the anti-tuberculosis drug of the present invention comprises a compound having characteristics such as (1) high selectivity for M. tuberculosis and (2) bactericidal action, and is extremely useful for the treatment or prevention of tuberculosis. It is.
  • the compound of the active ingredient showed antibacterial activity against drug-resistant bacteria, it can be highly expected to be effective against drug-resistant tuberculosis bacteria. It is also possible to use the antituberculous drug of the present invention in combination with other antituberculous drugs.

Abstract

Disclosed are a novel anti-tuberculosis agent and a use thereof. The anti-tuberculosis agent comprises disulfiram, diethyldithiocarbamate, or a pharmaceutically acceptable salt of disulfiram or diethyldithiocarbamate as an active ingredient.

Description

抗結核薬及びその用途Antituberculosis drugs and their uses
 本発明は抗結核薬及びその用途(結核の予防や治療など)に関する。本出願は、2009年1月31日に出願された日本国特許出願第2009-21026号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to an antituberculosis drug and its use (prevention or treatment of tuberculosis). This application claims priority based on Japanese Patent Application No. 2009-21026 filed on Jan. 31, 2009, the entire contents of which are incorporated by reference.
 1993年のWHO結核非常事態宣言についで1999年7月の厚生労働省の結核緊急事態宣言が出され、結核は、対応が必要な感染症として本邦では認知されている。第二次世界大戦後、ストレプトマイシン(SM)、イソニアジド(INH)やリファンピシン(RFP)といった有効な結核治療薬が開発され、結核患者は順調に減少していたが、世界では毎年920万人が新規発症し、180万人以上が死亡しているのが現状であり、1980年代半ば以降、都市部を中心に漸増傾向に転じている。この原因として、化学療法の失敗例に起因する多剤耐性結核(MDR-TB)や、日和見感染による慢性疾患である非結核性抗酸菌M. avium-intracellulare complex(MAC)等の難治性抗酸菌症が増加傾向に転じさせた大きな理由である。MDR-TBに対しては1994年に打ち出されたDOTS戦略が世界的に著しい成果を挙げている。一方、南アフリカ等発展途上国においてはHIVとの二重感染で感染後1月以内に90%が亡くなる広範囲薬剤耐性結核菌(Extensively Drug-Resistant TB; XDR-TB)の出現が確認されている。日本では、従来11種の薬剤が使用されてきたが、フルオロキノロン(FQ)は保険適用が認められていないことやカプレオマイシン(CPM)が薬価基準から削除されるなど、使用できる薬剤が減少している。新薬開発が遅れている結核医療において、新規化学構造式と新たな作用機序を有する新薬の開発が望まれている。 1993 Following the WHO Tuberculosis Emergency Declaration in 1993, the Ministry of Health, Labor and Welfare issued a tuberculosis emergency declaration in July 1999, and tuberculosis is recognized in Japan as an infectious disease that needs to be addressed. After World War II, effective tuberculosis treatments such as streptomycin (SM), isoniazid (INH) and rifampicin (RFP) were developed, and the number of tuberculosis patients was steadily decreasing. Currently, more than 1.8 million people have died, and since the mid-1980s, the trend has gradually increased, especially in urban areas. The cause of this is refractory anti-tuberculosis such as multidrug-resistant tuberculosis (MDR-TB) resulting from chemotherapy failure and non-tuberculous mycobacteria M. avium-intracellulare complex (MAC), which is a chronic disease caused by opportunistic infections. This is a major reason why acid mycosis turned to an increasing trend. For MDR-TB, the DOTS strategy launched in 1994 has achieved remarkable results worldwide. On the other hand, in developing countries such as South Africa, the emergence of extensive drug-resistant Mycobacterium tuberculosis (Extensively Drug-Resistant TB; XDR-TB), in which 90% die within a month after infection due to double infection with HIV, has been confirmed. In Japan, 11 types of drugs have been used in the past.However, fluoroquinolone (FQ) is not approved for insurance, and capreomycin (CPM) is removed from the drug price standard. ing. In tuberculosis medicine for which development of new drugs is delayed, development of new drugs with new chemical structural formulas and new mechanisms of action is desired.
 以上の背景の下、本発明は新規な抗結核薬及びその用途を提供することを課題とする。 Under the above background, an object of the present invention is to provide a novel antituberculosis drug and its use.
 本発明者らは、抗酒薬として使用されている薬剤ジスルフィラム(Disulfiram)に注目し、その結核菌に対する作用を検討した。その結果、ジスルフィラム及びその代謝産物ジエチルジチオカルバメート(Diethyldithiocarbamate; DDC)がヒト型結核菌(Mycobacterium tuberculosis H37Rv (MTB)に対して強い抗菌活性を有することが明らかとなった。抗菌作用は既存の第一選択薬と第二選択薬の中間に位置する強さであった。in vitroでのMICは、既存の抗結核薬の第二選択薬と同等の0.78~1.56μg/mlであった。ジスルフィラムは、1948年にErik Jacobsenらにより、アルデヒドデヒドロゲナーゼ阻害作用が報告され、現在、慢性アルコール中毒に適応を持つ薬剤として普及している。これまでに、メチシリン耐性スタフィロコッカス・アウレウス(Methicillin resistant Staphylococcus aureus)(非特許文献1)、ジアルジア(Giardia)(非特許文献2)、メトロニダゾール耐性トリコモナス・バギナリス(Metronidazole-resistant Trichomonas vaginalis)(非特許文献3)などの細菌、及びアスペルギルス属(Aspergillus spp)のような真菌(非特許文献4)にも抗菌活性を有することが報告されている。 The present inventors paid attention to the drug disulfiram used as an anti-alcohol drug, and examined its action against Mycobacterium tuberculosis. As a result, it was revealed that disulfiram and its metabolite diethyldithiocarbamate (DDC) have a strong antibacterial activity against Mycobacterium tuberculosis H 37 Rv (MTB). The strength was intermediate between the first-line drugs and the second-line drugs, and the in vitro MIC was 0.78 to 1.56 μg / ml, which is equivalent to the existing second-line drugs for antituberculosis drugs. Disulfiram was reported as an aldehyde dehydrogenase inhibitory effect by Erik Jacobsen et al. In 1948 and is now widely used as a drug with indications for chronic alcohol intoxication, so far, Methicillin resistant Staphylococcus aureus aureus (Non-patent Document 1), Giardia (Non-patent Document 2), Metronidazole-resistant Trichomonas vaginalis (Metronidazole) -resistant Trichomonas vaginalis) (non-patent document 3) and fungi such as Aspergillus spp (non-patent document 4) have been reported to have antibacterial activity.
 更に検討を進めた結果、ジスルフィラム及びDDCの抗菌活性、細胞内移行性、細胞毒性、一次作用点について有意義且つ興味深い知見が得られ、これらの化合物が抗結核薬の有効成分として極めて有効であることが示された。特に、結核菌に対する選択性が非常に高いこと、及び薬剤耐性菌に対しても抗菌活性を示したことは、当該化合物の有効性を強く支持する。 As a result of further investigation, significant and interesting findings have been obtained regarding the antibacterial activity, intracellular translocation, cytotoxicity, and primary action point of disulfiram and DDC, and these compounds are extremely effective as active ingredients for antituberculosis drugs. It has been shown. In particular, the very high selectivity for Mycobacterium tuberculosis and the antibacterial activity against drug-resistant bacteria strongly support the effectiveness of the compound.
 以上の知見に基づき、次の発明が提供される。
[1]ジスルフィラム又はジエチルジチオカルバメート若しくはその薬学的に許容可能な塩を有効成分として含有する抗結核薬。
[2]イソニアジド(Isoniazid)、リファンピシン(Rifampicin)、ストレプトマイシン(Streptomycin)、カナマイシン(Kanamycin)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、又はパラアミノサリチル酸(p-aminosalicylate)を有効成分とする抗結核薬と併用投与されることを特徴とする、[1]に記載の抗結核薬。
[3][1]に記載の抗結核薬を対象に投与するステップを含む、結核の予防又は治療方法。
[4]イソニアジド(Isoniazid)、リファンピシン(Ryfampicin)、ストレプトマイシン(Streptmycin)、カナマイシン(Kanamycine)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、又はパラアミノサリチル酸(p-aminosalicylate)を有効成分とする抗結核薬を併用投与することを特徴する、[3]に記載の結核の予防又は治療方法。
[5]抗結核薬を製造するための、ジスルフィラム又はジエチルジチオカルバメート若しくはその薬学的に許容可能な塩の使用。
Based on the above knowledge, the following invention is provided.
[1] An antituberculosis drug containing disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof as an active ingredient.
[2] an antituberculosis drug containing isoniazid, rifampicin, streptomycin, kanamycin, amikacin, ethambutol, or para-aminosalicylate as an active ingredient The antituberculosis drug according to [1], which is administered in combination.
[3] A method for preventing or treating tuberculosis, comprising a step of administering the antituberculous drug according to [1] to a subject.
[4] An antituberculosis drug containing isoniazid, ryfampicin, streptomycin, kanamycine, amikacin, ethambutol, or paraaminosalicylate (p-aminosalicylate) as an active ingredient The method for preventing or treating tuberculosis according to [3], which is administered in combination.
[5] Use of disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof for the manufacture of an antituberculosis drug.
液体培地中での菌の濃度を指標にした抗菌活性測定法(BDT法)による既存薬剤の各種抗酸菌、黄色ブドウ球菌及び大腸菌に対する抗菌活性。各種抗菌薬の最小発育阻止濃度(MIC)を表にまとめた。Antibacterial activity against various acid-fast bacilli, Staphylococcus aureus and Escherichia coli of existing drugs by antibacterial activity measurement method (BDT method) using the concentration of bacteria in liquid medium as an index The minimum inhibitory concentrations (MIC) of various antibacterial drugs are summarized in the table. ジスルフィラム及びDDCの各種抗酸菌、黄色ブドウ球菌及び大腸菌に対する抗菌活性。ジスルフィラム及びDDCの最小発育阻止濃度(MIC)を表にまとめた。INH:イソニアジド、RFP:リファンピシン、SM:ストレプトマイシン、EB:エタンブトール、PAS:パラアミノサリチル酸、AMK:アミカシン、KM:カナマイシン、GM:ゲンタマイシン、TC:テトラサイクリン、DOXY:ドキシサイクリン、CAM: クラリスロマイシン、CPFX:シプロフロキサシン、VCM:バンコマイシン、PCG:ベンジルペニシリン、ABPC:アンピシリンAntibacterial activity of disulfiram and DDC against various acid-fast bacteria, Staphylococcus aureus and Escherichia coli. The minimum inhibitory concentrations (MIC) of disulfiram and DDC are summarized in the table. INH: isoniazid, RFP: rifampicin, SM: streptomycin, EB: ethambutol, PAS: paraaminosalicylic acid, AMK: amikacin, KM: kanamycin, GM: gentamicin, TC: tetracycline, DOXY: doxycycline, CAM: clarithromycin, CPFX: cystein Profloxacin, VCM: Vancomycin, PCG: Benzylpenicillin, ABPC: Ampicillin ジスルフィラム及びDDCの細胞毒性を示すグラフ。既存の抗結核薬と細胞毒性を比較した。A:A-549細胞に対する毒性。B:THP-1細胞に対する毒性。C:THP-1細胞に対する毒性。横軸は薬剤の濃度(対数)、縦軸はコントロールに対する比率(%)。The graph which shows the cytotoxicity of disulfiram and DDC. Cytotoxicity was compared with existing antituberculosis drugs. A: Toxicity to A-549 cells. B: Toxicity to THP-1 cells. C: Toxicity to THP-1 cells. The horizontal axis is the drug concentration (logarithm), and the vertical axis is the ratio (%) to the control. THP-1細胞に対するジスルフィラムの非毒性領域を示す表。既存の薬剤と比較した。INH:イソニアジド、RFP:リファンピシン、SM:ストレプトマイシン、EB:エタンブトール、DDC:ジエチルジチオカルバメート。The table | surface which shows the nontoxic area | region of the disulfiram with respect to THP-1 cell. Compared with existing drugs. INH: isoniazid, RFP: rifampicin, SM: streptomycin, EB: ethambutol, DDC: diethyldithiocarbamate. ジスルフィラム及びDDCの宿主細胞内寄生している結核菌に対する抗菌活性を示すグラフ。A:THP-1細胞での活性。B:A549細胞での活性。横軸は薬剤の濃度、縦軸はコロニー数の減少量(対数)。The graph which shows the antibacterial activity with respect to the tubercle bacillus parasitizing the host cell of disulfiram and DDC. A: Activity in THP-1 cells. B: Activity in A549 cells. The horizontal axis represents the drug concentration, and the vertical axis represents the amount of decrease in the number of colonies (logarithm). ジスルフィラム及びDDCの抗結核菌作用のpH依存性を示す表。CPFX:シプロフロキサシン、DDC:ジエチルジチオカルバメート。The table | surface which shows the pH dependence of the antituberculous action of disulfiram and DDC. CPFX: Ciprofloxacin, DDC: Diethyldithiocarbamate. M. bovis BCGに対するジスルフィラムの作用様式(殺菌的、もしくは静菌的)の検討。薬剤感受性試験の結果をグラフにまとめた。Mycobacterium bovis BCGのコロニー数で薬剤の活性を評価した。A:イソニアジドに対する感受性、B:エタンブトールに対する感受性、C:ジスルフィラムに対する感受性、D:DDCに対する感受性、E:ジスルフィラムに対する感受性、D:DDCに対する感受性。横軸は薬剤添加後の日数である。A~Dの縦軸は530nmの吸光度である。また、E及びFの縦軸はコロニー数(CFU)である。Examination of the mode of action (bactericidal or bacteriostatic) of disulfiram on M. bovis BCG. The results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Mycobacterium bovis BCG. A: sensitivity to isoniazid, B: sensitivity to ethambutol, C: sensitivity to disulfiram, D: sensitivity to DDC, E: sensitivity to disulfiram, D: sensitivity to DDC. The horizontal axis is the number of days after drug addition. The vertical axis of A to D is the absorbance at 530 nm. The vertical axis of E and F is the number of colonies (CFU). 黄色ブドウ球菌に対するジスルフィラムの作用様式(殺菌的、もしくは静菌的)の検討。薬剤感受性試験の結果をグラフにまとめた。スタフィロコッカス・アウレウスのコロニー数で薬剤の活性を評価した。A:ジスルフィラムに対する感受性、B:DDCに対する感受性、C:CPFXに対する感受性。横軸は薬剤添加後の時間である。縦軸は530nmの吸光度である。Examination of the mode of action (bactericidal or bacteriostatic) of disulfiram against Staphylococcus aureus. The results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Staphylococcus aureus. A: sensitivity to disulfiram, B: sensitivity to DDC, C: sensitivity to CPFX. The horizontal axis is the time after drug addition. The vertical axis is the absorbance at 530 nm. M. smegmatisに対するジスルフィラムの作用様式(殺菌的、もしくは静菌的)の検討。薬剤感受性試験の結果をグラフにまとめた。Mycobacterium smegmatisのコロニー数で薬剤の活性を評価した。A:ジスルフィラムに対する感受性、B:DDCに対する感受性、C:リゾチームに対する感受性。横軸は薬剤添加後の時間である。縦軸は530nmの吸光度である。Examination of mode of action (bactericidal or bacteriostatic) of disulfiram against M. smegmatis. The results of the drug sensitivity test are summarized in a graph. The activity of the drug was evaluated by the number of colonies of Mycobacterium smegmatis. A: sensitivity to disulfiram, B: sensitivity to DDC, C: sensitivity to lysozyme. The horizontal axis is the time after drug addition. The vertical axis is the absorbance at 530 nm. ジスルフィラム及びDDCのコリンエステラーゼ阻害作用を示すグラフ(A)と各薬剤のIC50(B)。Aの横軸は薬剤の濃度、縦軸は残存活性(%)。Graph (A) showing cholinesterase inhibitory action of disulfiram and DDC and IC 50 (B) of each drug. The horizontal axis of A is the drug concentration, and the vertical axis is the residual activity (%). ジスルフィラム及びDDCの薬剤耐性M. smegmatisに対する抗菌作用を示す表。The table | surface which shows the antibacterial action with respect to drug resistance M. * smegmatis of a disulfiram and DDC. 7H11寒天平板法により各薬剤のMIC(minimum inhibitory concentration:最小発育阻止濃度)を測定した結果。INH:イソニアジド、RFP:リファンピシン、SM:ストレプトマイシン、EB:エタンブトール、KM:カナマイシン、PAS:パラアミノサリチル酸、CPFX:シプロフロキサシン、DSF:ジスルフィラム、DDC:ジエチルジチオカルバメート。The result of measuring MIC (minimum inhibitory concentration) of each drug by 7H11 agar plate method. INH: isoniazid, RFP: rifampicin, SM: streptomycin, EB: ethambutol, KM: kanamycin, PAS: paraaminosalicylic acid, CPFX: ciprofloxacin, DSF: disulfiram, DDC: diethyldithiocarbamate. ジスルフィラム類縁化合物の抗菌活性を示す表。DSF:ジスルフィラム、DDC:ジエチルジチオカルバメート。The table | surface which shows the antimicrobial activity of a disulfiram related compound. DSF: Disulfiram, DDC: Diethyldithiocarbamate. 臨床分離株(薬剤感受性株)に対するジスルフィラム及びDDCの抗菌活性を示す表。Table showing antibacterial activity of disulfiram and DDC against clinical isolates (drug-sensitive strains). 臨床分離株(薬剤耐性株)に対するジスルフィラム及びDDCの抗菌活性を示す表。INH:イソニアジド、RFP:リファンピシン、EB:エタンブトール、LVFX:レボフロキサシン、SPFX:スパフロキサシン、CPFX:シプロフロキサシン、KM:カナマイシン、SM:ストレプトマイシン、PAS:パラアミノサリチル酸、TH:エチオナミド、PZA:ピラジナミド、DSF:ジスルフィラム、DDC:ジエチルジチオカルバメート。Table showing antibacterial activity of disulfiram and DDC against clinical isolates (drug resistant strains). INH: isoniazid, RFP: rifampicin, EB: ethambutol, LVFX: levofloxacin, SPFX: spafloxacin, CPFX: ciprofloxacin, KM: kanamycin, SM: streptomycin, PAS: paraaminosalicylic acid, TH: ethionamide, PZA: pyrazinamide, DSF: Disulfiram, DDC: diethyldithiocarbamate. ジスルフィラム及びDDCに関する薬剤耐性頻度を示す表。INH:イソニアジド、RFP:リファンピシン、SM:ストレプトマイシン、EB:エタンブトール、KM:カナマイシン、CPFX:シプロフロキサシン、PAS:パラアミノサリチル酸、DSF:ジスルフィラム、DDC:ジエチルジチオカルバメート。Table showing drug resistance frequency for disulfiram and DDC. INH: isoniazid, RFP: rifampicin, SM: streptomycin, EB: ethambutol, KM: kanamycin, CPFX: ciprofloxacin, PAS: paraaminosalicylic acid, DSF: disulfiram, DDC: diethyldithiocarbamate. 結核慢性感染モデルマウスを用いた実験系の概要。RFP:リファンピシン、DSF:ジスルフィラム。Outline of experimental system using tuberculosis chronic infection model mouse. RFP: rifampicin, DSF: disulfiram. 結核慢性感染モデルマウスの体重変化を示すグラフ。A:リファンピシリンを20mg/kg(R20)、10mg/kg(R10)又は5mg/kg(R5)で投与し、体重変化を記録した。B:ジスルフィラムを160mg/kg(D160)、80mg/kg(D80)又は40mg/kg(D40)で投与し、体重変化を記録した。The graph which shows the weight change of a tuberculosis chronic infection model mouse. A: Rifampicillin was administered at 20 mg / kg (R20), 10 mg / kg (R10) or 5 mg / kg (R5), and changes in body weight were recorded. B: Disulfiram was administered at 160 mg / kg (D160), 80 mg / kg (D80) or 40 mg / kg (D40), and changes in body weight were recorded. ジスルフィラムの感染防御効果を示すグラフ。ヒト型結核菌を感染させたマウスにジスルフィラム(40mg/kg(D40)、80mg/kg(D80)又は160mg/kg(D160))、リファンピシン(5mg/kg(R5)、10mg/kg(R10)又は20mg/kg(R20))又は5%アラビアガム(コントロール群)を投与した後、肺、脾臓及び肝臓を摘出してコロニーアッセイを行った。肺(左)及び脾臓(右)の対数菌数(logCFU)の平均値(n=5)を示した。エラーバーは平均±標準偏差を示す(n=5)。スチューデントのt検定により評価した。*, p<0.05(対コントロール群)、**, p<0.01(対コントロール群)、***, p<0.001(対コントロール群)。The graph which shows the infection protective effect of disulfiram. Disulfiram (40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)), rifampicin (5 mg / kg (R5), 10 mg / kg (R10) or 20 mg / kg (R20)) or 5% gum arabic (control group) was administered, and then the lung, spleen and liver were excised and subjected to a colony assay. Mean values (n = 5) of logarithmic bacterial counts (logCFU) of lung (left) and spleen (right) are shown. Error bars indicate mean ± standard deviation (n = 5). Evaluated by Student's t-test. *, P <0.05 (vs. control group), **, p <0.01 (vs. control group), ***, p <0.001 (vs. control group). ジスルフィラムの毒性を検討した結果のグラフ。ヒト型結核菌を感染させたマウスにジスルフィラム(40mg/kg(D40)、80mg/kg(D80)又は160mg/kg(D160))、リファンピシン(5mg/kg(R5)、10mg/kg(R10)又は20mg/kg(R20))又は5%アラビアガム(コントロール群)を投与した後、肝臓及び血清中の肝障害マーカーを検出した。GOT(左)及びGPT(右)の相対活性を示す。エラーバーは平均±標準偏差を示す(n=5)。スチューデントのt検定により評価した。*, p<0.05(対コントロール群)、**, p<0.01(対コントロール群)、***, p<0.001(対コントロール群)。NSは有意差なし。The graph of the result of having examined the toxicity of disulfiram. Disulfiram (40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)), rifampicin (5 mg / kg (R5), 10 mg / kg (R10) or After administration of 20 mg / kg (R20)) or 5% gum arabic (control group), liver injury markers in the liver and serum were detected. The relative activities of GOT (left) and GPT (right) are shown. Error bars indicate mean ± standard deviation (n = 5). Evaluated by Student's t-test. *, P <0.05 (vs. control group), **, p <0.01 (vs. control group), ***, p <0.001 (vs. control group). NS is not significantly different. ジスルフィラムの毒性を検討した結果のグラフ。ヒト型結核菌を感染させたマウスにジスルフィラム(40mg/kg(D40)、80mg/kg(D80)又は160mg/kg(D160))、リファンピシン(5mg/kg(R5)、10mg/kg(R10)又は20mg/kg(R20))又は5%アラビアガム(コントロール群)を投与した後、肝臓及び血清中の肝障害マーカーを検出した。ALPレベル(左)及びChE阻害効果(右)を示す。エラーバーは平均±標準偏差を示す(n=5)。スチューデントのt検定により評価した。*, p<0.05(対コントロール群)、**, p<0.01(対コントロール群)、***, p<0.001(対コントロール群)。NSは有意差なし。The graph of the result of having examined the toxicity of disulfiram. Disulfiram (40 mg / kg (D40), 80 mg / kg (D80) or 160 mg / kg (D160)), rifampicin (5 mg / kg (R5), 10 mg / kg (R10) or After administration of 20 mg / kg (R20)) or 5% gum arabic (control group), liver injury markers in the liver and serum were detected. ALP level (left) and ChE inhibitory effect (right) are shown. Error bars indicate mean ± standard deviation (n = 5). Evaluated by Student's t-test. *, P <0.05 (vs. control group), **, p <0.01 (vs. control group), ***, p <0.001 (vs. control group). NS is not significantly different.
 本発明の第1の局面は抗結核薬に関する。本発明の抗結核薬では、ジスルフィラム(1-(ジエチルチオカルバモイルジスルファニル)-N,N-ジエチル-メタンチオアミド)又はその代謝産物であるジエチルジチオカルバメート若しくはその塩を有効成分として用いる。ここでの塩は薬学的に許容可能な限りその種類は特に限定されず、塩酸、リン酸、硫酸、硝酸、ホウ酸等との塩(無機酸塩)や、ギ酸、酢酸、乳酸、フマル酸、マレイン酸、酒石酸、クエン酸等との塩(有機酸塩)をその例として挙げることができる。これらの塩の調製は慣用手段によって行なうことができる。 The first aspect of the present invention relates to an antituberculosis drug. In the antituberculosis drug of the present invention, disulfiram (1- (diethylthiocarbamoyldisulfanyl) -N, N-diethyl-methanethioamide) or its metabolite diethyldithiocarbamate or a salt thereof is used as an active ingredient. The salt here is not particularly limited as long as it is pharmaceutically acceptable, and salts (inorganic acid salts) with hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boric acid, formic acid, acetic acid, lactic acid, fumaric acid Examples thereof include salts (organic acid salts) with maleic acid, tartaric acid, citric acid and the like. These salts can be prepared by conventional means.
 ジスルフィラムについては、1948年にErik Jacobsenらにより、アルデヒドデヒドロゲナーゼ阻害作用が報告され、現在、慢性アルコール中毒に適応を持つ薬剤として普及している。ジスルフィラムの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000001
Disulfiram was reported as an aldehyde dehydrogenase inhibitory effect by Erik Jacobsen et al. In 1948 and is now widely used as a drug with indications for chronic alcoholism. The structure of disulfiram is shown below.
Figure JPOXMLDOC01-appb-C000001
 ジスルフィラムは生体内で下記の通り代謝されることが知られている。
Figure JPOXMLDOC01-appb-C000002
Disulfiram is known to be metabolized in vivo as follows.
Figure JPOXMLDOC01-appb-C000002
 ジスルフィラムは抗酒薬として臨床で用いられており、容易に入手可能である。例えば田辺三菱製薬株式会社、ナカライテスク株式会社、和光純薬株式会社、SIGNA-ALORICH Groupがジスルフィラムを販売している。ジエチルジチオカルバメートについてはナカライテスク株式会社から入手可能である。 Disulfiram is used clinically as an anti-alcohol drug and is readily available. For example, Mitsubishi Tanabe Pharma Co., Ltd., Nacalai Tesque Co., Ltd., Wako Pure Chemicals Co., Ltd., and SIGNA-ALORICHORI Group sell disulfiram. Diethyldithiocarbamate is available from Nacalai Tesque.
 有効成分の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、ジエチリン亜硫酸塩、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。 The active ingredient can be formulated according to a conventional method. In the case of formulation, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like). As the excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As the disintegrant, starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, propylene glycol, diethylin sulfite, ascorbic acid or the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used. As preservatives, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
 製剤化する場合の剤型も特に限定されず、例えば錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び坐剤などとして調製できる。このように製剤化した本発明の薬剤はその形態に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、筋肉、腹腔内注射など)によって対象に適用され得る。ここでの「対象」は特に限定されないが、好ましくはヒトである。本発明の抗結核薬における有効成分の含量は一般に剤型によって異なるが、所望の投与量を達成できるように例えば約0.001重量%~約90重量%とする。 The dosage form for formulation is not particularly limited, and can be prepared, for example, as tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories. The drug of the present invention thus formulated can be applied to a subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intramuscular, intraperitoneal injection, etc.) depending on the form. The “subject” here is not particularly limited, but preferably a human. The content of the active ingredient in the antituberculosis drug of the present invention generally varies depending on the dosage form, but is, for example, about 0.001% by weight to about 90% by weight so as to achieve a desired dose.
 上記の有効成分に加え、既存の抗結核剤を含む抗結核薬としてもよい。異なる作用点の薬剤を組み合わせることにすれば多面的な抗結核作用を発揮することができる。同一又は類似の薬剤を組み合わせた場合には抗結核作用の増強を期待できる。既存の抗結核剤の例として、イソニアジド(Isoniazid)、リファンピシン(Rifampicin)、ストレプトマイシン(Streptomycin)、カナマイシン(Kanamycin)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、パラアミノサリチル酸(p-aminosalicylate)が挙げられる。 ¡In addition to the above active ingredients, anti-tuberculosis drugs including existing anti-tuberculosis drugs may be used. If drugs with different action points are combined, a multifaceted antituberculosis action can be exerted. When the same or similar drugs are combined, enhancement of antituberculous action can be expected. Examples of existing anti-tuberculosis agents include Isoniazid, Rifampicin, Streptomycin, Kanamycin, Amikacin, Ethambutol, and para-aminosalicylate.
 本発明の他の局面では以上の抗結核薬を使用した、結核に対する予防方法又は治療方法(以下では、便宜上これら二つの方法を包括して「治療方法」と呼ぶ)が提供される。本発明の治療方法は、上記本発明の抗結核薬を生体に投与するステップを含む。投与経路は特に限定されず例えば経口、静脈内、皮内、皮下、筋肉内、腹腔内、経皮、経粘膜などを挙げることができる。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。尚、投与が容易である点から経口投与によることが好ましい。 In another aspect of the present invention, a method for preventing or treating tuberculosis using the above antituberculosis drug (hereinafter, these two methods are collectively referred to as “treatment method” for convenience) is provided. The treatment method of the present invention includes a step of administering the antituberculosis drug of the present invention to the living body. The administration route is not particularly limited, and examples thereof include oral, intravenous, intradermal, subcutaneous, intramuscular, intraperitoneal, transdermal, and transmucosal. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed). In addition, oral administration is preferable because administration is easy.
 抗結核薬の投与量は症状、投与対象の年齢、性別、及び体重などによって異なるが、当業者であれば適宜適当な投与量を設定することが可能である。例えば、成人(体重約60kg)を対象として一日当たりの有効成分量が約100mg~約1000mg、好ましくは約250mg~約500mgとなるよう投与量を設定することができる。投与スケジュールとしては例えば一日一回~数回、二日に一回、或いは三日に一回などを採用できる。投与スケジュールの設定においては、投与対象の病状や薬剤の効果持続時間などを考慮することができる。 The dose of the antituberculosis drug varies depending on the symptom, age of the subject, sex, weight, etc., but a person skilled in the art can appropriately set an appropriate dose. For example, the dose can be set so that the amount of the active ingredient per day is about 100 mg to about 1000 mg, preferably about 250 mg to about 500 mg for an adult (body weight: about 60 kg). As the administration schedule, for example, once to several times a day, once every two days, or once every three days can be adopted. In setting the administration schedule, it is possible to consider the condition of the administration subject, the duration of effect of the drug, and the like.
 本発明の抗結核薬は単独で又は他の抗結核薬との併用によって投与される。他の抗結核薬の例は、イソニアジド(Isoniazid)、リファンピシン(Rifampicin)、ストレプトマイシン(Streptomycin)、カナマイシン(Kanamycin)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、又はパラアミノサリチル酸(p-aminosalicylate)を有効成分とする抗結核薬である。 The antituberculosis drug of the present invention is administered alone or in combination with other antituberculosis drugs. Examples of other anti-tuberculosis drugs include Isoniazid, Rifampicin, Streptomycin, Kanamycin, Amikacin, Ethambutol, or para-aminosalicylate It is an anti-tuberculosis drug.
1.既存の抗結核薬及びジスルフィラムの結核菌に対する抗菌活性
(1)方法(BDT法)
 96ウェルプレートに薬剤溶液が2倍希釈系列になるように作製した。そこに菌液(O.D.=0.1の100倍希釈)を一定量ずつ加え、37℃、5%CO2存在下で培養した。目視により、菌が増殖していない薬剤最小濃度を最小発育阻止濃度(MIC)とした。また、これを被検体とし、10μlずつ7H11固形培地にまき、最小殺菌濃度(MBC)を求めた。実験は、独立して2回行い、その平均値を算出した。
1. Antibacterial activity of existing anti-tuberculosis drugs and disulfiram against Mycobacterium tuberculosis (1) Method (BDT method)
A 96-well plate was prepared so that the drug solution was a 2-fold dilution series. A certain amount of a bacterial solution (100-fold dilution of OD = 0.1) was added thereto and cultured in the presence of 37 ° C. and 5% CO 2 . Visually, the minimum drug concentration at which no bacteria were growing was defined as the minimum inhibitory concentration (MIC). In addition, this was used as a specimen, and 10 μl each was plated on 7H11 solid medium to determine the minimum bactericidal concentration (MBC). The experiment was performed twice independently, and the average value was calculated.
(2)結果
 結果を図1及び2に示す。既存の抗結核薬INH, SM, EB, PAS等が抗酸菌特異的な抗菌活性を有することが確認できた。TC系は広域スペクトラムな活性を有し、β-ラクタム剤PCG, ABPCは結核菌には有効ではなく、他のグラム陽性菌やグラム陰性菌に有効であることが示された。MAC感染症治療薬であるCPFXは、ヒト型結核菌に強い抗菌活性を有するが、広域スペクトラムであるため、常在菌への影響が懸念される。
(2) Results The results are shown in FIGS. It was confirmed that the existing antituberculosis drugs INH, SM, EB, PAS, etc. have antibacterial activity specific to mycobacteria. The TC system has broad spectrum activity, and β-lactams PCG and ABPC are not effective against Mycobacterium tuberculosis, but are effective against other Gram-positive and Gram-negative bacteria. CPFX, a MAC infection remedy, has strong antibacterial activity against Mycobacterium tuberculosis, but because of its broad spectrum, there is concern about its impact on resident bacteria.
 ジスルフィラムは、M. tuberculosis H37Rvに対して最小発育阻止濃度が0.78~1.56μg/mlであった。ジスルフィラムは、血中のグルタチオンレダクターゼによりジエチルジチオカルバメート(DDC)に代謝され、肝代謝を受け尿中排泄される。DDCは、同じ抗酸菌群でも迅速発育型のM. smegmatisや、グラム陽性菌S. aureus、グラム陰性菌E. coliには抗菌活性を示さない狭域スペクトラムな化合物であることが示された。ジスルフィラム、DDCのMBC/MIC値が共に1であったことから、殺菌的に作用している可能性が示唆された(データ示さず)。 Disulfiram had a minimum inhibitory concentration of 0.78 to 1.56 μg / ml against M. tuberculosis® H37Rv. Disulfiram is metabolized to diethyldithiocarbamate (DDC) by glutathione reductase in the blood, excreted in the urine after hepatic metabolism. DDC was shown to be a narrow-spectrum compound with no antibacterial activity in M.Msmegmatis, Gram-positive bacteria S. aureus, and Gram-negative bacteria E. coli even in the same mycobacteria group . The MBC / MIC values of disulfiram and DDC were both 1, suggesting the possibility of bactericidal action (data not shown).
2.ジスルフィラムの細胞毒性試験
(1)方法
 各細胞懸濁液を96ウェルプレートにまき、予め作製した薬剤の希釈液を添加し、37℃で3日間培養後、クリスタルバイオレットで染色し、595nmの吸光度を測定した。実験は独立して3回行い、平均値を算出した。細胞にはTHP-1(1.0×106cells/ml)、MRC-5(1.5×105cells/ml)、A-549(3.0×105cells/ml)を用いた。
2. Cytotoxicity test of disulfiram (1) Method Seed each cell suspension in a 96-well plate, add a pre-prepared drug dilution, incubate at 37 ° C for 3 days, stain with crystal violet, and absorb at 595 nm It was measured. The experiment was performed three times independently, and the average value was calculated. THP-1 (1.0 × 10 6 cells / ml), MRC-5 (1.5 × 10 5 cells / ml), and A-549 (3.0 × 10 5 cells / ml) were used as cells.
(2)結果
 結果を図3に示す。細胞毒性が現れない最小濃度は、ジスルフィラムが80μg/ml、DDCが300μg/mlであった。図4より、ジスルフィラムのTD50値は、RFPのその値に相当することが分かった。しかし、RFPはMICが低いため、治療域は広くとれる。一方、ジスルフィラムの治療域は既存の薬剤と比べて狭いことが示唆された。尚、過去の報告により、ジスルフィラムの経口投与での体内動態については安全性が確立されている。
(2) Results The results are shown in FIG. The minimum concentrations at which cytotoxicity did not appear were 80 μg / ml for disulfiram and 300 μg / ml for DDC. From FIG. 4, it was found that the TD 50 value of disulfiram corresponds to that of RFP. However, because RFP has a low MIC, the therapeutic range is wide. On the other hand, the therapeutic range of disulfiram was suggested to be narrow compared with existing drugs. In addition, according to past reports, safety has been established for the pharmacokinetics of disulfiram after oral administration.
3.細胞内移行性及びpH依存的薬剤感受性の変化
 結核菌は宿主体内寄生菌の一つであり、ヒトMφの食胞内で潜伏感染し、老化や免疫力低下に伴い再燃する、肺結核症の原因菌である。そのMφ内の食胞は、やや酸性(pH 6.1~6.5)に傾いており、栄養も制限がかかった環境にある。既存の薬剤では、CAM、CPFX、INH等は酸性条件下では活性が低下することが分かっている。そこで、ヒトMφ様細胞を用いてジスルフィラムの細胞内移行性を調べるとともに、酸性条件でのジスルフィラムの抗菌活性を検討した。
3. Intracellular and pH-dependent changes in drug susceptibility Mycobacterium tuberculosis is one of the host body parasites. It is a latent infection in the phagosome of human Mφs and relapses with aging and immunity, causing pulmonary tuberculosis. It is a fungus. The phagosomes in the Mφ are slightly acidic (pH 6.1-6.5) and are in a restricted environment. With existing drugs, CAM, CPFX, INH, etc. have been found to decrease in activity under acidic conditions. Therefore, human Mφ-like cells were used to examine the intracellular migration of disulfiram, and the antibacterial activity of disulfiram under acidic conditions was examined.
3-1.ジスルフィラムの細胞内移行性についての検討
(1)方法
 THP-1をPMA 100 ng/mlで二日間処理し、24ウェルプレートに1.0×106 cells/mlまいた。1日間インキュベートし5.0×107 cfu/mlのH37Rvを4時間感染させた後、HBSSで細胞を2回洗い、SMで20時間処理した。HBSSで2回洗い、薬剤の希釈系列を作製して加え、4時間処理した。HBSSで2回洗い、0.1 % SDS溶液で細胞を溶解後、コロニーアッセイを行った。14日間培養し、コロニー数で評価した。実験は独立して3回行い、平均値を算出した。
3-1. Examination of intracellular translocation of disulfiram (1) Method THP-1 was treated with 100 ng / ml of PMA for 2 days, and spread in a 24-well plate at 1.0 × 10 6 cells / ml. After incubation for 1 day and infection with 5.0 × 10 7 cfu / ml of H37Rv for 4 hours, the cells were washed twice with HBSS and treated with SM for 20 hours. After washing twice with HBSS, a drug dilution series was made and added and treated for 4 hours. After washing twice with HBSS and lysing the cells with 0.1% SDS solution, a colony assay was performed. The cells were cultured for 14 days and evaluated by the number of colonies. The experiment was performed three times independently, and the average value was calculated.
(2)結果
 結果を図5に示した。ヒトMφ様細胞THP-1、及びII型肺胞上皮細胞A549株において、INH、RFPは、細胞内の生菌を有意に減少させることが確認できた。SM、PAS等は、細胞内の菌には有効では無かった。ジスルフィラムは、10μg/ml以上で細胞内の生菌に有効であることが示された。力価としては、ジスルフィラム30μg/mlは、RFP1μg/mlに相当することが示された。一方、DDCNaは、濃度依存的な殺菌作用は見られなかったが、細胞内の菌にも有効であることが示唆された。ジスルフィラムは、第一選択薬INH、RFPよりは劣るが、細胞内及びMφへ移行し、細胞内寄生菌を殺菌できる可能性が示唆された。
(2) Results The results are shown in FIG. In human Mφ-like cell THP-1 and type II alveolar epithelial cell line A549, it was confirmed that INH and RFP significantly reduced the viable cells in the cells. SM, PAS, etc. were not effective against intracellular bacteria. Disulfiram has been shown to be effective against intracellular live bacteria at 10 μg / ml and above. As a titer, 30 μg / ml of disulfiram was shown to correspond to 1 μg / ml of RFP. On the other hand, DDCNa did not show a concentration-dependent bactericidal action, but was suggested to be effective against intracellular bacteria. Although disulfiram was inferior to the first-line drugs INH and RFP, it was suggested that it could move into cells and Mφ and kill intracellular parasites.
3-2.pH依存的薬剤感受性の変化についての検討
(1)方法(BDT法)
 10 % ADC及び0.02 % Tyroxapolを含む7H9培地(pH 6.6, pH 6.2)、及び改変Kirchner培地(pH 6.8, pH 5.6)を作製した。実験は独立して3回行い、MTB, M. bovis BCG, M. smegmatisに対する抗菌活性を測定した。
3-2. Study on changes in pH-dependent drug sensitivity (1) Method (BDT method)
A 7H9 medium (pH 6.6, pH 6.2) containing 10% ADC and 0.02% Tyroxapol and a modified Kirchner medium (pH 6.8, pH 5.6) were prepared. The experiment was performed three times independently, and antibacterial activity against MTB, M. bovis BCG, and M. smegmatis was measured.
(2)結果
 結果を図6に示した。ジスルフィラム及びDDCNaは、pH 6.2、pH 5.4の酸性条件かでも抗菌活性が低下しないことが示された。類縁カルバメートであるDimethyldithiocarbamateは、酸性条件下、性状が不安定になり、DMAやCS2に分解されるとも報告されている(Owens, R 1964, Boyce Thompson Institute, 1964, Vol. 22, p. 241-257)。ヒト食胞Mφ内は、pHが6.8付近である。そして、Mφが活性化し、P-L fusion(ファゴソーム-リソソーム融合)が起こるとpHが6.2付近まで下がり、最終的にリソソーム内の酸性殺菌物質等の影響を受けpHが4.5まで下がると考えられている。この結果と図5の結果より、ジスルフィラムは、Mφ内でも有効である可能性が示唆された。
(2) Results The results are shown in FIG. Disulfiram and DDCNa were shown to have no decrease in antibacterial activity even under acidic conditions of pH 6.2 and pH 5.4. Dimethyldithiocarbamate, a related carbamate, has been reported to become unstable under acidic conditions and decompose into DMA and CS 2 (Owens, R 1964, Boyce Thompson Institute, 1964, Vol. 22, p. 241 -257). The pH in the human phagosome Mφ is around 6.8. When Mφ is activated and PL fusion (phagosome-lysosome fusion) occurs, the pH is lowered to around 6.2, and finally, it is considered that the pH is lowered to 4.5 under the influence of acidic sterilizing substances in the lysosome. From this result and the result of FIG. 5, it was suggested that disulfiram may be effective in Mφ.
4.薬剤感受性試験
(1)方法(M. bovis BCG)
 7H9液体培地で対数増殖期初期(early log phase)まで培養した菌液を3.6 mlずつ試験管に分注した。濃度が1 MIC、10 MIC、50 MICとなるよう薬剤を作製し、菌液の入った試験管に400μl加え、37℃で培養した。薬剤を加えた日を0日とし、2、4、7、10、14、21日に吸光度測定およびコロニーアッセイを行った。14日間培養後のコロニー数で評価した。
4). Drug sensitivity test (1) Method (M. bovis BCG)
The bacterial solution cultured in 7H9 liquid medium until the early log phase was dispensed in 3.6 ml aliquots. The drug was prepared so that the concentrations were 1 MIC, 10 MIC, and 50 MIC, 400 μl was added to a test tube containing the bacterial solution, and cultured at 37 ° C. Absorbance measurement and colony assay were performed on days 2, 4, 7, 10, 14, and 21 with day 0 as the day when the drug was added. The number of colonies after 14 days of culture was evaluated.
(2)結果
 結果を図7に示す。M. bovis BCGとMTBは、遺伝子学的に99.5 %以上の相同性を示すことが明らかとなっている。また、増殖においても相関が見られたため、M. bovis BCGを用いて薬剤感受性試験を行った。以前の報告により、ジスルフィラムは他のバクテリアに対して殺菌的作用を有することが分かっている。図7E、Fより、ジスルフィラムとDDCは、他のバクテリアに対するのと同様、対数増殖期の菌液に対しても殺菌的作用を有することが示唆された。また、興味深いことに、ジスルフィラム、DDCは溶菌的作用を有することが示唆された(図7C、D)。溶菌的作用とは、細胞壁の崩壊を伴い、死細胞を残さず死滅することと定義されている。その活性を有する化合物としてリゾチーム(lysozyme)やペニシリンG(PCG)がある。しかし、BCGに対するリゾチームのMICは50μg/mlであり、この濃度下では培地が懸濁してしまい濃度依存的な可視的溶菌が確認できない。一方、PCGが抗酸菌に有効でないことも言うまでもない。そこで、他のバクテリアが溶菌するか検討した。図8Cより、S. aureusは、CPFX高濃度下で溶菌することが確認できたが、ジスルフィラム又はDDCでは溶菌は起こらなかった。M. smegmatisでも同様の結果だった(図9)。これらの結果より、ジスルフィラム及びDDCはヒト型及びウシ型結核菌特異的に溶菌的活性を有することが示唆された。また、他の既存の薬剤に溶菌的活性を有するものがないことから既存の薬剤との相乗効果が期待できる。
(2) Results The results are shown in FIG. It has been clarified that M. bovis BCG and MTB have a genetic homology of 99.5% or more. In addition, since a correlation was observed in proliferation, a drug sensitivity test was performed using M. bovis BCG. Previous reports have shown that disulfiram has a bactericidal action against other bacteria. From FIGS. 7E and 7F, it was suggested that disulfiram and DDC have a bactericidal action on the bacterial solution in the logarithmic growth phase as well as other bacteria. Interestingly, it was suggested that disulfiram and DDC have a lytic action (FIGS. 7C and D). A lytic action is defined as the death of a dead cell with cell wall collapse, leaving no dead cells. Compounds having such activity include lysozyme and penicillin G (PCG). However, the MIC of lysozyme against BCG is 50 μg / ml. Under this concentration, the medium is suspended and concentration-dependent visible lysis cannot be confirmed. On the other hand, it goes without saying that PCG is not effective against acid-fast bacteria. Therefore, it was examined whether other bacteria were lysed. From FIG. 8C, it was confirmed that S. aureus was lysed at a high CPFX concentration, but lysis did not occur with disulfiram or DDC. Similar results were obtained with M. smegmatis (Figure 9). From these results, it was suggested that disulfiram and DDC have lytic activity specific to human and M. tuberculosis. In addition, since no other existing drugs have lytic activity, a synergistic effect with existing drugs can be expected.
5.コリンエステラーゼ阻害作用に関する検討
(1)方法(DTNB法)
 96ウェルプレートに0.01 % DTNB (5, 5’-dithiobis-2-nitrobenzoic acid )溶液を150μlまき、5 %ヨウ化アセチルチオコリンを5μl添加した。予めFBS(未非動化)を溶媒として、各薬剤の希釈系列を作製した。この溶液2μlをプレートへ添加し、37℃で培養し、10分後に吸光度405 nmの波長を測定した。IC50でコリンエステラーゼ阻害作用を評価した。ポジティブコントロールとして臭化ネオスチグミンを用いた。
5). Study on cholinesterase inhibitory action (1) Method (DTNB method)
To a 96-well plate, 150 μl of 0.01% DTNB (5,5′-dithiobis-2-nitrobenzoic acid) solution was sprinkled, and 5 μl of 5% acetylthiocholine iodide was added. A dilution series of each drug was prepared in advance using FBS (non-immobilized) as a solvent. 2 μl of this solution was added to the plate, cultured at 37 ° C., and after 10 minutes, the wavelength at an absorbance of 405 nm was measured. The cholinesterase inhibitory effect was evaluated by IC 50 . Neostigmine bromide was used as a positive control.
(2)結果
 結果を図10に示す。有機硫黄系カルバメートは殺虫剤、殺菌剤及び除草剤に大別される。この中には人体に影響を与える有害な作用としてコリンエステラーゼ阻害作用を有しているものが含まれる。DTNB法による検討の結果、ジスルフィラムとDDCは低濃度ではChE阻害作用を示さなかった。尚、ジスルフィラムがChE阻害作用を有さないことについては過去にも報告がある。
(2) Results The results are shown in FIG. Organic sulfur carbamates are roughly classified into insecticides, fungicides and herbicides. Among these, those having a cholinesterase inhibitory effect are included as harmful effects affecting the human body. As a result of examination by the DTNB method, disulfiram and DDC did not show ChE inhibitory action at low concentrations. It has been reported in the past that disulfiram has no ChE inhibitory action.
6.7H11寒天平板法によるMICの測定
 Shishido Y (2007 Dec;11(12):1334-8. Anti-tuberculosis drug susceptibility testing of Mycobacterium bovis BCG Tokyo strain.)、Maurice L. Cohn (Am Rev Respir Dis. 1968 Aug;98(2):295-6.The 7H11 medium for the cultivation of mycobacteria.)の報告を参考にして、7H11 OADC強化寒天培地を用いて、M. bovis BCG Tokyo172株に対する最小発育阻止濃度(MIC)を測定した。
(1)方法
 7H11寒天に105~106 CFU/mlの菌液を100μl播き、10~14日間培養後のコロニー数を計数し、コロニーが5個以下を陰性、5個超を陽性とした。菌液は7H9-グリセロール-6.6液体培地で対数増殖期まで培養したものを用いた。実験は2連で3回行った。
6. Measurement of MIC by 7H11 agar plate method Shishido Y (2007 Dec; 11 (12): 1334-8. Anti-tuberculosis drug susceptibility testing of Mycobacterium bovis BCG Tokyo strain.), Maurice L. Cohn (Am Rev Respir Dis. 1968 Aug; 98 (2): 295-6.The 7H11 medium for the cultivation of mycobacteria.), Using 7H11 OADC-enhanced agar medium, the minimum inhibitory concentration against M. bovis BCG Tokyo172 strain ( MIC) was measured.
(1) Method 10 μl of 105-106 CFU / ml of bacterial solution was seeded on 7H11 agar, and the number of colonies after 10-14 days of culture was counted. Negative colonies were 5 or less, and positive were more than 5. The bacterial solution used was cultured in a 7H9-glycerol-6.6 liquid medium until the logarithmic growth phase. The experiment was performed three times in duplicate.
(2)結果
 INH、SM、EBについては以前の報告と同等の値が示されたが、RFPについては少し強い作用を認めた(図12)。ジスルフィラムはカナマイシンと同等の抗菌活性を有していた。
(2) Results Although INH, SM, and EB showed values equivalent to the previous reports, RFP showed a slightly stronger effect (Fig. 12). Disulfiram had the same antibacterial activity as kanamycin.
7.ジスルフィラム、DDCの類縁化合物の抗菌活性
 ジスルフィラム類縁化合物ジアルキルジチオカルバメート(dialkyldithiocarbamates)が、M. leprae等一部の抗酸菌に抗菌活性を示すことが報告されている(Vadim, 2006 J Antimicrob Chemother. 2006 Jun;57(6):1134-8. Epub 2006 Apr 4. Synthesis and antileprosy activity of some dialkyldithiocarbamates.)。今回、テトラアルキルチウラム二硫化物であるチウラム及びジスルフィラム並びに複数のジアルキルジチオカルバメート(ジメチルジチオカルバメート、ジエチルジチオカルバメート、ジブチルジチオカルバメート、ジベンジルジチオカルバメート)について抗酸菌に対するMICを測定した。
(1)方法
 96ウェルプレートに薬剤溶液が2倍希釈系列になるように作製した。そこに菌液(O. D. =0.1の100倍希釈)を一定量ずつ加え、37℃、5%CO2存在下で培養した。目視により菌が増殖していない薬剤最小濃度を最小発育阻止濃度(MIC)とした。実験は2連で行い、その平均値を算出した。
7). Antibacterial activity of disulfiram and DDC analogs Dialkyldithiocarbamates have been reported to exhibit antibacterial activity against some acid-fast bacteria such as M. leprae (Vadim, 2006 J Antimicrob Chemother. 2006 Jun; 57 (6): 1134-8. Epub 2006 Apr 4. Synthesis and antileprosy activity of some dialkyldithiocarbamates.). In this study, MICs against acid-fast bacteria were measured for tetraalkylthiuram disulfides, thiuram and disulfiram, and several dialkyldithiocarbamates (dimethyldithiocarbamate, diethyldithiocarbamate, dibutyldithiocarbamate, dibenzyldithiocarbamate).
(1) Method A 96-well plate was prepared so that the drug solution was in a 2-fold dilution series. A certain amount of a bacterial solution (O.D. = 100-fold dilution of 0.1) was added thereto and cultured at 37 ° C. in the presence of 5% CO 2 . The minimum drug concentration at which bacteria did not grow visually was defined as the minimum inhibitory concentration (MIC). The experiment was performed in duplicate, and the average value was calculated.
(2)結果
 ジアルキルジチオカルバメートのアルキル鎖を伸長させることでMICが高くなることが示された(図13)。また、芳香族環を有すると更に抗菌活性が低下した。一方で、チウラムの方がジスルフィラムよりも抗菌活性が強いことが示唆された。しかし、殺菌性プラスチック包帯材(一缶あたり60 mg含有)や農薬として使用されるチウラムのADIは、8.4μg/kg/日と定められている。体重60 kgの成人例では、504μg/日になり、ヒトへの投与は不可能である。よって現段階では、ヒトに投与された経験があるジスルフィラム及びDDCが有力な薬剤であるといえる。
(2) Results It was shown that the MIC was increased by extending the alkyl chain of dialkyldithiocarbamate (FIG. 13). Moreover, when it had an aromatic ring, antibacterial activity further decreased. On the other hand, it was suggested that thiuram has stronger antibacterial activity than disulfiram. However, the ADI for sterilized plastic dressings (containing 60 mg per can) and thiuram used as a pesticide is 8.4 μg / kg / day. In an adult patient weighing 60 kg, the dose is 504 μg / day and cannot be administered to humans. Therefore, at this stage, disulfiram and DDC, which have been administered to humans, can be said to be promising drugs.
8.臨床分離株DS-TB、MDR-TBに対する抗菌活性の測定
 肺結核患者から検出された結核菌に対するMICを測定した。
(1)方法
 薬剤感受性株(20株)と薬剤耐性株(22株)をフリーズバンクから解凍後、MycoBroth(商品名、極東製薬工業)で7~10日間培養し、一度継代した菌液(7~10日間)を用いた。その菌液をMcFarland No. 1に相当する濁度(0.16~0.20)まで希釈し、さらに50倍希釈になるように播いた。実験は2連で2回行った。その他の手順は7.の方法に準じた。
8). Measurement of antibacterial activity against clinical isolates DS-TB and MDR-TB MIC against M. tuberculosis detected from patients with pulmonary tuberculosis was measured.
(1) Method After thawing drug-sensitive strains (20 strains) and drug-resistant strains (22 strains) from freeze bank, they were cultured in MycoBroth (trade name, Kyokuto Pharmaceutical Co., Ltd.) for 7 to 10 days, and subcultured once (1) 7-10 days) was used. The bacterial solution was diluted to a turbidity (0.16-0.20) corresponding to McFarland No. 1, and further seeded to a 50-fold dilution. The experiment was performed twice in duplicate. For other procedures, see 7. The method was followed.
 薬剤感受性株(20株)についてのジスルフィラムのMICは0.78~1.56μg/ml、DDCのMICは1.56~3.13μg/mlであった(図14)。一方、薬剤耐性株(22株)についてのジスルフィラムのMICは0.78~1.56μg/ml、DDCのMICは1.56~3.13μg/mlであった(図15)。薬剤感受性株に対するMICと薬剤耐性株に対するMICが同等であったことから、ジスルフィラムとDDCは既存の薬剤との交差耐性が無いことが示唆された。また、新薬候補化合物であるキノロン系(MXFX, GFLX, LVFX)耐性株に対してもジスルフィラムとDDCが抗菌活性を有することが示された。 Regarding the drug-sensitive strain (20 strains), the MIC of disulfiram was 0.78 to 1.56 μg / ml, and the MIC of DDC was 1.56 to 3.13 μg / ml (FIG. 14). On the other hand, the MIC of disulfiram for the drug-resistant strain (22 strains) was 0.78 to 1.56 μg / ml, and the MIC of DDC was 1.56 to 3.13 μg / ml (FIG. 15). The MIC for drug-sensitive strains and the MIC for drug-resistant strains were equivalent, suggesting that disulfiram and DDC do not have cross-resistance with existing drugs. It was also shown that disulfiram and DDC have antibacterial activity against quinolone (MXFX, FXGFLX, LVFX) resistant strains, which are new drug candidate compounds.
9.ジスルフィラム及びDDCの薬剤耐性頻度の算出
 G. Canettiらの報告(Bull World Health Organ. 1963;29:565-78. MYCOBACTERIA: LABORATORY METHODS FOR TESTING DRUG SENSITIVITY AND RESISTANCE.)を参考にして、ジスルフィラム及びDDCの薬剤耐性頻度を検討した。
(1)方法
 ジスルフィラム、DDC、SM、EB及びKMのそれぞれについて20μg/ml含有7H11寒天(X-plate)を作製した。また、INH、RFP、CPFX及びPASのそれぞれについて1μg/ml含有7H11寒天(X-plate)を作製した。1.8×108 CFU/mlの菌液の希釈系列を作り、各薬剤のプレートに100μlずつ添加した。2週間培養後のコロニー数から耐性頻度を求めた。実験は2連で2回行った。また、得られた耐性菌を3回継代培養し(6週)、10株ずつ保存した。
9. Calculation of drug resistance frequency of disulfiram and DDC G. Canetti et al. (Bull World Health Organ. 1963; 29: 565-78. MYCOBACTERIA: LABORATORY METHODS FOR TESTING DRUG SENSITIVITY AND RESISTANCE.) The drug resistance frequency was examined.
(1) Method 7H11 agar (X-plate) containing 20 μg / ml was prepared for each of disulfiram, DDC, SM, EB, and KM. Moreover, 7H11 agar (X-plate) containing 1 μg / ml was prepared for each of INH, RFP, CPFX and PAS. A dilution series of 1.8 × 10 8 CFU / ml bacterial solution was prepared and 100 μl was added to each drug plate. The resistance frequency was determined from the number of colonies after 2 weeks of culture. The experiment was performed twice in duplicate. Further, the obtained resistant bacteria were subcultured 3 times (6 weeks), and 10 strains were stored.
(2)結果
 ジスルフィラムの耐性頻度は既存の薬剤と同程度であった(図16)。また、DDCよりもジスルフィラムの方が耐性菌が出現し難いことが示唆された。
(2) Results The resistance frequency of disulfiram was similar to that of existing drugs (FIG. 16). In addition, it was suggested that disulfiram is more resistant to resistant bacteria than DDC.
10.in vivoにおけるジスルフィラムの感染防御効果についての検討
10-1.マウスの体重変化の記録
(1)方法
 5週齢のメス健常マウスにヒト型結核H37Rvを感染させ、28日間飼育した(図17)。その後、各薬剤(RFP及びジスルフィラム)を経口投与にて28日間反復投与し、49日間の体重変化を1週間ごとに記録した。
(2)結果
 RFP(図18A)、ジスルフィラム(図18B)のいずれについても顕著な体重変化を認めなかった。
10. 10. Examination of in vivo protective effect of disulfiram 10-1. Recording of changes in body weight of mice (1) Method A healthy female mouse of 5 weeks old was infected with human tuberculosis H37Rv and reared for 28 days (FIG. 17). Thereafter, each drug (RFP and disulfiram) was orally administered repeatedly for 28 days, and body weight changes for 49 days were recorded every week.
(2) Results No significant weight change was observed for either RFP (FIG. 18A) or disulfiram (FIG. 18B).
10-2.ジスルフィラムの感染防御効果
(1)方法
 5週齢のメス健常マウスにヒト型結核H37Rvを感染させ、28日間飼育した(図17)。その後、各薬剤(RFP及びジスルフィラム)を経口投与にて28日間反復投与した。体重(g)は一週間おきに測定した。感染57日目に肺、脾臓、肝臓を摘出し、それぞれのホモジネートをコロニーアッセイに供した(図17)。
(2)結果
 RFPは投与量20mg/kgで肺内寄生菌を有意に減少させた(図19)。ジスルフィラムは投与量80~160mg/kgで肺内寄生菌を有意に減少させた(図19)。感染防御効果に関してジスルフィラム80 mg/kgはRFP 10 mg/kgに相当することが示された。
10-2. Infectious protective effect of disulfiram (1) Method Five-week-old female healthy mice were infected with human tuberculosis H37Rv and reared for 28 days (FIG. 17). Thereafter, each drug (RFP and disulfiram) was orally administered repeatedly for 28 days. Body weight (g) was measured every other week. On day 57 of infection, lungs, spleen and liver were removed, and each homogenate was subjected to a colony assay (FIG. 17).
(2) Results RFP significantly reduced pulmonary parasitic bacteria at a dose of 20 mg / kg (FIG. 19). Disulfiram significantly reduced pulmonary parasitic bacteria at doses of 80-160 mg / kg (FIG. 19). It was shown that disulfiram 80 mg / kg corresponds to RFP 10 mg / kg in terms of protective effect.
10-3.ジスルフィラムの毒性についての検討
(1)方法
 5週齢のメス健常マウスにヒト型結核H37Rvを感染させ、28日間飼育した(図17)。その後、各薬剤(RFP及びジスルフィラム)を経口投与にて28日間反復投与した。そして、摘出した肝臓ホモジネート及び血清中の肝障害マーカーの発現を既報の方法に準じて測定した。また、コリンエステラーゼ(ChE)阻害作用を5.の方法に準じて調べた。
10-3. Examination of Toxicity of Disulfiram (1) Method Five-week-old female healthy mice were infected with human tuberculosis H37Rv and reared for 28 days (FIG. 17). Thereafter, each drug (RFP and disulfiram) was orally administered repeatedly for 28 days. And the expression of the liver damage marker in the extracted liver homogenate and serum was measured according to the reported method. Also, it has cholinesterase (ChE) inhibitory action. It investigated according to the method of.
(2)結果
 ジスルフィラムを投与した場合の各マーカーのレベルはRFPを投与した場合と同等以下であった(図20、図21左)。特に、低投与量ではコントロールと同等であり、ジスルフィラムの肝毒性は高くないことが示唆された。コリンエステラーゼ阻害効果(図21右)からも、ジスルフィラムの毒性が高くないことが示された。
(2) Results The level of each marker when disulfiram was administered was equal to or less than that when RFP was administered (FIG. 20, FIG. 21 left). In particular, the low dose was equivalent to the control, suggesting that disulfiram is not highly hepatotoxic. The cholinesterase inhibitory effect (FIG. 21 right) also showed that the toxicity of disulfiram was not high.
<まとめ>
 結核は慢性の呼吸器感染症であり、新規の抗結核薬に求められるのは、経口投与可能であり且つ既存の薬剤と交差耐性がなく、しかも体内動態について細胞内、肺内移行性に優れ、さらには対数増殖期、分裂休止期ともに結核菌に対して殺菌的な活性を示す狭域スペクトラムを有することである。今回の結果から、ジスルフィラム及びDDCはこれらの条件を満たすことが示された。また、薬剤耐性M. smegmatisに対しても有効であったことから(図11)、既存の薬剤とは作用点は異なることが示唆された(データ示さず)。また、ヒト型及びウシ型結核菌特異的に溶菌的作用を有することが判明した。既存の抗結核薬に溶菌的作用を有するものがないことから、ジスルフィラム又はDDCを既存の抗結核薬と併用した場合、相乗効果が発揮されることを大いに期待できる。ところで、結核治療期間中のジスルフィラムの併用について議論される点として、Dopamine-β-hydroxylaseの競合によるINHとの相互作用がある。しかし、1994年に始まったDOTS戦略及び2006年のMDR-TBに対するDOTS-Plus protocol療法によるコンプライアンスの上昇に伴い、INHとの相互作用については現在否定的である。実際、中枢性副作用はみられなかったという報告もある(W. J. Burman, 2002, The international journal of tuberculosis and lung disease, 2002, vol. 6, No. 9, p. 839-842)。経口投与による毒性を検討した結果、ジスルフィラムの毒性は高くないことが示された(図18~21)。カルバメートと聞くと思い浮かぶのがChE阻害作用である。ジスルフィラムはカルバメートの一種であるが、殺虫剤として用いられるものとは異なりChE阻害作用は否定されている。また、図2より、ジスルフィラムは、体内でDDCに代謝されることで、菌交代現象が起こりにくくなる可能性が示唆された。
<Summary>
Tuberculosis is a chronic respiratory infection, and new anti-tuberculosis drugs are required to be orally administrable and cross-resistant with existing drugs, and have excellent pharmacokinetics in cells and lungs. Furthermore, it has a narrow spectrum that shows bactericidal activity against M. tuberculosis in both the logarithmic growth phase and the mitotic resting phase. The results indicate that disulfiram and DDC meet these conditions. Moreover, since it was effective also against drug resistant M. smegmatis (FIG. 11), it was suggested that an action point differs from the existing drug (data not shown). It was also found to have a lytic action specific to human and bovine tuberculosis. Since none of the existing anti-tuberculosis drugs have a lytic action, when disulfiram or DDC is used in combination with an existing anti-tuberculosis drug, a synergistic effect can be greatly expected. By the way, there is an interaction with INH due to competition of Dopamine-β-hydroxylase as a point to be discussed about the combined use of disulfiram during tuberculosis treatment period. However, with increased compliance with the DOTS strategy started in 1994 and DOTS-Plus protocol therapy for MDR-TB in 2006, interaction with INH is currently negative. In fact, there are reports that no central side effects were observed (W. J. Burman, 2002, The international journal of tuberculosis and lung disease, 2002, vol. 6, No. 9, p. 839-842). As a result of examining toxicity by oral administration, it was shown that the toxicity of disulfiram was not high (FIGS. 18 to 21). The effect of ChE inhibition comes to mind when you hear carbamate. Disulfiram is a kind of carbamate, but unlike its use as an insecticide, its inhibitory effect on ChE has been denied. In addition, FIG. 2 suggested that disulfiram may be metabolized to DDC in the body so that the fungal substituting phenomenon is less likely to occur.
 現在、結核の治療の主流は2RHZ+4RHの多剤併用療法であり、これには6~9月間を要する。また、MDR-TBは2年間以上を費やす。TB-Alliance、WHO Stop TB Partnershipは「2剤以上の新薬の同時臨床導入」を基本に2010~2015年までに結核の標準治療期間を3~4月に短縮するための戦略プログラムを提起している。その候補としてNitroimidazol系(OPC-67683, PA-824)やQuinolone系(MXFX)をはじめ、各種抗結核薬の臨床試験が進められている。 Currently, the mainstream treatment for tuberculosis is 2RHZ + 4RH multi-drug combination therapy, which takes 6-9 months. MDR-TB spends more than two years. TB-Alliance and WHO Stop TB Partnership have proposed a strategic program to shorten the standard treatment period for tuberculosis from March to April by 2010-2015 based on the concept of “simultaneous clinical introduction of two or more new drugs” Yes. Clinical trials of various antituberculosis drugs including Nitroimidazole (OPC-67683, PA-824) and Quinolone (MXFX) are underway as candidates.
 上市以来、ジスルフィラム(ノックビン、antabuse)は慢性アルコール中毒治療薬として使用されてきた。近年、病原性細菌、寄生原生生物、真菌への抗菌活性が報告されている。また、Trichomonas muris、Candida albicansに対してはin vivoでの有効性も証明されている。しかしながら、結核菌に対してジスルフィラムが有効であるとの報告は皆無である。 Since its launch, disulfiram (antabuse) has been used as a treatment for chronic alcoholism. In recent years, antibacterial activity against pathogenic bacteria, parasitic protists, and fungi has been reported. It has also been proven effective in vivo against Trichomonas muris and Candida albicans. However, there are no reports that disulfiram is effective against Mycobacterium tuberculosis.
 ジスルフィラムはジンクフィンガー活性(Zinc-finger-activity)を有し、HIV-1のNCp7 proteinからZn2+を脱離させ、ウイルス複製を阻害する作用を発揮することが報告されている(Hathout, 1996, Drug Metabolism and disposition, 1996, vol. 24, No. 12, p. 1395-1400)。肺結核症はHIVの合併症としても重要である。南アフリカを中心としたXDR-TBの出現は主にHIV蔓延国で起こっている(SCIENCE, 2008, vol 319, No. 15 p. 894-895)。XDR-TBに感染したHIV患者の死亡率は90%を超え、発症後約2週間で死に至ると報告されている。また、TBに感染したHIV患者に対しては抗結核薬の使用が制限される現状にある。本発明者らの検討の結果、対数増殖期の結核菌に対して溶菌的作用を有する化合物(ジスルフィラム、DDC)が見出された。当該化合物の作用メカニズムの解明は、結核医療だけでなくAIDS治療の発展にも寄与するかもしれない。 It has been reported that disulfiram has zinc finger activity (Zinc-finger-activity) and exhibits the action of detaching Zn 2+ from the NCp7 protein of HIV-1 and inhibiting viral replication (Hathout, 1996, Drug Metabolism and disposition, 1996, vol. 24, No. 12, p. 1395-1400). Pulmonary tuberculosis is also important as a complication of HIV. The emergence of XDR-TB, mainly in South Africa, occurs mainly in HIV endemic countries (SCIENCE, 2008, vol 319, No. 15 p. 894-895). The death rate of HIV patients infected with XDR-TB exceeds 90%, and it is reported that death occurs approximately 2 weeks after onset. In addition, the use of antituberculosis drugs is restricted for HIV patients infected with TB. As a result of the study by the present inventors, a compound (disulfiram, DDC) having a lytic action against Mycobacterium tuberculosis in the logarithmic growth phase was found. Elucidation of the mechanism of action of the compound may contribute to the development of AIDS treatment as well as tuberculosis medicine.
 本発明の抗結核薬は、(1)結核菌に対する選択性が高い、(2)殺菌的に作用する、といった特徴を有する化合物を有効成分とするものであり、結核の治療又は予防に極めて有用である。また、有効成分の化合物が薬剤耐性菌に対しても抗菌活性を示したことから、薬剤耐性結核菌に対しても有効であることが大いに期待できる。本発明の抗結核薬を他の抗結核薬と併用することも可能である。 The anti-tuberculosis drug of the present invention comprises a compound having characteristics such as (1) high selectivity for M. tuberculosis and (2) bactericidal action, and is extremely useful for the treatment or prevention of tuberculosis. It is. In addition, since the compound of the active ingredient showed antibacterial activity against drug-resistant bacteria, it can be highly expected to be effective against drug-resistant tuberculosis bacteria. It is also possible to use the antituberculous drug of the present invention in combination with other antituberculous drugs.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (5)

  1.  ジスルフィラム又はジエチルジチオカルバメート若しくはその薬学的に許容可能な塩を有効成分として含有する抗結核薬。 An antituberculosis drug containing disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof as an active ingredient.
  2.  イソニアジド(Isoniazid)、リファンピシン(Ryfampicin)、ストレプトマイシン(Streptmycin)、カナマイシン(Kanamycine)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、又はパラアミノサリチル酸(p-aminosalicylate)を有効成分とする抗結核薬と併用投与されることを特徴とする、請求項1に記載の抗結核薬。 Isoniazid, Ryfampicin, Streptmycin, Kanamycine, Amikacin, Ethambutol, or paraaminosalicylate (p-aminosalicylate) as an active ingredient in combination The antituberculosis drug according to claim 1, wherein
  3.  請求項1に記載の抗結核薬を対象に投与するステップを含む、結核の予防又は治療方法。 A method for preventing or treating tuberculosis, comprising the step of administering the antituberculous drug according to claim 1 to a subject.
  4.  イソニアジド(Isoniazid)、リファンピシン(Ryfampicin)、ストレプトマイシン(Streptmycin)、カナマイシン(Kanamycine)、アミカシン(Amikacin)、エタンブトール(Ethambutol)、又はパラアミノサリチル酸(p-aminosalicylate)を有効成分とする抗結核薬を併用投与することを特徴する、請求項3に記載の結核の予防又は治療方法。 Concomitant administration of anti-tuberculosis drugs with isoniazid, ryfampicin, streptmycin, kanamycine, amikacin, ethambutol, or paraaminosalicylate (p-aminosalicylate) as active ingredients The method for preventing or treating tuberculosis according to claim 3, wherein:
  5.  抗結核薬を製造するための、ジスルフィラム又はジエチルジチオカルバメート若しくはその薬学的に許容可能な塩の使用。 Use of disulfiram or diethyldithiocarbamate or a pharmaceutically acceptable salt thereof for the manufacture of an antituberculosis drug.
PCT/JP2010/050665 2009-01-31 2010-01-21 Anti-tuberculosis agent and use thereof WO2010087260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010548473A JPWO2010087260A1 (en) 2009-01-31 2010-01-21 Antituberculosis drugs and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-021026 2009-01-31
JP2009021026 2009-01-31

Publications (1)

Publication Number Publication Date
WO2010087260A1 true WO2010087260A1 (en) 2010-08-05

Family

ID=42395521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050665 WO2010087260A1 (en) 2009-01-31 2010-01-21 Anti-tuberculosis agent and use thereof

Country Status (2)

Country Link
JP (1) JPWO2010087260A1 (en)
WO (1) WO2010087260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105853461A (en) * 2016-06-14 2016-08-17 黄峰 Pharmaceutical composition for treating pulmonary tuberculosis

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHONG, C. ET AL.: "Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister mycobacterium tuberculosis", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 51, no. 12, 2007, pages 4495 - 4497, XP002688075, DOI: doi:10.1128/AAC.00753-07 *
EMI INAGAKI ET AL.: "Ko Shuhekiyaku Disulfiram no Kekkakukin Tokuiteki na Sayo ni Kansuru Kenkyu", NIPPON KAGAKU RYOHO GAKKAI SOKAI PROGRAM KOEN SHOROKU, vol. 57, no. 127, 30 April 2009 (2009-04-30), pages 227 *
EMI INAGAKI ET AL.: "Ko Shuhekiyaku Disuliram no Kekkakukin Tokuiteki na Sayo ni Kansuru Kenkyu", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 129, no. 27P, 5 March 2009 (2009-03-05), pages 171 *
HUEBNER, L. ET AL.: "Enhancement of monocyte antimycobacterial activity by diethyldithiocarbamate (DTC).", INT J IMMUNOPHARAMACOL, vol. 13, no. 8, 1991, pages 1067 - 1072 *
YASUHIRO HORITA ET AL.: "Ko Shuhekiyaku Disulfiram no Kekkakukin Tokuiteki na Sayo ni Kansuru Kenkyu", KEKKAKU, vol. 84, no. 5, 15 May 2009 (2009-05-15), pages 406 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105853461A (en) * 2016-06-14 2016-08-17 黄峰 Pharmaceutical composition for treating pulmonary tuberculosis

Also Published As

Publication number Publication date
JPWO2010087260A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
Dutta et al. Activity of diclofenac used alone and in combination with streptomycin against Mycobacterium tuberculosis in mice
RU2560846C1 (en) Pharmaceutical compositions, containing sulbactam and beta-lactamase inhibitor
US10064858B2 (en) Methods and compositions for treating bacterial infections with iron chelators
JP2015536949A (en) Methods and compositions using antibiotics for bacterial infections
WO2010087260A1 (en) Anti-tuberculosis agent and use thereof
Zitko et al. Old drugs and new targets as an outlook for the treatment of tuberculosis
JP2019116508A (en) Pharmaceutical composition containing antibacterial agent
US20160296502A1 (en) Antibacterial compositions
US9789097B2 (en) Pharmaceutical compositions comprising antibacterial agents
US20170000775A1 (en) Pharmaceutical compositions comprising antibacterial agents
US20160287571A1 (en) Pharmaceutical compositions comprising antibacterial agents
US20170065566A1 (en) Pharmaceutical combinations comprising antibacterial agents
US20080131420A1 (en) Methods and compositions for treating mucosal inflammation
AU2014338612A1 (en) Pharmaceutical compositions comprising antibacterial agents
WO2015063714A1 (en) Pharmaceutical compositions comprising antibacterial agents
RU2796503C2 (en) Antibacterial compositions
US20170027917A1 (en) Pharmaceutical compositions comprising antibacterial agents
EP3125887A1 (en) Pharmaceutical compositions comprising cefepime or sulbactam
Paul et al. 668. Quality of Life Changes in Patients with Clostridium difficile Infection (CDI): A Randomized, Double-Blind Trial of Ridinilazole (RDZ) Compared with Vancomycin (VAN)
WO2018193368A1 (en) Antibacterial compositions
JP2022532734A (en) Candida auris Antifungal agent for decolonization
JP2019522052A (en) Antibacterial composition
EP3060212A1 (en) Pharmaceutical compositions comprising sulbactam and imipenem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010548473

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735729

Country of ref document: EP

Kind code of ref document: A1