WO2010086997A1 - Stator and motor - Google Patents

Stator and motor Download PDF

Info

Publication number
WO2010086997A1
WO2010086997A1 PCT/JP2009/051591 JP2009051591W WO2010086997A1 WO 2010086997 A1 WO2010086997 A1 WO 2010086997A1 JP 2009051591 W JP2009051591 W JP 2009051591W WO 2010086997 A1 WO2010086997 A1 WO 2010086997A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
insulator
stator
tooth
yoke
Prior art date
Application number
PCT/JP2009/051591
Other languages
French (fr)
Japanese (ja)
Inventor
竹内誉人
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/051591 priority Critical patent/WO2010086997A1/en
Publication of WO2010086997A1 publication Critical patent/WO2010086997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to a stator including an insulator formed integrally around at least a tooth, and a motor including the stator.
  • the stator core constituting the motor is generally composed of the following two forms. One of them is formed from a steel plate laminate in which steel plates each having an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth are laminated. Is. The other is to form a stator core from a powder magnetic core obtained by pressure-molding magnetic powder, a high-density powder magnetic core (HDMC), or the like.
  • HDMC high-density powder magnetic core
  • stator core for example, a coil in which an enamel insulating film is formed around a copper conductive wire is wound around a tooth while being inserted into a slot defined between the teeth.
  • a concentrated winding method is a form in which a conductive wire is wound for each tooth
  • the distributed winding method is a form in which a conductive wire is wound across a plurality of teeth.
  • Distributed winding coils are generally applied. In either concentrated winding or distributed winding, slot insulating paper is interposed between them from the viewpoint of ensuring insulation between the slot surface of the stator core and the coil.
  • a split stator core in which an insulator is formed by this integral molding is disclosed in Patent Document 1, and in this split stator core, a guide groove for guiding a coil is provided on the teeth base end side of the yoke.
  • the integrally molded insulator described above is preferably as thin as possible on the premise of ensuring insulation, but for example, in order to improve heat dissipation, If an insulator is to be injection-molded, filling failure (resin fluidity failure) at the time of injection molding is likely to be difficult to mold. Regarding the poor fluidity, the problem of poor fluidity becomes more conspicuous when the resin contains an inorganic filler in order to improve heat dissipation. Furthermore, not only the integrally molded insulator but also the insulator that is molded separately and fitted to the teeth in a later process, the linear expansion coefficient of the resin insulator is naturally higher than that of the stator core.
  • the linear expansion coefficient of iron is about 12 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of polystyrene (PS) or polyphenylene ether (PPE) is about 60 ⁇ 10 ⁇ 6 / ° C., polypropylene.
  • the linear expansion coefficient of (PP) is about 100 ⁇ 10 ⁇ 6 / ° C., which is considerably higher than that of iron (including magnetic steel sheets). Therefore, the amount of deformation during temperature change ( (Expansion amount, contraction amount) are greatly different.
  • FIG. 7 shows an insulator b integrally formed around a tooth a1 of a split core a (consisting of a steel plate laminate of electromagnetic steel plates a ′) forming a split stator core and a surface facing the slot s of the yoke a2. Shows things.
  • the insulator b around the teeth is formed of a side surface b1 facing the slot s and a top surface b2 not facing the slot s, and the corner portion G composed of the side surface b1 and the top surface b2 It is highly rigid compared with the part.
  • the present invention has been made in view of the above-mentioned problems, and an insulator excellent in heat resistance and as thin as possible on the premise of ensuring insulation, is integrally molded around the teeth while being excellent in crack resistance.
  • An object of the present invention is to provide a stator and a motor including the stator.
  • a stator according to the present invention is a stator comprising a substantially annular yoke in plan view, teeth projecting radially inward from the yoke, and slots defined between adjacent teeth.
  • An insulator formed integrally is provided at least around the side surface facing the slot of the tooth and the top surface not facing the slot, and the tooth is provided from the radial tip to the yoke.
  • the width of the teeth increases toward the root portion to be connected, and a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and the protrusion of the insulator is formed in the groove. It is what.
  • the insulator is integrally formed by injection molding or the like around at least the teeth, and the width of the teeth increases from the radial tip to the root connected to the yoke.
  • a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and the protrusion of the insulator is formed in the groove, so that the tooth is moved in the height direction.
  • this concave groove becomes a resin flow path at the time of injection molding, so that sufficient resin flow is compensated by this concave groove.
  • the stator is capable of forming a thin-layer insulator around the teeth.
  • the “root portion” is a portion connected to the yoke in the tooth, and the portion where the groove is formed is the root portion and either one or both sides of the tooth.
  • a groove is formed in the root portion, and it is not excluded that a groove is formed in a tooth portion other than this.
  • a concave groove bulging inside the teeth is provided, for example, on both sides of the root. Even so, it has been demonstrated that the torque reduction rate of the motor including the stator having the teeth is extremely small. In other words, heat dissipation performance can be improved by integrally forming a thin insulator while minimizing the reduction rate of torque that can be reduced by providing grooves in the teeth as much as possible.
  • the crack resistance of the insulator can be improved by the protrusion of the insulator that is filled and hardened inside.
  • the stator described above has a split core composed of an arc-shaped yoke in plan view and teeth projecting radially inward from the yoke in the circumferential direction.
  • the outer periphery includes both divided stators that are fastened by, for example, a cylindrical body.
  • those formed from a steel sheet laminate formed by laminating electromagnetic steel sheets those formed from a powder magnetic core, a high-density powder magnetic core (HDMC), etc. formed by pressure-forming magnetic powder are included.
  • the magnetic powder iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy, iron-phosphorus
  • soft magnetic metal powders such as iron alloys, iron-nickel-cobalt alloys and iron-aluminum-silicon alloys, or soft magnetic metal oxide powders coated with a resin binder such as a silicone resin.
  • the groove formed in the root portion of the stator core is formed with a notch (concave groove) having a desired shape and size in the root portion of each steel plate when the stator core is made of a steel plate laminate.
  • a concave groove having a desired planar shape and planar dimension can be formed in the height direction of the teeth.
  • the base of the teeth is automatically formed when the mold is opened by pressing and forming the grooves on the cavity side of the mold.
  • a groove having a desired shape and size can be formed by, for example, a method of cutting after pressure molding.
  • the above-mentioned concave groove is formed in the root portion of the tooth, and the insulator is provided with a protrusion (rib) formed in the concave groove, whereby the molded insulator has the protrusion extending in the height direction.
  • the high-rigidity part which consists of the corner part (corner part formed by the slot side side and top face of teeth) of the both ends, and the ridge which connects these corner parts, The crack resistance of the inner side is greatly improved.
  • an insulator having a conventional structure constitutes the stator of the present invention, whereas when it is thermally expanded or contracted, high temperature stress sites are likely to concentrate only at the corners at both ends, and cracks are likely to occur. Insulators also generate relatively large temperature stresses in high-rigidity parts reinforced with ridges, and this also has the effect of dispersing and mitigating temperature stresses that tend to concentrate at the corners at both ends. From this viewpoint, the crack resistance is improved.
  • the insulator to be injection-molded is preferably molded not only on the teeth but also on the surface facing the slot of the yoke.
  • the surface around the teeth and the surface facing the slot of the yoke are preferably formed.
  • the insulator is molded simultaneously and integrally.
  • the above-mentioned concave groove is formed outside the tooth with respect to the projected portion when the radial tip portion of the tooth is projected onto the root portion. If the concave groove is formed to the inside of the teeth from the projected portion, the flow of magnetic flux from the teeth to the yoke is obstructed, and the torque performance of the motor equipped with this stator is greatly reduced. is there. Further, from the verification by the present inventors, it is desirable that the concave groove is formed only in the teeth, and therefore the concave groove is not formed from the root portion of the tooth to the yoke.
  • a concave groove extending in the radial direction is further formed on the side surface facing the slot of the tooth, and a separate ridge of the insulator is also formed in the concave groove.
  • Form may be sufficient. This is because the insulator has a ridge extending in the height direction of the teeth and a ridge extending perpendicularly to the teeth in the radial direction, and the high rigidity portion is further increased. The rigidity is further increased.
  • the coil of the present invention is formed by concentrated winding or distributed winding.
  • a rectangular wire including a rectangular conductor having a substantially rectangular cross-sectional view and an insulating film formed on the outer periphery of the rectangular conductor is wound around the insulator. Is preferred.
  • the insulator is integrally formed at least around the teeth by injection molding or the like, so that the air gap that may be generated between the core and the insulator is in close contact with each other, and the coil to the core is removed. Heat dissipation performance can be improved.
  • the insulator is reinforced by a highly rigid protrusion that extends in the height direction. Generation of cracks that can occur can be effectively avoided.
  • a groove extending in the height direction is formed at the root of the teeth, this promotes the resin flow and allows the resin to be spread all around the teeth.
  • Insulating thin layers of insulators can be integrally formed, so that an insulator with extremely high heat dissipation performance can be formed.
  • the flow is compensated by the resin flow promoting effect by the concave groove even when the inorganic filler described above is contained in the resin to be used, the improvement of the heat radiation performance due to the inclusion of the inorganic filler is also expected. Is possible.
  • a motor comprising the above-described stator of the present invention and a rotor rotatably disposed in the stator is such that the insulator formed around the teeth is as thin as possible, and the insulator and the core are in close contact with each other.
  • the insulator does not crack or is hardly cracked, and the motor is as small as possible, excellent in heat dissipation, and excellent in crack resistance (or durability). Therefore, the motor including the stator according to the present invention has been recently produced, and a hybrid vehicle and an electric vehicle that require further compactness, high durability, and high heat dissipation especially for a drive motor mounted on a vehicle. It is suitable for.
  • stator of the present invention As can be understood from the above description, according to the stator of the present invention and the motor including the stator, the stator as small as possible, excellent in heat dissipation, and excellent in crack resistance (or durability) A motor having this can be obtained.
  • FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2.
  • (A) is the schematic diagram of the ditch
  • (b) is the schematic diagram which showed the motor which consists of the stator by which the division
  • Electromagnetic steel plate 10 ... Divided core, 11 ... Teeth, 11 '... Side surface which opposes slot of teeth, 11 "... Top surface which does not oppose slot of teeth, 11a, 11b, 11c ... Groove, 20 ... Resin integral Molded insulators, 20a, 20b, 20c ... ridges, 21 ... side faces facing the slots of the insulators, 22 ... top faces not facing the slots of the insulators, 23 ... side faces facing the slots of the insulators, 100 ... stators, 200 ... rotors , 300 ... Permanent magnet, X1 ... Radial tip, X2 ... Root, G ... Corner
  • the illustrated example shows a split core, it is needless to say that a general stator integrally formed in an annular shape may be used.
  • the coil formed around the teeth is not shown, but this coil may be either a flat wire or a general cross-section coil. However, it is preferable to apply a rectangular wire from the viewpoint of the space factor.
  • the illustrated example shows a concave groove extending in the height direction of the tooth and a protrusion of the insulator formed in the concave groove. In addition to the concave groove and the protrusion, the groove faces the tooth slot.
  • a concave groove extending in the radial direction may be further formed on the side surface, and a protrusion of a separate insulator may be formed in the concave groove.
  • FIG. 1 shows a split core 10 constituting a split stator of an IPM motor.
  • the split core 10 includes a yoke 12 having a substantially arc shape in plan view and a tooth 11 protruding radially inward from the yoke 12 and is formed by laminating electromagnetic steel plates 1.
  • the electromagnetic steel plates may be formed from a dust core, a high-density dust core (HDMC), or the like.
  • the teeth 11 of the split core 10 have a width that increases from the radial tip end portion X1 toward the root portion X2 connected to the yoke 12, and project on the both sides of the root portion X2 to the inside of the teeth 11. Grooves 11a and 11a extending in the height direction of the teeth 11 are formed.
  • the concave groove 11a is formed by forming a notch (concave groove) having a desired shape and size in the root portion X2 of each electromagnetic steel sheet 1 to thereby form the concave groove 11a having a desired planar shape and planar dimension. Can be formed in the height direction of the teeth.
  • FIG. 2 shows the divided core 10 shown in FIG. 1 around the teeth 11 (the side surface 11 ′ facing the tooth slot and the top surface 11 ′′ not facing the tooth slot) and the side surface 12 ′ of the yoke 12 on the slot side.
  • the state in which the resin integrated molded insulator 20 is formed is shown.
  • the insulator 20 accommodates the split core 10 in a mold (not shown) and injection-molds an appropriate thermosetting resin or thermoplastic resin into the mold, thereby forming the periphery of the teeth 11 and the side surface 12 ′ of the yoke 12.
  • the side surface 21 facing the slot of the insulator 20 on the outer periphery of the side surface 11 ′ facing the slot forming the tooth 11 is formed on the top surface 11 not facing the slot of the tooth 11.
  • the top surface 22 that does not oppose the slot of the insulator 20 is formed on the outer periphery of the insulator 20, and the side surface 23 that opposes the slot of the insulator 20 is formed on the side surface 12 ′ that opposes the slot of the yoke 12.
  • the injection resin is also filled into the concave groove 11a, and is cured to form a protrusion 20a having a shape and dimensions (cross-sectional rigidity) corresponding to the concave groove 11a.
  • the concave groove 11a also serves as a resin flow path, and the resin filled in a molding die (not shown) flows in the height direction of the tooth 11 through the concave groove 11a. At a certain level, it can flow into the space between the cavity surface of the mold and the side surfaces of the teeth 11 and the yoke 12. Therefore, even when this space is narrow (and therefore the thickness of the insulator 20 is thin), the resin can be effectively distributed over the entire surface of the insulator 20, so that the thin-layer insulator 20 can be molded. Become.
  • the insulator 20 has a corner portion G and a ridge 20a that are higher in rigidity than other parts (side surface 21 and top surface 22). Compared with the insulator of the conventional structure which does not exist, the whole rigidity is remarkably high. As a result, the occurrence of cracks in the vicinity of the corner G as shown in FIG. It is to be noted that the presence of the high-rigid protrusions 20a alleviates the concentration of excessive temperature stress only in the vicinity of the corner portion G, so that the occurrence of the cracks is suppressed.
  • the split stator is formed by being assembled in the circumferential direction, and by further inserting the split core assembly unit into the nonmagnetic material cylinder and performing shrink fitting.
  • FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2, and is a diagram illustrating in more detail the site where the protrusion 20a is formed in a plan view.
  • the formation part of the protrusion 20a (or the concave groove 11a) is a region A outside the tooth 11 with respect to the projection part when the radial tip part X1 of the tooth 11 is projected onto the root part X2.
  • the following effects can be expected by providing the concave groove 11a while minimizing the reduction rate of the motor torque when the concave groove 11a is formed. That is, it is formed in the concave groove 11a, such as ensuring the effective fluidity of the resin for integral molding, ensuring the moldability of the thin-layer integrally molded insulator resulting from this, and improving the heat dissipation performance resulting from this. This is an effect that the crack resistance of the insulator 20 is improved (durability is improved) by the protrusion 20a.
  • FIG. 4 is a schematic diagram showing various embodiments of the groove and the protrusion. Specifically, FIG. 4a shows a schematic diagram of the groove and protrusion shown in FIG. 2, and FIGS. 4b and 4c are schematic diagrams showing other embodiments.
  • FIG. 4a shows a ridge 20a corresponding to the shape and size of the groove 11a protruding into the tooth 11 in a triangular shape.
  • the groove 11b has a rectangular shape in plan view
  • the groove 11b having a rectangular shape in plan view is provided at the root portion X2, and a rectangular shape in plan view is separately provided at a midway position in the radial direction of the tooth 11.
  • the protrusion 20c is provided.
  • the shape of the grooves and ridges to be formed, and their radixes are not particularly limited, and are formed at least in the outer region A, and at least the root groove X2 of the teeth 11 and the grooves What has a protrusion is sufficient.
  • FIG. 5 is a perspective view showing an IPM motor including a stator in which the divided cores shown in FIG. 2 are assembled in the circumferential direction and a rotor.
  • a rotor shaft 210 (drive shaft slot) is opened at the center position, and a magnet slot extending in a direction along the rotor shaft 210 in a predetermined number is opened in the peripheral portion.
  • the permanent magnet 300 is inserted into the magnet slot and, for example, a fixing resin is filled between the slot and the permanent magnet 300 to compensate for the fixing of the permanent magnet 300 in the slot.
  • a unit model of a stator and rotor (V-shaped permanent magnet embedded type) as shown in FIG. 6 is created in a computer, current value: 114 (A), advance angle: 38 (degrees), and rotation speed: 1000 (rpm), permanent magnet residual magnetic flux density (Br): 1.17 (T), recoil relative magnetic permeability: 1.05 ( ⁇ r), a laminate of electromagnetic steel sheets having a thickness of 0.3 mm for both the stator core and the rotor core The analysis was performed as formed from
  • the analysis model of Comparative Example 1 has a tooth (there is no groove at the base portion) whose width increases from the radial tip portion toward the root portion connected to the yoke
  • the analysis model of Comparative Example 2 Has a tooth whose width is constant from the radial tip to the root connected to the yoke (no groove in the root), and the analysis model of Comparative Example 3 is connected from the radial tip to the yoke.
  • Teeth whose width increases toward the root part, in which a relatively large concave groove is formed from the root part of the tooth to the yoke the model of the embodiment is a concave as shown in FIG. It has a groove at the base of the tooth.
  • Table 1 The results of the magnetic field analysis are shown in FIG. 6 and Table 1 below. In Table 1, the torque reduction rates of Comparative Examples 2 to 3 and Examples are compared to the torque of Comparative Example 1 as a reference. Show.
  • the comparative example 2 in which the width of the teeth is constant reduces the torque by about 5%, changes the tooth width, and extends from the root portion to the yoke.
  • Comparative Example 3 in which a large concave groove was provided it was specified that the torque was reduced by about 11%. Therefore, first, it is preferable that the width of the teeth is increased from the radial front end portion toward the root portion connected to the yoke, and the groove formed in the root portion of the teeth does not extend to the yoke. It has proven to be preferable.
  • the example is only 0.4% of torque reduction, and even when the groove is provided in the tooth, the groove forming portion is the root in the tooth. It is demonstrated that the motor torque can be reduced to a very small value when the size of the groove is such that the size of the groove does not hinder the flow of magnetic flux (for example, in the outer region A in FIG. 3). It was done.
  • the resin flow can be promoted by using the grooves while minimizing torque reduction.
  • a thin-layer insulator can be formed, and high heat dissipation from the coil to the stator core via the insulator can be compensated.
  • the present inventors further prepared a stator 100 composed of the split core 10 with an insulator shown in FIG. 2 as an example, and a conventional structure in which the concave grooves 11a and the protrusions 20a were eliminated from the split core 10 shown in FIG.
  • a stator composed of a split core of the above is used as a comparative example.
  • Temperature condition in a simulated cold region ⁇ 40 ° C., for example, a temperature condition assumed when a motor is driven and a maximum current is applied (maximum heat generation): 160 ° C. Until the occurrence of cracks (or growth of cracks) in which insulation could not be ensured was measured.
  • test specimens were easily prepared, and a total of five thermal tests were performed on each specimen to obtain an average.
  • the measurement is 100 times, 100 times, 100 times, 300 times, and 300 times in order, and the average number of repetitions until the occurrence of a crack in which insulation cannot be secured is 180 times. It was demonstrated that the number of repetitions can be improved by 60% or more as compared with the comparative example.
  • a groove is provided in the root of the tooth, and the protrusion of the insulator integrally formed in the groove is formed to reinforce the entire insulator, thereby providing crack resistance. It has been found that this is significantly improved as compared with an integrally molded insulator having a conventional structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Disclosed is a stator in which an insulator superior in crack resistance is integrally formed around teeth while it is superior in radiation property and is thin as much as possible by setting securing of insulation property as assumption. Also disclosed is a motor having the stator. The stator (division core (10)) is formed of a yoke (12) whose plane view is in an almost circular shape, the teeth (11) projected inward in a radial direction from the yoke (12), and a slot formed between the adjacent teeth (11) and (11). The integrally formed insulator (20) is arranged at a periphery of a side (11') confronted with the slot of the teeth (11) and a top face (11”) which is not confronted with the slot. A concave groove (11a) extending in a height direction of the teeth (11) is formed in a root part (X2) of the teeth (11). A projected bar (20a) of the insulator (20) is formed inside the concave groove (11a).

Description

ステータおよびモータStator and motor
 本発明は、少なくともティース周りに一体成形されたインシュレータを備えたステータと、該ステータを具備するモータに関するものである。 The present invention relates to a stator including an insulator formed integrally around at least a tooth, and a motor including the stator.
 自動車産業においては、ハイブリッド自動車や電気自動車のさらなる走行性能の向上を目指して、駆動用モータの高出力化、軽量化、小型化への開発が日々進められている。また、家電製品メーカーにおいても、各種家電製品に内蔵されるモータのさらなる小型化、高性能化への開発に余念がない。 In the automobile industry, with the aim of further improving the running performance of hybrid cars and electric cars, developments for drive motors with higher output, lighter weight, and smaller size are being made every day. In addition, home appliance manufacturers have no choice but to develop further miniaturization and higher performance of motors incorporated in various home appliances.
 モータ(電動機)を構成するステータコアは一般に、以下2つの形成態様からなっている。その一つは、円環状のヨークと、該ヨークから径方向内側に突出する複数のティースと、隣接するティース間に形成されるスロットとを備えた鋼板が積層された、鋼板積層体から形成されるものである。また、他の一つは、磁性粉末を加圧成形してなる圧粉磁心、高密度圧粉磁心(HDMC)などからステータコアを成形するものである。 The stator core constituting the motor (electric motor) is generally composed of the following two forms. One of them is formed from a steel plate laminate in which steel plates each having an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth are laminated. Is. The other is to form a stator core from a powder magnetic core obtained by pressure-molding magnetic powder, a high-density powder magnetic core (HDMC), or the like.
 上記するステータコアにおいて、たとえば銅素材の導線周囲にエナメル絶縁皮膜が形成されてなるコイルが、ティース間に画成されたスロット内に挿入されながら、ティース周りに巻装されることによってステータが製造されている。ここで、コイル用の導線の巻装形態には、集中巻き方式と分布巻き方式がある。このうち、集中巻き方式とはティースごとに導線が巻装される形態であり、分布巻き方式とは複数のティースに跨って導線が巻装される形態であり、3相交流モータには、この分布巻き方式のコイルが一般に適用されている。集中巻き、分布巻きいずれの巻装形態においても、ステータコアのスロット面とコイルとの間の絶縁性を確保する観点から、それらの間にはスロット絶縁紙が介装されている。しかし、この絶縁紙にてコイルとコア間の絶縁を図る場合には、該絶縁紙とコアの間に空気層(エアギャップ)が形成されることを回避できず、この空気層が熱抵抗を増大させるために、モータ駆動時にコイルで生じるジュール熱のコアへの放熱性を低下させる大きな原因となっている。 In the above-described stator core, for example, a coil in which an enamel insulating film is formed around a copper conductive wire is wound around a tooth while being inserted into a slot defined between the teeth. ing. Here, there are a concentrated winding method and a distributed winding method for winding the conductive wire for the coil. Of these, the concentrated winding method is a form in which a conductive wire is wound for each tooth, and the distributed winding method is a form in which a conductive wire is wound across a plurality of teeth. Distributed winding coils are generally applied. In either concentrated winding or distributed winding, slot insulating paper is interposed between them from the viewpoint of ensuring insulation between the slot surface of the stator core and the coil. However, when the insulation paper is used to insulate the coil and the core, it cannot be avoided that an air layer (air gap) is formed between the insulation paper and the core. In order to increase it, it becomes a big cause to reduce the heat dissipation to the core of Joule heat generated in the coil when the motor is driven.
 そこで、絶縁素材の樹脂をたとえばティース周りに一体成形してインシュレータを形成することで、該インシュレータとコアの密着性を担保し、もって、双方の間に空気層を形成させない方策が取られることもある。なお、この一体成形にてインシュレータが形成された分割ステータコアが特許文献1に開示されており、この分割ステータコアでは、そのヨークのティース基端側にコイルを案内するガイド溝が設けられている。 Therefore, by forming the insulator by integrally molding the resin of the insulating material around the teeth, for example, measures can be taken to ensure the adhesion between the insulator and the core and not to form an air layer between the two. is there. A split stator core in which an insulator is formed by this integral molding is disclosed in Patent Document 1, and in this split stator core, a guide groove for guiding a coil is provided on the teeth base end side of the yoke.
 モータの小型化、放熱性の観点から、上記する一体成形されたインシュレータは、絶縁性の確保を前提として可及的に薄層であるのが好ましいものの、たとえば放熱性を高めるべく、薄層のインシュレータを射出成形しようとすると、射出成形時の充填不良(樹脂の流動性不良)を来たして成形が困難となり易い。なお、この流動性不良に関して言えば、放熱性を高めるべく、樹脂に無機フィラーを含有する場合に、この流動性不良の問題はより顕著となる。さらに、一体成形されるインシュレータは勿論のこと、別体成形されて後工程にてティースに嵌め合いされる形態のインシュレータにおいても、ステータコアに比して樹脂製のインシュレータの線膨張係数が自ずと高いことから、使用環境によっては、温度ストレスに起因するクラックが生じ易いという問題もある。なお、たとえば、鉄の線膨張係数が12×10-6/℃程度であるのに対して、ポリスチレン(PS)やポリフェニレンエーテル(PPE)の線膨張係数は60×10-6/℃程度、ポリプロピレン(PP)の線膨張係数は100×10-6/℃程度と、鉄(電磁鋼板を含む)に比して樹脂の線膨張係数はかなり高いものであり、したがって、温度変化時の変形量(膨張量、収縮量)が大きく異なることとなる。 From the viewpoint of miniaturization of the motor and heat dissipation, the integrally molded insulator described above is preferably as thin as possible on the premise of ensuring insulation, but for example, in order to improve heat dissipation, If an insulator is to be injection-molded, filling failure (resin fluidity failure) at the time of injection molding is likely to be difficult to mold. Regarding the poor fluidity, the problem of poor fluidity becomes more conspicuous when the resin contains an inorganic filler in order to improve heat dissipation. Furthermore, not only the integrally molded insulator but also the insulator that is molded separately and fitted to the teeth in a later process, the linear expansion coefficient of the resin insulator is naturally higher than that of the stator core. Therefore, there is a problem that cracks due to temperature stress are likely to occur depending on the use environment. For example, the linear expansion coefficient of iron is about 12 × 10 −6 / ° C., whereas the linear expansion coefficient of polystyrene (PS) or polyphenylene ether (PPE) is about 60 × 10 −6 / ° C., polypropylene. The linear expansion coefficient of (PP) is about 100 × 10 −6 / ° C., which is considerably higher than that of iron (including magnetic steel sheets). Therefore, the amount of deformation during temperature change ( (Expansion amount, contraction amount) are greatly different.
 このクラックに関し、本発明者等の知見によれば、一般の筒状のインシュレータにおいて、その隅角部でインシュレータの変形が拘束され、その中央部(たとえばティース側面の中央部に対応する部分)では相対的に変形量が大きくなるために、インシュレータの上記隅角部の近傍、より具体的には、該隅角部から若干中央部側へ入った部分で温度応力が高くなり、ティースの突出方向(径方向)に伸びるクラックがこのインシュレータ部位で生じ易いことが特定されている。 With regard to this crack, according to the knowledge of the present inventors, in a general cylindrical insulator, deformation of the insulator is constrained at the corner portion, and in the central portion (for example, the portion corresponding to the central portion of the tooth side surface) Since the amount of deformation is relatively large, the temperature stress increases in the vicinity of the corner portion of the insulator, more specifically, the portion slightly entering the central portion from the corner portion, and the protruding direction of the teeth. It has been specified that cracks extending in the (radial direction) are likely to occur in this insulator region.
 このことを、図7を参照して説明する。図7は、分割ステータコアを形成する分割コアa(電磁鋼板a’の鋼板積層体からなる)のティースa1周りと、ヨークa2のスロットsに対向する面と、にインシュレータbが一体に成形されたものを示している。同図において、ティース周りのインシュレータbは、スロットsに対向する側面b1と、スロットsに対向しない頂面b2とから形成されており、側面b1と頂面b2からなる隅角部Gは、他の部位に比して高剛性となっている。そのため、図示する分割コアaが組み付けられて分割ステータコアが形成され、これを具備するモータが駆動時の高温雰囲気と、非駆動時の低温もしくは常温雰囲気と、の間の冷熱サイクルを受けた際には、インシュレータbの側面b1における隅角部G近傍において、径方向に延びるクラックcが生じるというものである。なお、本発明者等によれば、この冷熱サイクル時の温度応力を解析した際に、この隅角部やその近傍で相対的に大きな温度応力が生じていることが特定されており、これは、発生するクラックと相関している。 This will be described with reference to FIG. FIG. 7 shows an insulator b integrally formed around a tooth a1 of a split core a (consisting of a steel plate laminate of electromagnetic steel plates a ′) forming a split stator core and a surface facing the slot s of the yoke a2. Shows things. In the same figure, the insulator b around the teeth is formed of a side surface b1 facing the slot s and a top surface b2 not facing the slot s, and the corner portion G composed of the side surface b1 and the top surface b2 It is highly rigid compared with the part. Therefore, when the illustrated split core a is assembled to form a split stator core, when a motor including the split core undergoes a cooling cycle between a high temperature atmosphere during driving and a low temperature or normal temperature atmosphere during non-driving. Is a crack c extending in the radial direction in the vicinity of the corner G of the side surface b1 of the insulator b. In addition, according to the present inventors, when analyzing the temperature stress at the time of this thermal cycle, it has been specified that relatively large temperature stress is generated in this corner portion and its vicinity, Correlate with the cracks that occur.
 このように、ティース周りに樹脂を一体成形してインシュレータを形成するに際し、高い熱伝導性、高い流動性に基づく充填良好性、高い強度(耐クラック性)、といったすべての要素を同時に満足させる材料面からのアプローチは極めて困難な状況にあることから、ステータの構造面等からのアプローチで、これらの課題のすべてを効果的に解消することが当該技術分野における急務の課題の一つとなっている。なお、上記特許文献1に開示の分割ステータコアにおいても、上記課題のすべてを効果的に解消することはできない。
特開平11-332138号公報
In this way, when forming an insulator by integrally molding a resin around the teeth, a material that satisfies all the elements of high thermal conductivity, good filling based on high fluidity, and high strength (crack resistance) at the same time Since the approach from the aspect is extremely difficult, it is one of the urgent issues in the technical field to effectively solve all of these problems by the approach from the structural aspect of the stator. . Note that even the split stator core disclosed in Patent Document 1 cannot effectively solve all of the above problems.
JP-A-11-332138
 本発明は、上記する問題に鑑みてなされたものであり、放熱性に優れ、絶縁性確保を前提として可及的に薄層でありながら、耐クラック性に優れたインシュレータがティース周りに一体成形されているステータと、該ステータを具備するモータを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an insulator excellent in heat resistance and as thin as possible on the premise of ensuring insulation, is integrally molded around the teeth while being excellent in crack resistance. An object of the present invention is to provide a stator and a motor including the stator.
 前記目的を達成すべく、本発明によるステータは、平面視が略環状のヨークと、該ヨークから径方向内側に突出するティースと、隣接するティース間に画成されたスロットと、からなるステータであって、少なくとも、前記ティースのスロットに対向する側面と、スロットに対向しない頂面と、の周囲には、一体成形されたインシュレータが備えられており、前記ティースは、径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっており、ティースの前記根元部には該ティースの高さ方向に延びる凹溝が形成されており、該凹溝内に前記インシュレータの突条が形成されているものである。 In order to achieve the above object, a stator according to the present invention is a stator comprising a substantially annular yoke in plan view, teeth projecting radially inward from the yoke, and slots defined between adjacent teeth. An insulator formed integrally is provided at least around the side surface facing the slot of the tooth and the top surface not facing the slot, and the tooth is provided from the radial tip to the yoke. The width of the teeth increases toward the root portion to be connected, and a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and the protrusion of the insulator is formed in the groove. It is what.
 本発明のステータは、少なくともそのティース周りに樹脂を射出成形等することによってインシュレータが一体に成形されたものであり、そのティースが径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっているものにおいて、ティースの根元部には該ティースの高さ方向に延びる凹溝が形成され、この凹溝内にインシュレータの突条が形成されていることにより、ティースをその高さ方向に亘って該突条で補強することができ、もって、隅角部近傍に生じ得るクラックの発生を効果的に抑止できるステータである。さらには、ティースの根元部に上記する凹溝が形成されていることで、この凹溝が射出成形時の樹脂の流路となることで、十分な樹脂流れをこの凹溝にて補償することができ、薄層のインシュレータをティース周りに形成することを可能としたステータである。 In the stator according to the present invention, the insulator is integrally formed by injection molding or the like around at least the teeth, and the width of the teeth increases from the radial tip to the root connected to the yoke. In the present invention, a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and the protrusion of the insulator is formed in the groove, so that the tooth is moved in the height direction. This is a stator that can be reinforced with the protrusions and can effectively suppress the occurrence of cracks that may occur in the vicinity of the corners. Furthermore, since the above-mentioned concave groove is formed at the root of the tooth, this concave groove becomes a resin flow path at the time of injection molding, so that sufficient resin flow is compensated by this concave groove. The stator is capable of forming a thin-layer insulator around the teeth.
 ここで、「根元部」とは、ティースのうち、ヨークに繋がる部分であり、凹溝が形成される箇所は、この根元部であって、かつティースの両側のいずれか一方もしくは双方である。尤も、この根元部に凹溝が形成されていればよく、これ以外のティース部位に凹溝が形成されることを排除するものではない。 Here, the “root portion” is a portion connected to the yoke in the tooth, and the portion where the groove is formed is the root portion and either one or both sides of the tooth. However, it suffices if a groove is formed in the root portion, and it is not excluded that a groove is formed in a tooth portion other than this.
 本発明者等によれば、ティースが径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっている形態において、その根元部のたとえば両側にティース内側に膨らんだ凹溝を設けたとしても、このティースを具備するステータを備えたモータのトルクの低減率は極めてわずかであることが実証されている。すなわち、ティースに凹溝を設けることで低減し得るトルクの低減率を可及的に最小限に抑えながら、薄層のインシュレータを一体成形することで放熱性能を高めることができ、しかも、凹溝内に充填硬化されるインシュレータの突条によってインシュレータの耐クラック性を向上させることができるのである。なお、インシュレータが後工程でティースに嵌め合いされる形態では、ティースの根元部の凹溝内にインシュレータの突条を形成する(たとえば嵌め合いさせる)ことは極めて困難であることより(嵌め合い時にインシュレータが割れたり、クラックが生じる)、ティースがその根元部で凹溝を具備していることと、インシュレータが一体成形されることで該凹溝内に自動的に突条が形成されることは、製造可能性、製造容易性の観点から極めて高い相間があるのである。 According to the present inventors, in a form in which the width of the teeth increases from the radial tip to the root connected to the yoke, a concave groove bulging inside the teeth is provided, for example, on both sides of the root. Even so, it has been demonstrated that the torque reduction rate of the motor including the stator having the teeth is extremely small. In other words, heat dissipation performance can be improved by integrally forming a thin insulator while minimizing the reduction rate of torque that can be reduced by providing grooves in the teeth as much as possible. The crack resistance of the insulator can be improved by the protrusion of the insulator that is filled and hardened inside. In addition, in the form in which the insulator is fitted to the teeth in a later process, it is extremely difficult to form the protrusions of the insulator (for example, to fit) in the concave groove at the root of the teeth (when fitting). Insulator breaks or cracks occur), the tooth has a groove at its root, and the insulator is integrally formed to automatically form a protrusion in the groove. There is an extremely high phase from the viewpoint of manufacturability and manufacturability.
 また、上記するステータは、円環状に一体に形成されたステータのほか、平面視が弧状のヨークと、ヨークから径方向内側に突出するティースと、からなる分割コアが周方向に組み付けられ、その外周がたとえば筒体にて締結されてなる分割ステータの双方を含むものである。さらに、電磁鋼板を積層してなる鋼板積層体から形成されるもののほか、磁性粉末を加圧成形してなる圧粉磁心、高密度圧粉磁心(HDMC)などから成形されるものを含むものである。ここで、この磁性粉末としては、鉄、鉄-シリコン系合金、鉄-窒素系合金、鉄-ニッケル系合金、鉄-炭素系合金、鉄-ホウ素系合金、鉄-コバルト系合金、鉄-リン系合金、鉄-ニッケル-コバルト系合金および鉄-アルミニウム-シリコン系合金などの軟磁性金属粉末、もしくは軟磁性金属酸化物粉末がシリコーン樹脂等の樹脂バインダーで被覆されたものを挙げることができる。 In addition to the stator integrally formed in an annular shape, the stator described above has a split core composed of an arc-shaped yoke in plan view and teeth projecting radially inward from the yoke in the circumferential direction. The outer periphery includes both divided stators that are fastened by, for example, a cylindrical body. Furthermore, in addition to those formed from a steel sheet laminate formed by laminating electromagnetic steel sheets, those formed from a powder magnetic core, a high-density powder magnetic core (HDMC), etc. formed by pressure-forming magnetic powder are included. Here, as the magnetic powder, iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy, iron-phosphorus Examples thereof include soft magnetic metal powders such as iron alloys, iron-nickel-cobalt alloys and iron-aluminum-silicon alloys, or soft magnetic metal oxide powders coated with a resin binder such as a silicone resin.
 したがって、ステータコアの根元部に形成される凹溝は、該ステータコアが鋼板積層体からなる場合には、各鋼板の該根元部に所望の形状および寸法の切欠き(凹溝)を形成しておくことで、所望の平面形状および平面寸法の凹溝をティースの高さ方向に形成することができる。また、ステータコアが圧粉磁心からなる場合には、成形型のキャビティ側面に凹溝形成用の突条を設けておくことで、加圧成形し、型開きした際に自動的にティースの根元部に凹溝を形成できるし、あるいは、加圧成形後に削り加工等する方法などにより、所望形状および寸法の凹溝を形成することができる。 Therefore, the groove formed in the root portion of the stator core is formed with a notch (concave groove) having a desired shape and size in the root portion of each steel plate when the stator core is made of a steel plate laminate. Thus, a concave groove having a desired planar shape and planar dimension can be formed in the height direction of the teeth. Also, when the stator core consists of a dust core, the base of the teeth is automatically formed when the mold is opened by pressing and forming the grooves on the cavity side of the mold. A groove having a desired shape and size can be formed by, for example, a method of cutting after pressure molding.
 ティースの根元部に上記する凹溝が形成され、インシュレータがこの凹溝内に形成される突条(リブ)を具備することにより、成形されるインシュレータは、その高さ方向に亘って該突条にて補強され、その両端部の隅角部(ティースのスロット側側面と頂面で形成される隅角部)と、該隅角部同士を繋ぐ突条と、からなる高剛性部位によって、その内部の側面の耐クラック性は格段に向上される。なお、従来構造のインシュレータは、これが熱膨張や熱収縮した際に、高い温度応力部位が両端の隅角部のみに集中してクラックが生じ易かったのに対して、本発明のステータを構成するインシュレータでは、突条で補強された高剛性部位にも相対的に大きな温度応力が生じることとなり、このことは、両端隅角部に集中し易い温度応力を分散させ、それを緩和させる効果も有しており、この観点からも耐クラック性が向上するのである。 The above-mentioned concave groove is formed in the root portion of the tooth, and the insulator is provided with a protrusion (rib) formed in the concave groove, whereby the molded insulator has the protrusion extending in the height direction. By the high-rigidity part which consists of the corner part (corner part formed by the slot side side and top face of teeth) of the both ends, and the ridge which connects these corner parts, The crack resistance of the inner side is greatly improved. It should be noted that an insulator having a conventional structure constitutes the stator of the present invention, whereas when it is thermally expanded or contracted, high temperature stress sites are likely to concentrate only at the corners at both ends, and cracks are likely to occur. Insulators also generate relatively large temperature stresses in high-rigidity parts reinforced with ridges, and this also has the effect of dispersing and mitigating temperature stresses that tend to concentrate at the corners at both ends. From this viewpoint, the crack resistance is improved.
 そのため、本発明のステータを構成するインシュレータでは、上記する突条が存在しない従来構造のインシュレータの場合に生じていた課題、すなわち、両端の隅角部に過大な温度応力が生じ、これに起因してクラックが生じるといった課題は効果的に解消される。 Therefore, in the insulator that constitutes the stator of the present invention, the problem that occurred in the case of the conventional insulator having no protrusion described above, that is, excessive temperature stress is generated at the corners at both ends, resulting in this. Thus, the problem of cracking is effectively eliminated.
 また、射出成形されるインシュレータは、ティース周りに加えて、ヨークのスロットに対向する面にも成形されるのが好ましく、この場合は、射出成形において、ティース周りとヨークのスロットに対向する面に、同時かつ一体にインシュレータが成形される。 Further, the insulator to be injection-molded is preferably molded not only on the teeth but also on the surface facing the slot of the yoke. In this case, in the injection molding, the surface around the teeth and the surface facing the slot of the yoke are preferably formed. The insulator is molded simultaneously and integrally.
 また、上記する凹溝は、ティースの前記径方向先端部を前記根元部に投影した際の投影部分よりもティースの外側に形成されているのが望ましい。凹溝が該投影部分よりもティースの内側にまで形成されていると、ティースからヨークへ向う磁束の流れを阻害してしまい、このステータを具備するモータのトルク性能を大きく低下させてしまうからである。さらに本発明者等の検証より、凹溝はティース内にのみ形成され、したがって凹溝がティースの根元部からヨークに亘って形成されていない形態が望ましい。 Further, it is desirable that the above-mentioned concave groove is formed outside the tooth with respect to the projected portion when the radial tip portion of the tooth is projected onto the root portion. If the concave groove is formed to the inside of the teeth from the projected portion, the flow of magnetic flux from the teeth to the yoke is obstructed, and the torque performance of the motor equipped with this stator is greatly reduced. is there. Further, from the verification by the present inventors, it is desirable that the concave groove is formed only in the teeth, and therefore the concave groove is not formed from the root portion of the tooth to the yoke.
 さらには、上記する凹溝に加えて、ティースのスロットに対向する側面において、その径方向に延びる凹溝がさらに形成され、該凹溝内においても、別途のインシュレータの突条が形成されている形態であってもよい。これは、ティースの高さ方向に延びる突条と、これに直交してティースの径方向に延びる突条と、をインシュレータが有するものであり、高剛性部位がより増加することで、インシュレータの全体剛性が一層高くなる。 Further, in addition to the above-described concave groove, a concave groove extending in the radial direction is further formed on the side surface facing the slot of the tooth, and a separate ridge of the insulator is also formed in the concave groove. Form may be sufficient. This is because the insulator has a ridge extending in the height direction of the teeth and a ridge extending perpendicularly to the teeth in the radial direction, and the high rigidity portion is further increased. The rigidity is further increased.
 少なくともティース周りにインシュレータが形成された後に、集中巻きもしくは分布巻きにてコイルが形成されることで、本発明のステータが形成される。ここで、コイルの占積率を高めるべく、インシュレータの周りには、断面視が略矩形の平角導体と、該平角導体の外周に形成された絶縁皮膜と、からなる平角線が巻装されるのが好ましい。 At least after the insulator is formed around the teeth, the coil of the present invention is formed by concentrated winding or distributed winding. Here, in order to increase the space factor of the coil, a rectangular wire including a rectangular conductor having a substantially rectangular cross-sectional view and an insulating film formed on the outer periphery of the rectangular conductor is wound around the insulator. Is preferred.
 本発明のステータによれば、少なくともティース周りに射出成形等でインシュレータが一体に成形されることで、コアとインシュレータ同士が密着してそれらの間に生じ得るエアギャップを廃し、コイルからコアへの放熱性能を高めることができる。加えて、モータの冷熱サイクルにおいて、コアとインシュレータとの間に大きな線膨張係数の乖離がある場合でも、インシュレータがその高さ方向に延びる高剛性な突条で補強されていることで、インシュレータに生じ得るクラックの発生を効果的に回避することができる。さらには、ティースの根元部にその高さ方向に延びる凹溝が形成されていることで、これが樹脂流れを促進させ、ティース周りの全体に樹脂を行き亘らせることを可能とするため、可及的に薄層のインシュレータを一体成形することができ、もって放熱性能の極めて高いインシュレータを形成することができる。なお、この凹溝による樹脂流れ促進効果により、使用される樹脂に上記する無機フィラーが含有される場合でもその流れが補償されるため、無機フィラーが含有されることによる放熱性能向上をも見込むことが可能となる。 According to the stator of the present invention, the insulator is integrally formed at least around the teeth by injection molding or the like, so that the air gap that may be generated between the core and the insulator is in close contact with each other, and the coil to the core is removed. Heat dissipation performance can be improved. In addition, even in the case where there is a large linear expansion coefficient divergence between the core and the insulator in the cooling cycle of the motor, the insulator is reinforced by a highly rigid protrusion that extends in the height direction. Generation of cracks that can occur can be effectively avoided. In addition, since a groove extending in the height direction is formed at the root of the teeth, this promotes the resin flow and allows the resin to be spread all around the teeth. Insulating thin layers of insulators can be integrally formed, so that an insulator with extremely high heat dissipation performance can be formed. In addition, since the flow is compensated by the resin flow promoting effect by the concave groove even when the inorganic filler described above is contained in the resin to be used, the improvement of the heat radiation performance due to the inclusion of the inorganic filler is also expected. Is possible.
 上記する本発明のステータと、該ステータ内で回転自在に配されたロータと、を具備するモータは、ティース周りに形成されたインシュレータが可及的に薄層であること、インシュレータとコアは密着していること、インシュレータにはクラックが生じない、もしくは生じ難いこと、より、可及的に小型で、放熱性に優れ、しかも耐クラック性(もしくは耐久性)に優れたモータとなる。したがって、本発明のステータを具備するモータは、近時その生産が拡大しており、車載される特に駆動用モータに一層のコンパクト性、高耐久、高放熱性を要求する、ハイブリッド車や電気自動車に好適である。 A motor comprising the above-described stator of the present invention and a rotor rotatably disposed in the stator is such that the insulator formed around the teeth is as thin as possible, and the insulator and the core are in close contact with each other. In addition, the insulator does not crack or is hardly cracked, and the motor is as small as possible, excellent in heat dissipation, and excellent in crack resistance (or durability). Therefore, the motor including the stator according to the present invention has been recently produced, and a hybrid vehicle and an electric vehicle that require further compactness, high durability, and high heat dissipation especially for a drive motor mounted on a vehicle. It is suitable for.
 以上の説明から理解できるように、本発明のステータと該ステータを具備するモータによれば、可及的に小型で、放熱性に優れ、しかも耐クラック性(もしくは耐久性)に優れたステータと、これを具備するモータを得ることができる。 As can be understood from the above description, according to the stator of the present invention and the motor including the stator, the stator as small as possible, excellent in heat dissipation, and excellent in crack resistance (or durability) A motor having this can be obtained.
鋼板積層体からなる分割コアを示した斜視図である。It is the perspective view which showed the split core which consists of a steel plate laminated body. ティース周りとヨークのスロット側の側面に樹脂一体成形インシュレータが形成された分割コアを示した斜視図である。It is the perspective view which showed the division | segmentation core in which the resin integral molding insulator was formed in the side of the slot side of a yoke circumference and a yoke. 図2のIII-III矢視図である。FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2. (a)は、図2で示す凹溝と突条の模式図であり、(b),(c)は、凹溝と突条の他の実施の形態を示した模式図である。(A) is the schematic diagram of the ditch | groove and protrusion shown in FIG. 2, (b), (c) is the schematic diagram which showed other embodiment of the ditch | groove and protrusion. 図2で示す分割コアが周方向に組み付けられてなるステータと、ロータとからなるモータを示した斜視図である。It is the perspective view which showed the motor which consists of the stator by which the division | segmentation core shown in FIG. 2 was assembled | attached to the circumferential direction, and a rotor. 磁場解析の結果(磁束密度コンター)を示した図であり、(a)は比較例1の結果であり、(b)は比較例2の結果であり、(c)は比較例3の結果であり、(d)は実施例の結果である。It is the figure which showed the result (magnetic flux density contour) of the magnetic field analysis, (a) is the result of the comparative example 1, (b) is the result of the comparative example 2, (c) is the result of the comparative example 3. Yes, (d) is the result of the example. 樹脂一体成形インシュレータが形成された従来の分割コアにおいて、クラックが生じている状態を説明した模式図である。It is the schematic diagram explaining the state which the crack has arisen in the conventional division | segmentation core in which the resin integral molding insulator was formed.
符号の説明Explanation of symbols
 1…電磁鋼板、10…分割コア、11…ティース、11’…ティースのスロットに対向する側面、11”…ティースのスロットに対向しない頂面、11a,11b,11c…凹溝、20…樹脂一体成形インシュレータ、20a,20b,20c…突条、21…インシュレータのスロットに対向する側面、22…インシュレータのスロットに対向しない頂面、23…インシュレータのスロットに対向する側面、100…ステータ、200…ロータ、300…永久磁石、X1…径方向先端部、X2…根元部、G…隅角部 DESCRIPTION OF SYMBOLS 1 ... Electromagnetic steel plate, 10 ... Divided core, 11 ... Teeth, 11 '... Side surface which opposes slot of teeth, 11 "... Top surface which does not oppose slot of teeth, 11a, 11b, 11c ... Groove, 20 ... Resin integral Molded insulators, 20a, 20b, 20c ... ridges, 21 ... side faces facing the slots of the insulators, 22 ... top faces not facing the slots of the insulators, 23 ... side faces facing the slots of the insulators, 100 ... stators, 200 ... rotors , 300 ... Permanent magnet, X1 ... Radial tip, X2 ... Root, G ... Corner
 以下、図面を参照して本発明の実施の形態を説明する。なお、図示例は分割コアを示しているが、円環状に一体に形成された一般のステータであってもよいことは勿論のことである。また、図示例では、ティース周りに形成されるコイルの図示を省略しているが、このコイルには、平角線を適用するもの、断面円形の一般のコイルを適用するもののいずれであってもよいが、占積率の観点から、平角線を適用するのが好ましい。さらに図示例は、ティースの高さ方向に延びる凹溝と、この凹溝内に形成されるインシュレータの突条を示しているが、この凹溝や突条に加えて、ティースのスロットに対向する側面において、その径方向に延びる凹溝がさらに形成され、該凹溝内においても、別途のインシュレータの突条が形成されている形態であってもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although the illustrated example shows a split core, it is needless to say that a general stator integrally formed in an annular shape may be used. In the illustrated example, the coil formed around the teeth is not shown, but this coil may be either a flat wire or a general cross-section coil. However, it is preferable to apply a rectangular wire from the viewpoint of the space factor. Further, the illustrated example shows a concave groove extending in the height direction of the tooth and a protrusion of the insulator formed in the concave groove. In addition to the concave groove and the protrusion, the groove faces the tooth slot. A concave groove extending in the radial direction may be further formed on the side surface, and a protrusion of a separate insulator may be formed in the concave groove.
 図1は、IPMモータの分割ステータを構成する分割コア10を示したものである。この分割コア10は、平面視が略弧状のヨーク12と、該ヨーク12から径方向内側に突出するティース11と、からなり、電磁鋼板1,…が積層されて形成されている。なお、図示例のように電磁鋼板が積層された形態以外にも、圧粉磁心、高密度圧粉磁心(HDMC)などから成形されるものであってもよい。 FIG. 1 shows a split core 10 constituting a split stator of an IPM motor. The split core 10 includes a yoke 12 having a substantially arc shape in plan view and a tooth 11 protruding radially inward from the yoke 12 and is formed by laminating electromagnetic steel plates 1. In addition to the form in which the electromagnetic steel plates are laminated as shown in the illustrated example, it may be formed from a dust core, a high-density dust core (HDMC), or the like.
 この分割コア10のティース11は、その径方向先端部X1からヨーク12に繋がる根元部X2に向かってその幅が大きくなっており、根元部X2の両側には、ティース11の内側に突出するとともに、該ティース11の高さ方向に延びる凹溝11a,11aが形成されている。この凹溝11aの形成方法は、各電磁鋼板1の該根元部X2に所望の形状および寸法の切欠き(凹溝)を形成しておくことで、所望の平面形状および平面寸法の凹溝11aをティースの高さ方向に形成することができる。 The teeth 11 of the split core 10 have a width that increases from the radial tip end portion X1 toward the root portion X2 connected to the yoke 12, and project on the both sides of the root portion X2 to the inside of the teeth 11. Grooves 11a and 11a extending in the height direction of the teeth 11 are formed. The concave groove 11a is formed by forming a notch (concave groove) having a desired shape and size in the root portion X2 of each electromagnetic steel sheet 1 to thereby form the concave groove 11a having a desired planar shape and planar dimension. Can be formed in the height direction of the teeth.
 図2は、図1で示す分割コア10において、そのティース11周り(ティースのスロットに対向する側面11’とティースのスロットに対向しない頂面11”)と、ヨーク12のスロット側の側面12’に、樹脂一体成形インシュレータ20が形成された状態を示している。 FIG. 2 shows the divided core 10 shown in FIG. 1 around the teeth 11 (the side surface 11 ′ facing the tooth slot and the top surface 11 ″ not facing the tooth slot) and the side surface 12 ′ of the yoke 12 on the slot side. The state in which the resin integrated molded insulator 20 is formed is shown.
 このインシュレータ20は、分割コア10を不図示の成形型内に収容し、適宜の熱硬化性樹脂もしくは熱可塑性樹脂を型内に射出成形することにより、ティース11周りとヨーク12の側面12’に一体に成形されるものであり、具体的には、ティース11を形成するスロットに対向する側面11’の外周にインシュレータ20のスロットに対向する側面21が、ティース11のスロットに対向しない頂面11”の外周にインシュレータ20のスロットに対向しない頂面22が、ヨーク12のスロットに対向する側面12’にインシュレータ20のスロットに対向する側面23が、それぞれ形成されるものである。 The insulator 20 accommodates the split core 10 in a mold (not shown) and injection-molds an appropriate thermosetting resin or thermoplastic resin into the mold, thereby forming the periphery of the teeth 11 and the side surface 12 ′ of the yoke 12. Specifically, the side surface 21 facing the slot of the insulator 20 on the outer periphery of the side surface 11 ′ facing the slot forming the tooth 11 is formed on the top surface 11 not facing the slot of the tooth 11. The top surface 22 that does not oppose the slot of the insulator 20 is formed on the outer periphery of the insulator 20, and the side surface 23 that opposes the slot of the insulator 20 is formed on the side surface 12 ′ that opposes the slot of the yoke 12.
 そして、この射出成形の際に射出樹脂が凹溝11a内にも充填され、これが硬化することで、凹溝11aに対応した形状および寸法(断面剛性)の突条20aが形成される。 In this injection molding, the injection resin is also filled into the concave groove 11a, and is cured to form a protrusion 20a having a shape and dimensions (cross-sectional rigidity) corresponding to the concave groove 11a.
 なお、この射出成形において、凹溝11aは樹脂の流路ともなり、不図示の成形型内に充填された樹脂は、この凹溝11aを介してティース11の高さ方向に流動し、各高さレベルにおいて、成形型のキャビティ面とティース11やヨーク12の側面との間の空間に流動することができる。したがって、この空間が狭い(したがって、インシュレータ20の厚みが薄い)場合でも、効果的にインシュレータ20の全面に樹脂を行き亘らせることができるため、薄層のインシュレータ20を成形することが可能となる。 In this injection molding, the concave groove 11a also serves as a resin flow path, and the resin filled in a molding die (not shown) flows in the height direction of the tooth 11 through the concave groove 11a. At a certain level, it can flow into the space between the cavity surface of the mold and the side surfaces of the teeth 11 and the yoke 12. Therefore, even when this space is narrow (and therefore the thickness of the insulator 20 is thin), the resin can be effectively distributed over the entire surface of the insulator 20, so that the thin-layer insulator 20 can be molded. Become.
 図2において、インシュレータ20は、その隅角部Gと突条20aが他の部位(側面21や頂面22)に比して高剛性となっており、突条20aを具備することにより、これが存在しない従来構造のインシュレータに比してその全体剛性は格段に高くなっている。このことにより、インシュレータ20内で冷熱サイクル時に生じる温度応力に対して、図7で示すごときクラックが隅角部G近傍で発生することが効果的に抑止される。なお、高剛性の突条20aが存在することで過度の温度応力が隅角部G近傍のみに集中することが緩和されることからも、上記クラックの発生は抑止される。 In FIG. 2, the insulator 20 has a corner portion G and a ridge 20a that are higher in rigidity than other parts (side surface 21 and top surface 22). Compared with the insulator of the conventional structure which does not exist, the whole rigidity is remarkably high. As a result, the occurrence of cracks in the vicinity of the corner G as shown in FIG. It is to be noted that the presence of the high-rigid protrusions 20a alleviates the concentration of excessive temperature stress only in the vicinity of the corner portion G, so that the occurrence of the cracks is suppressed.
 実際には、インシュレータ20が分割コア10に成形された後に、たとえば、不図示の平角線からなるコイルがティース11(の周囲のインシュレータ20)周りに形成され、コイルが形成された分割コア10が周方向に組み付けられ、さらに、この分割コアの組み付けユニットが非磁性素材の筒体に貫挿され、焼き嵌め処理等されることで、分割ステータが形成される。 Actually, after the insulator 20 is formed into the split core 10, for example, a coil made of a rectangular wire (not shown) is formed around the teeth 11 (the surrounding insulator 20), and the split core 10 on which the coil is formed is formed. The split stator is formed by being assembled in the circumferential direction, and by further inserting the split core assembly unit into the nonmagnetic material cylinder and performing shrink fitting.
 図3は、図2のIII-III矢視図であり、平面的に見た際の突条20aの形成部位をより詳細に説明した図である。 FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2, and is a diagram illustrating in more detail the site where the protrusion 20a is formed in a plan view.
 同図において、突条20a(もしくは凹溝11a)の形成部位は、ティース11の径方向先端部X1を根元部X2に投影した際の投影部分よりもティース11の外側の領域Aである。この外側の領域A内で凹溝11aおよび突条20aが形成されることにより、ティース11からヨーク12へ流れる磁束の流れが阻害されることを可及的に最小限とし、もって、凹溝11aをティース11に形成することで低減し得るトルクの低減率を最小限とすることができる。 In the same figure, the formation part of the protrusion 20a (or the concave groove 11a) is a region A outside the tooth 11 with respect to the projection part when the radial tip part X1 of the tooth 11 is projected onto the root part X2. By forming the concave groove 11a and the protrusion 20a in the outer region A, the flow of magnetic flux flowing from the tooth 11 to the yoke 12 is minimized as much as possible. The torque reduction rate that can be reduced by forming the teeth 11 on the teeth 11 can be minimized.
 すなわち、この分割コア10によれば、凹溝11aを形成した場合のモータトルクの低減率を最小限としながら、この凹溝11aを設けることによって奏される以下の効果が期待できる。すなわち、一体成形用樹脂の効果的な流動性の確保と、これに起因する薄層の一体成形インシュレータの成形性確保、これに起因する放熱性能の向上といった効果や、凹溝11a内で形成される突条20aによってインシュレータ20の耐クラック性が向上(耐久性が向上)するといった効果、である。 That is, according to the split core 10, the following effects can be expected by providing the concave groove 11a while minimizing the reduction rate of the motor torque when the concave groove 11a is formed. That is, it is formed in the concave groove 11a, such as ensuring the effective fluidity of the resin for integral molding, ensuring the moldability of the thin-layer integrally molded insulator resulting from this, and improving the heat dissipation performance resulting from this. This is an effect that the crack resistance of the insulator 20 is improved (durability is improved) by the protrusion 20a.
 図4は、凹溝と突条の多様な実施の形態を示した模式図である。具体的には、図4aは、図2で示す凹溝と突条の模式図を示しており、図4b、cは、他の実施の形態を示した模式図である。 FIG. 4 is a schematic diagram showing various embodiments of the groove and the protrusion. Specifically, FIG. 4a shows a schematic diagram of the groove and protrusion shown in FIG. 2, and FIGS. 4b and 4c are schematic diagrams showing other embodiments.
 図4aは、凹溝11aが三角形状にティース11内に突出しており、この形状および寸法に応じた突条20aを示している。一方、図4bは、凹溝11bが平面視矩形を呈しており、図4cは、平面視矩形の凹溝11bを根元部X2に有するとともに、ティース11の径方向途中位置に平面視矩形の別途の突条20cを有するものである。このように、形成される凹溝や突条の形状、それらの基数は特に限定されるものでなく、少なくとも外側の領域A内に形成されること、少なくともティース11の根元部X2に凹溝および突条を有するものであればよい。 FIG. 4a shows a ridge 20a corresponding to the shape and size of the groove 11a protruding into the tooth 11 in a triangular shape. On the other hand, in FIG. 4b, the groove 11b has a rectangular shape in plan view, and in FIG. 4c, the groove 11b having a rectangular shape in plan view is provided at the root portion X2, and a rectangular shape in plan view is separately provided at a midway position in the radial direction of the tooth 11. The protrusion 20c is provided. Thus, the shape of the grooves and ridges to be formed, and their radixes are not particularly limited, and are formed at least in the outer region A, and at least the root groove X2 of the teeth 11 and the grooves What has a protrusion is sufficient.
 図5は、図2で示す分割コアが周方向に組み付けられてなるステータと、ロータとからなるIPMモータを示した斜視図である。 FIG. 5 is a perspective view showing an IPM motor including a stator in which the divided cores shown in FIG. 2 are assembled in the circumferential direction and a rotor.
 具体的には、分割コア10,…が周方向に組み付けられてなるステータ100と、該ステータ100の内側に回転自在に配設され、円盤状の電磁鋼板が積層されてなるロータ200と、から大略構成されている。このロータ200には、その中央位置においてロータ軸210(駆動シャフトスロット)が開設されており、その周縁部には、所定数で該ロータ軸210に沿う方向に延びる磁石用スロットが開設されており、この磁石用スロットに永久磁石300が挿入され、たとえば該スロットと永久磁石300の間に固定用樹脂が充填されて永久磁石300のスロット内固定が補償されている。 Specifically, the stator 100 in which the split cores 10 are assembled in the circumferential direction, and the rotor 200 that is rotatably disposed inside the stator 100 and is formed by stacking disc-shaped electromagnetic steel plates. It is roughly structured. In the rotor 200, a rotor shaft 210 (drive shaft slot) is opened at the center position, and a magnet slot extending in a direction along the rotor shaft 210 in a predetermined number is opened in the peripheral portion. The permanent magnet 300 is inserted into the magnet slot and, for example, a fixing resin is filled between the slot and the permanent magnet 300 to compensate for the fixing of the permanent magnet 300 in the slot.
 [実施例および比較例に関する磁場解析とその結果]
 本発明者等は、以下の条件で磁場解析を実施し、本発明のステータのごとく、凹溝をティースの根元部に設けた場合の磁束密度の低減の程度を検証した。
[Magnetic field analysis and results for Examples and Comparative Examples]
The inventors conducted a magnetic field analysis under the following conditions, and verified the degree of reduction of the magnetic flux density when the concave groove was provided at the root of the tooth as in the stator of the present invention.
 まず、図6で示すようなステータおよびロータ(V字配置の永久磁石埋込みタイプ)のユニットモデルをコンピュータ内で作成し、電流値:114(A)、進角:38(度)、回転数:1000(rpm)、永久磁石の残留磁束密度(Br):1.17(T)、リコイル比透磁率:1.05(μr)、ステータコアおよびロータコアともに、厚みが0.3mmの電磁鋼板の積層体から形成されるとして解析を実施した。 First, a unit model of a stator and rotor (V-shaped permanent magnet embedded type) as shown in FIG. 6 is created in a computer, current value: 114 (A), advance angle: 38 (degrees), and rotation speed: 1000 (rpm), permanent magnet residual magnetic flux density (Br): 1.17 (T), recoil relative magnetic permeability: 1.05 (μr), a laminate of electromagnetic steel sheets having a thickness of 0.3 mm for both the stator core and the rotor core The analysis was performed as formed from
 ここで、比較例1の解析モデルは、径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっているティース(根元部に凹溝なし)を有するもの、比較例2の解析モデルは、径方向先端部からヨークに繋がる根元部に向かってその幅が一定であるティース(根元部に凹溝なし)を有するもの、比較例3の解析モデルは、径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっているティースであって、ティースの根元部からヨークに亘って比較的大きな凹溝が形成されているもの、実施例のモデルは、図3で示すごとき凹溝をティースの根元部に有するもの、である。磁場解析の結果を図6、および、以下の表1に示しており、表1では、基準となる比較例1のトルクに対して、比較例2~3および実施例の各トルクの低減率を示している。
Figure JPOXMLDOC01-appb-T000001
Here, the analysis model of Comparative Example 1 has a tooth (there is no groove at the base portion) whose width increases from the radial tip portion toward the root portion connected to the yoke, and the analysis model of Comparative Example 2 Has a tooth whose width is constant from the radial tip to the root connected to the yoke (no groove in the root), and the analysis model of Comparative Example 3 is connected from the radial tip to the yoke. Teeth whose width increases toward the root part, in which a relatively large concave groove is formed from the root part of the tooth to the yoke, the model of the embodiment is a concave as shown in FIG. It has a groove at the base of the tooth. The results of the magnetic field analysis are shown in FIG. 6 and Table 1 below. In Table 1, the torque reduction rates of Comparative Examples 2 to 3 and Examples are compared to the torque of Comparative Example 1 as a reference. Show.
Figure JPOXMLDOC01-appb-T000001
電磁鋼板では、磁束が1.5T(テスラ)で磁気的に飽和し始め、したがって、1.5T以上となると、透磁率が低下する傾向にあることが分かっている。すなわち、磁気飽和により、同一電流でステータからのフラックス(磁気)が低くなるものであり、この結果、トルクは低下することとなる。よって、図6の解析結果の磁束密度のコンター図において、1.5(T)以上の領域は磁気飽和領域であり、モータトルクの低下に寄与する領域となっている。 It has been found that magnetic steel sheets tend to magnetically saturate at 1.5 T (Tesla), and therefore tend to have lower magnetic permeability at 1.5 T or higher. That is, the magnetic saturation causes the flux (magnetism) from the stator to be reduced at the same current, and as a result, the torque is reduced. Therefore, in the contour diagram of the magnetic flux density of the analysis result of FIG. 6, the region of 1.5 (T) or more is a magnetic saturation region, which is a region contributing to a reduction in motor torque.
 図6、表1の結果より、基準となる比較例1に対して、ティースを幅一定とした比較例2では5%程度のトルク低減となり、ティース幅を変化させ、その根元部からヨークに亘る大きな凹溝を設けた比較例3では、11%程度ものトルク低減となることが特定された。したがって、まず、ティースは、その幅が径方向先端部からヨークに繋がる根元部に向かって大きくなる形態であるのが好ましいこと、ティースの根元部に形成される凹溝はヨークにまで及ばない形態であるのが好ましいことが実証された。 From the results of FIG. 6 and Table 1, compared to the comparative example 1 as a reference, the comparative example 2 in which the width of the teeth is constant reduces the torque by about 5%, changes the tooth width, and extends from the root portion to the yoke. In Comparative Example 3 in which a large concave groove was provided, it was specified that the torque was reduced by about 11%. Therefore, first, it is preferable that the width of the teeth is increased from the radial front end portion toward the root portion connected to the yoke, and the groove formed in the root portion of the teeth does not extend to the yoke. It has proven to be preferable.
 一方、比較例2,3に対して実施例は、わずか0.4%のトルク低減に留まっており、ティースに凹溝を設けた場合であっても、その凹溝形成部位がティース内の根元部であり、しかも凹溝の大きさが磁束流れを阻害しない程度の大きさ(たとえば図3の外側の領域A内)の場合には、モータトルクの低減を極めて小さな値に抑えられることが実証された。 On the other hand, compared with the comparative examples 2 and 3, the example is only 0.4% of torque reduction, and even when the groove is provided in the tooth, the groove forming portion is the root in the tooth. It is demonstrated that the motor torque can be reduced to a very small value when the size of the groove is such that the size of the groove does not hinder the flow of magnetic flux (for example, in the outer region A in FIG. 3). It was done.
 したがって、図3等で示す凹溝をティースに設け、ティース周りに一体成形インシュレータを形成することにより、トルク低減を最小限に抑えながら、この凹溝を使用して樹脂流れを促進させ、可及的に薄層のインシュレータを成形することができ、コイルからインシュレータを介してステータコアへの高い放熱性を補償することができる。 Therefore, by providing the grooves shown in FIG. 3 etc. in the teeth and forming an integrally molded insulator around the teeth, the resin flow can be promoted by using the grooves while minimizing torque reduction. In particular, a thin-layer insulator can be formed, and high heat dissipation from the coil to the stator core via the insulator can be compensated.
 [冷熱繰り返し試験とその結果]
 本発明者等はさらに、図2のインシュレータ付き分割コア10から構成されたステータ100を用意してこれを実施例とし、図2の分割コア10から凹溝11aおよび突条20aを廃した従来構造の分割コアから構成されたステータを比較例として、模擬された寒冷地域の温度条件:-40℃から、たとえばモータ駆動時であって最大電流通電(最大発熱)時に想定される温度条件:160℃までの間で冷熱繰り返し試験を実施し、絶縁性が担保できなくなるクラックの発生(もしくはクラックの成長)までの繰り返し回数を測定した。
[Cooling test and results]
The present inventors further prepared a stator 100 composed of the split core 10 with an insulator shown in FIG. 2 as an example, and a conventional structure in which the concave grooves 11a and the protrusions 20a were eliminated from the split core 10 shown in FIG. As a comparative example, a stator composed of a split core of the above is used as a comparative example. Temperature condition in a simulated cold region: −40 ° C., for example, a temperature condition assumed when a motor is driven and a maximum current is applied (maximum heat generation): 160 ° C. Until the occurrence of cracks (or growth of cracks) in which insulation could not be ensured was measured.
 実施例、比較例ともに、それぞれ5基の試験体を容易し、それぞれの試験体で計5回の冷熱試験をおこない、その平均を求めた。 In each of the examples and comparative examples, five test specimens were easily prepared, and a total of five thermal tests were performed on each specimen to obtain an average.
 実験の結果、比較例では、1回目から5回目にかけて順に、50回、50回、50回、100回、300回と計測され、絶縁性が担保できなくなるクラック発生までの平均繰り返し回数は110回であった。 As a result of the experiment, in the comparative example, it is measured 50 times, 50 times, 50 times, 100 times, and 300 times in order from the first time to the fifth time, and the average number of repetitions until the occurrence of a crack in which insulation cannot be secured is 110 times. Met.
 一方、実施例では、1回目から5回目にかけて順に、100回、100回、100回、300回、300回と計測され、絶縁性が担保できなくなるクラック発生までの平均繰り返し回数は180回であり、比較例に比して、その繰り返し回数は6割以上も向上できることが実証された。 On the other hand, in the examples, from the first time to the fifth time, the measurement is 100 times, 100 times, 100 times, 300 times, and 300 times in order, and the average number of repetitions until the occurrence of a crack in which insulation cannot be secured is 180 times. It was demonstrated that the number of repetitions can be improved by 60% or more as compared with the comparative example.
 本実験結果より、本発明のごとく、ティースの根元部に凹溝を設け、この凹溝内で一体成形されたインシュレータの突条が形成されて該インシュレータの全体を補強することにより、耐クラック性は従来構造の一体成形されたインシュレータに比して格段に向上することが分かった。 From the results of this experiment, as in the present invention, a groove is provided in the root of the tooth, and the protrusion of the insulator integrally formed in the groove is formed to reinforce the entire insulator, thereby providing crack resistance. It has been found that this is significantly improved as compared with an integrally molded insulator having a conventional structure.
 以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

Claims (5)

  1.  平面視が略環状のヨークと、該ヨークから径方向内側に突出するティースと、隣接するティース間に画成されたスロットと、からなるステータであって、
     少なくとも、前記ティースのスロットに対向する側面と、スロットに対向しない頂面と、の周囲には、一体成形されたインシュレータが備えられており、
     前記ティースは、径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっており、
     ティースの前記根元部には該ティースの高さ方向に延びる凹溝が形成されており、該凹溝内に前記インシュレータの突条が形成されている、ステータ。
    A stator comprising a substantially annular yoke in plan view, teeth projecting radially inward from the yoke, and slots defined between adjacent teeth,
    At least around the side surface facing the slot of the tooth and the top surface not facing the slot, an integrally molded insulator is provided,
    The teeth have a larger width from the radial tip toward the root connected to the yoke,
    A stator in which a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and a protrusion of the insulator is formed in the groove.
  2.  平面視が弧状のヨークと、該ヨークから径方向内側に突出するティースと、から分割コアが形成され、該分割コアが周方向に組み付けられて隣接するティース間にスロットが画成されている、ステータであって、
     少なくとも、前記ティースのスロットに対向する側面と、スロットに対向しない頂面と、の周囲には、一体成形されたインシュレータが備えられており、
     前記ティースは、径方向先端部からヨークに繋がる根元部に向かってその幅が大きくなっており、
     ティースの前記根元部には該ティースの高さ方向に延びる凹溝が形成されており、該凹溝内に前記インシュレータの突条が形成されている、ステータ。
    A split core is formed from a yoke having an arc shape in plan view and teeth projecting radially inward from the yoke, and the split core is assembled in the circumferential direction to define a slot between adjacent teeth. A stator,
    At least around the side surface facing the slot of the tooth and the top surface not facing the slot, an integrally molded insulator is provided,
    The teeth have a larger width from the radial tip toward the root connected to the yoke,
    A stator in which a groove extending in the height direction of the tooth is formed in the root portion of the tooth, and a protrusion of the insulator is formed in the groove.
  3.  前記凹溝は、ティースの前記径方向先端部を前記根元部に投影した際の投影部分よりもティースの外側に形成されている、請求項1または2に記載のステータ。 3. The stator according to claim 1, wherein the concave groove is formed on an outer side of the tooth with respect to a projected portion when the radial tip portion of the tooth is projected on the root portion.
  4.  前記ティースの周囲の前記インシュレータ周りに、断面視が略矩形の平角導体と、該平角導体の外周に形成された絶縁皮膜と、からなる平角線が巻装されている、請求項1~3のいずれかに記載のステータ。 A rectangular wire comprising a rectangular conductor having a substantially rectangular cross-sectional view and an insulating film formed on an outer periphery of the rectangular conductor is wound around the insulator around the teeth. The stator according to any one of the above.
  5.  請求項1~4のいずれかに記載のステータと、その内部で回転するロータと、からなるモータ。 A motor comprising the stator according to any one of claims 1 to 4 and a rotor rotating inside the stator.
PCT/JP2009/051591 2009-01-30 2009-01-30 Stator and motor WO2010086997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051591 WO2010086997A1 (en) 2009-01-30 2009-01-30 Stator and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051591 WO2010086997A1 (en) 2009-01-30 2009-01-30 Stator and motor

Publications (1)

Publication Number Publication Date
WO2010086997A1 true WO2010086997A1 (en) 2010-08-05

Family

ID=42395267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051591 WO2010086997A1 (en) 2009-01-30 2009-01-30 Stator and motor

Country Status (1)

Country Link
WO (1) WO2010086997A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263675A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Armature
WO2012143089A3 (en) * 2011-04-18 2013-10-03 Sew-Eurodrive Gmbh & Co. Kg Stator segment for a stator having a segmented design of an electric motor, stator composed of similar stator segments and method for producing a stator from stator segments
CN103730966A (en) * 2012-10-15 2014-04-16 普罗蒂恩电子有限公司 An insulated tooth for an electric motor or generator
EP2882077A1 (en) * 2013-12-04 2015-06-10 HILTI Aktiengesellschaft Stator laminations with flow path barrier
CN109104003A (en) * 2018-09-18 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 A kind of injection moulding process of stator core, insulation framework, stator and insulation framework
EP3163717A4 (en) * 2014-06-24 2019-01-16 Kubota Corporation Stator of electric motor and cooling structure for dynamo-electric machine
EP3989399A1 (en) * 2020-10-23 2022-04-27 Siemens Gamesa Renewable Energy A/S Stator or rotor segment comprising coils on teeth and adhesive anchor of outermost coil edge

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126996A (en) * 1996-10-18 1998-05-15 Fujitsu General Ltd Stator
JPH10234149A (en) * 1997-02-20 1998-09-02 Fujitsu General Ltd Motor
JP2001045691A (en) * 1999-08-02 2001-02-16 Toyoda Mach Works Ltd Insulating structure of motor
JP2002272046A (en) * 2001-03-15 2002-09-20 Mitsubishi Electric Corp Stator of rotating electric machine, and manufacturing method of the same
WO2003028188A1 (en) * 2001-09-21 2003-04-03 Aisin Aw Co., Ltd. Core with insulation member, and method of producing the same
JP2004248471A (en) * 2003-02-17 2004-09-02 Yaskawa Electric Corp Stator piece and motor stator using the same
JP2005323477A (en) * 2004-05-11 2005-11-17 Asmo Co Ltd Motor
JP2007274809A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Stator, and rotating electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10126996A (en) * 1996-10-18 1998-05-15 Fujitsu General Ltd Stator
JPH10234149A (en) * 1997-02-20 1998-09-02 Fujitsu General Ltd Motor
JP2001045691A (en) * 1999-08-02 2001-02-16 Toyoda Mach Works Ltd Insulating structure of motor
JP2002272046A (en) * 2001-03-15 2002-09-20 Mitsubishi Electric Corp Stator of rotating electric machine, and manufacturing method of the same
WO2003028188A1 (en) * 2001-09-21 2003-04-03 Aisin Aw Co., Ltd. Core with insulation member, and method of producing the same
JP2004248471A (en) * 2003-02-17 2004-09-02 Yaskawa Electric Corp Stator piece and motor stator using the same
JP2005323477A (en) * 2004-05-11 2005-11-17 Asmo Co Ltd Motor
JP2007274809A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Stator, and rotating electric machine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263675A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Armature
WO2012143089A3 (en) * 2011-04-18 2013-10-03 Sew-Eurodrive Gmbh & Co. Kg Stator segment for a stator having a segmented design of an electric motor, stator composed of similar stator segments and method for producing a stator from stator segments
CN103730966A (en) * 2012-10-15 2014-04-16 普罗蒂恩电子有限公司 An insulated tooth for an electric motor or generator
WO2014060947A2 (en) * 2012-10-15 2014-04-24 Protean Electric Limited A tooth for an electric motor or generator
WO2014060947A3 (en) * 2012-10-15 2015-04-09 Protean Electric Limited A tooth for an electric motor or generator
US9954407B2 (en) 2012-10-15 2018-04-24 Protean Electric Limited Tooth for an electric motor or generator
EP2882077A1 (en) * 2013-12-04 2015-06-10 HILTI Aktiengesellschaft Stator laminations with flow path barrier
WO2015082373A3 (en) * 2013-12-04 2015-11-19 Hilti Aktiengesellschaft Stator core comprising a flow-path barrier
EP3163717A4 (en) * 2014-06-24 2019-01-16 Kubota Corporation Stator of electric motor and cooling structure for dynamo-electric machine
US10574117B2 (en) 2014-06-24 2020-02-25 Kubota Corporation Stator of electric motor and cooling structure of electric rotating machine
CN109104003A (en) * 2018-09-18 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 A kind of injection moulding process of stator core, insulation framework, stator and insulation framework
EP3989399A1 (en) * 2020-10-23 2022-04-27 Siemens Gamesa Renewable Energy A/S Stator or rotor segment comprising coils on teeth and adhesive anchor of outermost coil edge

Similar Documents

Publication Publication Date Title
JP5614501B2 (en) Rotating electric machine rotor, rotating electric machine, and method for manufacturing rotating electric machine rotor
US7981359B2 (en) Rotor and process for manufacturing the same
WO2010086997A1 (en) Stator and motor
US9876397B2 (en) Electrical machine
JP5359895B2 (en) IPM motor rotor and IPM motor
CN111837314B (en) Radial gap type rotating electrical machine
US11894720B2 (en) Core, stator and rotating electrical machine
JP2012244838A (en) Rotor for rotary electric machine, rotary electric machine and method of manufacturing rotor for rotary electric machine
JP2007325492A (en) Magnetic powder metal complex core for electric device
WO2017014160A1 (en) Reactor
JP2010178520A (en) Stator and motor
CN112673549A (en) Iron core, stator and rotating electrical machine
JP5761068B2 (en) Manufacturing method of rotor for IPM motor
JPWO2017163886A1 (en) Armature for rotating electrical machine
JP2010183692A (en) Magnet for motor, rotor for ipm motor, and ipm motor
JP2008022646A (en) Permanent-magnet motor, stator therefor, and stator manufacturing method
JP2020010466A (en) Rotor of permanent magnet embedded type rotary electric machine and method for manufacturing the same
JP5493792B2 (en) IPM motor rotor and IPM motor
JP4477016B2 (en) Stator made of magnetic metal powder
JP2020156130A (en) Rotary electric machine
JP5194784B2 (en) Stator and motor
JP2010200492A (en) Insulator, stator and motor
JP2010259263A (en) Method for forming insulator
JP2010200483A (en) Rotor for ipm motor, and ipm motor
JP6876692B2 (en) Rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP