WO2010086309A1 - Centrale photovoltaïque à poursuite utilisant une concentration par réflecteur et procédé de mouvement de réflecteur - Google Patents

Centrale photovoltaïque à poursuite utilisant une concentration par réflecteur et procédé de mouvement de réflecteur Download PDF

Info

Publication number
WO2010086309A1
WO2010086309A1 PCT/EP2010/050872 EP2010050872W WO2010086309A1 WO 2010086309 A1 WO2010086309 A1 WO 2010086309A1 EP 2010050872 W EP2010050872 W EP 2010050872W WO 2010086309 A1 WO2010086309 A1 WO 2010086309A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
photovoltaic
photovoltaic panel
plant
respect
Prior art date
Application number
PCT/EP2010/050872
Other languages
English (en)
Inventor
Bruno Bertossi
Gianni Andrea Barnaba
Original Assignee
Global Procurement Srl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Procurement Srl filed Critical Global Procurement Srl
Publication of WO2010086309A1 publication Critical patent/WO2010086309A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/52Preventing overheating or overpressure by modifying the heat collection, e.g. by defocusing or by changing the position of heat-receiving elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/16Preventing shading effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/131Transmissions in the form of articulated bars
    • F24S2030/132Transmissions in the form of articulated bars in the form of compasses, scissors or parallelograms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/136Transmissions for moving several solar collectors by common transmission elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention concerns a tracking photovoltaic plant in which one or more photovoltaic panels are provided in a battery, mounted mobile on a frame, so as to assume always the best condition for exposure to the sun's rays at least depending on the time of day, following the azimuthal angle of the sun, and possibly also depending on the climatic season, following the zenithal angle of0 the sun.
  • the plant according to the present invention has limited bulk and a much greater photovoltaic efficiency with respect to its actual surface of exposure to the sun.
  • photovoltaic panel we mean one or more photovoltaic modules which, individually or in 5 association, define a photosensitive surface able to capture light radiations.
  • Tracking photovoltaic plants are known, that is, plants in which one or more photovoltaic panels are associated with relative movement actuators.
  • the movement actuators allow to vary the inclination of the panels at least0 with respect to a first axis so as to optimize the orientation of the panels during the course of the day with respect to the relative position of the sun during the hours of the day.
  • Tracking photovoltaic plants are also known which, as well as the daily variation in the inclination on the azimuthal angle, also provide an inclination5 with respect to a second axis, to follow the inclination of incidence of the sun's rays as the climatic seasons vary during the course of a solar year with respect to the zenithal angle.
  • the first macro-type of known plants provides a plurality of individual structures, separated from each other, each of which moves and supports, in a substantially vertical position, a relative plurality of photovoltaic panels.
  • mirrors or other reflective elements may also be provided, attached laterally to the panels, and able to convey other solar rays toward the relative photovoltaic panel, to increase the photovoltaic efficiency thereof.
  • the presence of the mirrors attached to the panels increases the overall surface bulk, causing an increase in the shadow that is projected at the rear.
  • the second macro-type of known plants provides a single frame with a mainly horizontal development, on which the photovoltaic panels are mounted selectively directable and positionable, on one or two axes, to follow the position of the sun.
  • the photovoltaic panels are mounted in lines or batteries on the frame, disposed very close together and compact with each other, so as to optimize the installation spaces and guarantee a sufficient electric power delivered.
  • Purpose of the present invention is to achieve a tracking photovoltaic plant which, keeping the limited bulk and the versatile installation of plants with a light structure, has the greater photovoltaic efficiency of plants with a heavy structure.
  • the Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
  • a tracking photovoltaic plant according to the present invention comprises a support frame, for example with a mainly horizontal extension, on which a plurality of photovoltaic panels are mounted in lines or batteries.
  • the plant according to the present invention also comprises at least first movement means operatively associated with the photovoltaic panels, and able to determine a movement of the photovoltaic panels with respect to a first axis of movement, for example to follow the relative movement of the sun during the hours of the day.
  • the photovoltaic plant also comprises second movement means, also operatively associated with the photovoltaic panels, independent with respect to the first movement means and able to determine a movement of the photovoltaic panels with respect to a second axis of movement, different from the first axis of movement, for example to follow the angle of incidence of the sun on the earth's surface as the climatic seasons vary.
  • at least one of the photovoltaic panels comprises, in correspondence with at least one of its sides, at least a reflective element mounted sliding with respect to the photovoltaic panel, and able to convey other solar rays toward the photovoltaic panel.
  • the plant according to the present invention also comprises further movement means operatively associated with the reflective element, to determine the linear and sliding movement of the latter with respect to the photovoltaic panel between a first operating position in which it protrudes laterally from the bulk of the photovoltaic panel and conveys the other solar rays toward the photovoltaic panel, and a second inactive position, translated through sliding with respect to the first, in which it is included in the bulk of the photovoltaic panel, in a hidden condition, with respect to the exposed surface of the photovoltaic panel.
  • the reflective element is taken by sliding between its first and second positions so as to increase, in the first position, the photovoltaic efficiency of the panels, and to prevent, in the second position, any shadow zones from forming between the photovoltaic panels due to the reflective elements.
  • the tracking photovoltaic plant according to the present invention can therefore be installed simply and effectively, even in limited or preexisting spaces, for example the floors of buildings, without needing particular foundations or other reinforcement structures.
  • the mainly horizontal structure of the plant according to the present invention has a weight distributed over a wide surface and is subjected only minimally to the action of atmospheric agents such as wind or others.
  • the reflective elements substantially allow to increase the surface for intercepting the sun's rays of each individual photovoltaic panel, increasing the photovoltaic efficiency thereof.
  • the reflective elements are mobile in a linear and sliding manner, they prevent their shadow from being projected onto the adjacent photovoltaic panels, in particular in the first and/or last hours of the day, when the panels are very inclined with respect to a hypothetical horizontal plane and define a more extensive shadow.
  • At least two reflective elements are provided for each photovoltaic panel, of which at least one or both are mobile linearly in sliding fashion, and disposed opposite each other with respect to the first axis of movement.
  • the photovoltaic efficiency of the plant according to the invention is substantially greater than a traditional tracking photovoltaic plant with a light structure.
  • the plant according to the present invention also comprises at least a command and control unit connected to the first movement means, to the other movement means and/or to the second movement means, in order to coordinate the reciprocal actuation of the three and to optimize the functioning of the plant according to the invention.
  • the plant according to the invention also comprises sensor means electronically connected to the possible command and control unit, and/or to a user interface.
  • the sensor means can be provided with one or more position sensors, for example GPS or similar, climatic sensors, such as barometers, wind gauges, angular position sensors, end-of-travel sensors or suchlike, and other sensors which, depending on external factors, command the movement of one, the other or all the movement means of the panels and the reflective elements.
  • position sensors for example GPS or similar, climatic sensors, such as barometers, wind gauges, angular position sensors, end-of-travel sensors or suchlike, and other sensors which, depending on external factors, command the movement of one, the other or all the movement means of the panels and the reflective elements.
  • Some possible operating applications of the sensor means can be, for example, to command the movement of the reflective elements between the two positions both according to the hour of the day, and therefore the inclination of the photovoltaic panels, and also the weather conditions, for example to prevent damage to the reflective elements due to hail, or to dispose the photovoltaic panels in a substantially horizontal condition when the sky is cloudy or similar conditions of overcast sky, to recover the reflected light.
  • the sensor means comprise a thermometer to measure the temperature of the photovoltaic panels
  • the surface temperature of the photovoltaic panels exceeds a determinate threshold
  • they are moved with respect to the first and/or the second axis in order to vary the conditions of incidence of the sun's rays and to keep their photovoltaic yield high.
  • the angle of inclination between the photovoltaic panel and the relative reflective element or elements is fixed and predetermined, and is chosen as desired according to specific design and/or operating requirements.
  • each photovoltaic panel comprises cleaning means, for example blades, disposed in contact with the reflective surface of the reflective element, so as to exploit the linear sliding movement of the latter in order to clean the reflective elements.
  • the photovoltaic panels are moved all together by the first and second movement means.
  • all the photovoltaic panels are mounted on a single frame which is in turn moved by the first and second movement means, in a substantially sail- type configuration.
  • - fig. 1 shows a three-dimensional view of a first form of embodiment of a tracking photovoltaic plant according to the present invention
  • - fig. 2 shows a front view of the photovoltaic plant in fig. 1 ;
  • - fig. 3 shows a lateral view of the photovoltaic plant in fig. 1 ;
  • - fig. 4 shows an enlarged detail of fig. 2;
  • - fig. 5 shows a photovoltaic panel of the plant in fig. 1 in an operating condition
  • - fig. 6 shows a detail of fig. 2 in two different operating conditions
  • - fig. 7 shows a variant of fig. 3
  • - fig. 8 shows in sequence some operating conditions in the morning hours of the tracking photovoltaic plant according to the present invention
  • - fig. 9 shows in sequence some operating conditions in the afternoon hours of the tracking photovoltaic plant according to the present invention
  • - fig. 10 shows a front view of a variant of the photovoltaic plant in fig. 1 ;
  • - fig. 1 1 shows an enlarged detail of fig. 10
  • - fig. 12 shows an enlarged detail of fig. 11 ;
  • FIG. 13 shows a three-dimensional view of a second form of embodiment of a tracking photovoltaic plant according to the present invention.
  • a tracking photovoltaic plant 10 substantially comprises a frame 1 1 with a mainly horizontal extension, and a plurality of photovoltaic panels 12 disposed in lines or batteries on the frame 1 1.
  • each line consists of five photovoltaic panels 12, suitably distanced from each other, and the frame 11 is conformed to support five parallel lines of photovoltaic panels 12. It is clear that, depending on the installation area of the plant 10 according to the invention, the frame 1 1 can be configured on each occasion to support a number of lines and photovoltaic panels 12 per line that is different from five.
  • the frame 11 is of the modular type, that is, consisting of a plurality of modules, each of which is conformed to support a line of photovoltaic panels 12, or a single photovoltaic panel 12.
  • the frame 11 comprises a plurality of uprights and cross pieces connected to each other, to support the photovoltaic panels 12, and is able to be installed on a flat area, also preexistent, such as for example a terraced roof, a flat roofing, or on the ground or elsewhere.
  • the photovoltaic panels 12 of each line are mounted mobile with respect to the frame 11, both with respect to a first axis "A”, substantially median and longitudinal to the photovoltaic panel 12, and also with respect to a second axis "Z", substantially transverse to the photovoltaic panel 12.
  • the second axis "Z” lies along a front edge of the frame 11, in correspondence with relative hinges 19 with which the frame 11 is hinged to the ground.
  • the movement of the photovoltaic panel 12 with respect to the first axis "A" allows the panel to follow the azimuthal movement of the sun during the hours of the day, whereas the movement of the photovoltaic panel 12 with respect to the second axis "Z" allows the panel to follow the zenithal movement of the sun as the seasons change.
  • each photovoltaic panel 12 with respect to the uprights and cross pieces of the frame 11 can be achieved according to any known assembly technique, for example by means of pins and eyelets, blocks and guides, coordinated profiles for linear sliding, telescopic guides or other mechanical solutions, in any case able to allow the free and independent movement of each photovoltaic panel 12 with respect to the relative first and second axis "A" and "Z".
  • the tracking photovoltaic plant 10 also comprises first movement mechanisms 13, in this case one common for all the photovoltaic panels 12 of the same line, and a plurality of second movement mechanisms 15, in this case two for each line of photovoltaic panels 12.
  • the first movement mechanism 13, for each line comprises a screw-type actuator 16, disposed at the front of the frame 11 and able to move a movement bar 17 in a substantially linear fashion, in one direction and the other.
  • the movement bar 17 is pivoted to each photovoltaic panel 12 of the same line, so that its movement determines the simultaneous rotation of the photovoltaic panels 12 with respect to the first axis "A".
  • each photovoltaic panel 12 on the frame 1 1 and the movement travel of the screw-type actuator 16 are such that each photovoltaic panel 12 has a range of about 140° around the first axis "A", respectively about 70° on one side and about 70° on the other side, with respect to a hypothetical horizontal plane.
  • the second movement mechanism 15 comprises a pantograph actuator 20, attached on one side to the ground (fig. 6) and on the other side to the frame 1 1, so that the latter can be moved under the action of the pantograph actuator 20, rotating with respect to the hinges 19 and thus with respect to the second axis "Z".
  • the pantograph actuator 20 is driven by a screw mechanism 18, which moves the levers of the pantograph simultaneously and determines the lifting or lowering thereof. Moreover, due to its constitution, the pantograph actuator 20 not only determines an optimum precision in movement but also a tightening and consolidation of the conditions of inclination achieved.
  • the assembly of each photovoltaic panel 12 on the frame 11 and the movement travel of the pantograph actuator 20 are such that the photovoltaic panels 12 have an operating range of about 50° around the second axis "Z", respectively starting from about 20° to about 70° with respect to a hypothetical vertical plane (fig. 3).
  • pantograph actuators 20 are conformed so that the photovoltaic panel 12 can also be selectively disposed in a substantially horizontal inactive condition.
  • the photovoltaic plant 10 also comprises, for each photovoltaic panel 12, two reflective mirrors 21, able to convey, at least in their operating condition, an additional part of solar rays toward a surface of the photovoltaic panel 12, facing toward the sunlight.
  • the two reflective mirrors 21 are mounted mobile linearly through sliding in correspondence with two opposite edges of the photovoltaic panel 12, in a direction substantially parallel to the direction of the first axis "A".
  • Each reflective mirror 21 advantageously has a predetermined inclination with respect to the plane on which the photovoltaic panel 12 lies, comprised between about 40° and about 70°, advantageously between about 45° and about 60°.
  • the inclination is chosen as a function of the sizes of the reflective mirror 21 and/ or the increase in photovoltaic efficiency desired to be obtained.
  • Applicant has found that with the present invention it is possible to obtain an increase in photovoltaic efficiency of the panels 12 used by as much as 60%-70% more than the nominal one. For example, using a photovoltaic panel 12 of the mono-crystalline type of about 200 Wp, using the reflective mirrors 21, given the same size of the panel 12, this becomes substantially equivalent to a photovoltaic panel 12 of about 320 Wp, passing from an energy conversion yield of about 17% on average to about 30%.
  • the reflective mirrors 21 are mounted mobile linearly and slide along the edges of the photovoltaic panel 12 so as to be able to assume a first operating position, in which they protrude laterally from the photovoltaic panel 12 with said inclination, and a second inactive position, in which they are disposed retracted and comprised in the bulk of the photovoltaic panel 12.
  • each reflective mirror 21 is mounted mobile linearly and through sliding with respect to the relative photovoltaic panel 12 by means of a relative track-type movement element 22 (fig. 5), and is guided in its linear sliding movement by means of relative telescopic guides 23.
  • the movement of the relative track 22 determines the linear sliding of the relative reflective mirror 21 and the progressive extraction of the telescopic guides 23 between said two positions.
  • the tracks 22 of two reflective mirrors 21 of the same photovoltaic panel 12 are moved by relative pulleys 24, of which only one is visible in fig. 5, mounted on the photovoltaic panel 12 on the opposite side to the surface facing toward the sunlight.
  • the pulleys 24 are alternatively and selectively motorized by means of a common motor 25, also mounted on the photovoltaic panel 12 on the opposite side to the surface facing toward the sunlight.
  • the motor 25 is configured so as to selectively command in single or simultaneous mode all the pulleys 24 provided on the photovoltaic panels 12 of the same line.
  • the telescopic guides 23 can have a linear development or can have segments with a diverse inclination, so as to move the reflective mirrors 21 with different inclinations between the first and the second position, so as to optimize the positioning of the latter between the two positions.
  • the linear movement through sliding of the reflective mirrors 21 occurs by means of worm screw kinematisms, not shown here, commanded by one or more relative torque control electric motors.
  • the linear movement through sliding of the reflective mirrors 21 can be commanded by means of hydraulic, pneumatic or other actuators.
  • relative cleaning blades 30 are disposed, in pressurized contact with a reflective surface of the reflective mirrors 21.
  • the cleaning blades 30 are made in this case of elastomeric material and comprise a cleaning-reflecting edge which, exploiting the linear sliding movement of the reflective mirror 21 , effects a surface cleaning action on the reflective mirror 21 , removing dust and other impurities that can be deposited on the surface.
  • the cleaning blade 30 can have a brush-like conformation with plastic threads disposed in contact with the surface of the reflective mirror 21.
  • the photovoltaic plant 10 also comprises a command and control unit 26, which is electronically connected both to the first movement mechanism 13, to the second movement mechanism 15, and also to the motors 25 that drive the tracks 22 of the reflective mirrors 21.
  • the command and control unit 26 determines the movement of the photovoltaic panels 12 with respect to the relative axes "A" and "Z", and the movement of the reflective mirrors 21 between the first and second position.
  • the command and control unit 26 comprises a user interface unit, not shown, by means of which an operator can carry out controls, maintenance, programming or other of the photovoltaic plant 10, and an interface to configure the photovoltaic field which, according to the parameters of electric power required, the sizes of available surface, the type of commercial panel used, the geographical coordinates of the installation site (longitude, latitude, height above sea level) and the type of possible shading caused by irremovable obstacles, define the number of total photovoltaic panels 12, the number of lines and the distances between the photovoltaic panels 12 and between the lines, to give a technical support to the installer.
  • a detection station 27 is provided in a position common for all the photovoltaic panels 12, for example on the frame 11, or in common on the same line of photovoltaic panels, or on each photovoltaic panel 12.
  • the detection station 27 comprises a plurality of sensors, for example position, luminosity, temperature, climatic or other sensors, disposed on the frame 1 1 or on the photovoltaic panels 12 according to the specific detection.
  • the detection station 27 is electronically associated with the command and control unit 26, so that the signals detected by the various sensors condition the functioning sequence imparted by the command and control unit 26. For example, in particular conditions detected, such as wind above a certain limit, absence of direct irradiance, particular atmospheric events, such as snow, rain, hail or other, irrespective of the position of the sun, the command and control unit 26 commands a substantially horizontal positioning of the photovoltaic panels 12, to prevent damage to them and to optimize the photovoltaic yield.
  • the photovoltaic plant 10 comprises an energy detector, operatively associated with the photovoltaic panels 12, and able to communicate to the command and control unit 26, instant by instant, the ideal position of the photovoltaic panel 12 in order to optimize the displacement commanded by the latter, and hence to obtain the maximum energy yield.
  • the azimuthal angle of the sun is very low with respect to the horizontal plane.
  • the photovoltaic panels 12 of the same line are rotated with respect to their first axis "A, so as to offer their surface to a determinate condition of incidence of the sun's rays such as to not cause shadows on the adjacent modules.
  • condition c) the azimuthal angle increases and the photovoltaic panels 12 are in a condition substantially perpendicular with the sun's rays.
  • the first photovoltaic panel 12 starting from the left has a reflective mirror 21 in its first position, to partly increase the reception of the sun's rays, and a second reflective mirror 21 in its second position, so as not to cause any shadow on the adjacent photovoltaic panel 12.
  • the three central photovoltaic panels 12 have both the reflective mirrors 21 in the second condition inasmuch as one mirror 21 would be in the shadow defined by the photovoltaic panel 12 at the extreme left, whereas the other mirror 21 would put the photovoltaic panel 12 at the extreme right in the shade.
  • the last photovoltaic panel 12 in the line has the reflective mirrors 21 in a condition substantially opposite the first photovoltaic panel 12 of the line, that is, with the first reflective mirror 21 in the second position and the second reflective mirror 21 in the first position.
  • the photovoltaic panels 12 have a lower angle of inclination with respect to a horizontal plane, and the intermediate photovoltaic panels 12 have one of their reflective mirrors 21 in their first position, since they are no longer in the cone of shadow defined by the photovoltaic panel 12 at the extreme left.
  • the last photovoltaic panel 12 of the line has both the reflective mirrors 21 in the first position.
  • the photovoltaic panels 12 have an even lower angle of inclination with respect to the horizontal plane, and all the photovoltaic panels 12 have both their reflective mirrors 21 in their first position.
  • condition f) in fig. 8 and condition g) in fig. 9 the photovoltaic panels 12 are substantially horizontal.
  • conditions h) to n) in fig. 9 the afternoon dispositions of the photovoltaic panels 12 are shown in sequence. In these conditions, the photovoltaic panels 12 are rotated specularly with respect to said morning positions a)-e), with the difference that the movements of the photovoltaic panels 12 and of the relative reflective mirrors 21 are made in inverse sequence.
  • the direction of rotation of the photovoltaic panels 12 is inverted (from clockwise to anti-clockwise), in proportion to the angle of solar incidence until a substantially horizontal night-time condition is reached.
  • the first movement mechanism here indicated by the reference number 113, comprises an actuator 116 disposed laterally to the frame 11 and able to move respective movement cables 117, in one direction and the other.
  • the first movement mechanism 113 also comprises, for each photovoltaic panel 12 of the same line, a movement lever 119, which is centrally constrained to the photovoltaic panel 12 in correspondence with the first axis "A" and has its ends constrained to the movement cables 117.
  • the photovoltaic panels 12 are mounted in a battery on a common platform 31 , also called sail platform, which is in turn supported by a support pedestal 32.
  • the support pedestal 32 is fixed to the ground and comprises inside it the first movement mechanism 13 and the second movement mechanism 15, so as to move the platform 31 in coordination with the relative position of the sun.
  • the reflective mirrors 21 are mounted sliding linearly in correspondence with the opposite sides of each photovoltaic panel 12, in order to increase the photovoltaic efficiency of the plant 10 according to operating needs and possibilities. It is clear, however, that modifications and/or additions of parts may be made to the photovoltaic plant 10 and method as described heretofore, without departing from the field and scope of the present invention.
  • the first movement mechanism 13 can be independent for each photovoltaic panel 12 and provide electric actuators of a rotary type, or alternative linear mechanisms, or a rack type kinematism or others.
  • the second movement mechanism 15, instead of the actuators 20 for the photovoltaic panels 12 may provide pairs of actuators for each panel, or also a cam mechanism or other type for a common movement for each line of photovoltaic panels 12.
  • a linear actuator is provided, not shown.
  • the reflective mirrors 21 can be suitably pivoted along the edges of the photovoltaic panels 12, so as to be able to be selectively rotated between one of their two positions and the other.

Abstract

L'invention porte sur une centrale photovoltaïque à poursuite (10), et sur un procédé correspondant, qui comporte un cadre de support (11), une pluralité de panneaux photovoltaïques (12) montés en lignes ou en batteries, sur le cadre de support (11), et au moins des premiers éléments de mouvement (13, 113) montés sur le cadre de support (11) et fonctionnellement associés aux panneaux photovoltaïques (12) pour déterminer un premier mouvement des panneaux photovoltaïques (12) par rapport à un premier axe de mouvement (« A »). Au moins un des panneaux photovoltaïques (12) comporte, en correspondance avec au moins un de ses côtés, au moins un élément réflecteur (21) monté pour coulisser par rapport au panneau photovoltaïque (12), lequel élément réflecteur (21) dirige d'autres rayons solaires vers le panneau photovoltaïque (12), et d'autres éléments de mouvement (22, 23, 25) fonctionnellement associés à l'élément réflecteur (21), afin de déterminer le mouvement de coulissement linéaire de l'élément réflecteur (21) par rapport au panneau photovoltaïque (12) entre une première position de fonctionnement, dans laquelle ledit élément fait saillie latéralement de la masse du panneau photovoltaïque (12), et une seconde position inactive, translatée par coulissement par rapport à la première position de fonctionnement, dans laquelle ledit élément est inclus dans la masse du panneau photovoltaïque (12).
PCT/EP2010/050872 2009-01-27 2010-01-26 Centrale photovoltaïque à poursuite utilisant une concentration par réflecteur et procédé de mouvement de réflecteur WO2010086309A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000015A ITUD20090015A1 (it) 2009-01-27 2009-01-27 Impianto fotovoltaico ad inseguimento, e relativo procedimento di movimentazione
ITUD2009A000015 2009-01-27

Publications (1)

Publication Number Publication Date
WO2010086309A1 true WO2010086309A1 (fr) 2010-08-05

Family

ID=40627023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050872 WO2010086309A1 (fr) 2009-01-27 2010-01-26 Centrale photovoltaïque à poursuite utilisant une concentration par réflecteur et procédé de mouvement de réflecteur

Country Status (2)

Country Link
IT (1) ITUD20090015A1 (fr)
WO (1) WO2010086309A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN20100051A1 (it) * 2010-08-20 2012-02-21 Giacomo Guardigli Inseguitore solare monoassiale a basso costo per pannelli fotovoltaici, dotato di dispositivi di protezione dalla neve, dal vento e dallo shock termico
ITRN20100066A1 (it) * 2010-11-09 2012-05-09 Alberto Donini Concentratore solare a bass costo per pannelli fotovoltaici
ITRN20110003A1 (it) * 2011-01-21 2012-07-22 Giacomo Guardigli Inseguitore solare monoassiale per pannelli solari e fotovoltaici, dotato di dispositivi di protezione dalla neve, dal vento, dallo shock termico e sensore crepuscolare.
US8407950B2 (en) 2011-01-21 2013-04-02 First Solar, Inc. Photovoltaic module support system
WO2013028657A3 (fr) * 2011-08-22 2013-10-31 First Solar, Inc Système et procédés pour commander des dispositifs de suivi de module solaire
WO2015110995A1 (fr) * 2014-01-23 2015-07-30 Archimede Research S.R.L. Parc solaire photovoltaïque
EP2943984A4 (fr) * 2013-04-25 2016-03-30 Byd Co Ltd Ensemble support de cellule solaire
ES2570998A1 (es) * 2014-11-19 2016-05-23 Grupo Clavijo Elt S L Seguidor solar de un eje
CN106123379A (zh) * 2016-07-11 2016-11-16 青岛海腾达机械科技有限公司 一种可调角度的太阳能电池板调节机构
CN110036563A (zh) * 2016-09-20 2019-07-19 索拉里斯弗洛特股份有限公司 太阳能电池板跟踪系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316448A (en) * 1980-10-06 1982-02-23 Pennwalt Corporation Solar energy concentrator system
JPH08148711A (ja) * 1994-11-16 1996-06-07 Kyocera Corp 太陽電池装置
US6017002A (en) * 1997-07-21 2000-01-25 Hughes Electronics Corporation Thin-film solar reflectors deployable from an edge-stowed configuration
WO2001055651A1 (fr) * 2000-01-27 2001-08-02 Haber Michael B Mecanisme d'inclinaison de panneaux solaires
US20010050928A1 (en) * 2000-02-10 2001-12-13 Ian Cayrefourcq MEMS-based selectable laser source
US20030057330A1 (en) * 2001-09-21 2003-03-27 Deel Gary G. Solar array concentrator system and method
WO2003098125A1 (fr) * 2002-05-21 2003-11-27 Jarrah Computers Pty Ltd Reflecteur solaire et ensemble comportant un tel reflecteur
DE102004051940A1 (de) * 2004-10-25 2006-04-27 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung in einem Mikroskop
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247182A (en) * 1979-04-24 1981-01-27 Smith Otto J M Heliostat with a protective enclosure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316448A (en) * 1980-10-06 1982-02-23 Pennwalt Corporation Solar energy concentrator system
JPH08148711A (ja) * 1994-11-16 1996-06-07 Kyocera Corp 太陽電池装置
US6017002A (en) * 1997-07-21 2000-01-25 Hughes Electronics Corporation Thin-film solar reflectors deployable from an edge-stowed configuration
WO2001055651A1 (fr) * 2000-01-27 2001-08-02 Haber Michael B Mecanisme d'inclinaison de panneaux solaires
US20010050928A1 (en) * 2000-02-10 2001-12-13 Ian Cayrefourcq MEMS-based selectable laser source
US20030057330A1 (en) * 2001-09-21 2003-03-27 Deel Gary G. Solar array concentrator system and method
WO2003098125A1 (fr) * 2002-05-21 2003-11-27 Jarrah Computers Pty Ltd Reflecteur solaire et ensemble comportant un tel reflecteur
DE102004051940A1 (de) * 2004-10-25 2006-04-27 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung in einem Mikroskop
US7380549B1 (en) * 2006-08-21 2008-06-03 Ratliff George D Solar energy concentrator for power plants

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN20100051A1 (it) * 2010-08-20 2012-02-21 Giacomo Guardigli Inseguitore solare monoassiale a basso costo per pannelli fotovoltaici, dotato di dispositivi di protezione dalla neve, dal vento e dallo shock termico
ITRN20100066A1 (it) * 2010-11-09 2012-05-09 Alberto Donini Concentratore solare a bass costo per pannelli fotovoltaici
US9252307B2 (en) 2011-01-21 2016-02-02 First Solar, Inc. Photovoltaic module support system
US8407950B2 (en) 2011-01-21 2013-04-02 First Solar, Inc. Photovoltaic module support system
ITRN20110003A1 (it) * 2011-01-21 2012-07-22 Giacomo Guardigli Inseguitore solare monoassiale per pannelli solari e fotovoltaici, dotato di dispositivi di protezione dalla neve, dal vento, dallo shock termico e sensore crepuscolare.
US9413287B2 (en) 2011-01-21 2016-08-09 First Solar, Inc. Photovoltaic module support system
WO2013028657A3 (fr) * 2011-08-22 2013-10-31 First Solar, Inc Système et procédés pour commander des dispositifs de suivi de module solaire
EP2943984A4 (fr) * 2013-04-25 2016-03-30 Byd Co Ltd Ensemble support de cellule solaire
WO2015110995A1 (fr) * 2014-01-23 2015-07-30 Archimede Research S.R.L. Parc solaire photovoltaïque
CN106464204A (zh) * 2014-01-23 2017-02-22 阿基米德研究有限责任公司 光伏设备
US10263133B2 (en) 2014-01-23 2019-04-16 Archimede Research S.R.L. Photovoltaic plant
CN106464204B (zh) * 2014-01-23 2020-04-07 阿基米德研究有限责任公司 光伏设备
ES2570998A1 (es) * 2014-11-19 2016-05-23 Grupo Clavijo Elt S L Seguidor solar de un eje
CN106123379A (zh) * 2016-07-11 2016-11-16 青岛海腾达机械科技有限公司 一种可调角度的太阳能电池板调节机构
CN110036563A (zh) * 2016-09-20 2019-07-19 索拉里斯弗洛特股份有限公司 太阳能电池板跟踪系统

Also Published As

Publication number Publication date
ITUD20090015A1 (it) 2010-07-28

Similar Documents

Publication Publication Date Title
WO2010086309A1 (fr) Centrale photovoltaïque à poursuite utilisant une concentration par réflecteur et procédé de mouvement de réflecteur
CA2794602C (fr) Cadre de groupement de suivi solaire a axe double contrebalance a haut rendement
US6812397B2 (en) Photocurrent-generating fabric and support for such a fabric
CN101908841B (zh) 用于双向跟踪并聚集光线的屋顶安装型装置
US20130206708A1 (en) Solar panel deployment system
KR100980688B1 (ko) 발전과 차양을 겸하는 건축물 일체형 태양광 발전장치
EP2825021B1 (fr) Serre et système pour générer de l'énergie électrique et culture en serre
EP2276981B1 (fr) Dispositif de poursuite solaire
WO2012071404A1 (fr) Appareil de positionnement de capteur solaire
KR101709847B1 (ko) 태양전지 발전장치
AU2011214216B2 (en) Solar collector having Fresnel mirrors
WO2010054831A2 (fr) Dispositif de support de panneau solaire
ITMI20101847A1 (it) Apparato inseguitore per captare energia solare e relativo meccanismo di movimentazione di un asse
KR101175662B1 (ko) 태양 추적식 태양광 발전장치
EP1988344A1 (fr) Système dynamique de poursuite solaire
EP2626649B1 (fr) Écrans dotés de modules solaires organisés et écrans intermédiaires commandés indépendamment
JP2014047528A (ja) 太陽光発電屋根
WO2018090155A1 (fr) Systèmes de suivi du soleil à persiennes de capteurs solaires et procédés associés
EP3888241B1 (fr) Appareil de suivi solaire
EP0540708B1 (fr) Dispositif antieblouissant pour batiments
KR101441617B1 (ko) 경사 조절이 가능한 지붕형 태양광 발전장치
CN113203449A (zh) 一种水文监测设备的辅助测量组件
EP4002685B1 (fr) Tracker solaire a axe unique et son procede de fonctionnement
US20240007044A1 (en) Bifacial photovoltaic module, single axis solar tracker and operating method thereof
KR20120048761A (ko) 태양광 추적장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10701366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10701366

Country of ref document: EP

Kind code of ref document: A1