WO2010085980A1 - Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide - Google Patents
Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide Download PDFInfo
- Publication number
- WO2010085980A1 WO2010085980A1 PCT/EP2009/000624 EP2009000624W WO2010085980A1 WO 2010085980 A1 WO2010085980 A1 WO 2010085980A1 EP 2009000624 W EP2009000624 W EP 2009000624W WO 2010085980 A1 WO2010085980 A1 WO 2010085980A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- maximum
- minimum
- curve
- barrier
- coriolis mass
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/8472—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane
- G01F1/8477—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having curved measuring conduits, i.e. whereby the measuring conduits' curved center line lies within a plane with multiple measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/74—Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8436—Coriolis or gyroscopic mass flowmeters constructional details signal processing
Definitions
- the invention relates to a Coriolis mass flowmeter for measuring the mass flow of a liquid, wherein the liquid may contain a gas portion.
- the invention also relates to a corresponding method for operating a Coriolis mass flow meter.
- a Coriolis mass flow meter is known from DE 10 2004 014 029 A1.
- Coriolis mass flowmeters are often used for the measurement of physical parameters of a medium flowing in a pipeline, by means of a measuring transducer inserted in the course of the medium-carrying pipeline and through which the medium flows during operation Measuring operation circuit with the density of corresponding inertial forces cause and derived from these generate a respective mass flow measurement signal.
- the measuring sensors each comprise at least one measuring tube held in a supporting frame with a bent or straight tube segment which is vibrated during operation in order to produce the above-mentioned reaction forces.
- the sensors For detecting the vibrations of the pipe segment, the sensors also each have a responsive to movements of the pipe segment, physical-electrical sensor arrangement.
- the measurement is based on the medium flowing through the measuring tube inserted into the pipeline and oscillating during operation, whereby the medium experiences Coriolis forces. These in turn cause the inlet-side and outlet-side regions of the measuring tube to oscillate out of phase with one another.
- the size of these phase shifts serves as a measure of mass flow.
- the oscillations of the measuring tube are therefore detected by means of two vibration sensors of the aforementioned sensor arrangement which are spaced apart from one another along the measuring tube, and in Vibration measurement signals converted from the mutual phase shift of the mass flow is derived.
- amplitude characteristic is then defined as the difference between the accumulated useful frequencies and the accumulated noise frequencies, as further characteristic numbers are: the ratio of the excitation current to the sensor voltage, the amplitude characteristic is defined as the discrete spectrum of the sensor signal of one of the two sensors. the ratio of the excitation current without gas bubbles to the excitation current with gas bubbles, the ratio of the sensor voltage with gas bubbles to the sensor voltage without gas bubbles and the shift of the resonance frequency.
- WO 2006/130415 A and WO 2006/127527 A describe methods for the detection and counting of gas bubbles by means of additional excitation of other frequencies and comparison of the test results. word with a reference spectrum. The determination of both the mass flow rate and the density of the liquids and the gas is thereby possible. A problem with this approach is that it requires the use of a suitable excitation source.
- DE 10 2006 017 676 B3 discloses a method for operating a Coriolis mass flow meter.
- a two-phase flow is detected by using different characteristics from at least two different groups.
- the groups are subdivided as follows: magnitudes based on friction losses within the multiphase flow, magnitudes based on inhomogeneity of the multiphase flow, magnitudes based on a modeling of the nominal behavior of the Coriolis mass flow meter, and magnitudes based on transit time effects of the multiphase flow between two longitudinally of the measuring tube spaced detection points for the resulting vibrations.
- the object of the invention is to provide a Coriolis mass flow meter, by means of which a gas component can be determined when flowing through with a liquid.
- Another object of the invention is to specify a method for operating a Coriolis mass flow meter, in which a gas component can be determined when flowing through a liquid.
- the object directed to a Coriolis mass flowmeter is achieved by a Coriolis mass flowmeter for measuring the mass flow of a liquid through a line, with a measuring unit which determines a measured value of an actuator current and / or a vibration amplitude, and with a measuring unit associated evaluation unit, which comprises a data memory and a processor, wherein in the data memory, a maximum curve and a minimum curve are stored, wherein by means of the processor, the determined measured value used on the one hand in the maximum curve and calculates a maximum limit and on the other hand inserted into the minimum curve and from this a minimum barrier is calculated and wherein from the maximum barrier and the minimum barrier, a gas content in the liquid is calculated and displayed.
- An evaluation unit of a Coriolis mass flowmeter calculates or measures u. a. the natural frequency and the phase difference between the incoming and outgoing pipe part of the vibrating tube.
- the invention is based on the recognition that certain features of the measurement of a Coriolis mass flow meter over a wide range of flow rates and different types of liquid / gas mixtures produce a characteristic signature that allows a quantitative inference to the gas content. For certain features, such. As for the Aktorstrom and the amplitude estimate, resulting in dependence on the gas content characteristic changes that are valid for different flow directions (horizontal, vertical upward, vertically downward) and different back pressures.
- This characteristic signature can be mapped by including the range of feature values as a function of the gas fraction between a maximum curve and a minimum curve. By now storing this maximum curve and minimum curve as limitations of the feature values in the memory, by inserting the determined measured value into these curves, an interval of a possible gas flow can be established. partly determined and from this the gas content can be determined with a defined error.
- the Coriolis mass flow meter i. A. erroneous readings.
- the proposed method can be used to estimate the proportion of entrained gas and the uncertainty of this information. This enables condition monitoring of both the field device and the process. In addition to detecting a faulty measurement, this provides the operator with valuable information about his process status.
- the maximum curve and the minimum curve are preferably calculated by forming the inverses of an envelope from a series of measured values previously determined for different gas fractions. More preferably, the envelope is formed by one of the following types of functions: a linear or piecewise linear curve, an n-th order polynomial, a spline, a neural network, an exponential or a logarithmic curve.
- An envelope is thus modeled in a known form from a set of measured values. For this purpose, measured values are preferably determined once depending on known gas fractions.
- the maximum curve and the minimum curve are then calculated by inverting the envelopes.
- respective maximum and minimum limits are calculated from measured values of the actuator current and the oscillation amplitude and their respectively associated maximum and minimum curves, and the smallest maximum barrier and the largest minimum barrier are used for the calculation of the gas fraction. More preferably, an error indication is calculated and displayed from the difference between the largest maximum barrier and the smallest minimum barrier.
- the gas fraction is calculated as the arithmetic mean of the smallest maximum and the largest minimum barrier.
- the Coriolis mass flow meter is designed to measure digitally.
- the described calculation of the gas fraction can already be implemented without hardware changes via the processor and memory by depositing a software suitable for carrying out the method in the program memory of the device.
- the determined measured values are preferably filtered before the further processing.
- the object directed to a method is achieved by a method for operating a Coriolis mass flowmeter for measuring the mass flow of a liquid through a line with a measuring unit which determines a measured value of an actuator current and / or a vibration amplitude, and one with the Measuring unit connected evaluation unit, which comprises a data memory and a processor, wherein in the data memory, a maximum curve and a minimum curve are stored, by means of the processor, the measured value used on the one hand in the maxima ximum curve and calculates a maximum limit and on the other hand used in the minimum curve ⁇ (From this a minimum barrier is calculated and from the maximum barrier and the minimum barrier, a proportion of gas in the liquid is calculated and displayed.
- FIG. 1 shows a Coriolis mass flowmeter
- FIG. 2 shows a flowchart for measuring a gas fraction
- 3 shows measured values of the actuator flow as a function of the gas fraction for different flow rates
- 4 shows envelopes for measured values of the actuator flow at different gas fractions
- FIG. 5 shows envelopes for the measured values of the oscillation amplitude for various gas components in logarithmic representation
- the Coriolis mass flow meter 1 shows a Coriolis mass flow meter 1.
- the Coriolis mass flow meter 1 has a measuring unit 2 in a line 3.
- the line 3 splits at a flow measuring point 4 into two sub-lines 4A, 4B.
- the two sub-lines 4A, 4B extend parallel to each other in an approximately radial direction away from the flow direction in the line 3, then run parallel to this flow direction and then extend again approximately radially to the flow direction.
- An excitation unit 13 is connected to the flow measuring point 4 with an excitation coupling 14 so that they can put them into vibration.
- a value of an actuator current is set in a control, which is required to excite the partial lines 4A, 4B to oscillations with a certain amplitude.
- An evaluation unit 17 is connected to the flow measuring point 4 by an evaluation coupling 15 and an evaluation coupling 16 so that they can measure the deflections on the one hand of the sub-line 4A and on the other hand, the sub-line 4B or their relative position to each other.
- the evaluation unit 17 has a processor 19 and a data memory 21.
- the evaluation unit 17 is connected to a display unit 23.
- a liquid 9 flows through the line 3 and divides into the partial lines 4A, 4B into two partial streams 9A, 9B.
- the measuring principle for the mass flow rate and the density is based on the fact that the inertial forces acting on the partial flows change the relative phase position of the Vibrations of the sub-lines 4A, 4B to each other, which are detected by the Ausensekopplept 15 and 16, or cause changes in the natural frequency of the vibration of the flow measuring point 4, which are detected by the evaluation unit 17.
- a proportion of gas in the liquid 9 can significantly falsify this measurement. Therefore, a determination of this proportion of gas is essential. The following describes how this gas content can be determined easily.
- step 2 shows a flow chart for a method for determining the gas content.
- the actuator current IA in step SO1 and the oscillation amplitude AE in step S02 are measured.
- the measured values are filtered in steps S03 or S04 and then used in steps S05 and S06, respectively, in assigned, inverse hull curves stored in the data memory 21 (FIG. 1).
- the assigned hull curves were previously modeled from measured values present in known gas fractions in step S07, inverted in step S08 and stored in step S09 as inverse hull curves HK -1 UA) and HK “1 (AE) in data memory 21 (FIG Maximum in-line curves (MAX) and minimum curves (MIN) in the data memory 21 (FIG. 1), into which the measured values of the actuator current IA and the oscillation amplitude AE
- different types of hull curves can be used, for example, hull curves with different types of functions, such as polynomials of the nth order or splines, on the basis of the minimum curve stored for the actuator current
- a lower limit GVF m1n (IA) and an upper limit GVF ma ⁇ (IA) are determined for the measured actuator current.
- the measured oscillation amplitude AE is evaluated.
- intermediate values result between the limits GVF min (IA) and GVF max (IA) and between the limits GVF min (AE) and GVF max (AE).
- a maximum barrier GVF max is determined as the smallest of the values of GVF max (IA) and GVF max (AE).
- a minimum bound GVF mIn is determined to be the largest of the values of GVF 1nIn (IA) and GVF mIn (AE).
- step S the final value of the gas fraction GVF is calculated as half the sum of the maximum and minimum limits, that is, (GVF m i n + GVF max ) / 2.
- an error indication is also possible in a simple manner with this method, calculated from the difference of the largest value of GVF ma x (IA) and GVF max (AE) and the smallest value of GVF m in (IA) and GVF rain (AE ).
- the gas component GVF is displayed with the error indication in step S12 on the display unit 23 (FIG. 1) and output in step S13, for example via a field bus, to a higher-level control station in an automation system for further processing.
- FIG. 3 shows a series of measured values 30 of the actuator current IA as a function of the gas content.
- the gas components are plotted as gas-void fraction GVF, on the ordinate actuator currents IA.
- the maximum values are taken to determine a maximum envelope and the minimum values to interpolate a minimum envelope.
- FIG. 4 wherein the envelopes HK ma ⁇ (IA) and HK m i n (IA) were modeled as section-wise linear curves.
- FIG. 5 shows a representation of the oscillation amplitude AE with envelopes HK max (AE) and HK m i n (AE) with logarithmic scaling of the ordinate, the envelopes being determined substantially analogously to the procedure described with reference to FIGS. 3 and 4.
- FIG. 6 shows how the calculated gas fraction GVF represented by crosses 61 coincides with an actual gas fraction GVF, which is indicated by points 60. A good match is achieved. On the abscissa the number of the measurement N, on the ordinate the respective gas content GVF in% is plotted.
- the embodiment thus describes a combination of two mutually constructive aspects: first, the selection and determination of features that are particularly suitable. The second aspect arises from the way in which these features are used with envelopes to estimate a minimum or maximum gas fraction as a model for gas fraction determination. This results in the following advantages:
- the algorithm requires little CPU and memory resources.
- the algorithm can be easily implemented in a DSP. - The algorithm can be used for a wide range of flow rates, flow directions (horizontal, vertical upward and vertical downward flow) and back pressures.
- the algorithm can be used for different media (eg water, oil).
- the field device is out of specification. This means that the flow measured value is no longer reliable and should no longer be considered as valid process information.
- the knowledge of the gas content is also the basis for a compensation of the measurement error.
- the indication of the gas content also diagnoses the core problem: it is gas (eg air) in the process, thus providing the starting point for process optimization.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Measuring Volume Flow (AREA)
Abstract
L'invention concerne un débitmètre massique à effet Coriolis (1) et un procédé pour calculer une proportion de gaz dans un liquide (9) traversant une canalisation (3), comprenant une unité de mesure (2) qui détermine une valeur de mesure ainsi qu'une unité d'analyse (17) qui est reliée à l'unité de mesure (2) et qui comprend une mémoire de données (21) et un processeur (19). Cette invention est caractérisée en ce qu'une courbe maximale (MAX) et une courbe minimale (MIN) issues de valeurs de mesure du courant d'actionnement et de l'amplitude de vibration pour des proportions de gaz connues sont enregistrées dans la mémoire de données (21). Au moyen du processeur, la valeur de mesure déterminée est intégrée d'une part dans la courbe maximale (MAX), ce qui permet de déterminer une limite maximale, et d'autre part dans la courbe minimale (MIN), ce qui permet de déterminer une limite minimale du courant d'actionnement et de l'amplitude de vibration par rapport à la proportion de gaz, une proportion de gaz dans le liquide étant calculée à partir de la limite maximale et de la limite minimale, puis affichée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2009/000624 WO2010085980A1 (fr) | 2009-01-30 | 2009-01-30 | Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2009/000624 WO2010085980A1 (fr) | 2009-01-30 | 2009-01-30 | Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010085980A1 true WO2010085980A1 (fr) | 2010-08-05 |
Family
ID=41323365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/000624 WO2010085980A1 (fr) | 2009-01-30 | 2009-01-30 | Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010085980A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012113421A1 (fr) * | 2010-11-19 | 2012-08-30 | Krohne Messtechnik Gmbh | Procédé pour faire fonctionner un système de mesure par résonance |
CN110940388A (zh) * | 2018-09-25 | 2020-03-31 | 克洛纳测量技术有限公司 | 用于求取在穿流科里奥利质量流量测量仪的介质中的气体份额的方法 |
EP3811037B1 (fr) * | 2018-06-20 | 2022-11-09 | Endress+Hauser Flowtec AG | Procédé de fonctionnement d'un dispositif de mesure coriolis et dispositif de mesure coriolis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004007889A1 (de) * | 2004-02-17 | 2005-09-01 | Endress + Hauser Flowtec Ag, Reinach | Coriolis-Massedurchfluß-Meßgerät |
-
2009
- 2009-01-30 WO PCT/EP2009/000624 patent/WO2010085980A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004007889A1 (de) * | 2004-02-17 | 2005-09-01 | Endress + Hauser Flowtec Ag, Reinach | Coriolis-Massedurchfluß-Meßgerät |
Non-Patent Citations (1)
Title |
---|
LIU R P ET AL: "A neural network to correct mass flow errors caused by two-phase flow in a digital coriolis mass flowmeter", FLOW MEASUREMENT AND INSTRUMENTATION, BUTTERWORTH-HEINEMANN, OXFORD, GB, vol. 12, no. 1, 1 March 2001 (2001-03-01), pages 53 - 63, XP002355593, ISSN: 0955-5986 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012113421A1 (fr) * | 2010-11-19 | 2012-08-30 | Krohne Messtechnik Gmbh | Procédé pour faire fonctionner un système de mesure par résonance |
CN103119404A (zh) * | 2010-11-19 | 2013-05-22 | 克洛纳测量技术有限公司 | 运行谐振测量系统的方法 |
US8915147B2 (en) | 2010-11-19 | 2014-12-23 | Krohne Messtechnik Gmbh | Method for operating a resonance measuring system |
RU2565849C2 (ru) * | 2010-11-19 | 2015-10-20 | Кроне Месстехник Гмбх | Способ эксплуатации резонансной измерительной системы |
EP3811037B1 (fr) * | 2018-06-20 | 2022-11-09 | Endress+Hauser Flowtec AG | Procédé de fonctionnement d'un dispositif de mesure coriolis et dispositif de mesure coriolis |
CN110940388A (zh) * | 2018-09-25 | 2020-03-31 | 克洛纳测量技术有限公司 | 用于求取在穿流科里奥利质量流量测量仪的介质中的气体份额的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2513612B1 (fr) | Procédé pour faire fonctionner un débitmètre massique coriolis ainsi que débitmètre massique coriolis | |
EP1055102B1 (fr) | Densimetre/debitmetre-masse a force de coriolis | |
DE102006017676B3 (de) | Verfahren zum Betrieb eines Coriolis-Massendurchflußmeßgeräts | |
DE112004001119B4 (de) | Viskositätskorrigiertes Durchflußmeßgerät | |
EP3394575A1 (fr) | Procédé de détermination d'un paramètre physique d'un liquide chargé de gaz | |
DE102008046891A1 (de) | Messeinrichtung vom Vibrationstyp | |
DE102018101923A1 (de) | Verfahren zum Feststellen von Belagsbildung in einem Messrohr und Messgerät zur Durchführung des Verfahrens | |
EP2936082B1 (fr) | Débitmètre a vortex et procédé de mesure du taux de vide d'un écoulement multiphasique | |
EP3559609A1 (fr) | Capteur de mesure de débit massique fonctionnant suivant le principe de coriolis et procédé permettant de déterminer un débit massique | |
EP3390984A1 (fr) | Procédé de correction en fonction du nombre de reynolds d'une mesure de débit à l'aide d'un débitmètre à effet coriolis | |
DE102010040600A1 (de) | Verfahren zum Detektieren einer Verstopfung in einem Coriolis-Durchflussmessgerät | |
WO2004046657A1 (fr) | Procede et dispositif permettant de determiner et/ou de surveiller un debit volumique et/ou massique | |
EP3887771B1 (fr) | Procédé pour la détermination d'un débit d'un milieu capable de s'écouler et poste de mesure pour celle-ci | |
WO2020259762A1 (fr) | Procédé et dispositif de détermination d'un paramètre d'écoulement au moyen d'un débitmètre à effet coriolis | |
EP3325923A1 (fr) | Débitmètre à effet vortex | |
EP3714253B1 (fr) | Procédé de calcul de la densité d'un fluide passé dans au moins un tube de mesure apte à osciller compris dans un densimètre | |
WO2010085980A1 (fr) | Débitmètre massique à effet coriolis et procédé pour calculer la proportion de gaz dans un liquide | |
DE102010015421A1 (de) | Verfahren zum Überprüfen eines Coriolis-Massendurchflussmessgeräts sowie Coriolis-Massendurchflussmessgerät | |
EP2229577B1 (fr) | Procédé de fonctionnement d'un débitmètre massique à effet coriolis et débitmètre massique à effet coriolis | |
DE102017213084A1 (de) | Verfahren und Vorrichtung für eine sichere Durchflussmessung | |
DE102019125682A1 (de) | Anordnung und Verfahren zum Erkennen und Korrigieren einer fehlerhaften Durchflussmessung | |
EP4127612B1 (fr) | Procédé de fonctionnement d'un dispositif de mesure à effet coriolis | |
EP2297552B1 (fr) | Débitmètre massique à effet coriolis et procédé de fonctionnement d'un débitmètre massique à effet coriolis | |
WO2022063812A1 (fr) | Débitmètre à effet coriolis et procédé de fonctionnement de débitmètre à effet coriolis | |
DE102021120452A1 (de) | Verfahren zum Betreiben eines Coriolis-Messgeräts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09776353 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09776353 Country of ref document: EP Kind code of ref document: A1 |