WO2010085725A1 - A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold - Google Patents
A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold Download PDFInfo
- Publication number
- WO2010085725A1 WO2010085725A1 PCT/US2010/021929 US2010021929W WO2010085725A1 WO 2010085725 A1 WO2010085725 A1 WO 2010085725A1 US 2010021929 W US2010021929 W US 2010021929W WO 2010085725 A1 WO2010085725 A1 WO 2010085725A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- staple
- stapler
- tissue
- spreader
- former
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/064—Surgical staples, i.e. penetrating the tissue
- A61B17/0644—Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/0682—Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
Definitions
- the present invention relates in general to the joining of cavity wall tissue with a surgical stapler and, more particularly, to a low profile stapler for delivering multiple large-sized box staples to a body cavity through a small delivery port.
- the low profile stapler enables large areas of tissue to be joined together inside a body cavity through a small access port.
- the present invention also pertains to methods of using the low profile stapler to approximate tissue within a body cavity during a minimally invasive surgical procedure, such as a gastric volume reduction procedure.
- the present invention also pertains to the closure of defects on or within the body through secure tissue apposition.
- the present invention also pertains to the reinforcement of fastened tissues through imbrication of the fastened region secured with the low profile stapler.
- the present invention also pertains to the attachment of prosthetics to tissue, such as mesh for the repair of a hernia.
- Obesity is a medical condition affecting more than 30% of the population in the United States. Obesity affects an individual's quality of life and contributes significantly to morbidity and mortality. Obesity is most commonly defined by body mass index (BMI), a measure which takes into account a person's weight and height to gauge total body fat. It is a simple, rapid, and inexpensive measure that correlates both with morbidity and mortality.
- BMI body mass index
- Overweight is defined as a BMI of 25 to 29.9 kg/m2 and obesity as a BMI of 30 kg/m2.
- Morbid obesity is defined as BMI > 40kg/m2 or being 100 lbs. overweight.
- Obesity and its co-morbidities are estimated to cost an excess of $100 billion dollars annually in direct and indirect health care costs.
- co-morbid conditions which have been associated with obesity are type 2 diabetes mellitus, cardiovascular disease, hypertension, dyslipidemias, gastroesophageal reflux disease, obstructive sleep apnea, urinary incontinence, infertility, osteoarthritis of the weight-bearing joints, and some cancers.
- These complications can affect all systems of the body, and dispel the misconception that obesity is merely a cosmetic problem.
- Studies have shown that conservative treatment with diet and exercise alone may be ineffective for reducing excess body weight in many patients.
- a surgical procedure has been developed for involuting the gastric cavity wall to reduce stomach volume as a treatment for obesity.
- GVR gastric volume reduction
- T-Tag anchors multiple pairs of suture anchoring devices, such as T-Tag anchors, are deployed through the gastric cavity wall.
- the suture anchors are deployed through a small diameter port in a minimally invasive surgical procedure to reduce trauma to the patient.
- the suture attached to each individual pair of anchors is cinched to approximate the tissue and secured to involute the cavity wall between the anchors.
- Procedure variations of particular interest include the case where the involution occurs about the midline of the anterior surface of the stomach, the case where the involution occurs about the greater curvature of the stomach following the removal or relaxing of attachment points along the greater curve (e.g., dissection of the omentum from the gastric wall), and combinations of these (e.g., the involution begins at the apex of the fundus about the greater curve and transitions to the anterior surface near the incisura angularis).
- One effect of the procedure is to more rapidly induce feelings of satiation defined herein as achieving a level of fullness during a meal that helps regulate the amount of food consumed.
- Another effect of this procedure is to prolong the effect of satiety which is defined herein as delaying the onset of hunger after a meal which in turn regulates the frequency of eating.
- positive impacts on satiation and satiety may be achieved by a GVR procedure through one or more of the following mechanisms: reduction of stomach capacity, rapid engagement of stretch receptors, alterations in gastric motility, pressure induced alteration in gut hormone levels, and alterations to the flow of food either into or out of the stomach.
- a stomach with a reduced capacity will distend more quickly for a given volume of food. This distension of the stomach may trigger stretch receptors which in turn trigger a sense of satiation.
- the procedure will limit the stomach's ability to expand, effectively reducing its capacity or fill volume. Additionally, the procedure may induce a beneficial hormonal effect due either to the more rapid triggering of stretch receptors in certain regions of the stomach or the prevention of hormone release by eliminating triggering mechanisms from being engaged in the infolded region that no longer experiences stretch in the same manner. In yet another example, the procedure may alter gastric emptying by preventing efficient antral contractions. Additionally, the infolded region may provide a restrictive inlet into the stomach just distal to the esophagogastric junction.
- the GVR procedures described in these applications require individual placement of each suture anchor pair into the cavity wall tissue, and subsequent tensioning of the suture between the anchor pairs in order to involute the tissue.
- the triangular shape of these staples prevents the staples from being stacked and fed longitudinally through the stapler shaft. Instead, the staples are stacked and fed vertically within the stapler, which reduces the number of staples that can be deployed from the stapler while still maintaining a low profile diameter. Since some versions of the GVR procedure may require a large number of staples to involute the cavity wall, vertical stacking would necessitate using more than one stapler to complete a procedure. Additionally, previous staplers have bent staples at three or fewer points during formation and deployment, which reduces the amount of work hardening and, thus, strengthening within the formed staple.
- the stapler has a low profile for use through a small diameter laparoscopic port or endoscope, yet be capable of deploying staples with a large tissue purchase. Further, it is desirable that the staples have a folded, box shape, and that a large quantity of the staples be deliverable by a single stapler during a procedure. Additionally, it is desirable to have a stapler which alters the configuration of a staple from a low profile, reduced width prior to deployment to a wider, operable width following deployment. Furthermore, it is desirable that the staple be comprised of a strong material having a high yield stress, and that the forming process includes greater than 3 bending points to increase the strength of the formed staple.
- the present invention provides a surgical staple and stapler which achieves these objectives.
- FIG. 1 is an isometric view of a first embodiment of a staple of the present invention shown in an initial, undeployed condition
- FIG. 2 is an isometric view of a second embodiment of a staple of the present invention shown in an initial, undeployed condition;
- FIG. 3 is side view of the staple shown in FIG. 2;
- FIG. 4A is an isometric view of a third embodiment of a staple of the present invention shown in an initial, undeployed condition
- FIG. 4B is an isometric view of a fourth embodiment of a staple of the present invention shown in an initial, undeployed condition
- FIG. 5 is an top view of the staple of FIG. 1 shown in an intermediate deployment condition
- FIG. 6 is an top view of the staple of FIG. 1, showing the staple in a final, deployed condition
- FIG. 7 is an isometric view of an exemplary low profile surgical stapler of the present invention.
- FIG. 8 is a side sectional view taken along line 8-8 of FIG. 7, showing the distal end of the stapler
- FIG. 9 is an exploded isometric view of the distal end of the stapler of FIG. 7;
- FIG. 10 is a distal end view, partially in section, of the stapler of FIG. 7;
- FIG. 11 is a fragmentary, isometric view of the distal end of the anvil base of FIG. 9;
- FIG. 12A is a fragmentary, isometric view of the distal end of the staple former of FIG. 9;
- FIG. 12B is a fragmentary, isometric view of the distal end of a second embodiment of the former of FIG. 9;
- FIG. 13 is a fragmentary, isometric view of the distal end of the spreader of FIG. 9;
- FIG. 14 is an exploded, isometric view of the proximal end of the stapler housing;
- FIG. 15 is an isometric, bottom view of the shoe of FIG. 9;
- FIG. 16 is a side sectional view of the distal end of the stapler, shown in an initial, predeployment condition;
- FIG. 17 is an isometric view of the distal end of the stapler in the initial, predeployment condition, shown with the staple guide, shoe and load spring removed, and the outer housing partially cut away for clarity;
- FIG. 18 is an isometric view in section of the proximal end of the stapler shown in FIG.
- FIG. 19 is an exploded, isometric view of the proximal stapler end shown in FIG. 18, with the top portion of the rotation knob, staple spring stop, and outer tube rotated 90° for clarity;
- FIG. 20 is an isometric, proximal end view of the stapler of FIG. 18, shown with the left handle housing removed and the locking member in phantom for clarity;
- FIG. 21 is a side sectional view of the stapler of FIG. 7, showing the stapler components in the initial, predeployment condition;
- FIG. 22 is a distal end sectional view taken along line 22-22 of FIG. 21;
- FIG. 23 is a side sectional view of the distal end of the stapler, showing a staple advanced outside the open stapler end during the deployment sequence;
- FIG. 24 is a side sectional view of the stapler showing the position of the stapler components when a staple is advanced outside the open stapler end, as shown in FIG. 23;
- FIG. 25 is a distal end sectional view taken along line 25-25 of FIG. 24;
- FIG. 26 is an isometric view of the distal end of the stapler, similar to FIG. 17, showing a staple held by the spreader and anvils in a fully advanced position outside the open stapler end;
- FIG. 27 is a side sectional view of the stapler, similar to FIG. 24, showing an intermediate deployment position in which the advanced staple is expanded open;
- FIG. 28 is a distal end sectional view taken along line 28-28 of FIG. 27;
- FIG. 29 is a side sectional view of the distal end of the stapler, showing an expanded staple held outside the open stapler end by the anvils, spreader and former during the deployment sequence;
- FIG. 30 is an isometric view of the distal end of the stapler, similar to FIG. 17, showing an advanced, expanded staple held outside the open stapler end by the anvils, spreader and former during the deployment sequence with the anvils spread to a full width;
- FIG. 31 is a side sectional view of the stapler, similar to FIG. 27, showing the former in a fully advanced position to fold the staple closed during the deployment sequence;
- FIG. 32 is a distal end sectional view of the former and anvils, showing the relative locations of the anvil bosses and anvil stop when the former and anvils are both in a fully distal position;
- FIG. 33 is a distal end sectional view taken along line 33-33 of FIG. 31;
- FIG. 34 is a side sectional view of the distal end of the stapler, showing a closed, formed staple held outside the distal stapler end;
- FIG. 35 is an isometric view of the distal end of the stapler, similar to FIG. 30, showing a closed, formed staple held outside the open stapler end by the anvils and spreader;
- FIG. 36 is a side sectional view of the stapler, similar to FIG. 31, showing the stapler just prior to release of the formed staple;
- FIG. 37 is a side sectional view of the distal end of the stapler, showing the former retracted and the formed staple ready for release from the stapler;
- FIG. 38 is a distal end sectional view taken along line 38-38 of FIG. 36;
- FIG. 39 is an isometric view of the distal end of the stapler, similar to FIG. 35, showing the stapler in a pre-release position, with the former retracted back from the closed, formed staple held outside the open stapler end;
- FIG. 40 is a schematic view of a patient during a hybrid endoscopic-laparoscopic procedure
- FIG. 41 A is a schematic view of a cavity wall section being grabbed by a stapler prong
- FIG. 41B is a schematic view similar to FIG. 41A showing the cavity wall section drawn together into a fold by the stapler prongs;
- FIG. 42 is a schematic view of a staple being formed through an approximated section of the cavity wall
- FIG. 43 is a schematic view of a cavity wall section being approximated by a set of graspers prior to deployment of a staple into the apposed tissue sections;
- FIG. 44 is an isometric view of the stapler inserted into a tissue grasping device
- FIG. 45 is a top view of the distal end of the tissue grasping device and stapler, showing the grasping wires in a proximal position;
- FIG. 46 is a top view of the distal end of the tissue grasping device and stapler, showing the grasping wires in a distal position;
- FIG. 47 is a diagrammatic view showing a pair of tissue grasping wires gripping onto spaced sections of a gastric cavity wall
- FIG. 48 is a top view of the distal end of the tissue grasping device and stapler, showing the grasping wires being retracted into the device to pull the gripped tissue sections together;
- FIG. 49 is a top view of the distal end of the tissue grasping device and stapler, showing the grasping wires retracted to pull the gripped tissue sections against the open distal end of the stapler;
- FIG. 50 is an isometric view showing an exemplary connection for the stapler and tissue grasping device.
- FIG. 51 is a schematic view showing the stapler approximating the cavity wall tissue on opposite sides of the staple line; and [0060] FIG. 52 is a schematic view similar to FIG. 51 showing the stapler forming a staple through the approximated tissue to reinforce the staple line.
- FIG. 1 illustrates a first exemplary fastener or staple 10 of the present invention in an initial, undeployed configuration.
- staple 10 comprises a length of wire having a cylindrical cross-section.
- the cross-sectional shape of the wire may have other shapes (e.g., rectangular, elliptical, etc.) to provide optimal strength for the application and may or may not be uniform along the length of the wire.
- Staple 10 is formed into a base segment 12 and first and second leg portions 14, 16 that intersect with opposite ends of the base segment. Leg portions 14, 16 intersect with base segment 12 at an angle ⁇ of approximately 90°, and extend in a substantially parallel fashion forward of the base segment.
- substantially parallel leg portions are able to slide through a channel of uniform rectangular cross section while strictly maintaining their orientation allowing for repeatable firing of the device without jamming.
- Leg portions 14, 16 need not be straight for leg portions to be substantially parallel.
- the distance between staples legs 14, 16 describes an initial width dimension for the staple 10.
- Opposite base segment 12, leg portions 14, 16 bend inward towards a centerline 24 of the staple, at an angle ⁇ of approximately 90°, to form staple end segments 20, 22.
- the angle ⁇ is approximately 90° between leg portions 14, 16, and end segments 20, 22, the end segments are substantially parallel.
- the staple may have a closed-form, loop shape, with each side of the loop having at least one portion of the length of wire forming the shape.
- two lengths of wire may be disposed across one side of the shape to enclose the shape, as demonstrated by the end segments 20, 22 of FIGS. 1-4B.
- the tips of end segments 20, 22 are angled to form sharp prongs 26 for piercing tissue.
- Prongs 26 may be formed on end segments 20, 22 in any desired manner and may have features incorporated to aid in penetration or to aid in hooking (e.g., barbed, etc.) tissue that has been penetrated. However, it is preferable that prongs 26 be formed by a sloping surface tapering inward from an outer edge of the end segment towards an inner edge thereof.
- Staple legs portions 14, 16 are bent at end segments 20, 22 to make one of the leg portions at least one wire diameter longer in length than the other leg portion.
- the longer length of one leg portion i.e. staple leg 14 in FIG. 1
- staple leg 14 in FIG. 1 enables the end segments 20, 22 to lie in an abutting, parallel position co-planar with base segment 12. Lengthening one staple leg portion relative to the other staple leg portion minimizes the vertical profile of the staple in the undeployed condition, thus allowing the staples to be fed through a smaller area within a stapler.
- end segments 20, 22 are bent to a length that is less than or equal to the length of base segment 12.
- end segments 20, 22 are of different lengths resulting in a staple that is asymmetrical in shape.
- prong tips 26 point in opposite directions and lie within the profile of staple legs 14, 16 to provide a closed- form, substantially rectangular shape for staple 10.
- the length of the end segments 20, 22 are made equal by changing the angle ⁇ defined by leg portion 16 and end segment 22 to less than 90° while keeping end segment 22 substantially straight. In an alternative embodiment (not shown), this is accomplished by providing a curve or bend to end segment 22. Both of these configurations still maintain the closed-form shape and are asymmetric.
- a staple of this shape could have benefits for engaging tissue which will be described below in further detail. Further, the angulation of end segment 22 may help prevent rotation of the staple once implanted in tissue.
- staple leg portions 14, 16 may also be slightly curved or bowed in the outward direction so that in its final formed position the tissue tension generally will keep the base segment 12 of the staple parallel to the fastened tissue. In some applications, this may be advantageous to help secure the staple and keep the leg from rotating out of the fastened tissue.
- FIGS. 2 and 3 show an alternative embodiment for staple 10 in which staple leg portions 14, 16 extend forward of base segment 12 a substantially equal length. End segments 20, 22 again bend inwardly at an angle ⁇ from staple legs 14, 16, so that prongs 26 point in opposite directions.
- the equal length of staple legs 14, 16 enables parallel end segments 20, 22 to overlie one another in a direction normal to the direction of the staple legs.
- One of the staple legs (leg 14 in FIG. 2) inclines upwardly the distance of one wire diameter (WD) between base segment 12 and the end segment (end 22 in FIG. 2), to enable the end segment to overlie the opposite end segment.
- This embodiment enables staple legs 14, 16 to have a substantially equal length.
- overlapping end segments 20, 22 provides a larger area of contact between the staples and an end stop when the staples are stacked inside the stapler aiding the reliable feeding of staples.
- FIG. 4A shows a third embodiment for staple 10 in which leg portions 14, 16 and end segments 20, 22 have the same initial, unformed condition as the staple shown in FIG. 1.
- base segment 12 is modified to include a shallow "V"- shaped depression, identified by reference number 28, at a midpoint of the segment. Depression 28 assists in aligning the staple with the staple spreader during the deployment sequence.
- FIGS. 1-4B Exemplary non-limiting examples of closed-form staples with substantially parallel leg portions and end segments are shown in FIGS. 1-4B.
- Staples used in this application are preferably biocompatible, implantable, and may optionally be absorbable.
- a non-limiting list of candidate materials includes: metals such as titanium and its numerous alloys, stainless steel, nitinol, magnesium, and iron; plastics such as PEEK, ProleneTM; absorbable materials such as PDSTM, VicrylTM, and polylactic acid (PLA); and combinations of these classes of materials.
- these fasteners may contain therapeutic agents that are selectively or immediately released over time to aid in healing, prevent infection (e.g., triclosan), reduce swelling or edema, etc.
- FIG. 5 shows staple 10 in a second, intermediate deploying condition.
- staple legs portions 14, 16 are bent outward from centerline 24 to describe a maximum width dimension (WIDTH ope n) between the distal tips of the staple legs.
- WIDTH ope n maximum width dimension
- staple legs 14, 16 are shown expanded open 180° into lateral alignment with the initial base segment position, with end segments 20, 22 projecting distally in parallel. In this second position, end segments 20, 22 are spaced apart along substantially the entire length of the segments.
- staple legs 14, 16 can be expanded open to an angle less than or greater than 180°, with a maximum bending position occurring when staple legs 14, 16 extend proximal of base segment 12 in alignment with the angled spreader tip, as will be described in more detail below.
- Staple legs 14, 16 are bent outward by applying an initial deploying force (indicated by arrow 30 in FIG. 5) to a midsection of base segment 12, while the inside of the base segment is held fixed at the intersections between the base segment and the staple legs.
- the application of force 30 against the opposite fixed forces at the leg intersections pulls staple legs 14, 16 outward, increasing angle ⁇ , while substantially simultaneously indenting the center region of base segment 12.
- the outward bending of staple legs 14, 16 creates an enlarged opening into the staple 10 that is preferably in the range of twice the width of the stapler housing. Note that staples starting in an asymmetric configuration (e.g., staples depicted in FIG. 1, FIG. 4A, and FIG.
- Staple 10 is transformed to a third, fully deployed condition, shown in FIG. 6, by the application of force to laterally spaced points along staple leg portions 14, 16. This force application is indicated by arrows 32 in FIG. 5. It will be appreciated that the force application points in transitioning from the intermediate to fully deployed conditions differ from the force application points in transitioning from the initial to intermediate deployment conditions.
- the separate force application or bending points in the deployment sequence increase length of wire subject to work hardening increasing the strength of the staple.
- staple leg portions 14, 16 are drawn back into a substantially parallel position, with prongs 26 again pointing inward through the intervening tissue (not shown) to penetrate and hold the tissue.
- the length of staple 10 decreases between the initial and final deployment conditions, with an ensuing increase in the staple width, so that the final width dimension of the formed staple (described by the distance between staple legs 14, 16) is greater than the initial width dimension.
- staple 10 transitions between the initial, intermediate and final conditions in a series of steps which may be substantially simultaneous, but which are preferably carried out sequentially so as to first open staple 10 to the intermediate condition of FIG. 5, and then bend each of the staple legs 14, 16 back around into the final condition shown in FIG. 6.
- staple legs 14, 16 bend forward of base segment 12 at an internal angle ⁇ of less than 90°, due to base segment 12 projecting into the interior of the closed staple.
- base segment 12 results from the transitioning of staple legs 14, 16, and has little effect on the volume of tissue which can be held within staple 10, but can help compress materials together within the final substantially closed- form shape of the staple which can improve apposition.
- staples starting in an asymmetric configuration e.g., staples depicted in FIG. 1, FIG. 4A, and FIG. 4B
- FIG. 6 The inward projection of base segment 12 results from the transitioning of staple legs 14, 16, and has little effect on the volume of tissue which can be held within staple 10, but can help compress materials together within the final substantially closed- form shape of the staple which can improve apposition.
- FIG. 7 shows an exemplary low profile stapler 40 for deploying staples 10 in accordance with the invention.
- stapler 40 includes a handle 42 having a pistol grip 44 shaped for grasping by a surgeon.
- An actuator assembly 46 is movably coupled to handle 42 to be drawn towards the pistol grip 44 during staple deployment.
- An elongated, tubular fastener housing 50 extends distally from handle 42. Housing 50 has sufficient length (on the order of 18") to enable use within an obese patient at numerous trocar access sites.
- housing 50 is sized to allow for passage through a small (3-5mm) diameter trocar although functional devices of a larger diameter are also possible without departing from the overall scope of the invention.
- a staple deploying assembly is disposed within the interior of housing 50 for discharging staples from a distal deployment opening 52 of the housing.
- Actuator assembly 46 facilitates both the advancement of staples 10 through housing 50, as well as the deployment of the staples from the distal housing end 52.
- separate actuating mechanisms may be incorporated into stapler 40 for conveying staples to the distal end of housing 50 and deploying the staples externally from the housing into adjacent tissue.
- a rotating knob 54 may be provided on handle assembly 42. As shown in FIG. 8, knob 54 includes a flange 58 which rotates within a circular slot at the distal end of handle 42 to rotate the knob relative to the handle. Additionally, knob pins 56 extend into the inner bore of knob 54 and engage an opening in the wall of housing 50. As knob 54 is rotated, housing 50 is in turn rotated by the interaction of pins 56 with the housing.
- Stapler 40 is depicted as having a rigid housing 50 for open surgical applications or laparoscopic applications using trocars.
- housing 50 is substantially rigid, but has at least one articulation joint allowing housing 50 to deflect in a controlled manner from the primary axis of housing 50 increasing the operable range of the stapler without departing from the scope of the invention.
- housing 50 is substantially flexible and of an increased length allowing for less invasive, natural orifice (e.g., transoral, etc.) access to regions of the patient requiring a treatment (e.g., within the peritoneal cavity of the patient).
- FIGS. 8 through 10 show different views of the distal portion of the staple deploying assembly within housing 50.
- the staple deploying assembly includes a staple guide 60 and a base guide 62 each having a semicircular outer perimeter.
- the staple and base guides 60, 62 join along a diametrical centerline and together extend concentrically within housing 50.
- Both guides 60, 62 include at least one retaining pin, indicated by reference number 64, for fixing the position of the guides within the housing.
- a staple former 70 extends through housing 50 along the inner surface of base guide 62.
- Former 70 comprises a center section 74 bounded by parallel sidewalls 76.
- the distal ends of sidewalls 76 preferably include a concave radius.
- a longitudinally extending opening 80 is provided in center section 74 to enable base guide 62 to extend partially through the former.
- former 70 reciprocates within a trough 72 shaped into base guide 62.
- the distal edge of former opening 80 contacts the proximal end of base guide trough 72 during staple deployment to provide a proximal stop for the retracting former 70 (as shown in FIG. 9).
- the proximal edge of former opening 80 contacts the proximal end of base guide 62 to provide a distal stop for the advancing former 70.
- a recessed area 96 is provided near the proximal end of base guide 62 for receiving an anvil base tab, as will be described below.
- An anvil base 82 extends longitudinally along the surface of former 70 on the side opposite base guide 62.
- Former sidewalls 76 provide a track along which the anvil base 82 slides relative to the former 70.
- the distal end of anvil base 82 is forked into a pair of longitudinally extending anvil spring arms 84 having an inward bias, whereby the gap between the anvil arms is smaller at the distal end of the arms than at the forking point.
- Each of the arms 84 terminates in an upwardly curved, staple holding anvil 86.
- Anvils 86 extend substantially perpendicular to the longitudinal length of arms 84.
- each anvil 86 preferably has a radius formed therein (not shown), and is rounded about the outer edge and angled distally inward towards the longitudinal centerline of the anvil.
- the radius formed on the proximal face of each anvil 86 helps to securely hold the staple in place during the deployment process.
- An anvil boss 90 is attached to each anvil arm 84 adjacent to the anvil 86.
- the anvil boss 90 is attached to each anvil arm 84, but proximal to the anvil 86.
- Anvil bosses 90 project towards each other into the gap between the arms 84.
- the proximal face of each anvil boss 90 is preferably angled distally inward towards the longitudinal centerline of the anvil.
- an anvil arm stop 92 extends upward from the surface of former 70 adjacent the distal former end. Arm stop 92 is centered between sidewalls 76 to project upward into the gap between the anvil arms 84 during or before former 70 advances to close a staple 10 during the deployment sequence. In a preferred embodiment, arm stop 92 provides a support to maintain anvil arms 84 in an outward, spread position as the former 70 advances to close a staple 10 during the deployment sequence.
- FIG. 12B shows an alternative embodiment wherein arm stop 92 has a narrow distal edge 93 that increases in width in the proximal direction.
- Narrow edge 93 is sized to freely pass between anvil bosses 90 as former 70 is advanced and then deflects anvil arms 84 in an outward, spread position as the former 70 advances further. Arm stop 92 then again provides a support to maintain anvil arms 84 in an outward, spread position as the former 70 advances to close a staple 10 during the deployment sequence.
- anvil bosses 90 may be adjacent to anvils 86, or may be proximal to anvils 86 while attached to each anvil arm 84.
- the proximal end of anvil base 82 is bent downward to form a tab 94.
- Anvil base tab 94 passes through former opening 80 and into the recess 96 in base guide 62.
- a spring 100 is attached to the proximal face of anvil base tab 94 and extends between the tab and the proximal edge of recess 96 to bias the anvil base into a retracted, proximal position (as shown in FIG. 8).
- An anvil peg 102 projects upward from the longitudinal surface of anvil base 82.
- Anvil peg 102 serves to advance anvil base 82 in conjunction with the other moving components of the staple deploying assembly during the deployment sequence, as will be described in more detail below.
- a spreader 110 extends longitudinally through the length of housing 50. Spreader 110 is sized to slide between former sidewalls 76 along the upper surface of anvil base 82. As shown in FIG.
- the distal end of spreader 110 is inwardly angled, as indicated at 112, towards a center apex 114.
- the distal spreader end 112 and apex 114 include an inward radius to aid in holding the staple legs 14, 16 and base segment 12 against the spreader 110 as the staple is opened during the deployment sequence. While the radius may be located on the center of distal spreader end 112, in a preferred embodiment, the center of the radius is offset from the center of the end 112 in the direction of anvil base 82 to aid in staple retention.
- a staple retaining hook 120 is attached to the lower surface of spreader 110 and extends forward of apex 114 a distance slightly greater than the diameter of a staple 10.
- Hook 120 can aid in retaining the base segment 12 of a staple 10 at the distal end of spreader 110 as the staple is opened and formed during deployment. Hook 120 helps eject the deformed staple as spreader 110 is retracted at the conclusion of the deployment cycle. This is described in greater detail below.
- a slot 122 is formed in spreader 110 above anvil peg 102. Slot 122 has a length that is substantially equal to the distance of relative movement between the anvil base 82 and spreader 110. Anvil peg 102 moves from the distal end of slot 122 to the proximal end of the slot as spreader 110 is advanced distally during the initial stages of the deployment sequence.
- a channel 123 is formed between spreader 110 and staple guide 60 for a longitudinally extending magazine stack 124 of staples 10.
- Staples 10 are conveyed within stack 124 to the open distal end 52 of the stapler prior to deployment.
- each of the staples 10 is oriented such that the abutting end segments 20, 22 of the staple are positioned nearest the open stapler end 52.
- the base segment 12 of the distal-most staple abuts the end segments 20, 22 of the second staple, the base segment of the second staple abuts the end segments of the third staple, and so forth through the length of the stack 124.
- each staple 10 is aligned substantially parallel to and in contact with the walls of staple guide 60 to maintain the forward orientation of the staples.
- a plurality of staples 10 can be included within the magazine stack 124, with the preferred stapler embodiment capable of holding 20 or more staples.
- a staple pusher 130 is located at the proximal end of the magazine stack 124 for advancing the stack through channel 123, towards the distal end of housing 50.
- a staple advancing spring 132 is located between staple pusher 130 and a fixed spring stop 134 for biasing the staple pusher distally.
- Spring stop 134 includes a radial opening 136 for receiving rotating knob pin 56, to enable the staple advancing assembly to rotate with knob 54.
- a shoe 140 is provided between spreader 110 and staple guide 60, adjacent the distal end of the guide.
- Shoe 140 individually indexes staples 10 from stack 124.
- Shoe 140 moves the staples 10 from stack 124 (residing within channel 123) into a staging position within a second discharge channel 125, as shown in FIG. 16.
- a load spring 142 is connected between shoe 140 and staple guide 60. Load spring 142 biases shoe 140 downward, away from staple guide 60 and towards anvil arms 84 and spreader 110.
- Second channel 125 includes the area between shoe 140 (in a downward state) and anvil arms 84, with anvils 86 residing within the channel. As shown in greater detail in FIG.
- shoe 140 includes a pair of downwardly extending side rails 144.
- Side rails 144 are spaced apart a distance substantially equal to the distance between staple legs 14, 16 when staple 10 is in the initial loop shape. Between side rails 144, the body of shoe 140 is recessed upward to enable anvils 86 to pass between the side rails during staple deployment.
- the distal and proximal end faces of shoe 140 are beveled, as indicated by reference numeral 146, leading to side rails 144. When biased downward, the beveled shoe ends 146 extend across the path of spreader 110.
- shoe 140 is just distal of the staple stack
- FIG. 17 shows in greater detail a staged staple 10 held by anvils 86.
- shoe 140 provides a distal stop for the staple stack 124, which is biased distally by staple pusher 130.
- spreader 110 moves distally through discharge channel
- the remaining staple stack 124 advances distally one staple length within channel 123.
- shoe 140 pushes the staple downward into the discharge channel 125, and onto the retracting anvils 86, thereby staging the staple for the next deployment sequence.
- FIGS. 18 and 19 show the proximal end of stapler 40 including handle 42.
- Handle 42 comprises a housing 148 formed in sections which are joined together during the manufacturing process by any of a number of suitable means known in the art.
- rotating knob 54 is connected at the distal end of handle housing 148 for rotation relative to the handle.
- Fastener housing 50 extends proximally into the bore of rotating knob 54, with the housing end abutting against a stepped edge in the bore.
- rotating knob 54, staple pusher spring stop 134 and fastener housing 50 are rotated 90° relative to the other components to show the interior of the knob bore.
- former 70 extends through the open end of fastener housing 50 and into handle housing 148. Within handle housing 148, the former end is fixed to the distal end of a cylindrical, former bushing 150 by a screw 152 or other attachment means.
- a former spring 154 encircles former 70 and contacts the distal face of former bushing 150 for biasing the bushing into a proximal, retracted position.
- Spreader 110 extends through former spring 154 and former bushing 150 and is attached at the proximal end to a spreader driver 160 by a screw 162 or other attachment means.
- a spreader spring 164 encircles spreader 110 distal of driver 160.
- a spring guide 166 extends through spreader spring 164 for orienting the spring about the inner circumference of former bushing 150. As shown in FIG. 18, spreader spring 164 extends between a stepped edge inside former bushing 150 and spreader driver 160 to bias the driver into a proximal, retracted position.
- a locking member 170 engages the proximal ends of former bushing 150 and spreader driver 160.
- a pivot pin 172 extends from both sides of locking member 170 to pivotably connect the locking member between the sides of handle housing 148. Pin 172 enables locking member 170 to pivot up and down within the handle housing 148.
- a lock spring 174 biases locking member 170 downward to move the distal tip of the locking member to the proximal end of spreader driver 160 as the spreader driver is advanced distally.
- a toggle button 176 extends from locking member 170 through an opening in the proximal end of handle housing 148. Button 176 enables manual resetting of locking member 170 at any time following staple opening.
- Actuator assembly 46 includes a primary firing trigger 180 and a secondary firing trigger 182.
- Primary trigger 180 has a channel-shaped frame that opens proximally.
- Secondary trigger 182 also has a channel-shaped frame that is oriented to open distally. Secondary trigger 182 is sized to fit within the primary trigger 180 through the proximal open side of the trigger frame. The upper ends of primary trigger 180 and secondary trigger 182 are rounded and extend into handle housing 148. As shown in FIG.
- the upper end of the secondary trigger 182 is initially positioned against the proximal end face of spreader driver 160, while the upper end of primary trigger 180 is positioned to the sides of the secondary trigger end, and aligned to contact the proximal end face of former bushing 150 when the upper trigger end is pivoted distally.
- a pivot pin 184 extends between the sides of handle housing 148 and through the primary and secondary triggers 180, 182, to connect the actuator assembly to the handle.
- Primary and secondary triggers 180, 182 pivot about pin 184 relative to the housing 148.
- pivot pin 184 also extends through the first end of a leaf spring 190 to attach the spring to the triggers 180, 182.
- Leaf spring 190 is located between the channel walls of secondary trigger 182.
- leaf spring 190 is lodged against the inner, proximal side of primary trigger 180 (as shown in FIG. 18).
- the curved surface of leaf spring 190 transfers the squeezing force on the primary trigger to the secondary trigger 182 to pivot both triggers about pin 184 and, thereby, rotate the upper ends of the triggers distally within handle housing 148.
- stapler 40 is inserted through a small diameter trocar port or endoscope to reach the desired tissue area inside a body cavity.
- stapler end 52 is placed adjacent the tissue or tissue fold to be stapled, with rotating knob 54 being turned as necessary to position the staple prongs 26.
- primary trigger 180 When stapler 40 is appropriately aligned, primary trigger 180 is manually squeezed in the direction of pistol grip 44 to initiate staple deployment.
- the upper lobes of secondary trigger 182 contact the proximal end of spreader driver 160, while the upper lobes of primary trigger 180 are spaced proximally from the end of former bushing 150 by a dwell gap, indicated by reference numeral 200.
- the dwell gap 200 allows spreader 110 and anvil base 82 to be advanced by secondary trigger 182 prior to the advancement of former 70 by primary trigger 180.
- spreader 110 is in a proximal-most position, in which spreader hook 120 is just distal of the base segment of the staged staple 10, inside the open end of the stapler.
- Anvil base 82 is held in a retracted position by the placement of anvil peg 102 at the distal end of spreader slot 122.
- Anvils 86 extend up into the folded, staged staple 10.
- Former 70 is also in a proximal-most position, in which the distal edge of the former opening 80 abuts the proximal end of base guide trough 72.
- the trigger pivots about pin 184, as shown in FIG. 21, in turn pivoting secondary trigger 182 through the interaction of leaf spring 190.
- the upper lobes of the trigger apply pressure against spreader driver 160 to push the driver and, in turn spreader 110, distally within the stapler.
- Spreader driver 160 moves when the squeezing force on the actuator assembly exceeds the compression force of spreader spring 164.
- spreader apex 114 engages the staged staple 10 and moves the staple distally within discharge channel 125, and through the open end 52 of the stapler.
- anvil peg 102 As spreader 110 moves distally, anvil peg 102 is released within slot 122, allowing anvil base 82 to also move distally under the force of anvil base spring 100, as shown in FIG. 24. As anvils 86 and the staged staple 10 progress through the distal stapler opening, the anvils remain inwardly biased, and move within the staple from adjacent the end segments 20, 22 (as shown in FIG. 22), to the intersection between the staple legs 14, 16 and base segment 12 (as shown in FIGS. 25 and 26).
- anvil base tab 94 bottoms out against the distal end of base guide recess 96, stopping further distal movement of the anvils.
- anvil base 82 reaches its fully distal position, as shown in FIG. 27, the base segment of staple 10 is firmly held between the concave face of spreader apex 114 and the concave proximal face of anvils 86.
- secondary trigger 182 continues advancing spreader 110 relative to the anvil base, as spreader slot 122 slides past anvil peg 102.
- spreader apex 114 moves between anvils 86, pushing the anvils outward against the staple.
- Anvils 86 push against the inside edges of staple 10 at the intersections between staple legs 14, 16 and base segment 12, thereby rigidly holding the staple in position on the anvils.
- the distally directed force of spreader apex 114 drives anvil arms 84 out laterally, as indicated by arrows 204.
- staple legs 14, 16 are pulled open by the force of spreader apex 114 against the fixed staple back span.
- staple legs 14, 16 bend back against the distal ends of former sidewalls 76.
- the angle at which staple legs 14, 16 bend open against former 70 can vary, from approximately normal to the direction of the spreader force, as indicated by line 206, to the angle of the spreader tip, as indicated by line 208.
- the bend angle varies depending upon the position of the former 70 as the staple is expanded open.
- the open angle of prongs 26 also varies, as indicated at 209.
- open angle 209 is approximately zero degrees. In an alternative embodiment, open angle 209 is greater than zero degrees.
- Staple 10 bends open at two points along base segment 12, with both points occurring opposite the proximal faces of anvils 86, just inside of the intersections between the base segment and staple legs 14, 16.
- staple 10 expands open from its initial closed-form shape, prong tips 26 move from an inward, overlapping position to the open, spread position described above, producing an increased width dimension in the staple.
- the substantial increase in width between the closed, folded staple condition and the open, expanded staple condition enables the staple to obtain a substantial tissue purchase while utilizing a small diameter delivery shaft.
- staple legs 14, 16 expand open, the legs engage the radii at the distal ends of former sidewalls 76.
- the staple can be expanded and former 70 advanced to engage the staple.
- the sidewall radii serve to further laterally stabilize the expanded staple, so that the staple is held fixed between the sidewalls, anvils 86, and spreader apex 114. With staple 10 fully expanded and stabilized, and prongs 26 facing distally, the staple can be pushed forward by stapler 40 to pierce the intended tissue or material.
- locking member 170 and spreader driver 160 holds spreader 110 in the distal position, with the expanded staple exposed out the open end of the stapler.
- the engagement of locking member 170 with spreader driver 160 provides a pause in the deployment sequence for insertion of the expanded staple into tissue while allowing pressure on the primary trigger 180 to be relaxed.
- the movement of locking member 170 against spreader driver 160 can produce audible or tactile feedback informing the surgeon that the staple is expanded and ready for tissue insertion. Additional tactile feedback is also provided through an increase in squeezing resistance from the locked secondary trigger 182 and leaf spring 190.
- anvil stop 92 locks anvil arms 84 in the outward position, and prevents the arms from retracting inward as the staple is formed around the anvils.
- former sidewalls 76 push against expanded staple legs 14, 16, forcing the legs to bend distally about the fixed anvils 86.
- prongs 26 are drawn back inward, grabbing onto the tissue in the spread between the prongs.
- end segments 20, 22 traverse an arc through the tissue, drawing the tissue into the closing staple.
- the overbending of the staple during formation will typically be less than 10°, but is dependent on the materials characteristics of the staple.
- former 70 retracts following staple formation, the staple springs back to a closed, substantially rectangular configuration in which the staple legs are again substantially parallel.
- the interference fit between the former and staple legs thus "stretches" staple 10 as the stapler is being closed, to produce a substantially rectangular, finished shape.
- the width of the staple is greater than the previous, undeployed width, due to the different bending points along the staple length. This change in staple width enables the staple to have a low profile during delivery and a larger profile when formed through tissue.
- staple former 70 reaches its distal-most position, at which the former bottoms out against the proximal end of base guide 62.
- staple 10 is fully formed through the tissue (not shown), and further squeezing of the trigger assembly is prevented.
- former 70 contains indentations 95 with a setting radius 97 as shown in FIG 12B.
- the primary function and motions of former 70 depicted in FIG. 12B are similar to that of the former depicted in 12A with one notable exception.
- setting radii 97 impact staple 10 plastically deforming the outer edges of the intersection between base 12 and staple legs 14, 16. This deformation relieves tension in the outer portion of the staple material in these regions and helps reduce or eliminates the need for overbending helping to eliminate micro fractures that may occur.
- spreader apex 114 moves out from between anvils 86, enabling anvil arms 84 to pull back inward, disengaging the anvils from the inside edges of the formed staple.
- spreader hook 120 flips the back span of the formed staple from the anvils, thereby ejecting the staple from the stapler.
- the retracting differential between the spreader 110 and anvil base 82 enables the spreader hook 120 to release and eject the formed staple prior to the proximal movement of the anvil base.
- FIG. 40 is a diagrammatic view of a patient during a GVR procedure, in which a fold is formed in the wall of the gastric cavity.
- a flexible endoscope 210 may be passed transesophageally into the interior of the gastric cavity 212 to provide insufflation, illumination, and/or visualization of the cavity.
- Gastric cavity 212 can be insufflated through endoscope 210 to create a more rigid working surface. Insufflation of the gastric cavity also allows the boundaries of the cavity and the desired location for a fold to be mapped out by external palpation of the abdomen.
- the GVR procedure can be performed solely laparoscopically, using a plurality of trocar ports inserted into the abdominal wall to provide access to the peritoneal cavity.
- a bougie may be introduced into the gastric cavity to ensure there is no obstruction of the lumen at the completion of the procedure.
- a trocar port is inserted through an incision in the abdominal wall.
- Stapler 40 of the present invention is passed through the trocar and into the peritoneal cavity.
- other instruments including, for example, cameras and retractors (not shown), may be inserted through the abdominal wall or other access means (e.g., transgastric, transvaginal, etc.) as necessary to facilitate the GVR procedure.
- Multiple trocars may be used to accomplish this aim; however, in an alternative embodiment a single trocar with multiple ports may be placed to facilitate this procedure. In a preferred embodiment, the single trocar with multiple ports is place in the vicinity of the umbilicus of the patient.
- stapler 40 With stapler 40 inside the cavity, pressure is applied to actuator assembly 46 to advance a staple 10 outside the open end of the stapler. Staple legs 14, 16 are expanded open outside the stapler, so that prongs 26 face forward towards the cavity wall. With staple legs 14, 16 open, stapler 40 can be manipulated to grab sections of the cavity wall 214 with prongs 26 as shown in FIG. 41A. As stated above, prongs 26 may have features facilitating secure grasping of tissue. As the staple prongs grab onto separate wall sections, the sections are drawn together, as shown in FIG. 41B, to appose the serosal tissue between the staple legs. As the sections are drawn together, the tissue involutes inward into cavity 212 forming a fold 216.
- FIG. 42 depicts staple 10 as only partially penetrating the gastric wall, it will be recognized that the staple could also penetrate the entire wall thickness of the gastric cavity.
- treatments to promote healing may be applied to the surface (e.g., serosal surface of the stomach, etc.) to be infolded that promote beneficial outcomes (e.g., healing of apposed surfaces, integration of a tissue surface to prosthetic surface, reduced short term edema in the fold, etc.) as well as tissue treatment in the vicinity of the staple (i.e. injecting polymethlymethacrelate commonly known as PMMA, etc.) to increase the strength of the tissue local to the fastener.
- stapler 40 is preferably moved to a second location on the cavity wall along the intended fold line.
- Additional staples are preferably deployed along the cavity wall to extend the length of the fold.
- the trocars may be flexed within the abdominal wall, or removed and repositioned within the abdominal wall as necessary, in order to reach all of the desired staple locations.
- the number of staples used to form a fold will depend upon the desired length for the fold, and the desired spacing between the staples.
- staples 10 are evenly spaced apart along the length of the fold line.
- staple legs 14, 16 are preferably evenly spaced apart across the fold line, so that a uniform tissue fold is formed without distortion or bunching.
- Housing 50 may be rotated (or flexed) as needed in order to align the staple prongs on opposite sides of the tissue fold.
- stapler 40 may be used to form a large fold apposing the greater curvature of the stomach to the lesser curvature thereby completely infolding the anterior surface of the stomach.
- the greater curvature of the stomach is freed from its attachments (e.g., short gastric arteries, omentum, etc.) and is infolded by apposing the anterior and posterior walls about the greater curvature of the gastric cavity.
- tissue graspers 220, 222 may be inserted into the peritoneal cavity and used to draw spaced sections of the cavity wall 214 together to form a fold 216. With graspers 220, 222 holding the two tissue sections together, the distal end of stapler 40 is pressed against the approximated tissue to bridge the crease between the sections. Laparoscopic visualization may be used to determine the correct stapler location along the tissue crease. After the proper insertion location is determined, actuator assembly 46 is depressed to expose and expand a staple 10 outside of the stapler as shown.
- the cavity wall 214 is punctured on opposite sides of the fold 216 by prong tips 26.
- Primary trigger 180 is then depressed further to close and form staple 10 through the tissue held between the prongs.
- graspers 220, 222 are moved to a second location on the cavity wall along the intended fold line. At this second location, the graspers are again used to draw different sections of tissue together to involute the tissue into cavity 212. With graspers 220, 222 holding the tissue sections together, stapler 40 is again placed across the crease between the sections, and assembly 46 actuated to expose and expand staple 10 outside the open distal end of the stapler.
- additional pressure is applied to the actuator assembly to close and form the staple through the tissue.
- additional staples may be deployed along the cavity wall to extend the fold to the desired length.
- the trocars may be flexed within the abdominal wall, or removed and repositioned within the abdominal wall as necessary, in order to reach all of the desired staple locations.
- a second row of staples can be deployed above the first row in order to increase the depth of the fold. Additional details regarding the GVR procedure are described in co-pending U.S. Patent Application Serial Numbers 11/779314 and 11/779322, which have been previously incorporated herein by reference in their entirety.
- FIG. 44 depicts an exemplary tissue grasping device 250 which can be added on to stapler 40 to combine the stapler and tissue grasping members into a single instrument. Combining tissue graspers with the stapler 40 in a single instrument can reduce the number of required trocars, as well as the need to adjust and control separate instruments during a procedure.
- the tissue grasping device 250 comprises a cylindrical sleeve 252 having a longitudinally extending bore that is open at both sleeve ends. The sleeve bore is sized to accommodate fastener housing 50, so that the housing can be slid through the sleeve from the proximal to distal ends.
- Sleeve 252 When fully inserted into sleeve 252, the open distal end of stapler 40 protrudes just beyond the distal sleeve opening.
- Sleeve 252 also includes longitudinal openings for reciprocally retaining tissue grasping wires.
- a pair of grasping wires 260 is retained within sleeve 252.
- Grasping wires 260 extend longitudinally through sleeve 252, with the distal ends of the wires projecting outside the sleeve opening.
- a tissue hook 264 is provided on the distal end of each wire 260 for gripping and holding tissue.
- hooks 264 extend at a proximal angle from the underside of wires 260 to aid in drawing the gripped tissue towards the open stapler end.
- a pull lever 270 is connected to the proximal end of each wire 260 for manipulating the position of the wire.
- a slot 274 is formed in the outer periphery of sleeve 252 for each of the wires 260. Levers 270 project from wires 260 through slots 274 to enable the wires to be easily manipulated through the sleeve.
- wires 260 can be individually drawn back and forth within slots 274 to advance or retract the distal wire ends.
- levers 270 can be rotated up to 90° within slots 274 in order to rotate the distal tips of wires 260. It will be appreciated by one skilled in the art that a wider range of rotation is possible however.
- Levers 270 can be individually pivoted in different directions, from a substantially center, 12 o'clock position, to lateral positions at 3 o'clock and 9 o'clock.
- grasping hooks 264 are drawn back adjacent the open end of sleeve 252.
- the hooked tips of wires 260 advance out the distal end of the device.
- Wires 260 are preferably elastic material stainless steel with a prebent shape which enables the wires to expand apart outside of sleeve 252, yet be retractable back together within the sleeve without taking a permanent set. Material geometry and properties (e.g., yield strength, etc.) Super elastic or shape memory materials such as nitinol may also be used. Wires 260 include a slight outward bend proximal of hooks 264 that produces an outward bias in the wires. The outward bias enables the distal ends of the wires 260 to expand apart as the wires are pushed out of sleeve 252.
- wires 260 expand outward, downwardly extending hooks 264 grab onto spaced sections of tissue, such as the cavity wall 214 shown in FIGS. 46-47, as the wires are moved along the surface of the wall. With the tissue sections held by hooks 264, the distal ends of wires 260 can be drawn together to appose the tissue by either rotating the wires downward, retracting the wires back into sleeve 252, or a combination of the two. The distal ends of wires 260 are rotated downward by individually pivoting levers 270 from a center to a side position.
- levers 270 pivot downward, the ends of the wires are drawn together. As the ends of wires 260 are brought together, the tissue sections gripped by hooks 264 are also drawn together to create a fold 216 between the sections. In addition to pivoting, levers 270 can be drawn proximally within slots 274, as shown in FIG. 48, to draw the gripped tissue sections into a fold against the open end of stapler 40. Once the folded tissue has been pulled by wires 260 against the distal end of stapler 40, as shown in FIG. 49, actuator assembly 46 is squeezed to advance a staple 10 towards the tissue. With the staple advanced out the open end of stapler 40, the staple placement can be adjusted relative to the crease between the tissue sections. Once the correct staple placement is obtained, trigger 180 is fully actuated to form the staple through the tissue.
- the staple 10 is formed through the tissue, the staple is ejected from stapler 40 by first releasing actuator assembly 46 and then locking member 170. After the staple is ejected, device 250 can be moved to a new location and grasping wires 260 again advanced out from the device to grab additional sections of tissue. These additional sections of tissue can be stapled together to increase the length and depth of the fold, as described above.
- FIG. 50 shows an exemplary modification to rotating knob 54 for connecting tissue grasping device 250 to stapler 40.
- a taper lock wedge 280 is provided on the distal end of rotating knob 54.
- Wedge 280 is insertable into a corresponding notch 282 formed into the proximal end of sleeve 252.
- Notch 282 and wedge 280 have complementary tapered sides to enable the parts to be slid together. Once connected, the tapered sides of wedge 280 and notch 282 resist separation other than from a proximal pulling force along the longitudinal axis of the stapler.
- the taper lock connection permits tissue grasping device 250 and stapler 40 to be attached or detached as necessary, yet maintains a secure connection between the two devices during use.
- alternative types of connectors can also be used for attaching tissue grasping device 250 to stapler 40 without departing from the scope of the invention.
- tissue defect such as an inguinal hernia
- inguinal hernia located in inguinal tissue such as the inguinal floor.
- An inguinal hernia is a condition where a small loop of bowel or intestine protrudes through a weak place or defect within the lower abdominal muscle wall or groin of a patient. With this condition, the patient can be left with an unsightly bulge of intestinal tissue protruding through the defect, pain, reduced lifting abilities, and in some cases, impaction of the bowel, or possibly other complications if the flow of blood is cut off to the protruding tissue.
- US Patent Nos As disclosed in greater detail in commonly assigned US Patent Nos.
- an inguinal hernia repair can involve closure of the defect with sutures or fasteners, but generally involves placing a surgical prosthetic, such as a mesh patch, over the open defect and attaching the patch to the inguinal floor.
- a surgical prosthetic such as a mesh patch
- the mesh patch has been attached with suture or surgical fasteners.
- Stapler 40 of the present invention provides an alternative method for attaching the mesh patch to the inguinal floor. Using stapler 40, the patch can be affixed through a smaller (5 mm) access port than is possible when using suture or traditional types of surgical fasteners.
- the stapler is advanced into the lower abdomen to place the distal stapler end in the area of the hernia defect.
- the trigger assembly is actuated to advance a staple 10 outside the open end of the stapler, with prongs facing forward, as shown in FIG. 28.
- the staple With staple 10 exposed outside of stapler 40, the staple can be used to probe the tissue to determine the appropriate tacking point. Probing with the staple prongs prior to tacking down the mesh patch enables the surgeon to better detect ligaments, as opposed to the surrounding bone, so that the staple accurately penetrates the desired tissue and/or ligaments.
- stapler 40 is manipulated to place prongs 26 through or into openings in the prosthetic mesh.
- open angle 209 is approximately zero degrees to facilitate piercing of prosthetic tissues.
- a further application of the stapler of the present invention is the reinforcement of a staple line in a gastric restructuring procedure.
- a gastric restructuring procedure in which staple line reinforcement would be advantageous is vertical sleeve gastrectomy.
- the stomach is divided and simultaneously stapled shut so that the left side or greater curvature of the stomach is surgically removed.
- the staple line runs the length of the stomach generally starting approximately 4cm proximal from the pylorus and running to the Angle of His, resulting in a "new" tubular stomach that is roughly the size and shape of a banana.
- the stapler and staples of the present invention can be used to reinforce the staple line of the newly formed stomach by infolding the staple line in a similar manner resulting in a serosa-to-serosa tissue bond.
- stapler 40 can be used to draw tissue on opposite sides of the staple line together and invaginate the staple line therebetween.
- the stapler With a staple 10 advanced out the open end of stapler 40, the stapler can be manipulated to grab separate sections of the serosal tissue on opposite sides of the staple line 290 and pull the sections together.
- the stapler With the tissue sections pulled together by staple 10, the stapler is fully actuated to form the staple through the tissue, as shown in FIG. 52.
- the stapler can be moved to a second location along the gastrectomy or other gastric staple line to extend the length of the invaginated tissue. The stapling process can be repeated along the full length of the gastrectomy staple line to reinforce the entire line.
- the present invention also pertains to the closure of defects on or within the body through secure tissue apposition.
- a non-limiting list of examples includes closure of gastrotomies, mesenteric defects during Roux-En-Y gastric bypass (RYGB), etc.
- the present invention also pertains to the reinforcement of fastened tissues through imbrication of the fastened region secured with the low profile stapler. Discussed in detail above is the example of staple line reinforcement during vertical sleeve gastrectomy.
- a non-limiting list of other opportunities for fastener reinforcement includes RYGB, Billroth I and II, gasgtrogastric anastomosis, gastrojejunostomy anastomosis, and jejunojenostomy anastomosis.
- the present invention also pertains to the temporary or permanent apposition of tissues during procedures such as the management of the roux limb during RYGB, hiatal hernia repair, bladder neck suspension, securement of gastric-gastric wraps during gastric banding, and Nissen fundoplication.
- the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure.
- reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present invention.
- the invention described herein will be processed before surgery.
- a new or used instrument is obtained and if necessary cleaned.
- the instrument can then be sterilized.
- the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag.
- the container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, ethylene oxide (EtO) gas, or high-energy electrons.
- the radiation kills bacteria on the instrument and in the container.
- the sterilized instrument can then be stored in the sterile container.
- the sealed container keeps the instrument sterile until it is opened in the medical facility.
- the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI1006993A BRPI1006993A2 (en) | 2009-01-26 | 2010-01-25 | surgical stapler to apply a large staple through a small application port and method of using the stapler to attach a fold of fabric. |
EP10702569A EP2398400A1 (en) | 2009-01-26 | 2010-01-25 | A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
AU2010206639A AU2010206639A1 (en) | 2009-01-26 | 2010-01-25 | A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
JP2011548175A JP5575808B2 (en) | 2009-01-26 | 2010-01-25 | Surgical stapler for applying large staples through a small delivery port and method of securing tissue folds using a surgical stapler |
CA2750624A CA2750624A1 (en) | 2009-01-26 | 2010-01-25 | A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
CN2010800055786A CN102292035B (en) | 2009-01-26 | 2010-01-25 | A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/359,351 US20100191262A1 (en) | 2009-01-26 | 2009-01-26 | Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold |
US12/359,351 | 2009-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010085725A1 true WO2010085725A1 (en) | 2010-07-29 |
Family
ID=42125947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/021929 WO2010085725A1 (en) | 2009-01-26 | 2010-01-25 | A surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold |
Country Status (8)
Country | Link |
---|---|
US (1) | US20100191262A1 (en) |
EP (1) | EP2398400A1 (en) |
JP (1) | JP5575808B2 (en) |
CN (1) | CN102292035B (en) |
AU (1) | AU2010206639A1 (en) |
BR (1) | BRPI1006993A2 (en) |
CA (1) | CA2750624A1 (en) |
WO (1) | WO2010085725A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013000602A (en) * | 2011-06-21 | 2013-01-07 | Ethicon Endo Surgery Inc | Surgical fastener having safety mechanism |
JP2013000600A (en) * | 2011-06-21 | 2013-01-07 | Ethicon Endo Surgery Inc | Surgical fastener for applying large staple through small delivery port |
CN103932748A (en) * | 2014-05-13 | 2014-07-23 | 吴伟 | Medical suture clip |
US9980716B2 (en) | 2012-03-21 | 2018-05-29 | Ethicon Llc | Methods and devices for creating tissue plications |
US10779819B2 (en) | 2009-01-26 | 2020-09-22 | Ethicon Endo-Surgery, Inc. | Surgical device with tandem fasteners |
US10881400B2 (en) | 2016-11-18 | 2021-01-05 | Olympus Corporation | Medical stapler system |
Families Citing this family (449)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US8365976B2 (en) | 2006-09-29 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8632535B2 (en) | 2007-01-10 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US8827133B2 (en) | 2007-01-11 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling device having supports for a flexible drive mechanism |
US8979872B2 (en) | 2007-03-13 | 2015-03-17 | Longevity Surgical, Inc. | Devices for engaging, approximating and fastening tissue |
US8500777B2 (en) | 2007-03-13 | 2013-08-06 | Longevity Surgical, Inc. | Methods for approximation and fastening of soft tissue |
EP2129301A4 (en) | 2007-03-13 | 2015-03-25 | Peter S Harris | Methods and devices for reducing gastric volume |
US7604151B2 (en) | 2007-03-15 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US11857181B2 (en) | 2007-06-04 | 2024-01-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
BRPI0901282A2 (en) | 2008-02-14 | 2009-11-17 | Ethicon Endo Surgery Inc | surgical cutting and fixation instrument with rf electrodes |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US9585657B2 (en) | 2008-02-15 | 2017-03-07 | Ethicon Endo-Surgery, Llc | Actuator for releasing a layer of material from a surgical end effector |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
CA2751664A1 (en) | 2009-02-06 | 2010-08-12 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
US9192377B1 (en) | 2009-06-02 | 2015-11-24 | Cardica, Inc. | Work hardening of staples within surgical stapler |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9700317B2 (en) | 2010-09-30 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a releasable tissue thickness compensator |
US8857694B2 (en) | 2010-09-30 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Staple cartridge loading assembly |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
BR112013027794B1 (en) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE SET |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9474526B2 (en) | 2011-09-09 | 2016-10-25 | Boston Scientific Scimed, Inc. | Tissue anchor with insertion device |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
RU2644272C2 (en) | 2012-03-28 | 2018-02-08 | Этикон Эндо-Серджери, Инк. | Limitation node with tissue thickness compensator |
JP6105041B2 (en) | 2012-03-28 | 2017-03-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Tissue thickness compensator containing capsules defining a low pressure environment |
BR112014024102B1 (en) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
RU2636861C2 (en) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Blocking of empty cassette with clips |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
BR112015021082B1 (en) | 2013-03-01 | 2022-05-10 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10624634B2 (en) | 2013-08-23 | 2020-04-21 | Ethicon Llc | Firing trigger lockout arrangements for surgical instruments |
JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
US11051814B2 (en) | 2013-09-16 | 2021-07-06 | Oregon Health & Science University | Bioabsorbable clips and applicator for tissue closure |
US9539005B2 (en) * | 2013-11-08 | 2017-01-10 | C.R. Bard, Inc. | Surgical fastener deployment system |
US20150173749A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical staples and staple cartridges |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
CN106028963B (en) * | 2013-12-23 | 2019-04-05 | 伊西康内外科有限责任公司 | Surgical staples and nail bin |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
JP6462004B2 (en) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | Fastening system with launcher lockout |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US9750499B2 (en) | 2014-03-26 | 2017-09-05 | Ethicon Llc | Surgical stapling instrument system |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US10405958B2 (en) | 2014-04-04 | 2019-09-10 | Boston Scientific Scimed, Inc. | Devices and methods for fixation of bodily implants |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
BR112016023807B1 (en) | 2014-04-16 | 2022-07-12 | Ethicon Endo-Surgery, Llc | CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10561422B2 (en) | 2014-04-16 | 2020-02-18 | Ethicon Llc | Fastener cartridge comprising deployable tissue engaging members |
JP6612256B2 (en) * | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
BR112017009196B1 (en) * | 2014-11-03 | 2021-12-14 | Oregon Health & Science University | SURGICAL CLIP, SET OF SURGICAL CLIPS FOR ONE SURGICAL CLIP APPLICATOR, AND SURGICAL CLIP APPLICATOR |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10245027B2 (en) | 2014-12-18 | 2019-04-02 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
RU2703684C2 (en) | 2014-12-18 | 2019-10-21 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis |
US10182816B2 (en) | 2015-02-27 | 2019-01-22 | Ethicon Llc | Charging system that enables emergency resolutions for charging a battery |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10052044B2 (en) | 2015-03-06 | 2018-08-21 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10433844B2 (en) | 2015-03-31 | 2019-10-08 | Ethicon Llc | Surgical instrument with selectively disengageable threaded drive systems |
US10349941B2 (en) | 2015-05-27 | 2019-07-16 | Covidien Lp | Multi-fire lead screw stapling device |
US10617418B2 (en) | 2015-08-17 | 2020-04-14 | Ethicon Llc | Implantable layers for a surgical instrument |
BR112018003693B1 (en) | 2015-08-26 | 2022-11-22 | Ethicon Llc | SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT |
US10980538B2 (en) | 2015-08-26 | 2021-04-20 | Ethicon Llc | Surgical stapling configurations for curved and circular stapling instruments |
MX2022009705A (en) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue. |
US10357252B2 (en) | 2015-09-02 | 2019-07-23 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples |
MX2022006192A (en) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples. |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10524788B2 (en) | 2015-09-30 | 2020-01-07 | Ethicon Llc | Compressible adjunct with attachment regions |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10159850B2 (en) | 2016-01-06 | 2018-12-25 | Covidien Lp | Brachytherapy clip and applicator |
WO2017122319A1 (en) * | 2016-01-14 | 2017-07-20 | オリンパス株式会社 | Surgical staple |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US20170224332A1 (en) | 2016-02-09 | 2017-08-10 | Ethicon Endo-Surgery, Llc | Surgical instruments with non-symmetrical articulation arrangements |
CN108882932B (en) | 2016-02-09 | 2021-07-23 | 伊西康有限责任公司 | Surgical instrument with asymmetric articulation configuration |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10485542B2 (en) | 2016-04-01 | 2019-11-26 | Ethicon Llc | Surgical stapling instrument comprising multiple lockouts |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10702270B2 (en) | 2016-06-24 | 2020-07-07 | Ethicon Llc | Stapling system for use with wire staples and stamped staples |
CN109310431B (en) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | Staple cartridge comprising wire staples and punch staples |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD822206S1 (en) | 2016-06-24 | 2018-07-03 | Ethicon Llc | Surgical fastener |
US10610224B2 (en) | 2016-12-21 | 2020-04-07 | Ethicon Llc | Lockout arrangements for surgical end effectors and replaceable tool assemblies |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
CN110087565A (en) | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | Surgical stapling system |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US20180168647A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments having end effectors with positive opening features |
US10898186B2 (en) | 2016-12-21 | 2021-01-26 | Ethicon Llc | Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10881401B2 (en) | 2016-12-21 | 2021-01-05 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
US10588631B2 (en) | 2016-12-21 | 2020-03-17 | Ethicon Llc | Surgical instruments with positive jaw opening features |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
JP7086963B2 (en) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | Surgical instrument system with end effector lockout and launch assembly lockout |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10582928B2 (en) | 2016-12-21 | 2020-03-10 | Ethicon Llc | Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10893864B2 (en) | 2016-12-21 | 2021-01-19 | Ethicon | Staple cartridges and arrangements of staples and staple cavities therein |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11364027B2 (en) | 2017-12-21 | 2022-06-21 | Cilag Gmbh International | Surgical instrument comprising speed control |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11925347B2 (en) | 2019-12-13 | 2024-03-12 | Dinesh Vyas | Stapler apparatus and methods for use |
US20230056943A1 (en) * | 2019-12-13 | 2023-02-23 | Dinesh Vyas | Stapler apparatus and methods for use |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11812966B2 (en) | 2020-04-24 | 2023-11-14 | NeuraMedica Inc. | Clips, appliers, and cartridges |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
US11857182B2 (en) | 2020-07-28 | 2024-01-02 | Cilag Gmbh International | Surgical instruments with combination function articulation joint arrangements |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11998209B2 (en) | 2021-08-13 | 2024-06-04 | Cilag Gmbh International | Staple forming features for circular surgical stapler |
US11944310B2 (en) | 2021-08-13 | 2024-04-02 | Cilag Gmbh International | Non-circular end effector features for surgical stapler |
US11911039B2 (en) * | 2021-08-13 | 2024-02-27 | Cilag Gmbh International | Circular surgical stapler having staples with expandable crowns |
US12004744B2 (en) | 2021-09-27 | 2024-06-11 | Cilag Gmbh International | Staple and staple-forming pocket arrangements for surgical staplers |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4874122A (en) * | 1986-07-14 | 1989-10-17 | Minnesota Mining And Manufacturing Company | Bent back box staple and staple closing mechanism with split actuator |
US5350400A (en) * | 1991-10-30 | 1994-09-27 | American Cyanamid Company | Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple |
US5829662A (en) * | 1992-10-09 | 1998-11-03 | Ethicon, Inc. | Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US6551333B2 (en) | 2000-10-19 | 2003-04-22 | Ethicon Endo-Surgery, Inc. | Method for attaching hernia mesh |
US6572626B1 (en) | 2000-10-19 | 2003-06-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a fastener delivery mechanism |
US20050080454A1 (en) * | 2003-10-08 | 2005-04-14 | Drews Michael J. | Attachment device and methods of using the same |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2185518A (en) * | 1938-05-23 | 1940-01-02 | Emanuel R Posnack | Stapling device and method |
US3638847A (en) * | 1970-07-06 | 1972-02-01 | United States Surgical Corp | Ratchet-driven cartridge for surgical instruments |
US3740994A (en) * | 1970-10-13 | 1973-06-26 | Surgical Corp | Three stage medical instrument |
US3819100A (en) * | 1972-09-29 | 1974-06-25 | United States Surgical Corp | Surgical stapling instrument |
US4086926A (en) * | 1976-10-08 | 1978-05-02 | United States Surgical Corporation | Ligating and dividing organic structures |
US4396139A (en) * | 1980-02-15 | 1983-08-02 | Technalytics, Inc. | Surgical stapling system, apparatus and staple |
CA1170536A (en) * | 1980-08-25 | 1984-07-10 | United States Surgical Corporation | Surgical staples |
AU542936B2 (en) * | 1980-10-17 | 1985-03-28 | United States Surgical Corporation | Self centering staple |
DE3204532C2 (en) * | 1982-02-10 | 1983-12-08 | B. Braun Melsungen Ag, 3508 Melsungen | Surgical skin staple |
US4509518A (en) * | 1982-02-17 | 1985-04-09 | United States Surgical Corporation | Apparatus for applying surgical clips |
US4669647A (en) * | 1983-08-26 | 1987-06-02 | Technalytics, Inc. | Surgical stapler |
US4648542A (en) * | 1985-11-01 | 1987-03-10 | Senmed, Inc. | Disposable stapler |
US5158567A (en) * | 1987-09-02 | 1992-10-27 | United States Surgical Corporation | One-piece surgical staple |
FR2629998B1 (en) * | 1988-04-14 | 1990-08-17 | Laboureau Jacques Philippe | SKIN SUTURE SURGICAL STAPLE AND TOOL FOR ITS IMPLEMENTATION |
US5156609A (en) * | 1989-12-26 | 1992-10-20 | Nakao Naomi L | Endoscopic stapling device and method |
US5032127A (en) * | 1990-03-07 | 1991-07-16 | Frazee John G | Hemostatic clip and applicator therefor |
CA2060040A1 (en) * | 1991-02-08 | 1992-08-10 | Miguel A. Velez | Surgical staple and endoscopic stapler |
US5246156A (en) * | 1991-09-12 | 1993-09-21 | Ethicon, Inc. | Multiple fire endoscopic stapling mechanism |
US5242457A (en) * | 1992-05-08 | 1993-09-07 | Ethicon, Inc. | Surgical instrument and staples for applying purse string sutures |
DE4215449C1 (en) * | 1992-05-11 | 1993-09-02 | Ethicon Gmbh & Co Kg, 2000 Norderstedt, De | |
JP3421954B2 (en) * | 1992-12-18 | 2003-06-30 | 株式会社ダイオー | Treatment method for ozone depleting substances |
US5725554A (en) * | 1993-10-08 | 1998-03-10 | Richard-Allan Medical Industries, Inc. | Surgical staple and stapler |
US5465894A (en) * | 1993-12-06 | 1995-11-14 | Ethicon, Inc. | Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft |
US5715987A (en) * | 1994-04-05 | 1998-02-10 | Tracor Incorporated | Constant width, adjustable grip, staple apparatus and method |
US5544802A (en) * | 1994-07-27 | 1996-08-13 | Crainich; Lawrence | Surgical staple and stapler device therefor |
US5626585A (en) * | 1994-09-16 | 1997-05-06 | United States Surgical Corporation | Ligating clip advance |
DE19752331C1 (en) * | 1997-11-26 | 1999-09-30 | Aesculap Ag & Co Kg | Magazine for a surgical clip applier |
US6228098B1 (en) * | 1998-07-10 | 2001-05-08 | General Surgical Innovations, Inc. | Apparatus and method for surgical fastening |
EP1139883B1 (en) * | 1998-12-31 | 2008-11-19 | Kensey Nash Corporation | Tissue fastening devices and delivery means |
US8574243B2 (en) * | 1999-06-25 | 2013-11-05 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
DE19934634C1 (en) * | 1999-07-23 | 2000-12-21 | Aesculap Ag & Co Kg | Surgical clip application instrument has clips in clip magazine fed forwards via reciprocating displacement plate acted on by displacement device at point at least halfway along its length |
US6695854B1 (en) * | 1999-11-29 | 2004-02-24 | General Surgical Innovations, Inc. | Blood vessel clip and applicator |
US6277131B1 (en) * | 2000-02-15 | 2001-08-21 | Microline, Inc | Ladder-type medical clip feeding mechanism |
US6306149B1 (en) * | 2000-02-15 | 2001-10-23 | Microline, Inc. | Medical clip device with cyclical pusher mechanism |
US6767356B2 (en) * | 2000-09-01 | 2004-07-27 | Angiolink Corporation | Advanced wound site management systems and methods |
IES20010547A2 (en) * | 2001-06-07 | 2002-12-11 | Christy Cummins | Surgical Staple |
JP2004534591A (en) * | 2001-07-09 | 2004-11-18 | タイコ ヘルスケア グループ エルピー | Right angle clip applier device and method |
US7179265B2 (en) * | 2001-08-21 | 2007-02-20 | Microline Pentax, Inc. | Reduced diameter clip applying arrangement |
US6957756B2 (en) * | 2002-04-10 | 2005-10-25 | Illinois Tool Works Inc. | Tool with nosepiece for bending fastener upon installation and fastener therefor |
US7059509B2 (en) * | 2002-05-28 | 2006-06-13 | Phillip Clay Brown | Surgical stapling device |
US7056330B2 (en) * | 2002-05-31 | 2006-06-06 | Ethicon Endo-Surgery, Inc. | Method for applying tissue fastener |
US6726705B2 (en) * | 2002-06-25 | 2004-04-27 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
US7112214B2 (en) * | 2002-06-25 | 2006-09-26 | Incisive Surgical, Inc. | Dynamic bioabsorbable fastener for use in wound closure |
US7753870B2 (en) * | 2004-03-26 | 2010-07-13 | Satiety, Inc. | Systems and methods for treating obesity |
US20060020276A1 (en) * | 2004-07-23 | 2006-01-26 | Usgi Medical Inc. | Apparatus and methods for achieving prolonged maintenance of gastrointestinal tissue folds |
US7458978B1 (en) * | 2005-03-28 | 2008-12-02 | Cardica, Inc. | Vascular closure system utilizing a staple |
US7344544B2 (en) * | 2005-03-28 | 2008-03-18 | Cardica, Inc. | Vascular closure system |
US20070185504A1 (en) * | 2005-08-25 | 2007-08-09 | Microline Pentax, Inc. | Medical clip feeding mechanism |
EP1984325A4 (en) * | 2006-02-03 | 2011-08-10 | Univ Ohio State Res Found | Sulfonanilide analogs as selective aromatase modulators |
AU2007269655B2 (en) * | 2006-07-01 | 2012-06-07 | Opus Ksd Inc. | Tissue fasteners and related insertion devices, mechanisms, and methods |
US7473258B2 (en) * | 2007-03-08 | 2009-01-06 | Cardica, Inc. | Surgical stapler |
US7533790B1 (en) * | 2007-03-08 | 2009-05-19 | Cardica, Inc. | Surgical stapler |
EP2129301A4 (en) * | 2007-03-13 | 2015-03-25 | Peter S Harris | Methods and devices for reducing gastric volume |
US8979872B2 (en) * | 2007-03-13 | 2015-03-17 | Longevity Surgical, Inc. | Devices for engaging, approximating and fastening tissue |
US8500777B2 (en) * | 2007-03-13 | 2013-08-06 | Longevity Surgical, Inc. | Methods for approximation and fastening of soft tissue |
US20090112233A1 (en) * | 2007-10-30 | 2009-04-30 | Medtronic Vascular, Inc. | Prosthesis Fixation Apparatus and Methods |
US20100191255A1 (en) * | 2009-01-26 | 2010-07-29 | Lawrence Crainich | Method for Applying A Surgical Staple |
US20100187283A1 (en) * | 2009-01-26 | 2010-07-29 | Lawrence Crainich | Method For Feeding Staples In a Low Profile Surgical Stapler |
-
2009
- 2009-01-26 US US12/359,351 patent/US20100191262A1/en not_active Abandoned
-
2010
- 2010-01-25 AU AU2010206639A patent/AU2010206639A1/en not_active Abandoned
- 2010-01-25 JP JP2011548175A patent/JP5575808B2/en not_active Expired - Fee Related
- 2010-01-25 WO PCT/US2010/021929 patent/WO2010085725A1/en active Application Filing
- 2010-01-25 EP EP10702569A patent/EP2398400A1/en not_active Withdrawn
- 2010-01-25 CN CN2010800055786A patent/CN102292035B/en not_active Expired - Fee Related
- 2010-01-25 BR BRPI1006993A patent/BRPI1006993A2/en not_active IP Right Cessation
- 2010-01-25 CA CA2750624A patent/CA2750624A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4874122A (en) * | 1986-07-14 | 1989-10-17 | Minnesota Mining And Manufacturing Company | Bent back box staple and staple closing mechanism with split actuator |
US5350400A (en) * | 1991-10-30 | 1994-09-27 | American Cyanamid Company | Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple |
US5829662A (en) * | 1992-10-09 | 1998-11-03 | Ethicon, Inc. | Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US6551333B2 (en) | 2000-10-19 | 2003-04-22 | Ethicon Endo-Surgery, Inc. | Method for attaching hernia mesh |
US6572626B1 (en) | 2000-10-19 | 2003-06-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a fastener delivery mechanism |
US20050080454A1 (en) * | 2003-10-08 | 2005-04-14 | Drews Michael J. | Attachment device and methods of using the same |
Non-Patent Citations (2)
Title |
---|
"Forming a 90 deg. Bend", METALFORMING MAGAZINE, August 1991 (1991-08-01), pages 59 - 60 |
"Fractures in Metal Stampings", METALFORMING MAGAZINE, November 1996 (1996-11-01), pages 84 - 85 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10779819B2 (en) | 2009-01-26 | 2020-09-22 | Ethicon Endo-Surgery, Inc. | Surgical device with tandem fasteners |
US11540825B2 (en) | 2009-01-26 | 2023-01-03 | Ethicon Endo-Surgery, Inc. | Surgical device with tandem fasteners |
JP2013000602A (en) * | 2011-06-21 | 2013-01-07 | Ethicon Endo Surgery Inc | Surgical fastener having safety mechanism |
JP2013000600A (en) * | 2011-06-21 | 2013-01-07 | Ethicon Endo Surgery Inc | Surgical fastener for applying large staple through small delivery port |
US9980716B2 (en) | 2012-03-21 | 2018-05-29 | Ethicon Llc | Methods and devices for creating tissue plications |
US10595852B2 (en) | 2012-03-21 | 2020-03-24 | Ethicon Llc | Methods and devices for creating tissue plications |
CN103932748A (en) * | 2014-05-13 | 2014-07-23 | 吴伟 | Medical suture clip |
US10881400B2 (en) | 2016-11-18 | 2021-01-05 | Olympus Corporation | Medical stapler system |
Also Published As
Publication number | Publication date |
---|---|
AU2010206639A1 (en) | 2011-07-28 |
BRPI1006993A2 (en) | 2019-09-24 |
JP5575808B2 (en) | 2014-08-20 |
EP2398400A1 (en) | 2011-12-28 |
JP2012515631A (en) | 2012-07-12 |
CA2750624A1 (en) | 2010-07-29 |
CN102292035A (en) | 2011-12-21 |
US20100191262A1 (en) | 2010-07-29 |
CN102292035B (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2398401B1 (en) | A surgical stapler for applying a large staple through a small delivery port | |
US8801732B2 (en) | Surgical stapler to secure a tissue fold | |
US11540825B2 (en) | Surgical device with tandem fasteners | |
US20100191262A1 (en) | Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold | |
US9713468B2 (en) | Surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold | |
US8453905B2 (en) | Surgical fastener for applying a large staple through a small delivery port | |
US8469252B2 (en) | Surgical stapler fastening device with adjustable anvil | |
US20100191255A1 (en) | Method for Applying A Surgical Staple | |
US20120193399A1 (en) | Surgical Fastener Having A Safety Feature | |
US20120193394A1 (en) | Surgical Stapler Having an Adjustment Feature | |
US20120330329A1 (en) | Methods of forming a laparoscopic greater curvature plication using a surgical stapler | |
EP2537472A1 (en) | A surgical fastener for applying a large staple through a small delivery port | |
EP2537471A1 (en) | A surgical fastener having a safety feature | |
US20120160891A1 (en) | Method of Using A Surgical Stapler To Secure A Tissue Fold | |
EP2537473A1 (en) | A surgical stapler having an adjustment feature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005578.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10702569 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010206639 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2895/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2750624 Country of ref document: CA Ref document number: 2011548175 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010206639 Country of ref document: AU Date of ref document: 20100125 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010702569 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1006993 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1006993 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110725 |