WO2010084668A1 - Diagnostic method for nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the prophylactic or therapeutic agent - Google Patents

Diagnostic method for nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the prophylactic or therapeutic agent Download PDF

Info

Publication number
WO2010084668A1
WO2010084668A1 PCT/JP2009/070500 JP2009070500W WO2010084668A1 WO 2010084668 A1 WO2010084668 A1 WO 2010084668A1 JP 2009070500 W JP2009070500 W JP 2009070500W WO 2010084668 A1 WO2010084668 A1 WO 2010084668A1
Authority
WO
WIPO (PCT)
Prior art keywords
gpc5
nephrotic syndrome
fgf
gene
base
Prior art date
Application number
PCT/JP2009/070500
Other languages
French (fr)
Japanese (ja)
Inventor
英世 野入
好司 岡本
徳永 勝士
Original Assignee
国立大学法人東京大学
独立行政法人理化学研究所
一般社団法人徳洲会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 独立行政法人理化学研究所, 一般社団法人徳洲会 filed Critical 国立大学法人東京大学
Publication of WO2010084668A1 publication Critical patent/WO2010084668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • the present invention relates to a nephrotic syndrome test method, probes and primers used therefor, a drug for preventing or treating nephrotic syndrome, and a screening method thereof.
  • Nephrotic syndrome is known to exhibit large amounts of proteinuria and hypoproteinemia. Nephrotic syndrome has minimal change type (minimal change nephritic syndrome: MC), focal glomerulosclerosis (FSGS), membranous nephropathy (MN), membranous proliferative glomerulonephritis (MPGN) Etc. are included.
  • minimal change type minimum change nephritic syndrome: MC
  • FGS focal glomerulosclerosis
  • MN membranous nephropathy
  • MPGN membranous proliferative glomerulonephritis
  • nephrotic syndrome there is an abnormality in the glomerular filtration function, but unlike other nephropathy, there are almost no histological changes in the tubules. And remission by administration of immunosuppressants. It tends to recur and has characteristics such as poor prognosis depending on the tissue type.
  • nephrotic syndrome In nephrotic syndrome, it is known that serum protein with a relatively low molecular weight leaks in urine in large amounts, so that the total protein mass and albumin / globulin ratio in serum are decreased. Therefore, to determine the pathological condition of nephrotic syndrome, it has been conventionally performed to measure urinary protein / serum total protein mass and albumin / globulin ratio. However, even if steroid administration or resting diet therapy improves the filtration function of the kidney glomeruli and the protein leakage into the urine stops, the serum total protein mass and albumin / globulin ratio are immediately Will not recover. Therefore, these measured values do not reflect the pathological condition such as the therapeutic effect of nephrotic syndrome so quickly, and there is a problem in quantitativeness.
  • NPHS1, NPHS2, and ACTN4 have been identified in congenital nephrotic syndrome, but multifactorial genetic factors are considered to be involved in acquired nephrotic syndrome, which accounts for the majority of clinical practice, and most of them still remain.
  • the disease susceptibility gene has not been clarified.
  • Non-Patent Document 1 describes that Glypican5 (GPC5) is a cell surface proteoglycan that enhances fibroblast growth factor (FGF) -2 signal and participates in the growth of mesoderm cells, and GPC5 It is described that it can be expected as a target molecule for tumors such as rhabdomyosarcoma. However, the relationship between FGF and nephrotic syndrome is not known, and the involvement of GPC5 in nephrotic syndrome is not known at all.
  • GPC5 Glypican5
  • FGF fibroblast growth factor
  • An object of the present invention is to provide an inspection method for accurately predicting the onset and progression of nephrotic syndrome. Another object of the present invention is to provide a preventive or therapeutic agent for nephrotic syndrome and a screening method thereof.
  • the present inventors analyzed to identify a single nucleotide polymorphism (SNP) associated with nephrotic syndrome.
  • SNP single nucleotide polymorphism
  • double-stranded RNA that suppresses GPC5 gene expression suppresses the onset of nephrotic syndrome and reduces symptoms after onset, and substances that suppress GPC5 gene expression or GPC5 function prevent nephrotic syndrome It was found to be useful as a medicine or therapeutic agent.
  • FGF signal inhibitors such as FGF receptor (FGFR) tyrosine kinase activity inhibitors are also useful as preventive and therapeutic agents for nephrotic syndrome, and have completed the present invention.
  • FGFR FGF receptor
  • the present invention is as follows. (1) A method for analyzing nephrotic syndrome based on the analysis result of a base SNP present on the GPC5 gene or a base SNP in linkage disequilibrium with the base. (2) The method according to (1), wherein the SNP is a polymorphism in a base corresponding to the base of the base number 101 in the base sequence of SEQ ID NO: 1. (3) A probe for testing nephrotic syndrome having a sequence of 10 bases or more including the base of the base number 101 in the base sequence of SEQ ID NO: 1, or a complementary sequence thereof. (4) A primer for nephrotic syndrome test that can amplify a region containing the base at the 101st base number in any base sequence of SEQ ID NO: 1.
  • a step of adding a drug candidate substance to a cell expressing a GPC5 gene or a reporter gene linked to a promoter of the GPC5 gene, a step of measuring the expression level of the GPC5 gene or the reporter gene, and a substance that decreases the expression level A method for screening a preventive or therapeutic agent for nephrotic syndrome, comprising a step of selecting (6)
  • the FGF signal inhibitor is a substance that inhibits the binding of FGF to the FGF receptor.
  • the substance that inhibits the binding of FGF to the FGF receptor is a GPC5 gene expression suppressing substance or a GPC5 function suppressing substance.
  • the medicament according to (9), wherein the substance that suppresses GPC5 gene expression is a double-stranded RNA against the GPC5 gene.
  • the FGF signal inhibitor is an FGF receptor tyrosine kinase activity inhibitor.
  • the medicament according to (8), wherein the substance that inhibits the binding of FGF to the FGF receptor is Sulfatase 2.
  • a method for screening a preventive or therapeutic agent for nephrotic syndrome comprising screening a substance that inhibits the binding of FGF to an FGF receptor or a substance that inhibits FGF receptor tyrosine kinase activity.
  • the test method of the present invention since the onset risk and progression of nephrotic syndrome can be accurately predicted, proteinuria can be controlled, and progression of renal damage can be suppressed. This makes it possible to reduce the number of patients who need artificial kidney treatment, which is synonymous with expensive medical care, due to the elimination of renal function.
  • substances that inhibit GPC5 gene expression such as double-stranded RNA, and FGF signal inhibitors, such as FGF receptor tyrosine kinase activity inhibitors, have the effect of reducing protein permeability in glomeruli. It is useful as a novel preventive or therapeutic agent for syndrome.
  • the vertical axis is an arbitrary unit.
  • A Confirmation of siRNA suppression of GPC5 gene expression by RT-PCR (electrophoresis photograph).
  • B Schematic diagram of a protein permeability evaluation system using GEC-T cells.
  • C Evaluation of the effect of siRNA on protein permeability. The control indicates no addition of siRNA, the negative control indicates the addition of negative control siRNA, and siRNA indicates the addition of GPC5-specific siRNA.
  • the vertical axis represents the protein transmission concentration.
  • FIG. 1 is a result of a rat glomerular epithelial cell line
  • B is a result of a human colon cancer cell line. Photograph of mouse kidney immune tissue staining using anti-GPC5 antibody.
  • A Wild type mouse
  • B GPC5 glomerular-specific knockdown mouse.
  • C shows the BAC construct used for knockdown mouse production. Changes in albumin creatinine ratio (ACR) and total urine protein (uTP) after nephritis-induced stimulation (PAN + bFGF) in wild-type mice (GPC5-specific siRNA administration, non-administration) and GPC5 glomerular-specific knockdown mice FIG.
  • ALB albumin
  • puromycin + bFGF puromycin + bFGF
  • test method of the present invention analyzes a base SNP present on the GPC5 gene or a base SNP in linkage disequilibrium with the base, and tests nephrotic syndrome based on the analysis. This is a method (a method for obtaining inspection data). Nephrotic syndrome is characterized by proteinuria (continuous daily protein content of 3.5 g or more) and hypoproteinemia (serum total protein content of 6.0 g / 100 ml or less).
  • test includes a test for predicting whether nephrotic syndrome will occur in the future and a test for predicting whether the degree of nephrotic syndrome will become severe.
  • the GPC5 gene is preferably a human GPC5 gene, and examples thereof include a gene having a sequence registered in 90848929 .. 92317490 of GenBank Accession No. NC — 000013.9. However, the gene is not limited to the gene of the above sequence because substitution or deletion may exist in one or a plurality of bases due to differences in race.
  • the SNP of the GPC5 gene associated with nephrotic syndrome is not particularly limited, and examples thereof include rs16946160 present in intron 2. rs16946160 indicates the registration number of the dbSNP database (//www.ncbi.nlm.nih.gov/projects/SNP/) of National Center for Biotechnology Information.
  • rs16946160 is a polymorphism of guanine (G) / adenine (A) at the 5393489th base of GenBank Accession No. NT_009952.14 (91001814 of NC_000013.9).
  • G guanine
  • A adenine
  • Probability is high.
  • the probability that rs16946160 becomes nephrotic syndrome in the order of AA>AG> GG is high.
  • rs16946160 a sequence having a total length of 201 bp including the SNP base and the region of 100 bp before and after that is shown in SEQ ID NO: 1 (the 101st base has a polymorphism).
  • corresponding means a corresponding base in the region having the above sequence on the human GPC5 gene. Even if the above sequence is slightly changed at a position other than the SNP due to a difference in race, It also includes analyzing the corresponding base in it.
  • Nephrotic syndrome can be examined by examining the type of the SNP base.
  • the GPC5 gene sequence may be analyzed for the sense strand or the antisense strand.
  • the polymorphism when analyzing the sense strand is A / G, but the polymorphism when analyzing the antisense strand is T / C.
  • the base to be analyzed in the present invention is not limited to the above SNP, and a polymorphism that is in linkage disequilibrium with the above base may be analyzed.
  • “polymorphism in linkage disequilibrium with the above-mentioned base” refers to a base that satisfies the relationship of r 2 > 0.5 with the above-described polymorphism.
  • the sample used for the analysis of the SNP of the GPC5 gene is not particularly limited as long as it contains a chromosomal DNA, and examples thereof include body fluid samples such as blood and urine, cells, body hair such as hair, and nails. Although these samples can be used directly for the analysis of SNP, it is preferable to isolate chromosomal DNA from these samples by a conventional method and analyze them.
  • SNP of GPC5 gene can be performed by the usual SNP analysis method. Examples include, but are not limited to, sequence analysis, PCR, hybridization, and the like.
  • the sequence can be performed by a normal method. Specifically, a sequence reaction is performed using a primer set at a position of several tens of bases on the 5 ′ side of the base showing the polymorphism, and the type of base at the corresponding position is determined from the analysis result. can do. When sequencing is performed, it is preferable to amplify a fragment containing a polymorphism in advance by PCR or the like.
  • PCR can also be analyzed by examining the presence or absence of amplification by PCR.
  • a primer having a sequence corresponding to a region containing a base showing a polymorphism and corresponding to each polymorphism is prepared.
  • PCR can be performed using each primer, and the type of polymorphism can be determined depending on the presence or absence of the amplification product.
  • telomere length a DNA fragment containing a polymorphism
  • telomere length a DNA fragment containing a polymorphism
  • PCR-SSCP single-strand conformation polymorphism
  • a base showing polymorphism when included in the restriction enzyme recognition sequence, it can be analyzed by the presence or absence of cleavage by a restriction enzyme (RFLP method).
  • RFLP method restriction enzyme
  • a DNA sample is amplified by PCR and cut with a restriction enzyme.
  • the DNA fragments can then be separated and the type of polymorphism determined by the size of the detected DNA fragment.
  • the present invention also provides a test reagent such as a primer or a probe for examining nephrotic syndrome.
  • a test reagent such as a primer or a probe for examining nephrotic syndrome.
  • a probe include a probe that includes the polymorphic site in the GPC5 gene and can determine the type of base at the polymorphic site based on the presence or absence of hybridization.
  • a probe having a length of 10 bases or more having a sequence containing the 101st base of the base sequence in SEQ ID NO: 1 or a complementary sequence thereof can be mentioned.
  • the length of the probe is more preferably 15 to 35 bases, and further preferably 20 to 35 bases.
  • An example of such a probe is a probe containing SEQ ID NO: 10 or a complementary sequence thereof.
  • the primer examples include a primer that can be used for PCR for amplifying the polymorphic site in the GPC5 gene, or a primer that can be used for sequence analysis (sequencing) of the polymorphic site.
  • a primer that can amplify or sequence a region containing the 101st base of the base sequence of SEQ ID NO: 1 is exemplified.
  • the length of such a primer is preferably 10 to 50 bases, more preferably 15 to 35 bases, and further preferably 20 to 35 bases.
  • a primer for sequencing the polymorphic site a primer having a sequence 5 ′ side of the base, preferably 30 to 100 bases upstream, or a 3 ′ side region of the base, preferably 30 to 100 bases.
  • a primer having a sequence complementary to the downstream region is exemplified.
  • a primer used to determine polymorphism by the presence or absence of amplification by PCR it has a sequence containing the base, a primer containing the base on the 3 ′ side, a complementary sequence of the sequence containing the base, Examples include a primer containing a base complementary to the above base on the 3 ′ side.
  • An example of such a primer is a primer comprising the nucleotide sequence of SEQ ID NO: 11.
  • the test reagent of the present invention may contain a polymerase for PCR, a buffer, a hybridization reagent, and the like.
  • rs16946160 is present in an intron and affects the expression level of GPC5, and the expression level of GPC5 gene is increased in a nephrotic syndrome model. It was suggested that From the above, a candidate substance that can be a prophylactic or therapeutic drug for nephrotic syndrome can be obtained by screening a substance that decreases the expression of the GPC5 gene or inhibits the function of GPC5.
  • the screening method of the present invention includes a step of adding a drug candidate substance to a cell that expresses a reporter gene linked to a GPC5 gene or a GPC5 gene promoter, a step of measuring the expression level of the GPC5 gene or reporter gene, and
  • the screening method of the preventive or therapeutic agent of nephrotic syndrome including the process of selecting the substance which reduces the said expression level is mentioned.
  • GEC-T cells J Am Soc Nephrol 13: 2027-36, 2002
  • the GPC5 gene promoter is preferably a region containing about 2 kbp upstream of the transcription start point of the gene, and more preferably a region containing about 5 kbp upstream.
  • the sequence information of the promoter can be obtained from the genome sequence of the GPC5 gene (NC_000013.9).
  • reporter genes include luciferase gene, GFP gene, chloramphenicol acetyltransferase gene and the like. These reporter genes are linked to the GPC5 gene promoter, incorporated into a plasmid used to introduce the gene into mammalian cells, and transfected into cells by a conventional method such as lipofection. A drug candidate substance is added to a cell expressing the GPC5 gene as described above or a cell into which the reporter gene has been introduced, and the expression level of the GPC5 gene or reporter gene is measured.
  • the drug candidate substance is not particularly limited, and may be, for example, a low molecular synthetic compound or a compound contained in a natural product. Further, it may be a peptide or a nucleic acid. Although individual test substances may be used for screening, a compound library containing these substances may be used.
  • a candidate substance for a nephrotic syndrome drug can be obtained by selecting a candidate substance that reduces the expression level of the GPC5 gene or reporter gene (compared to the case where no addition is made).
  • the expression level of the GPC5 gene can be measured by methods such as RT-PCR, quantitative PCR, Northern blot, ELISA, Western blotting, In situ hybridization, and immunohistochemical staining.
  • the expression level of the reporter gene depends on the type of reporter gene, it can be measured by fluorescence intensity, luminescence intensity, radioactivity intensity, and the like.
  • a substance in which the expression level of the GPC5 gene or reporter gene is changed can be selected as a candidate substance for a nephrotic syndrome therapeutic drug.
  • FGF signal inhibitory activity As an index. For example, using FGF and FGFR, screening for substances that inhibit the binding of FGF to FGFR, or screening for substances that inhibit the tyrosine kinase activity of FGFR activated by the binding of FGF to FGFR.
  • a prophylactic or therapeutic agent for nephrotic syndrome can be screened.
  • FGF-2 is preferred as the FGF used here.
  • the sequence of FGF-2 is known in humans, mice, rats and the like, and those cloned based on the sequence and those commercially available can be used.
  • human FGF-2 a protein having the sequence of Database Swiss Prot Accession No. P09038 (UniProtKB FGF2_HUMAN) or a fragment thereof can be used.
  • various types of FGFR are expressed in the kidney and all react with FGF2. Therefore, any FGFR may be used.
  • a protein having a sequence of Database Swiss Prot Accession No. P11362 (FGFR1_HUMAN of UniProtKB) or a fragment thereof can be used as human FGFR.
  • an in vitro pull-down assay using both FGF and FGFR proteins and an interaction detection system using surface plasmon resonance phenomenon are prepared. Examples thereof include a method for selecting a compound that inhibits the interaction.
  • FGFR FGFR containing a tyrosine kinase domain and its substrate (full length of FGF receptor substrate or a part containing a phosphorylation site) are prepared, and the compound is a substrate by FGFR. And a method of screening using as an index whether or not phosphorylation is inhibited.
  • An assay kit for FGFR tyrosine kinase activity is commercially available from Cyclex. Examples of the inhibitor thus obtained include PD173074 (Sigma-Aldrich Japan), SU5402 (Calbiochem), AZD2171 (Astrazeneca), Ki23057 (Kyowa Hakko Kirin) and the like.
  • the present invention provides a medicament for treating or preventing nephrotic syndrome containing an FGF signal inhibitor.
  • An FGF signal inhibitor is a substance that blocks a signal at any stage in a series of reactions in which FGF binds to FGFR and FGFR is activated and downstream genes are activated or attenuated.
  • One embodiment of the FGF signal inhibitory substance is a substance that inhibits the binding of FGF to the FGF receptor. Since GPC5 works to strengthen the binding of FGF and FGFR via its heparan sulfate (HS) side chain, GPC5 gene expression inhibitor or GPC5 function inhibitor inhibits the binding of FGF to the FGF receptor. Can be used as a substance.
  • HS heparan sulfate
  • the present invention provides a medicament for the treatment or prevention of nephrotic syndrome containing a GPC5 gene expression inhibitor or a GPC5 function inhibitor.
  • the GPC5 gene expression inhibitory substance include double-stranded RNA, antisense nucleic acid, and low molecular weight compounds that have GPC5 gene expression inhibitory action.
  • the double-stranded RNA having the GPC5 gene expression inhibitory action is a double-stranded RNA for the GPC5 gene that suppresses the expression of the GPC5 gene by RNA interference (a double strand consisting of a partial sequence of the GPC5 gene and its complementary strand). RNA).
  • RNA transcribed from the endogenous GPC5 gene is degraded, resulting in specific suppression of GPC5 gene expression in the cell. Is done. This technique has also been confirmed in mammalian cells and the like (Hannon, GJ., Nature (2002) 418,244-251 (review); Japanese translations of PCT publication No. 2002-516062; Japanese translations of PCT publication No. 8-506734).
  • the double-stranded RNA (short-interfering RNA: siRNA) that can be used in the present invention is a sequence of 10 to 50 contiguous nucleotides in the nucleotide sequence (eg, SEQ ID NO: 8) of the GPC5 gene coding region, preferably It consists of 15 to 35 contiguous base sequences, more preferably 19 to 27 contiguous base sequences, still more preferably 21 to 23 contiguous base sequences and their complementary strands.
  • siRNA that can be used as a GPC5 gene expression inhibitor include siRNA consisting of SEQ ID NOs: 4 and 5, but are not limited thereto, and other regions of the GPC5 gene are also identified and used using a search algorithm be able to.
  • the double-stranded RNA may be a single double-stranded RNA molecule composed of two separate strands, but a double-stranded RNA formed by a single strand having a stem-loop structure. It may be a molecule.
  • the gene expression inhibitory action can also be enhanced (WO01 / 75164 pamphlet).
  • antisense nucleic acid having a GPC5 gene expression inhibitory action examples include antisense oligonucleotides having a base sequence complementary to a part of the base sequence of the GPC5 gene (eg, SEQ ID NO: 8).
  • the antisense oligonucleotide may be modified with phosphorothioate or the like.
  • the length of the antisense oligonucleotide is not particularly limited, but is preferably 15 to 40 mer, more preferably 20 to 30 mer.
  • a low molecular weight compound having a GPC5 gene expression inhibitory action can be obtained by a screening method using a cell expressing a GPC5 gene or a reporter gene linked to a GPC5 gene promoter.
  • the GPC5 function inhibitor include antibodies to GPC5 and partial proteins of GPC5. Whether to suppress the function of GPC5 can be confirmed by suppressing the function of GPC5 that promotes the interaction between FGF-2 and FGF receptor (FGFR).
  • an FGF receptor tyrosine kinase activity inhibitor can also be used.
  • the inhibitor include PD173074, SU5402, AZD2171, Ki23057 described above.
  • Sulfatase 2 an enzyme that binds to FGF and degrades heparan sulfate (HS), which is involved in promoting the binding between FGF and FGFR, is also used as a substance that inhibits the binding of FGF to the FGF receptor.
  • SULF2 include human SULF2 having the amino acid sequence set forth in SEQ ID NO: 17 or a homologue thereof. The homologue is not limited as long as it has HS degradation activity, but preferably includes an amino acid sequence having 95% or more identity with the amino acid sequence shown in SEQ ID NO: 17.
  • SULF2 may be administered to the affected area (kidney) or may be locally administered to the affected area in the state of the gene encoding SULF2 to express the SULF2 protein.
  • FGF2 mutants include mutants that bind to FGFR but cannot activate FGFR.
  • FGF2 siRNA or FGF2 antisense nucleic acid may be any nucleic acid that can suppress the expression of the FGF2 gene, and the preferred length is the same as that of GPC.
  • FGF signal inhibitory substances such as GPC5 gene expression inhibitory substances and FGF receptor tyrosine kinase activity inhibitors may be used as they are, but preferably GPC5 gene expression inhibitory substances and An FGF signal inhibitor such as an FGF receptor tyrosine kinase activity inhibitor is used in a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include liquid carriers (eg, water, oil, saline, aqueous dextrose, ethanol, etc.), solid carriers (eg, gelatin, starch, glucose, lactose, sucrose, sodium stearate, monostearate).
  • Acid glycerol, keratin, colloidal silica, dried skim milk, glycerol, water-soluble fullerene, etc. contains suitable additives such as adjuvants, preservatives, stabilizers, thickeners, lubricants, colorants, wetting agents, emulsifiers, pH buffering agents, etc., which are blended in ordinary pharmaceutical compositions. Also good.
  • the nephrotic syndrome therapeutic or preventive agent of the present invention contains the above double-stranded RNA or antisense nucleic acid as an active ingredient, nanocapsules, microspheres, beads, Oil-in-water emulsions, micelles, mixed micelles, liposomes and the like are preferably used as delivery systems.
  • the administration method of the nephrotic syndrome therapeutic or prophylactic agent of the present invention is not particularly limited, but particularly when double-stranded RNA or antisense nucleic acid is used as the active ingredient, it is administered to the kidney by injection or local administration using a liquid feeding tube. It is preferable.
  • the double-stranded RNA or antisense nucleic acid is introduced into a cell obtained from a patient, and then delivered by administering the cell to the patient. be able to.
  • Introduction of double-stranded RNA or antisense nucleic acid into cells can be performed by the calcium phosphate method, DEAE-dextran method, electroporation, lipofection, or the like.
  • the dose of the therapeutic or preventive agent for nephrotic syndrome of the present invention is appropriately set according to the age, sex, symptoms, administration route, administration frequency, dosage form, etc. of the patient.
  • a suitable dose can be set by conducting a test using a disease model.
  • the active ingredient can be administered at 0.1 mg / kg body weight / day to 50 mg / kg / day.
  • the present invention also provides a test method for nephrotic syndrome (a method for obtaining test data) including a step of measuring the expression level of a GPC5 gene or GPC5 gene product. If the expression level of the GPC5 gene or GPC5 gene product (GPC5 protein) is increased compared to controls such as healthy individuals, it can be determined that the patient is suffering from nephrotic syndrome or is at high risk for nephrotic syndrome .
  • the expression level of GPC5 gene can be examined by RT-PCR, Northern blot, microarray method and the like.
  • the expression level of the GPC5 gene product can be examined by ELISA, Western blot, or the like.
  • a commercially available antibody can be used, or an antibody prepared by using a part of the amino acid sequence of GPC5 protein (for example, SEQ ID NO: 9) as an antigen can also be used.
  • GenBank Accession No. NM — 004466 (SEQ ID NO: 8) is exemplified as the base sequence of the coding region of GPC5, and primers or probes for expression analysis can be designed or obtained using this sequence.
  • Examples of RT-PCR primers include the primer sets of SEQ ID NOs: 2 and 3.
  • the sample used for the test includes a blood sample or a urine sample.
  • Cases 1 to 3 were selected according to the following criteria.
  • Proteinuria Maintains a daily protein content of 3.5 g or more
  • Hypoproteinemia Serum total protein is 6.0 g / 100 ml or less (when hypoalbuminemia is established, serum albumin is 3.0 g / 100 ml) Less than)
  • Controls 1 and 2 are diseases other than nephrotic syndrome, specifically type 2 diabetes, bronchial asthma, myocardial infarction, breast cancer, Basedow's disease, cerebral infarction, cerebral aneurysm, osteoporosis, heart disease, unstable angina If you are a patient with symptom, pollinosis, obstructive arteriosclerosis, emphysema, atopic dermatitis, gastric cancer or cirrhosis. The breakdown of cases 1 to 3 and control 1 to 3 is shown in Table 1.
  • Age is shown as mean ⁇ standard deviation.
  • NA indicates that it cannot be identified.
  • etc indicates primary nephrotic syndrome other than the four major tissue diagnoses, and secondary indicates secondary nephrotic syndrome.
  • MC minimal change type; FSGS, focal segmental glomerulosclerosis; MN, membranous nephropathy; MPGN; membranous proliferative glomerulonephritis
  • SNP analysis was performed by direct sequencing, TaqMan TM SNP genotyping assay or DigitagIItm assay (Analytical Biochemistry 346 (2): 281-288).
  • nephrotic syndrome includes many pathological conditions, it was thought that the target pathological condition would become ambiguous if simply put together as nephrotic syndrome, so primary nephrotic syndrome and four major tissue lesions (from all nephrotic syndromes ( Minor change group, focal glomerulosclerosis, membranous nephropathy, membranoproliferative glomerulonephritis), Minor change group, focal glomerulosclerosis, membranous nephropathy, membranoproliferative glomeruli
  • P value and odds ratio (OR) odds ratio
  • control has an odds ratio of 1.273
  • four major tissue lesions control has an odds ratio of 1.376
  • the rs16946160 A allele is a significant risk allele of nephrotic syndrome. It turned out to be.
  • rs16946160 is in the intron region
  • cDNA synthesized using total RNA from the peripheral blood of healthy individuals with each genotype was screened for splicing RNA by PCR with intron 2 between exons 2 and 3. However, no difference in splicing was observed in each genotype (data not shown).
  • GPC5 mRNA expression level Real-time PCR of GPC5 was performed on cDNA synthesized from the peripheral RNA of healthy humans with each genotype, and the transcription level of GPC5 gene was compared with that of ⁇ -actin. It was shown that the mRNA level of GPC5 is high in healthy individuals with / A (FIG. 1). In other words, it was suggested that increased expression of the GPC5 gene may promote the onset of nephrotic syndrome.
  • SEQ ID NOs: 2 and 3 were used as primers for human GPC5 amplification, and ABI Prism 3700 Real Time PCR System (Applied BioSystems) was used as a detection device.
  • GPC5 When the expression level of GPC5 gene in cultured glomerular epithelial cells (GEC-T) and cultured proximal tubular epithelial cells (mProx) was compared, it was found that GPC5 was highly expressed in the former (data Is not shown). Furthermore, when immunohistochemical staining was performed using an anti-GPC5 antibody (R & D systems, MAB2607), accumulation of GPC5 in the glomeruli was observed (FIG. 4A).
  • GPC5 Functional analysis of GPC5 in the cell line Cultured rat glomerular epithelial cells (GEC-T) were added with siRNA against the GPC5 gene or negative control siRNA (40 pmol / ml), cultured until 100% confluent, and diluted 2-fold with PBS After plating on collagen type I-coated filter (Japan BD: BioCoat Collagen I culture insert, pore size 0.4 ⁇ m, 1,600,000 / cm 2 ) and culturing at 37 ° C for 18 hours, 0.6g / dl above and below the cell layer An experimental system was established in which a liquid phase with a difference in albumin concentration was arranged and a protein permeability study could be evaluated with a difference in concentration gradient after 8 hours (FIG.
  • collagen type I-coated filter Japan BD: BioCoat Collagen I culture insert, pore size 0.4 ⁇ m, 1,600,000 / cm 2
  • GEC-T has already been reported in JAm Soc Nephrol 13: 2027-36,2002, has C-arboration, C-3 and 5-specific arborization, Nephrin and VEGF121 expression, and specific for glomerular epithelial cells.
  • 1-2 Immunization of monoclonal antibodies has been confirmed.
  • protein permeability decreased when siRNA against the GPC5 gene was added to suppress the expression of the GPC5 gene compared to when no siRNA was added (control) and when a negative control siRNA was added (FIG. 2C).
  • double-stranded RNA consisting of SEQ ID NO: 4 (sense strand) and SEQ ID NO: 5 (antisense strand) was used as siRNA against the GPC5 gene. It has been confirmed that it can be suppressed to a certain extent (FIG. 2A).
  • As the negative control siRNA Stealth RNAi Negative Control Medium GC Duplex # 2 (Invitrogen, Carlsbad, CA) was used. Lipofectamine 2000 (Invitrogen, Carlsbad, CA) was used to add GPC5-specific siRNA and negative control siRNA.
  • TKpA thymidine kinase polyA sequence
  • NM — 175500 mouse GPC5 mRNA sequence downstream of the podocin promoter, which is a glomerular-specific gene of the E. coli artificial chromosome (BAC clone).
  • RNA expression sequence for expressing microRNA having RNAi effect on three places (1-1) TGCTGTTCAGGAGGGCCCTACTGCACGTTTTGGCCACTGACTGACGTGCAGTAGCCCTCCTGAA (SEQ ID NO: 6) (1-2) CCTGTTCAGGAGGGCTACTGCACGTCAGTCAGTGGCCAAAACGTGCAGTAGGGCCCTCCTGAAC (SEQ ID NO: 7) (2-1) TGCTGCAAACCTGAAGATCAGGTCCTGTTTTGGCCACTGACTGACAGGACCTGCTTCAGGTTTG (SEQ ID NO: 12) (2-2) CCTGCAAACCTGAAGCAGGTCCTGTCAGTCAGTGGCCAAAACAGGACCTGATCTTCAGGTTTGC (SEQ ID NO: 13) (3-1) TGCTGAATTTCTGCCCATTGAGGTGAGTTTTGGCCACTGACTGACTCACCTCAGGGCAGAAATT (SEQ ID NO: 14) (3-2) Three sets
  • BAC construct (Tg-podocin-GPC5iR RecBAC) obtained by a conventional method was introduced into mouse ES cells to produce a mouse (GPC5 glomerular-specific knockdown mouse) in which GPC5 gene expression was specifically suppressed. did.
  • GPC5 glomerular-specific knockdown mouse was stained for kidney tissue using an anti-GPC5 antibody, it was confirmed that the expression of GPC5 in the glomerulus was significantly reduced (FIG. 4B).
  • the GPC5-specific siRNA 400 ⁇ g / PBS ⁇ ⁇ ⁇ 0.8 ⁇ ml IV was administered to wild-type mice, and urinary albumin creatinine ratio (ACR) and urinary protein (uTP) were examined over time. No significant increase in ACR and uTP was observed in about 10-12 days after nephritis induction in wild type mice, and it was found that administration of GPC5-specific siRNA can suppress nephritis symptoms.
  • the present inventor has shown that the GPC5 gene product promotes the binding of FGF-2 and FGFR, and the suppression of the GPC5 gene increases the expression of the p21 gene and increases the ratio of G0 / G1 stage, It is confirmed that the period ratio is significantly suppressed. From these facts, the increase in GPC5 expression causes glomerular epithelial cells to enter the proliferative phase through activation of FGF signal transduction and suppression of p21 downstream thereof, which forms a barrier function in the glomerulus. It was thought that glomerular epithelial cell construction led to collapse, and tight junction ⁇ was impaired, leading to proteinuria.
  • GPC5-specific siRNA decreases the binding of FGF-2 and FGFR.
  • siRNA consisting of SEQ ID NOs: 4 and 5 was used. This sequence is an siRNA against a sequence common to humans and mice, and it is preferable to use the same sequence in humans as well, but the same effect can be expected with miRNA and siRNA that can suppress GPC5 expression as well.
  • a GPC5 expression inhibitor such as siRNA in humans.
  • nephritis was induced in wild-type mice (BDF1 mice) by administering adriamycin (AD: Hydroxydaunorubicin hydrochloride: Sigma-Aldrich Japan) (10 mg / kg intravenous injection).
  • AD Hydroxydaunorubicin hydrochloride: Sigma-Aldrich Japan
  • PD173074 125 ⁇ g / day was administered intraperitoneally on days 1, 2 and 3 after nephritis induction, and ACR was measured on days 1, 3, 5, 7 and 10 after nephritis induction and FGF receptor inhibitor non-administration group Compared with.
  • ACR was measured on days 1, 3, 5, 7 and 10 after nephritis induction and FGF receptor inhibitor non-administration group Compared with. The results are shown in FIG.
  • PD173074 administration reduced ACR, indicating that PD173074 is effective in the treatment and prevention of nephrotic syndrome.
  • heparan sulfate (HS) modified with a side chain on the membrane protein GPC5 interacts with FGF, which stabilizes the binding of FGF to FGFR. It is known that the sulfate group of HS is degraded by the action of SULF2, thereby reducing the binding of FGF to FGFR (Chemistry and Biology of Heparin and Heparan Sulfate (p245): FIG. 10). Therefore, it is considered that nephrotic syndrome can be treated and prevented if FGF signal is attenuated by introducing SULF2 protein or expressing SULF2 gene.
  • SULF2-specific siRNA was added to GEC-T cells and cultured, and the degree of cell proliferation was examined. As a result, it was found that the cell growth rate was higher when SULF2-specific siRNA was added than when siRNA was not added and when non-specific siRNA was added (FIG. 11). This result suggests that SULF2-specific siRNA suppresses the degradation of HS sulfate group and promotes FGF signal, thus promoting p21 suppression reaction downstream of FGF signal and promoting cell proliferation. It was.
  • Rat Sulf2 siRNA Sense CCCAUCGGUGCUACAUCCUUGAGAA (SEQ ID NO: 18) Antisense UUCUCAAGGAUGUAGCACCGAUGGG (SEQ ID NO: 19)
  • Rat Sulf2 negative control siRNA Sense CCCGCUGCGAUACCUUCGUAUAGAA (SEQ ID NO: 20) Antisense UUCUAUACGAAGGUAUCGCAGCGGG (SEQ ID NO: 21)
  • the present invention is useful in the fields of diagnosis and medicine. Since the onset risk and progression of nephrotic syndrome can be accurately predicted according to the test method of the present invention, it is possible to control proteinuria and reduce the number of patients requiring artificial dialysis, which contributes to the medical economy. . Moreover, the nephrotic syndrome therapeutic agent of the present invention provides a new and efficient treatment method based on a novel mechanism.

Abstract

A single nucleotide polymorphism of a nucleotide located on Glypican-5 gene or a single nucleotide polymorphism of a nucleotide that is in linkage disequilibrium with the aforementioned nucleotide is analyzed, and nephrotic syndrome is diagnosed based on the results of the analysis.  The screening for a prophylactic or therapeutic agent for nephrotic syndrome is achieved by selecting a substance that can alter the expression level of Glypican-5.  A pharmaceutical preparation for preventing or treating nephrotic syndrome is provided, which comprises a fibroblast growth factor (FGF) signaling inhibitor as an active ingredient.

Description

ネフローゼ症候群の検査方法、並びにネフローゼ症候群の予防又は治療薬およびそのスクリーニング方法Nephrotic syndrome test method, nephrotic syndrome preventive or therapeutic agent and screening method thereof
 本発明はネフローゼ症候群の検査方法及びそれに使用するプローブやプライマー、並びにネフローゼ症候群を予防又は治療するための医薬およびそのスクリーニング方法に関する。 The present invention relates to a nephrotic syndrome test method, probes and primers used therefor, a drug for preventing or treating nephrotic syndrome, and a screening method thereof.
 ネフローゼ症候群は多量の蛋白尿と低蛋白血症等を呈することが知られている。ネフローゼ症候群には微小変化型のもの(minimal change nephritic syndrome: MC)、巣状糸球体硬化症(FSGS)、膜性腎症(MN)、膜性増殖性糸球体腎炎(MPGN)を発症するもの等が含まれる。 Nephrotic syndrome is known to exhibit large amounts of proteinuria and hypoproteinemia. Nephrotic syndrome has minimal change type (minimal change nephritic syndrome: MC), focal glomerulosclerosis (FSGS), membranous nephropathy (MN), membranous proliferative glomerulonephritis (MPGN) Etc. are included.
 ネフローゼ症候群においては、糸球体の濾過機能に異常が認められるが、他の腎症と異なり、尿細管には殆ど組織学的な変化が見られず、多くの症例では、急性に発症し、ステロイドや免疫抑制剤の投与により寛解する。再発しやすく、組織型によっては予後不良などの特徴を有する。 In nephrotic syndrome, there is an abnormality in the glomerular filtration function, but unlike other nephropathy, there are almost no histological changes in the tubules. And remission by administration of immunosuppressants. It tends to recur and has characteristics such as poor prognosis depending on the tissue type.
 ネフローゼ症候群においては、尿中に比較的低分子の血清蛋白質が多量に漏出するため、血清中の総蛋白質量およびアルブミン/グロブリン比が低下することが知られている。従って、ネフローゼ症候群の病態判定には、尿中蛋白・血清総蛋白質量及びアルブミン/グロブリン比を測定することが従来から行われている。しかし、ステロイド投与や安静食事療法等の治療により、腎臓糸球体の濾過機能が改善し、尿中への蛋白質の漏出が停止しても、血清総蛋白質量及びアルブミン/グロブリン比は、すぐに著しくは回復しない。それゆえ、これらの測定値にはネフローゼ症候群の治療効果等の病態があまり迅速には反映されず、定量性にも問題があった。そこで、ネフローゼ症候群をより感度よく正確に判定する方法の開発が要望されていた。
 従来、先天性ネフローゼ症候群ではNPHS1, NPHS2, ACTN4などの原因遺伝子が同定されているが、実臨床の大多数を占める後天性ネフローゼ症候群では、多因子遺伝要因の関与が考えられており、いまだにほとんどの疾患感受性遺伝子が明らかになっていない。
In nephrotic syndrome, it is known that serum protein with a relatively low molecular weight leaks in urine in large amounts, so that the total protein mass and albumin / globulin ratio in serum are decreased. Therefore, to determine the pathological condition of nephrotic syndrome, it has been conventionally performed to measure urinary protein / serum total protein mass and albumin / globulin ratio. However, even if steroid administration or resting diet therapy improves the filtration function of the kidney glomeruli and the protein leakage into the urine stops, the serum total protein mass and albumin / globulin ratio are immediately Will not recover. Therefore, these measured values do not reflect the pathological condition such as the therapeutic effect of nephrotic syndrome so quickly, and there is a problem in quantitativeness. Therefore, there has been a demand for development of a method for more accurately and accurately determining nephrotic syndrome.
In the past, causative genes such as NPHS1, NPHS2, and ACTN4 have been identified in congenital nephrotic syndrome, but multifactorial genetic factors are considered to be involved in acquired nephrotic syndrome, which accounts for the majority of clinical practice, and most of them still remain. The disease susceptibility gene has not been clarified.
 非特許文献1には、Glypican5(GPC5)が細胞表面のプロテオグリカンであり、線維芽細胞増殖因子(FGF)-2のシグナルを増強して中胚葉細胞の増殖に関与すること、そして、GPC5が横紋筋肉腫(Rhabdomyosarcoma)などの腫瘍のターゲット分子として期待できることが記載されている。しかしながら、FGFとネフローゼ症候群との関係は知られていないし、GPC5のネフローゼ症候群における関与についても全く知られていない。 Non-Patent Document 1 describes that Glypican5 (GPC5) is a cell surface proteoglycan that enhances fibroblast growth factor (FGF) -2 signal and participates in the growth of mesoderm cells, and GPC5 It is described that it can be expected as a target molecule for tumors such as rhabdomyosarcoma. However, the relationship between FGF and nephrotic syndrome is not known, and the involvement of GPC5 in nephrotic syndrome is not known at all.
 本発明は、ネフローゼ症候群の発症や進行を正確に予測するための検査方法を提供することを課題とする。本発明はまた、ネフローゼ症候群の予防薬又は治療薬およびそのスクリーニング方法を提供することを課題とする。 An object of the present invention is to provide an inspection method for accurately predicting the onset and progression of nephrotic syndrome. Another object of the present invention is to provide a preventive or therapeutic agent for nephrotic syndrome and a screening method thereof.
 本発明者らは、ネフローゼ症候群に関連がある一塩基多型(SNP;single nucleotide polymorphism)を同定するため、解析を行った。その結果、GPC5遺伝子上に存在する塩基のSNPまたは該塩基と連鎖不平衡関係にあるSNPがネフローゼ症候群に関連があることを見出した。さらに、GPC5遺伝子の発現を抑制する二本鎖RNAがネフローゼ症候群の発症を抑制し、発症後にも症状を低減させることを見出し、GPC5遺伝子の発現あるいはGPC5の機能を抑制する物質がネフローゼ症候群の予防薬や治療薬として有用であることを見出した。さらに、FGF受容体(FGFR)チロシンキナーゼ活性阻害剤などのFGFシグナル阻害剤もネフローゼ症候群の予防薬や治療薬として有用であることを見出し、本発明を完成するに至った。 The present inventors analyzed to identify a single nucleotide polymorphism (SNP) associated with nephrotic syndrome. As a result, it was found that the SNP of the base present on the GPC5 gene or the SNP in linkage disequilibrium with the base is related to nephrotic syndrome. Furthermore, we found that double-stranded RNA that suppresses GPC5 gene expression suppresses the onset of nephrotic syndrome and reduces symptoms after onset, and substances that suppress GPC5 gene expression or GPC5 function prevent nephrotic syndrome It was found to be useful as a medicine or therapeutic agent. Furthermore, the inventors have found that FGF signal inhibitors such as FGF receptor (FGFR) tyrosine kinase activity inhibitors are also useful as preventive and therapeutic agents for nephrotic syndrome, and have completed the present invention.
 すなわち、本発明は以下の通りである。
 (1)GPC5遺伝子上に存在する塩基のSNPまたは該塩基と連鎖不平衡にある塩基のSNPを分析し、当該分析結果に基づいてネフローゼ症候群を検査する方法。
 (2)前記SNPが、配列番号1の塩基配列の塩基番号101番目の塩基に相当する塩基における多型である、(1)に記載の方法。
 (3)配列番号1の塩基配列において、塩基番号101番目の塩基を含む10塩基以上の配列、又はその相補配列を有するネフローゼ症候群検査用プローブ。
 (4)配列番号1のいずれかの塩基配列において、塩基番号101番目の塩基を含む領域を増幅することのできるネフローゼ症候群検査用プライマー。
 (5)GPC5遺伝子またはGPC5遺伝子のプロモーターに連結されたレポーター遺伝子を発現する細胞に医薬候補物質を添加する工程、GPC5遺伝子またはレポーター遺伝子の発現量を測定する工程、及び前記発現量を低下させる物質を選択する工程を含む、ネフローゼ症候群の予防薬又は治療薬をスクリーニングする方法。
 (6)GPC5遺伝子またはGPC5遺伝子産物の発現量を測定する工程を含む、ネフローゼ症候群の検査方法。
 (7)FGFシグナル阻害剤を有効成分として含む、ネフローゼ症候群を予防または治療するための医薬。
 (8)FGFシグナル阻害剤がFGFのFGF受容体への結合を阻害する物質である、(7)に記載の医薬。
 (9)FGFのFGF受容体への結合を阻害する物質が、GPC5遺伝子発現抑制物質またはGPC5機能抑制物質である、(8)に記載の医薬。
 (10)GPC5遺伝子発現抑制物質がGPC5遺伝子に対する二本鎖RNAである、(9)に記載の医薬。
 (11)FGFシグナル阻害剤が、FGF受容体チロシンキナーゼ活性阻害剤である、(7)に記載の医薬。
 (12)FGFのFGF受容体への結合を阻害する物質が、Sulfatase 2である、(8)に記載の医薬。
 (13)FGFのFGF受容体への結合を阻害する物質またはFGF受容体チロシンキナーゼ活性を阻害する物質をスクリーニングする工程を含む、ネフローゼ症候群の予防薬又は治療薬をスクリーニングする方法。
That is, the present invention is as follows.
(1) A method for analyzing nephrotic syndrome based on the analysis result of a base SNP present on the GPC5 gene or a base SNP in linkage disequilibrium with the base.
(2) The method according to (1), wherein the SNP is a polymorphism in a base corresponding to the base of the base number 101 in the base sequence of SEQ ID NO: 1.
(3) A probe for testing nephrotic syndrome having a sequence of 10 bases or more including the base of the base number 101 in the base sequence of SEQ ID NO: 1, or a complementary sequence thereof.
(4) A primer for nephrotic syndrome test that can amplify a region containing the base at the 101st base number in any base sequence of SEQ ID NO: 1.
(5) a step of adding a drug candidate substance to a cell expressing a GPC5 gene or a reporter gene linked to a promoter of the GPC5 gene, a step of measuring the expression level of the GPC5 gene or the reporter gene, and a substance that decreases the expression level A method for screening a preventive or therapeutic agent for nephrotic syndrome, comprising a step of selecting
(6) A method for examining nephrotic syndrome, comprising a step of measuring the expression level of a GPC5 gene or GPC5 gene product.
(7) A medicament for preventing or treating nephrotic syndrome, comprising an FGF signal inhibitor as an active ingredient.
(8) The medicament according to (7), wherein the FGF signal inhibitor is a substance that inhibits the binding of FGF to the FGF receptor.
(9) The medicament according to (8), wherein the substance that inhibits the binding of FGF to the FGF receptor is a GPC5 gene expression suppressing substance or a GPC5 function suppressing substance.
(10) The medicament according to (9), wherein the substance that suppresses GPC5 gene expression is a double-stranded RNA against the GPC5 gene.
(11) The medicament according to (7), wherein the FGF signal inhibitor is an FGF receptor tyrosine kinase activity inhibitor.
(12) The medicament according to (8), wherein the substance that inhibits the binding of FGF to the FGF receptor is Sulfatase 2.
(13) A method for screening a preventive or therapeutic agent for nephrotic syndrome, comprising screening a substance that inhibits the binding of FGF to an FGF receptor or a substance that inhibits FGF receptor tyrosine kinase activity.
 本発明の検査方法によればネフローゼ症候群の発症リスクや進行を正確に予測することができるため、蛋白尿をコントロールすることができ、腎障害進行を抑制することができる。これにより、腎機能廃絶により高額医療の代名詞である人工腎臓治療を必要とする患者数を減じることが可能となる。また、二本鎖RNAなどのGPC5遺伝子の発現を阻害する物質やFGF受容体チロシンキナーゼ活性阻害剤などのFGFシグナル阻害剤は糸球体における蛋白質の透過性を減少させる作用を有しており、ネフローゼ症候群の新規な予防薬または治療薬として有用である。 According to the test method of the present invention, since the onset risk and progression of nephrotic syndrome can be accurately predicted, proteinuria can be controlled, and progression of renal damage can be suppressed. This makes it possible to reduce the number of patients who need artificial kidney treatment, which is synonymous with expensive medical care, due to the elimination of renal function. In addition, substances that inhibit GPC5 gene expression, such as double-stranded RNA, and FGF signal inhibitors, such as FGF receptor tyrosine kinase activity inhibitors, have the effect of reducing protein permeability in glomeruli. It is useful as a novel preventive or therapeutic agent for syndrome.
各genotypeにおけるGPC5遺伝子の発現量を示す図。縦軸は任意ユニットである。The figure which shows the expression level of GPC5 gene in each genotype. The vertical axis is an arbitrary unit. (A)RT-PCRによるsiRNAのGPC5遺伝子発現抑制の確認(電気泳動写真)。(B)GEC-T細胞を用いた蛋白質透過性評価系の模式図。(C)siRNAの蛋白質透過性に与える影響の評価。コントロールはsiRNA非添加、陰性コントロールは陰性コントロール siRNAの添加、siRNAはGPC5特異的siRNAの添加を示す。縦軸は蛋白質透過濃度を示す。(A) Confirmation of siRNA suppression of GPC5 gene expression by RT-PCR (electrophoresis photograph). (B) Schematic diagram of a protein permeability evaluation system using GEC-T cells. (C) Evaluation of the effect of siRNA on protein permeability. The control indicates no addition of siRNA, the negative control indicates the addition of negative control siRNA, and siRNA indicates the addition of GPC5-specific siRNA. The vertical axis represents the protein transmission concentration. GPC5のFGF-2とFGFRの結合を促進する作用に対する、siRNAの効果を示す図。(A)がラット糸球体上皮細胞株、(B)がヒト大腸癌細胞株での結果である。The figure which shows the effect of siRNA with respect to the effect | action which promotes the coupling | bonding of FGF-2 and FGFR of GPC5. (A) is a result of a rat glomerular epithelial cell line, and (B) is a result of a human colon cancer cell line. 抗GPC5抗体を用いたマウス腎臓免疫組織染色の写真。(A)野生型マウス、(B)GPC5糸球体特異的ノックダウンマウス。(C)はノックダウンマウス作製に用いたBACコンストラクトを示す。Photograph of mouse kidney immune tissue staining using anti-GPC5 antibody. (A) Wild type mouse, (B) GPC5 glomerular-specific knockdown mouse. (C) shows the BAC construct used for knockdown mouse production. 野生型マウス(GPC5特異的siRNA投与、非投与)およびGPC5糸球体特異的ノックダウンマウスにおける腎炎誘発刺激(PAN+bFGF)後のアルブミンクレアチニン比(ACR)および尿総蛋白量(uTP)の変動を示す図。Changes in albumin creatinine ratio (ACR) and total urine protein (uTP) after nephritis-induced stimulation (PAN + bFGF) in wild-type mice (GPC5-specific siRNA administration, non-administration) and GPC5 glomerular-specific knockdown mice FIG. 野生型マウスおよびGPC5糸球体特異的ノックダウンマウスにおける腎炎誘発刺激(ピューロマイシン+bFGF)後のアルブミン血中のアルブミン(ALB)濃度を示す図。野生型マウスでは10日目の測定後にGPC5特異的siRNAを投与した。The figure which shows the albumin (ALB) density | concentration in the albumin blood after nephritis induction stimulation (puromycin + bFGF) in a wild type mouse | mouth and a GPC5 glomerulus specific knockdown mouse | mouth. In wild-type mice, GPC5-specific siRNA was administered after measurement on the 10th day. 野生型マウス(GPC5特異的siRNA投与、非投与)およびGPC5糸球体特異的ノックダウンマウスにおける巣状分節状硬化の割合を示す図。The figure which shows the ratio of nest | segmentation segmental hardening in a wild-type mouse (GPC5-specific siRNA administration, non-administration) and a GPC5 glomerulus-specific knockdown mouse | mouth. 野生型マウス(PD173074投与または非投与)における腎炎誘発刺激(ピューロマイシン+bFGF)後のアルブミンクレアチニン比(ACR)の変動を示す図。The figure which shows the fluctuation | variation of the albumin creatinine ratio (ACR) after nephritis induction stimulation (puromycin + bFGF) in a wild type mouse (PD173074 administration or non-administration). 野生型マウス(PD173074投与または非投与)における腎炎誘発刺激(アドリアマイシン)後のアルブミンクレアチニン比(ACR)の変動を示す図。The figure which shows the fluctuation | variation of the albumin creatinine ratio (ACR) after nephritis induction stimulation (adriamycin) in a wild-type mouse (PD173074 administration or non-administration). FGFシグナルに対するGPC5とSulfatase 2の役割を示す模式図。The schematic diagram which shows the role of GPC5 and Sulfatase 2 with respect to FGF signal. GEC-T細胞における細胞増殖に対するSulfatase 2 siRNAの効果を示す図。The figure which shows the effect of Sulfatase 2 siRNA on cell proliferation in GEC-T cells.
<1>SNPに基づく検査方法
 本発明の検査方法は、GPC5遺伝子上に存在する塩基のSNPまたは該塩基と連鎖不平衡にある塩基のSNPを分析し、該分析に基づいてネフローゼ症候群を検査する方法(検査データを得る方法)である。ネフローゼ症候群は、蛋白尿(1日蛋白量3.5g以上持続)と低蛋白血症(血清総蛋白量6.0g/100ml以下)を特徴とする疾患であり、MC、FSGS、MN、MPGN、糖尿病性腎症(DMN)などを含むが、本発明の検査法によれば、特に四大組織病変であるMCNS、FSGS、MN、MPGNを正確に検出することができる。なお、本発明において、「検査」とは将来、ネフローゼ症候群になるかどうかを予測するための検査、及びネフローゼ症候群の程度が重症化するかどうかを予測するための検査を含む。
<1> Test Method Based on SNP The test method of the present invention analyzes a base SNP present on the GPC5 gene or a base SNP in linkage disequilibrium with the base, and tests nephrotic syndrome based on the analysis. This is a method (a method for obtaining inspection data). Nephrotic syndrome is characterized by proteinuria (continuous daily protein content of 3.5 g or more) and hypoproteinemia (serum total protein content of 6.0 g / 100 ml or less). MC, FSGS, MN, MPGN, diabetic Although nephropathy (DMN) and the like are included, according to the test method of the present invention, MCNS, FSGS, MN, and MPGN that are particularly four major tissue lesions can be accurately detected. In the present invention, “test” includes a test for predicting whether nephrotic syndrome will occur in the future and a test for predicting whether the degree of nephrotic syndrome will become severe.
 GPC5遺伝子としては、ヒトGPC5遺伝子が好ましく、例えば、GenBank Accession No. NC_000013.9の90848929 .. 92317490に登録された配列を有する遺伝子を挙げることができる。ただし、該遺伝子は人種の違いなどによって1又は複数の塩基に置換や欠失等が存在する可能性があるため、上記配列の遺伝子に限定されない。
 ネフローゼ症候群に関連するGPC5遺伝子のSNPは特に制限されないが、例えば、イントロン2に存在するrs16946160が挙げられる。rs16946160はNational Center for Biotechnology InformationのdbSNPデータベース(//www.ncbi.nlm.nih.gov/projects/SNP/)の登録番号を示す。
The GPC5 gene is preferably a human GPC5 gene, and examples thereof include a gene having a sequence registered in 90848929 .. 92317490 of GenBank Accession No. NC — 000013.9. However, the gene is not limited to the gene of the above sequence because substitution or deletion may exist in one or a plurality of bases due to differences in race.
The SNP of the GPC5 gene associated with nephrotic syndrome is not particularly limited, and examples thereof include rs16946160 present in intron 2. rs16946160 indicates the registration number of the dbSNP database (//www.ncbi.nlm.nih.gov/projects/SNP/) of National Center for Biotechnology Information.
 rs16946160はGenBank Accession No. NT_009952.14の5293489番目(NC_000013.9の91001814)の塩基におけるグアニン(G)/アデニン(A)の多型を意味し、このアリルがAである場合はネフローゼ症候群になる確率が高い。また、遺伝子型を考慮して解析した場合は、rs16946160がAA>AG>GGの順でネフローゼ症候群になる確率が高い。
 なお、rs16946160について、SNP塩基及びその前後100bpの領域を含む合計201bpの長さの配列を、配列番号1に示した(101番目の塩基が多型を有する)。
 この塩基に相当する多型を本発明の方法によって解析する。ここで、「相当する」とは、ヒトGPC5遺伝子上の上記配列を有する領域中の該当塩基を意味し、仮に、人種の違いなどによって上記配列がSNP以外の位置で若干変化したとしても、その中の該当塩基を解析することも含む。
rs16946160 is a polymorphism of guanine (G) / adenine (A) at the 5393489th base of GenBank Accession No. NT_009952.14 (91001814 of NC_000013.9). When this allele is A, nephrotic syndrome occurs. Probability is high. Moreover, when the genotype is taken into consideration, the probability that rs16946160 becomes nephrotic syndrome in the order of AA>AG> GG is high.
Regarding rs16946160, a sequence having a total length of 201 bp including the SNP base and the region of 100 bp before and after that is shown in SEQ ID NO: 1 (the 101st base has a polymorphism).
The polymorphism corresponding to this base is analyzed by the method of the present invention. Here, “corresponding” means a corresponding base in the region having the above sequence on the human GPC5 gene. Even if the above sequence is slightly changed at a position other than the SNP due to a difference in race, It also includes analyzing the corresponding base in it.
 上記SNPの塩基の種類を調べることによって、ネフローゼ症候群を検査することができる。なお、GPC5遺伝子の配列はセンス鎖を解析してもよいし、アンチセンス鎖を解析してもよい。例えば、rs16946160の場合、センス鎖を解析する場合の多型はA/Gであるが、アンチセンス鎖を解析する場合の多型はT/Cとなる。
 また、本発明において解析する塩基は上記SNPに限定されず、上記の塩基と連鎖不平衡関係にある多型を分析してもよい。ここで「上記の塩基と連鎖不平衡にある多型」とは、上記の多型とr2>0.5の関係を満たす塩基をいう。
Nephrotic syndrome can be examined by examining the type of the SNP base. Note that the GPC5 gene sequence may be analyzed for the sense strand or the antisense strand. For example, in the case of rs16946160, the polymorphism when analyzing the sense strand is A / G, but the polymorphism when analyzing the antisense strand is T / C.
In addition, the base to be analyzed in the present invention is not limited to the above SNP, and a polymorphism that is in linkage disequilibrium with the above base may be analyzed. Here, “polymorphism in linkage disequilibrium with the above-mentioned base” refers to a base that satisfies the relationship of r 2 > 0.5 with the above-described polymorphism.
 GPC5遺伝子のSNPの解析に用いる試料としては、染色体DNAを含む試料であれば特に制限されないが、例えば、血液、尿等の体液サンプル、細胞、毛髪等の体毛、爪などが挙げられる。SNPの解析にはこれらの試料を直接使用することもできるが、これらの試料から染色体DNAを常法により単離し、これを用いて解析することが好ましい。 The sample used for the analysis of the SNP of the GPC5 gene is not particularly limited as long as it contains a chromosomal DNA, and examples thereof include body fluid samples such as blood and urine, cells, body hair such as hair, and nails. Although these samples can be used directly for the analysis of SNP, it is preferable to isolate chromosomal DNA from these samples by a conventional method and analyze them.
 GPC5遺伝子のSNPの解析は、通常のSNP解析方法によって行うことができる。例えば、シークエンス解析、PCR、ハイブリダイゼーションなどが挙げられるが、これらに限定されない。 The analysis of SNP of GPC5 gene can be performed by the usual SNP analysis method. Examples include, but are not limited to, sequence analysis, PCR, hybridization, and the like.
 シークエンスは通常の方法により行うことができる。具体的には、多型を示す塩基の5’側 数十塩基の位置に設定したプライマーを使用してシークエンス反応を行い、その解析結果から、該当する位置がどの種類の塩基であるかを決定することができる。なお、シークエンスを行う場合、あらかじめ多型を含む断片をPCRなどによって増幅しておくことが好ましい。 The sequence can be performed by a normal method. Specifically, a sequence reaction is performed using a primer set at a position of several tens of bases on the 5 ′ side of the base showing the polymorphism, and the type of base at the corresponding position is determined from the analysis result. can do. When sequencing is performed, it is preferable to amplify a fragment containing a polymorphism in advance by PCR or the like.
 また、PCRによる増幅の有無を調べることによっても解析することができる。例えば、多型を示す塩基を含む領域に対応する配列を有し、かつ、各多型に対応するプライマーをそれぞれ用意する。それぞれのプライマーを使用してPCRを行い、増幅産物の有無によってどのタイプの多型であるかを決定することができる。 It can also be analyzed by examining the presence or absence of amplification by PCR. For example, a primer having a sequence corresponding to a region containing a base showing a polymorphism and corresponding to each polymorphism is prepared. PCR can be performed using each primer, and the type of polymorphism can be determined depending on the presence or absence of the amplification product.
 また、多型を含むDNA断片を増幅し、増幅産物の電気泳動における移動度の違いによってどのタイプの多型であるかを決定することもできる。このような方法としては、例えば、PCR-SSCP(single-strand conformation polymorphism)法(Genomics. 1992 Jan 1; 12(1): 139-146.)が挙げられる。具体的には、まず、GPC5遺伝子の多型部位を含むDNAを増幅し、増幅したDNAを一本鎖DNAに解離させる。次いで、解離させた一本鎖DNAを非変性ゲル上で分離し、分離した一本鎖DNAのゲル上での移動度の違いによってどのタイプの多型であるかを決定することができる。 It is also possible to amplify a DNA fragment containing a polymorphism and determine which type of polymorphism is based on the difference in mobility of the amplified product in electrophoresis. Examples of such a method include a PCR-SSCP (single-strand conformation polymorphism) method (Genomics. 1992 Jan 1; 12 (1): 139-146.). Specifically, first, DNA containing a polymorphic site of the GPC5 gene is amplified, and the amplified DNA is dissociated into single-stranded DNA. Next, the dissociated single-stranded DNA is separated on a non-denaturing gel, and the type of polymorphism can be determined by the difference in mobility of the separated single-stranded DNA on the gel.
 さらに、多型を示す塩基が制限酵素認識配列に含まれる場合は、制限酵素による切断の有無によって解析することもできる(RFLP法)。この場合、まず、DNA試料をPCRで増幅し、それを制限酵素により切断する。次いで、DNA断片を分離し、検出されたDNA断片の大きさによってどのタイプの多型であるかを決定することができる。 Furthermore, when a base showing polymorphism is included in the restriction enzyme recognition sequence, it can be analyzed by the presence or absence of cleavage by a restriction enzyme (RFLP method). In this case, first, a DNA sample is amplified by PCR and cut with a restriction enzyme. The DNA fragments can then be separated and the type of polymorphism determined by the size of the detected DNA fragment.
 ハイブリダイゼーションの有無を調べることによって多型の種類を解析することも可能である。すなわち、各塩基に対応するプローブを用意し、いずれのプローブにハイブリダイズするかを調べることによってSNPがいずれの塩基であるかを調べることもできる。 It is also possible to analyze the type of polymorphism by examining the presence or absence of hybridization. That is, it is possible to determine which base an SNP is by preparing probes corresponding to each base and examining which probe hybridizes.
<2>ネフローゼ症候群検査用試薬
 本発明はまた、ネフローゼ症候群を検査するためのプライマーやプローブなどの検査試薬を提供する。このようなプローブとしては、GPC5遺伝子における上記多型部位を含み、ハイブリダイズの有無によって多型部位の塩基の種類を判定できるプローブが挙げられる。具体的には、配列番号1において塩基配列の101番目の塩基を含む配列、又はその相補配列を有する10塩基以上の長さのプローブが挙げられる。プローブの長さはより好ましくは、15~35塩基であり、さらに好ましくは20~35塩基である。このようなプローブとしては、例えば、配列番号10またはその相補配列を含むプローブが例示される。
<2> Reagent for Nephrotic Syndrome The present invention also provides a test reagent such as a primer or a probe for examining nephrotic syndrome. Examples of such a probe include a probe that includes the polymorphic site in the GPC5 gene and can determine the type of base at the polymorphic site based on the presence or absence of hybridization. Specifically, a probe having a length of 10 bases or more having a sequence containing the 101st base of the base sequence in SEQ ID NO: 1 or a complementary sequence thereof can be mentioned. The length of the probe is more preferably 15 to 35 bases, and further preferably 20 to 35 bases. An example of such a probe is a probe containing SEQ ID NO: 10 or a complementary sequence thereof.
 また、プライマーとしては、GPC5遺伝子における上記多型部位を増幅するためのPCRに用いることのできるプライマー、又は上記多型部位を配列解析(シークエンシング)するために用いることのできるプライマーが挙げられる。具体的には、配列番号1の塩基配列の101番目の塩基含む領域を増幅したりシークエンシングしたりすることのできるプライマーが挙げられる。このようなプライマーの長さは10~50塩基が好ましく、15~35塩基がより好ましく、20~35塩基がさらに好ましい。
 上記多型部位をシークエンシングするためのプライマーとしては、上記塩基の5’側領域、好ましくは30~100塩基上流の配列を有するプライマーや、上記塩基の3’側領域、好ましくは30~100塩基下流の領域に相補的な配列を有するプライマーが例示される。PCRによる増幅の有無で多型を判定するために用いるプライマーとしては、上記塩基を含む配列を有し、上記塩基を3’側に含むプライマーや、上記塩基を含む配列の相補配列を有し、上記塩基の相補塩基を3’側に含むプライマーなどが例示される。
 このようなプライマーとしては、配列番号11の塩基配列を含むプライマーが例示できる。
 なお、本発明の検査用試薬はこれらのプライマーやプローブに加えて、PCR用のポリメラーゼやバッファー、ハイブリダイゼーション用試薬などを含むものであってもよい。
Examples of the primer include a primer that can be used for PCR for amplifying the polymorphic site in the GPC5 gene, or a primer that can be used for sequence analysis (sequencing) of the polymorphic site. Specifically, a primer that can amplify or sequence a region containing the 101st base of the base sequence of SEQ ID NO: 1 is exemplified. The length of such a primer is preferably 10 to 50 bases, more preferably 15 to 35 bases, and further preferably 20 to 35 bases.
As a primer for sequencing the polymorphic site, a primer having a sequence 5 ′ side of the base, preferably 30 to 100 bases upstream, or a 3 ′ side region of the base, preferably 30 to 100 bases. A primer having a sequence complementary to the downstream region is exemplified. As a primer used to determine polymorphism by the presence or absence of amplification by PCR, it has a sequence containing the base, a primer containing the base on the 3 ′ side, a complementary sequence of the sequence containing the base, Examples include a primer containing a base complementary to the above base on the 3 ′ side.
An example of such a primer is a primer comprising the nucleotide sequence of SEQ ID NO: 11.
In addition to these primers and probes, the test reagent of the present invention may contain a polymerase for PCR, a buffer, a hybridization reagent, and the like.
<3>ネフローゼ症候群の予防薬又は治療薬のスクリーニング方法
 本発明者の研究により、rs16946160はイントロンに存在しGPC5の発現量に影響を与えること、およびGPC5遺伝子の発現量がネフローゼ症候群モデルで増加していることが示唆された。以上のことから、GPC5遺伝子の発現を低下させるあるいはGPC5の機能を阻害する物質をスクリーニングすることにより、ネフローゼ症候群の予防薬又は治療薬となりうる候補物質を得ることができる。
 すなわち、本発明のスクリーニング方法としては、GPC5遺伝子またはGPC5遺伝子のプロモーターに連結されたレポーター遺伝子を発現する細胞に医薬候補物質を添加する工程、GPC5遺伝子またはレポーター遺伝子の発現量を測定する工程、及び前記発現量を低下させる物質を選択する工程を含む、ネフローゼ症候群の予防薬又は治療薬のスクリーニング方法が挙げられる。
<3> Method of screening for preventive or therapeutic agent for nephrotic syndrome According to the present inventors' research, rs16946160 is present in an intron and affects the expression level of GPC5, and the expression level of GPC5 gene is increased in a nephrotic syndrome model. It was suggested that From the above, a candidate substance that can be a prophylactic or therapeutic drug for nephrotic syndrome can be obtained by screening a substance that decreases the expression of the GPC5 gene or inhibits the function of GPC5.
That is, the screening method of the present invention includes a step of adding a drug candidate substance to a cell that expresses a reporter gene linked to a GPC5 gene or a GPC5 gene promoter, a step of measuring the expression level of the GPC5 gene or reporter gene, and The screening method of the preventive or therapeutic agent of nephrotic syndrome including the process of selecting the substance which reduces the said expression level is mentioned.
 GPC5遺伝子を発現する細胞としては、糸球体上皮細胞が好ましく、GEC-T細胞(J Am Soc Nephrol 13:2027-36,2002)などを用いることができる。 As the cells that express the GPC5 gene, glomerular epithelial cells are preferable, and GEC-T cells (J Am Soc Nephrol 13: 2027-36, 2002) can be used.
 GPC5遺伝子のプロモーターに連結されたレポーター遺伝子を用いる場合、GPC5遺伝子のプロモーターとしては、該遺伝子の転写開始点の上流約2kbpを含む領域が好ましく、上流約5kbpを含む領域がより好ましい。プロモーターの配列情報はGPC5遺伝子のゲノム配列(NC_000013.9)より入手できる。
 レポーター遺伝子としては、ルシフェラーゼ遺伝子、GFP遺伝子、クロラムフェニコールアセチルトランスフェラーゼ遺伝子などが例示できる。これらのレポーター遺伝子をGPC5遺伝子のプロモーターに連結し、これを哺乳類細胞に遺伝子を導入するために用いられるプラスミドに組み込み、リポフェクションなどの通常の方法にて細胞にトランスフェクションする。
 上記のようなGPC5遺伝子を発現する細胞、又はレポーター遺伝子が導入された細胞に医薬候補物質を添加し、GPC5遺伝子またはレポーター遺伝子の発現量を測定する。
When a reporter gene linked to the promoter of the GPC5 gene is used, the GPC5 gene promoter is preferably a region containing about 2 kbp upstream of the transcription start point of the gene, and more preferably a region containing about 5 kbp upstream. The sequence information of the promoter can be obtained from the genome sequence of the GPC5 gene (NC_000013.9).
Examples of reporter genes include luciferase gene, GFP gene, chloramphenicol acetyltransferase gene and the like. These reporter genes are linked to the GPC5 gene promoter, incorporated into a plasmid used to introduce the gene into mammalian cells, and transfected into cells by a conventional method such as lipofection.
A drug candidate substance is added to a cell expressing the GPC5 gene as described above or a cell into which the reporter gene has been introduced, and the expression level of the GPC5 gene or reporter gene is measured.
 医薬候補物質としては特に制限はなく、例えば、低分子合成化合物であってもよいし、天然物に含まれる化合物であってもよい。また、ペプチドや核酸であってもよい。スクリーニングには個々の被検物質を用いてもよいが、これらの物質を含む化合物ライブラリーを用いてもよい。候補物質の中から、GPC5遺伝子又はレポーター遺伝子の発現量を(非添加時と比べて)低下させるものを選択することにより、ネフローゼ症候群薬の候補物質を得ることができる。 The drug candidate substance is not particularly limited, and may be, for example, a low molecular synthetic compound or a compound contained in a natural product. Further, it may be a peptide or a nucleic acid. Although individual test substances may be used for screening, a compound library containing these substances may be used. A candidate substance for a nephrotic syndrome drug can be obtained by selecting a candidate substance that reduces the expression level of the GPC5 gene or reporter gene (compared to the case where no addition is made).
 GPC5遺伝子の発現量はRT-PCR、定量PCR、ノーザンブロット、ELISA、Western blotting、In situ hybridization、免疫組織染色などの方法により測定することができる。
 レポーター遺伝子の発現量はレポーター遺伝子の種類にもよるが、蛍光強度や発光強度、放射能強度などによって測定することができる。
 GPC5遺伝子またはレポーター遺伝子の発現量を変化させた物質をネフローゼ症候群治療薬の候補物質として選択することができる。
The expression level of the GPC5 gene can be measured by methods such as RT-PCR, quantitative PCR, Northern blot, ELISA, Western blotting, In situ hybridization, and immunohistochemical staining.
Although the expression level of the reporter gene depends on the type of reporter gene, it can be measured by fluorescence intensity, luminescence intensity, radioactivity intensity, and the like.
A substance in which the expression level of the GPC5 gene or reporter gene is changed can be selected as a candidate substance for a nephrotic syndrome therapeutic drug.
 また、FGFやFGFRを用い、FGFシグナル阻害活性を指標にして、ネフローゼ症候群の予防薬又は治療薬のスクリーニングを行うこともできる。例えば、FGFとFGFRを利用し、FGFのFGFRへの結合を阻害する物質をスクリーニングするか、またはFGFのFGFRへの結合によって活性化されるFGFRのチロシンキナーゼ活性を阻害する物質をスクリーニングすることによって、ネフローゼ症候群の予防薬又は治療薬をスクリーニングすることができる。 It is also possible to screen for preventive or therapeutic agents for nephrotic syndrome using FGF or FGFR using FGF signal inhibitory activity as an index. For example, using FGF and FGFR, screening for substances that inhibit the binding of FGF to FGFR, or screening for substances that inhibit the tyrosine kinase activity of FGFR activated by the binding of FGF to FGFR In addition, a prophylactic or therapeutic agent for nephrotic syndrome can be screened.
 ここで使用するFGFとしては、FGF-2が好ましい。FGF-2としては配列がヒト、マウス、ラットなどで公知であり、その配列に基づいてクローニングされたものや市販のものを使用することができる。例えば、ヒトFGF-2としてはDatabase Swiss ProtのAccession No. P09038 (UniProtKBのFGF2_HUMAN)の配列を有するタンパク質またはその断片を使用することができる。
 一方、腎臓には種々のタイプのFGFRが発現しており、いずれもFGF2と反応する。したがって、使用するFGFRはそのいずれでもよいが、例えば、ヒトFGFRとしてはDatabase Swiss ProtのAccession No. P11362 (UniProtKBのFGFR1_HUMAN)の配列を有するタンパク質またはその断片を使用することができる。
FGF-2 is preferred as the FGF used here. The sequence of FGF-2 is known in humans, mice, rats and the like, and those cloned based on the sequence and those commercially available can be used. For example, as human FGF-2, a protein having the sequence of Database Swiss Prot Accession No. P09038 (UniProtKB FGF2_HUMAN) or a fragment thereof can be used.
On the other hand, various types of FGFR are expressed in the kidney and all react with FGF2. Therefore, any FGFR may be used. For example, a protein having a sequence of Database Swiss Prot Accession No. P11362 (FGFR1_HUMAN of UniProtKB) or a fragment thereof can be used as human FGFR.
 FGFのFGFRへの結合を阻害する物質をスクリーニングする方法としては、例えば、FGFとFGFRの両タンパク質を用いたインビトロでのプルダウンアッセイや表面プラズモン共鳴現象を利用した相互作用の検出系を用意し、相互作用を阻害する化合物を選択する方法などが挙げられる。 As a method of screening for substances that inhibit the binding of FGF to FGFR, for example, an in vitro pull-down assay using both FGF and FGFR proteins and an interaction detection system using surface plasmon resonance phenomenon are prepared. Examples thereof include a method for selecting a compound that inhibits the interaction.
 FGFRのチロシンキナーゼ活性を阻害する物質をスクリーニングする方法としては、少なくともチロシンキナーゼドメインを含むFGFRとその基質(FGF receptor substrateの全長またはリン酸化部位を含む一部)を用意し、化合物がFGFRによる基質のリン酸化を阻害するかどうかを指標にしてスクリーニングする方法が挙げられる。そして、FGFRチロシンキナーゼ活性のアッセイキットがCyclex社などから販売されている。
 このようにして得られた阻害剤としては、PD173074(Sigma-Aldrich Japan社)やSU5402 (Calbiochem社)、AZD2171(Astrazeneca)、 Ki23057(協和発酵キリン)などが挙げられる。
As a method of screening for substances that inhibit the tyrosine kinase activity of FGFR, at least a FGFR containing a tyrosine kinase domain and its substrate (full length of FGF receptor substrate or a part containing a phosphorylation site) are prepared, and the compound is a substrate by FGFR. And a method of screening using as an index whether or not phosphorylation is inhibited. An assay kit for FGFR tyrosine kinase activity is commercially available from Cyclex.
Examples of the inhibitor thus obtained include PD173074 (Sigma-Aldrich Japan), SU5402 (Calbiochem), AZD2171 (Astrazeneca), Ki23057 (Kyowa Hakko Kirin) and the like.
<4>ネフローゼ症候群治療薬または予防薬
 本発明は、FGFシグナル阻害物質を含むネフローゼ症候群の治療または予防のための医薬を提供する。FGFシグナル阻害物質とは、FGFがFGFRに結合し、FGFRが活性化されてその下流の遺伝子が活性化または減弱化されるという一連の反応において、そのいずれかの段階でシグナルを遮断する物質をいう。
 FGFシグナル阻害物質の一態様としては、FGFのFGF受容体への結合を阻害する物質が挙げられる。
 GPC5はそのヘパラン硫酸(HS)側鎖を介してFGFとFGFRとの結合を強める働きをしているので、GPC5遺伝子発現抑制物質またはGPC5機能抑制物質はFGFのFGF受容体への結合を阻害する物質として使用できる。
<4> Nephrotic Syndrome Therapeutic Agent or Preventive Agent The present invention provides a medicament for treating or preventing nephrotic syndrome containing an FGF signal inhibitor. An FGF signal inhibitor is a substance that blocks a signal at any stage in a series of reactions in which FGF binds to FGFR and FGFR is activated and downstream genes are activated or attenuated. Say.
One embodiment of the FGF signal inhibitory substance is a substance that inhibits the binding of FGF to the FGF receptor.
Since GPC5 works to strengthen the binding of FGF and FGFR via its heparan sulfate (HS) side chain, GPC5 gene expression inhibitor or GPC5 function inhibitor inhibits the binding of FGF to the FGF receptor. Can be used as a substance.
 すなわち、本発明は、GPC5遺伝子発現抑制物質またはGPC5機能抑制物質を含むネフローゼ症候群の治療または予防のための医薬を提供する。
 ここで、GPC5遺伝子発現抑制物質としては、GPC5遺伝子発現抑制作用を有する、二本鎖RNA、アンチセンス核酸、低分子化合物などが挙げられる。
 GPC5遺伝子発現抑制作用を有する二本鎖RNAとしては、RNA干渉(RNA interference)によりGPC5遺伝子の発現を抑制するGPC5遺伝子に対する二本鎖RNA(GPC5遺伝子の部分配列及びその相補鎖からなる二本鎖RNA)が挙げられる。具体的には、このようなGPC5遺伝子に対する二本鎖RNAを細胞内に導入すると内在性GPC5遺伝子から転写されたmRNAが分解されて、結果としてその細胞でのGPC5の遺伝子発現が特異的に抑制される。この手法は、哺乳動物細胞などにおいても確認されている(Hannon,GJ., Nature (2002) 418,244-251 (review);特表2002-516062号公報;特表平8-506734号公報)。
 本発明において用いることができる二本鎖RNA(short-interfering RNA:siRNA)は、GPC5遺伝子のコード領域の塩基配列(例えば配列番号8)のうちの10~50個の連続する塩基配列、好ましくは15~35個の連続する塩基配列、より好ましくは19~27個の連続する塩基配列、さらに好ましくは21~23個の連続する塩基配列とその相補鎖からなるものである。GPC5遺伝子発現抑制物質として用いることのできるsiRNAとしては配列番号4と5からなるsiRNAが挙げられるが、これに限定されず、GPC5遺伝子の他の領域についても探索アルゴリズムを使って特定して使用することができる。
 なお、二本鎖RNAは、2つの別個の鎖から構成される1つの二本鎖RNA分子であってもよいが、1本の鎖がステムループ構造をとることにより形成される二本鎖RNA分子であってもよい。またそれぞれの鎖の3'側に2塩基のオーバーハングを持たせることにより、遺伝子の発現抑制作用を増強することもできる(WO01/75164号パンフレット)。
That is, the present invention provides a medicament for the treatment or prevention of nephrotic syndrome containing a GPC5 gene expression inhibitor or a GPC5 function inhibitor.
Here, examples of the GPC5 gene expression inhibitory substance include double-stranded RNA, antisense nucleic acid, and low molecular weight compounds that have GPC5 gene expression inhibitory action.
The double-stranded RNA having the GPC5 gene expression inhibitory action is a double-stranded RNA for the GPC5 gene that suppresses the expression of the GPC5 gene by RNA interference (a double strand consisting of a partial sequence of the GPC5 gene and its complementary strand). RNA). Specifically, when such double-stranded RNA for the GPC5 gene is introduced into a cell, mRNA transcribed from the endogenous GPC5 gene is degraded, resulting in specific suppression of GPC5 gene expression in the cell. Is done. This technique has also been confirmed in mammalian cells and the like (Hannon, GJ., Nature (2002) 418,244-251 (review); Japanese translations of PCT publication No. 2002-516062; Japanese translations of PCT publication No. 8-506734).
The double-stranded RNA (short-interfering RNA: siRNA) that can be used in the present invention is a sequence of 10 to 50 contiguous nucleotides in the nucleotide sequence (eg, SEQ ID NO: 8) of the GPC5 gene coding region, preferably It consists of 15 to 35 contiguous base sequences, more preferably 19 to 27 contiguous base sequences, still more preferably 21 to 23 contiguous base sequences and their complementary strands. Examples of siRNA that can be used as a GPC5 gene expression inhibitor include siRNA consisting of SEQ ID NOs: 4 and 5, but are not limited thereto, and other regions of the GPC5 gene are also identified and used using a search algorithm be able to.
The double-stranded RNA may be a single double-stranded RNA molecule composed of two separate strands, but a double-stranded RNA formed by a single strand having a stem-loop structure. It may be a molecule. In addition, by providing a 2 base overhang on the 3 ′ side of each strand, the gene expression inhibitory action can also be enhanced (WO01 / 75164 pamphlet).
 GPC5遺伝子発現抑制作用を有するアンチセンス核酸としては、GPC5遺伝子の塩基配列(例えば配列番号8)の一部に相補的な塩基配列を有するアンチセンスオリゴヌクレオチドが挙げられる。アンチセンスオリゴヌクレオチドはホスホロチオエートなどにより修飾されたものであってもよい。アンチセンスオリゴヌクレオチドの長さは特に制限されないが、15~40merが好ましく、20~30merがより好ましい。 Examples of the antisense nucleic acid having a GPC5 gene expression inhibitory action include antisense oligonucleotides having a base sequence complementary to a part of the base sequence of the GPC5 gene (eg, SEQ ID NO: 8). The antisense oligonucleotide may be modified with phosphorothioate or the like. The length of the antisense oligonucleotide is not particularly limited, but is preferably 15 to 40 mer, more preferably 20 to 30 mer.
 GPC5遺伝子発現抑制作用を有する低分子化合物は上記のGPC5遺伝子またはGPC5遺伝子のプロモーターに連結されたレポーター遺伝子を発現する細胞を用いたスクリーニング方法によって得ることができる。
 GPC5機能抑制物質としては、GPC5に対する抗体やGPC5の部分タンパク質などが挙げられる。GPC5の機能を抑制するかどうかは、GPC5のFGF-2とFGF受容体(FGFR)の相互作用を促進する機能を抑制することなどにより確かめることができる。
A low molecular weight compound having a GPC5 gene expression inhibitory action can be obtained by a screening method using a cell expressing a GPC5 gene or a reporter gene linked to a GPC5 gene promoter.
Examples of the GPC5 function inhibitor include antibodies to GPC5 and partial proteins of GPC5. Whether to suppress the function of GPC5 can be confirmed by suppressing the function of GPC5 that promotes the interaction between FGF-2 and FGF receptor (FGFR).
 FGFシグナル阻害物質の他の態様として、FGF受容体チロシンキナーゼ活性阻害剤を用いることもできる。具体的な阻害剤として、上述のPD173074、SU5402、AZD2171、Ki23057などが挙げられる。 As another embodiment of the FGF signal inhibitory substance, an FGF receptor tyrosine kinase activity inhibitor can also be used. Specific examples of the inhibitor include PD173074, SU5402, AZD2171, Ki23057 described above.
 また、FGFに結合し、FGFとFGFRとの結合の促進に関与するヘパラン硫酸(HS)を分解する酵素である、Sulfatase 2 (SULF2)もFGFのFGF受容体への結合を阻害する物質として用いることができる。SULF2としては、配列番号17に記載のアミノ酸配列を有するヒトSULF2またはそのホモログが挙げられる。ホモログとしては、HS分解活性を有するものであればよいが、配列番号17に記載のアミノ酸配列と95%以上の同一性を有するアミノ酸配列を含むものが好ましい。
 なお、SULF2はタンパク質を患部(腎臓)に投与してもよいし、SULF2をコードする遺伝子の状態で患部に局所投与し、SULF2タンパク質を発現させてもよい。
Sulfatase 2 (SULF2), an enzyme that binds to FGF and degrades heparan sulfate (HS), which is involved in promoting the binding between FGF and FGFR, is also used as a substance that inhibits the binding of FGF to the FGF receptor. be able to. Examples of SULF2 include human SULF2 having the amino acid sequence set forth in SEQ ID NO: 17 or a homologue thereof. The homologue is not limited as long as it has HS degradation activity, but preferably includes an amino acid sequence having 95% or more identity with the amino acid sequence shown in SEQ ID NO: 17.
SULF2 may be administered to the affected area (kidney) or may be locally administered to the affected area in the state of the gene encoding SULF2 to express the SULF2 protein.
 さらに、FGFシグナル阻害物質の他の態様として、FGF2変異体、FGF2 siRNAやFGF2アンチセンス核酸などを用いることもできる。FGF2変異体としては、FGFRには結合するが、FGFRを活性化できない変異体などが挙げられる。FGF2 siRNAやFGF2アンチセンス核酸はFGF2遺伝子の発現を抑制できるものであればよく、好ましい長さはGPCの場合と同様である。 Furthermore, as other embodiments of the FGF signal inhibitor, FGF2 mutants, FGF2 siRNA, FGF2 antisense nucleic acid, and the like can also be used. FGF2 mutants include mutants that bind to FGFR but cannot activate FGFR. The FGF2 siRNA or FGF2 antisense nucleic acid may be any nucleic acid that can suppress the expression of the FGF2 gene, and the preferred length is the same as that of GPC.
 本発明のネフローゼ症候群治療または予防薬においては、GPC5遺伝子発現抑制物質やFGF受容体チロシンキナーゼ活性阻害剤などのFGFシグナル阻害物質をそのまま使用してもよいが、好ましくは、GPC5遺伝子発現抑制物質やFGF受容体チロシンキナーゼ活性阻害剤などのFGFシグナル阻害物質を薬学的に許容される担体に配合して用いる。薬学的に許容される担体としては、液体担体(例えば水、油、生理食塩水、デキストロース水溶液、エタノールなど)、固体担体(例えば、ゼラチン、デンプン、グルコース、ラクトース、スクロース、ステアリン酸ナトリウム、モノステアリン酸グリセロール、ケラチン、コロイド状シリカ、乾燥脱脂乳、グリセロール、水溶性フラーレンなど)が挙げられる。また、通常の医薬組成物に配合される補助剤、防腐剤、安定化剤、濃化剤、潤滑剤、着色剤、湿潤剤、乳化剤、及びpH緩衝剤などのうち適当なものを含有してもよい。 In the nephrotic syndrome treatment or prevention drug of the present invention, FGF signal inhibitory substances such as GPC5 gene expression inhibitory substances and FGF receptor tyrosine kinase activity inhibitors may be used as they are, but preferably GPC5 gene expression inhibitory substances and An FGF signal inhibitor such as an FGF receptor tyrosine kinase activity inhibitor is used in a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers include liquid carriers (eg, water, oil, saline, aqueous dextrose, ethanol, etc.), solid carriers (eg, gelatin, starch, glucose, lactose, sucrose, sodium stearate, monostearate). Acid glycerol, keratin, colloidal silica, dried skim milk, glycerol, water-soluble fullerene, etc.). In addition, it contains suitable additives such as adjuvants, preservatives, stabilizers, thickeners, lubricants, colorants, wetting agents, emulsifiers, pH buffering agents, etc., which are blended in ordinary pharmaceutical compositions. Also good.
 本発明のネフローゼ症候群治療または予防薬が上記の二本鎖RNAまたはアンチセンス核酸を有効成分とする場合、これらの核酸分子を標的組織又は細胞に送達するために、ナノカプセル、ミクロスフェア、ビーズ、水中油型エマルジョン、ミセル、混合ミセル及びリポソームなどを送達系として用いることが好ましい。 When the nephrotic syndrome therapeutic or preventive agent of the present invention contains the above double-stranded RNA or antisense nucleic acid as an active ingredient, nanocapsules, microspheres, beads, Oil-in-water emulsions, micelles, mixed micelles, liposomes and the like are preferably used as delivery systems.
 本発明のネフローゼ症候群治療または予防薬の投与方法は特に制限されないが、特に二本鎖RNAまたはアンチセンス核酸を有効成分とする場合は、注射又は送液管を用いた局所投与によって腎臓に投与することが好ましい。または、二本鎖RNAまたはアンチセンス核酸を有効成分とする場合、患者から得られた細胞に二本鎖RNAまたはアンチセンス核酸を導入し、その後、該細胞を患者に投与することによっても送達することができる。二本鎖RNAまたはアンチセンス核酸の細胞への導入は、リン酸カルシウム法、DEAE-デキストラン法、エレクトロポレーション、又はリポフェクションなどにより行うことができる。 The administration method of the nephrotic syndrome therapeutic or prophylactic agent of the present invention is not particularly limited, but particularly when double-stranded RNA or antisense nucleic acid is used as the active ingredient, it is administered to the kidney by injection or local administration using a liquid feeding tube. It is preferable. Alternatively, when a double-stranded RNA or antisense nucleic acid is used as an active ingredient, the double-stranded RNA or antisense nucleic acid is introduced into a cell obtained from a patient, and then delivered by administering the cell to the patient. be able to. Introduction of double-stranded RNA or antisense nucleic acid into cells can be performed by the calcium phosphate method, DEAE-dextran method, electroporation, lipofection, or the like.
 本発明のネフローゼ症候群治療または予防薬の投与量は、患者の年齢、性別、症状、投与経路、投与頻度、及び剤形などに応じて適宜設定されるが、当技術分野で慣用の方法(例えば疾患モデルを用いる試験)などを行って好適な投与量を設定することができる。例えば、有効成分の量として、0.1 mg/kg体重/日~50mg/kg/日で投与することができる。 The dose of the therapeutic or preventive agent for nephrotic syndrome of the present invention is appropriately set according to the age, sex, symptoms, administration route, administration frequency, dosage form, etc. of the patient. A suitable dose can be set by conducting a test using a disease model. For example, the active ingredient can be administered at 0.1 mg / kg body weight / day to 50 mg / kg / day.
<5>発現量に基づく検査方法
 本発明はまた、GPC5遺伝子またはGPC5遺伝子産物の発現量を測定する工程を含む、ネフローゼ症候群の検査方法(検査データを得る方法)を提供する。GPC5遺伝子またはGPC5遺伝子産物(GPC5蛋白質)の発現量が健常人などの対照と比べて増加している場合、ネフローゼ症候群に罹患している、またはネフローゼ症候群の危険性が高いと判定することができる。
 GPC5遺伝子の発現量は、RT-PCR、ノーザンブロット、マイクロアレイ法などで調べることができる。また、GPC5遺伝子産物の発現量はELISA、ウエスタンブロットなどで調べることができる。抗体は市販の抗体を用いることもできるし、GPC5蛋白質のアミノ酸配列(例えば配列番号9)の一部を抗原として作製された抗体を用いることもできる。GPC5のコード領域の塩基配列としてはGenBank Accession No. NM_004466(配列番号8)が例示され、この配列等を利用して発現解析用プライマーやプローブなどを設計または取得することができる。RT-PCRのプライマーとしては、例えば、配列番号2および3のプライマーセットが例示される。
 検査に用いる試料は血液サンプル、あるいは尿サンプルなどが挙げられる。
<5> Test Method Based on Expression Level The present invention also provides a test method for nephrotic syndrome (a method for obtaining test data) including a step of measuring the expression level of a GPC5 gene or GPC5 gene product. If the expression level of the GPC5 gene or GPC5 gene product (GPC5 protein) is increased compared to controls such as healthy individuals, it can be determined that the patient is suffering from nephrotic syndrome or is at high risk for nephrotic syndrome .
The expression level of GPC5 gene can be examined by RT-PCR, Northern blot, microarray method and the like. The expression level of the GPC5 gene product can be examined by ELISA, Western blot, or the like. As the antibody, a commercially available antibody can be used, or an antibody prepared by using a part of the amino acid sequence of GPC5 protein (for example, SEQ ID NO: 9) as an antigen can also be used. GenBank Accession No. NM — 004466 (SEQ ID NO: 8) is exemplified as the base sequence of the coding region of GPC5, and primers or probes for expression analysis can be designed or obtained using this sequence. Examples of RT-PCR primers include the primer sets of SEQ ID NOs: 2 and 3.
The sample used for the test includes a blood sample or a urine sample.
 以下、本発明を実施例によりさらに具体的に説明する。但し、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
1.ネフローゼ症候群に相関するSNPの同定ネフローゼ症候群患者と対照患者
 ネフローゼ症候群患者の3つの独立した集団(case 1(N=195)、case 2(N=231)、case 3(N=201))、ネフローゼ症候群患者ではない対照の3つの独立した集団(control 1(N=1546)、control 2(N=1548)、control 3(N=300))を用いてネフローゼ症候群に相関するSNPの探索を行った。case 1、case 2、control 1およびcontrol 2はRIKEN Biobankに登録されたサンプルを使用し、case 3は福島県立医大で収集されたネフローゼ症候群患者サンプルを使用した。control 3は東京大学付属病院が所有する健常人サンプルを使用した。
 なお、これらのサンプルの収集については、いずれもインフォームドコンセントが得られている。
 case 1~3は以下の基準で選択した。
(1)蛋白尿:1日蛋白量3.5g以上を持続する
(2)低蛋白血症:血清総蛋白量は6.0g/100ml以下
(低アルブミン血症とした場合は血清アルブミン量3.0g/100ml以下)
 control 1、2はネフローゼ症候群以外の疾患、具体的には、2型糖尿病、気管支喘息、心筋梗塞、乳癌、バセドー氏病、脳梗塞、脳動脈瘤、骨粗しょう症、心疾患、不安定狭心症、花粉症、閉塞性動脈硬化症、肺気腫、アトピー性皮膚炎、胃癌または肝硬変の患者である。
 case 1~3とcontrol 1~3の内訳は表1のとおりである。
1. Identification of SNPs correlated with nephrotic syndrome Nephrotic syndrome patients and control patients Three independent populations of patients with nephrotic syndrome (case 1 (N = 195), case 2 (N = 231), case 3 (N = 201)), nephrotic We searched for SNPs associated with nephrotic syndrome using three independent populations of controls that were not syndrome patients (control 1 (N = 1546), control 2 (N = 1548), control 3 (N = 300)) . Case 1, case 2, control 1 and control 2 used samples registered with RIKEN Biobank, and case 3 used nephrotic syndrome patient samples collected at Fukushima Medical University. Control 3 was a healthy person sample owned by the University of Tokyo Hospital.
In addition, informed consent was obtained for the collection of these samples.
Cases 1 to 3 were selected according to the following criteria.
(1) Proteinuria: Maintains a daily protein content of 3.5 g or more (2) Hypoproteinemia: Serum total protein is 6.0 g / 100 ml or less (when hypoalbuminemia is established, serum albumin is 3.0 g / 100 ml) Less than)
Controls 1 and 2 are diseases other than nephrotic syndrome, specifically type 2 diabetes, bronchial asthma, myocardial infarction, breast cancer, Basedow's disease, cerebral infarction, cerebral aneurysm, osteoporosis, heart disease, unstable angina If you are a patient with symptom, pollinosis, obstructive arteriosclerosis, emphysema, atopic dermatitis, gastric cancer or cirrhosis.
The breakdown of cases 1 to 3 and control 1 to 3 is shown in Table 1.
年齢は平均値±標準偏差で示す。N.Aは特定できていないことを示す。etcは原発性ネフローゼ症候群のうち4大組織診断以外のもの、secondaryは2次性ネフローゼ症候群を示す。MC: 微小変化型; FSGS, 巣状分節状糸球体硬化症; MN, 膜性腎症; MPGN; 膜性増殖性糸球体腎炎 Age is shown as mean ± standard deviation. NA indicates that it cannot be identified. etc indicates primary nephrotic syndrome other than the four major tissue diagnoses, and secondary indicates secondary nephrotic syndrome. MC: minimal change type; FSGS, focal segmental glomerulosclerosis; MN, membranous nephropathy; MPGN; membranous proliferative glomerulonephritis
 SNP の解析は直接シークエンス、TaqMan(商標)SNP genotyping assayまたはDigitagIItm assay(Analytical Biochemistry 346(2):281-288)により行った。
 まず、case 1とcontrol 1、case 2とcontrol 2を用いてネフローゼ症候群に相関するSNPの探索を試みたところ、case 1とcontrol 1の間、およびcase 2とcontrol 2の間でともに有意であり、疾患感受性アリルの逆転をみない90 個のSNP を得た。
 ネフローゼ症候群は、数多くの病態を含むため単にネフローゼ症候群としてまとめてしまうとターゲットとなる病態があいまいになってしまうことが考えられたため、全ネフローゼ症候群の中から原発性ネフローゼ症候群・四大組織病変(微小変化群、巣状糸球体硬化症、膜性腎症、膜性増殖性糸球体腎炎)を抽出し、微小変化群、巣状糸球体硬化症、膜性腎症、膜性増殖性糸球体腎炎の各グループにおけるP 値およびオッズ比(OR)を比較することによりネフローゼの中でもより純粋な病態に関連するSNP を得ることを試みた。
 これらのサブグループのうち1グループ以上でP 値が0.01 未満であったSNP は48 個あった。そのうち4 個はタイピングミスであったため、44 個を有意なSNP とした。
SNP analysis was performed by direct sequencing, TaqMan ™ SNP genotyping assay or DigitagIItm assay (Analytical Biochemistry 346 (2): 281-288).
First, an attempt was made to search for SNPs that correlate with nephrotic syndrome using case 1 and control 1, and case 2 and control 2, and both were significant between case 1 and control 1 and between case 2 and control 2. We obtained 90 SNPs without any reversal of disease-sensitive alleles.
Since nephrotic syndrome includes many pathological conditions, it was thought that the target pathological condition would become ambiguous if simply put together as nephrotic syndrome, so primary nephrotic syndrome and four major tissue lesions (from all nephrotic syndromes ( Minor change group, focal glomerulosclerosis, membranous nephropathy, membranoproliferative glomerulonephritis), Minor change group, focal glomerulosclerosis, membranous nephropathy, membranoproliferative glomeruli We tried to obtain a more purely pathological SNP among nephrosis by comparing the P value and odds ratio (OR) in each group of nephritis.
Of these subgroups, 48 were SNPs with a P value of less than 0.01 in one or more groups. Since 4 of them were typing errors, 44 were considered significant SNPs.
 このように導き出したSNP の中から原発性ネフローゼ症候群・四大組織病変の各々上位10 個のSNP(5 個重複のため全15 個)を選択した。
 これらについて、case 3とcontrol 3の間で検討したところ、3 個のSNP で再現性が確認された。
 このうちの一つはGPC5遺伝子のイントロン2に存在するSNP(rs16946160)であった。このSNPについて、case 1とcontrol 1(1st panel)、case 2とcontrol 2(2nd panel)、case 3とcontrol 3(3rd panel)で比較した結果を表2に示す。上段はcase として全ネフローゼ症候群を、下段はcaseとして四大組織病変のみを採用した。
 この結果から、rs16946160については、全ネフローゼ症候群:controlでオッズ比が1.273、四大組織病変:controlでオッズ比が1.376を示し、rs16946160のAアレルがネフローゼ症候群の有意なリスクアレルであることが判明した。
From the SNPs derived in this way, the top 10 SNPs of primary nephrotic syndrome and four major tissue lesions (15 in total because of 5 duplications) were selected.
When these were examined between case 3 and control 3, reproducibility was confirmed with 3 SNPs.
One of these was SNP (rs16946160) present in intron 2 of the GPC5 gene. Table 2 shows the results of comparison between case 1 and control 1 (1 st panel), case 2 and control 2 (2 nd panel), and case 3 and control 3 (3 rd panel). The upper row used all nephrotic syndrome as the case, and the lower row used only the four major tissue lesions as the case.
From these results, for rs16946160, all nephrotic syndrome: control has an odds ratio of 1.273, four major tissue lesions: control has an odds ratio of 1.376, and the rs16946160 A allele is a significant risk allele of nephrotic syndrome. It turned out to be.
Figure JPOXMLDOC01-appb-T000002
MAF:minor allele frequency、OR:odds ratio
Figure JPOXMLDOC01-appb-T000002
MAF: minor allele frequency, OR: odds ratio
 rs16946160はイントロン領域にあるため、各genotypeを有する健常人の末梢血より得られたtotal RNA を用いて合成したcDNAに対し、エクソン2と3からイントロン2を挟むPCRにてsplicing variantのスクリーニングを行ったが、各genotypeにおいてsplicingの違いは認められなかった(データは示さず)。 Since rs16946160 is in the intron region, cDNA synthesized using total RNA from the peripheral blood of healthy individuals with each genotype was screened for splicing RNA by PCR with intron 2 between exons 2 and 3. However, no difference in splicing was observed in each genotype (data not shown).
GPC5 mRNA発現量の解析
 各genotype を有する健常人の末梢血のtotal RNAから合成したcDNA に対し、GPC5についてrealtime PCR を行い、β-actin との比をもってGPC5遺伝子の転写レベルを比較したところ、genotypeA/Aをもつ健常人においてGPC5のmRNAレベルが高い事が示された(図1)。すなわちGPC5遺伝子の発現上昇が、ネフローゼ症候群の発症を促進させる可能性が示唆された。なお、realtime PCRにおいては、ヒトGPC5増幅用のプライマーとして、配列番号2および3を用い、検出装置としてABI Prism 3700 Real Time PCR System (Applied BioSystems)を用いた。
Analysis of GPC5 mRNA expression level Real-time PCR of GPC5 was performed on cDNA synthesized from the peripheral RNA of healthy humans with each genotype, and the transcription level of GPC5 gene was compared with that of β-actin. It was shown that the mRNA level of GPC5 is high in healthy individuals with / A (FIG. 1). In other words, it was suggested that increased expression of the GPC5 gene may promote the onset of nephrotic syndrome. In realtime PCR, SEQ ID NOs: 2 and 3 were used as primers for human GPC5 amplification, and ABI Prism 3700 Real Time PCR System (Applied BioSystems) was used as a detection device.
 なお、培養糸球体上皮細胞(GEC-T)と培養近位尿細管上皮細胞(mProx)におけるGPC5遺伝子の発現量を比較したところ、GPC5は前者においてに高発現していることがわかった(データは示さず)。さらに、抗GPC5抗体(R&D systems, MAB2607)を用いて免疫組織染色を行ったところ、GPC5の糸球体への集積が認められた(図4A)。 When the expression level of GPC5 gene in cultured glomerular epithelial cells (GEC-T) and cultured proximal tubular epithelial cells (mProx) was compared, it was found that GPC5 was highly expressed in the former (data Is not shown). Furthermore, when immunohistochemical staining was performed using an anti-GPC5 antibody (R & D systems, MAB2607), accumulation of GPC5 in the glomeruli was observed (FIG. 4A).
細胞系でのGPC5の機能解析
 培養ラット糸球体上皮細胞(GEC-T)をGPC5遺伝子に対するsiRNAまたは陰性コントロールsiRNAを添加し(40pmol/ml)、100%コンフルエントになるまで培養しPBSで2 倍希釈し、コラーゲンtype Iでコーティングされたフィルター(日本BD:BioCoat コラーゲン I カルチャーインサート、ポアサイズ0.4μm、1,600,000/cm2)上に播き、37℃で18 時間培養した後、細胞層上下に0.6g/dl のアルブミン濃度差を付けた液相を配し、さらに8 時間後における濃度勾配差をもって、蛋白透過性検討を評価可能な実験系を確立した(図2B)。
 なお、GEC-T は既にJAm Soc Nephrol 13:2027-36,2002 において報告されており、arborization を有し、Nephrin 及びVEGF 121 の発現を認め糸球体上皮細胞に特異的なC-3 及び5-1-2 モノクローナル抗体の免染も確認されている。
 その結果、siRNA非添加(control)および陰性コントロールsiRNA 添加時と比べて、GPC5遺伝子に対するsiRNAを加えてGPC5遺伝子の発現抑制した場合に蛋白透過性が減少した
(図2C)。
 ここで、GPC5遺伝子に対するsiRNAとして配列番号4(センス鎖)と配列番号5(アンチセンス鎖)からなる二本鎖RNA(GPC5特異的siRNA)を用いたが、これによってGPC5遺伝子の発現を20%程度まで抑制できることは確認されている(図2A)。
 なお、陰性コントロールsiRNAとしては、Stealth RNAi Negative Control Medium GC Duplex #2 (Invitrogen, Carlsbad, CA) を用いた。GPC5特異的siRNAと陰性コントロールsiRNAの添加にはLipofectamine 2000 (Invitrogen, Carlsbad, CA)を使用した。
Functional analysis of GPC5 in the cell line Cultured rat glomerular epithelial cells (GEC-T) were added with siRNA against the GPC5 gene or negative control siRNA (40 pmol / ml), cultured until 100% confluent, and diluted 2-fold with PBS After plating on collagen type I-coated filter (Japan BD: BioCoat Collagen I culture insert, pore size 0.4μm, 1,600,000 / cm 2 ) and culturing at 37 ° C for 18 hours, 0.6g / dl above and below the cell layer An experimental system was established in which a liquid phase with a difference in albumin concentration was arranged and a protein permeability study could be evaluated with a difference in concentration gradient after 8 hours (FIG. 2B).
GEC-T has already been reported in JAm Soc Nephrol 13: 2027-36,2002, has C-arboration, C-3 and 5-specific arborization, Nephrin and VEGF121 expression, and specific for glomerular epithelial cells. 1-2 Immunization of monoclonal antibodies has been confirmed.
As a result, protein permeability decreased when siRNA against the GPC5 gene was added to suppress the expression of the GPC5 gene compared to when no siRNA was added (control) and when a negative control siRNA was added (FIG. 2C).
Here, double-stranded RNA (GPC5-specific siRNA) consisting of SEQ ID NO: 4 (sense strand) and SEQ ID NO: 5 (antisense strand) was used as siRNA against the GPC5 gene. It has been confirmed that it can be suppressed to a certain extent (FIG. 2A).
As the negative control siRNA, Stealth RNAi Negative Control Medium GC Duplex # 2 (Invitrogen, Carlsbad, CA) was used. Lipofectamine 2000 (Invitrogen, Carlsbad, CA) was used to add GPC5-specific siRNA and negative control siRNA.
in vivo実験によるGPC5の機能解析
 GPC5遺伝子の糸球体特異的ノックダウンマウスを作製した。具体的には、図4Cに示すように、大腸菌人工染色体(BACクローン)の糸球体特異的遺伝子であるpodocinプロモーターの下流にチミジンキナーゼのポリA配列(TKpA)およびマウスGPC5のmRNA配列(NM_175500.3)の3か所に対するRNAi効果を有するmicro RNA (miR RNA)を発現させるための二本鎖RNA発現配列である
(1-1)TGCTGTTCAGGAGGGCCCTACTGCACGTTTTGGCCACTGACTGACGTGCAGTAGCCCTCCTGAA(配列番号6)
(1-2)CCTGTTCAGGAGGGCTACTGCACGTCAGTCAGTGGCCAAAACGTGCAGTAGGGCCCTCCTGAAC(配列番号7)
(2-1)TGCTGCAAACCTGAAGATCAGGTCCTGTTTTGGCCACTGACTGACAGGACCTGCTTCAGGTTTG(配列番号12)
(2-2)CCTGCAAACCTGAAGCAGGTCCTGTCAGTCAGTGGCCAAAACAGGACCTGATCTTCAGGTTTGC(配列番号13)
(3-1)TGCTGAATTTCTGCCCATTGAGGTGAGTTTTGGCCACTGACTGACTCACCTCAGGGCAGAAATT(配列番号14)
(3-2)CCTGAATTTCTGCCCTGAGGTGAGTCAGTCAGTGGCCAAAACTCACCTCAATGGGCAGAAATTC(配列番号15)の3組をセルフアニーリングさせたものをクローニングした。常法により得られたBACコンストラクト(Tg-podocin-GPC5iR RecBAC)をマウスのES細胞に導入して糸球体特異的にGPC5遺伝子発現が抑制されたマウス(GPC5糸球体特異的ノックダウンマウス)を作製した。
 得られたGPC5糸球体特異的ノックダウンマウスについて、抗GPC5抗体を用いて腎臓の組織染色を行ったところ、糸球体においてGPC5の発現が著しく低下していることが確認できた(図4B)。
Functional analysis of GPC5 by in vivo experiments A glomerular-specific knockdown mouse of GPC5 gene was prepared. Specifically, as shown in FIG. 4C, thymidine kinase polyA sequence (TKpA) and mouse GPC5 mRNA sequence (NM — 175500.) downstream of the podocin promoter, which is a glomerular-specific gene of the E. coli artificial chromosome (BAC clone). 3) This is a double-stranded RNA expression sequence for expressing microRNA (miR RNA) having RNAi effect on three places (1-1) TGCTGTTCAGGAGGGCCCTACTGCACGTTTTGGCCACTGACTGACGTGCAGTAGCCCTCCTGAA (SEQ ID NO: 6)
(1-2) CCTGTTCAGGAGGGCTACTGCACGTCAGTCAGTGGCCAAAACGTGCAGTAGGGCCCTCCTGAAC (SEQ ID NO: 7)
(2-1) TGCTGCAAACCTGAAGATCAGGTCCTGTTTTGGCCACTGACTGACAGGACCTGCTTCAGGTTTG (SEQ ID NO: 12)
(2-2) CCTGCAAACCTGAAGCAGGTCCTGTCAGTCAGTGGCCAAAACAGGACCTGATCTTCAGGTTTGC (SEQ ID NO: 13)
(3-1) TGCTGAATTTCTGCCCATTGAGGTGAGTTTTGGCCACTGACTGACTCACCTCAGGGCAGAAATT (SEQ ID NO: 14)
(3-2) Three sets of CCTGAATTTCTGCCCTGAGGTGAGTCAGTCAGTGGCCAAAACTCACCTCAATGGGCAGAAATTC (SEQ ID NO: 15) self-annealed were cloned. BAC construct (Tg-podocin-GPC5iR RecBAC) obtained by a conventional method was introduced into mouse ES cells to produce a mouse (GPC5 glomerular-specific knockdown mouse) in which GPC5 gene expression was specifically suppressed. did.
When the obtained GPC5 glomerulus-specific knockdown mouse was stained for kidney tissue using an anti-GPC5 antibody, it was confirmed that the expression of GPC5 in the glomerulus was significantly reduced (FIG. 4B).
 野生型マウス(BDF1マウス)および上記GPC5糸球体特異的ノックダウンマウスにおいて、ピューロマイシン(PAN)(300 mg/kg 皮下投与)と塩基性線維芽細胞増殖因子(bFGF:FGF2の別名)(250 μg/kg 静脈内投与)を投与することにより、腎炎を誘発した。その結果、図5に示されるように、野生型マウスでは尿中アルブミンクレアチニン比(ACR)および尿総蛋白量(uTP)が上昇したのに対し、GPC5糸球体特異的ノックダウンマウスではこれらの値の上昇がみられなかった。 In wild-type mice (BDF1 mice) and the GPC5 glomerular-specific knockdown mice, puromycin (PAN) (300 mg / kg sc) and basic fibroblast growth factor (bFGF: FGF2 alias) (250 μg) Nephritis was induced by administering (/ kg vaginal intravenous administration). As a result, as shown in FIG. 5, urinary albumin creatinine ratio (ACR) and total urine protein (uTP) increased in wild type mice, whereas these values in GPC5 glomerular-specific knockdown mice. The rise of was not seen.
 また、野生型マウスに上記GPC5特異的siRNAを(400μg/PBS 0.8 ml 静注)投与し、尿中アルブミンクレアチニン比(ACR)および尿中蛋白(uTP)の経時変化を調べたところ、siRNA非投与の野生型マウスにおいて腎炎誘発後約10~12日に見られるACRおよびuTPの大幅な増加は見られず、GPC5特異的siRNAの投与により腎炎の症状が抑制できることがわかった。 The GPC5-specific siRNA (400μg / PBS マ ウ ス 0.8μml IV) was administered to wild-type mice, and urinary albumin creatinine ratio (ACR) and urinary protein (uTP) were examined over time. No significant increase in ACR and uTP was observed in about 10-12 days after nephritis induction in wild type mice, and it was found that administration of GPC5-specific siRNA can suppress nephritis symptoms.
 さらに、野生型マウスおよびGPC5糸球体特異的ノックダウンマウスにおいて、血液を採取し、血液中のアルブミンの量を測定した。その結果、図6に示すように、野生型マウスでは腎炎誘発により血液中のアルブミン(ALB)の量が減少した(腎炎誘発10日後)のに対し、GPC5糸球体特異的ノックダウンマウスでは血液中のALBの量は低下しなかった。野生型マウスについても、腎炎誘発10日後に上記GPC5特異的siRNAを投与したところ、投与から11日後(腎炎誘発21日後)では血液中のALBの量が回復した。 Furthermore, blood was collected from wild-type mice and GPC5 glomerular-specific knockdown mice, and the amount of albumin in the blood was measured. As a result, as shown in FIG. 6, in the wild-type mouse, the amount of albumin (ALB) in the blood decreased due to nephritis induction (10 days after nephritis induction), whereas in the GPC5 glomerular-specific knockdown mouse, The amount of ALB did not decrease. In the wild-type mouse, when the GPC5-specific siRNA was administered 10 days after nephritis induction, the amount of ALB in the blood recovered 11 days after administration (21 days after nephritis induction).
 また、野生型マウス(GPC5特異的siRNA投与(腎炎誘発後9日目にsiRNA投与)および非投与)、並びにGPC5糸球体特異的ノックダウンマウスにおいて、腎炎誘発後28日後に腎臓を摘出して腎臓の組織染色(PAS染色およびMT染色)を行った。PAS染色とMT染色の結果から糸球体の巣状分節状硬化の程度を算出した。結果を図7に示す。それによると、GPC5糸球体特異的ノックダウンマウスでは糸球体の巣状分節状硬化はほとんど見られなかった。また、GPC5特異的siRNA投与マウスにおいても、非投与マウスと比べて重度(75~100%)の巣状分節状硬化の割合が減少した。 In wild-type mice (GPC5-specific siRNA administration (siRNA administration on day 9 after nephritis induction) and non-administration) and GPC5 glomerular-specific knockdown mice, kidneys were removed 28 days after nephritis induction and kidneys were removed. Tissue staining (PAS staining and MT staining) was performed. The degree of focal segmental hardening of the glomeruli was calculated from the results of PAS staining and MT staining. The results are shown in FIG. According to it, glomerular nest-like segmental sclerosis was hardly seen in GPC5 glomerulus-specific knockdown mice. In addition, the proportion of severe segmental sclerosis (75 to 100%) in GPC5-specific siRNA-treated mice was also reduced compared to non-treated mice.
 以上の結果から、GPC5遺伝子のSNPをタイピングすることによりネフローゼ症候群発症の可能性を予測できること、およびsiRNAなどのGPC5発現抑制物質を用いることによりネフローゼ症候群の治療及び予防ができることがわかった。 From the above results, it was found that the possibility of developing nephrotic syndrome can be predicted by typing SNP of GPC5 gene, and that nephrotic syndrome can be treated and prevented by using a GPC5 expression inhibitor such as siRNA.
 なお、本発明者は、GPC5遺伝子産物がFGF-2とFGFRの結合を促進すること、およびGPC5遺伝子の抑制によりp21遺伝子の発現が増加してG0/G1 期の比率が増加し、G2/M 期の比率が有意に抑制されることを確認している。これらのことから、GPC5発現の増加によりFGF シグナル伝達の活性化とその下流のp21の抑制を介して、糸球体上皮細胞を増殖相へと移行させ、これが糸球体における障壁機能を形成している糸球体上皮細胞の構築を崩壊へと導き、tight junction を障害して蛋白尿の原因の一つとなることが考えられた。 In addition, the present inventor has shown that the GPC5 gene product promotes the binding of FGF-2 and FGFR, and the suppression of the GPC5 gene increases the expression of the p21 gene and increases the ratio of G0 / G1 stage, It is confirmed that the period ratio is significantly suppressed. From these facts, the increase in GPC5 expression causes glomerular epithelial cells to enter the proliferative phase through activation of FGF signal transduction and suppression of p21 downstream thereof, which forms a barrier function in the glomerulus. It was thought that glomerular epithelial cell construction led to collapse, and tight junction 障害 was impaired, leading to proteinuria.
 また、FGF-2とFGFRの結合に対するGPC5特異的siRNAの効果を細胞系で調べた。具体的には、ビオチンで標識したbFGFを培養細胞メディウムに加えてFGFRに結合させ、残存したbFGFをピコエリスリン(PE)標識ストレプトアビジンで検出し、FGFの結合能を、陰性コントロールsiRNA(Stealth RNAi Negative Control Medium GC Duplex #2)またはGPC5特異的siRNA存在下で比較した。結果を図3に示す。(A)がラット糸球体上皮細胞株、(B)がヒト大腸癌細胞株での結果である。GPC5特異的siRNAの添加により、FGF-2とFGFRの結合が減少していることがわかる。
 なお、GPC5特異的siRNAは配列番号4と5からなるsiRNAを使用した。なお、この配列はヒトとマウスで共通の配列に対するsiRNAでありヒトでも同配列を使用する事が好まれるが、同様にGPC5発現を抑制しうるmiRNAやsiRNAでも同様の効果が期待できる。
 これによりヒトにおいてもsiRNAなどのGPC5発現抑制物質を用いることによりネフローゼ症候群の治療及び予防ができることがわかった。
In addition, the effect of GPC5-specific siRNA on the binding of FGF-2 and FGFR was examined in a cell line. Specifically, biotin-labeled bFGF is added to the cultured cell medium and bound to FGFR, and the remaining bFGF is detected with picoerythrin (PE) -labeled streptavidin, and the binding ability of FGF is determined by negative control siRNA (Stealth RNAi Negative Comparison was made in the presence of Control Medium GC Duplex # 2) or GPC5-specific siRNA. The results are shown in FIG. (A) is a result of a rat glomerular epithelial cell line, and (B) is a result of a human colon cancer cell line. It can be seen that the addition of GPC5-specific siRNA decreases the binding of FGF-2 and FGFR.
As the GPC5-specific siRNA, siRNA consisting of SEQ ID NOs: 4 and 5 was used. This sequence is an siRNA against a sequence common to humans and mice, and it is preferable to use the same sequence in humans as well, but the same effect can be expected with miRNA and siRNA that can suppress GPC5 expression as well.
As a result, it was found that nephrotic syndrome can be treated and prevented by using a GPC5 expression inhibitor such as siRNA in humans.
 上記の結果から、FGF-2とFGFRの結合を減少させること、または、FGF-2がFGFRに結合することによって活性化されるシグナル経路を遮断することによって、ネフローゼ症候群を治療及び予防できる可能性が考えられた。
 そこで、まず、FGF受容体チロシンキナーゼ活性阻害剤を腎炎モデルに投与して、その治療効果を調べた。
From the above results, it is possible to treat and prevent nephrotic syndrome by decreasing the binding of FGF-2 and FGFR, or by blocking the signal pathway activated by FGF-2 binding to FGFR Was considered.
Therefore, first, an FGF receptor tyrosine kinase activity inhibitor was administered to a nephritis model, and the therapeutic effect was examined.
 野生型マウス(BDF1マウス)おいて、ピューロマイシン(PAN)(500 mg/kg 皮下投与)と塩基性線維芽細胞増殖因子(bFGF)(5 μg/kg 静脈内投与)を投与することにより、腎炎を誘発した。腎炎誘発後4、5、6、7、8および9日目にFGF受容体チロシンキナーゼ活性阻害剤(PD173074:Sigma-Aldrich Japan社)40 μg/day を腹腔内投与し、腎炎誘発後3、5、7、10および14日目のACRを測定してFGF受容体阻害剤非投与群と比較した。結果を図8に示す。 By administering puromycin (PAN) (500 mg / kg subcutaneous administration) and basic fibroblast growth factor (bFGF) (5 mg / kg intravenous administration) in wild type mice (BDF1 mice), nephritis Induced. On the 4th, 5th, 6th, 7th, 8th, and 9th days after nephritis induction, 40 μg / day 受 容 of FGF receptor tyrosine kinase activity inhibitor (PD173074: Sigma-Aldrich Japan) was intraperitoneally administered, and after inducing nephritis On the 7th, 10th, and 14th days, ACR was measured and compared with the group not administered with the FGF receptor inhibitor. The results are shown in FIG.
 また、野生型マウス(BDF1マウス)おいて、アドリアマイシン(AD: Hydroxydaunorubicin hydrochloride:Sigma-Aldrich Japan社)を投与(10 mg/kg 静脈注射)することにより、腎炎を誘発した。腎炎誘発後1、2および3日目にPD173074 125 μg/day を腹腔内投与し、腎炎誘発後1、3、5、7および10日目のACRを測定してFGF受容体阻害剤非投与群と比較した。結果を図9に示す。 In addition, nephritis was induced in wild-type mice (BDF1 mice) by administering adriamycin (AD: Hydroxydaunorubicin hydrochloride: Sigma-Aldrich Japan) (10 mg / kg intravenous injection). PD173074 125 μg / day was administered intraperitoneally on days 1, 2 and 3 after nephritis induction, and ACR was measured on days 1, 3, 5, 7 and 10 after nephritis induction and FGF receptor inhibitor non-administration group Compared with. The results are shown in FIG.
 図8,9に示されるように、いずれの腎炎モデルにおいても、PD173074投与によりACRが減少したことから、PD173074がネフローゼ症候群の治療及び予防に有効であることがわかった。 As shown in FIGS. 8 and 9, in all nephritis models, PD173074 administration reduced ACR, indicating that PD173074 is effective in the treatment and prevention of nephrotic syndrome.
 細胞膜上のFGFRへのFGFの結合については、膜タンパク質であるGPC5に側鎖修飾されたヘパラン硫酸(HS)がFGFに相互作用し、それによってFGFのFGFRへの結合が安定化しているということ、および、SULF2の作用によりHSの硫酸基が分解され、それによってFGFのFGFRへの結合が減弱することが知られている(Chemistry and Biology of Heparin and Heparan Sulfate (p245):図10)。したがって、SULF2のタンパク質を導入するか、SULF2遺伝子を発現させることにより、FGFシグナルを減弱させれば、ネフローゼ症候群を治療及び予防できると考えられる。 Regarding the binding of FGF to FGFR on the cell membrane, heparan sulfate (HS) modified with a side chain on the membrane protein GPC5 interacts with FGF, which stabilizes the binding of FGF to FGFR. It is known that the sulfate group of HS is degraded by the action of SULF2, thereby reducing the binding of FGF to FGFR (Chemistry and Biology of Heparin and Heparan Sulfate (p245): FIG. 10). Therefore, it is considered that nephrotic syndrome can be treated and prevented if FGF signal is attenuated by introducing SULF2 protein or expressing SULF2 gene.
 SULF2のFGFシグナルに与える影響を調べるため、GEC-T細胞にSULF2特異的siRNAを添加して培養し、その細胞増殖の度合いを調べた。その結果、siRNA非添加時および非特異的siRNA添加時と比べて、SULF2特異的siRNA添加時には細胞の増殖率が高いことがわかった(図11)。この結果は、SULF2特異的siRNAにより、HSの硫酸基の分解が抑制されてFGFシグナルが促進されたため、FGFシグナル下流のp21抑制反応が働き、細胞増殖が促進されたことを示していると考えられた。 In order to examine the effect of SULF2 on the FGF signal, SULF2-specific siRNA was added to GEC-T cells and cultured, and the degree of cell proliferation was examined. As a result, it was found that the cell growth rate was higher when SULF2-specific siRNA was added than when siRNA was not added and when non-specific siRNA was added (FIG. 11). This result suggests that SULF2-specific siRNA suppresses the degradation of HS sulfate group and promotes FGF signal, thus promoting p21 suppression reaction downstream of FGF signal and promoting cell proliferation. It was.
 なお、SULF2特異的siRNAと非特異的siRNAは以下のものを用いた。
Rat Sulf2 siRNA:
センス    CCCAUCGGUGCUACAUCCUUGAGAA(配列番号18)
アンチセンス UUCUCAAGGAUGUAGCACCGAUGGG(配列番号19)
Rat Sulf2 negative control siRNA
センス    CCCGCUGCGAUACCUUCGUAUAGAA(配列番号20)
アンチセンス UUCUAUACGAAGGUAUCGCAGCGGG(配列番号21)
The following SULF2-specific siRNA and non-specific siRNA were used.
Rat Sulf2 siRNA:
Sense CCCAUCGGUGCUACAUCCUUGAGAA (SEQ ID NO: 18)
Antisense UUCUCAAGGAUGUAGCACCGAUGGG (SEQ ID NO: 19)
Rat Sulf2 negative control siRNA
Sense CCCGCUGCGAUACCUUCGUAUAGAA (SEQ ID NO: 20)
Antisense UUCUAUACGAAGGUAUCGCAGCGGG (SEQ ID NO: 21)
 本発明は診断や医療の分野で有用である。本発明の検査方法によればネフローゼ症候群の発症リスクや進行を正確に予測することができるため、蛋白尿をコントロールして人工透析を必要とする患者数を減じることが可能となり、医療経済に資する。また、本発明のネフローゼ症候群治療薬は新規メカニズムに基づく新たな効率のよい治療方法を提供する。 The present invention is useful in the fields of diagnosis and medicine. Since the onset risk and progression of nephrotic syndrome can be accurately predicted according to the test method of the present invention, it is possible to control proteinuria and reduce the number of patients requiring artificial dialysis, which contributes to the medical economy. . Moreover, the nephrotic syndrome therapeutic agent of the present invention provides a new and efficient treatment method based on a novel mechanism.

Claims (13)

  1. Glypican5(GPC5)遺伝子上に存在する塩基の一塩基多型または該塩基と連鎖不平衡にある塩基の一塩基多型を分析し、該分析結果に基づいてネフローゼ症候群を検査する方法。 A method of analyzing a single nucleotide polymorphism of a base present on a Glypican5 (GPC5) gene or a single nucleotide polymorphism of a base in linkage disequilibrium with the base and examining nephrotic syndrome based on the analysis result.
  2. 前記一塩基多型が、配列番号1の塩基配列の塩基番号101番目の塩基に相当する塩基における多型である、請求項1に記載の方法。 The method according to claim 1, wherein the single nucleotide polymorphism is a polymorphism in a base corresponding to the 101st base of the nucleotide sequence of SEQ ID NO: 1.
  3. 配列番号1の塩基配列において、塩基番号101番目の塩基を含む10塩基以上の配列、又はその相補配列を有するネフローゼ症候群検査用プローブ。 A probe for testing nephrotic syndrome, which has a sequence of 10 bases or more including the base of the base number 101 in the base sequence of SEQ ID NO: 1, or a complementary sequence thereof.
  4. 配列番号1のいずれかの塩基配列において、塩基番号101番目の塩基を含む領域を増幅することのできるネフローゼ症候群検査用プライマー。 A primer for nephrotic syndrome test, which can amplify a region containing the base at the 101st base in any base sequence of SEQ ID NO: 1.
  5. GPC5遺伝子またはGPC5遺伝子のプロモーターに連結されたレポーター遺伝子を発現する細胞に医薬候補物質を添加する工程、GPC5遺伝子またはレポーター遺伝子の発現量を測定する工程、及び前記発現量を低下させる物質を選択する工程を含む、ネフローゼ症候群の予防薬又は治療薬をスクリーニングする方法。 A step of adding a drug candidate substance to a cell that expresses a GPC5 gene or a reporter gene linked to a promoter of the GPC5 gene, a step of measuring the expression level of the GPC5 gene or the reporter gene, and a substance that reduces the expression level are selected. A method for screening a preventive or therapeutic agent for nephrotic syndrome, comprising a step.
  6. GPC5遺伝子またはGPC5遺伝子産物の発現量を測定する工程を含む、ネフローゼ症候群の検査方法。 A test method for nephrotic syndrome, comprising a step of measuring the expression level of a GPC5 gene or GPC5 gene product.
  7. 線維芽細胞増殖因子(FGF)シグナル阻害剤を有効成分として含む、ネフローゼ症候群を予防または治療するための医薬。 A medicament for preventing or treating nephrotic syndrome, comprising a fibroblast growth factor (FGF) signal inhibitor as an active ingredient.
  8. FGFシグナル阻害剤が、FGFのFGF受容体への結合を阻害する物質である、請求項7に記載の医薬。 The medicament according to claim 7, wherein the FGF signal inhibitor is a substance that inhibits the binding of FGF to the FGF receptor.
  9. FGFのFGF受容体への結合を阻害する物質が、GPC5遺伝子発現抑制物質またはGPC5機能抑制物質である、請求項8に記載の医薬。 The medicament according to claim 8, wherein the substance that inhibits the binding of FGF to the FGF receptor is a substance that suppresses GPC5 gene expression or a substance that suppresses GPC5 function.
  10. GPC5遺伝子発現抑制物質がGPC5遺伝子に対する二本鎖RNAである、請求項9に記載の医薬。 The medicament according to claim 9, wherein the GPC5 gene expression inhibitor is a double-stranded RNA against the GPC5 gene.
  11. FGFシグナル阻害剤が、FGF受容体チロシンキナーゼ阻害剤である、請求項7に記載の医薬。 The medicament according to claim 7, wherein the FGF signal inhibitor is an FGF receptor tyrosine kinase inhibitor.
  12. FGFのFGF受容体への結合を阻害する物質が、Sulfatase 2である、請求項9に記載の医薬。 The medicament according to claim 9, wherein the substance that inhibits the binding of FGF to the FGF receptor is Sulfatase-2.
  13. FGFのFGF受容体への結合を阻害する物質またはFGF受容体チロシンキナーゼ活性を阻害する物質をスクリーニングする工程を含む、ネフローゼ症候群の予防薬又は治療薬をスクリーニングする方法。 A method for screening a preventive or therapeutic agent for nephrotic syndrome, comprising screening a substance that inhibits the binding of FGF to an FGF receptor or a substance that inhibits FGF receptor tyrosine kinase activity.
PCT/JP2009/070500 2009-01-20 2009-12-07 Diagnostic method for nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the prophylactic or therapeutic agent WO2010084668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009010160A JP2012080777A (en) 2009-01-20 2009-01-20 Method for examining nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the same
JP2009-010160 2009-01-20

Publications (1)

Publication Number Publication Date
WO2010084668A1 true WO2010084668A1 (en) 2010-07-29

Family

ID=42355736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070500 WO2010084668A1 (en) 2009-01-20 2009-12-07 Diagnostic method for nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the prophylactic or therapeutic agent

Country Status (2)

Country Link
JP (1) JP2012080777A (en)
WO (1) WO2010084668A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592052A (en) * 2022-04-01 2022-06-07 中国人民解放军陆军军医大学第二附属医院 Nephrotic syndrome patient PDSS2 pathogenic mutant gene and detection reagent thereof
US20220333108A1 (en) * 2021-04-01 2022-10-20 Sirnaomics, Inc. Combinations of sirnas with sirnas against sulf2 or gpc3 for use in treating cancer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [online] 25 May 2006 (2006-05-25), "Reference SNP(refSNP) Cluster Report: rs16946160.", retrieved from http://www.ncbi.nlm.nih.gov/ projects/SNP/snp ref.cgi?rs=16946160 Database accession no. rs16946160 *
HATTA HIDEKAZU: "Immunohistochemical analysis of cell cycle for podocyte.", KAWASAKI MEDICAL JOURNAL, vol. 25, no. 3-4, 1999, pages 87 - 98 *
LAI, JIN-PING ET AL.: "Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma.", HEPATOLOGY, vol. 47, no. 4, 2008, pages 1211 - 1222 *
MOHAMMADI, MOOSA ET AL.: "Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain.", THE EMBO JOURNAL, vol. 17, no. 20, 1998, pages 5896 - 5904 *
OBEIDOVA, H. ET AL.: "Genetic basis of nephrotic syndrome--review.", PRAGUE MEDICAL REPORT, vol. 107, no. 1, 2006, pages 5 - 16 *
YAGI MIKIO ET AL.: "Beneficial effects of a novel inhibitor of platelet-derived growth factor receptor autophosphorylation in the rat with mesangial proliferative glomerulonephritis.", GENERAL PHARMACOLOGY, vol. 31, no. 5, 1998, pages 765 - 773 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220333108A1 (en) * 2021-04-01 2022-10-20 Sirnaomics, Inc. Combinations of sirnas with sirnas against sulf2 or gpc3 for use in treating cancer
CN114592052A (en) * 2022-04-01 2022-06-07 中国人民解放军陆军军医大学第二附属医院 Nephrotic syndrome patient PDSS2 pathogenic mutant gene and detection reagent thereof

Also Published As

Publication number Publication date
JP2012080777A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP6636067B2 (en) Method for diagnosis, prognosis and treatment of prostate cancer metastasis using c-MAF
EP3068783B1 (en) Agonists of hypocretin receptor 2 for use for treating heart failure
CN105980576B (en) Methods for prognosis and treatment of bone metastasis cancer derived from breast cancer
CN108192972B (en) Methods for diagnosis, prognosis and treatment of breast cancer metastasis
Obeidat et al. GSTCD and INTS12 regulation and expression in the human lung
KR20150122731A (en) Method for the prognosis and treatment of cancer metastasis
US20170002357A1 (en) Method for the diagnosis, prognosis and treatment of cancer metastasis
JP2023098926A (en) Cancer prophylactic or therapeutic pharmaceutical composition containing tut4/7 expression regulatory factor
JP6193269B2 (en) Use of miR-199a-5p, its targets and / or inhibitors for diagnosis, prognosis and treatment of fibroproliferative disorders
US9187787B2 (en) Method of diagnosing and treating cancer
US20080182250A1 (en) Method for detecting multiple myeloma and method for inhibiting the same
WO2010084668A1 (en) Diagnostic method for nephrotic syndrome, prophylactic or therapeutic agent for nephrotic syndrome, and method for screening the prophylactic or therapeutic agent
CN107227362B (en) Gene related to liver cancer and application thereof
US20220135979A1 (en) Diagnosis and treatment of medulloblastoma
US7807362B2 (en) Diagnosis of attention deficit hyperactivity disorder
WO2019194534A1 (en) Method for predicting onset of kawasaki disease by using ebf2 gene polymorphism
US20150258173A1 (en) Compositions for modulating invasion ability of a tumor and methods thereof
US20230288399A1 (en) Method for screening colorectal cancer metastasis inhibitor
JP5604616B2 (en) Test method and test kit for type 2 diabetes using gene polymorphism
JP2009022269A (en) Method for examining obesity, and method for screening prophylactic or curative agent for obesity
JP5888756B2 (en) Method for testing type 2 diabetes using gene polymorphism
EP2199407A1 (en) In vitro methods and compositions for the diagnosis and/or treatment of adenocarcinoma
JP5753994B2 (en) Test method and test kit for type 2 diabetes using gene polymorphism
WO2013035861A1 (en) Method for determining susceptibility to age-related macular degeneration, primer pair, probe, age-related macular degeneration diagnostic kit, therapeutic agent for age-related macular degeneration, and screening method for therapeutic agent for age-related macular degeneration
US20110092428A1 (en) Detecting and controlling abnormal hematopoiesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP