WO2010084647A1 - Light diffusion film and device comprising same - Google Patents

Light diffusion film and device comprising same Download PDF

Info

Publication number
WO2010084647A1
WO2010084647A1 PCT/JP2009/067390 JP2009067390W WO2010084647A1 WO 2010084647 A1 WO2010084647 A1 WO 2010084647A1 JP 2009067390 W JP2009067390 W JP 2009067390W WO 2010084647 A1 WO2010084647 A1 WO 2010084647A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
resin
light diffusion
dispersed phase
film
Prior art date
Application number
PCT/JP2009/067390
Other languages
French (fr)
Japanese (ja)
Inventor
義紀 薬師神
透 北口
聡 須田
Original Assignee
ダイセル化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル化学工業株式会社 filed Critical ダイセル化学工業株式会社
Priority to JP2010547399A priority Critical patent/JP5411169B2/en
Priority to CN200980155030.7A priority patent/CN102292658B/en
Publication of WO2010084647A1 publication Critical patent/WO2010084647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present invention relates to a light diffusion film that diffuses transmitted light isotropically or anisotropically, and a surface light source device and a display device (liquid crystal display device, etc.) provided with the light diffusion film.
  • a surface light source unit (or backlight unit) is disposed on the back surface of the display panel.
  • a diffusion sheet, a prism sheet, a brightness enhancement sheet (a reflective polarizing plate, etc.) and the like are used.
  • a polarizing plate, a retardation plate, a color filter, and the like are also used as constituent members of a liquid crystal cell.
  • planar display device flat display device
  • planar display unit such as a transmissive liquid crystal display unit
  • surface light source unit for illuminating the unit from the back side
  • the surface light source unit has one or a plurality of fluorescent discharge tubes (cold cathode tubes) 1, and a reflection plate 2 for reflecting light is disposed on the back side of the fluorescent discharge tube 1.
  • a diffusion plate 3 for diffusing light to uniformly illuminate the display unit 5, and a prism sheet 4 is laminated on the display unit side of the diffusion plate 3.
  • the surface display unit 5 includes a first polarizing film 6a, a first glass substrate 7a, a first electrode 8a formed on the glass substrate, and a first layer laminated on the electrode.
  • the alignment film 9a, the liquid crystal layer 10, the second alignment film 9b, the second electrode 8b, the color filter 11, the second glass substrate 7b, and the second polarizing film 6b are sequentially stacked.
  • the display unit can be directly illuminated from the back by a built-in fluorescent discharge tube (cold cathode tube) 1.
  • the backlight system using such a rod-shaped (tubular) light source (lamp) has become very heavy in liquid crystal display devices with the recent increase in size of liquid crystal televisions.
  • a surface light source device there is a tendency that the brightness of the light source is increased and the device is thinned.
  • a lamp image in the shape of a lamp that is a light source. The resulting image and the image in which the presence of the lamp can be easily understood) are more likely to remain.
  • the luminance distribution in the axial direction of the rod-shaped light source is different from that in the direction perpendicular to the axial direction, and it is difficult to uniformly illuminate the display unit, so it is difficult to expand the viewing angle. .
  • an anisotropic light diffusion sheet having optically anisotropic scattering characteristics is used as the diffusion sheet, and the luminance is made uniform by utilizing the anisotropic scattering characteristics.
  • anisotropic scattering is possible even when using light sources having different luminance distributions in the long axis direction and the short axis direction.
  • a method is known that can make the luminance of transmitted light uniform by utilizing the characteristics. However, even if a light diffusing sheet having such anisotropic scattering characteristics is used, the erasure of the lamp image is not sufficient.
  • a polycarbonate resin is known as a resin having high heat resistance and transparency.
  • the polycarbonate resin has low melt fluidity, it is difficult to industrially efficiently produce a light diffusion film by a melt molding method such as melt extrusion molding.
  • the polycarbonate resin does not have a high affinity with the components of the dispersed phase, voids are easily generated at the interface with the dispersed phase, and it is difficult to form the dispersed phase uniformly.
  • Patent Document 1 Japanese Patent No. 4115113 (Patent Document 1) as a light diffusion sheet used for a backlight system displays a tubular light source and light from the tubular light source incident from the side and emitted from a flat emission surface.
  • a surface light source unit comprising a film, wherein the anisotropic light scattering film is composed of a laminated film in which transparent resin layers are laminated on both sides of an anisotropic light scattering layer, and the anisotropic light scattering layer is composed of a resin.
  • a dispersed phase composed of a resin having an average aspect ratio of 5 to 1000 dispersed in the continuous phase and having a refractive index different from that of the resin of the continuous phase.
  • a combination of a propylene resin and a styrene resin, or a combination of a propylene resin and a polycarbonate resin, and the transparent resin layer is the same resin as the continuous phase, and has a glass transition temperature or a melting point.
  • a surface light source unit comprising a transparent resin having a temperature of 130 to 280 ° C. and having a plurality of anisotropic light scattering films disposed between the light guide member and the display unit with different light scattering directions. It is disclosed.
  • an object of the present invention is to reduce light leakage even at a high transmittance, and to reduce the thickness and increase the brightness of a surface light source device such as a backlight type liquid crystal display device without developing a lamp image (lamp image).
  • An object of the present invention is to provide a light diffusing film that can be formed and a device (a display device such as a surface light source device or a liquid crystal display device) including the same.
  • Another object of the present invention is to provide a light diffusing film capable of suppressing changes in light diffusing characteristics even when used at high temperatures and a device (display device such as a surface light source device or a liquid crystal display device) provided with the same. It is in.
  • Still another object of the present invention is to provide a light diffusing film that can easily form a film having a uniform dispersed phase even when a polycarbonate-based resin having low fluidity and low affinity for a transparent resin is used, and an apparatus (surface) having the same. It is to provide a light source device or a display device such as a liquid crystal display device.
  • Another object of the present invention is to provide a light diffusing film and a liquid crystal display device including the same, which can cope with the thinning of the device even if it is a large liquid crystal display device and can be easily manufactured.
  • the present inventors have made a transparent resin having a matrix phase (continuous phase) made of a polycarbonate-based resin and a dispersed phase having a predetermined refractive index difference with respect to the polycarbonate-based resin.
  • a transparent resin having a matrix phase (continuous phase) made of a polycarbonate-based resin and a dispersed phase having a predetermined refractive index difference with respect to the polycarbonate-based resin.
  • the light diffusing film of the present invention comprises a continuous phase composed of a polycarbonate resin, a resin dispersed in the continuous phase, and an absolute value of a difference in refractive index from the polycarbonate resin of 0.045 to 0.085.
  • a light diffusion layer formed of a dispersed phase composed of The continuous phase may be composed of a polycarbonate resin having a viscosity average molecular weight of 15000 to 25000, and the melt flow rate (MFR) of the polycarbonate resin is 5 under the conditions of 300 ° C. and 1.2 kg load in accordance with ISO 1133. it may be about ⁇ 30cm 3/10 minutes.
  • the light diffusion film of the present invention may include a particulate dispersed phase in which the dispersed phase has an average aspect ratio greater than 1 and the major axis direction is oriented in a certain direction of the film.
  • the average length of the minor axis of the particulate dispersed phase is about 0.01 to 10 ⁇ m, and the average aspect ratio of the particulate dispersed phase is about 3 to 100.
  • the light diffusion film of the present invention may include a transparent layer laminated on at least one surface of the light diffusion layer.
  • the transparent layer may be a resin layer including at least one selected from an ultraviolet absorber and a light stabilizer.
  • the light diffusion layer may have a thickness of about 3 to 500 ⁇ m, and the total light transmittance of the film may be 60% or more.
  • the present invention includes a surface light source device and a display device (such as a liquid crystal display device) provided with the light diffusion film.
  • film is used to mean including a sheet regardless of thickness.
  • the matrix phase (continuous phase) is composed of a polycarbonate-based resin and the dispersed phase is composed of a resin having a specific refractive index difference, light leakage can be suppressed even with high transmittance, and the lamp A surface light source device such as a backlight type liquid crystal display device can be made thinner and higher in brightness without developing an image (lamp image).
  • a surface light source device such as a backlight type liquid crystal display device can be made thinner and higher in brightness without developing an image (lamp image).
  • it has high heat resistance and can suppress changes in light diffusion characteristics over a long period of time even when used at high temperatures.
  • a polycarbonate resin having low fluidity and low affinity for a transparent resin is used, a film having a uniform dispersed phase can be easily formed.
  • even a large-sized liquid crystal display device can cope with the thinning of the device and can be easily manufactured.
  • FIG. 1 is a schematic sectional view showing a surface light source device and a transmissive liquid crystal display device.
  • FIG. 2 is a schematic cross-sectional view showing an example of a light diffusion film.
  • FIG. 3 is a schematic sectional view showing another example of the light diffusion film.
  • FIG. 4 is a conceptual diagram for explaining anisotropic scattering of the light diffusion film.
  • FIG. 5 is a schematic diagram for explaining a method of measuring light scattering characteristics.
  • FIG. 6 is a graph of the scattered light intensity with respect to the scattering angle in a light diffusion film with light leakage.
  • FIG. 7 is a graph of the scattered light intensity with respect to the scattering angle in a light diffusion film having no light omission.
  • the light diffusion film of the present invention includes a light diffusion layer composed of a continuous phase and a dispersed phase.
  • the continuous phase is composed of a polycarbonate-based resin from the viewpoint of achieving both excellent optical properties and high heat resistance.
  • the polycarbonate-based resin includes aromatic polycarbonate based on bisphenols.
  • bisphenols include biphenols such as dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane (bisphenol AD), bis (hydroxyaryl) alkanes such as bis (4-hydroxytolyl) alkane, bis (4-hydroxyxylyl) alkane [for example, bis (hydroxyaryl) C 1-10 alkanes, preferably bis (hydroxyaryl) C 1-6 alkanes, bis bis (hydroxyaryl) cycloalkanes such as (hydroxyphenyl) cyclohexane [e.g., bis (hydroxyalkyl Lumpur) C 3-12 cycloalkane, preferably bis (hydroxyaryl) C 4-10 cycloalkanes, 4,4
  • the polycarbonate resin may be a polyester carbonate resin obtained by copolymerizing a dicarboxylic acid component (such as an aliphatic, alicyclic or aromatic dicarboxylic acid or an acid halide thereof). These polycarbonate resins can be used alone or in combination of two or more.
  • Preferred polycarbonate resins are resins based on bis (hydroxyphenyl) C 1-6 alkanes, for example, bisphenol A type polycarbonate resins.
  • the molecular weight of the polycarbonate resin has a viscosity average molecular weight (average molecular weight determined by a one-point measurement method based on the correlation between the intrinsic viscosity and the average molecular weight based on the viscosity measured at 20 ° C. using methylene chloride) of 10,000 to 200,000. (For example, it may be selected from a range of about 15000 to 100,000) and may be a high molecular weight polycarbonate resin, but from the viewpoint of the uniformity of the dispersed phase, for example, 15000 to 25000, preferably 17000 to 25000, more preferably Is about 18000-22000.
  • the molecular weight of the polycarbonate-based resin is too small, the strength of the film is lowered, and when the molecular weight is too large, the melt fluidity and the uniform dispersibility of the dispersed phase are liable to be lowered.
  • Polycarbonate resin has a melt flow rate (MFR), ISO 1133 (300 ° C., 1.2 kg load (11.8 N)) in compliance with, for example, be selected from the range of about 3 ⁇ 30cm 3/10 minutes, for example, 5 ⁇ 30cm 3/10 minutes, preferably 6 ⁇ 25cm 3/10 minutes (e.g., 7 ⁇ 20cm 3/10 min), more preferably about 8 ⁇ 15cm 3/10 minutes.
  • MFR melt flow rate
  • ISO 1133 300 ° C., 1.2 kg load (11.8 N)
  • the melting point or glass transition temperature of the polycarbonate-based resin is, for example, about 130 to 280 ° C., preferably about 140 to 270 ° C., and more preferably about 150 to 260 ° C.
  • Such polycarbonate resins are often classified as “medium viscosity products”, “low viscosity products”, and “high flow” grades in product catalogs.
  • the dispersed phase is not particularly limited as long as it is incompatible with the polycarbonate resin constituting the continuous phase and has a predetermined refractive index difference.
  • the refractive index of the polycarbonate resin (n D) may be about 1.50 to 1.65, the refractive index of typical bisphenol A type polycarbonate (n D) is 1.59.
  • the difference in refractive index must be an absolute value in the range of 0.045 to 0.085, preferably 0.045 to 0.08 (for example, 0.045 to 0.075), and more preferably 0.0. It is about 05 to 0.07 (particularly 0.055 to 0.065).
  • the refractive index of both resins may be any resin, but the resin constituting the continuous phase preferably has a higher refractive index.
  • the dispersed phase is usually composed of a transparent resin.
  • Transparent resins constituting the dispersed phase include olefin resins (polyethylene, etc.), cyclic olefin resins, vinyl-based resins (polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl pyrrolidone, etc.), acrylic resins ( Polymethyl methacrylate, polyacrylic acid, polydialkylaminoethyl methacrylate, polycyclohexyl chloroacrylate, polycyclohexyl bromoacrylate, polychloroethyl chloroacrylate, polybutylthiomethacrylate, polyfurfuryl methacrylate, poly N-methylmethacrylamide), acrylonitrile Resin (polyacrylonitrile, polymethacrylonitrile, butadiene-acrylonitrile copolymer, etc.), styrene resin (polystyrene, st
  • the transparent resin constituting the dispersed phase is not limited to the exemplified resin as long as it has the refractive index difference.
  • a resin whose refractive index is controlled by introducing a copolymer component may be used. Therefore, the transparent resin constituting the dispersed phase may be a polycarbonate resin having a refractive index different from that of the continuous phase.
  • These transparent resins can be used alone or in combination of two or more.
  • cyclic olefin resins vinyl resins (for example, polyvinyl pyrrolidone), styrene resins (for example, styrene-butadiene copolymer), polyamide resins (for example, , Polyamide 6, polyamide 66, polyamide 610, etc.) are preferable, and cyclic olefin-based resins are particularly preferable from the viewpoint of light diffusion characteristics and heat resistance.
  • the cyclic olefin-based resin may be a resin having at least a polymerizable cyclic olefin having an ethylenic double bond in the ring as a polymerization component.
  • the cyclic olefin may be a monocyclic olefin, but is preferably a polycyclic olefin.
  • Typical polycyclic olefins include, for example, norbornene, norbornene having a substituent (2-norbornene), a multimer of cyclopentadiene, a multimer of cyclopentadiene having a substituent, and the like.
  • substituent include an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a cyano group, an amide group, and a halogen atom.
  • cyclic olefin for example, 2-norbornene; 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, etc.
  • Norbornenes having an alkyl group norbornenes having an alkenyl group such as 5-ethylidene-2-norbornene; alkoxycarbonyl groups such as 5-methoxycarbonyl-2-norbornene and 5-methyl-5-methoxycarbonyl-2-norbornene; Norbornenes having a cyano group such as 5-cyano-2-norbornene; norbornenes having an aryl group such as 5-phenyl-2-norbornene and 5-phenyl-5-methyl-2-norbornene; Pentadiene; 2,3-dihydrodi Derivatives such as clopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienonaphthalene; derivatives having substituents such as 6-ethyl-octahydron
  • cyclic olefins can be used alone or in combination of two or more.
  • polycyclic olefins such as norbornenes are preferred.
  • the cyclic olefin-based resin may be a resin obtained by addition polymerization, or may be a resin obtained by ring-opening polymerization (ring-opening metathesis polymerization or the like).
  • the cyclic olefin-based resin (for example, a resin obtained by ring-opening metathesis polymerization) may be a hydrogenated hydrogenated resin.
  • the cyclic olefin resin may be a crystalline or amorphous resin, and may usually be an amorphous resin.
  • the cyclic olefin resin may be prepared by a conventional polymerization method (for example, addition polymerization using a Ziegler type catalyst, addition polymerization using a metallocene catalyst, ring-opening metathesis polymerization using a metathesis polymerization catalyst, etc.). Good.
  • a conventional polymerization method for example, addition polymerization using a Ziegler type catalyst, addition polymerization using a metallocene catalyst, ring-opening metathesis polymerization using a metathesis polymerization catalyst, etc.
  • the cyclic olefin-based resin may be a cyclic olefin homopolymer or a copolymer, or may be a copolymer of a cyclic olefin and a copolymerizable monomer.
  • a copolymer of a cyclic olefin and a copolymerizable monomer is preferable from the viewpoint that the moldability of the cyclic olefin resin can be improved and the refractive index can be appropriately adjusted.
  • copolymerizable monomers examples include chain structures such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene.
  • C 2-10 olefins cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, dicyclopentadiene; vinyl ester monomers (for example, vinyl acetate, vinyl propionate, etc.); dienes Examples thereof include monomers (for example, butadiene, isoprene, etc.); (meth) acrylic monomers (for example, (meth) acrylic acid, or derivatives thereof ((meth) acrylic acid ester, etc.)). These copolymerizable monomers may be used alone or in combination of two or more. Preferred copolymerizable monomers are ⁇ -chain C 2-8 olefins, particularly ⁇ -chain C 2-4 olefins such as ethylene.
  • the former / the latter 99/1 to 5/95, preferably 90/10 to 10/90, more preferably 80/20 to 10/90 (particularly 70/30 to 15).
  • Cyclic olefin resin has a melt flow rate (MFR), ISO 1133 (260 ° C., 2.16 kg load (21.2 N)) in compliance with, for example, be selected from the range of about 10 ⁇ 100cm 3/10 min, e.g. , 20 ⁇ 80cm 3/10 minutes, preferably from 30 ⁇ 70cm 3/10 minutes, more preferably about 40 ⁇ 60cm 3/10 minutes.
  • MFR melt flow rate
  • ISO 1133 260 ° C., 2.16 kg load (21.2 N)
  • polycarbonate resin MFR 300 ° C., 1.2 kg load
  • cyclic olefin resin MFR 260 ° C., 2.16 kg load
  • It is about 1 to 1/10, preferably 1/1 to 1/8, more preferably about 1/2 to 1/7 (particularly 1/3 to 1/6).
  • the softening point or glass transition temperature of the cyclic olefin resin is, for example, about 80 to 250 ° C., preferably 100 to 230 ° C., more preferably 110 to 200 ° C. (especially 120 to 180 ° C.).
  • the softening point or glass transition temperature can be controlled by adjusting the proportion of the copolymer component, the molecular weight, and the like.
  • the number average molecular weight of the cyclic olefin resin is, for example, about 15,000 to 200,000, preferably about 20,000 to 100,000, more preferably about 30,000 to 80,000 (particularly about 40,000 to 70,000).
  • Cyclic olefin resins are trade names “TOPAS” (manufactured by Polyplastics Co., Ltd.), trade names “ZEONOR” “ZEONEX” (manufactured by Nippon Zeon Co., Ltd.), and trade names “ARTON” (manufactured by JSR Corporation).
  • TOPAS trade names “TOPAS”
  • ZONOR trade names “ZEONEX”
  • ARTON trade names “manufactured by JSR Corporation.
  • the product name “Apel” (manufactured by Mitsui Chemicals, Inc.) can be easily obtained.
  • it may be about 99/1 to 50/50, preferably 97/3 to 60/40, more preferably about 95/5 to 70/30 (particularly about 90/10 to 80/20).
  • the light diffusion layer may contain a lubricant as necessary.
  • a lubricant such as a uniaxial stretching temperature, and the transmitted light is diffused anisotropically. A film is easily obtained.
  • the aspect ratio of the dispersed phase particles can be controlled by an orientation treatment such as draw ratio or uniaxial stretching in the extrusion molding process, and a dispersed phase having a large aspect ratio can be easily formed.
  • Lubricants include compounds having a low molecular weight hydrocarbon skeleton, such as waxes and lipids.
  • wax examples include aliphatic hydrocarbon wax (poly C 2-4 olefin wax such as polyethylene wax, ethylene copolymer wax, polypropylene wax, paraffin wax, microcrystalline wax, etc.), vegetable or animal And waxes such as carnauba wax, beeswax, shellac wax, and montan wax. These waxes can be used alone or in combination of two or more.
  • poly C 2-4 olefin wax such as polyethylene wax, ethylene copolymer wax, polypropylene wax, paraffin wax, microcrystalline wax, etc.
  • vegetable or animal And waxes such as carnauba wax, beeswax, shellac wax, and montan wax. These waxes can be used alone or in combination of two or more.
  • lipids include higher fatty acids (for example, C8-35 saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, palmitooleic acid, olein).
  • C8-35 saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, palmitooleic acid, olein).
  • C10-35 unsaturated fatty acids such as acids and erucic acids
  • higher fatty acid salts eg, C 8-35 fatty acid metal salts such as barium laurate, zinc laurate, calcium stearate, zinc stearate, magnesium stearate, etc.
  • Higher fatty acid esters eg, C 8-35 fatty acid esters such as glycerin fatty acid ester, pentaerythritol fatty acid ester, diglycerin fatty acid ester, polyglycerin fatty acid ester
  • higher fatty acid amides eg, stearic acid amide, erucic acid amide
  • C 8 such as glycerin fatty acid ester, pentaerythritol fatty acid ester, diglycerin fatty acid ester, polyglycerin fatty acid ester
  • higher fatty acid amides eg, stearic acid amide, erucic acid amide
  • lubricants can be used alone or in combination of two or more.
  • lipids in particular, lauric acid, palmitic acid, stearic acid, C 8-35 saturated fatty acids such as behenic acid, C 8-35 saturated fatty acid metal salts such as calcium stearate and magnesium stearate, pentaerythritol Polyhydric alcohol C 8-35 saturated fatty acid ester such as stearic acid ester, and alkylene bis fatty acid amide such as ethylene bis stearic acid amide and ethylene bishydroxy stearic acid amide are preferable.
  • the ratio of the lubricant is, for example, 0.01 to 5 parts by weight, preferably 0.02 to 3 parts by weight, and more preferably 0.03 to 2 parts by weight with respect to 100 parts by weight of the resin component constituting the light diffusion layer. (Particularly 0.05 to 1 part by weight).
  • the light diffusion layer may further contain a conventional additive such as a stabilizer, a plasticizer, an antistatic agent, a flame retardant, etc., as long as the light scattering property is not impaired.
  • a stabilizer is preferably blended from the viewpoint of preventing the generation of a gel that impairs the appearance of the film.
  • Stabilizers include antioxidants, ultraviolet absorbers, heat stabilizers, light stabilizers, and the like.
  • examples of the antioxidant include a phenol-based antioxidant, a hydroquinone-based antioxidant, a quinoline-based antioxidant, and a sulfur-based antioxidant.
  • Phenol antioxidants include hindered phenols such as 2,6-di-tert-butyl-p-cresol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2 Alkylphenol antioxidants such as' -thiobis (4-methyl-6-t-butylphenol); C 10 such as n-octadecyl [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] -35 alkyl [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]; 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxy) C 2-10 alkanediol-bis [3- (3,5-(tri-
  • Amine-based antioxidants include hindered amines such as 1,2-bis (2,2,6,6-tetramethyl-4-piperidyloxy) ethane, phenylnaphthylamine, N, N′-diphenyl-1,4. -Phenylenediamine, N-phenyl-N'-cyclohexyl-1,4-phenylenediamine and the like.
  • hydroquinone antioxidant examples include 2,5-di-t-butylhydroquinone
  • examples of the quinoline antioxidant include 6-ethoxy-2,2,4-trimethyl-1,2. -Dihydroquinoline and the like are included.
  • examples of the sulfur-based antioxidant include dilauryl thiodipropionate and distearyl thiodipropionate.
  • the ultraviolet absorber examples include salicylic acid ester-based ultraviolet absorbers such as phenyl salicylate and 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate; 2- (2- Hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimido-methyl) -5-methylphenyl] benzotriazole, 2- (3-t-butyl -2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butyl) Phenyl) benzotriazole, 2- (2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl) benzoto Riazole, octyl-3- [3-tert-butyl-4-hydroxy- (5
  • HALS light stabilizer
  • examples of the light stabilizer include compounds having a 2,2,6,6-tetramethylpiperidine skeleton and a 1,2,2,6,6-pentamethyl-4-piperidine skeleton, such as N, N ′, N '', N '''-tetrakis (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) triazin-2-yl) -4, 7-diazadecane-1,10-diamine, decanedioic acid bis (2,2,6,6-tetramethyl-1-octyloxy-4-piperidinyloxy) ester, bis (1,2,2,6, 6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (1,2,2,6,6-pentamethyl-4 -Piperidiny
  • heat stabilizers examples include phosphite stabilizers (tris (branched alkylphenyl) phosphites such as tris (2,4-di-t-butylphenyl) phosphite), bis (alkylaryl) pentaerythritol diphosphites. And the like, phosphorus-based stabilizers (or phosphate esters), sulfur-based heat stabilizers, hydroxylamine-based heat stabilizers, and the like.
  • phosphite stabilizers tris (branched alkylphenyl) phosphites such as tris (2,4-di-t-butylphenyl) phosphite), bis (alkylaryl) pentaerythritol diphosphites.
  • phosphorus-based stabilizers or phosphate esters
  • sulfur-based heat stabilizers hydroxylamine-based heat stabilizers, and the like.
  • These stabilizers may be a low molecular weight type or a high molecular weight type.
  • the stabilizer may be used alone, or a combination of two or more components (for example, a combination of an antioxidant and an ultraviolet absorber, a combination of an ultraviolet absorber and a light stabilizer, an antioxidant and an ultraviolet ray).
  • a combination of an absorber and a light stabilizer may be used.
  • each stabilizer used is 0.01 to 2.5 parts by weight, preferably 0.03 to 2 parts by weight (for example, 0.05 to 1.0.0 parts by weight) with respect to 100 parts by weight of the resin component constituting the light diffusion layer. 5 parts by weight), more preferably about 0.07 to 1 part by weight (for example, 0.1 to 0.7 parts by weight).
  • the antioxidant is about 0.05 to 1 part by weight (for example, 0.08 to 0.3 part by weight) with respect to 100 parts by weight of the resin component
  • the ultraviolet absorber is 100 parts by weight of the resin component.
  • 0.1 to 2 parts by weight for example, 0.2 to 0.7 parts by weight
  • the light stabilizer is 0.03 to 0.5 parts by weight (for example with respect to 100 parts by weight of the resin component). 0.05 to 0.25 parts by weight).
  • the total amount of the stabilizer may be 0.05 to 3 parts by weight (for example, 0.1 to 2 parts by weight), preferably about 0.1 to 1 part by weight with respect to 100 parts by weight of the resin component. Good.
  • the light diffusion layer usually contains an antioxidant.
  • the dispersed phase is in the form of a sphere having a ratio of the average length L of the major axis to the average length W of the minor axis (average aspect ratio, L / W) of about 1 to 1.25. It may be a football type shape (an ellipsoid such as a spheroid), a flat body, a rectangular parallelepiped shape, a fiber shape or a thread shape.
  • the aspect ratio of the dispersed phase particles is large.
  • the average aspect ratio of the dispersed phase is usually larger than 1 (for example, 1.01 to 20000), and can be selected from a range of about 1.5 to 10,000 (for example, 2 to 5000), for example, 3 to 3000. It is preferably about 4 to 2000, and more preferably about 5 to 1000. From the viewpoint of productivity, it may be about 3 to 100, preferably 3.5 to 50, more preferably about 4 to 30 (especially 5 to 20).
  • the long axis direction of the dispersed phase is oriented in a predetermined direction of the film, that is, the X-axis direction (take-up direction or machine direction) to form a particulate dispersed phase. ing.
  • Such an anisotropic light diffusion layer can effectively improve the luminance of the display device even in a backlight type liquid crystal display device provided with a tubular (bar-shaped) light source.
  • the residual phase of the lamp image of the light source can be suppressed by orienting the axial direction of the dispersed phase in parallel to the axial direction of the light source.
  • the difference in the refractive index of the resin constituting the dispersed phase within the above range, even if the transmittance is high, light leakage can be suppressed without reducing the light scattering effect, and a high degree of lamp image can be achieved. Residual can be suppressed.
  • the average length L of the major axis of the dispersed phase is, for example, 0.1 to 1000 ⁇ m (for example, 0.5 to 500 ⁇ m), preferably 1 to 100 ⁇ m (for example, 2 to 50 ⁇ m), and more preferably 3 to 30 ⁇ m. (Especially about 5 to 10 ⁇ m). Further, in the case of increasing the anisotropy, for example, it may be about 5 to 800 ⁇ m (especially 5 to 500 ⁇ m).
  • the average length W of the minor axis of the dispersed phase is, for example, 0.01 to 10 ⁇ m (for example, 0.02 to 5 ⁇ m), preferably 0.03 to 5 ⁇ m (for example, 0.05 to 3 ⁇ m), and more preferably Is about 0.07 to 1 ⁇ m (for example, 0.1 to 1 ⁇ m).
  • the orientation coefficient of the dispersed phase particles as the degree of alignment is, for example, 0.34 or more (about 0.34 to 1), preferably 0.4 to 1 (for example, 0.5 to 1), more preferably 0.7. It may be about ⁇ 1. Higher anisotropy can be imparted to the scattered light as the orientation coefficient of the dispersed phase particles is higher.
  • the orientation coefficient can be calculated based on the following formula.
  • n ( ⁇ ) represents the ratio (weight ratio) of dispersed phase particles having an angle ⁇ in all dispersed phase particles).
  • the light diffusion film may have a directivity of diffused light. That is, having directivity means that there is an angle at which the scattering intensity has a maximum in the direction of strong scattering in anisotropic diffused light.
  • the thickness of the light diffusion layer may be, for example, about 3 to 500 ⁇ m (for example, 10 to 500 ⁇ m), preferably about 30 to 450 ⁇ m (for example, 50 to 400 ⁇ m), more preferably about 80 to 350 ⁇ m (particularly about 100 to 350 ⁇ m). Good.
  • the light diffusion film may be a single layer film of the light diffusion layer alone (for example, an anisotropic light diffusion layer for anisotropically diffusing transmitted light), or a light diffusion layer (for example, transmitting light anisotropically).
  • a laminated body composed of a transparent layer laminated on at least one surface of an anisotropic light diffusing layer that diffuses light into the transparent layer is not limited to a resin layer. Glass, etc.).
  • the transparent layer is usually formed of a transparent resin layer.
  • the transparent resin exemplified in the section of the dispersed phase can be used.
  • transparent resins include heat-resistant resins (such as resins having a high glass transition temperature or melting point) such as cyclic olefin resins, (meth) acrylic resins, styrene, in order to increase heat resistance and blocking resistance.
  • Resin, polyester resin, polyamide resin, polycarbonate resin and the like can be used, but cyclic olefin resin or polycarbonate resin is particularly preferable from the viewpoint of optical properties and heat resistance.
  • a resin that is the same as or different from the resin of the continuous phase and / or the dispersed phase constituting the light diffusion layer can be used as long as the adhesion and mechanical properties are not impaired.
  • a resin (polycarbonate resin) that is the same or common (or the same system) as the continuous phase resin is preferred.
  • the transparent resin layer contains conventional additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, light stabilizers, etc.), plasticizers, antistatic agents, flame retardants and the like. Also good.
  • the transparent layer comprises a stabilizer (antioxidant, ultraviolet absorber, light stabilizer), preferably at least one component selected from an ultraviolet absorber and a light stabilizer (ultraviolet absorber alone, light stabilizer alone, It is preferably composed of a resin layer containing an ultraviolet absorber and a light stabilizer), particularly an ultraviolet absorber and a light stabilizer.
  • each transparent layer may be approximately the same as that of the light diffusion layer.
  • the thickness of each transparent layer can be selected from about 3 to 150 ⁇ m. It may be about 5 to 100 ⁇ m, preferably about 10 to 50 ⁇ m, and more preferably about 15 to 40 ⁇ m.
  • the thickness of the laminated film may be, for example, about 10 to 600 ⁇ m, preferably about 50 to 500 ⁇ m, and more preferably about 100 to 400 ⁇ m.
  • the total light transmittance of the light diffusion film (or light diffusion layer) is, for example, 50% or more (for example, 50 to 100%), preferably 60% or more (for example, 60 to 100%), and particularly 70 to 95. % (For example, 75 to 90%).
  • the haze value of the light diffusion film (or light diffusion layer) is 80% or more (for example, 80 to 99.9%), preferably 90% or more (for example, 90 to 99.8%), and more preferably 93%. It is about 99.5%, especially about 95 to 99%. If the total light transmittance is small, the luminance tends to decrease, and if the haze value is small, the light cannot be diffused uniformly and the display quality is deteriorated.
  • a release agent such as silicone oil may be applied to the surface of the light diffusion film as long as the optical properties are not hindered, or a corona discharge treatment may be performed.
  • a corona discharge treatment may be performed.
  • FIG. 2 is a schematic cross-sectional view showing an example of a light diffusion film.
  • the anisotropic light diffusing film 17 having a single layer structure is composed of a plurality of resins having different refractive indexes, and a phase separation structure in which a particulate dispersed phase 17b is dispersed in a continuous layer 17a composed of a polycarbonate resin (or It has a sea-island structure.
  • FIG. 3 is a schematic sectional view showing another example of the light diffusion film.
  • the light diffusion film 28 has a laminated structure including a light diffusion layer 27 and a transparent resin layer 29 laminated on at least one surface of the light diffusion layer.
  • the light diffusion layer 27 is composed of a plurality of resins having different refractive indexes, and a phase separation structure (or sea-island structure) in which the particulate dispersed phase 27b is dispersed in a continuous layer 27a composed of a polycarbonate-based resin. have.
  • the transparent resin layer 29 protects the light diffusing layer 27 to prevent the dispersed phase particles from falling off and adhering, and the film can be improved in scratch resistance and manufacturing stability. Strength and handleability can be improved.
  • FIG. 4 is a conceptual diagram for explaining the anisotropy of light diffusion.
  • the anisotropic light diffusing film 37 is composed of a continuous phase 37 a composed of a polycarbonate-based resin, and an anisotropic dispersed phase 37 b dispersed in the continuous phase.
  • the light diffusion anisotropy is the scattering characteristic F ( ⁇ ) indicating the relationship between the scattering angle ⁇ and the scattered light intensity F.
  • the scattering characteristic in the X-axis direction of the film is orthogonal to Fx ( ⁇ ), the X-axis direction.
  • the scattering characteristics Fx ( ⁇ ) and Fy ( ⁇ ) show patterns in which the light intensity gently attenuates as the scattering angle ⁇ becomes wider.
  • the value of Fy ( ⁇ ) / Fx ( ⁇ ) is 1.01 or more, for example, about 1.01 to 200, preferably about 1.1 to 150. It is.
  • the value of Fy ( ⁇ ) / Fx ( ⁇ ) can be selected from the range of about 1.1 to 400, for example, 1.2 to 200, preferably 1.3 to 150. More preferably, it is about 1.5 to 100.
  • the value of Fy ( ⁇ ) / Fx ( ⁇ ) is, for example, 1.2 to 50, preferably 1.3 to 30, more preferably 1.5 to 20 (particularly 1.) in terms of productivity. It may be about 8 to 10).
  • the rod-shaped light source itself is recognized by being arranged so as to scatter in the direction perpendicular to the axial direction of the rod-shaped light source.
  • a film having the light diffusion characteristics of the present invention can be obtained by producing a film under the types and conditions described below.
  • the X-axis direction of the anisotropic light diffusion film 37 is usually the long-axis direction of the dispersed phase 37b. Therefore, the anisotropic light diffusion film is disposed so that the X-axis direction is substantially parallel to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit.
  • the X-axis direction of the anisotropic light diffusing film does not need to be completely perpendicular to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit, for example, an angle ⁇ 15 ° (for example, ⁇ 10) You may arrange
  • the scattering characteristic F ( ⁇ ) can be measured using, for example, a measuring apparatus as shown in FIG.
  • This apparatus measures the intensity of laser light that has passed through the anisotropic light diffusion film 37 and a laser light irradiation apparatus (for example, NIHONGAKAGAKU ENG NEO-20MS) 38 for irradiating the anisotropic light diffusion film 37 with laser light.
  • a detector 39 a detector 39. Then, laser light is irradiated (perpendicularly) at an angle of 90 ° with respect to the surface of the light diffusion film 37, and the intensity (scattered light intensity) F of the light diffused by the film is measured (plotted) with respect to the scattering angle ⁇ . ) To obtain light scattering characteristics.
  • the anisotropic light diffusion film when the anisotropy of light scattering is high, the angle dependency of scattering in a predetermined direction can be reduced, and therefore the angle dependency of luminance can be reduced.
  • the anisotropic light diffusing film when the angle (90 °) perpendicular to the display surface is 0 °, a decrease in luminance can be suppressed even at an angle of 40 ° or more exceeding the angle 20 ° with respect to the display surface.
  • the light diffusion film can be prepared by dispersing the resin component constituting the dispersed phase in the resin constituting the continuous phase, and the anisotropic light diffusion film is obtained by deforming and orienting the resin component constituting the dispersed phase.
  • a polycarbonate resin, a cyclic olefin resin and, if necessary, a component such as a lubricant are blended by a conventional method (for example, a melt blending method, a tumbler method, etc.) as necessary, and melt-mixed to form a T die or a ring.
  • the dispersed phase can be dispersed by extrusion from a die or the like to form a film.
  • a coating method in which a composition composed of a particulate cyclic olefin resin as a light scattering component and a polycarbonate resin is applied to a substrate (such as a substrate film) or the composition is laminated.
  • the light diffusing film can also be produced by molding using a conventional film molding method such as a laminating method, a casting method, or an extrusion molding method.
  • a light diffusing film is often prepared by film forming by an extrusion method.
  • stacked on at least one surface of this diffusion layer was comprised by the component corresponding to a light-diffusion layer.
  • a resin composition and a resin composition composed of components corresponding to the transparent layer are co-extruded, and a co-extrusion molding method for forming a film. It can be formed by a lamination method, a dry lamination method in which a light diffusion layer and a transparent resin layer, which are respectively produced, are laminated.
  • the isotropic light diffusing film has the above-mentioned extrusion molding conditions (for example, extrusion under a mild condition such as drawing with a small draw ratio, unstretched processing, etc.), heat treatment of the film after extrusion molding (dispersed with extrusion) It may be prepared by relaxing the form of the dispersed phase into a spherical shape by, for example, heat treatment for relaxing the distortion generated in the phase.
  • extrusion molding conditions for example, extrusion under a mild condition such as drawing with a small draw ratio, unstretched processing, etc.
  • heat treatment of the film after extrusion molding (dispersed with extrusion) It may be prepared by relaxing the form of the dispersed phase into a spherical shape by, for example, heat treatment for relaxing the distortion generated in the phase.
  • anisotropic light diffusing layer for example, (1) a method of forming a film while drawing an extruded sheet, (2) a method of uniaxially stretching the extruded sheet, (3) the method of (1) The method can be carried out by a method combining the method and the method (2), (4) a method in which the above components are solution-blended, and a film is formed by a casting method.
  • the melting temperature can be selected according to the type of resin constituting the dispersed phase.
  • a cyclic olefin resin for example, 150 to 300 ° C., preferably 200 to 290 ° C., more preferably 230 to 280 ° C. ( In particular, it may be about 240 to 270 ° C.
  • the light diffusion film of the present invention is preferably formed while drawing an extruded sheet in melt film formation.
  • the draw ratio can be selected from a range of about 1.5 to 50 times depending on the opening of the die of the extruder, the type of resin, the layer structure, etc., and cannot be uniquely determined. From the range of about 30 times, preferably 2.5-20 times, more preferably 3-15 times (particularly 3.5-10 times), the anisotropy parameter can be selected to be in the range. .
  • the cooling temperature by a cast roll is, for example, about 30 to 180 ° C., preferably 50 to 160 ° C., more preferably 80 to 150 ° C. (especially 100 to 140 ° C.). Also good.
  • the light diffusion film of the present invention may be stretched (uniaxial or biaxial stretching, particularly uniaxial stretching).
  • the draw ratio of the light diffusion film can be selected according to the aspect ratio of the dispersed phase.
  • the draw ratio in one direction is 1.1 to 10 times, preferably 1.2 to 5 times, more preferably 1.5 to It may be about 3 times.
  • the light diffusing film of the present invention transmitted light is scattered and diffused by an appropriate difference in refractive index between the continuous phase and the dispersed phase.
  • the light can be diffused anisotropically. Therefore, the light diffusion film of the present invention can be used for various optical applications.
  • the isotropic light diffusion film can diffuse the transmitted light from the light source to a uniform luminance even when a local light source is used.
  • anisotropic light diffusing films can reduce the transmission of light from a light source with uniform brightness and prevent light leakage even when a tubular light source having anisotropy in luminance is used. Even if the brightness and brightness are increased, the appearance of the lamp image can be suppressed.
  • the light diffusing film of the present invention is useful as a constituent member of a surface light source device or a display device (for example, a surface display device (flat display device) having a flat image display area such as a liquid crystal display device). is there.
  • a liquid crystal display device An example of a liquid crystal display device will be described with reference to FIG. 1 described above.
  • the liquid crystal display device includes a surface type display unit (such as a transmission type liquid crystal display unit or a liquid crystal display panel) 5 as an irradiated body including a liquid crystal cell in which liquid crystal is sealed.
  • the surface light source unit is disposed on the back side of the display unit (or panel) and illuminates the display unit 5.
  • the surface light source unit includes a tubular light source 1 such as a plurality of fluorescent discharge tubes (cold cathode tubes) arranged in parallel or directly below the display unit 5 and light from the tubular light source 1 in the forward direction (display unit). And a reflecting plate 2 for guiding the light to the display unit 5.
  • a support plate (not shown) disposed in front of the tubular light source 1 and an emission surface side (light-emitting surface side of the surface light source unit) of the support plate are arranged to transmit transmitted light.
  • a prism sheet 4 (micro prisms not shown) in which micro prisms are formed in parallel in a predetermined direction is sequentially stacked.
  • the light from the tubular light source 1 is diffused and uniformed by the anisotropic light diffusion film 3 and condensed forward by the prism sheet 4 to illuminate the display unit 5 with increased brightness.
  • the said support plate is a transparent plate formed in order to protect the anisotropic light-diffusion film 3 which is a thin film.
  • the surface type display unit (liquid crystal display unit) 5 includes a first polarizing film 6a, a first glass substrate 7a, a first electrode 8a formed on the glass substrate, and a first electrode laminated on the electrode.
  • the first alignment film 9a, the liquid crystal layer 10, the second alignment film 9b, the second electrode 8b, the color filter 11, the second glass substrate 7b, and the second polarizing film 6b are sequentially stacked. Yes.
  • the display unit can be directly illuminated from the back by a tubular light source 1 such as a built-in fluorescent discharge tube (cold cathode tube).
  • a tubular light source 1 such as a built-in fluorescent discharge tube (cold cathode tube).
  • the backlight type surface light source device using a tubular light source (lamp) has become very heavy in the liquid crystal display device as the liquid crystal display screen of a liquid crystal television or the like in recent years increases in size.
  • the luminance distribution of light emitted from the tubular light source 1 is not uniform, and the luminance distribution in the direction orthogonal to the axial direction of the tubular light source 1 is not uniform.
  • the tubular light source itself disposed immediately below the display unit (liquid crystal display unit) 5 is recognized from the display surface side, and a lamp image remains on the display surface. Therefore, even when a tubular light source is used, it is necessary to make the luminance on the display surface uniform.
  • the anisotropic light diffusing film 3 is close to the tubular light source 1, the anisotropic light diffusing film 3 is required to have stable light diffusibility for a long period of time.
  • the anisotropic light diffusion film 3 When the anisotropic light diffusion film 3 is used for a backlight type surface light source unit or a liquid crystal display device, the luminance on the display surface can be made uniform and the expression of the lamp image can be suppressed. That is, when the anisotropic light diffusion film 3 is disposed with the long axis direction of the dispersed phase aligned with the long axis direction of the tubular light source 1, the light from the tubular light source (fluorescent tube) 1 is converted into a rod-shaped light source due to anisotropic light scattering. It is possible to scatter in the direction perpendicular to the length direction of the light source, and to uniformly illuminate the display surface by uniformizing the luminance of the exit surface while minimizing the decrease in luminance.
  • anisotropic light diffusion can prevent diffused light from being lost, so that the lamp image can be erased even in a backlight unit that is required to be thin and have high brightness.
  • a large-sized liquid crystal display device can cope with the thinning of the device and can be easily manufactured. That is, even if the light diffusion film of the present invention is thin, the display surface of a large-area liquid crystal display device can be illuminated uniformly with high luminance.
  • the continuous phase and the disperse phase are made of a predetermined resin, even a direct type surface light source unit that has high heat resistance, is located in the vicinity of the tubular light source 1 and is subjected to high temperatures can be used for a long time. A predetermined light diffusion can be maintained.
  • the light diffusion film is not limited to anisotropy and may be an isotropic light diffusion film.
  • the light diffusing film anisotropic light diffusing film, etc.
  • the light diffusing film may be interposed in the light path emitted from the light emitting surface (emission surface) of the surface light source unit, that is, between the surface light source unit and the display unit. You may arrange
  • the prism sheet is useful for condensing diffused light and illuminating the display unit.
  • the prism sheet and the light diffusing film are used in combination, usually, the prism sheet may be disposed on the downstream side of the optical path from the light diffusing film.
  • the tubular light source does not have to be positioned directly below the display unit, and may be positioned on the side portion.
  • the light from the side tubular light source may be incident from the side of the light guide plate, and may be emitted from the exit surface of the light guide plate formed to face the display unit to illuminate the display unit.
  • the number of tubular light sources is not particularly limited and can be selected according to the size of the display surface.
  • the X-axis direction of the anisotropic light diffusion film is usually the long-axis direction of the dispersed phase. Therefore, the anisotropic light diffusing film is disposed so that the X-axis direction thereof is substantially parallel to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit. Note that the X-axis direction of the anisotropic light diffusing film does not need to be completely perpendicular to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit, for example, an angle ⁇ 15 ° (for example, ⁇ 10) You may arrange
  • the light diffusing film of the present invention suppresses light leakage even when it is thin and has high brightness, has high heat resistance, and can suppress changes in light scattering characteristics over a long period of time even when used at high temperatures.
  • the display unit can be uniformly illuminated by the light unit (surface light source unit). Therefore, it is useful as a member of a display device (liquid crystal display device or the like) or a backlight type light source device (surface light source device).
  • a direct type backlight unit (surface light source unit) in which a light source is disposed directly below the display unit can be used for display devices having various screen sizes, particularly large screen display units. It is suitable as a constituent member of the display unit or the backlight unit.
  • the screen size of the display unit is not particularly limited, and may be, for example, about 20 inches or more (eg, 23 to 300 inches, preferably 30 to 200 inches).
  • the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
  • the characteristic of the light-diffusion film (anisotropic light-diffusion film) used by the Example and the comparative example was evaluated in accordance with the following method.
  • Total light transmittance TT (%) and haze (%) Based on JIS K7301, the total light transmittance and haze of the light diffusion film were measured using a haze meter (NDH-500, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • MFR Melt flow rate
  • the stretching direction of the anisotropic light diffusing film is the X-axis direction, the direction orthogonal to this direction is the Y-axis direction, laser light is irradiated from the direction orthogonal to the anisotropic light diffusing film surface, and the scattered light intensity F with respect to the scattering angle ⁇ . That is, the scattered light intensity Fx ( ⁇ ) with respect to the scattering angle ⁇ in the X-axis direction and the scattered light intensity Fy ( ⁇ ) with respect to the scattering angle ⁇ in the Y-axis direction were measured.
  • the light scattering intensity distribution of the anisotropic light diffusion film was measured using a laser type light scattering device (manufactured by Neoarc, LSD-101, wavelength 633 nm).
  • the evaluation of light omission was based on a graph in which the horizontal axis represents the scattering angle and the vertical axis represents the logarithm of the light scattering intensity.
  • FIG. 6 is a graph of a sample that has lost light
  • FIG. 7 is a graph of a sample that has not lost light.
  • the distribution intensity changes discontinuously near 0 °, so that the luminance becomes non-uniform, light is lost, and the lamp image remains.
  • FIG. 6 in the sample where light is lost, the distribution intensity changes discontinuously near 0 °, so that the luminance becomes non-uniform, light is lost, and the lamp image remains.
  • FIG. 6 in the sample where light is lost, the distribution intensity changes discontinuously near 0 °, so that the luminance becomes non-uniform, light is lost
  • Distribution intensity is continuous, no light is lost, and no lamp image remains.
  • Distribution intensity is slightly discontinuous near 0 °, but almost no lamp image remains.
  • Distribution intensity is near 0 °. Slightly discontinuous and some lamp image remains ⁇ : The distribution intensity is discontinuous near 0 °, and the lamp image remains.
  • Example 1 Bisphenol A type polycarbonate resin as the resin constituting the continuous phase (Mitsubishi Engineering Plastics Co., Ltd., "medium viscosity products Iupilon S-2000", viscosity-average molecular weight from 18,000 to 20,000, a melt flow rate 9 ⁇ 12cm 3/10 min) 85 parts by weight, the cyclic olefin resin (a copolymer of norbornene monomer and an olefin monomer as a resin constituting the dispersed phase, Topas Advanced polymers GmbH Co., trade name “TOPAS5013”, melt flow rate 48cm 3/10 minutes ) 15 parts by weight, 0.1 parts by weight of lubricant (ethylene bis stearamide, Clariant Japan Co., Ltd., trade name “E-micro powder”), antioxidant (hindered phenol antioxidant, Ciba Japan) Product name "IRGANOX” 1 10 ”) 0.1 parts by weight were mixed, and the extrusion temperature was used to melt and extrude from the die at
  • the draw ratio (draw ratio) was 5 times, and the oil temperature Three-tone cast rolls were cooled at 125 ° C. to produce an anisotropic light diffusion film having a thickness of 263 ⁇ m.
  • the cross section was observed with a transmission electron microscope (TEM), in this diffusion film, the cyclic polyolefin resin formed a scatterer (particulate dispersed phase), and the particulate dispersed phase had an ellipsoidal shape (or The average length (thickness) of the minor axis was 0.8 ⁇ m and the average length of the major axis was 6.6 ⁇ m (aspect ratio 8.3).
  • TEM transmission electron microscope
  • Example 2 As a surface layer resin composition, a two-layer / three-layer light diffusion film (an optical diffusion layer having an anisotropic light diffusion layer as an intermediate layer and a transparent resin layer as a surface layer laminated on both surfaces of the intermediate layer) is prepared.
  • anisotropic light diffusion film was produced.
  • the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length (thickness) was 0.8 ⁇ m, and the average length of the major axis was 5.3 ⁇ m (aspect ratio 6.5).
  • the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length (thickness) was 0.8 ⁇ m and the average length of the major axis was 6.7 ⁇ m (aspect ratio 8.4).
  • the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length (thickness) was 0.6 ⁇ m and the average length of the major axis was 6.2 ⁇ m (aspect ratio 10.9).
  • the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length (thickness) was 0.5 ⁇ m and the average length of the long axis was 7.9 ⁇ m (aspect ratio 16.1).
  • Comparative Example 1 As a surface layer resin composition, a two-layer / three-layer light diffusion film (light diffusion film in which an anisotropic light diffusion phase is used as an intermediate layer and transparent resin layers as surface layers are laminated on both surfaces of the intermediate layer) is used.
  • the resin composition constituting each layer is mixed, and is melted and co-extruded from a die at a resin temperature of 250 ° C. and a die opening of 1.3 mm with a multilayer extruder, the draw ratio is 7.8 times, and the oil temperature control is 3
  • the polypropylene resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length was 0.15 ⁇ m and the average length of the long axis was 700 ⁇ m (aspect ratio 4700).
  • Comparative Example 2 As a resin composition for the intermediate layer, 80 parts by weight of a polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”) as a matrix resin, a polypropylene resin (Nippon Polypro Co., Ltd.) as a resin constituting the dispersed phase ), “Wintech WFW-4”) and 20 parts by weight of antioxidant (Ciba Japan Co., Ltd., “Irganox 1010”) are used, and the draw ratio is 8.3 times.
  • a polycarbonate resin manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000
  • a polypropylene resin Nippon Polypro Co., Ltd.
  • Wintech WFW-4 a polypropylene resin
  • antioxidant Ciba Japan Co., Ltd., “Irganox 1010
  • an anisotropic light diffusion film having a two-type three-layer structure and a thickness of 157 ⁇ m was prepared in the same manner as in Comparative Example 1.
  • the polypropylene resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis.
  • the average length was 0.24 ⁇ m and the average length of the long axis was 94 ⁇ m (aspect ratio 388).
  • a polycarbonate resin manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”
  • a polypropylene resin Nippon Polypro Co., Ltd.
  • antioxidant Ciba Japan Co., Ltd.,
  • the polypropylene resin formed a scatterer (particulate dispersed phase) in the intermediate layer, and the shape of the particulate dispersed phase was an ellipsoid (or elongated linear).
  • the pellets were 280 ⁇ m thick single layer film under conditions of preheating time 2 minutes, pressing time 2 minutes, and pressing pressure 10 MPa. Was made.
  • Example 7 Except for using a cyclic olefin resin (copolymer of norbornene monomer and olefin monomer, manufactured by Mitsui Chemicals, Inc., trade name “Apel APL6011T”) as the resin constituting the dispersed phase, the same as in Example 6.
  • a single layer film having a thickness of 300 ⁇ m was prepared.
  • Example 8 A 130 ⁇ m-thick single resin having a thickness of 130 ⁇ m was used in the same manner as in Example 6 except that a cyclic olefin resin (a ring-opening polymer of a norbornene monomer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR330R”) was used as the resin constituting the dispersed phase. A layer film was prepared.
  • a cyclic olefin resin a ring-opening polymer of a norbornene monomer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR330R”
  • Comparative Example 4 A single-layer film having a thickness of 200 ⁇ m was prepared in the same manner as in Example 6 except that polyethylene terephthalate resin (manufactured by Teijin Chemicals Ltd.) was used as the resin constituting the dispersed phase.
  • polyethylene terephthalate resin manufactured by Teijin Chemicals Ltd.
  • Comparative Example 5 A single-layer film having a thickness of 70 ⁇ m was produced in the same manner as in Example 6 except that a polypropylene resin (manufactured by Nippon Polypro Co., Ltd., “Wintech WFW-4”) was used as the resin constituting the dispersed phase.
  • a polypropylene resin manufactured by Nippon Polypro Co., Ltd., “Wintech WFW-4”
  • Fluorescent discharge tube (cold cathode tube) DESCRIPTION OF SYMBOLS 2 ... Reflecting plate 3 ... Diffusing plate 4 ... Prism sheet 5 ... Planar display unit 6a, 6b ... Polarizing film 7a, 7b ... Glass substrate 8a, 8b ... Electrode 9a, 9b ... Alignment film 10 ... Liquid crystal layer 11 ... Color filter 17 , 28 ... Light diffusing film 27, 37 ... Anisotropic light diffusing layer 17a, 27a, 37a ... Continuous phase 17b, 27b, 37b ... Dispersed phase 29 ... Transparent resin layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A light diffusion film having a light diffusion layer which is composed of a continuous phase formed of a polycarbonate resin and a dispersed phase which is dispersed in the continuous phase and formed of a resin having an absolute value of the refractive index difference from that of the polycarbonate resin within the range of 0.045-0.085.  The continuous phase is formed of a polycarbonate resin having a viscosity average molecular weight of 15,000-25,000, and the dispersed phase may be formed of a cyclic olefin resin.  The light diffusion layer may additionally contain a lubricant and/or an antioxidant.  The light diffusion film may additionally have a transparent layer arranged on at least one side of the light diffusion layer.  The light diffusion film can suppress light leakage even when the transmittance is high, thereby enabling a surface light source device such as a backlight type liquid crystal display device to be formed thinner with higher luminance.

Description

光拡散フィルム及びそれを備えた装置Light diffusing film and apparatus having the same
 本発明は、透過光を等方的又は異方的に拡散する光拡散フィルム、及びこの光拡散フィルムを備えた面光源装置並びに表示装置(液晶表示装置など)に関する。 The present invention relates to a light diffusion film that diffuses transmitted light isotropically or anisotropically, and a surface light source device and a display device (liquid crystal display device, etc.) provided with the light diffusion film.
 表示パネル(液晶表示モジュールなど)を裏面から照明するバックライト型表示装置(又は液晶表示装置など)においては、表示パネルの裏面に面光源ユニット(又はバックライトユニット)が配設されている。また、表示パネルに対する照射光を面光源として均一化し、かつ液晶表示装置の正面の輝度を上げるため、拡散シートやプリズムシート、輝度向上シート(反射型偏光板ほか)などが使用されている。また、液晶表示装置において、液晶セルの構成部材として、偏光板、位相差板やカラーフィルターなども使用されている。 In a backlight type display device (or liquid crystal display device or the like) that illuminates a display panel (liquid crystal display module or the like) from the back surface, a surface light source unit (or backlight unit) is disposed on the back surface of the display panel. In addition, in order to make the irradiation light to the display panel uniform as a surface light source and to increase the brightness of the front surface of the liquid crystal display device, a diffusion sheet, a prism sheet, a brightness enhancement sheet (a reflective polarizing plate, etc.) and the like are used. Further, in a liquid crystal display device, a polarizing plate, a retardation plate, a color filter, and the like are also used as constituent members of a liquid crystal cell.
 より具体的には、例えば、画像表示領域がフラット(平面)な面型表示装置(平面型表示装置)として、図1に示されるように、面型表示ユニット(透過型液晶表示ユニットなど)5と、このユニットを背面側から照明するための面光源ユニットとを備えた装置が知られている。この面光源ユニットは、1又は複数の蛍光放電管(冷陰極管)1を有しており、前記蛍光放電管1の背面側には光を反射するための反射板2が配設され、蛍光放電管1と表示ユニット5との間には光を拡散して表示ユニット5を均一に照明するための拡散板3が配設され、この拡散板3の表示ユニット側にはプリズムシート4が積層されている。前記面型表示ユニット5は、液晶表示ユニットの場合、第1の偏光フィルム6a,第1のガラス基板7a,このガラス基板に形成された第1の電極8a,この電極上に積層された第1の配向膜9a,液晶層10,第2の配向膜9b,第2の電極8b,カラーフィルター11,第2のガラス基板7b,及び第2の偏光フィルム6bを順次積層することにより形成されている。このような表示装置では、内蔵された蛍光放電管(冷陰極管)1により表示ユニットを背面から直接照明できる。 More specifically, for example, as a planar display device (flat display device) having a flat (planar) image display area, a planar display unit (such as a transmissive liquid crystal display unit) 5 as shown in FIG. And a surface light source unit for illuminating the unit from the back side are known. The surface light source unit has one or a plurality of fluorescent discharge tubes (cold cathode tubes) 1, and a reflection plate 2 for reflecting light is disposed on the back side of the fluorescent discharge tube 1. Between the discharge tube 1 and the display unit 5, there is disposed a diffusion plate 3 for diffusing light to uniformly illuminate the display unit 5, and a prism sheet 4 is laminated on the display unit side of the diffusion plate 3. Has been. In the case of a liquid crystal display unit, the surface display unit 5 includes a first polarizing film 6a, a first glass substrate 7a, a first electrode 8a formed on the glass substrate, and a first layer laminated on the electrode. The alignment film 9a, the liquid crystal layer 10, the second alignment film 9b, the second electrode 8b, the color filter 11, the second glass substrate 7b, and the second polarizing film 6b are sequentially stacked. . In such a display device, the display unit can be directly illuminated from the back by a built-in fluorescent discharge tube (cold cathode tube) 1.
 このような棒状(管状)光源(ランプ)を使用したバックライト方式は、近年の液晶テレビの大型化に伴い、液晶表示装置におけるウエイトが非常に高くなってきている。また、近年、このような面光源装置では、光源の高輝度化及び装置の薄肉化される傾向があるが、このような構造を有する面光源装置では、ランプイメージ(光源であるランプの形状に起因した像であり、ランプの存在がぼんやりとわかるイメージ)がより残存し易い。 The backlight system using such a rod-shaped (tubular) light source (lamp) has become very heavy in liquid crystal display devices with the recent increase in size of liquid crystal televisions. In recent years, in such a surface light source device, there is a tendency that the brightness of the light source is increased and the device is thinned. However, in the surface light source device having such a structure, a lamp image (in the shape of a lamp that is a light source). The resulting image and the image in which the presence of the lamp can be easily understood) are more likely to remain.
 また、バックライト方式では、棒状光源の軸方向と、この軸方向に対して直交する方向での輝度分布が異なり、表示ユニットの均一な照明が困難であるため、視野角の拡大が困難である。そのため、拡散シートとして、光学的に異方的散乱特性を有する異方性光拡散シートを用い、異方的散乱特性を利用して輝度を均一化している。例えば、異方性光拡散シートの分散相の長軸方向を管状光源の軸方向に向けて配置することにより、長軸方向と短軸方向での輝度分布が異なる光源を用いても、異方的散乱特性を利用して透過光の輝度を均一化できる方法などが知られている。しかし、このような異方的散乱特性を有する光拡散シートを用いても、ランプイメージの消去は充分でない。 In the backlight method, the luminance distribution in the axial direction of the rod-shaped light source is different from that in the direction perpendicular to the axial direction, and it is difficult to uniformly illuminate the display unit, so it is difficult to expand the viewing angle. . For this reason, an anisotropic light diffusion sheet having optically anisotropic scattering characteristics is used as the diffusion sheet, and the luminance is made uniform by utilizing the anisotropic scattering characteristics. For example, by arranging the long axis direction of the dispersed phase of the anisotropic light diffusing sheet toward the axial direction of the tubular light source, anisotropic scattering is possible even when using light sources having different luminance distributions in the long axis direction and the short axis direction. A method is known that can make the luminance of transmitted light uniform by utilizing the characteristics. However, even if a light diffusing sheet having such anisotropic scattering characteristics is used, the erasure of the lamp image is not sufficient.
 さらに、バックライト方式では、棒状光源が表示ユニットに近接しているため、表示ユニットが加熱され、拡散シートにも耐熱性が要求される。なお、耐熱性及び透明性の高い樹脂としてポリカーボネート系樹脂が知られている。しかし、ポリカーボネート系樹脂は溶融流動性が低いため、溶融押し出し成形などの溶融成形法により光拡散フィルムを工業的に効率よく製造することが困難である。また、ポリカーボネート系樹脂は分散相の成分との親和性もさほど高くないため、分散相との界面でボイドが生成しやすく、分散相を均一に形成することも困難である。 Furthermore, in the backlight system, since the rod-shaped light source is close to the display unit, the display unit is heated, and the diffusion sheet is also required to have heat resistance. A polycarbonate resin is known as a resin having high heat resistance and transparency. However, since the polycarbonate resin has low melt fluidity, it is difficult to industrially efficiently produce a light diffusion film by a melt molding method such as melt extrusion molding. Further, since the polycarbonate resin does not have a high affinity with the components of the dispersed phase, voids are easily generated at the interface with the dispersed phase, and it is difficult to form the dispersed phase uniformly.
 バックライト方式に利用される光拡散シートとして、特許第4115113号公報(特許文献1)には、管状光源と、この管状光源からの光を側面から入射して平坦な出射面から出射させて表示ユニットを照明するための導光部材と、前記導光部材と前記表示ユニットとの間に配設され、かつ前記管状光源からの光により前記表示ユニットを均一に照明するための複数の異方性光散乱フィルムとを備えている面光源ユニットであって、前記異方性光散乱フィルムが、異方性光散乱層の両面に透明樹脂層が積層された積層フィルムで構成され、前記異方性光散乱層が、樹脂で構成された連続相と、この連続相に平均アスペクト比5~1000の形状で分散し、かつ前記連続相の樹脂と屈折率が異なる樹脂で構成された分散相とで構成されているとともに、プロピレン系樹脂とスチレン系樹脂との組み合わせ、又はプロピレン系樹脂とポリカーボネート樹脂との組み合わせで構成され、前記透明樹脂層が、前記連続相と同一の樹脂であって、ガラス転移温度又は融点が130~280℃の透明樹脂で構成され、前記導光部材と前記表示ユニットとの間に、複数の異方性光散乱フィルムが光散乱の方向性を互いに異にして配設されている面光源ユニットが開示されている。 Japanese Patent No. 4115113 (Patent Document 1) as a light diffusion sheet used for a backlight system displays a tubular light source and light from the tubular light source incident from the side and emitted from a flat emission surface. A light guide member for illuminating the unit, and a plurality of anisotropic light scattering members disposed between the light guide member and the display unit, and for uniformly illuminating the display unit with light from the tubular light source A surface light source unit comprising a film, wherein the anisotropic light scattering film is composed of a laminated film in which transparent resin layers are laminated on both sides of an anisotropic light scattering layer, and the anisotropic light scattering layer is composed of a resin. And a dispersed phase composed of a resin having an average aspect ratio of 5 to 1000 dispersed in the continuous phase and having a refractive index different from that of the resin of the continuous phase. And a combination of a propylene resin and a styrene resin, or a combination of a propylene resin and a polycarbonate resin, and the transparent resin layer is the same resin as the continuous phase, and has a glass transition temperature or a melting point. A surface light source unit comprising a transparent resin having a temperature of 130 to 280 ° C. and having a plurality of anisotropic light scattering films disposed between the light guide member and the display unit with different light scattering directions. It is disclosed.
 しかし、この面光源ユニットでも、近年の高輝度化及び薄肉化されたバックライト型表示装置では、表示面での輝度の均一化が不十分であるため、高い透過率で光抜けが発生し、ランプイメージが残存する。特に、ポリカーボネート系樹脂などの透明性の高い樹脂を用いた場合には、この傾向が顕著となる。また、耐熱性も充分でなく、高温下で長期間に亘り使用すると、光拡散性が変化する。さらに、ポリカーボネート系樹脂を使用する場合、ポリカーボネート系樹脂は溶融流動性が低いため、溶融押し出し成形などの溶融成形法により光拡散フィルムを工業的に効率よく製造することが困難である。 However, even in this surface light source unit, in recent backlight type display devices that have been increased in brightness and thinned, luminance uniformity on the display surface is insufficient, so light leakage occurs with high transmittance, The lamp image remains. In particular, when a highly transparent resin such as a polycarbonate resin is used, this tendency becomes remarkable. In addition, the heat resistance is not sufficient, and the light diffusibility changes when used at a high temperature for a long time. Furthermore, when a polycarbonate resin is used, since the polycarbonate resin has low melt fluidity, it is difficult to industrially efficiently produce a light diffusion film by a melt molding method such as melt extrusion molding.
特許第4115113号公報(請求項1)Japanese Patent No. 4115113 (Claim 1)
 従って、本発明の目的は、高い透過率であっても光抜けを抑制でき、ランプイメージ(ランプ像)を発現させることなく、バックライト型液晶表示装置などの面光源装置を薄型化かつ高輝度化できる光拡散フィルム及びそれを備えた装置(面光源装置、又は液晶表示装置などの表示装置)を提供することにある。 Accordingly, an object of the present invention is to reduce light leakage even at a high transmittance, and to reduce the thickness and increase the brightness of a surface light source device such as a backlight type liquid crystal display device without developing a lamp image (lamp image). An object of the present invention is to provide a light diffusing film that can be formed and a device (a display device such as a surface light source device or a liquid crystal display device) including the same.
 本発明の他の目的は、高温下で使用しても光拡散特性の変化を抑制できる光拡散フィルム及びそれを備えた装置(面光源装置、又は液晶表示装置などの表示装置)を提供することにある。 Another object of the present invention is to provide a light diffusing film capable of suppressing changes in light diffusing characteristics even when used at high temperatures and a device (display device such as a surface light source device or a liquid crystal display device) provided with the same. It is in.
 本発明のさらに他の目的は、流動性及び透明樹脂に対する親和性の低いポリカーボネート系樹脂を用いても、均一な分散相を有するフィルムを容易に成形できる光拡散フィルム及びそれを備えた装置(面光源装置、又は液晶表示装置などの表示装置)を提供することにある。 Still another object of the present invention is to provide a light diffusing film that can easily form a film having a uniform dispersed phase even when a polycarbonate-based resin having low fluidity and low affinity for a transparent resin is used, and an apparatus (surface) having the same. It is to provide a light source device or a display device such as a liquid crystal display device.
 本発明の別の目的は、大型の液晶表示装置であっても、装置の薄型化に対応でき、簡便に装置を製造できる光拡散フィルム及びそれを備えた液晶表示装置を提供することにある。 Another object of the present invention is to provide a light diffusing film and a liquid crystal display device including the same, which can cope with the thinning of the device even if it is a large liquid crystal display device and can be easily manufactured.
 本発明者らは、前記課題を達成するため鋭意検討した結果、マトリックス相(連続相)をポリカーボネート系樹脂で構成し、分散相を前記ポリカーボネート系樹脂に対して所定の屈折率差を有する透明樹脂で構成した結果、高い透過率であっても光抜けを抑制でき、ランプイメージ(ランプ像)を発現させることなく、バックライト型液晶表示装置などの面光源装置を薄型化かつ高輝度化できることを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have made a transparent resin having a matrix phase (continuous phase) made of a polycarbonate-based resin and a dispersed phase having a predetermined refractive index difference with respect to the polycarbonate-based resin. As a result, it is possible to suppress light leakage even at high transmittance, and to reduce the thickness and brightness of a surface light source device such as a backlight type liquid crystal display device without causing a lamp image (lamp image). As a result, the present invention has been completed.
 すなわち、本発明の光拡散フィルムは、ポリカーボネート系樹脂で構成された連続相と、この連続相に分散し、かつ前記ポリカーボネート系樹脂に対する屈折率差の絶対値が0.045~0.085の樹脂で構成された分散相とで形成された光拡散層を含む。前記連続相は粘度平均分子量15000~25000のポリカーボネート系樹脂で構成されていてもよく、ポリカーボネート系樹脂のメルトフローレート(MFR)が、ISO1133に準拠して300℃、1.2kg荷重の条件で5~30cm/10分程度であってもよい。さらに、前記分散相は環状オレフィン系樹脂で構成されていてもよく、環状オレフィン系樹脂のメルトフローレート(MFR)が、ISO1133に準拠して、260℃、2.16kg荷重の条件で10~100cm/10分程度であってもよい。さらに、ポリカーボネート系樹脂の前記MFRと環状オレフィン系樹脂の前記MFRとの比率が、前者/後者=2/1~1/10程度であってもよい。前記光拡散層は、さらに滑剤及び酸化防止剤から選択された少なくとも一方を含んでいてもよい。前記連続相と前記分散相との割合は、連続相/分散相=99/1~50/50(重量比)程度であってもよい。 That is, the light diffusing film of the present invention comprises a continuous phase composed of a polycarbonate resin, a resin dispersed in the continuous phase, and an absolute value of a difference in refractive index from the polycarbonate resin of 0.045 to 0.085. And a light diffusion layer formed of a dispersed phase composed of The continuous phase may be composed of a polycarbonate resin having a viscosity average molecular weight of 15000 to 25000, and the melt flow rate (MFR) of the polycarbonate resin is 5 under the conditions of 300 ° C. and 1.2 kg load in accordance with ISO 1133. it may be about ~ 30cm 3/10 minutes. Further, the dispersed phase may be composed of a cyclic olefin resin, and the melt flow rate (MFR) of the cyclic olefin resin is 10 to 100 cm under the conditions of 260 ° C. and 2.16 kg load in accordance with ISO 1133. It may be about 3/10 minutes. Further, the ratio of the MFR of the polycarbonate resin to the MFR of the cyclic olefin resin may be about the former / the latter = 2/1 to 1/10. The light diffusion layer may further include at least one selected from a lubricant and an antioxidant. The ratio between the continuous phase and the dispersed phase may be about continuous phase / dispersed phase = 99/1 to 50/50 (weight ratio).
 本発明の光拡散フィルムは、前記分散相が、1より大きい平均アスペクト比を有し、かつ長軸方向がフィルムの一定の方向に配向している粒子状分散相を含んでいてもよい。前記粒子状分散相の短軸の平均長さは0.01~10μm程度であり、粒子状分散相の平均アスペクト比は3~100程度である。 The light diffusion film of the present invention may include a particulate dispersed phase in which the dispersed phase has an average aspect ratio greater than 1 and the major axis direction is oriented in a certain direction of the film. The average length of the minor axis of the particulate dispersed phase is about 0.01 to 10 μm, and the average aspect ratio of the particulate dispersed phase is about 3 to 100.
 本発明の光拡散フィルムは、前記光拡散層の少なくとも一方の面に積層された透明層を含んでいてもよい。前記透明層は紫外線吸収剤及び光安定剤から選択された少なくとも一方を含む樹脂層であってもよい。前記光拡散層の厚みは3~500μm程度であり、フィルムの全光線透過率が60%以上であってもよい。 The light diffusion film of the present invention may include a transparent layer laminated on at least one surface of the light diffusion layer. The transparent layer may be a resin layer including at least one selected from an ultraviolet absorber and a light stabilizer. The light diffusion layer may have a thickness of about 3 to 500 μm, and the total light transmittance of the film may be 60% or more.
 本発明には、前記光拡散フィルムを備えた面光源装置及び表示装置(液晶表示装置など)も含まれる。 The present invention includes a surface light source device and a display device (such as a liquid crystal display device) provided with the light diffusion film.
 なお、本明細書において、「フィルム」とは厚みの如何を問わず、シートを含む意味に用いる。 In this specification, “film” is used to mean including a sheet regardless of thickness.
 本発明では、マトリックス相(連続相)をポリカーボネート系樹脂で構成し、分散相を特定の屈折率差を有する樹脂で構成しているため、高い透過率であっても光抜けを抑制でき、ランプイメージ(ランプ像)を発現させることなく、バックライト型液晶表示装置などの面光源装置を薄型化かつ高輝度化できる。また、耐熱性が高く、高温下で使用しても光拡散特性の変化を長期間に亘り抑制できる。また、流動性及び透明樹脂に対する親和性の低いポリカーボネート系樹脂を用いても、均一な分散相を有するフィルムを容易に成形できる。さらに、大型の液晶表示装置であっても、装置の薄型化に対応でき、簡便に装置を製造できる。 In the present invention, since the matrix phase (continuous phase) is composed of a polycarbonate-based resin and the dispersed phase is composed of a resin having a specific refractive index difference, light leakage can be suppressed even with high transmittance, and the lamp A surface light source device such as a backlight type liquid crystal display device can be made thinner and higher in brightness without developing an image (lamp image). In addition, it has high heat resistance and can suppress changes in light diffusion characteristics over a long period of time even when used at high temperatures. Further, even when a polycarbonate resin having low fluidity and low affinity for a transparent resin is used, a film having a uniform dispersed phase can be easily formed. Furthermore, even a large-sized liquid crystal display device can cope with the thinning of the device and can be easily manufactured.
図1は面光源装置及び透過型液晶表示装置を示す概略断面図である。FIG. 1 is a schematic sectional view showing a surface light source device and a transmissive liquid crystal display device. 図2は光拡散フィルムの一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a light diffusion film. 図3は光拡散フィルムの他の例を示す概略断面図である。FIG. 3 is a schematic sectional view showing another example of the light diffusion film. 図4は光拡散フィルムの異方的散乱を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining anisotropic scattering of the light diffusion film. 図5は光散乱特性の測定方法を説明するための概略図である。FIG. 5 is a schematic diagram for explaining a method of measuring light scattering characteristics. 図6は、光抜けのある光拡散フィルムにおける散乱角に対する散乱光強度のグラフである。FIG. 6 is a graph of the scattered light intensity with respect to the scattering angle in a light diffusion film with light leakage. 図7は、光抜けのない光拡散フィルムにおける散乱角に対する散乱光強度のグラフである。FIG. 7 is a graph of the scattered light intensity with respect to the scattering angle in a light diffusion film having no light omission.
 [光拡散フィルム]
 本発明の光拡散フィルムは、連続相及び分散相で構成された光拡散層を含んでいる。前記連続相は、優れた光学特性と高い耐熱性とを両立する点から、ポリカーボネート系樹脂で構成されている。
[Light diffusion film]
The light diffusion film of the present invention includes a light diffusion layer composed of a continuous phase and a dispersed phase. The continuous phase is composed of a polycarbonate-based resin from the viewpoint of achieving both excellent optical properties and high heat resistance.
 (ポリカーボネート系樹脂)
 ポリカーボネート系樹脂には、ビスフェノール類をベースとする芳香族ポリカーボネートなどが含まれる。ビスフェノール類としては、例えば、ジヒドロキシビフェニルなどのビフェノール類、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、1,1-ビス(4-ヒドロキシフェニル)エタン(ビスフェノールAD)などのビス(ヒドロキシフェニル)アルカン類、ビス(4-ヒドロキシトリル)アルカン、ビス(4-ヒドロキシキシリル)アルカンなどのビス(ヒドロキシアリール)アルカン類[例えば、ビス(ヒドロキシアリール)C1-10アルカン類、好ましくはビス(ヒドロキシアリール)C1-6アルカン類]、ビス(ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシアリール)シクロアルカン類[例えば、ビス(ヒドロキシアリール)C3-12シクロアルカン類、好ましくはビス(ヒドロキシアリール)C4-10シクロアルカン類]、4,4′-ジ(ヒドロキシフェニル)エーテルなどのジ(ヒドロキシフェニル)エーテル類、4,4′-ジ(ヒドロキシフェニル)ケトンなどのジ(ヒドロキシフェニル)ケトン類、ビス(4-ヒドロキシフェニル)スルホン(ビスフェノールS)などのジ(ヒドロキシフェニル)スルホン類、ビスフェノールフルオレン類[例えば、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなど]などが挙げられる。これらのビスフェノール類は、C2-4アルキレンオキサイド付加体であってもよい。これらのビスフェノール類は、単独で又は二種以上組み合わせて使用できる。
(Polycarbonate resin)
The polycarbonate-based resin includes aromatic polycarbonate based on bisphenols. Examples of bisphenols include biphenols such as dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) methane (bisphenol F), 1,1-bis ( Bis (hydroxyphenyl) alkanes such as 4-hydroxyphenyl) ethane (bisphenol AD), bis (hydroxyaryl) alkanes such as bis (4-hydroxytolyl) alkane, bis (4-hydroxyxylyl) alkane [for example, bis (hydroxyaryl) C 1-10 alkanes, preferably bis (hydroxyaryl) C 1-6 alkanes, bis bis (hydroxyaryl) cycloalkanes such as (hydroxyphenyl) cyclohexane [e.g., bis (hydroxyalkyl Lumpur) C 3-12 cycloalkane, preferably bis (hydroxyaryl) C 4-10 cycloalkanes, 4,4'-di (di (hydroxyphenyl) ethers such as hydroxyphenyl) ether, 4, Di (hydroxyphenyl) ketones such as 4'-di (hydroxyphenyl) ketone, di (hydroxyphenyl) sulfones such as bis (4-hydroxyphenyl) sulfone (bisphenol S), bisphenolfluorenes [for example, 9,9 -Bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, etc.]. These bisphenols may be C 2-4 alkylene oxide adducts. These bisphenols can be used alone or in combination of two or more.
 ポリカーボネート系樹脂はジカルボン酸成分(脂肪族、脂環族又は芳香族ジカルボン酸又はその酸ハライドなど)を共重合したポリエステルカーボネート系樹脂であってもよい。これらのポリカーボネート系樹脂は単独で又は二種以上組み合わせて使用できる。好ましいポリカーボネート系樹脂は、ビス(ヒドロキシフェニル)C1-6アルカン類をベースとする樹脂、例えば、ビスフェノールA型ポリカーボネート系樹脂である。 The polycarbonate resin may be a polyester carbonate resin obtained by copolymerizing a dicarboxylic acid component (such as an aliphatic, alicyclic or aromatic dicarboxylic acid or an acid halide thereof). These polycarbonate resins can be used alone or in combination of two or more. Preferred polycarbonate resins are resins based on bis (hydroxyphenyl) C 1-6 alkanes, for example, bisphenol A type polycarbonate resins.
 ポリカーボネート系樹脂の分子量は、粘度平均分子量(塩化メチレンを用いて20℃で測定した粘度に基づいて、極限粘度と平均分子量との相関関係から、一点測定法で求められる平均分子量)が10000~200000(例えば、15000~100000)程度の範囲から選択でき、高分子量のポリカーボネート系樹脂であってもよいが、分散相の均一性の点から、例えば、15000~25000、好ましくは17000~25000、さらに好ましくは18000~22000程度である。ポリカーボネート系樹脂の分子量が小さすぎるとフィルムの強度が低下し、分子量が大きすぎると溶融流動性及び分散相の均一分散性が低下しやすい。 The molecular weight of the polycarbonate resin has a viscosity average molecular weight (average molecular weight determined by a one-point measurement method based on the correlation between the intrinsic viscosity and the average molecular weight based on the viscosity measured at 20 ° C. using methylene chloride) of 10,000 to 200,000. (For example, it may be selected from a range of about 15000 to 100,000) and may be a high molecular weight polycarbonate resin, but from the viewpoint of the uniformity of the dispersed phase, for example, 15000 to 25000, preferably 17000 to 25000, more preferably Is about 18000-22000. When the molecular weight of the polycarbonate-based resin is too small, the strength of the film is lowered, and when the molecular weight is too large, the melt fluidity and the uniform dispersibility of the dispersed phase are liable to be lowered.
 ポリカーボネート系樹脂のメルトフローレート(MFR)は、ISO1133(300℃、1.2kg荷重(11.8N))に準拠して、例えば、3~30cm/10分程度の範囲から選択でき、例えば、5~30cm/10分、好ましくは6~25cm/10分(例えば、7~20cm/10分)、さらに好ましくは8~15cm/10分程度である。 Polycarbonate resin has a melt flow rate (MFR), ISO 1133 (300 ° C., 1.2 kg load (11.8 N)) in compliance with, for example, be selected from the range of about 3 ~ 30cm 3/10 minutes, for example, 5 ~ 30cm 3/10 minutes, preferably 6 ~ 25cm 3/10 minutes (e.g., 7 ~ 20cm 3/10 min), more preferably about 8 ~ 15cm 3/10 minutes.
 ポリカーボネート系樹脂の融点又はガラス転移温度は、例えば、130~280℃程度、好ましくは140~270℃程度、さらに好ましくは150~260℃程度である。 The melting point or glass transition temperature of the polycarbonate-based resin is, for example, about 130 to 280 ° C., preferably about 140 to 270 ° C., and more preferably about 150 to 260 ° C.
 このようなポリカーボネート系樹脂は、製品カタログにおいて「中粘度品」「低粘度品」「ハイフロー」グレードとして分類されている場合が多い。 Such polycarbonate resins are often classified as “medium viscosity products”, “low viscosity products”, and “high flow” grades in product catalogs.
 (分散相)
 前記分散相は、前記連続相を構成するポリカーボネート系樹脂に対して、非相溶であり、かつ所定の屈折率差を有する樹脂であれば特に限定されない。なお、ポリカーボネート系樹脂の屈折率(n)は、1.50~1.65程度であってもよく、一般的なビスフェノールA型ポリカーボネートの屈折率(n)は、1.59である。
(Dispersed phase)
The dispersed phase is not particularly limited as long as it is incompatible with the polycarbonate resin constituting the continuous phase and has a predetermined refractive index difference. The refractive index of the polycarbonate resin (n D) may be about 1.50 to 1.65, the refractive index of typical bisphenol A type polycarbonate (n D) is 1.59.
 屈折率差は、絶対値で、0.045~0.085の範囲にある必要があり、好ましくは0.045~0.08(例えば、0.045~0.075)、さらに好ましくは0.05~0.07(特に0.055~0.065)程度である。さらに、両樹脂の屈折率は、いずれの樹脂が大きくてもよいが、連続相を構成する樹脂の方が大きい屈折率を有するのが好ましい。このような屈折率差を有する樹脂をポリカーボネート系樹脂と組み合わせると、光散乱特性が向上し、広い角度に亘って、連続的な強度の分布で光が散乱する。このような光散乱特性を有する光拡散フィルムを用いると、表示面での輝度が均一化し、光抜けを抑制できるため、ランプイメージの残存を抑制できる。 The difference in refractive index must be an absolute value in the range of 0.045 to 0.085, preferably 0.045 to 0.08 (for example, 0.045 to 0.075), and more preferably 0.0. It is about 05 to 0.07 (particularly 0.055 to 0.065). Furthermore, the refractive index of both resins may be any resin, but the resin constituting the continuous phase preferably has a higher refractive index. When a resin having such a refractive index difference is combined with a polycarbonate-based resin, light scattering characteristics are improved, and light is scattered with a continuous intensity distribution over a wide angle. When a light diffusion film having such light scattering characteristics is used, the luminance on the display surface is made uniform and light leakage can be suppressed, so that the remaining lamp image can be suppressed.
 分散相は、通常、透明樹脂で構成される。分散相を構成する透明樹脂には、オレフィン系樹脂(ポリエチレンなど)、環状オレフィン系樹脂、ビニル系有樹脂(ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルピロリドンなど)、アクリル系樹脂(ポリメタクリル酸メチル、ポリアクリル酸、ポリジアルキルアミノエチルメタクリレート、ポリシクロヘキシルクロロアクリレート、ポリシクロヘキシルブロモアクリレート、ポリクロロエチルクロロアクリレート、ポリブチルチオメタクリレート、ポリフルフリルメタクリレート、ポリN-メチルメタクリルアミドなど)、アクリロニトリル系樹脂(ポリアクリロニトリル、ポリメタクリロニトリル、ブタジエン-アクリロニトリル共重合体など)、スチレン系樹脂(ポリスチレン、スチレン-ブタジエン共重合体、スチレン-メタクリル酸メチル共重合体など)、ポリアミド系樹脂(ポリアミド6、ポリアミド66、ポリアミド610など)、セルロース誘導体(ニトロセルロースなど)、合成ゴム(ポリブタジエン、ポリイソプレンなど)、天然ゴムなどが含まれる。分散相を構成する透明樹脂は、前記屈折率差を有する限り、前記例示の樹脂に限定されず、例えば、共重合成分の導入により、屈折率を制御した樹脂であってもよい。従って、分散相を構成する透明樹脂は、前記連続相と屈折率の異なるポリカーボネート系樹脂であってもよい。これらの透明樹脂は、単独で又は二種以上組み合わせて使用できる。これらの透明樹脂のうち、光拡散特性の点から、環状オレフィン系樹脂、ビニル系樹脂(例えば、ポリビニルピロリドンなど)、スチレン系樹脂(例えば、スチレン-ブタジエン共重合体など)、ポリアミド系樹脂(例えば、ポリアミド6、ポリアミド66、ポリアミド610など)が好ましく、光拡散特性及び耐熱性を有する点から、環状オレフィン系樹脂が特に好ましい。 The dispersed phase is usually composed of a transparent resin. Transparent resins constituting the dispersed phase include olefin resins (polyethylene, etc.), cyclic olefin resins, vinyl-based resins (polyvinyl chloride, vinyl chloride-vinyl acetate copolymers, polyvinyl pyrrolidone, etc.), acrylic resins ( Polymethyl methacrylate, polyacrylic acid, polydialkylaminoethyl methacrylate, polycyclohexyl chloroacrylate, polycyclohexyl bromoacrylate, polychloroethyl chloroacrylate, polybutylthiomethacrylate, polyfurfuryl methacrylate, poly N-methylmethacrylamide), acrylonitrile Resin (polyacrylonitrile, polymethacrylonitrile, butadiene-acrylonitrile copolymer, etc.), styrene resin (polystyrene, styrene-butadiene copolymer, Lene-methyl methacrylate copolymer), polyamide resins (polyamide 6, polyamide 66, polyamide 610, etc.), cellulose derivatives (nitrocellulose, etc.), synthetic rubbers (polybutadiene, polyisoprene, etc.), natural rubber, etc. . The transparent resin constituting the dispersed phase is not limited to the exemplified resin as long as it has the refractive index difference. For example, a resin whose refractive index is controlled by introducing a copolymer component may be used. Therefore, the transparent resin constituting the dispersed phase may be a polycarbonate resin having a refractive index different from that of the continuous phase. These transparent resins can be used alone or in combination of two or more. Among these transparent resins, from the viewpoint of light diffusion characteristics, cyclic olefin resins, vinyl resins (for example, polyvinyl pyrrolidone), styrene resins (for example, styrene-butadiene copolymer), polyamide resins (for example, , Polyamide 6, polyamide 66, polyamide 610, etc.) are preferable, and cyclic olefin-based resins are particularly preferable from the viewpoint of light diffusion characteristics and heat resistance.
 (環状オレフィン系樹脂)
 環状オレフィン系樹脂は、環内にエチレン性二重結合を有する重合性の環状オレフィンを少なくとも重合成分とする樹脂であればよい。環状オレフィンは、単環式オレフィンであってもよいが、多環式オレフィンが好ましい。
(Cyclic olefin resin)
The cyclic olefin-based resin may be a resin having at least a polymerizable cyclic olefin having an ethylenic double bond in the ring as a polymerization component. The cyclic olefin may be a monocyclic olefin, but is preferably a polycyclic olefin.
 代表的な多環式オレフィンとしては、例えば、ノルボルネン、置換基を有するノルボルネン(2-ノルボルネン)、シクロペンタジエンの多量体、置換基を有するシクロペンタジエンの多量体などが例示できる。前記置換基としては、アルキル基、アルケニル基、アリール基、ヒドロキシル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アシル基、シアノ基、アミド基、ハロゲン原子などが例示できる。 Typical polycyclic olefins include, for example, norbornene, norbornene having a substituent (2-norbornene), a multimer of cyclopentadiene, a multimer of cyclopentadiene having a substituent, and the like. Examples of the substituent include an alkyl group, an alkenyl group, an aryl group, a hydroxyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, an acyl group, a cyano group, an amide group, and a halogen atom.
 具体的に、環状オレフィンとしては、例えば、2-ノルボルネン;5-メチル-2-ノルボルネン、5,5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネンなどのアルキル基を有するノルボルネン類;5-エチリデン-2-ノルボルネンなどのアルケニル基を有するノルボルネン類;5-メトキシカルボニル-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネンなどのアルコキシカルボニル基を有するノルボルネン類;5-シアノ-2-ノルボルネンなどのシアノ基を有するノルボルネン類;5-フェニル-2-ノルボルネン、5-フェニル-5-メチル-2-ノルボルネンなどのアリール基を有するノルボルネン類;ジシクロペンタジエン;2,3-ジヒドロジシクロペンタジエン、メタノオクタヒドロフルオレン、ジメタノオクタヒドロナフタレン、ジメタノシクロペンタジエノナフタレン、メタノオクタヒドロシクロペンタジエノナフタレンなどの誘導体;6-エチル-オクタヒドロナフタレンなどの置換基を有する誘導体;シクロペンタジエンとテトラヒドロインデン等との付加物、シクロペンタジエンの3~4量体などが例示できる。これらの単量体は単独で又は二種以上組み合わせて使用できる。 Specifically, as the cyclic olefin, for example, 2-norbornene; 5-methyl-2-norbornene, 5,5-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, etc. Norbornenes having an alkyl group; norbornenes having an alkenyl group such as 5-ethylidene-2-norbornene; alkoxycarbonyl groups such as 5-methoxycarbonyl-2-norbornene and 5-methyl-5-methoxycarbonyl-2-norbornene; Norbornenes having a cyano group such as 5-cyano-2-norbornene; norbornenes having an aryl group such as 5-phenyl-2-norbornene and 5-phenyl-5-methyl-2-norbornene; Pentadiene; 2,3-dihydrodi Derivatives such as clopentadiene, methanooctahydrofluorene, dimethanooctahydronaphthalene, dimethanocyclopentadienonaphthalene, methanooctahydrocyclopentadienonaphthalene; derivatives having substituents such as 6-ethyl-octahydronaphthalene; cyclo Examples thereof include adducts of pentadiene and tetrahydroindene, and cyclopentadiene tri- to tetramers. These monomers can be used alone or in combination of two or more.
 これらの環状オレフィンは単独で又は二種以上組み合わせて使用できる。これらの環状オレフィンのうち、ノルボルネン類などの多環式オレフィンが好ましい。 These cyclic olefins can be used alone or in combination of two or more. Of these cyclic olefins, polycyclic olefins such as norbornenes are preferred.
 環状オレフィン系樹脂は、付加重合により得られた樹脂であってもよく、開環重合(開環メタセシス重合など)により得られた樹脂であってもよい。また、環状オレフィン系樹脂(例えば、開環メタセシス重合により得られた樹脂など)は、水素添加された水添樹脂であってもよい。また、環状オレフィン系樹脂は、結晶性又は非晶性樹脂であってもよく、通常、非晶性樹脂であってもよい。なお、環状オレフィン系樹脂は、慣用の重合方法(例えば、チーグラー型触媒を用いた付加重合、メタロセン系触媒を用いた付加重合、メタセシス重合触媒を用いた開環メタセシス重合など)により調製してもよい。 The cyclic olefin-based resin may be a resin obtained by addition polymerization, or may be a resin obtained by ring-opening polymerization (ring-opening metathesis polymerization or the like). In addition, the cyclic olefin-based resin (for example, a resin obtained by ring-opening metathesis polymerization) may be a hydrogenated hydrogenated resin. In addition, the cyclic olefin resin may be a crystalline or amorphous resin, and may usually be an amorphous resin. The cyclic olefin resin may be prepared by a conventional polymerization method (for example, addition polymerization using a Ziegler type catalyst, addition polymerization using a metallocene catalyst, ring-opening metathesis polymerization using a metathesis polymerization catalyst, etc.). Good.
 さらに、環状オレフィン系樹脂は、環状オレフィンの単独又は共重合体であってもよく、環状オレフィンと共重合性単量体との共重合体であってもよい。環状オレフィン系樹脂の成形性を向上し、屈折率を適宜調整できる点から、環状オレフィンと共重合性単量体との共重合体が好ましい。 Furthermore, the cyclic olefin-based resin may be a cyclic olefin homopolymer or a copolymer, or may be a copolymer of a cyclic olefin and a copolymerizable monomer. A copolymer of a cyclic olefin and a copolymerizable monomer is preferable from the viewpoint that the moldability of the cyclic olefin resin can be improved and the refractive index can be appropriately adjusted.
 共重合性単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどの鎖状C2-10オレフィン類;シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエンなどの環状C4-12シクロオレフィン類;ビニルエステル系単量体(例えば、酢酸ビニル、プロピオン酸ビニルなど);ジエン系単量体(例えば、ブタジエン、イソプレンなど);(メタ)アクリル系単量体(例えば、(メタ)アクリル酸、又はこれらの誘導体((メタ)アクリル酸エステルなど)など)などが例示できる。これらの共重合性単量体は単独で又は二種以上組み合わせてもよい。好ましい共重合性単量体は、α-鎖状C2-8オレフィン類、特にエチレンなどのα-鎖状C2-4オレフィン類である。 Examples of copolymerizable monomers include chain structures such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene and 1-octene. C 2-10 olefins; cyclic C 4-12 cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, dicyclopentadiene; vinyl ester monomers (for example, vinyl acetate, vinyl propionate, etc.); dienes Examples thereof include monomers (for example, butadiene, isoprene, etc.); (meth) acrylic monomers (for example, (meth) acrylic acid, or derivatives thereof ((meth) acrylic acid ester, etc.)). These copolymerizable monomers may be used alone or in combination of two or more. Preferred copolymerizable monomers are α-chain C 2-8 olefins, particularly α-chain C 2-4 olefins such as ethylene.
 環状ポリオレフィン系樹脂(共重合体)において、環状オレフィンと共重合性単量体(例えば、エチレンなどのα-オレフィン類)との割合(モル比)は、例えば、前者/後者=100/0~1/99の範囲から選択でき、例えば、前者/後者=99/1~5/95、好ましくは90/10~10/90、さらに好ましくは80/20~10/90(特に70/30~15/85)程度である。特に、共重合性単量体がエチレンである場合、光学特性の点から、環状オレフィンとエチレンとの割合(モル比)は、前者/後者=65/35~20/80、好ましくは60/40~30/70程度であってもよい。 In the cyclic polyolefin resin (copolymer), the ratio (molar ratio) between the cyclic olefin and the copolymerizable monomer (for example, α-olefins such as ethylene) is, for example, the former / the latter = 100/0 to For example, the former / the latter = 99/1 to 5/95, preferably 90/10 to 10/90, more preferably 80/20 to 10/90 (particularly 70/30 to 15). / 85) grade. In particular, when the copolymerizable monomer is ethylene, from the viewpoint of optical properties, the ratio (molar ratio) between the cyclic olefin and ethylene is the former / the latter = 65/35 to 20/80, preferably 60/40. It may be about 30/70.
 環状オレフィン系樹脂のメルトフローレート(MFR)は、ISO1133(260℃、2.16kg荷重(21.2N))に準拠して、例えば、10~100cm/10分程度の範囲から選択でき、例えば、20~80cm/10分、好ましくは30~70cm/10分、さらに好ましくは40~60cm/10分程度である。 Cyclic olefin resin has a melt flow rate (MFR), ISO 1133 (260 ° C., 2.16 kg load (21.2 N)) in compliance with, for example, be selected from the range of about 10 ~ 100cm 3/10 min, e.g. , 20 ~ 80cm 3/10 minutes, preferably from 30 ~ 70cm 3/10 minutes, more preferably about 40 ~ 60cm 3/10 minutes.
 連続相を構成するポリカーボネート系樹脂のMFRとの比率は、例えば、ポリカーボネート系樹脂のMFR(300℃、1.2kg荷重)/環状オレフィン系樹脂のMFR(260℃、2.16kg荷重)=2/1~1/10、好ましくは1/1~1/8、さらに好ましくは1/2~1/7(特に1/3~1/6)程度である。両者のMFRの比率がこのような範囲にあると、両樹脂が充分に混合されて、連続相中に適度な大きさを有する分散層を均一に形成できる。 The ratio of polycarbonate resin constituting the continuous phase to MFR is, for example, polycarbonate resin MFR (300 ° C., 1.2 kg load) / cyclic olefin resin MFR (260 ° C., 2.16 kg load) = 2 / It is about 1 to 1/10, preferably 1/1 to 1/8, more preferably about 1/2 to 1/7 (particularly 1/3 to 1/6). When the ratio of both MFR is in such a range, both resins are sufficiently mixed, and a dispersion layer having an appropriate size can be uniformly formed in the continuous phase.
 環状オレフィン系樹脂の軟化点又はガラス転移温度は、例えば、80~250℃、好ましくは100~230℃、さらに好ましくは110~200℃(特に120~180℃)程度である。なお、軟化点又はガラス転移温度は、共重合成分の割合、分子量などを調整して制御することができる。 The softening point or glass transition temperature of the cyclic olefin resin is, for example, about 80 to 250 ° C., preferably 100 to 230 ° C., more preferably 110 to 200 ° C. (especially 120 to 180 ° C.). The softening point or glass transition temperature can be controlled by adjusting the proportion of the copolymer component, the molecular weight, and the like.
 環状オレフィン系樹脂の数平均分子量は、例えば、15000~200000、好ましくは20000~100000、さらに好ましくは30000~80000(特に40000~70000)程度である。 The number average molecular weight of the cyclic olefin resin is, for example, about 15,000 to 200,000, preferably about 20,000 to 100,000, more preferably about 30,000 to 80,000 (particularly about 40,000 to 70,000).
 環状オレフィン系樹脂は、商品名「TOPAS」(ポリプラスチックス(株)製)、商品名「ZEONOR」「ZEONEX」(日本ゼオン(株)製)、商品名「ARTON」(JSR(株)製)、商品名「アペル」(三井化学(株)製)などとして容易に入手できる。 Cyclic olefin resins are trade names “TOPAS” (manufactured by Polyplastics Co., Ltd.), trade names “ZEONOR” “ZEONEX” (manufactured by Nippon Zeon Co., Ltd.), and trade names “ARTON” (manufactured by JSR Corporation). The product name “Apel” (manufactured by Mitsui Chemicals, Inc.) can be easily obtained.
 光拡散層において、連続相と分散相との割合は、樹脂の種類や流動性、光拡散性などに応じて、例えば、前者/後者(重量比)=99/1~30/70程度の範囲から選択でき、例えば、99/1~50/50、好ましくは97/3~60/40、さらに好ましくは95/5~70/30(特に90/10~80/20)程度であってもよい。 In the light diffusion layer, the ratio between the continuous phase and the dispersed phase is, for example, in the range of the former / the latter (weight ratio) = 99/1 to 30/70, depending on the type of resin, fluidity, light diffusibility, and the like. For example, it may be about 99/1 to 50/50, preferably 97/3 to 60/40, more preferably about 95/5 to 70/30 (particularly about 90/10 to 80/20). .
 (任意成分)
 光拡散層は、必要に応じて滑剤を含有してもよい。特に、分散相を構成する樹脂として環状オレフィン系樹脂を用いた場合に、滑剤を配合すると、一軸延伸温度などの配向処理温度で分散相が容易に変形し、透過光を異方的に拡散するフィルムが容易に得られる。しかも、押出成形工程でのドロー比や一軸延伸などの配向処理により分散相粒子のアスペクト比をコントロールでき、アスペクト比の大きな分散相も容易に形成できる。
(Optional component)
The light diffusion layer may contain a lubricant as necessary. In particular, when a cyclic olefin resin is used as the resin constituting the dispersed phase, if a lubricant is blended, the dispersed phase easily deforms at an orientation treatment temperature such as a uniaxial stretching temperature, and the transmitted light is diffused anisotropically. A film is easily obtained. In addition, the aspect ratio of the dispersed phase particles can be controlled by an orientation treatment such as draw ratio or uniaxial stretching in the extrusion molding process, and a dispersed phase having a large aspect ratio can be easily formed.
 滑剤には、低分子量の炭化水素骨格を有する化合物、例えば、ワックス類や脂質類などが含まれる。 Lubricants include compounds having a low molecular weight hydrocarbon skeleton, such as waxes and lipids.
 ワックス類としては、例えば、脂肪族炭化水素系ワックス(ポリエチレンワックス、エチレン共重合体ワックス、ポリプロピレンワックスなどのポリC2-4オレフィン系ワックス、パラフィン系ワックス、マイクロクリスタリンワックスなど)、植物性又は動物性ワックス(カルナウバワックス、ミツロウ、セラックワックス、モンタンワックスなど)などが挙げられる。これらのワックス類は、単独で又は二種以上組み合わせて使用できる。 Examples of the wax include aliphatic hydrocarbon wax (poly C 2-4 olefin wax such as polyethylene wax, ethylene copolymer wax, polypropylene wax, paraffin wax, microcrystalline wax, etc.), vegetable or animal And waxes such as carnauba wax, beeswax, shellac wax, and montan wax. These waxes can be used alone or in combination of two or more.
 脂質類としては、例えば、高級脂肪酸(例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸などのC8-35飽和脂肪酸、パルミトオレイン酸、オレイン酸、エルカ酸などのC10-35不飽和脂肪酸など)、高級脂肪酸塩(例えば、ラウリン酸バリウム、ラウリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなどのC8-35脂肪酸金属塩など)、高級脂肪酸エステル(例えば、グリセリン脂肪酸エステル、ペンタエリスリトール脂肪酸エステル、ジグリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルなどのC8-35脂肪酸エステルなど)、高級脂肪酸アミド(例えば、ステアリン酸アミド、エルカ酸アミドなどのC8-35脂肪酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミドなどのアルキレンビス脂肪酸アミドなど)などが挙げられる。 Examples of lipids include higher fatty acids (for example, C8-35 saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, palmitooleic acid, olein). C10-35 unsaturated fatty acids such as acids and erucic acids), higher fatty acid salts (eg, C 8-35 fatty acid metal salts such as barium laurate, zinc laurate, calcium stearate, zinc stearate, magnesium stearate, etc.) ), Higher fatty acid esters (eg, C 8-35 fatty acid esters such as glycerin fatty acid ester, pentaerythritol fatty acid ester, diglycerin fatty acid ester, polyglycerin fatty acid ester), higher fatty acid amides (eg, stearic acid amide, erucic acid amide) C 8, such as 35 fatty acid amide, methylene bis stearic acid amide, ethylenebis stearic acid amide, such as alkylene bis fatty acid amides such as ethylene bis-hydroxystearic acid amide) and the like.
 これらの滑剤は、単独で又は二種以上組み合わせて使用できる。これらの滑剤のうち、脂質類、特に、ラウリン酸、パルミチン酸、ステアリン酸、ベヘン酸などのC8-35飽和脂肪酸、ステアリン酸カルシウムやステアリン酸マグネシウムなどのC8-35飽和脂肪酸金属塩、ペンタエリスリトールステアリン酸エステルなどの多価アルコールC8-35飽和脂肪酸エステル、エチレンビスステアリン酸アミドやエチレンビスヒドロキシステアリン酸アミドなどのアルキレンビス脂肪酸アミドなどが好ましい。 These lubricants can be used alone or in combination of two or more. Of these lubricants, lipids, in particular, lauric acid, palmitic acid, stearic acid, C 8-35 saturated fatty acids such as behenic acid, C 8-35 saturated fatty acid metal salts such as calcium stearate and magnesium stearate, pentaerythritol Polyhydric alcohol C 8-35 saturated fatty acid ester such as stearic acid ester, and alkylene bis fatty acid amide such as ethylene bis stearic acid amide and ethylene bishydroxy stearic acid amide are preferable.
 滑剤の割合は、光拡散層を構成する樹脂成分100重量部に対して、例えば、0.01~5重量部、好ましくは0.02~3重量部、さらに好ましくは0.03~2重量部(特に0.05~1重量部)程度である。 The ratio of the lubricant is, for example, 0.01 to 5 parts by weight, preferably 0.02 to 3 parts by weight, and more preferably 0.03 to 2 parts by weight with respect to 100 parts by weight of the resin component constituting the light diffusion layer. (Particularly 0.05 to 1 part by weight).
 光拡散層は、光散乱性を損なわない範囲で、さらに慣用の添加剤、例えば、安定剤、可塑剤、帯電防止剤、難燃剤などを含有していてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。これらの添加剤のうち、フィルムの外観を損なうゲルの発生を防止する観点から、安定剤を配合するのが好ましい。安定剤には、酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤などが含まれる。 The light diffusion layer may further contain a conventional additive such as a stabilizer, a plasticizer, an antistatic agent, a flame retardant, etc., as long as the light scattering property is not impaired. These additives can be used alone or in combination of two or more. Of these additives, a stabilizer is preferably blended from the viewpoint of preventing the generation of a gel that impairs the appearance of the film. Stabilizers include antioxidants, ultraviolet absorbers, heat stabilizers, light stabilizers, and the like.
 安定剤のうち、酸化防止剤としては、フェノール系酸化防止剤、ヒドロキノン系酸化防止剤、キノリン系酸化防止剤、イオウ系酸化防止剤などが例示できる。フェノール系酸化防止剤には、ヒンダードフェノール類、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)などのアルキルフェノール系酸化防止剤;n-オクタデシル[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などのC10-35アルキル[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート];1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などのC2-10アルカンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート];トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]などのポリオキシC2-4アルカンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート];グリセリントリス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などのC3-8アルキレントリオール-トリス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート];ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]などのC4-8アルカンテトラオールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート];N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナマミド)などのN,N’-C2-10アルキレンビス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナマミド)などが好ましい。 Among the stabilizers, examples of the antioxidant include a phenol-based antioxidant, a hydroquinone-based antioxidant, a quinoline-based antioxidant, and a sulfur-based antioxidant. Phenol antioxidants include hindered phenols such as 2,6-di-tert-butyl-p-cresol, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2 Alkylphenol antioxidants such as' -thiobis (4-methyl-6-t-butylphenol); C 10 such as n-octadecyl [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] -35 alkyl [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]; 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxy) C 2-10 alkanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] such as phenyl) propionate]; Polyoxy C 2-4 alkanediol-bis [3- (3,5-di-t-butyl-, such as tylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] 4-hydroxyphenyl) propionate]; C 3-8 alkylenetriol-tris [3- (3,5-dithiol] such as glycerin tris [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] -T-butyl-4-hydroxyphenyl) propionate]; C 4-8 alkanetetraol tetrakis [3- (pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]) (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]; N, N′-hexamethylene N, N′-C 2-10 alkylene bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) such as bis (3,5-di-tert-butyl-4-hydroxyhydrocinnamamide) Mid).
 アミン系酸化防止剤には、ヒンダードアミン類、例えば、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、フェニルナフチルアミン、N,N′-ジフェニル-1,4-フェニレンジアミン、N-フェニル-N′-シクロヘキシル-1,4-フェニレンジアミンなどが含まれる。 Amine-based antioxidants include hindered amines such as 1,2-bis (2,2,6,6-tetramethyl-4-piperidyloxy) ethane, phenylnaphthylamine, N, N′-diphenyl-1,4. -Phenylenediamine, N-phenyl-N'-cyclohexyl-1,4-phenylenediamine and the like.
 ヒドロキノン系酸化防止剤には、例えば、2,5-ジ-t-ブチルヒドロキノンなどが含まれ、キノリン系酸化防止剤には、例えば、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどが含まれる。また、イオウ系酸化防止剤には、例えば、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネートなどが含まれる。 Examples of the hydroquinone antioxidant include 2,5-di-t-butylhydroquinone, and examples of the quinoline antioxidant include 6-ethoxy-2,2,4-trimethyl-1,2. -Dihydroquinoline and the like are included. Examples of the sulfur-based antioxidant include dilauryl thiodipropionate and distearyl thiodipropionate.
 紫外線吸収剤としては、例えば、フェニルサリシレート、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのサリチル酸エステル系紫外線吸収剤;2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、2-(3-t-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル)ベンゾトリアゾール、オクチル-3-[3-t-ブチル-4-ヒドロキシ-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネート、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤;2-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤;2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルとオキシランとの反応生成物、2-(2,4-ジヒドロキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)と2-エチルヘキシルグリシド酸エステルとの反応生成物、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジンなどのヒドロキシフェニルトリアジン系紫外線吸収剤などが例示できる。 Examples of the ultraviolet absorber include salicylic acid ester-based ultraviolet absorbers such as phenyl salicylate and 2,4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate; 2- (2- Hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimido-methyl) -5-methylphenyl] benzotriazole, 2- (3-t-butyl -2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-tert-butyl) Phenyl) benzotriazole, 2- (2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl) benzoto Riazole, octyl-3- [3-tert-butyl-4-hydroxy- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate, 2- (2H-benzotriazol-2-yl) -4, 6-bis (1-methyl-1-phenylethyl) phenol, 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3 Benzotriazole ultraviolet absorbers such as 3-tetramethylbutyl) phenol; 2-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2,2′-dihydroxy-4-methoxy Benzophenone UV absorbers such as benzophenone; 2- (4,6-bis (2,4-dimethylpheny ) -1,3,5-triazin-2-yl) -5-hydroxyphenyl and oxirane reaction product, 2- (2,4-dihydroxyphenyl) -4,6-bis (2,4-dimethylphenyl) ) -1,3,5-triazine) and 2-ethylhexylglycidic acid ester, 2,4-bis [2-hydroxy-4-butoxyphenyl] -6- (2,4-dibutoxyphenyl) Examples thereof include hydroxyphenyl triazine-based ultraviolet absorbers such as 1,3,5-triazine.
 光安定剤(HALS)としては、2,2,6,6-テトラメチルピペリジン骨格、1,2,2,6,6-ペンタメチル-4-ピペリジン骨格を有する化合物、例えば、N,N’,N’’,N’’’-テトラキス(4,6-ビス(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、デカン二酸ビス(2,2,6,6-テトラメチル-1-オクチルオキシ-4-ピペリジニルオキシ)エステル、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)セバケート、これらのジカルボン酸エステルに対応するC4-20アルカン-ジカルボン酸エステル(マロネート、アジペートなど)やアレーンジカルボン酸エステル(テレフタレートなど)などが例示できる。 Examples of the light stabilizer (HALS) include compounds having a 2,2,6,6-tetramethylpiperidine skeleton and a 1,2,2,6,6-pentamethyl-4-piperidine skeleton, such as N, N ′, N '', N '''-tetrakis (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) triazin-2-yl) -4, 7-diazadecane-1,10-diamine, decanedioic acid bis (2,2,6,6-tetramethyl-1-octyloxy-4-piperidinyloxy) ester, bis (1,2,2,6, 6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (1,2,2,6,6-pentamethyl-4 -Piperidinyl) sebacate, this C 4-20 alkane corresponding to the dicarboxylic acid ester of al - such as dicarboxylic acid esters (malonates, such as adipates) or array Nji carboxylate (terephthalate, etc.) can be exemplified.
 熱安定剤としては、例えば、ホスファイト系安定剤(トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどのトリス(分岐アルキルフェニル)ホスファイト、ビス(アルキルアリール)ペンタエリスリトールジホスファイトなど)などのリン系安定剤(又はリン酸エステル)、イオウ系熱安定剤、ヒドロキシルアミン系熱安定剤などが挙げられる。 Examples of heat stabilizers include phosphite stabilizers (tris (branched alkylphenyl) phosphites such as tris (2,4-di-t-butylphenyl) phosphite), bis (alkylaryl) pentaerythritol diphosphites. And the like, phosphorus-based stabilizers (or phosphate esters), sulfur-based heat stabilizers, hydroxylamine-based heat stabilizers, and the like.
 これらの安定剤(例えば、光安定剤など)は低分量タイプであってもよく高分子量タイプであってもよい。また、安定剤は単独で使用してもよく、二種以上の成分の組み合わせ(例えば、酸化防止剤と紫外線吸収剤との組み合わせ、紫外線吸収剤と光安定剤との組み合わせ、酸化防止剤と紫外線吸収剤と光安定剤との組み合わせなど)で使用してもよい。 These stabilizers (for example, light stabilizers) may be a low molecular weight type or a high molecular weight type. The stabilizer may be used alone, or a combination of two or more components (for example, a combination of an antioxidant and an ultraviolet absorber, a combination of an ultraviolet absorber and a light stabilizer, an antioxidant and an ultraviolet ray). A combination of an absorber and a light stabilizer may be used.
 各安定剤の使用量は、光拡散層を構成する樹脂成分100重量部に対して0.01~2.5重量部、好ましくは0.03~2重量部(例えば、0.05~1.5重量部)、さらに好ましくは0.07~1重量部(例えば、0.1~0.7重量部)程度である。 The amount of each stabilizer used is 0.01 to 2.5 parts by weight, preferably 0.03 to 2 parts by weight (for example, 0.05 to 1.0.0 parts by weight) with respect to 100 parts by weight of the resin component constituting the light diffusion layer. 5 parts by weight), more preferably about 0.07 to 1 part by weight (for example, 0.1 to 0.7 parts by weight).
 より具体的には、酸化防止剤は、樹脂成分100重量部に対して0.05~1重量部(例えば、0.08~0.3重量部)程度、紫外線吸収剤は、樹脂成分100重量部に対して0.1~2重量部(例えば、0.2~0.7重量部)程度、光安定剤は、樹脂成分100重量部に対して0.03~0.5重量部(例えば、0.05~0.25重量部)程度である。 More specifically, the antioxidant is about 0.05 to 1 part by weight (for example, 0.08 to 0.3 part by weight) with respect to 100 parts by weight of the resin component, and the ultraviolet absorber is 100 parts by weight of the resin component. 0.1 to 2 parts by weight (for example, 0.2 to 0.7 parts by weight) with respect to parts, and the light stabilizer is 0.03 to 0.5 parts by weight (for example with respect to 100 parts by weight of the resin component). 0.05 to 0.25 parts by weight).
 なお、前記安定剤の総量は、樹脂成分100重量部に対して0.05~3重量部(例えば、0.1~2重量部)、好ましくは0.1~1重量部程度であってもよい。さらに、複数種の安定剤を併用する場合、第1の安定剤(例えば、酸化防止剤)と第2の安定剤(例えば、紫外線吸収剤)との割合は、前者/後者(重量比)=95/5~10/90(例えば、90/10~30/70)程度の範囲から選択できる。 The total amount of the stabilizer may be 0.05 to 3 parts by weight (for example, 0.1 to 2 parts by weight), preferably about 0.1 to 1 part by weight with respect to 100 parts by weight of the resin component. Good. Further, when a plurality of stabilizers are used in combination, the ratio of the first stabilizer (for example, antioxidant) and the second stabilizer (for example, ultraviolet absorber) is the former / the latter (weight ratio) = It can be selected from a range of about 95/5 to 10/90 (for example, 90/10 to 30/70).
 なお、ポリカーボネート系樹脂と環状オレフィン系樹脂などの透明樹脂とを組み合わせたアロイ系を溶融押出成形又はコンパウンド化すると、ダイリップ(特にダイリップの開口部に隣接する壁部)に押出物の一部が目やに状に次第に堆積し、この堆積物が成長してダイリップから押し出される溶融フィルムと接触し、不均一なフィルムを形成する。そのため、均一なフィルムを連続的に製造することができなくなる。このような場合、前記安定剤(例えば、酸化防止剤及び/又は紫外線吸収剤)を含有させると、前記堆積物の生成とその成長を顕著に防止でき、均一なフィルムを連続的に製造できる。なお、光拡散層は、通常、酸化防止剤を含む場合が多い。 In addition, when an alloy system combining a polycarbonate resin and a transparent resin such as a cyclic olefin resin is melt-extruded or compounded, a part of the extrudate is clearly visible on the die lip (especially the wall adjacent to the opening of the die lip). And the deposit grows into contact with the molten film extruded from the die lip to form a non-uniform film. Therefore, it becomes impossible to produce a uniform film continuously. In such a case, when the stabilizer (for example, an antioxidant and / or an ultraviolet absorber) is contained, the formation and growth of the deposit can be remarkably prevented, and a uniform film can be continuously produced. In many cases, the light diffusion layer usually contains an antioxidant.
 光拡散層において、分散相の形態は、長軸の平均長さLと短軸の平均長さWとの比(平均アスペクト比、L/W)が1~1.25程度の球体状であってもよく、フットボール型形状(回転楕円体などの楕円体)、偏平体、直方体状、繊維状又は糸状体などであってもよい。 In the light diffusion layer, the dispersed phase is in the form of a sphere having a ratio of the average length L of the major axis to the average length W of the minor axis (average aspect ratio, L / W) of about 1 to 1.25. It may be a football type shape (an ellipsoid such as a spheroid), a flat body, a rectangular parallelepiped shape, a fiber shape or a thread shape.
 異方的な光散乱性を高めるためには、分散相粒子のアスペクト比が大きい方が好ましい。特に、本発明では、高い透過率であっても高度に光り抜けを抑制でき、かつ連続相との間にボイドなどの発生なく、連続相中で均一に分散させるのが好ましい。分散相の平均アスペクト比は、通常、1より大きく(例えば、1.01~20000)、例えば、1.5~10000(例えば、2~5000)程度の範囲から選択できるが、例えば、3~3000、好ましくは4~2000、さらに好ましくは5~1000程度である。なお、生産性などの点から、3~100程度であってもよく、好ましくは3.5~50、さらに好ましくは4~30(特に5~20)程度であってもよい。 In order to enhance the anisotropic light scattering property, it is preferable that the aspect ratio of the dispersed phase particles is large. In particular, in the present invention, it is preferable to disperse uniformly in the continuous phase without generating voids between the continuous phase and the high-transmittance even when the transmittance is high. The average aspect ratio of the dispersed phase is usually larger than 1 (for example, 1.01 to 20000), and can be selected from a range of about 1.5 to 10,000 (for example, 2 to 5000), for example, 3 to 3000. It is preferably about 4 to 2000, and more preferably about 5 to 1000. From the viewpoint of productivity, it may be about 3 to 100, preferably 3.5 to 50, more preferably about 4 to 30 (especially 5 to 20).
 透過光を異方的に光拡散する光拡散層において、分散相の長軸方向がフィルムの所定の方向、すなわちX軸方向(引き取り方向又は機械方向)に配向して粒子状分散相を形成している。このような異方的な光拡散層は、管状(棒状)光源を備えたバックライト型液晶表示装置であっても、表示装置の輝度を有効に向上できる。 In the light diffusion layer that diffuses the transmitted light anisotropically, the long axis direction of the dispersed phase is oriented in a predetermined direction of the film, that is, the X-axis direction (take-up direction or machine direction) to form a particulate dispersed phase. ing. Such an anisotropic light diffusion layer can effectively improve the luminance of the display device even in a backlight type liquid crystal display device provided with a tubular (bar-shaped) light source.
 特に、棒状光源の場合、分散相の軸方向を光源の軸方向に対して平行して配向させることにより、光源のランプイメージの残存を抑制できるが、本願発明では、連続相のポリカーボネート系樹脂に対して分散相を構成する樹脂の屈折率差を前記範囲に調整することにより、高い透過率であっても、光の散乱効果を低下させることなく、光抜けを抑制でき、高度にランプイメージの残存を抑制できる。 In particular, in the case of a rod-shaped light source, the residual phase of the lamp image of the light source can be suppressed by orienting the axial direction of the dispersed phase in parallel to the axial direction of the light source. On the other hand, by adjusting the difference in the refractive index of the resin constituting the dispersed phase within the above range, even if the transmittance is high, light leakage can be suppressed without reducing the light scattering effect, and a high degree of lamp image can be achieved. Residual can be suppressed.
 なお、分散相の長軸の平均長さLは、例えば、0.1~1000μm(例えば、0.5~500μm)、好ましくは1~100μm(例えば、2~50μm)、さらに好ましくは3~30μm(特に5~10μm)程度である。さらに、異方性を高める場合には、例えば、5~800μm(特に5~500μm)程度であってもよい。また、分散相の短軸の平均長さWは、例えば、0.01~10μm(例えば、0.02~5μm)、好ましくは0.03~5μm(例えば、0.05~3μm)、さらに好ましくは0.07~1μm(例えば、0.1~1μm)程度である。 The average length L of the major axis of the dispersed phase is, for example, 0.1 to 1000 μm (for example, 0.5 to 500 μm), preferably 1 to 100 μm (for example, 2 to 50 μm), and more preferably 3 to 30 μm. (Especially about 5 to 10 μm). Further, in the case of increasing the anisotropy, for example, it may be about 5 to 800 μm (especially 5 to 500 μm). The average length W of the minor axis of the dispersed phase is, for example, 0.01 to 10 μm (for example, 0.02 to 5 μm), preferably 0.03 to 5 μm (for example, 0.05 to 3 μm), and more preferably Is about 0.07 to 1 μm (for example, 0.1 to 1 μm).
 配列度としての分散相粒子の配向係数は、例えば、0.34以上(0.34~1程度)、好ましくは0.4~1(例えば、0.5~1)、さらに好ましくは0.7~1程度であってもよい。分散相粒子の配向係数が高い程、散乱光に高い異方性を付与できる。なお、配向係数は、下記式に基づいて算出できる。 The orientation coefficient of the dispersed phase particles as the degree of alignment is, for example, 0.34 or more (about 0.34 to 1), preferably 0.4 to 1 (for example, 0.5 to 1), more preferably 0.7. It may be about ˜1. Higher anisotropy can be imparted to the scattered light as the orientation coefficient of the dispersed phase particles is higher. The orientation coefficient can be calculated based on the following formula.
    配向係数=(3<cos2θ>-1)/2
(式中、θは粒子状分散相の長軸とフィルムのX軸との間の角度を示し(長軸とX軸とが平行の場合、θ=0°)、<cos2θ>は各分散相粒子について算出したcos2θの平均を示し、下記式で表される)。
Orientation coefficient = (3 <cos 2 θ> −1) / 2
(In the formula, θ represents an angle between the major axis of the particulate dispersed phase and the X axis of the film (when the major axis and the X axis are parallel, θ = 0 °), and <cos 2 θ> represents each The average cos 2 θ calculated for the dispersed phase particles is shown by the following formula).
   <cos2θ>=∫n(θ)・cos2θ・dθ
(式中、n(θ)は、全分散相粒子中の角度θを有する分散相粒子の割合(重率)を示す)。
<Cos 2 θ> = ∫n (θ) · cos 2 θ · dθ
(In the formula, n (θ) represents the ratio (weight ratio) of dispersed phase particles having an angle θ in all dispersed phase particles).
 光拡散フィルムは、拡散光の指向性を有していてもよい。すなわち、指向性を有するとは、異方的拡散光において散乱の強い方向のうち、散乱強度が極大を示す角度があることを意味する。拡散光が指向性を有している場合、後述する図5の測定装置において、拡散光強度Fを拡散角度θに対してプロットしたとき、プロット曲線が、特定の拡散角度θの範囲(θ=0°を除く角度域)で極大又はショルダー(特に、極大などの変曲点)を有している。 The light diffusion film may have a directivity of diffused light. That is, having directivity means that there is an angle at which the scattering intensity has a maximum in the direction of strong scattering in anisotropic diffused light. When the diffused light has directivity, when the diffused light intensity F is plotted with respect to the diffusion angle θ in the measurement apparatus of FIG. 5 described later, the plot curve shows a range of a specific diffusion angle θ (θ = It has a maximum or a shoulder (in particular, an inflection point such as a maximum) in an angle range other than 0 °.
 光拡散層の厚みは、例えば、3~500μm(例えば、10~500μm)、好ましくは30~450μm(例えば、50~400μm)、さらに好ましくは80~350μm(特に100~350μm)程度であってもよい。 The thickness of the light diffusion layer may be, for example, about 3 to 500 μm (for example, 10 to 500 μm), preferably about 30 to 450 μm (for example, 50 to 400 μm), more preferably about 80 to 350 μm (particularly about 100 to 350 μm). Good.
 (透明層)
 光拡散フィルムは、前記光拡散層単独(例えば、透過光を異方的に光拡散させる異方性光拡散層)の単層フィルムであってもよく、光拡散層(例えば、透過光を異方的に光拡散させる異方性光拡散層)の少なくとも一方の面に積層された透明層とで構成された積層体であってもよく、透明層としては、樹脂層に限らず種々の透明基材(例えば、ガラスなど)を使用できる。透明層は、通常、透明樹脂層で形成する場合が多い。また、積層構造を有する光拡散フィルムでは、光拡散層の一方の面に限らず両面に透明樹脂層を積層してもよい。
(Transparent layer)
The light diffusion film may be a single layer film of the light diffusion layer alone (for example, an anisotropic light diffusion layer for anisotropically diffusing transmitted light), or a light diffusion layer (for example, transmitting light anisotropically). A laminated body composed of a transparent layer laminated on at least one surface of an anisotropic light diffusing layer that diffuses light into the transparent layer is not limited to a resin layer. Glass, etc.). In many cases, the transparent layer is usually formed of a transparent resin layer. Moreover, in the light-diffusion film which has a laminated structure, you may laminate | stack a transparent resin layer not only on one side of a light-diffusion layer but on both surfaces.
 透明樹脂層を構成する好ましい樹脂成分には、前記分散相の項で例示された透明樹脂を使用できる。前記樹脂のうち、透明樹脂としては、耐熱性や耐ブロッキング性を高めるため、耐熱性樹脂(ガラス転移温度又は融点が高い樹脂など)、例えば、環状オレフィン系樹脂、(メタ)アクリル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂などが利用できるが、光学特性及び耐熱性の点から、環状オレフィン系樹脂又はポリカーボネート系樹脂が特に好ましい。透明樹脂層を構成する樹脂には、密着性や機械的特性などを損なわない限り、前記光拡散層を構成する連続相及び/又は分散相の樹脂と同一又は異なる樹脂が使用できるが、通常、連続相の樹脂と同一又は共通(又は同系統)の樹脂(ポリカーボネート系樹脂)が好ましい。 As a preferable resin component constituting the transparent resin layer, the transparent resin exemplified in the section of the dispersed phase can be used. Among the resins, transparent resins include heat-resistant resins (such as resins having a high glass transition temperature or melting point) such as cyclic olefin resins, (meth) acrylic resins, styrene, in order to increase heat resistance and blocking resistance. Resin, polyester resin, polyamide resin, polycarbonate resin and the like can be used, but cyclic olefin resin or polycarbonate resin is particularly preferable from the viewpoint of optical properties and heat resistance. As the resin constituting the transparent resin layer, a resin that is the same as or different from the resin of the continuous phase and / or the dispersed phase constituting the light diffusion layer can be used as long as the adhesion and mechanical properties are not impaired. A resin (polycarbonate resin) that is the same or common (or the same system) as the continuous phase resin is preferred.
 さらに、透明樹脂層は、慣用の添加剤、例えば、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤、光安定剤など)、可塑剤、帯電防止剤、難燃剤などを含有していてもよい。特に、透明層は、安定剤(酸化防止剤、紫外線吸収剤、光安定剤)、好ましくは紫外線吸収剤及び光安定剤から選択された少なくとも一方の成分(紫外線吸収剤単独、光安定剤単独、紫外線吸収剤及び光安定剤)、特に紫外線吸収剤及び光安定剤を含む樹脂層で構成されているのが好ましい。安定剤としては前記光拡散層と同様の成分が使用でき、透明樹脂層を構成する樹脂成分100重量部に対する各安定剤の使用量及び安定剤の総量は、前記光拡散層を構成する樹脂成分に対する割合と同様の範囲から選択できる。また、紫外線吸収剤と光安定剤とを併用する場合、両者の割合は、前者/後者(重量比)=95/5~50/50(例えば、90/10~70/30)程度の範囲から選択できる。 Further, the transparent resin layer contains conventional additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, light stabilizers, etc.), plasticizers, antistatic agents, flame retardants and the like. Also good. In particular, the transparent layer comprises a stabilizer (antioxidant, ultraviolet absorber, light stabilizer), preferably at least one component selected from an ultraviolet absorber and a light stabilizer (ultraviolet absorber alone, light stabilizer alone, It is preferably composed of a resin layer containing an ultraviolet absorber and a light stabilizer), particularly an ultraviolet absorber and a light stabilizer. The same components as the light diffusion layer can be used as the stabilizer, and the amount of each stabilizer used and the total amount of the stabilizer with respect to 100 parts by weight of the resin component constituting the transparent resin layer are the resin components constituting the light diffusion layer. It can be selected from the same range as the ratio to. Further, when the ultraviolet absorber and the light stabilizer are used in combination, the ratio of the two is from the range of the former / the latter (weight ratio) = 95/5 to 50/50 (for example, 90/10 to 70/30). You can choose.
 各透明層の厚みは、前記光拡散層と同程度であってもよく、例えば、光拡散層の厚みが3~500μm程度の場合、各透明層の厚みは3~150μm程度から選択でき、例えば、5~100μm、好ましくは10~50μm、さらに好ましくは15~40μm程度であってもよい。光拡散層と各透明層との厚みの割合は、例えば、光拡散層/透明層=5/95~99/1、好ましくは30/70~99/1、さらに好ましくは40/60~95/5程度である。積層フィルムの厚みは、例えば、10~600μm程度、好ましくは50~500μm程度、さらに好ましくは100~400μm程度であってもよい。 The thickness of each transparent layer may be approximately the same as that of the light diffusion layer. For example, when the thickness of the light diffusion layer is about 3 to 500 μm, the thickness of each transparent layer can be selected from about 3 to 150 μm. It may be about 5 to 100 μm, preferably about 10 to 50 μm, and more preferably about 15 to 40 μm. The thickness ratio between the light diffusion layer and each transparent layer is, for example, light diffusion layer / transparent layer = 5/95 to 99/1, preferably 30/70 to 99/1, more preferably 40/60 to 95 /. About 5. The thickness of the laminated film may be, for example, about 10 to 600 μm, preferably about 50 to 500 μm, and more preferably about 100 to 400 μm.
 光拡散フィルム(又は光拡散層)の全光線透過率は、例えば、50%以上(例えば、50~100%)、好ましくは60%以上(例えば、60~100%)であり、特に70~95%(例えば、75~90%)程度であってもよい。さらに、光拡散フィルム(又は光拡散層)のヘイズ値は、80%以上(例えば、80~99.9%)、好ましくは90%以上(例えば、90~99.8%)、さらに好ましくは93~99.5%、特に95~99%程度である。全光線透過率が小さいと、輝度が低下しやすく、ヘイズ値が小さいと、光を均一に拡散できず、表示品位を低下させる。 The total light transmittance of the light diffusion film (or light diffusion layer) is, for example, 50% or more (for example, 50 to 100%), preferably 60% or more (for example, 60 to 100%), and particularly 70 to 95. % (For example, 75 to 90%). Further, the haze value of the light diffusion film (or light diffusion layer) is 80% or more (for example, 80 to 99.9%), preferably 90% or more (for example, 90 to 99.8%), and more preferably 93%. It is about 99.5%, especially about 95 to 99%. If the total light transmittance is small, the luminance tends to decrease, and if the haze value is small, the light cannot be diffused uniformly and the display quality is deteriorated.
 なお、光拡散フィルムの表面には、光学特性を妨げない範囲で、シリコーンオイルなどの離型剤を塗布してもよく、コロナ放電処理してもよい。さらに、光拡散フィルムには、フィルムのX軸方向(分散相の長軸方向)に延びる凹凸部を形成してもよい。このような凹凸部を形成すると、フィルムにより高い異方的光散乱性を付与できる。 It should be noted that a release agent such as silicone oil may be applied to the surface of the light diffusion film as long as the optical properties are not hindered, or a corona discharge treatment may be performed. Furthermore, you may form the uneven | corrugated | grooved part extended in the X-axis direction (long axis direction of a dispersed phase) of a film in a light-diffusion film. When such an uneven part is formed, high anisotropic light scattering can be imparted to the film.
 図2は光拡散フィルムの一例を示す概略断面図である。単層構造の異方性光拡散フィルム17は、互いに屈折率の異なる複数の樹脂で構成されており、ポリカーボネート系樹脂で構成された連続層17a中に粒子状分散相17bが分散した相分離構造(又は海島構造)を有している。 FIG. 2 is a schematic cross-sectional view showing an example of a light diffusion film. The anisotropic light diffusing film 17 having a single layer structure is composed of a plurality of resins having different refractive indexes, and a phase separation structure in which a particulate dispersed phase 17b is dispersed in a continuous layer 17a composed of a polycarbonate resin (or It has a sea-island structure.
 図3は光拡散フィルムの他の例を示す概略断面図である。この例において、光拡散フィルム28は、光拡散層27と、この光拡散層の少なくとも一方の面に積層された透明樹脂層29とで構成された積層構造を有している。また、光拡散層27は、互いに屈折率の異なる複数の樹脂で構成されており、ポリカーボネート系樹脂で構成された連続層27a中に粒子状分散相27bが分散した相分離構造(又は海島構造)を有している。このような積層構造の異方性光拡散フィルムでは、透明樹脂層29で光拡散層27を保護して分散相粒子の脱落や付着を防止でき、フィルムの耐傷性や製造安定性を向上できるとともに、フィルムの強度や取扱い性を高めることができる。 FIG. 3 is a schematic sectional view showing another example of the light diffusion film. In this example, the light diffusion film 28 has a laminated structure including a light diffusion layer 27 and a transparent resin layer 29 laminated on at least one surface of the light diffusion layer. The light diffusion layer 27 is composed of a plurality of resins having different refractive indexes, and a phase separation structure (or sea-island structure) in which the particulate dispersed phase 27b is dispersed in a continuous layer 27a composed of a polycarbonate-based resin. have. In such an anisotropic light diffusing film having a laminated structure, the transparent resin layer 29 protects the light diffusing layer 27 to prevent the dispersed phase particles from falling off and adhering, and the film can be improved in scratch resistance and manufacturing stability. Strength and handleability can be improved.
 図4は光拡散の異方性を説明するための概念図である。図4に示すように、異方性光拡散フィルム37は、ポリカーボネート系樹脂で構成された連続相37aと、この連続相中に分散した異方形状の分散相37bとで構成されている。そして、光拡散の異方性は散乱角θと散乱光強度Fとの関係を示す散乱特性F(θ)において、フィルムのX軸方向の散乱特性をFx(θ)、X軸方向と直交するY軸方向の散乱特性をFy(θ)としたとき、散乱特性Fx(θ)及びFy(θ)は、散乱角θが広角度になるにつれ、光強度がなだらかに減衰するパターンを示す。また、散乱角θ=4~30゜の範囲において、Fy(θ)/Fx(θ)の値は、1.01以上であり、例えば、1.01~200、好ましくは1.1~150程度である。さらに、散乱角θ=18°において、Fy(θ)/Fx(θ)の値は、1.1~400程度の範囲から選択でき、例えば、1.2~200、好ましくは1.3~150、さらに好ましくは1.5~100程度である。なお、Fy(θ)/Fx(θ)の値は、生産性などの点から、例えば、1.2~50、好ましくは1.3~30、さらに好ましくは1.5~20(特に1.8~10)程度であってもよい。 FIG. 4 is a conceptual diagram for explaining the anisotropy of light diffusion. As shown in FIG. 4, the anisotropic light diffusing film 37 is composed of a continuous phase 37 a composed of a polycarbonate-based resin, and an anisotropic dispersed phase 37 b dispersed in the continuous phase. The light diffusion anisotropy is the scattering characteristic F (θ) indicating the relationship between the scattering angle θ and the scattered light intensity F. The scattering characteristic in the X-axis direction of the film is orthogonal to Fx (θ), the X-axis direction. When the scattering characteristic in the Y-axis direction is Fy (θ), the scattering characteristics Fx (θ) and Fy (θ) show patterns in which the light intensity gently attenuates as the scattering angle θ becomes wider. In the range of scattering angle θ = 4 to 30 °, the value of Fy (θ) / Fx (θ) is 1.01 or more, for example, about 1.01 to 200, preferably about 1.1 to 150. It is. Further, at the scattering angle θ = 18 °, the value of Fy (θ) / Fx (θ) can be selected from the range of about 1.1 to 400, for example, 1.2 to 200, preferably 1.3 to 150. More preferably, it is about 1.5 to 100. The value of Fy (θ) / Fx (θ) is, for example, 1.2 to 50, preferably 1.3 to 30, more preferably 1.5 to 20 (particularly 1.) in terms of productivity. It may be about 8 to 10).
 このような光学特性を有する本発明の光拡散フィルム(特に異方性光拡散フィルム)を用いると、棒状光源の軸方向に対して垂直方向に散乱するよう配置することにより、棒状光源そのものが認識されるランプイメージの消去を輝度の低下を最小限度に抑えて達成することができる。なお、Fy(θ)/Fx(θ)の値及び散乱角θ=18°でのFy(θ)/Fx(θ)の値が大きすぎると、光抜け(ランプイメージの発現)を抑制できるが、輝度の低下が大きく、逆にこれらの値が小さすぎる場合には、輝度の低下は抑制できるが、光抜けが起こる。 When the light diffusing film of the present invention having such optical characteristics (especially an anisotropic light diffusing film) is used, the rod-shaped light source itself is recognized by being arranged so as to scatter in the direction perpendicular to the axial direction of the rod-shaped light source. The erasing of the lamp image can be achieved with a minimum reduction in brightness. Note that if the value of Fy (θ) / Fx (θ) and the value of Fy (θ) / Fx (θ) at a scattering angle θ = 18 ° are too large, light omission (expression of a lamp image) can be suppressed. On the other hand, when the brightness is greatly reduced and these values are too small, the brightness can be suppressed, but light leakage occurs.
 このような散乱特性のフィルムを調製するためには、連続相及び分散相を構成する成分(特に樹脂)の選定、成形条件、特に押出温度、成形後のドロー比及び冷却温度が重要であり、後述する種類及び条件でフィルムを作製することにより、本発明の光拡散特性を有するフィルムが得られる。 In order to prepare a film having such scattering characteristics, selection of components (particularly resin) constituting the continuous phase and the dispersed phase, molding conditions, particularly extrusion temperature, draw ratio after molding and cooling temperature are important. A film having the light diffusion characteristics of the present invention can be obtained by producing a film under the types and conditions described below.
 なお、異方性光拡散フィルム37のX軸方向は、通常、分散相37bの長軸方向である。そのため、異方性光拡散フィルムのX軸方向を、面光源ユニットの管状光源の軸方向(Y軸方向)に対して略平行方向に向けて配設されている。なお、異方性光拡散フィルムのX軸方向は、面光源ユニットの管状光源の軸方向(Y軸方向)に対して、完全に垂直である必要はなく、例えば、角度±15°(例えば、±10°、特に±5°)程度の範囲内で斜め方向に向けて配設してもよい。 Note that the X-axis direction of the anisotropic light diffusion film 37 is usually the long-axis direction of the dispersed phase 37b. Therefore, the anisotropic light diffusion film is disposed so that the X-axis direction is substantially parallel to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit. Note that the X-axis direction of the anisotropic light diffusing film does not need to be completely perpendicular to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit, for example, an angle ± 15 ° (for example, ± 10) You may arrange | position toward the diagonal direction within the range of about (degree, especially +/- 5 degree).
 散乱特性F(θ)は、例えば、図5に示すような測定装置を用いて測定できる。この装置は、異方性光拡散フィルム37に対してレーザ光を照射するためのレーザ光照射装置(例えば、NIHON KAGAKU ENG NEO-20MS)38と、異方性光拡散フィルム37を透過したレーザ光の強度を測定するための検出器39とを備えている。そして、光拡散フィルム37の面に対して90°の角度で(垂直に)レーザ光を照射し、フィルムにより拡散された光の強度(散乱光強度)Fを散乱角θに対して測定(プロット)することにより光散乱特性を求めることができる。 The scattering characteristic F (θ) can be measured using, for example, a measuring apparatus as shown in FIG. This apparatus measures the intensity of laser light that has passed through the anisotropic light diffusion film 37 and a laser light irradiation apparatus (for example, NIHONGAKAGAKU ENG NEO-20MS) 38 for irradiating the anisotropic light diffusion film 37 with laser light. And a detector 39. Then, laser light is irradiated (perpendicularly) at an angle of 90 ° with respect to the surface of the light diffusion film 37, and the intensity (scattered light intensity) F of the light diffused by the film is measured (plotted) with respect to the scattering angle θ. ) To obtain light scattering characteristics.
 異方性光拡散フィルムでは、光散乱の異方性が高いと、所定方向における散乱の角度依存性をより少なくでき、そのため、輝度の角度依存性もより少なくできる。前記異方性光拡散フィルムでは、表示面に対して垂直な角度(90°)を0°としたとき、表示面に対する角度20°を越えて、角度40°以上の角度でも輝度の低下を抑制できる。 In the anisotropic light diffusion film, when the anisotropy of light scattering is high, the angle dependency of scattering in a predetermined direction can be reduced, and therefore the angle dependency of luminance can be reduced. In the anisotropic light diffusing film, when the angle (90 °) perpendicular to the display surface is 0 °, a decrease in luminance can be suppressed even at an angle of 40 ° or more exceeding the angle 20 ° with respect to the display surface.
 [光拡散フィルムの製造方法]
 光拡散フィルムは、連続相を構成する樹脂中に分散相を構成する樹脂成分を分散させることにより調製でき、異方性光拡散フィルムは、分散相を構成する樹脂成分を変形させて配向させることにより得ることができる。例えば、ポリカーボネート系樹脂と環状オレフィン系樹脂と必要により滑剤などの成分とを、必要に応じて慣用の方法(例えば、溶融ブレンド法、タンブラー法など)でブレンドし、溶融混合し、Tダイやリングダイなどから押出してフィルム成形することにより分散相を分散できる。また、基材(基材フィルムなど)上に、光散乱成分としての粒子状の環状オレフィン系樹脂と、ポリカーボネート系樹脂とで構成された組成物を塗布するコーティング法や、前記組成物をラミネートするラミネート法、キャスティング法、押出成形法などの慣用のフィルム成形法を利用して成形することによっても光拡散フィルムを製造できる。通常、押出成形法によりフィルム成形し、光拡散フィルムを調製する場合が多い。
[Production method of light diffusion film]
The light diffusion film can be prepared by dispersing the resin component constituting the dispersed phase in the resin constituting the continuous phase, and the anisotropic light diffusion film is obtained by deforming and orienting the resin component constituting the dispersed phase. be able to. For example, a polycarbonate resin, a cyclic olefin resin and, if necessary, a component such as a lubricant are blended by a conventional method (for example, a melt blending method, a tumbler method, etc.) as necessary, and melt-mixed to form a T die or a ring. The dispersed phase can be dispersed by extrusion from a die or the like to form a film. In addition, a coating method in which a composition composed of a particulate cyclic olefin resin as a light scattering component and a polycarbonate resin is applied to a substrate (such as a substrate film) or the composition is laminated. The light diffusing film can also be produced by molding using a conventional film molding method such as a laminating method, a casting method, or an extrusion molding method. Usually, a light diffusing film is often prepared by film forming by an extrusion method.
 なお、光拡散層と、この拡散層の少なくとも一方の面に積層された透明層(透明樹脂層)とで構成された積層構造を有する拡散フィルムは、光拡散層に対応する成分で構成された樹脂組成物と、透明層に対応する成分で構成された樹脂組成物とを、共押出成形し、成膜する共押出成形法、予め作製した一方の層に対して他方の層を押し出しラミネートにより積層する方法、それぞれ作製した光拡散層と透明樹脂層とを積層するドライラミネート法などにより形成できる。 In addition, the diffusion film which has the laminated structure comprised by the light-diffusion layer and the transparent layer (transparent resin layer) laminated | stacked on at least one surface of this diffusion layer was comprised by the component corresponding to a light-diffusion layer. A resin composition and a resin composition composed of components corresponding to the transparent layer are co-extruded, and a co-extrusion molding method for forming a film. It can be formed by a lamination method, a dry lamination method in which a light diffusion layer and a transparent resin layer, which are respectively produced, are laminated.
 等方性光拡散フィルムは、前記押出成形の条件(例えば、小さなドロー比での引き取り、未延伸処理などの温和な条件での押出成形など)、押出成形後のフィルムの加熱処理(押出に伴って分散相に生じた歪みを緩和させるための加熱処理など)により、分散相の形態を球形状に緩和することにより調製してもよい。 The isotropic light diffusing film has the above-mentioned extrusion molding conditions (for example, extrusion under a mild condition such as drawing with a small draw ratio, unstretched processing, etc.), heat treatment of the film after extrusion molding (dispersed with extrusion) It may be prepared by relaxing the form of the dispersed phase into a spherical shape by, for example, heat treatment for relaxing the distortion generated in the phase.
 異方性光拡散層において、分散相の配向処理は、例えば、(1)押出成形シートをドローしながら製膜する方法、(2)押出成形シートを一軸延伸する方法、(3)前記(1)の方法と(2)の方法とを組み合わせる方法、(4)前記各成分を溶液ブレンドし、流延法により成膜する方法などにより行うことができる。 In the anisotropic light diffusing layer, for example, (1) a method of forming a film while drawing an extruded sheet, (2) a method of uniaxially stretching the extruded sheet, (3) the method of (1) The method can be carried out by a method combining the method and the method (2), (4) a method in which the above components are solution-blended, and a film is formed by a casting method.
 溶融温度は、分散相を構成する樹脂の種類に応じて選択できるが、例えば、環状オレフィン系樹脂の場合、例えば、150~300℃、好ましくは200~290℃、さらに好ましくは230~280℃(特に240~270℃)程度であってもよい。 The melting temperature can be selected according to the type of resin constituting the dispersed phase. For example, in the case of a cyclic olefin resin, for example, 150 to 300 ° C., preferably 200 to 290 ° C., more preferably 230 to 280 ° C. ( In particular, it may be about 240 to 270 ° C.
 適度な異方性を発現するために、本発明の光拡散フィルムは、溶融製膜において押出成形シートをドローしながら製膜するのが好ましい。所定の異方性光拡散特性を発現させるためには、押出後のドロー比を調整するのが重要である。ドロー比(ドロー倍率)は、押出機のダイの開度、樹脂の種類、層構造などに応じて1.5~50倍程度の範囲から選択でき、一義的には決定できないが、例えば、2~30倍程度、好ましくは2.5~20倍、さらに好ましくは3~15倍(特に3.5~10倍)程度の範囲から、前記異方性のパラメータが前記範囲になるように選択できる。 In order to develop moderate anisotropy, the light diffusion film of the present invention is preferably formed while drawing an extruded sheet in melt film formation. In order to exhibit a predetermined anisotropic light diffusion characteristic, it is important to adjust the draw ratio after extrusion. The draw ratio (draw ratio) can be selected from a range of about 1.5 to 50 times depending on the opening of the die of the extruder, the type of resin, the layer structure, etc., and cannot be uniquely determined. From the range of about 30 times, preferably 2.5-20 times, more preferably 3-15 times (particularly 3.5-10 times), the anisotropy parameter can be selected to be in the range. .
 キャストロールなどによる冷却温度は、分散相が環状オレフィン系樹脂の場合、例えば、30~180℃、好ましくは50~160℃、さらに好ましくは80~150℃(特に100~140℃)程度であってもよい。さらに、本発明の光拡散フィルムは延伸(一軸又は二軸延伸、特に一軸延伸)されていてもよい。光拡散フィルムの延伸倍率は分散相のアスペクト比に応じて選択でき、例えば、一方向での延伸倍率は1.1~10倍、好ましくは1.2~5倍、さらに好ましくは1.5~3倍程度であってもよい。 When the dispersed phase is a cyclic olefin resin, the cooling temperature by a cast roll is, for example, about 30 to 180 ° C., preferably 50 to 160 ° C., more preferably 80 to 150 ° C. (especially 100 to 140 ° C.). Also good. Furthermore, the light diffusion film of the present invention may be stretched (uniaxial or biaxial stretching, particularly uniaxial stretching). The draw ratio of the light diffusion film can be selected according to the aspect ratio of the dispersed phase. For example, the draw ratio in one direction is 1.1 to 10 times, preferably 1.2 to 5 times, more preferably 1.5 to It may be about 3 times.
 本発明の光拡散フィルムでは、連続相と分散相との適度な屈折率差により透過光が散乱して拡散する。特に、分散相のアスペクト比が大きくなると、異方的に光拡散できる。そのため、本発明の光拡散フィルムは、種々の光学的用途に利用できる。例えば、等方性光拡散フィルムは、局部的な光源を用いても光源からの透過光を均一な輝度に光拡散できる。特に、異方性光拡散フィルムは、輝度に異方性のある管状光源などを利用しても、光源からの透過光を均一な輝度で光拡散でき、光抜けを防止できるため、面光源装置を薄型化かつ高輝度化してもランプイメージの発現を抑制できる。そのため、液晶表示装置などの表示装置に適用すると、表示面全体を均一に照明できる。従って、本発明の光拡散フィルムは、面光源装置や表示装置(例えば、液晶表示装置などの画像表示領域がフラット(平面)な面型表示装置(平面型表示装置))の構成部材として有用である。前述の図1に基づいて、液晶表示装置を例にとって説明すると、以下の通りである。 In the light diffusing film of the present invention, transmitted light is scattered and diffused by an appropriate difference in refractive index between the continuous phase and the dispersed phase. In particular, when the aspect ratio of the dispersed phase is increased, the light can be diffused anisotropically. Therefore, the light diffusion film of the present invention can be used for various optical applications. For example, the isotropic light diffusion film can diffuse the transmitted light from the light source to a uniform luminance even when a local light source is used. In particular, anisotropic light diffusing films can reduce the transmission of light from a light source with uniform brightness and prevent light leakage even when a tubular light source having anisotropy in luminance is used. Even if the brightness and brightness are increased, the appearance of the lamp image can be suppressed. Therefore, when applied to a display device such as a liquid crystal display device, the entire display surface can be illuminated uniformly. Therefore, the light diffusing film of the present invention is useful as a constituent member of a surface light source device or a display device (for example, a surface display device (flat display device) having a flat image display area such as a liquid crystal display device). is there. An example of a liquid crystal display device will be described with reference to FIG. 1 described above.
 [液晶表示装置]
 液晶表示装置の概略を示す図1において、前記液晶表示装置は、液晶が封入された液晶セルを備えた被照射体としての面型表示ユニット(透過型液晶表示ユニット又は液晶表示パネルなど)5と、この表示ユニット(又はパネル)の背面側に配設され、前記表示ユニット5を照明するための面光源ユニットとで構成されている。
[Liquid Crystal Display]
In FIG. 1 which shows the outline of a liquid crystal display device, the liquid crystal display device includes a surface type display unit (such as a transmission type liquid crystal display unit or a liquid crystal display panel) 5 as an irradiated body including a liquid crystal cell in which liquid crystal is sealed. The surface light source unit is disposed on the back side of the display unit (or panel) and illuminates the display unit 5.
 前記面光源ユニットは、前記表示ユニット5の直下に1又は並列に配設された複数の蛍光放電管(冷陰極管)などの管状光源1と、管状光源1からの光を前方方向(表示ユニット側)に反射して表示ユニット5に導くための反射板2とを備えている。前記管状光源1の前方には、管状光源1の前方に配置された支持板(図示せず)と、この支持板の出射面側(面光源ユニットの出光面側)に位置し、透過光を異方的に光散乱させるための拡散板(例えば、異方性光拡散フィルム)3と、この異方性光拡散フィルム3の表示面側に位置し、頂部が表示面側の方向に向いた断面三角形状の微小プリズムが所定方向に並列に形成されたプリズムシート4(微小プリズムは図示せず)とが順次積層により配設されている。前記管状光源1からの光は、異方性光拡散フィルム3により拡散して均一化するとともに、プリズムシート4により前方へ集光し、輝度を高めて表示ユニット5を照明する。なお、前記支持板は、薄膜である異方性光拡散フィルム3を保護するために形成された透明板である。 The surface light source unit includes a tubular light source 1 such as a plurality of fluorescent discharge tubes (cold cathode tubes) arranged in parallel or directly below the display unit 5 and light from the tubular light source 1 in the forward direction (display unit). And a reflecting plate 2 for guiding the light to the display unit 5. In front of the tubular light source 1, a support plate (not shown) disposed in front of the tubular light source 1 and an emission surface side (light-emitting surface side of the surface light source unit) of the support plate are arranged to transmit transmitted light. A diffusing plate (for example, anisotropic light diffusing film) 3 for anisotropic light scattering, and a triangular cross section located on the display surface side of the anisotropic light diffusing film 3 with the top facing the direction of the display surface A prism sheet 4 (micro prisms not shown) in which micro prisms are formed in parallel in a predetermined direction is sequentially stacked. The light from the tubular light source 1 is diffused and uniformed by the anisotropic light diffusion film 3 and condensed forward by the prism sheet 4 to illuminate the display unit 5 with increased brightness. In addition, the said support plate is a transparent plate formed in order to protect the anisotropic light-diffusion film 3 which is a thin film.
 なお、前記面型表示ユニット(液晶表示ユニット)5は、第1の偏光フィルム6a,第1のガラス基板7a,このガラス基板に形成された第1の電極8a,この電極上に積層された第1の配向膜9a,液晶層10,第2の配向膜9b,第2の電極8b,カラーフィルター11,第2のガラス基板7b,及び第2の偏光フィルム6bを順次積層することにより形成されている。 The surface type display unit (liquid crystal display unit) 5 includes a first polarizing film 6a, a first glass substrate 7a, a first electrode 8a formed on the glass substrate, and a first electrode laminated on the electrode. The first alignment film 9a, the liquid crystal layer 10, the second alignment film 9b, the second electrode 8b, the color filter 11, the second glass substrate 7b, and the second polarizing film 6b are sequentially stacked. Yes.
 このような表示装置では、内蔵された蛍光放電管(冷陰極管)などの管状光源1により表示ユニットを背面から直接照明できる。そのため、管状光源(ランプ)を使用したバックライト式面光源装置は、近年の液晶テレビジョンなどの液晶表示画面の大型化に伴い、液晶表示装置におけるウエイトが非常に高くなってきている。 In such a display device, the display unit can be directly illuminated from the back by a tubular light source 1 such as a built-in fluorescent discharge tube (cold cathode tube). For this reason, the backlight type surface light source device using a tubular light source (lamp) has become very heavy in the liquid crystal display device as the liquid crystal display screen of a liquid crystal television or the like in recent years increases in size.
 しかし、一般に、管状光源1からの出射光の輝度分布は均一でなく、管状光源1の軸方向に対して直交する方向の輝度分布が不均一である。特に、表示ユニット(液晶表示ユニット)5の直下に配置された管状光源そのものが表示面側から認識され、表示面ではランプイメージが残存する。そのため、管状光源を用いても、表示面での輝度を均一化する必要がある。特に、異方性光拡散フィルム3が管状光源1に近接しているため、異方性光拡散フィルム3には長期間に亘り安定した光拡散性が要求される。 However, in general, the luminance distribution of light emitted from the tubular light source 1 is not uniform, and the luminance distribution in the direction orthogonal to the axial direction of the tubular light source 1 is not uniform. In particular, the tubular light source itself disposed immediately below the display unit (liquid crystal display unit) 5 is recognized from the display surface side, and a lamp image remains on the display surface. Therefore, even when a tubular light source is used, it is necessary to make the luminance on the display surface uniform. In particular, since the anisotropic light diffusing film 3 is close to the tubular light source 1, the anisotropic light diffusing film 3 is required to have stable light diffusibility for a long period of time.
 そして、前記異方性光拡散フィルム3をバックライト型面光源ユニット又は液晶表示装置に用いると、表示面での輝度を均一化できるとともに、ランプイメージの発現を抑制できる。すなわち、分散相の長軸方向を管状光源1の長軸方向に揃えて異方性光拡散フィルム3を配設すると、異方的光散乱性により、管状光源(蛍光管)1からの光を棒状光源の長さ方向に対して垂直方向に散乱させることができ、輝度の低下を最小限度に抑えつつ、出射面の輝度を均一化し表示面を均一に照明できる。特に、異方性光拡散により、拡散光の光抜けを防止できるため、薄肉化と高輝度化が求められているバックライト型ユニットでもランプイメージを消去できる。さらに、大型の液晶表示装置であっても、装置の薄型化に対応でき、簡便に装置を製造できる。すなわち、本発明の光拡散フィルムは厚みが薄くても、大面積の液晶表示装置の表示面を高い輝度で均一に照明できる。特に、連続相及び分散相が所定の樹脂で構成されているため、耐熱性が高く、管状光源1に近接して位置し、高温が作用する直下型面光源ユニットであっても、長期間に亘り所定の光拡散を維持できる。 When the anisotropic light diffusion film 3 is used for a backlight type surface light source unit or a liquid crystal display device, the luminance on the display surface can be made uniform and the expression of the lamp image can be suppressed. That is, when the anisotropic light diffusion film 3 is disposed with the long axis direction of the dispersed phase aligned with the long axis direction of the tubular light source 1, the light from the tubular light source (fluorescent tube) 1 is converted into a rod-shaped light source due to anisotropic light scattering. It is possible to scatter in the direction perpendicular to the length direction of the light source, and to uniformly illuminate the display surface by uniformizing the luminance of the exit surface while minimizing the decrease in luminance. In particular, anisotropic light diffusion can prevent diffused light from being lost, so that the lamp image can be erased even in a backlight unit that is required to be thin and have high brightness. Furthermore, even a large-sized liquid crystal display device can cope with the thinning of the device and can be easily manufactured. That is, even if the light diffusion film of the present invention is thin, the display surface of a large-area liquid crystal display device can be illuminated uniformly with high luminance. In particular, since the continuous phase and the disperse phase are made of a predetermined resin, even a direct type surface light source unit that has high heat resistance, is located in the vicinity of the tubular light source 1 and is subjected to high temperatures can be used for a long time. A predetermined light diffusion can be maintained.
 なお、前記液晶表示装置において、光拡散フィルムは、異方性に限定されず、等方性光拡散フィルムであってもよい。さらに、前記光拡散フィルム(異方性光拡散フィルムなど)は、面光源ユニットの出光面(出射面)から出射する光路内、すなわち面光源ユニットと表示ユニットとの間に介在すればよく、必要により接着剤を用いて出光面(出射面)に積層した積層形態で配設してもよい。より具体的には、光拡散フィルム(異方性光拡散フィルムなど)は、面光源ユニットの出光面(出射面)側又は表示ユニットの入射面側に配設すればよく、面光源ユニットの出射面と表示ユニットとの間に配設してもよい。なお、前記面光源ユニットの出射面に積層する必要はない。また、前記プリズムシートや輝度向上シートと組み合わせて用いる必要はないが、前記プリズムシートは拡散光を集光して表示ユニットを照明するのに有用である。プリズムシートと光拡散フィルムとを組み合わせて使用する場合、通常、プリズムシートは光拡散フィルムよりも光路の下流側に配設してもよい。また、光拡散フィルムは、位相差フィルム、偏光フィルム、カラーフィルタなどと組み合わせて(例えば、積層して)使用してもよい。 In the liquid crystal display device, the light diffusion film is not limited to anisotropy and may be an isotropic light diffusion film. Further, the light diffusing film (anisotropic light diffusing film, etc.) may be interposed in the light path emitted from the light emitting surface (emission surface) of the surface light source unit, that is, between the surface light source unit and the display unit. You may arrange | position with the lamination | stacking form laminated | stacked on the light emission surface (emitted surface) using the agent. More specifically, the light diffusing film (anisotropic light diffusing film or the like) may be disposed on the light exiting surface (emission surface) side of the surface light source unit or the incident surface side of the display unit. You may arrange | position between display units. In addition, it is not necessary to laminate | stack on the output surface of the said surface light source unit. Further, although it is not necessary to use in combination with the prism sheet or the brightness enhancement sheet, the prism sheet is useful for condensing diffused light and illuminating the display unit. When the prism sheet and the light diffusing film are used in combination, usually, the prism sheet may be disposed on the downstream side of the optical path from the light diffusing film. Moreover, you may use a light-diffusion film in combination with a retardation film, a polarizing film, a color filter, etc. (for example, laminating | stacking).
 さらに、面光源ユニットにおいて、管状光源は表示ユニットの直下に位置する必要はなく、側部に位置させてもよい。この場合、側部の管状光源からの光は、導光板の側部から入射し、この導光板のうち表示ユニットに対向して形成された出射面から出射し、表示ユニットを照明してもよい。また、管状光源の数は特に制限されず、表示面のサイズなどに応じて選択できる。 Furthermore, in the surface light source unit, the tubular light source does not have to be positioned directly below the display unit, and may be positioned on the side portion. In this case, the light from the side tubular light source may be incident from the side of the light guide plate, and may be emitted from the exit surface of the light guide plate formed to face the display unit to illuminate the display unit. . The number of tubular light sources is not particularly limited and can be selected according to the size of the display surface.
 なお、異方性光拡散フィルムのX軸方向は、通常、分散相の長軸方向である。そのため、異方性光拡散フィルムは、そのX軸方向を、面光源ユニットの管状光源の軸方向(Y軸方向)に対して略並行方向に向けて配設されている。なお、異方性光拡散フィルムのX軸方向は、面光源ユニットの管状光源の軸方向(Y軸方向)に対して、完全に垂直である必要はなく、例えば、角度±15°(例えば、±10°、特に±5°)程度の範囲内で斜め方向に向けて配設してもよい。 Note that the X-axis direction of the anisotropic light diffusion film is usually the long-axis direction of the dispersed phase. Therefore, the anisotropic light diffusing film is disposed so that the X-axis direction thereof is substantially parallel to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit. Note that the X-axis direction of the anisotropic light diffusing film does not need to be completely perpendicular to the axial direction (Y-axis direction) of the tubular light source of the surface light source unit, for example, an angle ± 15 ° (for example, ± 10) You may arrange | position toward the diagonal direction within the range of about (degree, especially +/- 5 degree).
 本発明の光拡散フィルムは、薄型化かつ高輝度化しても光抜けが抑制されるとともに、耐熱性が高く、高温下で使用しても長期間に亘り光散乱特性の変化を抑制でき、バックライトユニット(面光源ユニット)により表示ユニットを均一に照明できる。そのため、表示装置(液晶表示装置など)やバックライト型光源装置(面光源装置)の部材として有用である。特に、表示ユニットの直下に光源が配設された直下型バックライトユニット(面光源ユニット)では、種々の画面サイズ、特に大画面の表示ユニットを有する表示装置に対応できるため、このような大画面の表示ユニット又はバックライトユニットの構成部材として好適である。表示ユニットの画面サイズは特に制限されず、例えば、20インチ以上(例えば、23~300インチ、好ましくは30~200インチ)程度であってもよい。 The light diffusing film of the present invention suppresses light leakage even when it is thin and has high brightness, has high heat resistance, and can suppress changes in light scattering characteristics over a long period of time even when used at high temperatures. The display unit can be uniformly illuminated by the light unit (surface light source unit). Therefore, it is useful as a member of a display device (liquid crystal display device or the like) or a backlight type light source device (surface light source device). In particular, a direct type backlight unit (surface light source unit) in which a light source is disposed directly below the display unit can be used for display devices having various screen sizes, particularly large screen display units. It is suitable as a constituent member of the display unit or the backlight unit. The screen size of the display unit is not particularly limited, and may be, for example, about 20 inches or more (eg, 23 to 300 inches, preferably 30 to 200 inches).
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例で使用した光拡散フィルム(異方性光拡散フィルム)の特性は、下記の方法に従って評価した。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the characteristic of the light-diffusion film (anisotropic light-diffusion film) used by the Example and the comparative example was evaluated in accordance with the following method.
 [全光線透過率TT(%)及びヘイズ(%)]
 JIS K 7301に準拠して、ヘイズメーター(日本電色工業(株)製、NDH-500)を用いて、光拡散フィルムの全光線透過率及びヘイズを測定した。
[Total light transmittance TT (%) and haze (%)]
Based on JIS K7301, the total light transmittance and haze of the light diffusion film were measured using a haze meter (NDH-500, manufactured by Nippon Denshoku Industries Co., Ltd.).
 [屈折率]
 JIS K 7142に準拠して、屈折率計((株)アタゴ製、NAR-IT)を用いて、光拡散フィルムの屈折率を測定した。
[Refractive index]
In accordance with JIS K 7142, the refractive index of the light diffusion film was measured using a refractometer (manufactured by Atago Co., Ltd., NAR-IT).
 [メルトフローレート(MFR)]
 ISO1133に準拠して、ポリカーボネート系樹脂については、300℃、1.2kg荷重の条件で測定し、環状オレフィン系樹脂については、260℃、2.16kg荷重の条件で測定した。
[Melt flow rate (MFR)]
In accordance with ISO1133, polycarbonate resin was measured under conditions of 300 ° C. and 1.2 kg load, and cyclic olefin resin was measured under conditions of 260 ° C. and 2.16 kg load.
 [異方度]
 異方性光拡散フィルムの延伸方向をX軸方向、この方向と直交する方向をY軸方向とし、異方性光拡散フィルム面に対して直交する方向からレーザー光を照射し、散乱角θに対する散乱光強度F、すなわちX軸方向での散乱角θに対する散乱光強度Fx(θ)、Y軸方向での散乱角θに対する散乱光強度Fy(θ)を測定した。そして、光散乱の異方性を示す数値として、θ=18°での散乱光強度比Fy(18°)/Fx(18°)を求めた。
[Anisotropy]
The stretching direction of the anisotropic light diffusing film is the X-axis direction, the direction orthogonal to this direction is the Y-axis direction, laser light is irradiated from the direction orthogonal to the anisotropic light diffusing film surface, and the scattered light intensity F with respect to the scattering angle θ. That is, the scattered light intensity Fx (θ) with respect to the scattering angle θ in the X-axis direction and the scattered light intensity Fy (θ) with respect to the scattering angle θ in the Y-axis direction were measured. The scattered light intensity ratio Fy (18 °) / Fx (18 °) at θ = 18 ° was determined as a numerical value indicating the anisotropy of light scattering.
 [粒子状分散相のアスペクト比]
 異方性光拡散フィルムの断面を透過型電子顕微鏡(TEM)により観察し、分散相粒子の長軸長さと短軸長さを5個の分散相粒子について測定し、加算平均し、平均アスペクト比を算出した。
[Aspect ratio of particulate dispersed phase]
The cross section of the anisotropic light diffusing film is observed with a transmission electron microscope (TEM), and the long axis length and short axis length of the dispersed phase particles are measured for the 5 dispersed phase particles, and the average is calculated and the average aspect ratio is calculated. did.
 [光抜け]
 レーザー式光散乱装置(ネオアーク(株)製、LSD-101、波長633nm)を用いて異方性光拡散フィルムの光散乱強度分布を測定した。光抜けの評価は、横軸を散乱角とし、縦軸に光散乱強度の対数をとったグラフに基づいて評価した。図6は、光抜けしているサンプルのグラフであり、図7は、光抜けしていないサンプルのグラフである。図6に示すように、光抜けしているサンプルでは、0°付近で不連続に分布強度が変化するため、輝度が不均一となり、光抜けが発生し、ランプイメージが残存する。一方、図7に示すように、光抜けしていないサンプルでは、0°付近であっても連続に分布強度が変化するため、輝度が均一であり、光抜けが防止され、ランプイメージも残存しない。このようなグラフにおける0°付近での連続性について評価した結果を、以下の基準で評価した。
[Light loss]
The light scattering intensity distribution of the anisotropic light diffusion film was measured using a laser type light scattering device (manufactured by Neoarc, LSD-101, wavelength 633 nm). The evaluation of light omission was based on a graph in which the horizontal axis represents the scattering angle and the vertical axis represents the logarithm of the light scattering intensity. FIG. 6 is a graph of a sample that has lost light, and FIG. 7 is a graph of a sample that has not lost light. As shown in FIG. 6, in the sample where light is lost, the distribution intensity changes discontinuously near 0 °, so that the luminance becomes non-uniform, light is lost, and the lamp image remains. On the other hand, as shown in FIG. 7, in the sample where light is not lost, since the distribution intensity continuously changes even near 0 °, the luminance is uniform, light is prevented from being lost, and the lamp image does not remain. . The results of evaluating the continuity around 0 ° in such a graph were evaluated according to the following criteria.
  ◎:分布強度が連続し、光抜けが全くなく、ランプイメージも残存しない
  ○:分布強度が0°付近で若干不連続であるが、ランプイメージはほとんど残存しない
  △:分布強度が0°付近でやや不連続であり、ランプイメーが少し残存する
  ×:分布強度が0°付近で不連続であり、ランプイメージが残存する。
◎: Distribution intensity is continuous, no light is lost, and no lamp image remains. ○: Distribution intensity is slightly discontinuous near 0 °, but almost no lamp image remains. △: Distribution intensity is near 0 °. Slightly discontinuous and some lamp image remains ×: The distribution intensity is discontinuous near 0 °, and the lamp image remains.
 実施例1
 連続相を構成する樹脂としてのビスフェノールA型ポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製、「中粘度品 ユーピロンS-2000」、粘度平均分子量18000~20000、メルトフローレート9~12cm/10分)85重量部、分散相を構成する樹脂としての環状オレフィン樹脂(ノルボルネン系モノマーとオレフィン系モノマーとの共重合体、Topas Advanced Polymers GmbH社製、商品名「TOPAS5013」、メルトフローレート48cm/10分)15重量部、滑剤(エチレンビスステアリン酸アミド、クラリアントジャパン(株)製、商品名「E-マイクロパウダー」)0.1重量部、酸化防止剤(ヒンダードフェノール系酸化防止剤、チバ・ジャパン(株)製、商品名「イルガノックス(IRGANOX)1010」)0.1重量部を混合し、押出成形機を用い、樹脂温度260℃、ダイ開度1.3mmでダイから溶融して押し出し、ドロー比(ドロー倍率)を5倍として、油温調3本キャストロール125℃で冷却し、厚み263μmの異方性光拡散フィルムを作製した。透過型電子顕微鏡(TEM)により断面を観察したところ、この拡散フィルムでは、環状ポリオレフィン樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ(厚み)0.8μm及び長軸の平均長さ6.6μm(アスペクト比8.3)であった。
Example 1
Bisphenol A type polycarbonate resin as the resin constituting the continuous phase (Mitsubishi Engineering Plastics Co., Ltd., "medium viscosity products Iupilon S-2000", viscosity-average molecular weight from 18,000 to 20,000, a melt flow rate 9 ~ 12cm 3/10 min) 85 parts by weight, the cyclic olefin resin (a copolymer of norbornene monomer and an olefin monomer as a resin constituting the dispersed phase, Topas Advanced polymers GmbH Co., trade name "TOPAS5013", melt flow rate 48cm 3/10 minutes ) 15 parts by weight, 0.1 parts by weight of lubricant (ethylene bis stearamide, Clariant Japan Co., Ltd., trade name “E-micro powder”), antioxidant (hindered phenol antioxidant, Ciba Japan) Product name "IRGANOX" 1 10 ") 0.1 parts by weight were mixed, and the extrusion temperature was used to melt and extrude from the die at a resin temperature of 260 ° C. and a die opening of 1.3 mm, the draw ratio (draw ratio) was 5 times, and the oil temperature Three-tone cast rolls were cooled at 125 ° C. to produce an anisotropic light diffusion film having a thickness of 263 μm. When the cross section was observed with a transmission electron microscope (TEM), in this diffusion film, the cyclic polyolefin resin formed a scatterer (particulate dispersed phase), and the particulate dispersed phase had an ellipsoidal shape (or The average length (thickness) of the minor axis was 0.8 μm and the average length of the major axis was 6.6 μm (aspect ratio 8.3).
 実施例2
 二種三層の光拡散フィルム(異方性光拡散層を中間層とし、この中間層の両面に表層としての透明樹脂層が積層された光拡散フィルム)を作製するために、表層用樹脂組成物として、ビスフェノールA型ポリカーボネート系樹脂(三菱エンジニアリングプラスチック(株)製、商品名「ユーピロンS-2000」)100重量部、紫外線吸収剤(チバ・ジャパン(株)製、商品名「チヌビン234」)0.5重量部及び光安定剤(ヒンダードアミン系光安定剤、チバ・ジャパン(株)製、商品名「キマソープ944FD」)0.1重量部を用い、中間層用樹脂組成物として、マトリックス樹脂としてのポリカーボネート系樹脂(三菱エンジニアリングプラスチック(株)製、商品名「ユーピロンS-2000」)85重量部、分散相を構成する樹脂としての環状オレフィン樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS5013」)15重量部、滑剤(クラリアントジャパン(株)製、商品名「E-マイクロパウダー」)0.1重量部、酸化防止剤(チバ・ジャパン(株)製、商品名「イルガノックス1010」)0.1重量部を混合し、多層押出成形機で、樹脂温度260℃、ダイ開度1.3mmでダイから溶融して共押出し、ドロー比を3.6倍として、油温調3本キャストロール125℃で冷却し、二種三層構造を有し、厚み364μm(厚み割合:表層/中間層/表層=1/10/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層において環状ポリオレフィン樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ(厚み)0.8μm及び長軸の平均長さ5.3μm(アスペクト比6.5)であった。
Example 2
As a surface layer resin composition, a two-layer / three-layer light diffusion film (an optical diffusion layer having an anisotropic light diffusion layer as an intermediate layer and a transparent resin layer as a surface layer laminated on both surfaces of the intermediate layer) is prepared. 100 parts by weight of a bisphenol A type polycarbonate resin (Mitsubishi Engineering Plastics Co., Ltd., trade name “Iupilon S-2000”), UV absorber (Ciba Japan Co., Ltd., trade name “Tinuvin 234”) 5 parts by weight and 0.1 parts by weight of a light stabilizer (hindered amine light stabilizer, Ciba Japan Co., Ltd., trade name “Kimasoap 944FD”) are used as a resin composition for an intermediate layer, and polycarbonate as a matrix resin Resin (Mitsubishi Engineering Plastics Co., Ltd., trade name “Iupilon S-2000”) 85 parts by weight, constituting the dispersed phase 15 parts by weight of cyclic olefin resin (made by Topas Advanced Polymers GmbH, trade name “TOPAS5013”), 0.1 parts by weight of lubricant (made by Clariant Japan, trade name “E-micro powder”), antioxidant 0.1 parts by weight of an agent (trade name “Irganox 1010” manufactured by Ciba Japan Co., Ltd.) is mixed and melted from the die at a resin temperature of 260 ° C. and a die opening of 1.3 mm using a multilayer extruder. Co-extrusion, draw ratio is 3.6 times, oil temperature control 3 cast rolls are cooled at 125 ° C., have 2 types and 3 layers structure, thickness 364 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/10) / 1) anisotropic light diffusion film was produced. In this anisotropic light diffusing film, the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length (thickness) was 0.8 μm, and the average length of the major axis was 5.3 μm (aspect ratio 6.5).
 実施例3
 ドロー比を4.0倍とする以外は実施例2と同様にして、厚み323μm(厚み割合:表層/中間層/表層=1/9/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層において環状ポリオレフィン樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ(厚み)0.8μm及び長軸の平均長さ6.7μm(アスペクト比8.4)であった。
Example 3
An anisotropic light diffusion film having a thickness of 323 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/9/1) was produced in the same manner as in Example 2 except that the draw ratio was 4.0 times. In this anisotropic light diffusing film, the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length (thickness) was 0.8 μm and the average length of the major axis was 6.7 μm (aspect ratio 8.4).
 実施例4
 ドロー比を4.8倍とする以外は実施例2と同様にして、厚み273μm(厚み割合:表層/中間層/表層=1/7/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層において環状ポリオレフィン樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ(厚み)0.6μm及び長軸の平均長さ6.2μm(アスペクト比10.9)であった。
Example 4
An anisotropic light diffusion film having a thickness of 273 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/7/1) was produced in the same manner as in Example 2 except that the draw ratio was 4.8 times. In this anisotropic light diffusing film, the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length (thickness) was 0.6 μm and the average length of the major axis was 6.2 μm (aspect ratio 10.9).
 実施例5
 ドロー比を6.1倍とする以外は実施例2と同様にして、厚み212μm(厚み割合:表層/中間層/表層=1/5/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層において環状ポリオレフィン樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ(厚み)0.5μm及び長軸の平均長さ7.9μm(アスペクト比16.1)であった。
Example 5
An anisotropic light diffusing film having a thickness of 212 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/5/1) was produced in the same manner as in Example 2 except that the draw ratio was 6.1 times. In this anisotropic light diffusing film, the cyclic polyolefin resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length (thickness) was 0.5 μm and the average length of the long axis was 7.9 μm (aspect ratio 16.1).
 なお、実施例1~5において、異方性光拡散層の滑剤及び酸化防止剤を配合せずに、フィルムを作製したところ、多数のゲルが生成し、不均一なフィルムとなった。 In Examples 1 to 5, when a film was prepared without blending the lubricant and antioxidant of the anisotropic light diffusion layer, a large number of gels were formed, resulting in a non-uniform film.
 比較例1
 二種三層の光拡散フィルム(異方性光拡散相を中間層とし、この中間層の両面に表層としての透明樹脂層が積層された光拡散フィルム)を作製するために、表層用樹脂組成物として、ポリカーボネート系樹脂(三菱エンジニアリングプラスチック(株)製、「ユーピロンS-2000」)100重量部、紫外線吸収剤(チバ・ジャパン(株)製、「チヌビン234」)0.5重量部及び光安定剤(ヒンダードアミン系光安定剤、「キマソープ944FD」)0.1重量部を用い、中間層用樹脂組成物として、マトリックス樹脂としてのポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製、「ユーピロンS-2000」)84重量部、分散相を構成する樹脂としてのポリプロピレン系樹脂(日本ポリプロ(株)製、「ウィンテックWFW-4」)16重量部及び酸化防止剤(チバ・ジャパン(株)製、「イルガノックス1010」)0.1重量部を用いた。各層を構成する樹脂組成物を混合し、多層押出成形機で、樹脂温度250℃、ダイ開度1.3mmでダイから溶融して共押出し、ドロー比を7.8倍として、油温調3本キャストロール80℃で冷却し、二種三層構造を有し、厚み167μm(厚み割合:表層/中間層/表層=1/3/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層においてポリプロピレン系樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ0.15μm及び長軸の平均長さ700μm(アスペクト比4700)であった。
Comparative Example 1
As a surface layer resin composition, a two-layer / three-layer light diffusion film (light diffusion film in which an anisotropic light diffusion phase is used as an intermediate layer and transparent resin layers as surface layers are laminated on both surfaces of the intermediate layer) is used. , 100 parts by weight of a polycarbonate resin (Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”), 0.5 parts by weight of an ultraviolet absorber (Ciba Japan Co., Ltd., “Tinuvin 234”) and a light stabilizer (Hindered amine light stabilizer, “Kimasoap 944FD”) 0.1 parts by weight, and as a resin composition for the intermediate layer, polycarbonate resin as a matrix resin (“Iupilon S-2000” manufactured by Mitsubishi Engineering Plastics Co., Ltd.) 84 parts by weight, polypropylene resin as a resin constituting the dispersed phase (manufactured by Nippon Polypro Co., Ltd., “Winte Click WFW-4 ") 16 parts by weight of an antioxidant (manufactured by Ciba Japan Co., Ltd.," IRGANOX 1010 ") was used 0.1 parts by weight. The resin composition constituting each layer is mixed, and is melted and co-extruded from a die at a resin temperature of 250 ° C. and a die opening of 1.3 mm with a multilayer extruder, the draw ratio is 7.8 times, and the oil temperature control is 3 The cast roll was cooled at 80 ° C. to prepare an anisotropic light diffusion film having a two-type three-layer structure and a thickness of 167 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/3/1). In this anisotropic light diffusing film, the polypropylene resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length was 0.15 μm and the average length of the long axis was 700 μm (aspect ratio 4700).
 比較例2
 中間層用樹脂組成物として、マトリックス樹脂としてのポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製、「ユーピロンS-2000」)80重量部、分散相を構成する樹脂としてのポリプロピレン系樹脂(日本ポリプロ(株)製、「ウィンテックWFW-4」)20重量部及び酸化防止剤(チバ・ジャパン(株)製、「イルガノックス1010」)0.1重量部を用い、ドロー比を8.3倍とする以外は比較例1と同様にして、二種三層構造を有し、厚み157μm(厚み割合:表層/中間層/表層=1/3/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層においてポリプロピレン系樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であり、短軸の平均長さ0.24μm及び長軸の平均長さ94μm(アスペクト比388)であった。
Comparative Example 2
As a resin composition for the intermediate layer, 80 parts by weight of a polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”) as a matrix resin, a polypropylene resin (Nippon Polypro Co., Ltd.) as a resin constituting the dispersed phase ), “Wintech WFW-4”) and 20 parts by weight of antioxidant (Ciba Japan Co., Ltd., “Irganox 1010”) are used, and the draw ratio is 8.3 times. Except for the above, an anisotropic light diffusion film having a two-type three-layer structure and a thickness of 157 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/3/1) was prepared in the same manner as in Comparative Example 1. In this anisotropic light diffusing film, the polypropylene resin forms a scatterer (particulate dispersed phase) in the intermediate layer, and the particulate dispersed phase has an ellipsoidal shape (or elongated linear shape) and a short axis. The average length was 0.24 μm and the average length of the long axis was 94 μm (aspect ratio 388).
 比較例3
 中間層用樹脂組成物として、マトリックス樹脂としてのポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製、「ユーピロンS-2000」)92重量部、分散相を構成する樹脂としてのポリプロピレン系樹脂(日本ポリプロ(株)製、「ウィンテックWFW-4」)8重量部及び酸化防止剤(チバ・ジャパン(株)製、「イルガノックス1010」)0.1重量部を用いる以外は比較例1と同様にして、二種三層構造を有し、厚み167μm(厚み割合:表層/中間層/表層=1/3/1)の異方性光拡散フィルムを作製した。この異方性光拡散フィルムでは、中間層においてポリプロピレン系樹脂が散乱子(粒子状分散相)を形成しており、粒子状分散相の形状は、楕円体状(又は細長い線状)であった。
Comparative Example 3
As a resin composition for the intermediate layer, 92 parts by weight of a polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”) as a matrix resin, and a polypropylene resin (Nippon Polypro Co., Ltd.) as a resin constituting the dispersed phase ), "Wintech WFW-4") 8 parts by weight and antioxidant (Ciba Japan Co., Ltd., "Irganox 1010") 0.1 parts by weight were used in the same manner as in Comparative Example 1, An anisotropic light diffusion film having a two-type three-layer structure and a thickness of 167 μm (thickness ratio: surface layer / intermediate layer / surface layer = 1/3/1) was produced. In this anisotropic light diffusing film, the polypropylene resin formed a scatterer (particulate dispersed phase) in the intermediate layer, and the shape of the particulate dispersed phase was an ellipsoid (or elongated linear).
 実施例6
 連続相を構成する樹脂としてのビスフェノールA型ポリカーボネート樹脂(三菱エンジニアリングプラスチック(株)製、「ユーピロンS-2000」)92重量部、分散相を構成する樹脂としての環状オレフィン系樹脂(Topas Advanced Polymers GmbH社製、商品名「TOPAS5013」)8重量部を、2軸押出機(池貝(株)製、商品名「PCM30」、内径30mmφ、L/D=28.5)を用い、樹脂温度250℃でコンパウンドしペレットを得た。そのペレットを、プレス成形機(東洋精機(株)製、商品名「MINI TEST PRESS 10」)を用い、余熱時間2分・プレス時間2分・プレス圧力10MPaの条件で、厚み280μの単層フィルムを作製した。
Example 6
92 parts by weight of bisphenol A type polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd., “Iupilon S-2000”) as a resin constituting the continuous phase, cyclic olefin resin (Topas Advanced Polymers GmbH) as the resin constituting the dispersed phase 8 parts by weight of a product name “TOPAS5013” manufactured by the company, using a twin-screw extruder (product name “PCM30”, inner diameter 30 mmφ, L / D = 28.5) manufactured by Ikegai Co., Ltd.) at a resin temperature of 250 ° C. Compounded to obtain pellets. Using a press molding machine (trade name “MINI TEST PRES 10”, manufactured by Toyo Seiki Co., Ltd.), the pellets were 280 μm thick single layer film under conditions of preheating time 2 minutes, pressing time 2 minutes, and pressing pressure 10 MPa. Was made.
 実施例7
 分散相を構成する樹脂として環状オレフィン系樹脂(ノルボルネン系モノマーとオレフィン系モノマーとの共重合体、三井化学(株)製、商品名「アペル APL6011T」)を用いる以外は実施例6と同様にして、厚み300μmの単層フィルムを作製した。
Example 7
Except for using a cyclic olefin resin (copolymer of norbornene monomer and olefin monomer, manufactured by Mitsui Chemicals, Inc., trade name “Apel APL6011T”) as the resin constituting the dispersed phase, the same as in Example 6. A single layer film having a thickness of 300 μm was prepared.
 実施例8
 分散相を構成する樹脂として環状オレフィン系樹脂(ノルボルネン系モノマーの開環重合体、日本ゼオン(株)製、商品名「ZEONOR330R」)を用いる以外は実施例6と同様にして、厚み130μmの単層フィルムを作製した。
Example 8
A 130 μm-thick single resin having a thickness of 130 μm was used in the same manner as in Example 6 except that a cyclic olefin resin (a ring-opening polymer of a norbornene monomer, manufactured by Nippon Zeon Co., Ltd., trade name “ZEONOR330R”) was used as the resin constituting the dispersed phase. A layer film was prepared.
 比較例4
 分散相を構成する樹脂としてポリエチレンテレフタレート樹脂(帝人化成(株)製)を用いる以外は実施例6と同様にして、厚み200μmの単層フィルムを作製した。
Comparative Example 4
A single-layer film having a thickness of 200 μm was prepared in the same manner as in Example 6 except that polyethylene terephthalate resin (manufactured by Teijin Chemicals Ltd.) was used as the resin constituting the dispersed phase.
 比較例5
 分散相を構成する樹脂としてポリプロピレン系樹脂(日本ポリプロ(株)製、「ウィンテックWFW-4」)を用いる以外は実施例6と同様にして、厚み70μmの単層フィルムを作製した。
Comparative Example 5
A single-layer film having a thickness of 70 μm was produced in the same manner as in Example 6 except that a polypropylene resin (manufactured by Nippon Polypro Co., Ltd., “Wintech WFW-4”) was used as the resin constituting the dispersed phase.
 結果を表1に示す。なお、表1中、記号TTは全光線透過率(%)を意味する。 The results are shown in Table 1. In Table 1, symbol TT means total light transmittance (%).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表から明らかなように、実施例の光拡散フィルムを用いると、ランプイメージが残存することなく、高い輝度が得られる。これに対して、比較例のフィルムを用いると、ランプイメージが残存するか、又は著しい輝度の低下が確認される。 As is clear from the table, when the light diffusion film of the example is used, a high luminance can be obtained without the lamp image remaining. On the other hand, when the film of the comparative example is used, a lamp image remains or a significant reduction in luminance is confirmed.
 1…蛍光放電管(冷陰極管)
 2…反射板
 3…拡散板
 4…プリズムシート
 5…面型表示ユニット
 6a,6b…偏光フィルム
 7a,7b…ガラス基板
 8a,8b…電極
 9a,9b…配向膜
 10…液晶層
 11…カラーフィルター
 17,28…光拡散フィルム
 27,37…異方性光拡散層
 17a,27a,37a…連続相
 17b,27b,37b…分散相
 29…透明樹脂層
1. Fluorescent discharge tube (cold cathode tube)
DESCRIPTION OF SYMBOLS 2 ... Reflecting plate 3 ... Diffusing plate 4 ... Prism sheet 5 ... Planar display unit 6a, 6b ... Polarizing film 7a, 7b ... Glass substrate 8a, 8b ... Electrode 9a, 9b ... Alignment film 10 ... Liquid crystal layer 11 ... Color filter 17 , 28 ... Light diffusing film 27, 37 ... Anisotropic light diffusing layer 17a, 27a, 37a ... Continuous phase 17b, 27b, 37b ... Dispersed phase 29 ... Transparent resin layer

Claims (12)

  1.  ポリカーボネート系樹脂で構成された連続相と、この連続相に分散し、かつ前記ポリカーボネート系樹脂に対する屈折率差の絶対値が0.045~0.085の樹脂で構成された分散相とで形成された光拡散層を含む光拡散フィルム。 A continuous phase composed of a polycarbonate-based resin and a dispersed phase dispersed in this continuous phase and composed of a resin having an absolute difference in refractive index with respect to the polycarbonate-based resin of 0.045 to 0.085. A light diffusion film comprising a light diffusion layer.
  2.  連続相が粘度平均分子量15000~25000のポリカーボネート系樹脂で構成され、かつ分散相が環状オレフィン系樹脂で構成されている請求項1記載の光拡散フィルム。 2. The light diffusing film according to claim 1, wherein the continuous phase is composed of a polycarbonate resin having a viscosity average molecular weight of 15000 to 25000, and the dispersed phase is composed of a cyclic olefin resin.
  3.  ポリカーボネート系樹脂のメルトフローレート(MFR)が、ISO1133に準拠して、300℃、1.2kg荷重の条件で5~30cm/10分であり、環状オレフィン系樹脂のメルトフローレート(MFR)が、ISO1133に準拠して、260℃、2.16kg荷重の条件で10~100cm/10分であり、かつ両者の比率が、ポリカーボネート系樹脂のMFR/環状オレフィン系樹脂のMFR=2/1~1/10である請求項2記載の光拡散フィルム。 Polycarbonate resin of melt flow rate (MFR), in compliance with ISO 1133, 300 ° C., a 5 ~ 30cm 3/10 minutes under the conditions of 1.2kg load, the cycloolefin resin melt flow rate (MFR) , in conformity with ISO1133, 260 ℃, a 10 ~ 100cm 3/10 min under conditions of 2.16kg load, and the ratio of both, the MFR / cyclic olefin resin of polycarbonate resin MFR = 2/1 ~ The light diffusion film according to claim 2, which is 1/10.
  4.  光拡散層がさらに滑剤及び酸化防止剤から選択された少なくとも一方を含む請求項1~3のいずれかに記載の光拡散フィルム。 The light diffusion film according to any one of claims 1 to 3, wherein the light diffusion layer further comprises at least one selected from a lubricant and an antioxidant.
  5.  連続相と分散相との割合が、連続相/分散相=99/1~50/50(重量比)である請求項1~4のいずれかに記載の光拡散フィルム。 5. The light diffusing film according to claim 1, wherein the ratio of the continuous phase to the dispersed phase is continuous phase / dispersed phase = 99/1 to 50/50 (weight ratio).
  6.  分散相が、1より大きい平均アスペクト比を有し、かつ長軸方向がフィルムの一定の方向に配向している粒子状分散相を含む請求項1~5のいずれかに記載の光拡散フィルム。 6. The light diffusing film according to claim 1, wherein the dispersed phase includes a particulate dispersed phase having an average aspect ratio larger than 1 and having a major axis direction oriented in a certain direction of the film.
  7.  粒子状分散相の短軸の平均長さが0.01~10μmであり、粒子状分散相の平均アスペクト比が3~100である請求項6記載の光拡散フィルム。 The light diffusion film according to claim 6, wherein the average length of the minor axis of the particulate dispersed phase is 0.01 to 10 µm, and the average aspect ratio of the particulate dispersed phase is 3 to 100.
  8.  光拡散層の少なくとも一方の面に積層された透明層を含む請求項1~7のいずれかに記載の光拡散フィルム。 The light diffusion film according to any one of claims 1 to 7, comprising a transparent layer laminated on at least one surface of the light diffusion layer.
  9.  透明層が紫外線吸収剤及び光安定剤から選択された少なくとも一方を含む樹脂層である請求項8記載の光拡散フィルム。 The light diffusion film according to claim 8, wherein the transparent layer is a resin layer containing at least one selected from an ultraviolet absorber and a light stabilizer.
  10.  光拡散層の厚みが3~500μmであり、フィルムの全光線透過率が60%以上である請求項1~9のいずれかに記載の光拡散フィルム。 10. The light diffusing film according to claim 1, wherein the light diffusing layer has a thickness of 3 to 500 μm and the total light transmittance of the film is 60% or more.
  11.  請求項1~10のいずれかに記載の光拡散フィルムを備えた面光源装置。 A surface light source device comprising the light diffusing film according to any one of claims 1 to 10.
  12.  請求項1~10のいずれかに記載の光拡散フィルムを備えた表示装置。 A display device comprising the light diffusing film according to any one of claims 1 to 10.
PCT/JP2009/067390 2009-01-22 2009-10-06 Light diffusion film and device comprising same WO2010084647A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547399A JP5411169B2 (en) 2009-01-22 2009-10-06 Light diffusing film and apparatus having the same
CN200980155030.7A CN102292658B (en) 2009-01-22 2009-10-06 Light diffusion film and device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-012158 2009-01-22
JP2009012158 2009-01-22

Publications (1)

Publication Number Publication Date
WO2010084647A1 true WO2010084647A1 (en) 2010-07-29

Family

ID=42355716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067390 WO2010084647A1 (en) 2009-01-22 2009-10-06 Light diffusion film and device comprising same

Country Status (5)

Country Link
JP (1) JP5411169B2 (en)
KR (1) KR101580346B1 (en)
CN (1) CN102292658B (en)
TW (1) TWI463187B (en)
WO (1) WO2010084647A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103618A1 (en) * 2012-12-27 2014-07-03 リンテック株式会社 Light diffusion film
JP2014164139A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2015513582A (en) * 2012-03-08 2015-05-14 コーロン インダストリーズ インク Tire inner liner film, tire inner liner film manufacturing method, pneumatic tire and pneumatic tire manufacturing method
JP2017110106A (en) * 2015-12-16 2017-06-22 日本ポリエステル株式会社 Light diffusive polycarbonate resin composition and light diffusing member using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3587902A4 (en) 2017-02-23 2020-10-28 Sumitomo Chemical Company, Limited Lamp cover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321427A (en) * 1999-05-12 2000-11-24 Nitto Denko Corp Polarized light guide plate and polarized surface light source
JP2001159704A (en) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd Anisotropic light scattering film
JP2003303508A (en) * 2002-04-08 2003-10-24 Daicel Chem Ind Ltd Surface light source device and liquid crystal display device
JP2004087234A (en) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd Surface light source unit and transmission type display device using the same
JP2004103335A (en) * 2002-09-06 2004-04-02 Daicel Chem Ind Ltd Surface light source device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287954A (en) * 1985-06-14 1986-12-18 Teijin Chem Ltd Polycarbonate resin composition
JP4115113B2 (en) 2000-10-19 2008-07-09 ダイセル化学工業株式会社 Surface light source unit and display device using the same
JP2006251395A (en) * 2005-03-10 2006-09-21 Daicel Chem Ind Ltd Anisotropic scattering sheet
WO2006107970A2 (en) 2005-04-06 2006-10-12 3M Innovative Properties Company Diffuse reflective polariziing films with orientable polymer blends

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321427A (en) * 1999-05-12 2000-11-24 Nitto Denko Corp Polarized light guide plate and polarized surface light source
JP2001159704A (en) * 1999-09-21 2001-06-12 Daicel Chem Ind Ltd Anisotropic light scattering film
JP2003303508A (en) * 2002-04-08 2003-10-24 Daicel Chem Ind Ltd Surface light source device and liquid crystal display device
JP2004087234A (en) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd Surface light source unit and transmission type display device using the same
JP2004103335A (en) * 2002-09-06 2004-04-02 Daicel Chem Ind Ltd Surface light source device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513582A (en) * 2012-03-08 2015-05-14 コーロン インダストリーズ インク Tire inner liner film, tire inner liner film manufacturing method, pneumatic tire and pneumatic tire manufacturing method
JP2016113153A (en) * 2012-03-08 2016-06-23 コーロン インダストリーズ インク Turn inner liner film, manufacture method for turn inner liner film, pneumatic tire and manufacture method for pneumatic tire
US10065405B2 (en) 2012-03-08 2018-09-04 Kolon Industries, Inc. Film for tire inner liner, method for manufacturing film for tire inner liner, pneumatic tire, and method for manufacturing pneumatic tire
WO2014103618A1 (en) * 2012-12-27 2014-07-03 リンテック株式会社 Light diffusion film
CN104797962A (en) * 2012-12-27 2015-07-22 琳得科株式会社 Light diffusion film
JP5758056B2 (en) * 2012-12-27 2015-08-05 リンテック株式会社 Light diffusion film
CN104797962B (en) * 2012-12-27 2018-01-05 琳得科株式会社 Optical diffusion film
US10094958B2 (en) 2012-12-27 2018-10-09 Lintec Corporation Light diffusion film
JP2014164139A (en) * 2013-02-25 2014-09-08 Keiwa Inc Light guide film, ultra-slim liquid crystal backlight unit, and portable computer
JP2017110106A (en) * 2015-12-16 2017-06-22 日本ポリエステル株式会社 Light diffusive polycarbonate resin composition and light diffusing member using the same

Also Published As

Publication number Publication date
KR101580346B1 (en) 2015-12-23
JPWO2010084647A1 (en) 2012-07-12
CN102292658B (en) 2013-08-07
CN102292658A (en) 2011-12-21
JP5411169B2 (en) 2014-02-12
TW201035600A (en) 2010-10-01
KR20110106408A (en) 2011-09-28
TWI463187B (en) 2014-12-01

Similar Documents

Publication Publication Date Title
JP5244797B2 (en) Light diffusing film and apparatus having the same
TWI437042B (en) Light-scattering plastics composition having high brightness and use thereof in flat screens
JP2010072630A (en) Optical control sheet and surface light source device provided with the same
JP2011011394A (en) Laminated film and method of manufacturing the same, and polarization plate
JP5411169B2 (en) Light diffusing film and apparatus having the same
JP2010044320A (en) Light control film and back light apparatus using the same
JP2010044319A (en) Light control film and back light apparatus using the same
JP5739255B2 (en) Reflective material
JP2007293289A (en) Light reflective sheet
JP5532799B2 (en) White reflective film
KR101597482B1 (en) Reflector
KR20120005029A (en) Adhesive layer-attached retardation film, and elliptical polarizing plate and liquid crystal display device each utilizing same
JP7521211B2 (en) Reflective material
JP2010250272A (en) Light diffusion plate, surface light source device, and liquid crystal display device
JP7547748B2 (en) Reflective material
JP2014038171A (en) Anisotropic light-diffusing laminate and projector screen
JP2012113193A (en) Polarization element and display device using the same
WO2020196760A1 (en) Reflecting material
JP2021149061A (en) Reflector
JP5897884B2 (en) Reflective film and reflective material
JP2021149060A (en) Reflector
JP2008233835A (en) Diffusion sheet and directly beaneth backlight using the same
JP2013200398A (en) Anisotropic light diffusion film
TW201009397A (en) Light control film and backlight device using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155030.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547399

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117017213

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838837

Country of ref document: EP

Kind code of ref document: A1